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AbsTRACT: Ontogenetic studies of callitrichid anatomy are limited to research focused mainly on postcranial 
skeleton of adults. The goal of this study is to compare the ontogeny of postcranial skeletal development in 
Goeldi’s monkeys (i.e., callimico; Callimico goeldii) with the corresponding data on saddle-back tamarins 
(Leontocebus fuscicollis). The intermembral, humerofemoral, brachial, crural, and ulna-radius indices of 
callimicos and saddle-back tamarins were calculated and compared among different age classes in order 
to assess the implications for their ecology and behavior. Ontogenetic trajectories, including age at growth 
cessation, were also calculated. It is shown that for a  given hindlimb length, L. fuscicollis has longer 
forelimbs compared to C. goeldii, maintaining this proportion across all age classes. A relatively elongated 
forelimb observed in L. fuscicollis may have a mechanical role in reducing the force of impact when landing 
on large vertical substrates. In contrast, hindlimb length and pattern of hindlimb development (such as 
derived features of the ankle that enhance stability) in callimicos appear to play a critical role in propulsion 
during trunk-to-trunk leaping. These differences may affect niche partitioning, foraging strategies, and 
substrate use.
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Introduction

Research studies on ontogeny (i.e., the 
course of growth and development of in-
dividuals to maturity) and allometry (i.e., 
the study of size and its implications) in 
individual primate species facilitate bet-
ter understanding of the evolutionary 
adaptive histories of the Primate order 
(Fleagle 1985; Shea 1995; Marroig and 
Cheverud 2009; for hominid primates: 
Gould 1977; Leigh 1996a; Nelson and 
Thompson 1999). Thus, research on the 
postcranial skeleton, and on the fore- and 
hindlimbs specifically, offers an oppor-
tunity to address questions concerning 
variation in locomotor patterns and body 
size among primates (Jungers 1985; Fal-
setti et al. 1993; Leigh 1996b; Leigh and 
Shea 1995). In this sense, the diversity of 
primate limb skeletons is related to natu-
ral selection and may reflect the variabil-
ity in the use of different forest substrates 
(Chiu and Hamrick 2002).

Regarding the Callitrichidae family 
(Rylands et al. 2016), there have been few 
studies that emphasized the importance of 
postcranial development (e.g., Glassman 
1983; Falsetti and Cole 1992). For exam-
ple, Bicca-Marques et al. (1997, 1998) and 
Bicca-Marques (1999) compared data on 
hand morphology among different species 
of callitrichids, illustrating the relevance 
of hand shape in relation to their feeding 
ecology and niche partitioning. However, 
as indicated by Falsetti and Cole (1992), 
these data were mainly derived from adult 
individuals. In contrast, only few studies 
have taken into account the relevance of 
studying the ontogeny among callitrichids 
in order to understand their implications 
regarding behavioral ecology and position-
al behavior of this group (Falsetti and Cole 
1992; Garber and Leigh 1997; Garber and 
Leigh 2001a). 

Positional and foraging behavior of 
callitrichids is adapted to the use and 
preference of low forest substrates (Ter-
borgh 1983; Yoneda 1984; Garber and 
Teaford 1986; Heymann 1997; Garber 
and Leigh 2001a, 2001b). The aim of 
this study is to describe the ontogeny 
of the postcranial skeleton of callimicos 
(Callimico goeldii) and saddle-back tama-
rins (Leontocebus fuscicollis), and to de-
termine its implications for understand-
ing the development of their positional 
behavior. These two callithichid taxa are 
reported to be the most frequent trunk-
to-trunk leapers within this primate 
group (Garber and Leigh 1997; Garber 
and Leigh 2001) and are sympatric in the 
wild. This paper aims to provide further 
information on the postcranial skeleton 
proportions of the Callithrichidae fol-
lowing the comprehensive work of Davis 
(2002). 

This research has the following objec-
tives: (i) to calculate and compare propor-
tional indices of postcranial skeletons in 
C. goeldii and L. fuscicollis immatures/
matures; (ii) to determine whether there 
are intra- and interspecific differences 
or similarities between both species and 
between age-classes in terms of their on-
togenetic and allometric histories; (iii) to 
reconstruct the ontogeny of these pri-
mates using fore- and hindlimbs; and 
(iv) to evaluate the relationships between 
the morphology of the postcranial skel-
eton and the behavior of both species. 
Relating morphology and behavior offers 
insight into the ecological adaptability of 
these New World primates.

Material and Methods

The saddle-back tamarins (Leontocebus 
fuscicollis) specimens used in this study 
consisted of 22 females and 18 males (to-
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tal 40 individuals) including 18 imma-
ture (<190 days) and 22 mature (>190 
days) individuals (according to the age 
classes provided by Garber and Leigh 
(1997)). Data on the exact age of death 
have been recorded in all examined indi-
viduals. The skeletal research collection 
is housed in the Laboratory of Primate 
Biology of the Department of Anthropol-
ogy at the University of Illinois at Urba-
na-Champaign, USA. These saddle-back 
tamarin (L. fuscicollis) skeletons were 
curated and obtained from the Depart-
ment of Anthropology at the University 
of Tennessee-Knoxville, USA and came 
from the Marmoset Research Center, 
Oak Ridge Associated Universities, USA. 
The original tamarin colony was creat-
ed in the 1960s by N. Gengozian (1969) 
and used for medical studies. The skel-
etons used in this study were sampled 
from captive-born L. fuscicollis individu-
als belonging to three different subspe-
cies (illigeri,  nigrifrons, and lagonotus) 
and their hybrids. As suggested by Gar-
ber and Leigh (1997), the small number 
of L. fuscicollis  subspecies used in this 
study could be a limitation. Although the 
sample size is ample for this genus, it is 
not large enough to be compared at the 
subspecific level. The data are pooled at 
the species level.

The callimicos (Callimico goeldii) 
skeleton collection is maintained by the 
Barbara E. and Roger O. Brown Primate 
Research Facility in the Division of Mam-
mals at the Field Museum of Natural 
History, Chicago, USA. The specimens, 
eight females and 14 males (totaling 22 
individuals), included six immature and 
16 mature individuals. All individuals 
were captive-born at the Brookfield Zoo 
(Chicago). The ages were recorded and 
provided by M. Wanerke (1998, 2003: 
pers. comm.). The C. goeldii colony was 

founded in 1977 to maintain a long-term 
successful breeding project for this rare 
New World primate (Beck et al. 1982; So-
daro 2000; see also Palacios et al. 2021).

In order to pursue the objectives of 
this work, the maximum lengths of the 
femur (FML), tibia (TML), humerus 
(HML), radius (RML), and ulna (UML) 
were measured using the diaphyseal 
lengths. The measurements were done 
using a digital sliding caliper, the Mitu-
toyo™ 500–197, graduated to 0.01 mm. 
Data from males and females were 
pooled; there is no significant sexual di-
morphism in this primate group (Hersh-
kovitz 1977; Cole et al. 1988; Hanihara 
and Natori 1988, estimated by standard 
deviation in this study). While examin-
ing questions of ontogeny, the data were 
analyzed separately between species 
and age classes. Immature individuals 
show signs of ossification, as reported 
for callitrichid infants by Hofmann et 
al. (2007). The intermembral, humero-
femoral, brachial, crural, and ulna-radi-
us indices were calculated for both pri-
mates and age classes, considering the 
average captive adult body weights (Jun-
gers 1985: 350) (for  L. fuscicollis  body 
weight [= 414.5 g]: Leigh 1994: 25 and 
for C. goeldii body weight [= 607 g]: 
Wanerke 2003: pers. comm.). Measure-
ments were collected on non-pregnant 
and healthy animals. 

Statistical analysis was performed us-
ing the SYSTAT® software package and 
Microsoft-Excel®. Ontogenetic data were 
graphically represented for both calli-
trichid species. An analytical compar-
ison was done using conventional least 
squares regression analysis. Furthermore, 
to contrast pairs of variables, t-tests were 
conducted to establish potential differ-
ences among the indices of both primates 
and age classes.
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Results

Figure 1 shows absolute differences in 
the postcranial maximum length (ML) of 
both callimicos and saddle-back tamarins. 
The postcranial proportion indices were 
calculated in order to compare intra- and 
interspecific variation in shape. As shown 
in Table 1, no significant differences were 
observed in any of the measurement taken 
from immature individuals of Callimico 
goeldii and Leontocebus fuscicollis. How-
ever, when comparing the ML proportion 

indices among mature individuals, L. fusci-
collis shows significantly (99%, p<0.0001) 
higher intermembral and humerofemoral 
indices compared to C. goeldii. In contrast, 
C. goeldii has significantly higher values of 
the ulna-radius index compared to L. fus-
cicollis (Table 1; Fig. 2 shows statistically 
significant limb proportion indices). The 
species-specific differences of mature in-
dividuals are also indicated in several fore-
limb and hindlimb indices; in all cases, cal-
limicos values are higher than saddle-back 
tamarins (Table 1).

Fig. 1. Box plots for comparison of postcranial skeleton lengths (mm) between mature Callimico goeldii and 
Leontocebus fuscicollis
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Fig. 2. Triangular plot of the significantly different relative limb proportion (indices) between mature Callimico 
goeldii and Leontocebus fuscicollis

Table 1. Comparison of postcranial skeleton proportions (indices) between immature and mature Callimico 
goeldii and Leontocebus fuscicollis

  Immature

Callimico goeldii Leontocebus fuscicollis

  n Mean S. D. n Mean S. D. p-value d.f  

Intermembral index 6 79.015 7.109 17 82.961 4.588 0,021 3 L. f.>C. g.

Humerofemoral index 4 80.701 8.839 13 90.122 4.091 0,054 3 L. f.>C. g.

Brachial index 6 90.191 11.037 18 89.268 4.096 0,780 5 C. g.>L. f.

Crural index 4 96.762 3.914 13 105.802 3.416 0,043 3 L. f.>C. g.

Ulna/radius index 6 111.206 6.167 18 113.733 3.784 0,791 5 L. f.>C. g.

Mature

  Callimico goeldii Leontocebus fuscicollis   

n Mean S. D. n Mean S. D. p-value d.f

Intermembral index 16 70.073 1.485 21 77.424 1.441 0,000 12 L. f.>C. g.*

Humerofemoral index 16 74.576 2.121 13 83.163 2.992 0,000 12 L. f.>C. g.*

Brachial index 16 90.292 3.230 21 91.512 5.111 0,756 15 L. f.>C. g.

Crural index 16 102.479 2.851 13 107.090 4.831 0,019 12 L. f.>C. g.

Ulna/radius index 16 116.173 1.017 22 114.320 1.768 0,003 15 C. g.>L.f.*

Forelimb index 16 12.072 1.051 21 10.130 2.958 0,000 12 C.g.>L.f.*

Hindlimb index 16 17.235 1.522 13 14.784 2.471 0,001 15 C.g.>L.f.*

*Significantly different after t-test (99%). Abbreviations: C. g. (Callimico goeldi),  L. f. (Leontocebus fuscicollis).
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Mature individuals of C. goeldii have 
longer hindlimbs relative to forelimbs 
compared to L. fuscicollis. In other words, 
at a given hindlimb length, C. goeldii has 
shorter forelimbs compared to L. fuscicol-
lis, and these differences are maintained 
with age (Fig. 3). These results are support-

ed by the least squares regression analyses 
(Table 2) as all regression slopes are under 
the isometric line, indicating that both 
primate species exhibit differential growth 
rates. However, the regression slopes also 
indicate that C. goeldii has a lower rate of 
growth compared to L. fuscicollis.

Fig. 3. Allometric comparison of the hindlimb/forelimb length ratio between Callimico goeldii and Leon-
tocebus fuscicollis

Table 2. Least squares regression analysis between mature Callimico goeldii and Leontocebus fuscicollis

X axis Y axis

Primate (years) (mm) Intercept Slope R2

Leontocebus fuscicollis Age HML 1.593 0.2372 0.876

Age RML 1.551 0.2411 0.870

Age UML 1.610 0.2486 0.875

Age FML 1.672 0.2729 0.915

  Age TML 1.694 0.2692 0.901

Callimico goeldi Age HML 1.618 0.1530 0.948

Age RML 1.572 0.1533 0.937

Age UML 1.632 0.1615 0.944

Age FML 1.734 0.1698 0.920

  Age TML 1.735 0.1805 0.944

All values in Log10
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Piecewise regressions were performed 
on all immature and mature individuals, 
absolute C. goeldi postcranial maximum 
lengths were recorded in order to deter-
mine the age at growth cessation. Cal-
limicos have an age at growth cessation 
of 14.9 months (Fig. 4). This age is sim-
ilar to the one reported for sexual matu-
rity in female callimicos (13–14 months, 
using radioimmunoassay of urinary ster-
oid hormones), and the earliest record-
ed among all callitrichids (Dettling and 
Pryce 1999). Our L. fuscicollis data pres-
ent two cluster groups that do not allow 
this type of regression. However, Garber 
and Leigh (1994), using captive-born 
saddle-back tamarin adult brain size data 
analyzed by a  piecewise regression, re-
ported growth cessation in the cranium 
at ~13.2  months. Fig. 5 shows scatter 
plots of maximum lengths vs. age with 
log-transformed trend lines indicating 
similar growth curves for both primate 
species.

Fig. 4. Callimico goeldii humerus maximum length 
growth trajectory with the age of growth cessation

Fig. 5. Callimico goeldii and Leontocebus fuscicollis 
postcranial skeleton growth curves

Discussion

The results of the postcranial skeleton in 
Callimico goeldii and Leontocebus fusci-
collis analyses provide insights into sev-
eral aspects of their positional behavior. 
As indicated by Kimura (2003), arboreal 
primates tend to have longer hindlimbs 
than terrestrial ones, a feature related to 
the locomotor behavior adopted by each 
primate taxon in different environments. 
Garber and Leigh (2001a) argued that 
species differences in limb proportions 
rather than body mass offer a better ex-
planation of differences in positional be-
havior and patterns of habitat utilization, 
which appears to be the case for other 
primate taxa as well (Garber 2007). 
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Growth trajectories showed in our 
study are congruent with those report-
ed by Falsetti and Cole (1992), indicat-
ing that among callitrichids, saddle-back 
tamarins (L. fuscicollis), cotton-top 
tamarins (S. oedipus), and common mar-
mosets (Callithrix jacchus), growth tra-
jectories are also similar. In addition, as 
shown by Garber and Leigh (2001a) and 
Falsetti and Cole (1992), L. fuscicollis 
has proportionally longer forelimbs to 
hindlimbs during ontogeny compared 
to marmosets (Callithrix spp.) and other 
tamarins (Leontocebus labiatus). 

Our results also show that, compared 
with C. goeldii, L. fuscicollis exhibits 
longer forelimbs than hindlimbs. Field 
studies on the positional behavior of 
these sympatric primate species suggest 
that longer forelimbs in L. fuscicollis may 
provide an “advantage by increasing the 
braking distance available for decelerat-
ing the body when landing in a rigid sup-
port” (Garber and Leigh 2001a: 28). In 
addition, in L. fuscicollis longer forelimbs 
might also be an adaptation for foraging, 
which is in accordance with data reported 
by Bicca-Marques et al. (1997, 1998) and 
Bicca-Marques (1999), who found that in 
this species, longer forelimbs might be an 
advantage during feeding.

On the other hand, in  callimi-
cos, elongated hindlimbs and a pattern of 
hindlimb development characterized by 
derived features of the ankle may serve 
to enhance stability during locomotion 
(Davis 1996). This has been argued to 
represent an adaptation for trunk-to-
trunk leaping behavior (Garber and Leigh 
2001a; Garber et al. 2009). 

The differences in the postcranial 
skeleton and limb proportions in L. fusci-
collis and C. goeldii suggest that different 
limb proportions, diet, foraging strate-
gies, and patterns of habitat utilization 

enable these species to exploit different 
microenvironments in sympatry.

In sum,  these data suggest that, in 
the evolutionary history of the Calli-
trichidae, differences in limb propor-
tions and growth ontogeny might have 
played a  major role in shaping ecologi-
cal and behavioral differences between 
C. goeldii and L. fuscicollis. These dif-
ferences include divergence in substrate 
use (Garber and Pruetz 1995; Heymann 
and Buchanan-Smith 2000; Berles et 
al. 2022), niche partitioning, feeding be-
havior (Bicca-Marques 1999), and posi-
tional behavior (Garber and Leigh 2001a, 
2001b). It also indicates that limb pro-
portions among callitrichids may be used 
to distinguish ecologically different taxa. 
Nevertheless, further research on the en-
ergetic cost of leaping, vertical clinging, 
quadrupedal running, and musculoskele-
tal design is needed (Warren and Cromp-
ton 1998; Polk 2002) in order to fully 
understand the specific relationships be-
tween limb morphology and positional 
behavior in the Callitrichidae. 
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