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ABSTRACT 

The rapid depletion of fossil, fuels, increase in population, and birth of various industries has put a severe strain 

on conventional electrical power generation systems. It is because of this, that Wind Energy Conversion Systems 

has recently come under intense investigation. Among all topologies, the Doubly Fed Induction Generator is the 

preferred choice, owing to its direct grid connection, and variable speed nature. However, this connection has 

disadvantages. Wind turbines are generally placed in areas where the national grid is weak. In the case of 

asymmetrical voltage dips, which is a common occurrence near wind farms, the operation of the DFIG is 

negatively affected. Further, in the case of symmetrical voltage dips, as in the case of a three-phase short circuit, 

this direct grid connection poses a severe threat to the health and subsequent operation of the machine. Owing to 

these risks, there has been various approaches which are utilized to mitigate the effect of such occurrences. 

Considering asymmetrical voltage dips, symmetrical component theory allows for decomposition and subsequent 

elimination of negative sequence components. The proportional resonant controller, which introduces an infinite 

gain at synchronous frequency, is another viable option. When approached with the case of symmetrical voltage 

dips, the crowbar is an established method to expedite the rate of decay of the rotor current and dc link voltage. 

However, this requires the DFIG to be disconnected from the grid, which is against the rules of recently grid 

codes. To overcome such, the Linear Quadratic Regulator may be utilized. As evident, there has been various 

approaches to these issues. However, they all require obtaining of optimized gain values. Whilst these controllers 

work well, poor optimization of gain quantities may result in sub-optimal performance of the controllers. This 

work provides an investigation into the utilization of metaheuristic optimization techniques for these purposes. 

This research focuses on swarm-intelligence, which have proven to provide good results. Various swarm 

techniques from across the timeline spectrum, beginning from the well-known Particle Swarm Optimization, to 

the recently proposed African Vultures Optimization Algorithm, have been applied and analysed.  
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Chapter 1 : Introduction 
 
1.1. Motivation and incitement  
 
The world is currently in energy despair. For decades, the production of electrical energy depended on fossil fuels, 

particularly coal. An abundance of coal meant no limit of the utilization of this fuel to produce electricity.  

However, in recent times, this fuel source has come under investigation. This occurred for two reasons. The first 

reason is the scarcity of such fuel. The construction of many industries, urbanization and increasing population 

has led for a greater demand of electricity. This, in turn, has caused coal to be depleted at an alarming rate 

Secondly, due to the intense use of coal for the purpose of electricity production, the harmful effects of this fuel 

on the atmosphere have become more pronounced [1] . These issues have paved the way for the introduction of 

renewable energy. Due to its cost effectiveness, wind energy conversion systems (WECS) are gaining widespread 

attention. WECS utilize both asynchronous and synchronous machines [2]. The principle of producing electricity 

from WECS remains the same as that of a conventional power plant, the difference being the source of mechanical 

power utilized in driving the prime mover. In WECS, the wind turbine blades are attached to the rotor of the 

generator. This allows the rotation of the wind turbine blades to be transferred to the rotor of the machine. 

Generally, there is an interface, usually in the form of a three-stage gearbox, between the blades and the rotor. 

This allowed the low rotational velocity of the blades to be converted to a higher and more usable velocity. With 

the addition of various control actions, this rotational speed is converted into electricity. Evidently, WECS 

comprises of various mechanical and electrical components. The relationship of such can be observed in figure 

1.1 [3]: 

 

 
Figure 1.1: Conventional topology of WECS [3] 

 
Due to their robust nature, cheap maintenance costs, and large power generation capabilities, WECS are rapidly 

becoming the alternative to fossil fuel-based power generation. Moreover, the use of direct grid connected generators 

ensures that the aspect of grid inertia is present, which is a critical part of power system stability. It can then be 

observed that research in the control of WECS is of utmost importance and should be carried out extensively.  

 

1.2. Background of global wind energy utilization 
 
The total global installed capacity of WECS has rapidly increased in modern times [4]. From 2013 to 2016, there has 

been a continual expansion in such systems. This is observed in figure 1.2 [5]. The two leaders in implementation of 
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such systems are the United States of America and China. With an installed capability of 237 MW, China is ahead 

by a significant margin. The United States has a capacity of approximately 106 MW, with Germany coming in third 

with a capacity of 62 MW [6]. Further, it should be noted that various European and Asian nations have recently 

exhibited a rapid increase in the installation of such systems [6]. This can be seen in figure 1.3, which depicts the 

magnitude of wind energy contribution from the top ten countries [6]. However, despite China and the USA yielded 

a larger magnitude of installed capacity, the total contribution of such systems to the total national energy 

consumption is only a fraction. This is observed in figure 1.4 [7]. Also from figure 1.4, is can be seen that despite 

European nations yielded a smaller magnitude of energy, this energy accounts for a much larger percentage of the 

total national energy consumption [5], [8]. The important fact, though, is that there has been a sharp rise in the 

utilization of wind energy for the production of electricity. This points to a green and sustainable future.  
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Figure 1.2: Total global capacity of wind energy systems (in GW) from 2013-2019 [5] 

Figure 1.3: Participation of wind energy to global capacity of various nations [6] 

Figure 1.4: Infiltration of wind energy systems of several countries (%) [7] 



3 
 

1.3. Operation and control of current WECS 

 

In wind farms, the generator most commonly utilized are the DFIG and permanent magnet synchronous generator 

[9].This is due to their capability to produce the maximum possible power, despite fluctuations in the wind 

velocity. Also, when compared to the squirrel cage induction machine, these machines produce a lower level of 

stress on the machine components. Despite the advantages of the PMSG, the DFIG proves to be the more efficient  

generator. Thus, majority of WECS utilize the DFIG [10], [11]. However, recent research has been conducted in the 

control of the PMSG. One such example can be found in [12], whereby a novel MOT, called Democratic Joint 

Operations Algorithm, was utilized for the purpose of obtaining PID controller gains. When compared to various 

other algorithms, the proposed algorithm produced the best overshoot and steady state error of the active power. The 

authors in [13] propose an adaptive Fractional Order PID controller for Maximum Power Point Tracking (MPPT) 

which utilizes a linear perturbation observer. The controller is easy to implement, does not require an accurate model, 

and exhibits a robust control performance. Owing to the rapid increase in the use of the DFIG, control of such needs 

to be efficient and effective. The most common and established DFIG control method is field oriented control. This 

control algorithm regulates the DFIG stator active and reactive power via control of the rotor current [14], [15]. This 

utilizes proportional-integral (PI) controllers. PI controllers are known to produce reliable and robust responses. The 

issue, however, is that PI controllers are require optimal tuning.  

 
Achieving this via trial and error is a tedious task and may result in sub-optimal performance of the controller. One 

well-known method of PI controller tuning is the Ziegler-Nichols method, which utilizes either the closed-loop or 

open-loop response of the plant. Another method is the Cohen-Coon tuning method, which is similar to that of the 

Ziegler-Nichols method but makes use of different formulae to determine optimal controller performance [16], [17], 

[18]. These methods prove to be satisfactory, but often cease to meet the stringent levels of control presently required. 

This becomes an issue with grid code compliance, especially under abnormal conditions such as symmetrical and 

asymmetrical grid voltages, and fault ride through. 

 
Recently, several alternatives to the PI controller have surfaced. One such method is Sliding Mode Control (SMC). 

In SMC, a pre-set trajectory is utilized along which the control variable is forced [3]. SMC offers robustness to 

parameter variations, external disturbances, nonlinear loads, and uncertainties [19], [20]. However, it suffers the 

demerit of chattering [21], [22]. Hysteresis control makes use of user defined bandwidths. The output of the hysteresis 

controllers is used to determine which converter switching state will be implemented [23]. This is commonly referred 

to as a Look-Up Table. This is a simple control method. When applied to the DFIG, it proved to provide efficient 

dynamic responses. However, the ripple in the output is extremely large, and the output of the stator current is 

severely distorted [24]. Artificial Neural Network (ANN) is a system which is based on the human central nervous 

system. ANN simulates a biological neural network [25], [26]. The merit of ANN includes the ability to work with 

incomplete knowledge and having a strong fault tolerance. However, ANN suffers the demerit of an unexplained 

behaviour of the network. This compromises the reliability of the network [27]. Further, ANN is known to have a 

greater than average computational burden [27], [28]. Model Predictive Control has been extensively applied in the 

process control industry and has recently shown promise in the field of electrical engineering [29]. It offers a simple 

structure but is built on the knowledge of accurate machine parameters [3]. Practically, machine resistance and 

inductance values are given in terms of a tolerance, making Model Predictive Control an unreliable control method. 
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When applied to the DFIG, it is observed that MPC produces a large steady state error, particularly at lower shaft 

angular velocities [30]. 

 
1.4. Research significance 
 
Considering the control of a DFIG, aspects such as frequency and reactive power absorption/generation are required 

to have an extremely low error tolerance. This is important for the efficient operation and stability of the electrical 

grid. Poor control of these critical aspects may have catastrophic consequences. In addition to this, national grid code 

requirements are required to be met. The aim of this research is to thoroughly investigate the effect of utilizing 

Metaheuristic Optimization Techniques (MOT) in the control of the DFIG. In this research, swarm-based MOT are 

considered, with five techniques investigated and applied to the control of the DFIG. Each technique is investigated 

in terms of inception, mathematical modelling, and application procedure. Further, a review of fourteen techniques 

is provided. This is with regards to merits, demerits, and advancements of such and finally the application of these 

techniques to the control of the DFIG. This review provides a general review of the techniques and is aimed at 

researchers interested in the control of DFIG based WECS. The presented literature concerning algorithm 

advancements, in combination with the presented literature regarding the application of swarm-based MOT to DFIG 

control, will equip the researchers with sufficient knowledge to utilize a specific technique advancement in the 

application of DFIG control. This research, therefore, serves as a basis for scientific advancement concerning DFIG 

based WECS control.  

 
The focus of this study is the optimal control of the DFIG based WECS, particularly under the influence of 

abnormal grid voltage conditions. Wind farms are generally situated where the grid is weak and may frequently 

experience asymmetrical voltage sags and swells. These conditions may have a negative effect on the steady-state 

operation of the DFIG based WECS. Current literature presents various mitigation measures to such 

circumstances, such as the dual vector control method, and the proportional resonant controller. The issue, 

however, is fine tuning of these controllers. These techniques yield the potential to produce strong amelioration 

to these voltage anomalies, but sub-optimal tuning of such may result in poor controller performance. This 

research, therefore, aims to investigate the effect of applying swarm intelligence to the design of such controllers. 

The research considers both single-phase, as well as dual-phase voltage dips, as well as controller response to grid 

frequency perturbation. Results are analyzed in terms of steady-state error, overshoot, and steady-state ripple. The 

control method utilized in this research is stator-flux oriented control, which implies that stator power control is 

achieved via rotor current regulation.  

 
Another possible occurrence affecting wind generation systems is the effect of a symmetrical voltage dip. This 

may be due to the occurrence of a fault, or via start-up of large motors. Sudden, sharp changes in the grid voltage 

have catastrophic consequence on both the mechanical and electrical components of the DFIG. One such method 

of mitigation is the use of crowbar protection. In this method, during a symmetrical fault, the rotor terminals of 

the DFIG are short-circuit, to protection the rotor side converter of the machine. The size of the crowbar resistance 

should be carefully chosen, as a large size will increase the rotor voltage, but a smaller size will increase the rotor 

current. In this research, swarm intelligence is applied to the optimal sizing of the crowbar resistance, to ensure a 

strong trade-off between the rotor current and rotor voltage. Further, despite the crowbar method providing 

protection to the machine, it requires the DFIG to be disconnected from the grid. Modern grid codes require wind 
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energy systems to remains connected to the grid in case of fault, as well as to supply reactive power to assist in 

the restoration of the grid voltage. For this purpose, the linear quadratic regulator is investigated. Once again, 

swarm intelligence is applied to the system, to optimize the gains of the linear quadratic regulator.   

 
1.5. Research questions 
 
The research undertaken in this thesis aims to answer the following questions 

 

• What are the methods of implementation of various swarm intelligence techniques? What are the factors 

which affect the suitability of the techniques to engineering optimization problems? What are the 

drawbacks of the various techniques, and what methods are proposed to mitigate these drawbacks? 

• Has swarm intelligence been applied to the control of the DFIG? 

• What is the level of effectiveness of applying swarm intelligence to control of the DFIG? 

• How effective is swarm intelligence at ensuring a strong trade-off between rotor current and rotor voltage 

of the DFIG when applied to crowbar sizing? Further, how effective is swarm intelligence at optimizing 

the gains of a LQR to ensure strong Low Voltage Right Through characteristics of the DFIG? 

• How well do the controllers designed using swarm intelligence react to grid frequency perturbations? 

 
1.6. Aims and objectives 
 
The aims and objectives of this research work is as follows: 

 
• Conduct an in-depth review on various swarm intelligence technique. This is in terms of inception, 

mathematical modelling, method of implementation, merits, demerits, advances, and application of such 

to the control of the DFIG. Further, implement and analyze the response of various techniques when 

applied to CEC benchmark functions, as well as to practical engineering problems.  

• Implement mathematical techniques to improve to capability of a swarm technique.  

• Apply swarm intelligence to optimal crowbar sizing, and optimization of LQR gains and analyze the 

response in terms of LVRT capability.  

• Apply swarm intelligence to optimization of controller gains for control under the influence of 

asymmetrical voltage dips, and analyse the steady-state response of the DFIG  

 
Throughout the research, numerous state-of-the-art swarm-based metaheuristic optimization techniques have been 

applied and analysed. It is noted that despite the recent success of such techniques, these algorithms have not been 

extensively applied to the control of the DFIG. In some cases, the effect of application of these techniques have 

not been discussed at all. Therefore, by implementing and analysing various techniques, the research may better 

prove which techniques are better suited for particular applications  

 
1.7. Limitations of research 
 
Whilst this research aims to provide a critical insight into the utilization of Metaheuristic Optimization Techniques 

to the control of the DFIG during voltage anomalies, the following are the limitations which exist in this research: 
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• The investigation will only be conducted via simulation. The simulation chosen is MATLAB/Simulink. 

The software has powerful simulation properties, which allow for almost realistic operation.  

• The grid side converter will be implemented but will only be designed for nominal conditions. This 

means that during the case of a fault condition, only the rotor side converter will be modified and 

evaluated.  

• Since the aim of the study is to ensure acceptable operation of the DFIG in case of faults, the harmonic 

distortion of the output stator current will not be analyzed.  

• Metaheuristic Optimization Techniques comprises of four categories. Swarm techniques, physics-based 

techniques, evolutionary techniques and human-based based. Due to the large number of techniques 

within each category, only swarm intelligence will be applied.  

• Due to the significant number of swarm techniques, the literature review conducted will focus on fourteen 

techniques.  

• To ensure brevity, only six techniques will be applied and investigated in this research.  

 
This chapter provides an insight to the research work undertaken in this thesis. The aim of this chapter is to clearly 

highly the requirement of such research, and the subsequent significance of such. The chapter starts off by 

providing a motivation and incitement into the research work. Afterwards, a background on the recent use of wind 

energy conversion systems, is provided. Following this, a review of current operation and subsequent control of 

wind energy conversion systems, is presented. This highlights the need for the research, which is undertaken in 

this thesis, which is explained in detail. The research questions which this thesis aims to answer is also provided, 

along with the aims and objectives of the thesis. The limitations of the research work is also provided, followed 

by the publications arising from this research work. Finally, the structure of the thesis is presented.  

 
1.8. Structure of thesis 
 
The research work presented in this thesis is structured as follows: 

 

Chapter one deals with the introduction to the research work being undertaken. The motivation for the research, 

background of global wind energy utilization, and operation and subsequent control of current WECS is provided. 

Thereafter, a critical analysis of the significance of this research work is presented. This clearly defines the lack 

which exists in current literature, and how this research work aims to contribute to current literature. Following 

this, the research questions to be answered in this thesis, aims and objectives of the thesis, and limitations of this 

research work, is presented. Lastly, relevant publications arising from this research work is stated 

 

Chapter two provides a comprehensive analysis of fourteen swarm-based Metaheuristic Optimization Techniques. 

The chapter starts out by providing insight into the operation of the DFIG. Thereafter, a list of the various sub-

categories of MOT, along with their relevant techniques, is provided. Afterwards, fourteen well-known swarm-

based MOT are discussed. This is in terms of algorithm motivation, merits, demerits, proposed techniques to 

overcome demerits, and lastly, application of the relevant technique to the control of the DFIG. Upon completion 

of this, a table summarizing the captured information is presented, along with a table indicating the most suitable 

algorithm for specific application to the DFIG.. Lastly, a performance analysis of three common techniques is 
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carried out. These techniques are applied to well-known benchmark functions, at varying dimension magnitudes. 

Then results are analyzed in terms of mean value, standard deviation, and rate of convergence. This chapter 

contributes to current research by allowing other researchers to easily locate the information regarding the 

performance of the different algorithms, as well as determine the most suitable chose of algorithm for their 

particular application. 

 

Chapter three provides insight into the research methodology utilized in this research. In this chapter, the relevant 

equations, and subsequent flowchart of execution of various swarm-based MOT, are presented. These techniques 

are Particle Swarm Optimization, Bat Algorithm, Gorilla Troops Optimization, African Vulture Optimization 

Algorithm, and the Whale Optimization Algorithm. Upon completion of such, a modified version of the 

conventional Whale Optimization Algorithm is presented. The mathematical modifications applied to the 

algorithm are clearly defined, along with a novel method of implementation. The modified algorithm is then 

applied to the CEC2019 benchmark functions and compared to various conventional and modified techniques. 

After such, the algorithm is applied to a practical engineering problem, with the subsequent results analyzed. The 

proposed algorithm is then critically analyzed in terms of advantages, and limitations.  

 

Chapter 4 provides a heuristic approach to optimal crowbar setting and low voltage ride through of the DFIG. In 

this chapter, the well-known Particle Swarm Optimization, as well as the recently developed African Vultures 

Optimization Algorithm, were applied to the control of the DFIG when under the influence of symmetrical voltage 

dips. The chapter provides an insight into the significance of such works, along with a summary of techniques 

proposed in recent literature. Thereafter, the performance of the DFIG under the influence of such conditions is 

analyzed. The control theory pertaining to crowbar protection, as well as Linear Quadratic Regulator control is 

also provided. Thereafter, the relevant swarm intelligence techniques are applied to optimal crowbar setting, and 

its results analyzed. This was in terms of rotor current and rotor DC voltage transients. This is succeeded by 

application of the relevant swarm techniques to design of the Linear Quadratic Regulator, as well as the 

Demagnetizing Current Injection method, and the results analyzed and compared to the conventional control 

method. The system was subject to 70%, 80%, and 90% symmetrical voltage sags, with the relevant gain 

magnitudes provided. The chapter is then concluded, along with a stability performance analysis of the Linear 

Quadratic Regulator subject to a perturbation in grid frequency 

 

Chapter 5 provides insight into the application of swarm-based Metaheuristic Optimization Techniques to the 

design of the dual vector control of the DFIG, under the influence of asymmetrical voltage dips. Single-phase 

voltage dips of 5% and 10%, a well as a dual-phase voltage dip of 7.5%, were applied and analyzed, with the 

relevant gain magnitudes provided. Three swarm intelligence techniques from across the spectrum were applied 

to the control system. These are Particle Swarm Optimization, Bat Algorithm, and Gorilla Troops Optimization 

algorithm. The system was tested in sub synchronous mode, with the control target attempting to be achieved was 

constant rotor voltage. For this application, four Proportional-Integral controllers were utilized, one for each of 

the rotor direct and quadrature axis positive and negative sequence currents. A comprehensive set of results are 

provided, including three-phase stator current, three-phase rotor voltage, and rotor direct and quadrature axis 

positive and negative sequence currents. Results were analyzed in terms of steady-state error, overshoot, and 
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steady-state ripple. The chapter starts by providing a brief background into the dual vector control method. 

Thereafter, the relevant control block diagram to be implemented is provided. This is succeeded by the results of 

the various experiments. The chapter is then concluded.  

Chapter 6 provides an investigation into the utilization of swarm intelligence to the design of the Proportional-

Resonant regulator. control of the DFIG, under the influence of asymmetrical voltage dips. Single-phase voltage 

dips of 5% and 10%, a well as a dual-phase voltage dip of 7.5%, were applied and analyzed, with the relevant 

gain magnitudes provided. Three swarm intelligence techniques from across the spectrum were applied to the 

control system. These are Particle Swarm Optimization, Bat Algorithm, and Gorilla Troops Optimization 

algorithm. The system was tested in sub synchronous mode. A comprehensive set of results are provided, 

including three-phase stator current, three-phase rotor voltage, and rotor direct and quadrature axis currents. 

Results were analyzed in terms of steady-state error, overshoot, and steady-state ripple. The chapter starts by 

providing a background of the current work, as well as the significance of the work undertaken in the chapter. 

Thereafter, theory pertaining to the Proportional-Resonant controller is provided. This is succeeded by the results 

of the experiments. Further, a stability analysis of the Proportional Resonant controller is carried out, where the 

system is subject to a grid frequency perturbation. The work presented in the chapter is then concluded.  

 

Chapter 7 provides a comprehensive summary of the research work undertaken in this thesis. The chapter 

summarizes work present in current literature, as well as the research methodology proposed in this thesis. 

Afterwards, the methods applied to, and results obtained from the subsequent chapters, are comprehensively 

discussed. The chapter then concludes with a scope for future work 
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Chapter 2 : Literature Review 
 
This chapter aims to provide an insight, as well as an in-depth analysis of the application of swarm-based 

metaheuristic optimization techniques to the doubly fed induction generator. First, some context of the operation 

and established control of the DFIG is given. Next, an introduction to metaheuristic optimization techniques, with 

a subsequent flowchart depicting the various categories of MOT, is provided. Succeeding this, fourteen swarm 

intelligence techniques are analysed. A brief explanation regarding inception is provided. Thereafter, the 

associated merits, demerits, and proposed mitigation measures are given. This is followed by a critical analysis of 

the application of these techniques to the control of the DFIG. A discussion and subsequent summary of the 

techniques is provided. Lastly, an investigation into the performance of three well-known swarm techniques is 

carried out, and the results analyzed. 

 
2.1. An overview of the DFIG 
 
The structure of the DFIG based WECS is such that the stator provides a direct grid connection, and the rotor makes 

use of a back-to-back converter to provide grid coupling. This unique rotor configuration allows the rotor to both 

absorb and supply electrical power, thus allowed for generator operation at any wind speed [31], [32]. The rotor 

supplies power at speeds greater than synchronous speed and absorbs power at speeds lower than synchronous speeds 

[32]. To ensure a constant output frequency, power is absorbed at slip frequency [33]. Figure 2.1 depicts the structure 

of the DFIG-WECS [3].  

 
Figure 2.1: General structure of DFIG based WECS [3] 

 
Considering the synchronous (d-q) reference frame, the DFIG voltage equations can be seen in [34], [35]. The DFIG 

rotor and stator fluxes can be represented as shown in [36]. The DFIG electromagnetic torque, as well as the stator 

and rotor active and reactive powers are shown in [37] and  [38] respectively. When considering DFIG control, 

various control strategies exist. These are rotor current control, direct power control (DPC) and direct torque control 

(DTC) [34]. Rotor current control is conventionally achieved via field-oriented control (FOC). FOC utilizes PI 

controllers to regulate the rotor currents, thus allowing for indirect control of the stator active and reactive powers 

[35]. This is the most common method of control. The function block diagram of stator voltage FOC is observed in 

figure 2.2 [39]. In figure 2.2, c1 and c2 denote the coupling terms of the algorithm. The algorithm is explained in 

detail in [40]. DTC directly controls the generator rotor flux and torque. There are two ways in which conventional 
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DTC is achieved. In method one a look up table and hysteresis controllers (DTC-ST) are utilized. The second way 

involves the use of PI controllers [41], [42]. DPC control directly the stator reactive and active powers. DPC is 

achieved using the same methodology as in DTC-ST [43]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
2.2. Metaheuristic Optimization Techniques 
 
Metaheuristic Optimization Techniques, as the name suggests, are problem independent control techniques which 

has gain rapid popularity in the application of complex engineering problems. This can be attributed to their 

simplicity, flexibility, and capability to solve complex problems at a high efficiency rate. Metaheuristics 

techniques are based strongly on the concept of randomness, and search for optimal solutions based on 

diversification and intensification. Diversification is the scattered search of an entire search space and 
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intensification is the search in a particular area of a search space [44]. MOT are based on various aspects of 

everyday life, such as the human body, the laws of physics and the behavior of animals in their natural habitat 

[45]. Critical evaluation of the working processes of these aspects has allowed for accurate mathematical 

modelling of various nature-based occurrences. This in turn has been used to solve complex engineering problems 

successfully and optimally. While there does not exist any definitive way to categorize MOT, it can usually be 

classified into four categories [45], [46]. This can be seen in figure 8. The classification shown in figure 7 is not 

an exhaustive list of MOT but does account for most of the currently implemented techniques. The application of 

MOT has recently been applied to the control of the DFIG but has not been extensively researched. It has mostly 

been used to optimize the controller gains of the PI controllers used in the control of the DFIG. It is shown later 

that MOT make use of fitness functions. In terms of proportional-integral (PI) controllers, the various fitness 

functions (performance indices) are time varying functions of the integral of either the square of absolute value 

of the error being input into the PI controller [47], [48], [49].  

 

Metaheuristic optimization techniques has been applied extensively to the field of renewable energy systems. In 

[50], a critical survey on the application of Metaheuristic optimization techniques on proton exchange fuel cell 

parameter estimation was carried out. The survey considered MOT from all four categories, both in conventional 

and modified natures, thereby making the survey extensive. Considering application to photovoltaic (PV) systems, 

the authors in [51] carried out a survey that reports the effects of utilizing MOT for identification of PV cell 

parameters. As in [50], the experiment considered techniques from all four categories, both in conventional and 

modified natures. The paper outlined in [52] conducts a comprehensive survey on the effect of MPPT algorithms 

of PV systems under the effect of partial shading. Seven categories of algorithms are considered, one of which is 

MOT. Within this, three of the four subcategories of MOT are discussed. Further to discussion of the conventional 

algorithms, the paper acknowledges the utilization of hybrid algorithms for the said application.  

 
2.3. A review of various swarm-based MOT 
 
The following section provides a review on various swarm-based MOT. The techniques that will be considered are 

Particle Swarm Optimization, Bacteria Foraging Optimization, Grey Wolf Optimization, Artificial Bee Colony 

Optimization, Whale Optimization Algorithm, Crow Search Algorithm, Bat Algorithm, Squirrel Search Algorithm, 

Moth Flame Optimization, Sailfish Optimization, Cuckoo Search Algorithm, Firefly Algorithm, Shuffled Frog 

Leaping Algorithm and Antlion Optimization. Each technique is discussed in terms of motivation, merits, demerits, 

advancements and finally their application to the control of the DFIG. 

 
2.3.1. Particle Swarm Optimization 
 
Utilizing the social conduct of the schooling of fish and the flocking of birds as inspiration, particle swarm 

optimization (PSO) is a MOT which, in was developed by an electrical engineer and social psychologist. PSO is 

a simple control algorithm which has a light computational burden  [53] [54] [55], [56]. Despite its merit of a fast 

convergence speed [57], [58], the conventional PSO suffers the demerits of poor accuracy and being easily trapped 

in the local minima [57], [58], [59]. The authors in [57] introduced a mutation factor and a dynamic inertial factor. 

Large inertial factors enhance the convergence rate of the algorithm while small inertial factors enhance the search 

accuracy. The proposed dynamic inertial factor is a function of the fitness of all the particles, and lies in the range 
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[0,1]. Based on the position of all particles except the global best, the mutation factor randomly generates two 

new particles based on a probability. The proposed algorithm was applied to the 14- BUS system for reactive 

power optimization and compared to the conventional PSO. It was observed that after 100 iterations, the proposed 

algorithm produced a 1.28% improvement in the result. For iterations lower than four, MPSO is inferior to PSO. 

However, in practise, such minute values of iterations are not utilized. 

 
Considering the application of PSO to the DFIG, the authors in [60] applied PSO to the optimization of the 

parameters in sliding mode control (SMC). Three different control algorithms were presented. The first algorithm 

was the conventional SMC, in which PSO was used to optimize the positive switching gain. The second algorithm 
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was the integral SMC, which is an advancement to the conventional SMC in the case of reduction in steady state 

error. In this algorithm, PSO was used to optimize both the positive switching gain and integral gain. The third 

algorithm was an intelligent sliding mode controller, which adds a proportional gain to the integral sliding mode 

controller. In this algorithm, PSO was used to optimize the positive switching gain, integral gain, and proportional 

gain. The proposed control methods were implemented using the rotor current control method, which means that 

the control of the DFIG stator active and reactive power was dependent on the control of the rotor direct and 

quadrature currents. The proposed control methods were tested on a 7.5 kW DFIG. From the results, it is observed 

that the integral sliding mode controller produced the best dynamic response for both the stator reactive power 

and active power. This is followed by the intelligent SMC, then the conventional SMC. The superiority was in the 

order of approximately 100% and 200% to the intelligent SMC and conventional SMC respectively. The results 

presented do not clearly show a difference in steady state error and steady state ripple among the three control 

algorithms. Furthermore, the results are not compared to other parameter optimization methods, such as other 

MOT or the Ziegler Nichols method. This means that the results of the proposed algorithms cannot be verified.  

 
PSO is applied to the DFIG to analyze the small signal stability in [61]. PSO is used to optimize the PI controller 

gains for both the rotor side converter (RSC) and grid side converter (GSC), and the pitch controller. In total, 

twelve parameters were optimized. The system was tested on both small and large disturbances. For the small 

disturbances, the optimized controllers produced smaller overshoots for the dc link voltage, terminal voltage, 

stator reactive power and stator active power. The optimized controller also damped out the oscillations much 

quicker. The author claims that the optimized controllers produce a superior dynamic response but due to 

insufficient evidence, this claim cannot be validated. Considering large disturbances, the optimized controllers 

produced a better terminal voltage and lower peak dc link voltage. With regards to the stator active power, the 

optimized controllers continued to inject active power into the grid, whereas the un-optimized controllers failed 

to produce any active power. Considering the stator reactive power, the optimized controllers absorbed a lower 

amount of power. An advancement of [40] was carried out in [62], where sensitivity analysis is utilized to identify 

the unified dominant control parameters. These are the parameters that would be optimized using PSO, so that the 

algorithm intricacy is lessened. The authors make use of trajectory sensitivity, which measures the degree of 

change of a system based on a differential change on a specific parameter and eigenvalue sensitivity, which uses 

eigenvalues to determine the systems sensitivity towards a specific parameter. Using the trajectory sensitivity 

analysis, the integral gain of the grid voltage regulator and the proportional gains of both the direct and quadrature 

rotor current regulators were chosen as the dominant control parameters. Using the eigenvalue sensitivity analysis, 

the integral gain of the stator active power regulator, integral gains of both the direct and quadrature rotor current 

regulators, proportional gain of the dc link capacitor voltage regulator and the proportional gains of both the direct 

and quadrature grid current regulators were chosen as the dominant control parameters. In total, there were six 

parameters to be optimized using PSO. The proposed algorithm (UDCP-PSO) was tested on both a single machine 

bus system as well as a multi machine bus system for both small and large disturbances. The proposed algorithm 

is fared against the original ten parameter optimization algorithm (C-PSO) as well as a random parameter 

optimization algorithm (R-PSO).  

 
Considering the single machine bus system under a small disturbance, the UCDP-PSO produced a smaller 

overshoot of stator active power when compared to C-PSO and R-PSO. The damping time for UCDP-PSO was 



14 
 

the same as C-PSO, which was superior to R-PSO. The dynamic response of all three are almost identical. For the 

stator reactive power, the percentage overshoot and damping time of UCDP-PSO and C-PSO are the same and 

superior to R-PSO. The dynamic response of all three are almost identical. An identical phenomenon was observed 

with respect to the dc link voltage. Considering the single machine bus system under large disturbance, the UCDP-

PSO produced the smallest percentage overshoot. The damping time and dynamic response of all three algorithms 

appear to be the same, with any variance being negligible. An identical response was seen with regards to the 

stator reactive power, this time the UCDP-PSO algorithm producing superiority only marginally to C-PSO. 

Considering the dc link voltage, UCDP-PSO once again produced the smallest percentage overshoot. UCDP-PSO 

and C-PSO produce an identical damping time, which was superior to that of R-PSO. The dynamic response of 

all three algorithms was identical. Considering the multi machine bus system under small disturbance, UCDP-

PSO and C-PSO produce the same percentage overshoot and damping time, which was superior to that of R-PSO. 

The dynamic response of all three algorithms was the same. For the stator output voltage, C-PSO produced the 

lowest overall percentage overshoot, with the damping time of UCDP-PSO and C-PSO being the same and 

superior to that of R-PSO. Once again, the dynamic response of all three algorithms was the same. A conventional 

PID control of a DFIG using PSO is implemented in [63]. However, the fitness function used was not a 

conventional one (such as ITAE), but rather a unique one. This unique fitness function is a function of the steady 

state error, settling time, rise time and overshoot. The proposed control algorithm was compared to the supervisory 

PID control method. The DFIG terminal voltage is dropped from 1 per unit to 0.5 per unit, before regaining to 1 

per unit. The results showed that the proposed algorithm outperformed the supervisory control method in all 

aspects i.e., settling time, rise time, peak time, and percentage overshoot. The unbalance in the stator currents 

during the voltage drop was approximately the same for both the proposed algorithm and the supervisory control 

method. 

 
A novel control structure for stability enhancement of a DFIG based ocean energy conversion system is proposed 

in [64]. The structure of the control lies in the basis of a Function Link-based Wilcoxon radial basis function 

network (FLWRBFN). The learning rates of FLWRBFN were tuned using a hybrid Differential Evolution and 

PSO technique. The study aimed at analyzing the dynamic and transient performance of wave power generation 

systems under disturbances and grid fault. The proposed algorithm was compared to the PI controller and radial 

basis function network (RBFN). Considering the turbine speed, line voltage, dc link voltage and grid side real 

power, the FLWRBFN achieved a lower overshoot and faster settling time for all aspects for both the dynamic 

and transient responses. It was also observed that the FLWRBFN with PSO-DE also produced the overall best 

convergence rate. PSO was applied to a DFIG based dish Stirling system in for maximum power point tracking 

and regulation of receiver temperature in [65]. A control scheme based on average pressure control and 

coordinated torque was proposed. This proposed model required only four parameters to be optimized, compared 

to twenty in existing control schemes. These four parameters were optimized using PSO. The results showed that 

as irradiance varied, the proposed control scheme was superior in providing reactive power to the grid as well as 

achieving temperature regulation.  
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2.3.2. Bacteria Foraging Optimization Algorithm 
 
Bacteria foraging optimization (BFO) is a MOT inspired by the conduct of the E. coli bacterium which is present 

in the human intestine. The motion of the bacterium is dependent on the motion of the flagella which is attached 

to the bacterium (as a tail). The bacterium either tumbles (changes direction with minimal displacement) or swims; 

if the flagella rotates clockwise then the bacterium tumbles and if the flagella rotate anticlockwise then the 

bacterium swims. There are four steps involved in BFO. These are chemotaxis, swarming, reproduction, and 

elimination-dispersal [66], [67], [68], [69]. One of the strong merits of the conventional BFO is that it does not 

easily get trapped in the local minima [70]. To the authors best knowledge, there has been no established demerits 

of BFO. This does not mean that none exist, but rather points to the lack of application of the algorithm. 

Considering the application of BFO to the DFIG, the authors in [71] make use of BFO to dampen low frequency 

oscillations. Both the GSC and RSC were considered. A PI based damping controller was added to the RSC. The 

control method considered the stator active power, stator voltage magnitude, dc link voltage and GSC reactive 

power consumption. The entire control algorithm made use of seven PI controllers and used BFO to optimize the 

gains of each controller. The objective function used was based on the damping ratio of the eigenvalues of the 

system, meaning that the control method makes use of the differential algebraic equations of the system. The PI 

controllers were optimized at three different wind speeds (7m/s, 8m/s and 8.5 m/s). For every wind speed, the 

DFIG is operated at the synchronous speed, as well as speeds above and below this speed.  A comparison was 

made with and without a damping controller. When the controllers were optimized for 8m/s, there exists stability 

for the synchronous and super synchronous modes, but not sub synchronous. An identical result was seen at 8.5 

m/s. However, when the parameters are optimized at 7 m/s, there exists stability across all three operating regions. 

With regards to efficacy of damping controller, there were scenarios where the controller proved to be effective 

and scenarios where it failed to produce a superior result. The control method focused more on the effects of using 

a damping controller and not on the optimization capabilities of the BFO. There was no comparison between 

optimization using BFO and optimization using another method, like Ziegler Nichols. As a result, the superiority 

of BFO in this application could not be validated.  

 
PI controllers were optimized using BFO in [49]. The PI controllers were responsible for regulating the rotor 

currents and dc link voltage of a DFIG. The fitness function used was ITAE. The method was tested under step 

references and random rotor speed changes and compared to PSO and Genetic Algorithm (GA) based PI controller 

tuning. Considering the dc link voltage under step reference, the rise time of all three algorithms seem similar. 

BFO produced the best overshoot, which was 25.33% and 132.8% superior to GA and PSO respectively. The 

corresponds to a superiority of 17.5% and 253.21% respectively for the settling time. Considering the direct rotor 

current, BFO yielded the best rise time, marginally beating PSO. However, the PSO optimized controller produced 

large fluctuations in response. The overshoot superiority was once again exhibited by BFO, this time the result 

being 54.54% and a huge 834.62% superior to GA and PSO respectively. This corresponds to a superiority of 

71.82% and 27.96% respectively for the settling time. For the quadrature rotor current, BFO presented the poorest 

rise time, but the best overshoot and settling time. The overshoot was superior to GA and PSO by 74.79% and 

84.83% respectively and the settling time was superior to GA and PSO by 31.3% and 158.81% respectively. 

BFOA method also produced a good THD level of the grid current, but this was not compared to the THD 

produced by the other two control methods.  
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2.3.3. Grey Wolf Optimization 
 
Grey wolf optimization (GWO) is a MOT which is based on the behaviour of the grey wolf. Proposed by Mirjalili, 

this algorithm is based on the hunting and democratic conduct of grey wolves [72], [73]. The social hierarchy of 

a pack of grey wolves is such that the alpha wolf is the highest ranked wolf and serves as the leader of the pack. 

The beta wolf is responsible for relaying information from the alpha wolf to the other wolves and assists the alpha 

wolf in decision making. The delta wolf is the third ranked wolf, and their duties include finding paths, killing, 

and taking care of the other wolves. Finally, all other wolves are classified as omega wolves and obey the rules of 

the wolves above them [72]. The conventional GWO has the merit of strong local search capabilities [73]. 

However, its demerits are poor global search capabilities and slow convergence at the latter part of the algorithm 

[72] - [74] .The authors in [73]  proposed the use of the quantum behaved search mechanism to enhance the ability 

of the GWO algorithm to prevent entrapment in the local optimum. It does so by updating the position of each 

wolf using a probability density function based on Monte Carlo stochastic simulation. This is based on quantum 

uncertainty. The proposed algorithm was tested on various benchmark functions, both single and multipeak 

functions. The proposed algorithm was compared to other improved GWO algorithms, as well as the conventional 

GWO algorithm. For four of the five benchmark functions, the proposed algorithm produced an equivalent best 

result to one of the modified algorithms. For the remainder benchmark function, the proposed algorithm exhibited 

dominancy in accuracy and stability over the next best by incomparable margins (above 5𝑒𝑒5%). The convergence 

rate of the proposed algorithm was shown for each benchmark function. However, no comparison of convergence 

rate between the proposed algorithm and the conventional algorithm was provided. Hence, there exist the 

probability that in the process of enhancing the algorithms global search ability, the convergence rate of the 

algorithm was compromised.  

 
The behaviour of cats is utilized to modify the GWO algorithm in [74]. In an idle state, cats either seek or track 

prey. The seeking and tracking behaviour is integrated into the social behaviour of the grey wolf. In tracking 

mode, the position of a particular wolf is updated in a manner similar to that of PSO. The updated position is 

dependent on the current position and the updated velocity. The updated velocity is calculated using the current 

velocity, the current position of the respective wolf, the current position of the best wolf, and two random numbers 

in the range [0,1]. The seeking mode utilizes a stochastic change in the dimension of each wolf in order to improve 

the randomness of the algorithm. Reference [74] combines both the tracking and seeking modes and applied this 

to the GWO algorithm. The Tracking Grey Wolf Optimization (TGWO), Seeking Grey Wolf Optimization 

(SGWO) and Tracking-Seeking Grey Wolf Optimization (TS-GWO) algorithms were applied to various 

benchmark functions and compared to numerous swarm-based MOT, including the conventional GWO. 

Considering the 30-Dimensional unimodal and multimodal functions, the TGWO and TSGWO combined 

produced the best average value and standard deviation for 15 of the 16 functions. Only for one of the functions, 

the SSA yielded the best result. Considering the 100-Dimensional unimodal and multimodal functions, TGWO 

and TSGWO combined produced the best average value for all the functions. Considering the standard deviation, 

there existed a couple of scenarios whereby the WOA proved to be dominant. A similar scenario is observed for 

the fixed dimension multimodal functions, this time the MFO displaying superiority (in both accuracy and 

stability) for one of the functions. For another function, despite being inferior to TGWO and TSGWO in terms of 

accuracy, the ALO exhibited stronger stability. The proposed algorithms were also compared to various GWO 
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hybrid algorithms and once again tested on 30-Dimensional and 100-Dimensional unimodal and multimodal 

functions. Considering the 30-Dimensional unimodal and multimodal functions, TGWO and TSGWO combined 

generated the best average value and standard deviation four 14 of the 17 functions. A near identical result is 

observed for the 100-Dimensional unimodal and multimodal functions, this time the proposed algorithm also 

being inferior in stability to another algorithm for one of the functions. The TGWO and TSGWO generated the 

best average value in all the fixed dimension multimodal functions but failed to display stability dominancy in 

50% of the cases. 

 

To enhance the convergence rate, a convergence factor was introduced in [72]. This convergence factor modifies 

the way in which the coefficient vector A is estimated. This convergence factor is based on the current and 

maximum iteration numbers. To improve the global search capability of the algorithm and produce a strong 

balance between exploitation and exploration, the BFGS algorithm as well as the Levy flight technique were used. 

Local Diversity Measure and Global Diversity measure were used to determine if the wolves perform local or 

global search. The local search update is modified using the BFGS algorithm, which is based on the position of 

the best wolf. The proposed algorithm also makes use of a probability criterion which allows some wolves to 

update their position using the modified equation and some wolves to update their position using the conventional 

equation. The global search update is based on the use of the Levy flight technique, which is calculated using the 

current position of the respective wolf as well as the position of a randomly chosen wolf. The proposed algorithm 

was tested on a range of unimodal, multimodal, and fixed dimensional multimodal benchmark functions. The 

proposed algorithm was compared to various swarm-based MOT, including the conventional GWO. For the 

unimodal functions, the proposed algorithm outperformed all the other algorithms in terms of global search 

capability and convergence rate (after a maximum of 10 iterations). Considering the unimodal functions, the 

proposed algorithm displayed the same results that were seen for the unimodal functions, except for one function. 

In this function, the Imperialist Competitive Algorithm based PSO produced the best global search capability, 

with the Ant Lion Optimization producing the best convergence rate up to 90% of the maximum number of 

iterations. Nevertheless, the proposed algorithm produced a better global search capability to the conventional 

GWO, but the former was inferior to the latter in terms on convergence rate up until 99% of the maximum number 

of iterations. For the fixed dimensional multimodal functions, the proposed algorithm produces competitive results 

in terms of global search capability but was inferior to the conventional GWO. The proposed algorithm, however, 

produced the best convergence rate (after a maximum of 75 iterations). However, for the convergence curves, 

only limited data was available. It was also observed that throughout the duration of the investigation, there existed 

various scenarios whereby the proposed algorithm was inferior to other algorithms in terms of stability.  

 
Considering the application of GWO to the DFIG, the authors in [75] applied GWO to fractional order PID 

(FOPID) control. This is due to the improved closed loop performance and enhanced disturbance rejection 

capabilities of the FOPID controllers. The FOPID controller makes use of two additional parameters, which 

ensures that the performance does not degrade if the rotor resistance varies. Since the GWO requires initial 

solutions to be generated, this method initially tunes the three parameters of the fractional order PID controllers 

using the Ziegler Nichols method and then proceeds to apply GWO to these parameters. The method was 
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compared to PSO-PID and BFO-PID and was shown to be superior to both these methods with regards to the 

settling time, as well as the rise time and percentage overshoot. An identical result was observed when the rotor 

and stator parameters were varied by 25%. The proposed algorithm also produced a better disturbance rejection 

response than the BFO-PID but was inferior in this aspect to PSO-PID. However, the FOPID controller should 

have also been optimized using other MOT (such as PSO and BFO), so as to provide an accurate evaluation of 

the optimization technique and controller combination. A grouped grey wolf optimization strategy is presented in 

[76] and applied to the optimization of PI controllers for control of the DFIG. The proposed algorithm splits the 

wolves into two groups. These are the cooperative hunting group, and random scout group. The random scout 

group searches unknown territory, much like the scout bees in ABC. This is to enhance the exploration capability 

of the algorithm. In the cooperative hunting group, the number of beta and delta wolves increase to two and three 

respectively. This is to enhance the exploitation capability of the algorithm. The proposed algorithm was 

compared to that of GA, PSO, MFO and the conventional GWO. The results showed that optimized of PI 

controllers via the proposed method yielded a significant reduction in steady state ripple of both active and reactive 

powers. This result hold true, even when tested under the case of a 30% drop in the grid voltage.  

 
2.3.4. Artificial Bee Colony 
 
The artificial bee colony (ABC) algorithm is a MOT inspired by on the hunting behaviour of honeybees. Created 

by Karaboga, this algorithm divides the hunting bees into three types; employed bees, onlooker bees and scout 

bees. An employed bee is a bee which has found an exploitable food source. The onlooker bee awaits the 

information obtained by the employed bee to decide which food source to visit. The scout bee randomly searches 

for food on its own [77], [78], [79]. For every food source, there exists one employed bee. When the food source 

of an employed bee becomes depleted (either by that of another employed bee, or an onlooker bee), it develops 

into a scout bee [78]. The information regarding the food source is communicated from the employed bees to the 

onlookers via dancing. The onlookers observe the dance done by the employed bees to choose the best quality 

food source [79]. The hunting done by the bees is known as foraging and is defined by four characteristics [79]: 

Positive feedback: This refers to a proportional increase in onlookers visiting rich food sources 

Negative feedback: This refers to the bees eventually ceasing to visit the areas where there exist poor food 

sources 

Fluctuations: This refers to the random search behaviour by the scouts 

Multiple interactions: This refers to the exchange of information that exists between the employed bees and 

onlookers 

The conventional ABC algorithm has the merit of a strong global search capability [80] but suffers the demerit of 

a slow convergence [81], [82], [83]. The authors in [84] proposed a new method to update the position of a bee. 

The modified position update equation is a function of the global best, the position of a random bee and a random 

number in the range [-1,1]. The proposed method was applied to various benchmark knapsack problems and 

compared to the conventional ABC algorithm. Considering the average value, the proposed algorithm produced 

a superior result for three of the problems. The greatest difference being 3.11% and the smallest difference being 

0.02%. For the remainder functions, the proposed technique was equivalent to the conventional algorithm. It was 

also observed that in numerous cases, the proposed algorithm exhibited a superior stability. Concerning the 

convergence rate, the proposed algorithm yielded superior results in four cases, the smallest superiority being 
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61.68%. The authors in [82] propose a new method to update the position of the various bees. This is based on 

the use of the bee’s current position, two cumulative fitness values of all the bees, the position of the best bee and 

two random numbers in the range [0,1]. The method of position updating does not apply to the worst employed 

bee. The position of the worst employed bee is updated using the current and previous position of the best bee, an 

integer which is either 0 or 1 and two random numbers in the range [0,1]. The position of the onlooker bee is 

updated using the cumulative fitness of all the bees, the total number of bees and the position of any onlooker bee 

whose position is superior to that of the bee being updated. The proposed method was applied to various 

benchmark functions, as well as two industrial problems. The proposed method was compared to various swarm-

based MOT including the conventional ABC algorithm. However, the results of the experiment were inconclusive 

hence the proposed method could not be validated.  

 
The authors in [83] made use of two unique equations for updating the position of the employed and onlooker 

bees. The position update of the employed bee is based on the current position of the bee and the position of a 

random bee. The position update of the onlooker bee is based on the current position of the bee, the position of 

the best bee and the position of three bees chosen at random. The proposed algorithm was tested on a synthetic 

web service selection problem and compared to various swarm-based MOT, including the conventional ABC 

algorithm. The proposed method proved to have a superior convergence rate to the other algorithms, after 10 

iterations. In terms of reliability, the proposed technique exhibits dominancy after completion of 30% of the 

maximum number of iterations.   

 
In [85], ABC is utilized in the control of the DFIG. The authors in [85] used ABC to optimize the parameters of 

the field-oriented control PI controllers. Two cases are presented in this paper. In the first case, the ABC algorithm 

was applied to only the RSC using a fitness function based on the stator active power, stator voltage and current 

regulation errors. Three weighting factors are used in this fitness function, which were chosen by the ABC 

algorithm. In the second case, the ABC algorithm was applied to both the RSC and GSC. The fitness function 

used was based on the stator active power, stator voltage, current regulation, grid current and dc link voltage 

errors. This time, five weighting factors were used and chosen by the ABC algorithm. In total, 10 PI controller 

gains were optimized. The control method was applied to a 9 MW DFIG and compared to the GWO method of 

PI gain optimization, as well as the traditional PI controller optimization method. When only the RSC gains were 

considered, it is observed that ABC yielded the best overshoot value, being superior to GWO and the advisory 

method by more than 2𝑒𝑒3% and 3𝑒𝑒3% respectively. A similar observation is made for the settling time, this time 

the superiority being 0.52% and 0.78% respectively. Considering the rise time, the ABC exhibited dominancy to 

the other techniques by a magnitude greater than 100%   When the RSC and GSC gains were considered, it was 

seen that ABC yielded the best overshoot value, being superior to GWO and the advisory method by 97.7% and 

169.73% respectively. A similar observation is made for the settling time, this time the superiority being 0.21% 

and 0.26% respectively. Considering the rise time, the ABC exhibited dominancy to GWO by 0.32%, and to the 

supervisory method by more than 100%.  

 
2.3.5. Whale Optimization Algorithm 
 
Whale optimization algorithm (WOA) is inspired by the hunting tactic of the humpback whale. The hunting 

strategy of the humpback whale is separated into three parts: searching, encircling and bubble-net attacking [86], 
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[87], [88]. During searching, the humpback whales exchange information about prey to each other. This is to 

ensure that all the whales stay close to the prey. Although the WOA has the merit of being able to evade the local 

optima hence obtain the global solution [89], it suffers the demerits of a slow convergence speed and low accuracy 

[90]. The authors in [91] proposed the use of a new method to update the position of the whales. This is based on 

the golden sine operator and makes use of the current position of the whale, as well as two random numbers lying 

in the range [0,1]. The proposed algorithm was tested on a range of unimodal, multimodal, and combined functions 

and compared to various other MOT, including the conventional WOA. Considering the unimodal functions, the 

proposed algorithm generated the best average value and standard deviation in 5 of the 7 cases. For the other two 

cases, the algorithm is inferior to PSO in both accuracy and stability. For the multimodal functions, the proposed 

algorithm displayed inferiority in both average value and standard deviation to the Firefly Algorithm for two 

functions. For both functions, for both the average value and standard deviation, this inferiority was approximately 

100%. For the fixed dimensional functions, the proposed technique did not do well, being inferior to various 

algorithms in majority of the cases. This was in terms of both accuracy and stability. In cases where the proposed 

technique produced the dominant average value, this occurred after a maximum of 22% of the total number of 

iterations occurred. 

 
The authors in [92] also proposed a new method to update the position of the whales. This is done via a chaotic 

map and nonlinear inertial weights. The method is complex and involves a significant number of numerical 

computations. The proposed algorithm was tested on various benchmark functions, at 100, 500 and 1000 

dimensions. For all the investigated scenarios, the proposed techniques exhibited superior performance in both 

accuracy and stability. Considering convergence, for the 100 and 500 dimension sets the proposed algorithm only 

displayed clear dominancy after completion of 70% and 80% respectively of the maximum number of iterations. 

For the 1000-dimension set, this value reduces drastically to 30%, indicating the efficacy of the proposed solution 

when attempting to optimize large scale global problems.   

 
An improved Bernoulli shift map was introduced in [93] to initialize the population of whales so to enhance the 

algorithm global search ability. A modified Levy flight-based position update equation is also proposed to enhance 

the global search capabilities of the algorithm. The method also optimizes the factor of convergence (a) to enhance 

the algorithm rate of convergence. The modified convergence factor is based on the value of the current and 

maximum iteration numbers, the best and worst fitness of that particular whale thus far and a random number in 

the range [1,2]. The method proved to improve the algorithms search accuracy and rate of convergence. The 

proposed algorithm was tested on numerous benchmark functions and was compared to various MOT, including 

the conventional WOA. When considering search accuracy, it was observed that the proposed algorithm was 

inferior to the Enhanced advanced guided differential evolution algorithm and SHADE algorithm in only three of 

the twenty functions. In scenarios where the proposed algorithm produced the best average value, this occurred 

after a maximum of 40% of the total number of iterations has occurred.  

 
2.3.6. Crow search algorithm 
 
Proposed by Askarzadeh, the idea behind the crow search algorithm (CSA) rests on the hiding of food of crows. 

Crows are highly intelligent birds, who can remember faces and remember the location of their stored food. The 
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most important aspect of this algorithm is that when a crow attempts to retrieve its stored food, another crow may 

follow it and steal the food [45], [94]. The merit of the conventional CSA is that it is a flexible algorithm which 

requires knowledge of only a few parameters [45]. However, the demerits of this algorithm are a slow rate of 

convergence and being easily entrapped in the local optima [94]. The authors in [94] proposed various 

modifications to the conventional CSA. In the first modification, the existing position update equation is 

multiplied by a weighting factor which is based on the current iteration and maximum iteration numbers. In the 

second modification, the initial positions are generated via a spiral search. In the third modification, another 

position update equation based on a Gaussian mutation, is proposed. The first modification is proposed to improve 

the algorithms rate of convergence, whereas the second and third modification is proposed to enhance the 

algorithms global search ability and prevent it from being entrapped into local optima. The proposed algorithm 

was tested on various fixed dimensional, multimodal, and unimodal benchmark functions and compared to various 

other swarm-based MOT, including the conventional CSA.  

 
The proposed algorithm was evaluated at 30, 50 and 100 dimensions. For the 30 dimensional set unimodal 

functions, the proposed algorithm yielded the best result (in terms of both accuracy and stability in 6 of the 7 

functions). Only for one function was the proposed algorithm inferior to the Harris Hawks Optimization technique. 

The inferiority to the best result, in terms of average value and standard deviation, was 93.56% and 94.69% 

respectively. For the 30-dimensional set multimodal functions, a similar result is observed. This time, the proposed 

technique being inferior to GA, with this inferiority being at 100% for both the average value and standard 

deviation. A similar trend is displayed for the 50 and 100 dimensional sets, with the proposed algorithm only 

being inferior in one instance of each case. There is, however, a reduction in inferiority for the 50- and 100-

dimensional set multimodal functions. This points to the possibility of the algorithm exhibiting dominancy when 

optimizing large dimensional problems.  Considering the fixed dimensional functions, the proposed algorithm 

yielded the best result in 8 of the 10 cases, being inferior to the GWO algorithm and the Butterfly Optimization 

Algorithm. The convergence rate of the proposed algorithm was only displayed for three of the unimodal and 

multimodal functions and two fixed dimension functions. Despite the superior average value and standard 

deviation of the proposed algorithm, it was observed that in various instances, the proposed technique required 

more than 100 iterations to exhibit dominancy. In some cases, more than 1500 iterations were required. This points 

to a slow convergence and should be modified for the algorithm to be considered competitive.  

 
The CSA was applied to the PI control of a DFIG in [95]. Only the RSC was considered, and three PI controllers 

were tuned. The fitness function used was ISAE. The control method was tested at both fixed speeds and variable 

speeds and compared to the conventional method of PI controller tuning, as well as the Genetic Algorithm (GA). 

Considering the fixed speed operation, it is noticed that the GA produced the best stator active power percentage 

overshoot and rise time. CSA produced a better percentage overshoot to the conventional method, but an inferior 

rise time. For the stator reactive power, once again GA produced the best percentage overshoot followed by CSA 

and then the conventional method. The rise time of the conventional method was the best, followed by CSA and 

then GA. For the dc link voltage, the conventional method produced the best percentage overshoot followed by 

GA and then CSA. The conventional method also produced the best rise time, with CSA producing the worst in 

this aspect. Considering the variable speed operation, it is observed that the GA and CSA jointly produced the 

best stator active power percentage overshoot, with the former producing the best rise time and the latter producing 
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the worst. For the stator reactive power, GA produced the best percentage overshoot, followed by CSA. The 

conventional method produced the best rise time, with the CSA producing the worst result in this aspect. For the 

dc link voltage, GA produced the best percentage overshoot and CSA the worst. The conventional method 

produced the best rise time, followed by CSA.  

 
2.3.7. Bat Algorithm 
 
Developed by Xin-She Yang in 2010, the bat algorithm (BA) is inspired by and based on the use of echolocation 

by microbats. Bats use echolocation to perform various functions, such as locating prey, avoided obstacles, and 

finding other bats. Echolocation varies greatly, and depends on factors such as frequency, wavelength, loudness, 

and rate of sonic pulses. The bat algorithm uses a few assumptions of the echolocation used by bats [96], [97]. 

The first assumption is that every bat utilizes echolocation to determine distance and are able to distinguish 

between prey and objects. The second assumption is that bats fly randomly at a certain velocity and are also able 

to vary the wavelength of pulses as well as the pulse rate. The final assumption is that the loudness changes 

between a specified maximum and minimum. 

 
Although the BA has the merit of a fast convergence rate [98], it suffers the demerits of a poor search accuracy 

and being easily trapped in local minima [97]. The authors in [97] proposed five unique factors of convergence to 

enhance the global search capability of the algorithm. These convergence factors are of cosine form, sine form, 

tangent form, power function form and exponential form. All five convergence factors are based on the current 

and maximum iteration numbers. To enhance the accuracy of the local search, a Gaussian function is introduced. 

Furthermore, to improve the local search accuracy of the algorithm, a technique based on the enclosing behaviour 

of the WOA, and sine cosine algorithm is applied to the bat algorithm. This is based on the current and maximum 

iteration numbers, a randomized number in the range [0,2], a randomized number which lies in the range [0,2π] 

and the values of A and D obtainable from the WOA. To assess the global search capability of the proposed 

algorithms, the five convergence factors were applied to various fixed dimension, multimodal and unimodal 

benchmark functions and compared to the conventional BA. It was observed that for all the unimodal and 

multimodal functions, the proposed convergence factors produced an equal performance which was superior to 

that of the conventional BA. For the fixed dimension functions, the proposed algorithms were again superior to 

the conventional bat algorithm and although they were highly similar to each other in performance, there existed 

a minute difference. To assess the accuracy of the proposed algorithms, seven datasets were used. The proposed 

algorithms were once again compared to the conventional BA. On the iris dataset, the power function form 

produced the best result. On the wine dataset, the tan form was superior. On the BUPA dataset, the exponential 

form was placed first. On the seed dataset, the sine form produced the best accuracy.  

 
Considering the heart stat log dataset, the Gaussian function produced the best result. On the WDBC and cancer 

datasets, the exponential form proved to be the optimal algorithm. The authors in [99] integrate the artificial ABC 

algorithm into the BA to enhance the local search accuracy of the latter. In this method, the bat’s position is 

updated as usually done. Then, a randomized number is created. If the created randomized number is greater than 

the value of the pulse emission rate, the position of the bat is further modified again. The proposed method was 

employed to optimize the path of an automatic ariel vehicle and compared to various other MOT, including the 

conventional BA. The optimization results obtained were superior to that of the conventional BA, as well as 
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various other MOT. However, the algorithms rate of convergence is 50% poorer than the conventional BA. The 

scholars in [100] attempted to enhance the local search capability of the algorithm, as well as prevent premature 

convergence. The proposed method comprises of the application of various strategies to the conventional bat 

algorithm. These are the iterative local search, non-dominant, balance and stochastic inertia weight strategies. 

Stochastic inertia weight strategy applies a weighting factor to the velocity update equation. This is to enhance 

the algorithms rate of convergence as well as improve accuracy. The iterative local search strategy applies a 

specific condition in order to maximize the probability of obtaining the global best. The balance strategy attempts 

to provide a sense of balance between the global and local search. Since it is impossible to optimize various 

parameters simultaneously, the non-dominant sorting strategy gives precedence to the solution with the best 

fitness function. The proposed algorithm is employed on the optimal distribution of flexible fault current limiters 

and applied to the revised IEEE 33-BUS distribution systems with distributed generation and IEEE 30-BUS 

benchmark system. The proposed method produced optimal configuration of the system and displayed an 

improved accuracy when compared to a non-dominated sorting genetic algorithm, as well as a Multi Objective 

Particle Swarm Optimization which are shown in [101] and [102] respectively. However, the algorithm was not 

compared to the conventional BA.  

 
A hybrid SMC and BA was used to control a DFIG in [103],. The control method made use of rotor current control 

to provide stator power control. The fitness function used was the mean square error. The rotor speed was held 

constant throughout the experiment, but the stator active power reference was stepped up. The stator reactive 

power was constant at 0. The proposed hybrid controller was compared to the conventional sliding mode controller 

and conventional PI controller. For the stator active power, stator reactive power and dc link voltage, the proposed 

controller produced a superior steady state ripple, and a competitive dynamic response. With regards to the 

percentage overshoot for the stator active power, the proposed controller was superior to the conventional PI 

controller but came second to the conventional sliding mode controller. This inferiority was calculated to be equal 

to 36%. It was also observed that there existed a minor unbalance in the stator current waveforms. However, the 

stator current waveforms for the conventional sliding mode controller and conventional PI controller were not 

provided, hence the superior or inferior quality of the stator current waveforms from the proposed controller could 

not be validated.  

 
2.3.8. Squirrel Search Algorithm 
 
Proposed by Jain et al in 2018, squirrel search algorithm (SSA) is based on the method of movement and 

scavenging conduct of flying squirrels. The squirrels usually glide into trees, where they feed and collect nuts. 

The squirrel search algorithm is based on a few assumptions [104], [105]. The first assumption is that there exists 

one tree for every squirrel. The second assumption is that there exits one hickory nut tree, a few acorn trees and 

the rest are normal trees. Hickory nut trees are the best food supply, and the acorn trees are the second-best food 

supplies. The normal trees are said to contain no food. The number of acorn trees is usually taken as 3. The final 

assumption is that each squirrel individually attempts to locate food and makes use of the food supplies that are 

available. 

 
Although the conventional SSA has the merit of a strong stability, it suffers the demerits of a low search accuracy 

and being easily trapped in the local optima [104]. The authors in [104] attempted to overcome this disadvantage 
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by incorporating the reproductive behaviour of the invasive weed optimization algorithm into the conventional 

SSA. The method generates squirrel offspring via the Gaussian distribution and randomly places these offspring 

across the search space. The number of offspring produced is proportional to the cost function value of each 

squirrel and varies linearly with such. Secondly, an adaptive step size strategy is implemented to balance the 

algorithm exploitation and exploration capability. The proposed algorithm was applied to various fixed dimension, 

multimodal and unimodal functions and compared to other swarm-based MOT, including the conventional SSA. 

Of the six unimodal functions, eight multimodal functions and eight fixed dimensional functions, the proposed 

algorithm only to generate the best average value in one of each set of functions. This inferiority to the best value 

is 9.23%, 49.85% and 4.92% for the unimodal, multimodal and fixed dimension function respectively. However, 

considering the standard deviation, there existed various scenarios whereby the proposed algorithm did not yield 

the best value, in some cases producing the worse result. The points to a lack of stability of the proposed technique. 

Considering the convergence, it was observed that the proposed algorithm required 75% of the maximum number 

of iterations to exhibit superiority. This amounted to approximately 750 iterations, and therefore indicates a poor 

convergence.  

 
The scholars in [106] applied the same improved SSA in [104] to the maximum likelihood method for array signal 

processing-based direction of arrival. The method was compared to various swarm -based and evolutionary based 

MOT, including the conventional SSA. Compared to these techniques, the improved SSA displayed a faster 

convergence speed, better search accuracy and reduced computational complexity.  

 
2.3.9. Moth flame optimization 
 
Proposed by Miralji in 2015, the moth flame optimization (MFO) algorithm is based on the technique of 

navigation used by moths. This method of navigation is known as transverse orientation. To ensure a straight 

flight path, moths maintain an angle of fixed nature with respect to the moon. They are, however, severely 

disturbed by artificial light. Moths are seen to spiral towards artificial light and eventually latch onto the light 

[107], [108] . The MFO has the merit of having a robust selection capability [109], with its demerits being a slow 

convergence rate and being easily entrapped in the local optima [108], [109], [110]. The authors in [109] attempted 

to overcome the demerit of being easily trapped in local minima by modifying the update formulas of both the 

moth and flames. It does so in three ways; the use of a levy flight equation, the use of a weighting factor and via 

a descending curvilinear strategy. The levy flight equation is applied to the entire of (31) and (32). The weighting 

factor is applied the last term in these two equations. The updating of the number of flames is done via a curvilinear 

fashion, using an equation that relates to the total number of flames and current and maximum iteration numbers. 

The proposed method was applied to the subthreshold image segmentation problem and compared to various 

swarm-based MOT, including the conventional MFO. The results show that on average, the proposed algorithm 

was the most superior in terms of global search capability. Of the 96 tests done, the proposed algorithm was only 

inferior to the conventional MFO in seven tests. In terms of convergence, the proposed algorithm exhibited 

dominance after a mere 10 iterations. A convergence factor that is reduced linearly from -1 to -2 was introduced 

in [108]. This enhances the global searching capability of the algorithm while also increasing the convergence 

rate. The convergence factor is a function of the current and maximum iteration number. 
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To further enhance the global searching capability, the flame number update equation is modified and is a function 

of the total number of flames, as well as the current and maximum iteration numbers. The proposed algorithm is 

employed to locate the optimal placement and sizing of distributed generator units, is applied to the IEEE-69 bus 

radial distribution test system and compared to various swarm-based MOT which includes the conventional MFO. 

The proposed algorithm offers a superior performance with regards to the sizing and optimal placement of 

distributed generators. In terms of the convergence rate, the proposed algorithm required a maximum of 30 

iteration before superiority was established, validating a strong speed of convergence. The scholars in [111] 

proposed a novel swarm moth flame optimization algorithm for the tuning of four PI controllers which are 

responsible for controlling a DFIG. When compared to other MOT, the proposed method was shown to improve 

maximum power point tracking and enhanced fault ride through capabilities. 

 
2.3.10. Sailfish Optimization 
 
Based on the group hunting behavior of the sailfish, sailfish optimization (SFO) is a model of the interaction 

between the sailfish and their prey, the sardine. Being the fastest animal underwater, the sailfish can reach a speed 

of 100km/h. They hunt sardines by driving them to the surface of the water. Their immense speed makes it difficult 

for sardines to escape, but sardines do have good manoeuvrability. A sailfish uses its rostrum to slash and injure 

a sardine, or directly touch it and destabilize it. In the sailfish algorithm, both the sailfish and sardines are critical 

aspects to consider [112]. The conventional SFO has the merits of a fast convergence rate and being not easily 

trapped in the local optima [112]. To the authors best knowledge, there has been no established demerits of the 

SFO algorithm. This does not mean that none exist, but rather points to the lack of application of the algorithm.  

 
2.3.11. Cuckoo Search Algorithm 
 
Proposed by Yang and deb, the cuckoo search algorithm (CuSA) is based on the reproductive behavior of the cuckoo  

bird. Cuckoos are parasitic birds, which lay their eggs in other bird’s nests. To prevent their eggs from being thrown 

out by the host bird, the female cuckoo lays eggs which imitate the eggs of the host in terms of factors such as shape 

and colour. Cuckoo eggs usually hatch prior to the eggs of the host, and when this happens the cuckoo chick kicks 

out the host eggs to increase their share of food [113], [114]. There are three rules that govern the cuckoo search 

algorithm [113]. The first rule is that each cuckoo bird only lays one egg and places it in a random nest. The second 

rule states that the best nest (which contains the best quality eggs) has the best chance of being carried over to the 

next generation. The best nest is that in which the host eggs look very similar to the cuckoo eggs. The third and final 

rule states that the number of nests is unchangeable. 

 
The conventional CuSA has the merit of requiring knowledge of just a few parameters [115] but suffers the 

demerits of a stagnant rate of convergence [116] and being easily trapped in the local optima [115], [116]. The 

authors in [115] incorporated the method of differential evolution in the algorithm. In this proposed modification, 

the position update of a particular cuckoo is based on the position of three random cuckoos. The proposed 

algorithm was implemented on monopulse antenna problems in 20-element arrays, 40-element arrays, and a fixed 

number of subarrays. The proposed algorithm was compared to various MOT, including the conventional CuSA. 

In the 20-element array, five subarrays were tested. It was noticed that the proposed algorithm produced the best 

global search capability in all five subarrays. In the 40-element arrays, 10 subarrays were tested. It was observed 
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that the proposed algorithm produced a superior global search capability in all 10 subarrays. The same is true for 

the five subarrays tested for the fixed number of subarrays. This clearly confirms the superiority of the proposed 

algorithm.  

 
The scholars in [116] made use of a coefficient function to change the step size. The proposed algorithm also 

makes use of a logistic map of each dimension to initialize he location of the host nest and update the position of 

the host nest beyond the boundary. The proposed algorithm was tested on fifteen benchmark functions and 

compared to the conventional CuSA. It was observed that the proposed algorithm produced a superior global 

search capability in all the tested functions. With regards to the convergence rate, the proposed algorithm proved 

to be superior in all fifteen functions, exhibiting dominancy upon the completion of a maximum of 20% of the 

total number of iterations. CuSA was applied to both a PI controller and FOPID controller to control a DFIG in 

[117]. The method applied this control to the pitch controller, RSC and GSC. The method also made use of all the 

common performance indices (ITAE, IAE, ISE, and ITAE) and combined all of these to form the objective 

function to be used. The objective function was a sum of these common performance indices, with each index 

multiplied by a weighting factor. The cumulative sum of the weighting factors is one, and the weighting factors 

were determined using the (CuSA). For the pitch controller and RSC controllers, the PI controller produced the 

best results and for the GSC controller, the FOPID controller produced the best results. However, results were 

only given in terms of errors derived from the use of the different performance indices. Very little graphical results 

were provided, and no steady state and dynamic response comparisons were provided. Furthermore, there was no 

comparison with other MOT. This made it difficult to validate the results provided. 

 
2.3.12. Firefly algorithm 
 
Developed in 2007 by Yang, the firefly algorithm (FA) is based on the behavior and patterns of flashing of fireflies  

[106]. This optimization algorithm uses four rules [118], [119]. The first rule states that the less bright fireflies 

are attracted to brighter fireflies and this attraction occurs without any regard for gender. The second rule is that 

the brighter a firefly appears to be, the more attractive is seems. The third rule says that the further away firefly a 

is from firefly b, the less attractive is appears. In the fourth and final rule, the brightest firefly is the only firefly 

that moves randomly. The conventional FA suffers the demerits of being easily trapped in the local optima [120], 

[121] and a slow convergence rate [120], [122]. The authors in [121] added the concept of velocity to the position 

update equation to both improve the global search capabilities and enhance the algorithm rate of convergence. 

The velocity factor utilizes the concept of randomness, acceleration coefficients and the position of the 𝑖𝑖𝑡𝑡ℎ firefly. 

The proposed algorithm was employed to the design of a digital infinite impulse response filter and compared to 

the conventional FA. The proposed algorithm outperformed the conventional algorithm; it produced a lower mean 

square error and a superior rate of convergence. 

 
Considering a second order system with a second order filter, the proposed algorithm exhibited a minimum mean 

square error dominance of 6.92%, with a maximum superiority of 26.77%. This corresponded to 0.61% and 1.36% 

respectively for a second order system with a first order filter. The scholars in [120] proposed various 

modifications to the conventional FA. The randomization factor, absorption coefficient and initial attractiveness 

are all constants. This decreases the convergence speed of the algorithm. The first improvement is to change these 

values from constants to dynamic variables. The modified absorption coefficient is a function of the current 
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iteration number and a randomized number in the range [0,1]. The randomization factor and initial attractiveness 

are both functions of the current and maximum iteration numbers. In the second improvement, the influence of 

the global best is considered in the position update equation. In the third improvement, the search space is updated 

after each iteration. This is done with respect to the global best firefly and “squeezes” the fireflies to the global 

optimum. The proposed algorithm was applied to a highly nonlinear and multi model dispatch problem and 

compared to the conventional FA. Two cost functions were tested. For each cost function, various populations of 

fireflies were tested. These are 5, 15, 35 and 50 fireflies. For case 1, it was observed that the proposed algorithm 

produced a superior global search capability for all four firefly populations. For case two, the proposed algorithm 

is inferior to the conventional FA for the 5-firefly population. In the scenarios whereby the proposed algorithm 

yielded superior results, this occurred before completion of 5 iterations. Therefore, it can be concluded that the 

proposed algorithm exhibited a superior rate of convergence 

 

Considering the application of the FA to the control of the DFIG, the authors in [123] made use of a second order 

lead lag power oscillation damper (POD). The parameters of the POD are optimized by the FA. The aim of the 

algorithm is to stabilize inter area oscillations in interconnected power systems by means of a POD equipped with 

a DFIG. The proposed robust DFIG-POD was compared to the conventional DFIG-POD. The proposed method 

showed a superior damping performance with regards to heavy power flows, fault location, severe faults, and 

varying patterns of wind. However, no comparison or evaluation of the optimization technique was provided. 

Reference [124] makes use of a hybrid PSO and FA for the regulation of a multi area power system’s frequency. 

The power system contains DFIG’s. Two different controllers were tested: PID controller and a cascaded PD-PI 

controller. To analyze the dynamic performance of the system, a 1% load disturbance was injected into the system. 

The fitness function used was the ITAE. The hybrid PSO/FA was applied to both the PID controller and PD-PI 

controllers. The proposed method modifies the conventional PSO velocity equation by replacing the acceleration 

constants with FA parameters. The results confirm that the latter controller surpasses the PID controller in all 

aspects. However, the proposed metaheuristic optimization technique was not compared to other control 

techniques, hence its superiority could not be validated.  

 
2.3.13. Shuffled frog leaping algorithm 
 
Introduced by Eusuff and Lansely, the shuffled frog leaping algorithm (SFLA) is inspired the hunting strategy of 

frogs. The SFLA is known to have favorable performances of both GA and PSO. In SFLA, a group of frogs are 

divided into groups, each group known as a memeplex. Each memeplex performs a local search. Via the process 

of memetic evolution, each frog evolves based on the ideas of other frogs. After a predetermined number of 

memetic steps has occurred, information is shuffled among the different memeplexes [125], [126]. The SFLA is 

divided into 4 steps, namely initialization, partition, updating and shuffling. 

 
The conventional SFLA has the merit of a fast convergence speed [127]. However, it suffers the demerits of 

premature convergence to the local optima [127], [128] as well as random jumps which leads to blind searches 

[129]. The authors in [127] proposed a SFLA which introduces the application of a weighting factor based on 

chaos memory and an absolute balance group strategy. The chaos memory weighting factor aimed at improving 

the local and global search capabilities of the algorithm. This weighting factor is applied to the position update 

formula and hence used to update the worst frog’s position. The weighting factor is a function of the position of 
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the best and worst frogs, and a randomized number in the range [0,1]. The absolute balance group strategy aims 

to avoid premature convergence to local optima by modifying the strategy of sorting the frogs into memeplexes. 

It does so by randomly sorting the frogs into memeplexes, instead of using the fitness function value of each frog. 

The proposed algorithm was tested using the K nearest neighbour method and compared to evolutionary and 

swam-based MOT, including the conventional SFLA. The results showed that the application of both the chaos 

memory weighting factor and absolute balance group strategy produced superior global optimization 

performances. The proposed algorithm was applied to nine functions and compared to various MOT, including 

the original SFLA. It was observed that the proposed algorithm produced the most accurate result in 7 of the 9 

cases. Considering stability, the proposed algorithms displayed a 66% success rate. However, it was observed that 

as the number of subsets (dimensions) increased, the performance of the proposed algorithm declined by a large 

extent. In many cases, the proposed algorithm was seen to be inferior to the other compared techniques. The 

converge curve, which is a critical piece of information when evaluating algorithms, was missing. This creates 

doubt in the confidence of the proposed scheme.  

 
The scholars in [129] present a modified SFLA. In this method, in each memeplex, the worst frog’s position is 

updated using the position of the local best and local worst frogs as well and a randomized number which lies in 

the range [0,1]. If the fitness value of the updated position is worse than the previous position, the position of the 

worse frog is again updated, this time using the position of the global best instead of the local best (best in each 

memeplex). If there is still no improvement, the method makes use of cloning of frogs. Two types of cloning can 

occur. In the first type, the frogs with the best positions are cloned. In the second method, a frog is cloned at 

random. The position of the new frog as a result of the cloned frog is a function of the position of the cloned and 

worst frog and a randomized number in the range [0,1]. If this method also fails to produce a better solution, the 

frog in question is discarded from the memeplex and replaced with a randomized frog. The proposed method is 

tested using the Markov chain theory and compared to various MOT, including the conventional SFLA. It was 

observed that in all the tests performed, the proposed algorithm produced the best global search capability. From 

the results provided, it is difficult to accurately compare the convergence rate of the different techniques. However, 

the author claims that the proposed algorithms produce a superior convergence rate. 

 
A new method to update the position of the worst frog is introduced in [128]. The proposed method updates the 

position of the worst frog using the position of the frog in the centre of each memeplex, as well as a randomized 

number in the range [0,1]. This simple proposed method was employed to the optimization of the path of a robot 

under both static and dynamic environments and fared against the conventional SFLA. Considering the static 

environment, the proposed algorithm yielded a search accuracy superiority of 25.28%. The proposed algorithm 

also achieved the task 14.18% quicker. The superiority of the proposed algorithm for the dynamic environment 

was 36.85% and 34.3% respectively for the search accuracy and task completion time. 

 
2.3.14. Antlion optimization 
 
Antlion optimization (ALO) is an algorithm inspired by the foraging behaviour of antlion larvae. Its formation 

lies on the basis of the relationship between the antlion and their prey, the ant. Antlions dig a hole of conical shape 

in the ground and hide at the pit to catch prey. Hungrier ant lions dig bigger holes which improves their chances 

of catching prey. The ants slide down the surface of the hole, at which point the antlion consumes it [130] , [131]. 
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Ants move randomly. Their movement is affected by the holes dug by the ant lions. Ant lions with poorer fitness 

functions dig bigger holes. In each iteration, every ant can be trapped by an antlion.  

 

The conventional ALO has the demerit of being easily trapped in local optima [132]. The authors in [132] 

proposed a spiral complex searching pattern to overcome this demerit. In total, eight spiral paths were applied. 

These are the Rose Logarithmic, Inverse and Archimedes spiral curves, as well as the Epitrochoid, Hypotrochoid, 

Cycloid, and Spiral based overshoot parameter setting. The proposed algorithms were applied to various 

unimodal, multimodal, and fixed dimension benchmarks functions and compared to the conventional ALO. 

Considering global search capability, superior performance for the different functions was seen to be scattered 

across the various proposed algorithm. It is vital to note though, that for each case, at least one proposed spiral 

complex searching pattern proved to be superior to the conventional ALO.  Majority of the best results were 

obtained by the Spiral based overshoot parameter setting. It was also noticed that on average, the Spiral based 

overshoot parameter setting yielded the strongest convergence rate. The method proposed in [133] aims to 

improve the algorithm global search ability by proposing a modified ant position update equation. This considers 

the pheromones left behind by other ants. The proposed algorithm was applied to a bearing fault identification 

which is centered on multi-layer extreme learning machine (MELM). The proposed algorithm was employed to 

the optimization of the MELM. However, no comparison between the proposed algorithm and other MOT are 

provided. This means that the effectiveness of the proposed method to the said application cannot be verified. 

 

Considering the application of ALO to the control of the DFIG, the authors in [134] make use of ALO to obtain 

the fractional order PI (ALO-FOPI) controller gains. The method makes use of stator flux-oriented control and 

considers both the RSC and GSC control. Apart from the ALO-FOPI control algorithm, two other control 

algorithms are tested. The first is a PI controller with an ANFIS controlled added. The required gains are optimized 

using the Cuckoo search algorithm (CuSA-ANFIS). In the second method, a hybrid CuSA and ALO algorithm 

was utilized to optimize the parameters of a fractional order PI controller (CA-FOPI). The proposed algorithms 

were tested at two wind speeds, names 15 m/s and 10 m/s. At both 10 m/s and 15 m/s, it was observed that ALO-

FOPI and CA-FOPI produces an identical and superior stator reactive power percentage overshoot than Cu-

ANFIS. For both wind speeds, all three control algorithms responded identically with regards to the dc link voltage 

regulation. The results presented for the stator active power were unclear hence could not be analyzed. 

Furthermore, to clearly compare ALO algorithm and CuSA, it would have been profitable to implement a PI and 

ANFIS controller which is optimized using ALO.  

 
2.4. Summary of techniques discussed 
 
Table 2.1 summarizes the swarm-based MOT that were discussed in this research. The summary state the merits, 

demerits, and application of each technique to the control of the DFIG. The development of PSO has been an 

excellent advancement in science. Since its inception, PSO has been used countless times to solve optimization 

problems. It has also paved the way for other swarm-based MOT to arise. However, theory upon which PSO 

stands is basic. Practically, flocks of birds and schools of fish display highly complex and intelligent behaviour, 

which has not been incorporated into the algorithm. PSO is one of the few swarm-based MOT which displays fast 

convergence, hence modification and incorporation of intelligent behaviour of fish and birds may result in PSO 
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once again being a superior optimization technique. A similar observation holds true for GWO. The idea of 

utilizing the ranking of wolves within a pack was innovative, but the equations of the optimization tool are very 

basic. Wolves display exceptional survival tactics, and more careful observation of their behaviour could result in 

alleviation of the algorithms disadvantages. The idea upon which CSA and CuSA stand are interesting, however 

the equations of these algorithms are not complex enough to simulate the relative behaviour.  

 
ABC, WOA, BA and SSA are complex in structure, and account for many of the characteristics of the respective 

swarms. However, some key aspects are missing. For example, in a bee colony, the queen bee plays an important 

role in the colony. The effect of incorporating the behaviour of the queen bee should be investigated. Likewise, it 

may be beneficial to consider the hunting strategies of other whales so as to broaden and enhance the capabilities 

of WOA. SSA considers only the foraging behaviour of flying squirrels. This could be broadened to incorporate 

the behaviours of other types of squirrels. A similar suggestion is given to the BA, which is based on the behaviour 

of the microbat. BA and SSA have thus far looked promising, but they have yet to been extensively tested. To 

validate their capabilities, rigorous testing and application is required. The same applies for ALO, SFLA, MFO, 

SFO and FA. Regarding ALO, the mathematical representation of the holes dug are simple. This type of 

representation should be investigated thoroughly so as to ensure strong simulation of the effect of these holes on 

ants. It is observed that of the techniques discussed, BFOA is by far the most complex. It is evident that this 

technique incorporates most, if not all, of the behavioural traits of the E. Coli bacterium. This can be attributed to 

the large amount of literature concerning this bacterium. BFOA seems to have a lot of undiscovered potential, 

which should be researched.  

 
Various comparisons between conventional techniques are presented in literature. A comparison between ABC 

and PSO is presented in [135]. When tested on various unimodal and multimodal benchmark functions, it is 

observed that both algorithms display identical characteristics in the case of unimodal functions. For multimodal 

functions, ABC outperforms PSO. It is also observed that ABC is more sensitive to population and dimension 

sizes. This opens a wide area of research, as the effects of these parameters were not investigated in current 

literature. Another comparison is presented in [136], where PSO, FA, ABC, CSA and GWO are fared against each 

other. Considering unimodal functions, GWO was superior in 6 of 7 functions. GWO also produced good results 

in fixed dimensional multimodal functions. However, this is not the case for standard multimodal functions. CSA 

produced the worst average results among all the techniques, showing the strong need for improvement. A 

comparison between PSO and SFLA is provided in [137]. The results show that SFLA produced the overall best 

convergence rate and search accuracy. However, unlike PSO, it was found that SFLA is highly sensitive to user 

defined parameters, in particular the number of frogs and number of memeplexes. BA and BFO are fared against 

each other in [138]. When applied to a wide range of benchmark function, it was observed that BFO was superior 

in terms of accuracy. However, BA produced a faster convergence rate.  

 
From Table 2.1, it is observed that many of the discussed swarm-based MOT suffer the demerit of being easily 

trapped in the local optima. The good news, however, is that various advancements have been made to correct 

this. It is also seen that the demerits of some MOT have not yet been established. This does not necessarily mean 

that none exist, but rather points to a lack of investigation into the operating capability of the algorithm. With 

regards to the application of swarm-based MOT to the control of the DFIG, it is observed that PSO is the most 
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established in this aspect. Other techniques have been applied once or twice, but not comprehensively. However, 

the efficacy of PSO as an optimization tool For DFIG control is not well validated. A similar issue is observed 

with CuSA and FA. With regards to DFIG application, The BA and ALO show promise, but require much more 

rigorous testing to be validated. The CSA proved to be ineffective when applied to the DFIG, and modifications 

to this algorithm should be presented before considering reapplication of this algorithm to the DFIG. GWO and 

ABC have displayed positive results thus far, but it is evident that these techniques have room for enhancement. 

BFO and MFO show strong capabilities when applied to the DFIG. However, these techniques have not been 

extensively applied to the DFIG, hence their efficacy is yet to be validated. Lastly, it is seen that some swarm-

based MOT are yet to be applied to the control of the DFIG. Examples of these are SFO, SSA and SFLA. Figure 

2.4 provides a visual representation of the convergence rate, exploitation and exploration capabilities of each of 

the algorithms discussed. In figure 2.4, a value of 1 represents a weak capability, 2 represents an average 

capability, a 3 represents a strong capability. From figure 2.4, it is evident that various swarm-based MOT have a 

weak capability when it comes to exploration, and majority of the algorithms have an average capability when 

considering exploitation. Considering an equal weighting of all three factors, it is observed that the SFO provides 

the best overall response. Therefore, its lack of application to the control of the DFIG is an interesting and possibly 

promising area of research.  

 
Table 2.2 provides a method for choice of algorithm for specific applications to the DFIG. From this Table, it is 

observed that should one want to attempt to optimize PI controllers for standard control of the DFIG, various 

algorithms may be used. In the situation where optimization of FOPID controller gains for standard control is 

required, the CuSA and GWO seem the best choice. For optimization of parameters of sliding mode controllers, 

PSO and BA should be the algorithms utilized. It is important to note, though, that the application of swarm-based 

MOT to the control of the DFIG has not been achieved extensively. This means that, for the objectives defined in 

Table II, various other swarm-based MOT (in addition to the ones presented) have the potential to yield desired 

results. 
 

Table 2.1:Summary of reviewed swarm-based Metaheuristic Optimization Techniques 

Swarm 

technique 

Merits Demerits Application to the 

DFIG 

Significant findings 

regarding application 

to DFIG 

Particle swarm 

optimization 

Fast convergence 

rate [57], [58] 
• Poor accuracy  

• Easily trapped 

in local minima 

[57], [58], [59] 

• Optimization of 

parameters of 

sliding mode 

controller [60] 

• Optimization of 

PI controller 

gains to analyze 

Regarding PSO 

optimized sliding 

mode controller, 

emphasis was given to 

the efficacy of the 

proposed controller 

and not on the 

effectiveness  
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Table 2.1: Summary of reviewed swarm-based Metaheuristic Optimization Techniques 

   small signal 

stability [61] 

• Optimization 

of PID 

controller 

gains for 

standard 

control [63] 

• Optimization 

of FLWRBFN 

for stability 

enhancement 

of a DFIG 

based ocean 

energy 

conversion 

system 

• Optimization 

of dish Stirling 

system 

incorporating 

DFIG for 

maximum 

power point 

tracking 

enhancement 

and receiver 

temperature 

regulation 

of PSO with 

regards to 

parameters 

optimization 

• In the case of 

both small and 

large 

disturbances, 

PSO optimized 

PI controllers 

produce strong 

overshoots and 

damping rates  

• Considering 

standard 

control, PSO 

optimized PID 

controllers 

produce 

superior results 

in all aspects 

when fared 

against the 

supervisory 

control method 

• Considering 

PSO optimized 

FLWRBFN for 

stability 

enhancement, 

emphasis was 

given on the 

efficacy of the 

proposed 

controller and 

not on the 

effectiveness 

of PSO with 

regards to  
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Table 2.1: Summary of reviewed swarm-based Metaheuristic Optimization Techniques 

    • parameter 

optimization 

• Considering 

optimization of 

dish Stirling 

system 

incorporating 

DFIG, emphasis 

was given on the 

efficacy of the 

proposed 

controller, and not 

on the 

effectiveness of 

PSO with regards 

to parameter 

optimization 

Bacteria foraging 

optimization  

Not easily trapped 

in local minima 

[70] 

Not yet 

established 

 

 

 

• PI control gain 

optimization for 

standard control 

[49] 

• PI controller 

gain 

optimization for 

damping of low 

frequency 

oscillations [71] 

Considering 

standard control, 

BFO optimized PI 

controllers 

produce superior 

results in all 

aspects when 

compared to PSO 

 

Grey wolf 

optimization 

Strong local 

search 

capability 

[73] 

 

• Poor global 

search 

capability 

Slow 

convergence 

at the latter 

part of the 

algorithm 

[72], [73] 

[74] 

Optimization of 

FOPID controller 

gains for standard 

control [75] 

When compared 

to PSO-PID and 

BFO-PID the 

GWO optimized 

FOPID controller 

produced a 

superior rise time, 

settling time and 

overshoot. 
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    However, it proved 

to be inferior to 

BFO-PID when 

considering 

disturbance 

rejecting 

capabilities. 

Artificial bee 

colony 

Strong global 

search 

capability [80] 

 

Slow convergence 

rate [81], [82], [83] 

Optimization of PI 

controller gains for 

standard control 

[85] 

ABC optimized PI 

controllers produce 

superior overshoots 

to PSO and GWO 

optimized PI 

controllers, but an 

inferior dynamic 

response 

Whale optimization 

algorithm 

Strong global 

search capability 

[89] 

• Poor accuracy 

Slow convergence 

rate [90] 

Not yet established Not yet established 

Crow search 

algorithm 

• Flexible 

• Requires 

knowledge of 

only a few 

parameters  

• Easily trapped 

in local 

minima 

• Slow 

convergence 

rate [94] 

Optimization of PI 

controller gains for 

standard control 

[95] 

CSA optimized PI 

controllers 

produced mixed 

results when fared 

against Genetic 

Algorithm and the 

supervisory control 

method. CSA 

proved to be an 

unsuitable method 

for PI controller 

tuning for standard 

control 

Bat algorithm Fast convergence 
rate [98] 

• Poor accuracy 

Easily trapped in 
local minima [97] 

Optimization 

of parameters 

of sliding 

mode 

controller 

[103] 

 

BA optimized 

sliding mode 

controller was 

superior to the 

conventional 

sliding mode  
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Table 2.1: Summary of reviewed swarm-based Metaheuristic Optimization Techniques 

    controller and PI 

controller tuning 

with respect to rise 

time and settling 

time. However, 

there did exist a 

minor unbalance in 

the stator voltage 

waveforms 

Squirrel search 

algorithm 

Strong stability 

[104] 

• Poor accuracy 

• Easily trapped 

in local 

minima [104] 

Not yet established Not yet established 

Moth flame 

optimization 

Robust selection 

capability [109] 

• Easily 

entrapped in 

local optima 

• Stagnant 

convergence 

rate [108], 

[109], [110] 

Optimization of PI 

controller gains for 

standard control 

[111] 

When compared to 

various other 

MOT, MFO 

optimized PI 

controllers 

displayed enhanced 

maximum power 

point and fault ride 

through capabilities 

Sailfish 

optimization 

algorithm 

• Fast 

convergence 

rate 

• Not easily 

trapped in local 

minima [112] 

Not yet established Not yet established Not yet established 

Cuckoo search 

algorithm 

Requires 

knowledge of only 

a few parameters 

[115] 

• Slow 

convergence 

rate [116] 

• Easily trapped 

in local 

minima [115], 

[116] 

• Optimization 

of PI controller 

gains for 

standard 

control  

Optimization of 

FOPID controller 

gains for standard 

control [117] 

Regarding both the 

PI and FOPID 

controllers 

optimized using 

CuSA, very little 

analysis was 

provided. Critical 

aspects such as rise 

time and settling  
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Table 2.1: Summary of reviewed swarm-based Metaheuristic Optimization Techniques 

    were not 

considered. 

Further, there was 

no comparison to 

optimization using 

other MOT 

Firefly algorithm Not yet established • Slow 

convergence 

rate [120], 

[121] 

• Easily trapped 

in local 

minima [120], 

[122] 

• Optimization 

of POD 

controller 

gains for 

stabilization of 

inter area 

oscillations 

[123] 

• Optimization 

of PI-PD 

controller 

gains for 

frequency 

regulation 

• Optimization 

of PID 

controller 

gains for 

frequency 

regulation 

[124] 

 

• Considering 

FA optimized 

POD, 

emphasis was 

given on the 

proposed 

control 

structure, and 

not on the 

effectiveness 

of the 

optimization 

technique 

• Regarding FA 

optimized PI-

PD and PID 

controllers, the 

PI-PD 

controller was 

superior in all 

aspects 

concerning 

frequency 

regulation.  

Shuffled frog 
leaping algorithm 

Fast convergence 
speed [127] 

• Premature 

convergence to 

the local 

optima                    

[127], [128] 

• Random jumps 

which lead to  

Not yet established Not yet established 
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Table 2.1: Summary of reviewed swarm-based Metaheuristic Optimization Techniques 

  blind searches 

[129] 

  

Antlion 

optimization 

algorithm 

Not yet established Easily trapped in 

local minima [132] 

Optimization of 

FOPI controller 

gains for standard 

control [134] 

ALO optimized 

FOPI controller 

seems to be 

promising in terms 

of standard DFIG 

control. 

 
Table 2.2: Choice of algorithms for specific application to DFIG 

Objective Suggested 

technique/s 

PI control gain optimization for 

standard control 

PSO, ABC, 

CuSA, MFO 

PI controller gain optimization for 

damping of low frequency 

oscillations 

PSO 

Optimization of FOPI controller 

gains for standard control  

ALO 

Optimization of FOPID controller 

gains for standard control  

CuSA, GWO 

Optimization of PI controller gains 

to analyze small signal stability 

PSO 

Optimization of PID controller 

gains for standard control 

PSO 

Optimization of parameters of 

sliding mode controller  

PSO, BA 

Optimization of POD controller 

gains for stabilization of inter area 

oscillations  

FA 

Optimization of PID controller 

gains for frequency regulation  

FA 

 
 
2.5. Simulation-based analysis of common swarm-based MOT 
 
In this section, a simulation-based analysis of the results of various well-known techniques are carried out. These 

techniques are PSO, ABC, and WOA. These algorithms are applied to three benchmark functions, at three-

dimension magnitudes. To allow for a fair comparison, the number of search agents and particles were kept 

uniform across all three algorithms. Owing  
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to the stochastic nature of MOT, each algorithm was run 20 times. The results in table 2.3 are given in terms of 

average value, and standard deviation. Both, in conjunction with the convergence rate, are critical parameters in 

the analysis of MOT. 

 
Considering the results of the 5-dimension set, it is observed that for F1, the ABC yields the best average value. 

This is succeeded by the WOA. For F2 and F3, the WOA produces the best result, with PSO producing the poorest 

average value. However, for these results, the ABC showed a superior standard deviation to the WOA. This 

indicates an inferiority of WOA to ABC in terms of performance stability. For the results of the 50-dimension set, 

the WOA generated the best average value with the ABC having the poorest response. For F1 and F2, PSO showed 

greater stability to WOA, while for F3 the WOA produced the poorest stability performance. As with the 50-

dimension set, the WOA yielded a superior average value for all three functions, with the ABC producing the 

poorest result. Considering stability, WOA is superior for F1 and F2, but is inferior to both PSO and ABC for F3 

 
Table 2.3: Comparison of PSO, ABC, and WOA for three benchmark functions at 5,50 and 100D 

 
 
 
 
 
 

Function Dimension  PSO ABC WOA 

 

1 

 

 

 

 

5 

Mean 364 0.08 32.42 

Std 499 0.07 98.69 

Rank 3 1 2 

 

2 

Mean 0.54 0.17 0.14 

Std 0.23 0.04 0.14 

Rank 3 2 1 

 

3 

Mean 28.23 4.22 1.44 

Std 12.21 1.08 6.47 

Rank 3 2 1 
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Figure 2.4: Comparison of discussed techniques in terms of convergence rate, exploitation, and exploration capabilities 



39 
 

Table 2.3: Comparison of PSO, ABC, and WOA for three benchmark functions at 5,50 and 100D 

 
 
Figures 2.5-2.7 depict the convergence curves of each algorithm, for each test function and at each of the 

dimension magnitudes utilized. Considering figure 2.5, for F1, ABC yielded the best convergence rate, with PSO 

yielding the worst in this aspect. For F2, once again PSO generated the poorest response. ABC is superior to WOA 

until about 45 iterations, after which WOA outperforms the former. A similar result is seen for F3, with the 

different being that the superiority of WOA presenting at 75 iterations. 

                                   

1  

 

 

 

50 

Mean 7.76E+05 30.50E+05 3.34E+05 

Std 6.03E+05 10.36E+05 6.68E+05 

Rank 2 3 1 

2 Mean 1.15 6.12 0.05 

Std 0.07 0.83 0.16 

Rank 2 3 1 

3 Mean 604.39 650.64 181.82 

Std 73.16 43.91 154.84 

Rank 2 3 1 

1  

 

 

 

100 

Mean 2.59E+06 27.12E+06 5.58E+05 

Std 1.97E+06 3.37E+06 1.28E+06 

Rank 2 3 1 

2 Mean 1.33 25.46 5.55E-18 

Std 0.18 1.69 2.48E-17 

Rank 2 3 1 

3 Mean 1390.33 1644.30 645.32 

Std 120.28 36.98 174.59 

Rank 3 2 1 

Figure 2.5: Convergence curves of algorithms at 5D for (a) F1, (b)F2 and (c)F3 
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Considering figure 2.6, for F1, ABC generated the poorest response. PSO proved to be superior to WOA until 

about 20 iterations, after which WOA exhibits dominancy. A near identical trend is observed for F2. This is not 

the case for F3, where WOA is superior, and ABC once again yielding the poorest result. Considering figure 2.7, 

for F1, ABC generated the poorest response. PSO exhibited dominancy to WOA until about 25 iterations, after 

which WOA proved to be superior. A similar trend is observed for F2, this time the WOA obtaining dominancy 

at a slightly smaller iteration count. For F3, WOA proved to be superior, and ABC once again yielding the poorest 

result.  

 

 
2.5. Conclusion 
 
This chapter provided a review on swarm-based Metaheuristic Optimization Techniques in terms of algorithm 

structure, merits, demerits, and application to the control of the DFIG. While there exists numerous swarm-based 

Metaheuristic Optimization Techniques, only fourteen techniques were covered in this chapter. The swarm-based 

techniques which featured in this chapter were PSO, BFO algorithm, ABC optimization, GWO, BA, SSA, CuSA, 

FA, MFO, SFO, ALO, SFLA, CSA and WOA. While the techniques provide strong performances in general, many 

of the conventional algorithm suffer the demerits of a poor rate of convergence and being easily entrapped in the 

Figure 2.6: Convergence curves of algorithms at 50D for (a) F1, (b)F2 and (c)F3 

Figure 2.7: Convergence curves of algorithms at 100D for (a) F1, (b)F2 and (c)F3 
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local minima. However, the good news is that these problems have been ameliorated in many of the algorithms. The 

demerits of the SFO algorithm and BFO algorithm have not yet been discovered. Based on the observable demerits 

of the other algorithms, this can be successfully investigated. However, when considering the application of these 

techniques to energy generation systems, not many examples exist. Considering application to the DFIG, only 

particle swarm optimization has been researched and applied somewhat thoroughly. Some algorithms like GWO, 

ABC optimization, BFO algorithm, CuSA, FA, ALO, MFO, CSA and BA have only been applied once or twice. 

Other algorithms like SFLA, SSA and SFO are yet to be applied to the DFIG. When applied to the DFIG, swarm-

based MOT have produced good results. However, due to the lack of application and rigorous testing of these 

techniques, extensive testing is required to validate their effectiveness. Hence it would be beneficial to research and 

apply the algorithms, especially those which are yet to be done so. 
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Chapter 3 : Research Methodology 
 

This chapter aims to clearly highlight the various metaheuristic optimization techniques utilized in this research. 

The swarm intelligence techniques discussed are Particle Swarm Optimization, Bat Algorithm, Gorilla Troops 

Optimization, African Vulture Optimization, and the Whale Optimization Algorithm. The relevant formulas 

required for application of each technique is provided, along with a flowchart which depicts the method of 

execution of the relevant algorithms. Further, a modified Whale Optimization Algorithm is proposed, and is tested 

on both the CEC2019 benchmark functions, as well as on a practical constrained engineering problem. 

Considering the application of swarm intelligence to the control of the DFIG, it will be seen later that PSO, BA, 

GTO, and AVOA were applied and analysed. The reason for choosing such algorithms, is to better understand the 

implications of algorithm advancement to the control of the DFIG. PSO is one of the earliest and most utilized 

swarm intelligence technique. The BA was developed some years after PSO, and based on current literature, poses 

some merits of PSO. GTO and AVOA are recently developed metaheuristics, which in their respective literatures, 

proved dominant compared to older algorithms. However, most tests on these types of algorithms are done on test 

functions, such as CEC benchmark functions. While these functions give a good indication of the performance of 

an algorithm, there still exists a need to analyse the true performance of such. This can only be done via application 

to practical engineering optimization problems. Hence, the aim of this particular choice of algorithms is to 

determine whether the continuous advancement in heuristic techniques has a positive impact on the control of the 

DFIG.  

 
3.1. Particle Swarm Optimization 
 
PSO consists of a population of particles which move at a given velocity. The velocity of every particle is updated 

after each iteration. These updates consider various factors. The aim of the motion of the particles in the population 

is the move to the most ideal solution of the problem. PSO is a simple control algorithm which has a light 

computational burden  [53] [54] [55], [56]. Considering the real number space, a particle can be defined as a 

possible solution which moves through the search space of the problem. The position of a particle is a function of 

the particles previous position and current velocity. This can be expressed as [53], [139], [140]: 

 �̅�𝑥𝑖𝑖(𝑡𝑡 + 1) = �̅�𝑥𝑖𝑖(𝑡𝑡) + �̅�𝑣𝑖𝑖(𝑡𝑡) (3.1) 

Where �̅�𝑥𝑖𝑖(𝑡𝑡 + 1) is the updated position of the particle, �̅�𝑥𝑖𝑖(𝑡𝑡) is the current position of the particle and �̅�𝑣𝑖𝑖(𝑡𝑡) is the 

current velocity of the particle. The current velocity of the system is defined as [53], [139], [140]: 

 �̅�𝑣𝑖𝑖(𝑡𝑡 + 1) = �̅�𝑣𝑖𝑖(𝑡𝑡) + 𝜎𝜎1 × 𝑖𝑖𝑟𝑟𝑟𝑟𝑖𝑖1 × ��̅�𝑝𝑖𝑖 − �̅�𝑥𝑖𝑖(𝑡𝑡)� + 𝜎𝜎2 × 𝑖𝑖𝑟𝑟𝑟𝑟𝑖𝑖2 × ��̅�𝑝𝑔𝑔 − �̅�𝑥𝑖𝑖(𝑡𝑡)� (3.2) 

Where �̅�𝑣𝑖𝑖(𝑡𝑡 + 1) is the updated velocity of the particle, 𝜎𝜎1 and 𝜎𝜎2 are two positive numbers, 𝑖𝑖𝑟𝑟𝑟𝑟𝑖𝑖1 and 𝑖𝑖𝑟𝑟𝑟𝑟𝑖𝑖2 

are two randomised numbers in the range [0,1], �̅�𝑝𝑖𝑖 is the individual best of each particle and �̅�𝑝𝑔𝑔 is the global best 

of each particle. As shown, (3.2) comprises of three elements. The first term is based on the inertia of the particle 

(according to newtons first law, a body in motion tends to continue motion unless disturbed by an external force) 

[28]. The second term describes the particles propensity to gravitate towards its personal best. It is known as the 

memory component. The third term describes the particles propensity to gravitate towards to global best i.e., the 

best of all the particles. It is known as the social component [53], [140]. The individual best and global best are 
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obtained based on a fitness function which is defined by the user [53]. To ensure convergence of the particles and 

prevent divergence (going to infinity), selection of appropriate constants and setting limitations is essential. One 

of the critical limitations that needs to be present in the selection of a maximum velocity. A too large maximum 

velocity could result in unstable behavior of the particles and a too small velocity limits the search space and could 

results in the most optimal solution not being discovered. An experiment performed in [141] proved that by 

dynamically changing the maximum velocity, the performance of the algorithm can be enhanced. Another 

important limitation is the values of the acceleration constants, 𝜎𝜎1 and 𝜎𝜎2. In a study conducted in [142] and [143], 

it is shown that if the sum of 𝜎𝜎1 and 𝜎𝜎2 exceed 4, the particle trajectory diverges (goes to infinity). The values of 

the acceleration constants can be updated dynamically, in which case they are calculated based on a maximum 

and minimum value, as well as the current and maximum iteration numbers [60].  

 
However, even if the acceleration constants and maximum velocity are selected correctly, there is a possibility 

that the particles would continue to diverge. To prevent this, there exists two methods which can be applied to 

(3.2). The first method is applying a constant called the constriction factor. This is applied to the entire of (3.2) 

and is based on the use of the two acceleration constants [139]. The second method is accomplished by applying 

either a fixed or dynamic value only to the inertia component of (3.2) [139]. This is termed inertia constant and 

usually begins at a high value and gradually decreases. Considering a dynamic inertia constant,𝑤𝑤, the constant is 

calculated using an initial weight (usually 0.9), a final weight (usually 0.4), as well as the current and maximum 

iteration numbers [48], [139], [144]. The suitable selection of the inertia weights results in the requirement of a 

smaller number of iterations to obtain an acceptable solution [144]. 

 
At first, the relevant parameters (number of particles, iteration number, initial acceleration constant and initial 

inertial weight) are defined. Then, each particle positioned randomly throughout the search space. The next step 

is the evaluation of the fitness of each particle. The particle which has the lowest fitness function is determined 

and the position of that particle is taken as the global best. Thereafter, the position of each particle is then updated 

using (3.2) and the fitness function is evaluated again. This fitness function value of each particle is then compared 

to the previous fitness function of that particle. If the current fitness function is superior to the previous fitness 

function, this value replaces the old value, and the current position replaces the previous position as the new 

individual best. This process continues until the iterations are complete. Once this is so, the particle with the best 

fitness function is said to be the best solution [53], [140]. The steps to execute the PSO algorithm is depicted in 

figure 3.1 [145].  

 
3.2. Bat Algorithm  
 
Based on the use of echolocation by microbats, the position of each bat is updated as follows [96], [146]: 

 𝑣𝑣𝑖𝑖(𝑡𝑡 + 1) = 𝑣𝑣𝑖𝑖(𝑡𝑡) + 𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖(𝑡𝑡) − 𝑥𝑥𝑔𝑔) (3.3) 

 𝑥𝑥𝑖𝑖(𝑡𝑡 + 1) = 𝑥𝑥𝑖𝑖(𝑡𝑡) + 𝑣𝑣𝑖𝑖(𝑡𝑡 + 1) (3.4) 

Where 𝑣𝑣𝑖𝑖(𝑡𝑡) is the current velocity of the 𝑖𝑖𝑡𝑡ℎ bat, 𝑣𝑣𝑖𝑖(𝑡𝑡 + 1) is the updated velocity of the 𝑖𝑖𝑡𝑡ℎ bat, 𝑥𝑥𝑖𝑖(𝑡𝑡) is the 

current position of the 𝑖𝑖𝑡𝑡ℎ bat, 𝑥𝑥𝑖𝑖(𝑡𝑡 + 1) is the updated position of the 𝑖𝑖𝑡𝑡ℎ bat, 𝑥𝑥𝑔𝑔 is the global best position, 𝑓𝑓𝑖𝑖 is 

the frequency of the 𝑖𝑖𝑡𝑡ℎ bat. This frequency is calculated using a specified maximum and minimum frequency and 

a randomized number in the range [0,1].  A randomized number between 0 and 1 is generated and compared to  
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the pulse emission rate of the 𝑖𝑖𝑡𝑡ℎ bat. The pulse emission rate is based on the current iteration number and 

decreases exponentially from the initial specified pulse emission rate. If the random number is greater, the position 

of the best bat is updated as follows [96] - [147]: 

 𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑥𝑥𝑜𝑜𝑜𝑜𝑑𝑑+∈ 𝐴𝐴𝑖𝑖𝑡𝑡 (3.5) 

Where ∈ is a randomized number in the range [0,1], 𝐴𝐴𝑖𝑖𝑡𝑡 is the current loudness of the 𝑖𝑖𝑡𝑡ℎ bat and is based on the 

current iteration number. Initially, the required parameters are defined. Then, each bat is assigned a random 

position in the search space. The fitness of each bat is then computed and the position of the bat with the best 

fitness value is noted. Thereafter, the position of each bat is updated according to (3.4). The fitness of each bat is 

computed and if the new fitness value of a bat is superior to the previous fitness value of that same bat, that bat 

takes on the new fitness value (hence position). Afterwards, a randomized number is defined and if this value is 

greater than the pulse emission rate of a specific bat, then the position of that bat is updated using (3.5). The fitness 

of each bat is evaluated once more. The randomized number is then compared to the loudness of each bat. If the 

randomized number is less than the corresponding loudness and the fitness value is superior to the previous fitness 

value, then the bat takes this new position. Else it remains in its previous position. This continues until all iterations 

Update position of 
particles 

Start 

Select parameters 

Initialize particle position and velocity 

Iteration=1 

Fitness evaluation of 
particle 

Individual and global 
best update 

Iterations=max? 

Iteration=Iteration+1 

End 

Figure 3.1: Flowchart of implementation of PSO [145] 
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have been completed. Once this is so, the bat with the best fitness value is said to be the best solution [96]. The 

steps to execute the BA can be seen in figure 3.2 [148]. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
3.3. Gorilla Troops Optimization 
 
Inspired by the social behaviour of the silverback gorilla, Gorilla Troops Optimizer seeks to mathematically 

represent the various behaviours of the large primate. The silverback gorilla shares various traits with other wild 

mammals, such as the existence of a social hierarchy, the dominance of the male among the group, and fierce 

Iterations=Iterations+1 
 

End 
 

Accept new solution 
Increase 𝒓𝒓𝒊𝒊, reduce 𝑨𝑨𝒊𝒊 

 
   

Determine position of 
best bat 

 

Iterations=max? 
 

Keep the current solution 
 

New solution generation 
via random flight 

 

Rand<𝑨𝑨𝒊𝒊? 
f(𝒙𝒙𝒊𝒊)<f(𝒙𝒙𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃)? 
 

Start 
 

Local solution generated 
around position of best 

solution 
 

 

Rand>𝒓𝒓𝒊𝒊? 
 

Initialize population of bats 
 

Define loudness and frequency 
 

 

New solutions generated by 
adjusting frequency 

Velocities and positions updated 
 

    

Figure 3.2: Flowchart of implementation of BA [148] 



46 
 

rivalry for the attraction of mating partners. However, the silverback gorillas are highly intelligent species, who 

share a 98 % similarity with human genetic makeup. Although the silverback gorilla often lives in troops,  

 

occasionally a few members will move to another location. This could be either to find a new food source, to seek 

new mating partners, or to join other groups for better protection [149]. To simulate the exploration of a gorilla to 

an unknown location, the following was developed [149], [150], [151], [152]:. 

 𝑋𝑋(𝑡𝑡 + 1) = (𝑢𝑢𝑢𝑢 − 𝑙𝑙𝑢𝑢) × 𝑖𝑖1 + 𝑙𝑙𝑢𝑢 (3.6) 

Where: 

• 𝑋𝑋(𝑡𝑡+1) is the updates position of the gorilla 

• 𝑢𝑢𝑢𝑢 is the upper bound of the search space 

• 𝑙𝑙𝑢𝑢 is the lower bound of the search space 

• 𝑖𝑖1 is a random number in the domain 0 to 1 

 

A second random number in the domain 0 to 1 is also defined. Further, a pre-set parameter p is utilized to 

determine if (3.6) is implemented. If the random number is less than p, then (3.6) is implemented. If not, and the 

random number generated is greater than or equal to 0.5, the gorillas are said to be migrating to another group. 

This is expressed as [149], [150], [151], [152]: 

 𝑋𝑋(𝑡𝑡 + 1) = (𝑖𝑖2 − 𝐶𝐶) × 𝑋𝑋𝑑𝑑(𝑡𝑡) + 𝐿𝐿 × 𝐻𝐻 (3.7) 

 
Where: 

• 𝑖𝑖2 is a random number in the domain 0 to 1 

• 𝑋𝑋𝑑𝑑(𝑡𝑡) is the position of a randomly selected gorilla, which exists in the troop 

The parameters 𝐶𝐶, 𝐿𝐿 and 𝐻𝐻 are calculated as follows [149], [150], [151], [152]: 
 𝐶𝐶 = 𝐹𝐹 × �1 −

𝑖𝑖
𝑚𝑚𝑟𝑟𝑥𝑥𝑖𝑖

� (3.8) 

 𝐹𝐹 = cos(2 × 𝑖𝑖3) + 1 (3.9) 

 𝐿𝐿 = 𝐶𝐶 × 𝐴𝐴 (3.10) 

 𝐻𝐻 = 𝑍𝑍 × 𝑋𝑋(𝑡𝑡) (3.11) 

 𝑍𝑍 = [−𝐶𝐶,𝐶𝐶] (3.12) 

Where: 

• i is the current iteration number 

• 𝑚𝑚𝑟𝑟𝑥𝑥𝑖𝑖  is the maximum number of iterations 

• 𝑖𝑖3 is a random number in the domain 0 to 1 

• 𝐴𝐴 is a random number in the interval -1 to 1 

• 𝑋𝑋(𝑡𝑡) is the current position of the gorilla in question 

 
If the randomly generated number is less than 0.5, the gorilla is said to have migrated to a known location. This 
is modelled as [149], [150], [151], [152]: 

 𝑋𝑋(𝑡𝑡 + 1) = 𝑋𝑋(𝑡𝑡) − 𝐿𝐿 × �𝐿𝐿 × �𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑑𝑑(𝑡𝑡)� + 𝑖𝑖4 × �𝑋𝑋(𝑡𝑡) − 𝑋𝑋𝑑𝑑(𝑡𝑡)�� (3.13) 
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Where 𝑖𝑖4 is a random number in the domain 0 to 1. To simulate exploitation, two scenarios are considered. The 

first is where the other male gorillas within a troop obey the orders of the leader. The second is where these gorillas 

engage in violent battle to assume power. A pre-set parameter W is defined. If C≥ 𝑊𝑊, the other male gorillas 

follow the leader. This is expressed as [149], [150], [151], [152]: 

 𝑋𝑋(𝑡𝑡 + 1) = 𝑋𝑋(𝑡𝑡) − 𝐿𝐿 × 𝑀𝑀 × �𝑋𝑋(𝑡𝑡) − 𝑋𝑋𝑏𝑏(𝑡𝑡)� + 𝑋𝑋(𝑡𝑡) (3.14) 

Where 𝑋𝑋𝑏𝑏(𝑡𝑡) is the current position of the best placed gorilla. The value of M is obtained as follows [149], [150], 

[151], [152]: 

 

𝑀𝑀 = ��
1
𝑁𝑁
�𝑋𝑋𝑖𝑖(𝑡𝑡)
𝑛𝑛

𝑘𝑘=1

�
𝑔𝑔

�

1
𝑔𝑔

 

 

 

 

(3.15) 

 𝑔𝑔 = 2𝐿𝐿 (3.16) 

Where N is the total number of gorillas within the troop. If the value of C is less than that of W, the other male 

gorillas engage in battle with the leader. This is modelled as [149], [150], [151], [152]: 

 𝑋𝑋(𝑡𝑡 + 1) = 𝑋𝑋𝑏𝑏(𝑡𝑡) − (𝑋𝑋𝑏𝑏(𝑡𝑡) × 𝑄𝑄 − 𝑋𝑋(𝑡𝑡) × 𝑄𝑄) × 𝐵𝐵 (3.17) 

The values of Q and B are [149], [150], [151], [152]: 

 𝑄𝑄 = 2 × 𝑖𝑖5 − 1 

 

(3.18) 

 𝐵𝐵 = 𝛽𝛽 × 𝐸𝐸 (3.19) 

Where: 

• 𝑖𝑖5 is a random number in the domain 0 to 1 

• 𝛽𝛽 is a pre-set parameter 

The value of E is calculated as follows [149], [150], [151], [152]: 
 𝐸𝐸 = �𝐾𝐾1, 𝑖𝑖𝑓𝑓 𝑖𝑖6 ≥ 0.5 

𝐾𝐾2, 𝑖𝑖𝑓𝑓 𝑖𝑖6 < 0.5  (3.20) 

Where: 

• 𝑖𝑖6 is a random number in the domain 0 to 1 

• 𝐾𝐾1 is a random number within the search space 

• 𝐾𝐾2 is a random number which exists in the interval 0 to 1 

 
The flowchart indicating the method of implementation of GTO is depicted in figure 3.3 [149], [150]. Evident 

from figure 3.3, the GTO undergoes a definite dual position change in every iteration. This will increase the 

random-access memory require for algorithm execution, as well as the time taken to execute the algorithm. 

However, in doing so, the algorithm will exhibit a higher probability of producing a more precise solution.  

 
3.4. African Vulture Optimization Algorithm 
 
African Vultures Optimization Algorithm is a recently developed swarm intelligence optimization technique. 

Inspired by the various African vulture species, this algorithm aims to mathematically model the scavenging 

behaviour of these elusive birds. The algorithm is split into five distinct phases. In the first phase, the total number  
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of vultures are split into two groups. Initially, each vulture is assigned a random position within the search space. 

Then, the fitness value of each vulture is computed. The vulture with the best fitness is placed in group one, 

 Update C, L, H 
 

Equation (8) 
 

Total search 
agent reached? 
 

C<W? 
 

Equation (3.17) 
 

Start 
 

Initialize all variables and 
positions of gorillas 

 

Calculate fitness for each search 
gorilla and choose best gorilla 

 

rand<p? 
 

Equation (3.6) 
 

Total search 
agent reached? 
 

Iterations=Iterations+1 
 

End 
 

Iterations=max? 
 

Equation (3.13) 
 

Equation (3.14) 
 

rand≥ 𝟎𝟎.𝟓𝟓? 
 

Figure 3.3: Flowchart of implementation of GTO [149], [150] 



49 
 

whereas the vulture with the second-best fitness is assigned group two. Thereafter, each of the remaining vulture 

are either sorted into group 1 or 2, depending on the following [153], [154], [155], [156]: 

𝑅𝑅𝑖𝑖 = �𝐵𝐵𝑉𝑉1, 𝑖𝑖𝑓𝑓 𝑝𝑝𝑖𝑖 = 𝑥𝑥1
𝐵𝐵𝑉𝑉2, 𝑖𝑖𝑓𝑓 𝑝𝑝𝑖𝑖 = 𝑥𝑥2

  

(3.21) 

 

Where: 

• 𝐵𝐵𝑉𝑉1 and 𝐵𝐵𝑉𝑉2 denote the groups of the best and second-best vultures, respectively 

• 𝑥𝑥1 and 𝑥𝑥2 are random number in the domain [0,1], and whose total sum equal one 

• 𝑝𝑝𝑖𝑖  is the probability based on the fitness function of the vulture being considered, as well as the fitness 

of the entire group. Its value is calculated based on the roulette wheel selection 

 

Note that there exists a large probability that 𝑝𝑝𝑖𝑖  will not exactly in value to 𝑥𝑥1 or 𝑥𝑥2. In such instance, the vulture 

will move to group where 𝑝𝑝𝑖𝑖  is the closes to x. In the second phase, the starvation rate, and the subsequent effect 

of satiety on the behaviour of the vulture, is considered. The hunger intensity of a particular vulture is expressed 

as [153], [154], [155], [156]: 

𝐹𝐹𝑖𝑖 = (2× 𝑖𝑖1 +)× 𝑧𝑧 × (1 − 𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖

) + 𝑡𝑡 (3.22) 

𝑡𝑡 = ℎ × �𝑠𝑠𝑖𝑖𝑟𝑟𝑛𝑛 �
𝜋𝜋
2

×
𝑖𝑖

𝑚𝑚𝑟𝑟𝑥𝑥𝑖𝑖
� + 𝑐𝑐𝑐𝑐𝑠𝑠𝑛𝑛 �

𝜋𝜋
2

×
𝑖𝑖

𝑚𝑚𝑟𝑟𝑥𝑥𝑖𝑖
� − 1�  

(3.23) 

Where: 

• 𝐹𝐹𝑖𝑖 is the satiation intensity of the 𝑖𝑖𝑡𝑡ℎ vulture at the 𝑖𝑖𝑡𝑡ℎ iteration 

• 𝑖𝑖1 is a random number in the domain [0,1] 

• 𝑧𝑧 is a random number in the domain [-1,1] 

• 𝑖𝑖 is the current iteration number 

• 𝑚𝑚𝑟𝑟𝑥𝑥𝑖𝑖  is the maximum number of iterations 

• ℎ is a random number in the domain [-2,2] 

• 𝑤𝑤 is a predefined constant 

 

As evident by equations (3.22) and (3.23), as the iteration magnitude progresses, the value of the satiation intensity 

decreases. The algorithm proposes that when the magnitude of 𝐹𝐹𝑖𝑖 is greater than 1, the vultures can be assumed 

to have sufficient energy to explore different areas of food sources. However, when the magnitude of 𝐹𝐹𝑖𝑖 is less 

than 1, the vultures are assumed to be low on energy, and therefore deploy exploitation in their current vicinity. 

The nature of the vulture’s flight enables a high visibility of the ground below them. However, being cautious 

creatures, they spend most of their energy ensuring that areas with a potential food source are safe to exploit. The 

exploration of potential food sources of the African Vulture is achieved via two methods. These are defined as 

[153], [154], [155], [156]: 

𝑃𝑃𝑖𝑖+1 = 𝑅𝑅𝑖𝑖 − 𝐷𝐷𝑖𝑖 × 𝐹𝐹𝑖𝑖 (3.24) 

𝑃𝑃𝑖𝑖+1 = 𝑅𝑅𝑖𝑖 − 𝐹𝐹𝑖𝑖 + 𝑖𝑖2 × ((𝑢𝑢 − 𝑙𝑙) × 𝑖𝑖3 + 𝑙𝑙) (3.25) 
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Where: 

• 𝑃𝑃𝑖𝑖+1 is the next position of the 𝑖𝑖𝑡𝑡ℎ vulture  

• 𝑅𝑅𝑖𝑖 is the position of one of the two best vultures 

• 𝑖𝑖2 and 𝑖𝑖3 are randomized numbers in the range [0,1] 

• 𝑢𝑢 𝑟𝑟𝑟𝑟𝑖𝑖 𝑙𝑙 are the upper and lower bounds of the search space, respectively 

 

𝐷𝐷𝑖𝑖  is the distance between the vulture in question, and the current optimally situated vulture, and is denoted as 

[153], [154], [155], [156]: 

𝐷𝐷𝑖𝑖 = |𝑋𝑋 × 𝑅𝑅𝑖𝑖 − 𝑃𝑃𝑖𝑖| (3.26) 

Where: 

• 𝑋𝑋 is a random number in the domain [0,2] 

• 𝑃𝑃𝑖𝑖  is the current position of the 𝑖𝑖𝑡𝑡ℎ vulture 

The method of exploration chosen is dependent on a predefined constant, 𝑃𝑃1. The value of 𝑃𝑃1 lies in the domain 

[0,1]. Thereafter, a random number, also in the domain [0,1] is generated. If the value of 𝑃𝑃1 is greater than that of 

thew randomly generated number, equation (3.24) is utilized. Else, (3.25) is deployed for exploration. As 

discussed earlier, if the magnitude of 𝐹𝐹𝑖𝑖 is less than one, the vulture enters the exploitation stage of food search. 

The exploitation phase comprises of two sub-phases. The first phase is executed as soon as 𝐹𝐹𝑖𝑖 is less than one. In 

this phase, as with the exploration phase, two possible exploitation methods exist. These are [153], [154], [155], 

[156]: 

𝑃𝑃𝑖𝑖+1 = 𝐷𝐷𝑖𝑖 × (𝐹𝐹𝑖𝑖 + 𝑖𝑖4) − 𝑖𝑖𝑖𝑖  (3.27) 

𝑃𝑃𝑖𝑖+1 = 𝑅𝑅𝑖𝑖 − (𝐾𝐾1 + 𝐾𝐾2) (3.28) 

𝑖𝑖𝑖𝑖 = 𝑅𝑅𝑖𝑖 − 𝑃𝑃𝑖𝑖 (3.29) 

𝐾𝐾1 = 𝑅𝑅𝑖𝑖 × �
𝑖𝑖5 − 𝑃𝑃𝑖𝑖

2𝜋𝜋
� × cos(𝑃𝑃𝑖𝑖) (3.30) 

𝐾𝐾1 = 𝑅𝑅𝑖𝑖 × �
𝑖𝑖6 − 𝑃𝑃𝑖𝑖

2𝜋𝜋
� × cos(𝑃𝑃𝑖𝑖) (3.31) 

Where 𝑖𝑖5 and 𝑖𝑖6 are random numbers in the domain [0,1]. As with the exploration phase, the method of 

exploitation chosen is dependent on a predefined constant, 𝑃𝑃2. The value of 𝑃𝑃2 lies in the domain [0,1]. Thereafter, 

a random number, also in the domain [0,1] is generated. If the value of 𝑃𝑃2 is greater than that of thew randomly 

generated number, equation (3.27) is utilized. Else, (3.28) is deployed for exploitation. The second phase of 

exploitation occurs when the magnitude of 𝐹𝐹𝑖𝑖 is less than 0.5. As with exploration, and phase one of exploitation, 

two possible scenarios exist. First, the fierce competition between vultures for a food source is mathematically 

modelled. The second scenario expresses the scavenging behaviour of the vultures. In such instance, the remaining 

vultures move to the position of the best vulture, to salvage the remaining food. These are expressed in equations 

(3.32) and (3.35), and are as [153], [154], [155], [156]: 

𝑃𝑃𝑖𝑖+1 =
𝑇𝑇1 + 𝑇𝑇2

2
 (3.32) 

𝑇𝑇1 = 𝐵𝐵𝑉𝑉1(𝑖𝑖) −
𝐵𝐵𝑉𝑉1(𝑖𝑖) × 𝑃𝑃𝑖𝑖
𝐵𝐵𝑉𝑉1(𝑖𝑖) − 𝑃𝑃𝑖𝑖2

× 𝐹𝐹𝑖𝑖 
(3.33) 
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𝑇𝑇2 = 𝐵𝐵𝑉𝑉2(𝑖𝑖) −
𝐵𝐵𝑉𝑉2(𝑖𝑖) × 𝑃𝑃𝑖𝑖
𝐵𝐵𝑉𝑉2(𝑖𝑖) − 𝑃𝑃𝑖𝑖2

× 𝐹𝐹𝑖𝑖 

𝑃𝑃𝑖𝑖+1 = 𝑅𝑅𝑖𝑖 − |𝑖𝑖𝑖𝑖| × 𝐹𝐹𝑖𝑖 × 𝐿𝐿𝑒𝑒𝑣𝑣𝐿𝐿(𝑖𝑖) 

(3.34) 

 

(3.35) 

  

Where 𝐿𝐿𝑒𝑒𝑣𝑣𝐿𝐿(𝑖𝑖) denotes the conventional levy flight mechanism. As with the exploration phase, the method of 

exploitation chosen is dependent on a predefined constant, 𝑃𝑃3. The value of 𝑃𝑃3 lies in the domain [0,1]. Thereafter, 

a random number, also in the domain [0,1] is generated. If the value of 𝑃𝑃3 is greater than that of thew randomly 

generated number, equation (3.32) is utilized. Else, (3.35) is deployed for exploitation. The flowchart depicting 

the process of execution of the AVOA is shown in figure 3.4 [153], [154], [155], [156]. 

 
3.5. Whale Optimization algorithm  
 
The hunting strategy of the humpback whale is separated into three parts: searching, encircling and bubble-net 

attacking [86], [87], [88]. During searching, the humpback whales exchange information about prey to each other. 

This is to ensure that all the whales stay close to the prey. Consider the following [157], [158]: 

𝑋𝑋𝑖𝑖(𝑡𝑡) = [𝑋𝑋𝑖𝑖,1(𝑡𝑡),𝑋𝑋𝑖𝑖,2(𝑡𝑡) …𝑋𝑋𝑖𝑖,𝐷𝐷(𝑡𝑡)] (3.36) 

 

Where 𝑋𝑋𝑖𝑖(𝑡𝑡) is the current position of the 𝑖𝑖𝑡𝑡ℎ whale and D is the number of search space dimensions. The position 

of the whales at the next sampling instant can be updated using three methods. The first method is via a random 

search and is shown as [86], [157], [158]: 

𝑋𝑋𝑖𝑖(𝑡𝑡 + 1) = 𝑋𝑋𝑑𝑑(𝑡𝑡) − 𝐴𝐴|𝐶𝐶 × 𝑋𝑋𝑑𝑑(𝑡𝑡) − 𝑋𝑋𝑖𝑖(𝑡𝑡)| (3.37) 

Where 𝑋𝑋𝑑𝑑(𝑡𝑡) is the position of a whale chosen at random and A and C are coefficients. A is based on the current 

and maximum iteration numbers, as well as a random number in the range [0,1]. C is based only on a random 

number in the range [0,1]. It is important to note that the random numbers used in the evaluation of A and C are 

generated independently. The second method is to  

encircle the prey. To encircle the prey, each of the whales update their positions based on the best position found 

thus far. This update is represented as follows [86]: 

𝑋𝑋𝑖𝑖(𝑡𝑡 + 1) = 𝑋𝑋𝑝𝑝(𝑡𝑡) − 𝐴𝐴�𝐶𝐶 × 𝑋𝑋𝑝𝑝(𝑡𝑡) − 𝑋𝑋𝑖𝑖(𝑡𝑡)� (3.38) 

Where 𝑋𝑋𝑝𝑝(𝑡𝑡) is the best position found thus far (at iteration t). The third method is via the use of bubble net 

attacking. Bubble net attacking is a mathematical model used to imitate the spiral movement of the humpback 

whale [67], [68]. In bubble net attacking, the whales update their positions as follows [86], [157], [158]: 

𝑋𝑋𝑖𝑖(𝑡𝑡 + 1) = 𝑋𝑋𝑝𝑝(𝑡𝑡) − �𝑋𝑋𝑝𝑝(𝑡𝑡) − 𝑋𝑋𝑖𝑖(𝑡𝑡)� 𝑒𝑒𝑏𝑏𝑜𝑜 × cos(2𝜋𝜋𝑙𝑙) (3.39) 

 

Where b is a limited constant and l is a random number in the range [-1,1]. The method of position updating to be 

used is based on a random number q in the range [0,1], as well as the value of A. If q is less than 0.5 and the 

magnitude of A is greater than one, the whale positions are updated using encircling of the prey. If q is greater 

than 0.5 and the magnitude of A is greater than or equal to 1, the whale positions are updated randomly. Else, the 

bubble net attacking method of position updating is used [86]. 
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Update position  
using (3.27) 

 

Update position  
using (3.32) 

 

Update position  
using (3.35) 

 

Update position  
using (3.24) 

 

Update position  
using (3.25) 

 
Sort remaining vultures according to (3.21) 

 

Update t and z, and compute 𝑭𝑭𝒊𝒊 
 

Start 
 

Initialize number of vultures, number of 
iterations, P1, P2 and P3 

 

i𝒃𝒃𝒃𝒃𝒓𝒓 = 𝑴𝑴𝑴𝑴𝒙𝒙 
 

Compute fitness of all vultures, and choose 
first- and second-best vultures 

 

i=N 
 

Update position  
using (3.28) 

 

Update t and z, and compute 𝑭𝑭𝒊𝒊 
 

Start 
 

|𝑭𝑭𝒊𝒊| ≥ 𝟏𝟏 
 

𝑷𝑷𝟑𝟑 ≥ 𝒓𝒓𝒑𝒑𝟑𝟑 

 

|𝑭𝑭𝒊𝒊| ≥ 𝟎𝟎.𝟓𝟓 
 𝑷𝑷𝟏𝟏 ≥ 𝒓𝒓𝒑𝒑𝟏𝟏 

 
𝑷𝑷𝟐𝟐 ≥ 𝒓𝒓𝒑𝒑𝟐𝟐 

 

Figure 3.4: Flowchart of implementation of AVOA [153], [154], [155], [156] 
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Initially, the required parameters are defined. Then, each whale is given a random position. The fitness of each 

whale is calculated and the whale with the best fitness value is noted. The random numbers P and A are then 

generated. If the magnitude of A is less than 1 then the position of each whale is updated using (3.39). If P is less 

than 0.5 and the magnitude of A is greater than one, then the position of each whale is updated using (3.38). Lastly, 

if q is greater than or equal to 0.5, the position of each whale is updated using (3.37). After the update is completed, 

the fitness of each whale is calculated and replaces the current best fitness value (of that whale) if its value is 

superior to that of the current best. This continues until all iterations have been completed. Once this is so, the 

whale with the best fitness is said to be at the most optimal position [86]. The steps to execute the WOA can be 

seen in figure 3.5 [159]. 
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P<0.5? 
 

Spiral method 
 

A<1? 
 

Encircling 
prey method 

 

Exploration 
method 

 

Total search 
agent reached? 
 

Iterations=Iterations+1 
 

End 
 

Iterations=max? 
 

Figure 3.5: Flowchart of implementation of WOA [159] 



54 
 

3.5. A Modified Whale Optimization Algorithm  
 
The Whale Optimization Algorithm (WOA) is a MOT which is inspired by the hunting tactic of the humpback 

whale [160]. Proposed by Mirjalili and Lewis in 2016, this relatively new MOT has shown promise in the 

optimization of complex engineering problems. This is largely due to the algorithm displaying the merit of a 

strong global search ability [161]. However, like all other MOT, the WOA suffers two critical demerits. These are  

 
a slow convergence rate and poor accuracy [162]. There has been research done to mitigate such, but this has not 

been investigated thoroughly. This section aims to propose a modified Whale Optimization Algorithm to enhance 

the exploitation capability, and stability of the algorithm 

 
3.5.1. Background 
 
Since its inception, the WOA has come under investigation, albeit not extensively. In [163], Gaussian distribution 

strategies are used to simultaneously enhance the accuracy and convergence rate of the algorithm. However, this 

work only tests the proposed algorithm in 25 and 30 dimensions and utilizes the same search range across all test 

functions. The experiment conducted in [164] makes use of quadratic interpolation and a dynamic strategy to 

enhance the exploitation ability of the algorithm. This was aimed at improving the algorithm when attempting to 

solve large scale problems. The scholars in [165] proposed a modified technique for COVID-19 X-Ray image 

segmentation. The co-efficient vector A, as well as the constant value b are dynamically changed to improve both 

exploration and exploitation. When compared to various other modified versions of the conventional WOA, the 

proposed technique yielded a superior performance. In [166], a single dimensional swimming based WOA was 

proposed. This method was tested on a large range of dimensions, but the minimum dimension was 20. In [167], 

a Levy flight-based mutation, along with a pattern search mechanism are integrated into the conventional WOA. 

The mutation enhances the exploration and exploitation capability of the algorithm, whereas the patter search 

improves convergence rate and stability. The proposed technique was utilized for parameter identification of solar 

cells and photovoltaic modules. Considering the modification proposed in [168], a change to the algorithm 

structure is presented. This is along with a new position update equation for the encircling prey method. The new 

equation utilizes the positions of three mutually exclusive whale, which are different to the whale being updated. 

The algorithm structure change is in terms of a newly randomized number in the domain [0,1]. The positions of 

the whales are then updated according to the magnitude of this new randomized number. Hybridization of the 

WOA with other MOT have also been proposed in existing literature. In [169], the Grey Wolf Optimization 

algorithm, known to exhibit a strong local search ability, is integrated into the WOA (which lacks this aspect). 

However, the algorithm was tested using only one-dimension magnitude. The WOA was hybridized with a well-

known evolutionary MOT, known as Genetic Algorithm, in [170].  

 
In [171], the WOA was hybridized with the sine-cosine algorithm, a physics-inspired MOT. The proposed 

algorithm enhanced the exploration position update equation of the WOA via utilization of the position update 

equation of the sine-cosine algorithm, which makes use of four randomly generated numbers in the domain [0,1]. 

There exist two equations for the exploration search, with utilization determined by the magnitude of one of the 

random numbers in relation to a critical value. The authors in [171] applied the proposed algorithm to the IEEE 

69-bus test system and compared to the conventional WOA. While producing an enhancement in the convergence 

rate and minor advancement in solution accuracy, the proposed algorithm was not rigorously tested on various 
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functions and at various dimension magnitudes. The WOA was combined with simulated annealing, another 

physics-inspired MOT, in [172]. The proposed approach utilizes simulated annealing after the WOA has 

completed running. Further, the concept of mutation and tournament selection were added to the position update 

equations of the WOA. The algorithm in [173] introduces four operators into the conventional algorithms. These 

are differential evolution, density peak clustering strategy, nonlinear parameter design and opposition-based 

learning method. The proposed technique was tested on various benchmark functions, as well as the seismic 

inversion problem and compared to various modified WOA technique. The proposed algorithm generated superior 

results in terms of average value and standard deviation. Considering convergence, the proposed algorithm 

exhibits superiority after the completion of about 35 iterations. Quadratic interpolation and Levy flight is utilized 

in [174] to enhance the accuracy of microarray data classification. When compared to another modified WOA, 

the proposed algorithm generated a superior accuracy. However, no information concerning convergence rate was 

provided. In [175], the concept of correction factors are applied to the various position update equations of the 

conventional WOA. When tested on a range of benchmark functions and compared to other conventional 

algorithms, the proposed technique produced the overall best average result. The proposed algorithm was further 

applied to an adaptive fuzzy logic PID controller for load frequency control. The result proved to be remarkable, 

but was not fared against other algorithms, thereby comprising the validity of superiority. 

 
As evident, there has been proposed modifications to the conventional WOA. However, it is observed that there 

still exists a lack of precision, as well as a sub-par convergence rate. Both exploitation and rate of convergence 

are critical parameters in the performance of optimization techniques. In numerous applications, even a change of 

a fraction of a percentage may yield large savings in resources. While the relevant proposed algorithm succeeded 

in their objectives, there still exists gaps in application. The authors in [164], [166] and [168] do not consider 

small dimension magnitudes, and only apply the proposed algorithm to classical benchmark functions (as opposed 

to modern functions). In [167], there was no comparison to any other MOT, even the conventional WOA. The 

article outlined in [169] improves slightly in this aspect, making comparisons with conventional algorithm. 

However, no proposed techniques were evaluated. Considering [165], [170] and [172], application was made only 

to one real-world engineering problem. Further, no application to CEC benchmarks functions, or any other 

functions, were made. These deficiencies in current literature compromises the validation of the proposed novel 

ideas for global optimization, particularly in applications requiring high-precision results. An example of such is 

the gain values of PID controllers, where a low accuracy may result in sub-optimal controller performance. In 

electrical engineering, such problems are load flow analysis, economic load dispatch, and co-ordination of 

protection relays [176]. This correlates to optimal weight design of gear systems and machine scheduling in 

mechanical engineering [177]. In the civil and geotechnical engineering discipline, such examples are pile and 

rock design, and rock and soil mechanics [178]. There are also various optimization problems in other disciplines, 

like chemical engineering and computer engineering, where a high solution accuracy is imperative.  

 
In this section, various modifications are applied to the conventional position update equations of the WOA. 

Further, there is a change in the structure of the algorithm. Firstly, the stochasticity of the exploration search is 

improved. Then, via the use of parameters already contained within the algorithm, all three position update 

equations are modified. The proposed algorithm also allows the whales a chance to undergo a dual position update, 

if a criterion is met. Lastly, a critical fragment of the well-known ABC optimization algorithm is deployed in the 
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proposed scheme. The aim of these updates is to mitigate the drawbacks of the conventional WOA, particularly 

in applications requiring high precision results. To demonstrate extensive testing, the proposed algorithm is 

applied to the CEC 2019 benchmark functions and compared to the conventional WOA, modified versions of 

such, as well as a recently proposed state-of-the-art technique. Further, to evaluate the true performance of the 

algorithm, the algorithm is applied to the optimal design of a pressure vessel. 

 
3.5.3. Structure of proposed algorithm 
 
The proposed WOA introduces various modifications to the position update equations of the WOA, as well as a 

change to the general structure of the algorithm. The aim of such is the mitigate the two common demerits of the 

WOA: low accuracy and slow convergence, as well as to prevent possible local optima entrapment at higher 

dimension optimization problems. To enhance the stochasticity of the exploration search method, the equation 

outlined in (3.37) is modified. This is via introduction of the position of another randomly chosen whale. This 

whale may be the same as the one already utilized in the current equation, or different. As in the original 

exploration search, the position of the current whale position is subtracted from the product of coefficient C and 

the second randomly chosen whale. The product of this value, as well as coefficient A, is added to the original 

equation. The exploration search then becomes: 

Xi(t + 1) = Xr(t) − A|C × Xr(t) − Xi(t)| + A|C × Xr2(t) − Xi(t)| (3.40) 

Where 𝑋𝑋𝑑𝑑2(𝑡𝑡) is the position of the second randomly chosen whale. To further improve the search diversity and 

hence achieve an enhanced search accuracy, a fragment of the well-known ABC is utilized. In the conventional 

WOA, upon completion of all fitness values, each value is fared against the current best value. If a value is superior 

to the current value, it replaces the previous best value, and the corresponding whale positions now become the 

optimal positions. In the proposed technique, if the fitness value of a whale is not deemed superior to the current 

best, the position of that particular whale is updated as follows: 

                                    𝑋𝑋𝑖𝑖(𝑡𝑡 + 1)=|(𝑋𝑋𝑖𝑖(𝑡𝑡) + ( 𝑡𝑡
𝑀𝑀𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

) × (𝑋𝑋𝑝𝑝(𝑡𝑡) − 𝑋𝑋𝑗𝑗(𝑡𝑡))|     (3.41) 

Where 𝑡𝑡 is the current iteration number, 𝑀𝑀𝑟𝑟𝑥𝑥𝑖𝑖𝑡𝑡𝑛𝑛𝑑𝑑  is the maximum number of iterations and 𝑋𝑋𝑗𝑗(𝑡𝑡) is a randomly 

chosen whale from the population. The position of 𝑋𝑋𝑗𝑗(𝑡𝑡) must be different to 𝑋𝑋𝑖𝑖(𝑡𝑡). It is observed that the 

coefficient A utilized in the conventional WOA is a function of a linearly decreasing number. This number is a 

function of the current iteration number, as well as the maximum number of iterations. However, another 

component of this coefficient is a stochastic number, which lies in the domain [0,1]. An identical phenomenon is 

observed with the coefficients C (utilized in the exploration and encircling prey search position update equations 

and l (utilized in the spiral search position update equation). The stochastic nature of A is shown in figure 3.6. 

The magnitude of A can be seen to be oscillating between -1.5 and 2. The stochastic nature of coefficient C is 

shown in figure 3.7. The response of C is nearly identical to A, with two differences. Firstly, the magnitude 

oscillates between -0.5 and 2 and secondly, the frequency of ripples seems to be more than that of the response of 

A. Considering the trends of coefficients A and C, it is observed that the effect of a linearly decreasing, or 

increasing number, on the effect of the WOA is yet to be investigated.  
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                Figure 3.6: Stochastic nature of coefficient A in WOA 

 

 
                       Figure 3.7: Stochastic nature of coefficient C in WOA 

 
When applied to PSO, a linear increasing coefficient outperformed a linear decreasing one in terms of convergence 

rate and solution accuracy [179]. Therefore, a linearly increasing coefficient, which is a function of the current 

and maximum iteration numbers, is added to the second terms in (3.37) and (3.38), and the first term in (3.39). In 

[180], the concept of stochasticity was added to the cognitive and social constants, as well as the dynamic inertial 

weighting factor which are present in PSO. The results of this experiment produced a superior convergence rate 

to various other modified PSO algorithms. Utilizing this concept, a random number in the domain of [0,1] is added 

to the second terms in (3.37) and (3.38), and the first term in (3.39). Note that the three random numbers generated 

are unique to each other but may be equivalent in magnitude. 

 
To further enhance the exploitation capability of the WOA, the tangent of the two linearly decreasing coefficients 

A and C are utilized to create a new term in each equation. Figure 3.8 shows the plot of the tangent of coefficient 

A. It is observed that the value of the coefficient fluctuates around the zero point, both in the positive and negative. 

Despite the magnitude of the value eventually settling to zero, the initial response will increase the algorithms 

probability of escaping the local optima. A similar phenomenon is seen in figure 3.9, which displays the plot of 

the tangent of coefficient C. The difference, however, is that in figure 3.9, there exists spikes of large magnitudes. 

Taking the product of both responses, figure 3.10 is derived. As evident, figure 3.10 is nearly identical to figure 

3.9, but displays exacerbated qualities.  
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Figure 3.8: Tangent of coefficient A 

 

 
Figure 3.9: Tangent of coefficient C 

 

 
                Figure 3.10: Product of the tangent of coefficients A and C 

 
Considering the exploration search position update equation, the product of the tangent of A and tangent of C, 

along with a randomly chosen whale will exacerbate the randomness of the search. Considering the encircling 

prey and spiral search position update equations, the product of the tangent of A and tangent C along with the 

position of the best whale will enhance the exploitation capability of the search equation. This will be achieved 
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via the minor spikes, as observed in figure 6. The larger spikes which are present will allow the algorithm to 

increase its capability of jumping out of the local optima, particularly at higher order optimization problems. 

Considering (3.37), the new term is the product of the position of the random whale, as well as the tangent of 

coefficients A and C. Considering (3.38) and (3.39), the new term is the product of the position of the best whale, 

as well as the tangent of coefficients A and C. The effect of dimension magnitude inclusion in position updating 

equations is not well researched. In several instances, it is observed that algorithms lose either their exploration 

or exploitation capability when attempting to optimize large scale problems. To mitigate this adverse effect, the 

inverse of the dimension magnitude is added to the second terms in (3.37) and (3.38), and the first term in (3.39). 

Considering the various modifications that have been proposed, the new search equations are as follows:  

Exploration method: 

Xi(t + 1) =  Xr(t) − (1/dim) × rand1 × (t/Maxiter)  × A|C × Xr(t) − Xi(t)| 

+Xr(t) × 𝑡𝑡𝑟𝑟𝑟𝑟 (A) × 𝑡𝑡𝑟𝑟𝑟𝑟 (C) 

(3.42) 

 

Encircling prey method: 

Xi(t + 1) = Xp(t) − (1/dim) × rand2 × (t/Maxiter) × A�C × Xp(t) − Xi(t)� 

+Xp(t) × 𝑡𝑡𝑟𝑟𝑟𝑟 (C) 

(3.43) 

Spiral method: 

Xi(t + 1) = (1/dim) × rand3 × (t/Maxiter) × Xp(t) − �Xp(t) − Xi(t)� ebl × 

𝑐𝑐𝑐𝑐𝑠𝑠(2πl) + Xp(t) × 𝑡𝑡𝑟𝑟𝑟𝑟 (C) 

(3.44) 

Where 𝑖𝑖𝑟𝑟𝑟𝑟𝑖𝑖1, 𝑖𝑖𝑟𝑟𝑟𝑟𝑖𝑖2, 𝑖𝑖𝑟𝑟𝑟𝑟𝑖𝑖3 are random numbers in the domain [0,1], 𝑖𝑖𝑖𝑖𝑚𝑚 is the dimension magnitude of 

theoptimization problem, 𝑡𝑡 is the current iteration number and 𝑀𝑀𝑟𝑟𝑥𝑥𝑖𝑖𝑡𝑡𝑛𝑛𝑑𝑑  is the maximum number of iterations.  It 

is observed that there now exist two possible position search update equations for each of the exploration search, 

spiral search, and encircling prey. A random number in the domain [0,1] is defined. If this number is less than 

0.65, then equations (3.40), (3.38), and (3.39) are implemented. The choice of equations is determined based on 

the values of A and P, exactly like how is determined in the conventional WOA. Upon completion of this, (3.42), 

(3.43), and (3.44) are implemented. The choice of equations is determined based on the values of A and P, exactly 

like how is determined in the conventional WOA. Hence, in such scenario, execution of (3.42) will succeed (3.40), 

(3.43) will succeed (3.38), and (9) will succeed (3.39). If the randomly generated number is greater than 0.65, 

then only equations (3.38), (3.39) and (3.40) are utilized. Once again, the choice of equations is determined based 

on the values of A and P exactly like how is determined in the conventional WOA. The structure of the proposed 

WOA, known as Enhanced Whale Optimization algorithm (EWOA) is therefore as shown in figure 3.111. In 

figure 3.11, R denotes a random number in the domain [0,1]. 

 
3.5.3. Experimental results 
 
To validate the effectiveness of the proposed algorithm, the EWOA is applied to the well-known CEC2019 

benchmark functions. A description of these ten functions can be found in  [181]. The EWOA is compared to the 

conventional WOA, as well as two modified versions of the conventional WOA. To ensure rigorous testing, the 

EWOA was also fared against the farmland Fertility Algorithm, a newly proposed MOT which has thus far 

delivered promising results.  
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This algorithm was compared to various well-known MOT, including ABC, FA, and an improved PSO. The 

algorithm managed to exhibit superior results in many of the functions tested. Further, it is less complex than 

other well-known algorithms. Lastly, the algorithm has an extremely fast rate of convergence [183].   Owing to 

the stochastic nature of MOT, each algorithm was run 20 times. The results are given in terms of average value 

obtained, standard deviation, and convergence rate. The conventional WOA and MWOA1 were subject to the 

parameters presented in the original work [86]. This is also the case for MWOA2 [182] and the FFA [183]. The 

number of whales utilized in the EWOA is 1000, and the algorithm was subject to 100 iterations. Table 3.1 depicts 

the results obtained from application to the CEC2019 benchmark functions. From table 3.1, it is observed that the 

EWOA produced the best average value in seven of the 10 benchmark functions. It is also evident that from all 

five algorithms, the proposed EWOA yielded the best overall rank. Considering only WOA, the proposed 

algorithm is superior in nine of the ten functions. Considering function 2, it observed that the EWOA exhibits a 

0.28% superiority over the next best algorithm (MWOA1). This corresponds to a large superiority of 27.43% over 
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Figure 3.11: Structure of proposed EWOA 
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the next best algorithm (WOA) for function 6. It is noted that FFA generates a fair number of good results but is 

still inferior to EWOA in terms of average ranking. Another advantage of the EWOA over the other algorithms is 

the concept of worst ranking. From Table 1, is it evident that the worst ranking attained by EWOA is third. This 

is superior to the FFA, WOA, and MWOA1 where the worst ranking attained is fourth, and superior to MWOA 

which attains a value of fifth. This points to an enhanced reliability of the proposed algorithm and verifies the 

EWOA as an effective algorithm for general optimization purposes.   

 
Table 3.1: Performance analysis of proposed EWOA against other algorithms for the CEC2019 benchmark functions 

Function  WOA MWOA1 MWOA2 FFA EWOA 

 

1 

Mean 1339570,194 51755,52062 0 4331170827 67948,78882 

Rank 4 2 1 5 3 

Std. dev 482949,83 5093,65 0 2484219709 12521,71 

 

2 

Mean 19,70131 17,41619 11929,59 17,47991 17,36779 

Rank 4 2 5 3 1 

Std. dev 0,47089 0,196649 4956,477 0,361856 0,042862 

 

3 

Mean 12.7024 12.7024 12.7065 12.7024 12.7024 

Rank 2.5 2.5 5 2.5 2.5 

Std. dev 0 0 0,000975 0 0 

 

4 

Mean 2767,298 1439,426 19627,67 30,98509 155,9416 

Rank 4 3 5 1 2 

Std. dev 1805,108 1358,2 5319,816 14,81722 64,82155 

 

5 

Mean 8.1325 8.1325 8.1518 8.1325 8.1325 

Rank 2.5 2.5 5 2.5 2.5 

Std. dev 0 0 0,008139 0 0 

 

6 

Mean 10,09868 10,73033 14,33454 10,25228 7,92471 

Rank 2 4 5 3 1 

Std. dev 1,16709 0,867645 1,079442 0,559376 1,286647 

 

7 

Mean 2097,158615 2097,15855 2199,621 2097.1585 2097.1585 

Rank 4 3 5 1.5 1.5 

Std. dev 0,000264127 0,000114708 67,75086 0 0 

 

8 

Mean 7,888065 7,89652 8,348015 7,8796 7,8796 

Rank 3 4 5 1.5 1.5 

Std. dev 0,026038 0,034719 0,261577 0 0 

 

9 

Mean 4710,1035 4710,1035 4711,26603 4710,1035 4710,1035 

Rank 2.5 2.5 5 2.5 2.5 

Std. dev 0 0 1,7626 0 0 

 

10 

Mean 20,90251 20,9092 21,11019 20,9001 20,90063 

Rank 3 4 5 1 2 

Std. dev 0,002697 0,028345 0,108713 0 0,001631 
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The Wilcoxon Signed Rank Sum Test was carried out for the CEC 2019 benchmark functions. The test statistic 

was taken as the lower value of the positive and negative vales. For analysis purposes, a 5% confidence interval 

was utilized. This corresponds to a critical value of 52. Table 3.2 shows the results of the Wilcoxon Signed Rank 

Sum Test for each of the benchmark functions. It is evident from the table that apart from function 2 against 

MWOA1 and FFA, the proposed algorithm displays significance in all possible scenarios. This validates the 

effectiveness of the EWOA to provide a statistically significant superiority to all the compared algorithms.  

 
 

Table 3.2: Wilcoxon ranked sum test 

F WOA MWOA1 MWOA2 FFA 

1 0 NA NA 0 

2 0 80 0 84 

3 0 NA 0 NA 

4 0 0 0 NA 

5 NA 2 NA NA 

6 0 0 0 2 

7 0 0 0 NA 

8 0 0 0 NA 

9 NA NA 0 NA 

10 20 10 0 NA 

 
 
The convergence curve for functions 1 and 2 are displayed in figures 3.12 and 3.13. In figure 3.12, it is observed 

that the proposed algorithm produced a superior result to FFA for the entire duration. In figure 3.13, it is evident 

that the EWOA exhibits superiority over all the algorithms for the entire duration. 

 
Figure 3.12: Convergence curve for F2    Figure 3.13: Convergence curve for F1 

 

Average rank 31.5 29.5 36 23.5 19.5 

Overall rank 4 3 5 2 1 
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The convergence curve for functions 3 and 4 are displayed in figures 3.14 and 3.15. From figure 3.14, despite 

most of the algorithms producing an identical result, the EWOA exhibited dominancy in that convergence 

occurred within less than 20 iterations. In figure 3.15, the proposed algorithm was superior until about 60 

iterations, after which the FFA reigned supreme. The convergence curve for functions 5 and 6 are displayed in 

figures 3.16 and 3.17. In figure 3.16, the EWOA is superior to FFA for about 10 iterations, and to MWOA1 until 

60 iterations have complete. In figure 3.17, it is evident that the EWOA exhibits dominancy over all other 

algorithms for the entire duration.  

 

 
Figure 3.14: Convergence curve for F4    Figure 3.15: Convergence curve for F3 

 

 
Figure 3.16: Convergence curve for F5    Figure 3.17: Convergence curve for F6 

The convergence curve for functions 7 and 8 are displayed in figures 3.18 and 3.19. Figure 3.18 shows us that 

despite most of the algorithms producing an identical result, the EWOA converges much faster than any other 

algorithm. In figure 3.19, it is evident that the proposed algorithm exhibited dominancy for the entire duration and 

converges after a mere 10 iterations. The convergence curve for functions 9 and 10 are displayed in figures 3.20 

and 3.21. In figure 3.20, it can be observed that the proposed algorithm produced the best convergence rate. In 

figure 3.21, despite the EWOA faring second to FFA, the proposed algorithm exhibited superiority until 100 

iterations.  

 
An important aspect of algorithm efficacy validation is application to practical engineering optimization problems. 

The proposed EWOA is applied to the design of a pressure vessel, a well-known constrained optimization problem 
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used to determine the efficacy of optimization techniques. The structural makeup of a pressure vessel can be 

observed in figure 3.22, where 𝑇𝑇1 is the head thickness, 𝑇𝑇2 is the thickness of the shell, L is the length of the 

cylindrical section of the vessel and R denotes the inner radius [184]. The ideal optimization cost of the pressure 

vessel design is zero.  

 
Figure 3.18: Convergence curve for F7    Figure 3.19: Convergence curve for F8 

 

 
Figure 3.20: Convergence curve for F9    Figure 3.21: Convergence curve for F10 

 

 
Figure 3.22: Structure of pressure vessel [43] 

 
The cost function of the pressure vessel is expressed as [185]: 

𝑓𝑓(𝑥𝑥) = 0.6224𝑥𝑥1𝑥𝑥3𝑥𝑥4 + 1.7781𝑥𝑥2𝑥𝑥32 + 3.1661𝑥𝑥12𝑥𝑥4 + 19.84𝑥𝑥12𝑥𝑥3 (3.45) 
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The design is subject to the following constraints [185]: 

• −𝑥𝑥1 + 0.0193𝑥𝑥3 ≤ 0  

• −𝑥𝑥2 + 0.00954𝑥𝑥3 ≤ 0  

• −𝜋𝜋𝑥𝑥32𝑥𝑥4 −
4
3
𝜋𝜋𝑥𝑥32 + 1296000 ≤ 0  

• 𝑥𝑥4 − 240 ≤ 0  

Where 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥4 denote 𝑇𝑇2, 𝑇𝑇1, R and L respectively. The design is subject to the following constraints. The 

range of the design variables are [185]: 

• 1 ≤ 𝑥𝑥1𝑥𝑥2 ≤ 99  

• 10 ≤ 𝑥𝑥3𝑥𝑥4 ≤ 200 

Upon application of the said problem to the conventional WOA, MWOA and EWOA, the results obtained are as 

seen in table 3.3.  

 
Table 3.3: Performance analysis for design of pressure vessel 

Algorithm Average Std. Dev. 

FFA 37397.72 0 

MWOA1 9047.74 465.14 

EWOA 8810.96 17.34 

 

As evident from Table 3.3, FFA produces a standard deviation of zero. This indicates a strong exploitation 

capability. However, the algorithm struggles to escape from the local optima, thereby producing a significantly 

poorer solution to MWOA1 and EWOA. The EWOA produced the best average value, this being 2.62% superior 

to MWOA. This correlates to a standard deviation superiority of greater than 2500%.  

 
3.6. Conclusion  
 
This section provided an insight into the relevant equations and subsequent method of execution of various 

metaheuristic optimization techniques. These techniques that were discussed were Particle Swarm Optimization, 

Bat Algorithm, Gorilla Troops Optimization, African Vulture Optimization, and Whale Optimization Algorithm. 

Further, this section proposed an enhanced Whale Optimization Algorithm for optimization of complex 

engineering problems. The aim of such enhancement was to improve the search accuracy of the algorithm, as well 

as the stability of such. This is imperative for applications whereby precision results are valued, such as 

optimization of PI controllers, where incorrect controller tuning may result in unacceptable suboptimal 

performance. The proposed algorithm introduced various components to the position update equations of the 

WOA, as well as a change to the structure of the algorithm. Further, an aspect of the Artificial Bee Colony 

optimization algorithm was incorporated into the WOA. The proposed algorithm was applied to the CEC2019 

benchmark functions and compared to the conventional WOA, modified versions of such, and the new Farmland 

Fertility Algorithm. The results show that the proposed algorithm produced the best result in 7 of the 10 functions. 

Further, the EWOA generated the best overall ranking. In addition, the reliability of the proposed method can be 

validated via observation that the poorest ranking of the proposed algorithm was third, lower than any other 
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compared algorithm. When applied to the optimal design of a pressure vessel, the proposed algorithm yielded 

significantly superior results to both the MWO1 and FFA. However, investigations revealed that the EWOA 

required a significant number of whales to prove superior. Further, based on the structure of the algorithm outlined 

in figure 3.12, there could exist instances whereby the whales will undergo a dual position change within one 

iteration. This may put a strain on the RAM of the PC being used, and as a result may not be able to successfully 

be executed on PCs with poor random-access memory. Further, these two aspects contribute the time taken to 

execute the algorithm, which is higher than that of the other compared algorithms. However, this is somewhat 

compensated for by the requirement and subsequent use of a significant lower number of iterations.  
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Chapter 4 : A Heuristic Approach to optimal crowbar setting and Low Voltage Ride 
Through of the Doubly Fed Induction Generator 

 
This chapter aims to critically investigate and analyze the effect of applying swarm intelligence to the control of 

the Doubly Fed Induction Generator under the influence of symmetrical voltage dip. Swarm intelligence is applied 

to various aspects of control, such as crowbar protection, demagnetizing current injection, and control via the 

Linear Quadratic Regulator. Critical performance parameters to be analyzed are rotor current magnitude, as well 

as rotor DC voltage magnitude transients. Also, for the Fault Ride Through section, results are analyzed in terms 

of rotor direct axis current response (steady-state error, overshoot, and steady-state ripple). This is to ensure 

reliable control of the supply of reactive power in the case of three-phase voltage dips. The chapter begins by 

providing a background on the effects of symmetrical voltage dips, as well as current proposed techniques utilized 

to mitigate such. Then, the performance of the DFIG under such conditions is explained. Thereafter, control theory 

pertaining to crowbar protection, and design of the Linear Quadratic Regulator, is provided. Afterwards, the 

results of applying swarm intelligence to crowbar magnitude optimization is given. This is succeeded by the 

results of applying swarm intelligence to the optimal gain design of the demagnetizing current injection method, 

as well as control via the Linear Quadratic Regulator. The chapter is then concluded. 

 
4.1. Background 
 
Despite its many advantages, the direct grid connection of the DFIG has its drawbacks. In the case of a three-

phase short-circuit fault, the DFIG reacts sensitively [186], [187]. The abrupt change in grid voltage magnitude 

creates a large transient stator flux [186]. This has the potential to cause drastic overvoltage and overcurrent in 

the rotor side of the DFIG [186], [187]. A common approach to preventing these catastrophic consequences would 

be to short-circuit the rotor via the use of a crowbar [186], [188], [189], [190]. While this works well, the optimal 

sizing of the crowbar resistance is challenging. A small crowbar resistance ensures a smaller rotor voltage, but a 

large spike in the rotor current. Similarly, a large crowbar resistance successfully limits the rotor current, but at 

the expense of an overvoltage. This is observed in figures 4.1 and 4.2. Therefore, optimal sizing of the crowbar 

circuit is essential. 

 
Figure 4.1: Rotor response with a 0.001 Ω crowbar.   Figure 4.2: Rotor response with a 20 Ω crowbar. 
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The authors in [186] devised a method to determine the minimum and maximum value of the crowbar resistance. 

This considered both the maximum rotor voltage and maximum rotor current. Then, various values within this 

predetermined range were investigated. However, despite the rotor DC voltage being kept below its threshold, the 

best-case rotor current still exceeded 5 p.u. A similar approach was followed in [188], where the effects of varying 

the crowbar resistance was clearly depicted. An analytical hierarchy process-based algorithm was utilized in [191] 

to determine the optimal crowbar resistance. Once again, the rotor current reached unacceptable values of over 6 

p.u. The method outlined in [192] makes use of thyristors to control the firing of the crowbar. The study 

emphasizes the effect of the crowbar resistance on the DC voltage but does not consider the rotor side current. 

Further, the study was not comprehensive. A study conducted in [193] analyzed the effect of rotor speed of the 

DFIG during grid faults. However, the study did not consider the rotor side current. The work presented in [194] 

made use of controllable series crowbar resistors. The resistors were activated via circuit breakers, utilizing the 

ANFIS system. The value of the crowbar resistors was calculated based on a multiplying factor of the stator 

resistance. However, as like other research presented, no effect of the fault on the rotor side current was analyzed.  

 
Despite the crowbar approach working well in the reduction of rotor voltage and current transients, it has a major 

disadvantage; the crowbar resistances consume reactive power [188], [195]. Due to the continuous penetration of 

wind energy conversion systems to grids throughout the world, numerous nations have revised their grid code. 

Now, in the case of a three-phase grid voltage sag, WECS are required to remain connected to the grid and provide 

reactive power to ensure timeous restoration of the grid voltage. A common and established approach is to utilize 

a method called a demagnetizing current injection [196]. Considering that during the presence of a symmetrical 

voltage drip, the stator flux comprises both a natural and forced component, the demagnetizing current injection 

scheme works by estimating the induced natural flux, and then proceeds to eliminate such. The estimated natural 

flux, coupled with a negative gain, is fed into the respective rotor current reference. Owing to the initial success 

of the control strategy, various modifications have been proposed. The authors in [197] make use of the 

demagnetizing current to damp the DC component of the stator flux, as well as a passive switchable circuit to 

reduce the time constant and subsequent duration of the transient flux. The method presented in [198] makes use 

of both the crowbar and an optimized demagnetizing co-efficient to comply with grid code requirement. A robust 

control strategy was explained in [199], which utilizes explicit model predictive control to provide continuous 

adjustment of the demagnetizing current coefficient. A stator-connected dynamic volage restorer, with a rotor-

connected inductor-based fault current limiter, was proposed in [200]. The method efficiently limited the rotor 

current transient, as well as the DC voltage peak. However, no insight on the reactive power was provided. The 

authors in [201] utilized fuzzy logic controllers to enhance the reactive power injection of the DFIG. While 

proving to be successful in achieving reactive power supply, the method did not analyze the effects of the control 

circuit on the rotor current transient and DC voltage magnitudes.  

 
Apart from the above-mentioned techniques, various other methods are explained in [202]. One such method is 

the utilization of a DC chopper. In this method, a power electronic switch is used to control the current flowing 

through a braking resistor. This method successfully limits the DC voltage, but in its conventional form, cannot 

limit the rotor current transient. Another method is the use of a series dynamic resistor, which is placed between 

the rotor terminals of the DFIG and the rotor side converter. This method, however, proved to be inferior to the 

crowbar protection scheme. As of recent times, the linear quadratic regulator has come under investigation for the 
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purpose of LVRT of the DFIG. The authors in [203] utilized the LQR in place of the conventional PI controller, 

for stator flux-oriented vector control. The gains of the controller were optimized using a genetic algorithm. The 

controller produced good results but was only tested at a voltage dip of 50%. The LQR was optimized using PSO 

in [204], but this was only tested at steady-state response. A study conducted in [205] compared the efficacy of a 

GA-optimized LQR with the conventional LQR optimization method. However, only a 10% reduction in the grid 

voltage was tested. A relatively new optimization technique, called the mean variance mapping optimization 

algorithm, was proposed in [206] to optimize the gains of the LQR controller. The results were compared to that 

of the PI controller and proved to be superior. However, the machine was operated only in super synchronous 

mode, and only a voltage dip of 90% was evaluated. Further, evaluation of the post-fault steady-state error was 

not conducted. Lastly, the effect on transient rotor current was not clearly expressed. 

 
As evident, the effects of crowbar circuits on the DFIG have been well investigated. However, there still exists a 

lack of optimal crowbar setting to ensure an adequate trade-off between the rotor side current and DC voltage. 

Further, owing to the continuous penetration of wind farms into the national grid, and subsequent stringent levels 

of grid codes, there is a dire need to improve fault ride through the capabilities of the DFIG. The promising results 

via utilization of the LQR makes this an attractive control method to mitigate the effects of symmetrical voltage 

dips. Thus far, it is evident that metaheuristic optimization techniques have been applied to LQR optimization. 

PSO, GA, and MVMO has thus far produced promising results. However, there still exists a deficiency of thorough 

investigation of results. Since their inception, metaheuristic optimization techniques have undergone various 

enhancements, and many new state-of-the-art optimization techniques were subsequently developed. This chapter 

provides a novel application of the African vulture’s optimization algorithm for control of the DFIG during the 

case of symmetrical voltage dips. AVOA is a new swarm-based optimization technique, based on the social and 

feeding behavior of the various species of African vultures. Being a swarm intelligence technique, this algorithm 

is simple in structure. Further, as validated by the proposed authors, the algorithm exhibits strong exploration, 

exploitation, and convergence rate capabilities [153]. The algorithm is applied to achieve both optimal crowbar 

magnitude, as well as optimal gains for a LQR controller and demagnetizing current gains.  

 
4.2. Response of the DFIG under asymmetrical voltage dips 
 
Under stead-state conditions, the operation of the DFIG is governed by the following equations [207], [208]:: 

𝑣𝑣𝑠𝑠���⃗ = 𝑅𝑅𝑠𝑠𝚤𝚤𝑠𝑠��⃗  +  
𝑖𝑖∅𝑠𝑠����⃗

𝑖𝑖𝑡𝑡
 (4.1) 

𝑣𝑣𝑑𝑑���⃗ = 𝑅𝑅𝑑𝑑𝚤𝚤𝑑𝑑��⃗  +  
𝑖𝑖∅𝑑𝑑����⃗

𝑖𝑖𝑡𝑡
 −  𝑗𝑗𝑤𝑤∅𝑑𝑑����⃗  (4.2) 

∅𝑠𝑠����⃗ = 𝐿𝐿𝑠𝑠𝚤𝚤𝑠𝑠��⃗  +  𝐿𝐿𝑚𝑚𝚤𝚤𝑑𝑑��⃗  (4.3) 

∅𝑑𝑑����⃗ = 𝐿𝐿𝑑𝑑𝚤𝚤𝑑𝑑��⃗  +  𝐿𝐿𝑚𝑚𝚤𝚤𝑠𝑠��⃗  (4.4) 

where: 

• 𝑣𝑣𝑠𝑠���⃗  and 𝑣𝑣𝑑𝑑���⃗  are the stator and rotor voltage vectors, respectively. 

• ∅𝑠𝑠����⃗  and ∅𝑑𝑑����⃗  are the stator and rotor flux vectors, respectively. 

• 𝚤𝚤𝑠𝑠��⃗  and 𝚤𝚤𝑑𝑑��⃗  are the stator and rotor current vectors, respectively. 

• 𝑤𝑤 is the rotor speed. 
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• 𝑅𝑅𝑠𝑠 and 𝑅𝑅𝑑𝑑 are the stator and rotor resistances, respectively. 

• 𝐿𝐿𝑠𝑠, 𝐿𝐿𝑑𝑑 and 𝐿𝐿𝑚𝑚 are the stator, rotor, and magnetizing flux linkages, respectively. 

From (4.3), making the rotor current the subject of the formula, the rotor flux can be expressed as [207], [197]: 

∅𝑑𝑑����⃗  =  
𝐿𝐿𝑚𝑚
𝐿𝐿𝑠𝑠

∅𝑠𝑠����⃗  − 𝜎𝜎𝐿𝐿𝑑𝑑𝚤𝚤𝑑𝑑��⃗  (4.5) 

where 𝜎𝜎 = 1 −  𝐿𝐿𝑠𝑠
𝐿𝐿𝑚𝑚𝐿𝐿𝑖𝑖

. Substituting (4.5) into (4.2), the rotor voltage can then be expressed as [207], [197], [209] 

: 

𝑣𝑣𝑑𝑑���⃗  =  
𝐿𝐿𝑚𝑚
𝐿𝐿𝑠𝑠

�
𝑖𝑖
𝑖𝑖𝑡𝑡

 −  𝑗𝑗𝑤𝑤� ∅𝑠𝑠 �����⃗  +  (𝑅𝑅𝑑𝑑  +  𝜎𝜎𝐿𝐿𝑑𝑑(
𝑖𝑖
𝑖𝑖𝑡𝑡
− 𝑗𝑗𝑤𝑤)𝚤𝚤𝑑𝑑��⃗  (4.6) 

The first term in (4.6) denotes the rotor voltage induced due to the stator flux, when the rotor is open circuit. The 

second term corresponds to the voltage drop in the rotor resistance and rotor transient inductance. Considering 

that the stator voltage is a time variant measurement, the stator voltage vector can be represented as [207], [197]: 

𝑣𝑣𝑠𝑠���⃗ = 𝑉𝑉𝑠𝑠𝑒𝑒𝑗𝑗𝑛𝑛𝑠𝑠𝑡𝑡 (4.7) 

where: 

• 𝑉𝑉𝑠𝑠 is the peak magnitude of the stator voltage. 

• 𝑤𝑤𝑠𝑠 is the synchronous speed of the revolving stator flux. 

The stator flux can then be expressed as [207], [197]: 

∅𝑠𝑠����⃗  =  
𝑉𝑉𝑠𝑠𝑒𝑒𝑗𝑗𝑛𝑛𝑠𝑠𝑡𝑡  
𝑗𝑗𝑤𝑤𝑠𝑠

 (4.8) 

During the steady-state operation, the grid voltage is constant. Therefore, the stator flux is constant. The stator 

flux rotates at grid frequency and represents the forced response of the system. This is shown as [207], [197]: 

∅𝑠𝑠𝑠𝑠������⃗  =  
𝑉𝑉𝑠𝑠𝑒𝑒𝑗𝑗𝑛𝑛𝑠𝑠𝑡𝑡  
𝑗𝑗𝑤𝑤𝑠𝑠

 (4.9) 

where ∅𝑠𝑠𝑠𝑠������⃗  denotes the forced flux. The rotor voltage due to the stator flux can be expressed as [197]: 

𝑣𝑣𝑑𝑑0������⃗  =  𝑗𝑗𝑤𝑤𝑑𝑑
𝐿𝐿𝑚𝑚
𝐿𝐿𝑠𝑠

∅𝑠𝑠  =  
𝐿𝐿𝑚𝑚
𝐿𝐿𝑠𝑠

𝑤𝑤𝑑𝑑
𝑤𝑤𝑠𝑠

𝑉𝑉𝑠𝑠𝑒𝑒𝑗𝑗𝑛𝑛𝑠𝑠𝑡𝑡  
𝑗𝑗𝑤𝑤𝑠𝑠

 (4.10) 

where: 

• 𝑣𝑣𝑑𝑑0������⃗  is the rotor voltage due to the stator flux; 

• 𝑤𝑤𝑑𝑑 is the slip speed. 

Finally, the magnitude of the rotor voltage is [207], [210]: 

𝑉𝑉𝑑𝑑0  =  𝑉𝑉𝑠𝑠
𝐿𝐿𝑚𝑚
𝐿𝐿𝑠𝑠

𝑠𝑠 (4.11) 

With 𝑠𝑠 =  𝑛𝑛𝑖𝑖
𝑛𝑛𝑠𝑠

. During the case of a partial symmetrical voltage dip, the stator voltage may be expressed as [211], 
[210]: 

𝑣𝑣𝑠𝑠𝑠𝑠 �������⃗ =  � 𝑉𝑉𝑠𝑠𝑒𝑒𝑗𝑗𝑛𝑛𝑠𝑠𝑡𝑡 , 𝑡𝑡 < 0
𝑉𝑉𝑠𝑠𝑒𝑒𝑗𝑗𝑛𝑛𝑠𝑠𝑡𝑡(1 − 𝑘𝑘), 𝑡𝑡 ≥ 0

 (4.12) 

Where 𝑘𝑘 represents the depth of the symmetrical fault. The stator flux can then be expressed as [197], [209] : 
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∅𝑠𝑠𝑠𝑠������⃗  =  

⎩
⎪
⎨

⎪
⎧ 𝑣𝑣𝑠𝑠���⃗

𝑗𝑗𝑤𝑤𝑠𝑠
𝑒𝑒𝑗𝑗𝑛𝑛𝑠𝑠𝑡𝑡 , 𝑡𝑡 < 0

𝑣𝑣𝑠𝑠���⃗ (1 −  𝑘𝑘)
𝑗𝑗𝑤𝑤𝑠𝑠

𝑒𝑒𝑗𝑗𝑛𝑛𝑠𝑠𝑡𝑡 , 𝑡𝑡 ≥ 0
 (4.13) 

Because the stator flux is a state variable, the magnitude of the flux cannot change instantaneously. Instead, there 

is a gradual decay from one steady-state magnitude to another. The change in stator flux is seen as [207]: 
𝑖𝑖
𝑖𝑖𝑡𝑡
∅𝑠𝑠𝑠𝑠������⃗  =  𝑣𝑣𝑠𝑠𝑠𝑠������⃗  −  

𝑅𝑅𝑠𝑠
𝐿𝐿𝑠𝑠
∅𝑠𝑠𝑠𝑠������⃗  (4.14) 

During a three-phase symmetrical voltage dip, the stator flux comprises two components: the forced flux and the 

natural flux. These are quantized as [197], [209]: 

∅𝑠𝑠𝑠𝑠𝑠𝑠��������⃗  =  
𝑉𝑉𝑠𝑠𝑒𝑒𝑗𝑗𝑛𝑛𝑠𝑠𝑡𝑡  
𝑗𝑗𝑤𝑤𝑠𝑠

 (4.15) 

∅𝑠𝑠𝑠𝑠𝑛𝑛��������⃗  =  
𝑉𝑉𝑠𝑠𝑒𝑒  − 𝑡𝑡/𝜏𝜏  
𝑗𝑗𝑤𝑤𝑠𝑠

 (4.16) 

where: 

• ∅𝑠𝑠𝑠𝑠𝑛𝑛��������⃗  represents the natural stator flux. 

• 𝑉𝑉𝑠𝑠 represents the post-fault stator voltage. 

• 𝜏𝜏 is a time constant which depends on the machine stator parameters. 

During the dip, the forced flux continues to rotate at grid frequency, while the natural flux remains stationary with 

respect to the stator. In reference [196], the evolution of the stator flux during the case of a symmetrical voltage 

dip was provided. As evident, the flux continued to rotate in a circular fashion. This is owing to the effect of the 

forced flux, which was still rotating at synchronous speed. However, the circular trajectory of the flux was not 

perfectly centered. This is because of the natural flux. The flux continued to move in a decreasing spiral fashion, 

eventually becoming centered and subsequently reaching a new stead-state magnitude. Both the forced and natural 

fluxes induced individual rotor voltages [208]: 

𝑒𝑒𝑑𝑑𝑑𝑑 �������⃗ =  𝑒𝑒𝑑𝑑𝑑𝑑𝑠𝑠��������⃗  +  𝑒𝑒𝑑𝑑𝑑𝑑𝑛𝑛���������⃗  (4.17) 

where: 

• 𝑒𝑒𝑑𝑑𝑑𝑑������⃗  is the total induced rotor emf; 

• 𝑒𝑒𝑑𝑑𝑑𝑑𝑠𝑠��������⃗  is the emf induced due to the forced flux; 

• 𝑒𝑒𝑑𝑑𝑑𝑑𝑛𝑛��������⃗  is the emf induced due to the natural flux. 

These quantities can be expressed as [210], [207]: 

𝑒𝑒𝑑𝑑𝑑𝑑𝑠𝑠��������⃗  =  
𝑠𝑠𝐿𝐿𝑚𝑚
𝐿𝐿𝑠𝑠

𝑉𝑉𝑠𝑠𝑒𝑒𝑗𝑗𝑛𝑛𝑠𝑠𝑡𝑡 (4.18) 

𝑒𝑒𝑑𝑑𝑑𝑑𝑛𝑛��������⃗ =  −  
𝐿𝐿𝑚𝑚
𝐿𝐿𝑠𝑠

𝑗𝑗𝑤𝑤𝑚𝑚∅𝑛𝑛0𝑒𝑒  − 𝑡𝑡/𝜏𝜏 (4.19) 

𝑒𝑒𝑑𝑑𝑑𝑑������⃗  =  
𝐿𝐿𝑚𝑚
𝐿𝐿𝑠𝑠

𝑉𝑉𝑠𝑠(𝑠𝑠(1 −  𝑝𝑝)𝑒𝑒𝑗𝑗𝑛𝑛𝑖𝑖𝑡𝑡  −  (1 −  𝑠𝑠)𝑝𝑝𝑒𝑒𝑗𝑗𝑛𝑛𝑚𝑚𝑡𝑡𝑒𝑒  − 𝑡𝑡/𝜏𝜏 (4.20) 

 

The second term in (4.20) is of particular interest. Due to this term being dependent on the slip, depth of fault, and 

the rotor speed, this term has the potential to induce tremendously large rotor voltages. 
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4.3. Control theory on crowbar protection and LQR control of DFIG 
 
The aim of this section is to provide insight into the methods undertaken to execute this investigation. The section 

starts by explaining the concept of the crowbar protection of the DFIG. Then, information regarding the linear 

quadratic regulator is provided, with a graphical representation of the function block diagram to be implemented. 

Lastly, the necessary theory and subsequent flowchart of the African vulture’s optimization algorithm, which will 

be utilized in this research, is provided. 

 

4.3.1. Crowbar Protection 
 
In Section 4.2, the effect of a symmetrical voltage dip on the DFIG was examined. However, this was considering 

that the rotor was open circuit. When the rotor is closed during the presence of a voltage dip, the machine behaves 

differently. This forms the basis of the crowbar method of protection. Consider the following [196]:: 

𝑣𝑣𝑠𝑠𝑠𝑠������⃗  =  𝑅𝑅𝑠𝑠𝚤𝚤𝑠𝑠𝑠𝑠����⃗  +  
𝑖𝑖
𝑖𝑖𝑡𝑡
∅𝑠𝑠𝑠𝑠𝑛𝑛��������⃗  =  0 (4.21) 

Expressing the stator current with respect to the rotor current yields [196]: 

𝚤𝚤𝑠𝑠𝑠𝑠����⃗  =  
∅𝑠𝑠𝑠𝑠𝑛𝑛��������⃗

𝐿𝐿𝑠𝑠
 −  

𝐿𝐿𝑚𝑚
𝐿𝐿𝑑𝑑

𝚤𝚤𝑠𝑠𝑑𝑑�����⃗  (4.22) 

Substituting (4.22) into (4.21), the rate of change of the natural stator flux can be quantized as [196]: 
𝑖𝑖
𝑖𝑖𝑡𝑡
∅𝑠𝑠𝑠𝑠𝑛𝑛��������⃗ =  −  

𝑅𝑅𝑠𝑠
𝐿𝐿𝑠𝑠
∅𝑠𝑠𝑠𝑠𝑛𝑛��������⃗ +

𝐿𝐿𝑚𝑚
𝐿𝐿𝑠𝑠

𝑅𝑅𝑠𝑠𝚤𝚤𝑠𝑠𝑑𝑑�����⃗  (4.23) 

The second term in (23) depicts the influence of the rotor current on the evolution of the natural flux. This forms 

the basis of the crowbar method of control. In the case of a three-phase symmetrical voltage dip, the crowbar 

creates a short-circuit on the rotor of the machine, causing a large rotor current. This expedites the damping of the 

natural flux, as shown in Figures 4 and 5. From these figures, it is evident that a short circuit on the rotor terminals 

drastically reduces the damping time of the natural stator flux. Further, the short-circuit is effective at preventing 

a transient in the stator flux [196].  

 
      Figure 4.3: Stator natural flux for open-circuit rotor terminals                Figure 4.4: Stator natural flux for short-circuit rotor terminals. 

 

Hence, it is concluded that the crowbar is an effective and ultimately essential method of protection of the DFIG. 

The crowbar resistors are open circuited during normal operation of the DFIG and are activated via power 
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electronic switches during fault conditions. The topology of the crowbar circuit can be observed in Figure 4.5 

[196].  

 
Figure 4.5: Topology of crowbar protection of DFIG [196]. 

 
4.3.2. The Linear Quadratic Regulator 
 
The linear quadratic regulator is based on the specific linear time invariant system equation, which is given by 

[206], [205]: 

 

�̇�𝑥  =  𝐴𝐴𝑥𝑥 + 𝐵𝐵𝑢𝑢 (24) 

𝐿𝐿 =  𝐶𝐶𝑥𝑥 + 𝐷𝐷𝑢𝑢 (25) 

where: 

• �̇�𝑥 is the state of the system; 

• 𝑢𝑢 is the system input; 

• 𝐿𝐿 is the system output. 

 
The purpose of the LQR is to obtain an optimized gain, 𝐾𝐾, to satisfy the following [206], [205]: 

𝑢𝑢(𝑡𝑡) =  − 𝐾𝐾𝑥𝑥(𝑡𝑡)  (4.26) 

This optimal value is generally obtained via the use of the following cost function [206], [205], [204]: 
 

𝐽𝐽(𝑢𝑢)  =  � [𝑥𝑥  − 𝑇𝑇(𝑡𝑡)𝑄𝑄𝑥𝑥(𝑡𝑡) +
∞

0
𝑢𝑢𝑇𝑇(𝑡𝑡)𝑅𝑅𝑢𝑢(𝑡𝑡)] (4.27) 

where Q and R are symmetrical matrices, used to weight the effort of control, and controller accuracy, respectively. 

Considering the stator-flux oriented vector control of the DFIG, the rotor voltages are expressed as [212], [39]: 

𝑉𝑉𝑑𝑑𝑑𝑑  =  𝑅𝑅𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑  +  𝜎𝜎𝐿𝐿𝑑𝑑
𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑
𝑖𝑖𝑡𝑡

 −  𝑤𝑤𝑑𝑑𝜎𝜎𝐿𝐿𝑑𝑑𝑖𝑖𝑞𝑞𝑑𝑑  +  
𝐿𝐿𝑚𝑚
𝐿𝐿𝑠𝑠

𝑖𝑖𝜃𝜃𝑑𝑑𝑠𝑠
𝑖𝑖𝑡𝑡

 (4.28) 

𝑉𝑉𝑞𝑞𝑑𝑑  =  𝑅𝑅𝑑𝑑𝑖𝑖𝑞𝑞𝑑𝑑  +  𝜎𝜎𝐿𝐿𝑑𝑑
𝑖𝑖𝑖𝑖𝑞𝑞𝑑𝑑
𝑖𝑖𝑡𝑡

 +  𝑤𝑤𝑑𝑑𝜎𝜎𝐿𝐿𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑  +  
𝐿𝐿𝑚𝑚
𝐿𝐿𝑠𝑠

∅𝑑𝑑𝑠𝑠 (4.29) 
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Therefore, the dynamic closed-loop behavior of the DFIG can be represented as [204], [212]: 

�̇�𝑥 = 𝐴𝐴𝑥𝑥 + 𝐵𝐵𝑢𝑢 + 𝑇𝑇𝑖𝑖   (4.30) 

�̇�𝐿 = 𝐶𝐶𝑥𝑥   (4.31) 

where: 

• 𝐴𝐴,𝐵𝐵,𝐶𝐶, and 𝑇𝑇 are square matrices; 

• 𝑖𝑖 is the nonlinear measurable term. 

Considering the DFIG as a fifth order dynamic system, rewriting (4.28) and (4.29), making the derivative of the 

rotor current the output, the following is obtained [204], [212]: 

�
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𝜎𝜎𝐿𝐿𝑑𝑑𝐿𝐿𝑠𝑠

0
⎦
⎥
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⎤
 �∅𝑠𝑠

0
� (4.32) 

 

Note that in (4.32), the rotor current is taken as the state, the stator flux (derived from the stator voltage) is taken 

as the disturbance, and the rotor voltage is taken as the control. Generally, the linear quadratic regulator is not 

well suited for reference tracking applications. This may prove to be problematic, as the operation of the DFIG 

relies on the decoupled control of the rotor current magnitudes, which follow a reference value. To solve this, an 

integrator is added to the topology of the regulator. The function block diagram of the linear quadratic regulator 

to be applied to the DFIG is shown in Figure 4.6 [204]. 

 
Figure 4.6: Functional block diagram of LQR applied to DFIG [203]. 

 
4.4. Investigation into Optimization of Crowbar Resistance via Swarm Intelligence 
 
The aim of this section is the investigate the effectiveness of utilizing the swarm intelligence for determining the 

optimal setting of the crowbar resistance values. It is known that a high crowbar resistance will limit the fault 

current, but at the expense of a significantly higher DC voltage. Similarly, a smaller resistance will limit the DC 

voltage, but will produce an exorbitantly high fault current transient. Both scenarios produce unfavorable 
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outcomes. The aim of the optimal crowbar setting is to attempt to provide a viable trade-off between the rotor 

transient current and the DC voltage magnitudes. For this purpose, the well-known particle swarm optimization 

and the recently proposed African vulture’s optimization algorithm will be implemented. The results for both PSO 

and AVOA for a 70%, 80%, and 90% symmetrical voltage dip are presented. The results are in terms of rotor 

current and DC voltage transient and settling times. Each of the utilized optimization techniques were subject to 

20 iterations with 20 search agents. The lower and upper bounds of the search space were set to 0.00001 and 10, 

respectively. The objective function was taken as the integral time absolute error between the maximum and actual 

values of both the rotor current and dc link voltage. This will ensure the smallest possible overshoot, as well as a 

quick recovery time.  

4.4.1. Case 1a: Voltage Dip of 70% 
 
Figures 4.7–4.10 depict the results of applying swarm intelligence to the optimization of crowbar resistance for a 

70% dip. Figures 4.7 and4.8 show the rotor current and DC voltage magnitudes, respectively, when applying PSO. 

Figures 4.9 and 4.10 show the rotor current and DC voltage magnitudes, respectively, when applying AVOA.  

 
Figure 4.7: Rotor current transient using PSO at 70% dip. Figure 4.8: DC voltage transient using PSO at 70% dip. 

 

 
Figure 4.9: Rotor current transient using AVOA at 70% dip. Figure 4.10: DC voltage transient using AVOA at 70% dip 

 

From Figure 4.7, it is observed that the transient rotor current when applying PSO is 6468 A, with a settling time 

of 70 ms. Considering the DC voltage when utilizing PSO in Figure 4.8, the transient voltage is 1465 A. The 

settling time of this voltage is 175 ms. From Figure 4.9, it is observed that the transient rotor current when applying 
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AVOA is 6472 A, with a settling time of 70 ms. Considering the DC voltage when utilizing PSO in Figure 4.10, 

the transient voltage is 1465 A. The settling time of this voltage is 175 ms. It is therefore noted that for a 70% 

voltage dip, both the algorithms produced identical transient DC voltages and settling times. However, PSO 

exhibited superiority over AVOA for the rotor current transient, by a minute factor of 0.062%. 

 

4.4.2. Case 1b: Voltage Dip of 80% 
 
Figures 4.11–4.14 depict the results of applying swarm intelligence to the optimization of crowbar resistance for 

an 80% dip. Figures 4.11 and 4.12 show the rotor current and DC voltage magnitudes, respectively, when applying 

PSO. Figures 4.13 and 4.14 show the rotor current and DC voltage magnitudes, respectively, when applying 

AVOA.  

 
Figure 4.11: Rotor current transient using PSO at 80% dip. Figure 4.12: DC voltage transient using PSO at 80% dip. 

 

 
Figure 4.13: Rotor current transient using AVOA at 80% dip. Figure 4.14: DC voltage transient using AVOA at 80% dip. 

 
From Figure 13, it is observed that the transient rotor current when applying PSO is 8035 A, with a settling time 

of 70 ms. Considering the DC voltage when utilizing PSO in Figure 14, the transient voltage is 1612 A. The 

settling time of this voltage is 260 ms. From Figure 15, it is observed that the transient rotor current when applying 

AVOA is 7999 A, with a settling time of 70 ms. Considering the DC voltage when utilizing PSO in Figure 16, the 

transient voltage is 1630 A. The settling time of this voltage is 280 ms. It is therefore noted that for a 70% voltage 

dip, both the algorithms produced superior results, but in different aspects. PSO exhibited superiority with regards 
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to the DC voltage transient and settling time, in the order of 1.12% and 7.69%, respectively. AVOA produced a 

superior rotor current transient by a magnitude of 0.45%. 

 

4.4.3. Case 1c: Voltage Dip of 90% 
 
Figures 4.15–4.18 depict the results of applying swarm intelligence to the optimization of crowbar resistance for 

a 90% dip. Figures 4.15 and 4.16 show the rotor current and DC voltage magnitudes, respectively, when applying 

PSO. Figures 4.17 and 4.18 show the rotor current and DC voltage magnitudes, respectively, when applying 

AVOA.  

 
Figure 4.15: Rotor current transient using PSO at 90% dip. Figure 4.16: DC voltage transient using PSO at 90% dip. 

 

 
Figure 4.17: Rotor current transient using AVOA at 90% dip. Figure 4.18: DC voltage transient using AVOA at 90% dip. 

 
From Figure 4.15, it is observed that the transient rotor current when applying PSO is 9612 A, with a settling time 

of 70 ms. Considering the DC voltage when utilizing PSO in Figure 4.16, the transient voltage is 1860 A. The 

settling time of this voltage is 555 ms. From Figure 4.17, it is observed that the transient rotor current when 

applying AVOA is 9580 A, with a settling time of 70 ms. Considering the DC voltage when utilizing AVOA in 

Figure 4.18, the transient voltage is 1700 A. The settling time of this voltage is 275 ms. It is therefore noted that 

for a 90% voltage dip, the AVOA produced the best results. While the settling time of the rotor current was 

identical, the AVOA exhibited superiority with regards to the rotor current transient, DC voltage transient, and 

DC voltage settling time. This is in the order of 0.33%, 8.6%, and a massive 101.8%, respectively. The results of 
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the experiments conducted are summarized in Table 4.1. From this, it can be concluded that for moderately severe 

symmetrical voltage dips, PSO is the preferred optimization technique. However, for voltage dips below 80%, the 

AVOA exhibits far more superior results.  
Table 4.1: Summary of results for optimization of crowbar resistance using swarm intelligence. 

  𝐼𝐼𝑑𝑑(𝑡𝑡𝑑𝑑𝑚𝑚𝑛𝑛𝑠𝑠𝑖𝑖𝑛𝑛𝑛𝑛𝑡𝑡)(𝐴𝐴) 𝑡𝑡𝑑𝑑(𝑠𝑠𝑛𝑛𝑡𝑡𝑡𝑡𝑜𝑜𝑖𝑖𝑛𝑛𝑔𝑔)(𝑚𝑚𝑠𝑠) 𝑉𝑉𝑑𝑑𝑑𝑑(𝑡𝑡𝑑𝑑𝑚𝑚𝑛𝑛𝑠𝑠𝑖𝑖𝑛𝑛𝑛𝑛𝑡𝑡) (V) 𝑡𝑡𝑑𝑑𝑑𝑑(𝑠𝑠𝑛𝑛𝑡𝑡𝑡𝑡𝑜𝑜𝑖𝑖𝑛𝑛𝑔𝑔)(𝑚𝑚𝑠𝑠) 

70% PSO 6468 70 1465 175 

AVOA 6472 70 1465 175 

80% PSO 8035 70 1612 260 

AVOA 7999 70 1630 280 

90% PSO 9612 70 1860 555 

AVOA 9580 70 1700 275 

 
4.5. Investigation into African Vultures Optimization Algorithm for the Optimization of the Linear 
Quadratic Regulator and Demagnetizing Current Injection Gains 
 
As observed in Section 4.4, the crowbar protection scheme successfully provides protection to the DFIG. 

However, this requires the DFIG to be disconnected from the grid, and therefore is not compliant with modern 

grid codes. This section aims to analyze the results of the linear quadratic regulator and demagnetizing current 

injection (DCI) applied to the DFIG under symmetrical grid faults. To enhance the tracking capability of the LQR, 

an integrator is added to the control mechanism. The LQR and DCI controller gains were optimized using the 

African vulture’s optimization algorithm and compared to the conventional PI controller optimized via the well-

known PSO. The cost function utilized was the integral time absolute error. The choice of power converter utilized 

for switching was the two-level voltage source converter. Three voltages dips were considered: 70%, 80%, and 

90%. The results were analyzed in terms of peak rotor current and DC voltage, as well as steady state ripple and 

steady-state error of the reactive-power controlling rotor current. During the fault, the amount of reactive power 

injected into the grid is increased, whereas the stator active power reference is set to zero. The steady-state error 

is evaluated for the last 0.3 s of the simulation. This is to allow the system sufficient time to dampen oscillations. 

The African vulture’s optimization algorithm was subject to 20 iterations of 20 search agents, with an upper and 

lower bound of 0 and 100, respectively, for the LQR gains, and 0 and 50, respectively, for the DCI controller 

gains.  

 
4.5.1. Case 2a: Voltage Dip of 70% 
 
Table 4.2 indicates the optimized gains for the PI controller, considering a voltage dip of 70%. As evident, the 

gain values are high, indicating possible overshoot of the system. This is expected, as there is no way to eliminate 

the overshoot from the system, only mitigate. Figures 4.19 and 4.20 represent the total rotor current magnitude 

and DC voltage, respectively, of the PI controller. Figures 4.21 and 4.22 indicate the rotor direct axis current 

steady state ripple and steady state error, respectively, of the PI controller. From Figure 4.19, the peak rotor current 

magnitude is observed to be at 6256 A, whereas figure 4.20 depicts the peak DC voltage as 1634 V. The steady-

state ripple of the rotor direct axis current, as shown in Figure 4.21, is 283 A, with the average steady state value 

in Figure 4.22 at 1409 A. This correlates to an error percentage of 6.07% 
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Table 4.2: PI controller gains for 70% dip. 

𝐾𝐾𝑝𝑝(𝑖𝑖𝑑𝑑𝑑𝑑) 𝐾𝐾𝑖𝑖(𝑖𝑖𝑑𝑑𝑑𝑑) 𝐾𝐾𝑝𝑝(𝑖𝑖𝑞𝑞𝑑𝑑) 𝐾𝐾𝑖𝑖(𝑖𝑖𝑞𝑞𝑑𝑑) 

53.5253 91.1925 54.9872 48.5211 

 

 
Figure 4.19: Rotor current transient using PI at 70% dip. Figure 4.20: DC voltage transient using PI at 70% dip 

 

 
   Figure 4.21: Rotor direct axis current ripple using PI at 70% dip            Figure 4.22: Rotor direct axis current average using PI at 70% dip. 

 
Table 4.3 indicates the optimized gains for the demagnetizing current injection (DCI), considering a voltage dip 

of 70%. Figures 4.23 and 4.24 represent the total rotor current magnitude and DC voltage, respectively, of the 

DCI. Figures 4.25 and 4.26 indicate the rotor direct axis current steady state ripple and steady state error, 

respectively, of the DCI. From Figure 4.23, the peak rotor current magnitude is observed to be 5557 A, indicating 

a superiority of 12.58% over the conventional PI controller. Figure 4.24 depicts the peak DC voltage as 1597 V, 

exhibiting a 2.32% better response than the PI controller. The steady-state ripple of the rotor direct axis current, 

as shown in Figure 4.25, is 379.5 A, which is 33.92% inferior to the PI controller. The average steady state value 

in Figure 4.26 is 1355.5 A. This correlates to an error percentage of 6.89%. This error is minorly inferior to the 

conventional PI controller.  
Table 4.3: DCI controller gains at 70% dip. 

𝐾𝐾1 𝐾𝐾2 

49.2779 48.4913 
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             Figure 4.23: Rotor current transient using DCI at 70% dip. Figure 4.24: DC voltage transient using DCI at 70% dip. 

 

 
Figure 4.25: Rotor direct axis current ripple using DCI at 70% dip         Figure 4.26: Rotor direct axis current average using DCI at 70% dip. 

 
Table 4.4 indicates the optimized gains for the LQR, considering a voltage dip of 70%. Figures 4.27 and 4.28 

represent the total rotor current magnitude and DC voltage, respectively, of the LQR. Figures 4.29 and 4.31 

indicate the rotor direct axis current steady state ripple and steady state error, respectively, of the LQR. From 

Figure 4.27, the peak rotor current magnitude is observed to be 3735 A, indicating a superiority of 67.5% over the 

conventional PI controller. Figure 4.28 depicts the peak DC voltage as 1377 V, exhibiting a 18.66% better 

response than the PI controller. The steady-state ripple of the rotor direct axis current, as shown in Figure 4.29, is 

256.5 A, which is 10.33% superior to the PI controller. The average steady state value in Figure 4.30 is 1409 A. 

This correlates to an error percentage of 10.07%. This error is inferior to the conventional PI controller.  
 

Table 4.4: LQR controller gains at 70% dip. 

𝐾𝐾1 𝐾𝐾2 𝐾𝐾3 𝐾𝐾4 

100 34.9938 51.29618 7.437115 
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Figure 4.27:Rotor current transient using LQR at 70% dip. Figure 4.28: DC voltage transient using LQR at 70% dip. 

 

 
Figure 4.29: Rotor direct axis current ripple using LQR at 70% dip       Figure 4.30: Rotor direct axis current average using LQR at 70% dip. 

 
4.5.2. Case 2b: Voltage Dip of 80% 
 
Table 4.5 indicates the optimized gains for the PI controller, considering a voltage dip of 80%. As evident,  

𝐾𝐾𝑖𝑖(𝑖𝑖𝑑𝑑𝑑𝑑) is zero. This is because the algorithm attempts to search for a solution within the negative domain. 

However, since the search parameter is set at zero, the algorithm gets trapped at this point. Figures 4.31 and 4.32 

represent the total rotor current magnitude and DC voltage, respectively, of the PI controller. Figures 4.33 and 

4.34 indicate the rotor direct axis current steady state ripple and steady state error, respectively, of the PI controller. 

From Figure 4.31, the peak rotor current magnitude is observed to be 7550 A, whereas Figure 4.32 depicts the 

peak DC voltage as 1839 V. The steady-state ripple of the rotor direct axis current, as shown in Figure 4.33, is 

456 A, with the average steady state value in Figure 4.34 at 1407 A. This correlates to an error percentage of 

6.2%.  
 

Table 4.5: PI controller gains for 80% dip. 

𝐾𝐾𝑝𝑝(𝑖𝑖𝑑𝑑𝑑𝑑) 𝐾𝐾𝑖𝑖(𝑖𝑖𝑑𝑑𝑑𝑑) 𝐾𝐾𝑝𝑝(𝑖𝑖𝑞𝑞𝑑𝑑) 𝐾𝐾𝑖𝑖(𝑖𝑖𝑞𝑞𝑑𝑑) 

62.9078 0 65.535 12.8299 
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Figure 4.31: Rotor current transient using PI at 80% dip. Figure 4.32: DC voltage transient using PI at 80% dip. 

 

 
  Figure 4.33: Rotor direct axis current ripple using PI at 80% dip            Figure 4.34: Rotor direct axis current average using PI at 80% dip. 

 
Table 4.6 indicates the optimized gains for the DCI, considering a voltage dip of 80%. Figures 4.35 and 4.36 

represent the total rotor current magnitude and DC voltage, respectively, of the DCI. Figures 4.37 and 4.38 indicate 

the rotor direct axis current steady state ripple and steady state error, respectively, of the DCI. From Figure 4.35, 

the peak rotor current magnitude is observed to be 7325 A, indicating a superiority of 52.4% over the conventional 

PI controller. Figure 4.36 depicts the peak DC voltage as 1787 V, exhibiting a 20.35% better response than the PI 

controller. The steady-state ripple of the rotor direct axis current, as shown in Figure 4.37, is 357.5 A, which is 

27.55% superior to the PI controller. The average steady state value in Figure 4.38 is 1173.67 A. This correlates 

to an error percentage of 19.74%. This error is superior to the conventional PI controller 
 

Table 4.6: DCI controller gains at 80% dip. 

𝐾𝐾1 𝐾𝐾2 

49.9272 45.3424 
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Figure 4.35: Rotor current transient using DCI at 80% dip Figure 4.36: DC voltage transient using DCI at 80% dip. 

 

 
     Figure 4.37: Rotor direct axis current ripple using DCI at 80% dip  .Figure 4.38: Rotor direct axis current average using DCI at 80% dip. 

Table 4.7 indicates the optimized gains for the LQR, considering a voltage dip of 80%. Figures 4.39 and 4.40 

represent the total rotor current magnitude and DC voltage, respectively, of the LQR. Figures 4.41 and 4.42 

indicate the rotor direct axis current steady state ripple and steady state error, respectively, of the LQR. From 

Figure 4.39, the peak rotor current magnitude is observed to be 4954 A, indicating a superiority of 52.4%4.42ver 

the conventional PI controller. Figure 4.40 depicts the peak DC voltage as 1528 V, exhibiting a 20.35% better 

response than the PI controller. The steady-state ripple of the rotor direct axis current, as shown in Figure 4.41, is 

290 A, which is 57.24% superior to the PI controller. The average steady state value in Figure 44 is 1427 A. This 

correlates to an error percentage of 4.87%. This error is superior to the conventional PI controller, which can be 

attributed to the zero-gain value in Table 5, which was obtained for the PI controller.  
 

Table 4.7: LQR controller gains at 80% dip. 

𝐾𝐾1 𝐾𝐾2 𝐾𝐾3 𝐾𝐾4 

99.7437 37.8219 45.7003 6.71573 
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Figure 4.39: Rotor current transient using LQR at 80% dip. Figure 4.40: DC voltage transient using LQR at 80% dip. 

 

 
    Figure 4.41: Rotor direct axis current ripple using LQR at 80% dip   Figure 4.42: Rotor direct axis current average using LQR at 80% dip. 

 
4.5.3. Case 2b: Voltage Dip of 80% 
 
Table 4.8 indicates the optimized gains for the PI controller, considering a voltage dip of 90%. Figures 4.43 and 

4.44 represent the total rotor current magnitude and DC voltage, respectively, of the PI controller. Figures 4.45 

and 4.46 indicate the rotor direct axis current steady state ripple and steady state error, respectively, of the PI 

controller. From Figure 4.43, the peak rotor current magnitude is observed to be 9110 A, whereas Figure 4.44 

depicts the peak DC voltage as 2176 V. The steady-state ripple of the rotor direct axis current, as shown in Figure 

4.45, is 416 A, with the average steady state value in Figure 4.46 at 1438 A. This correlates to an error percentage 

of 4.3%. 
 

Table 4.8: PI controller gains at 90% dip. 

𝐾𝐾𝑝𝑝(𝑖𝑖𝑑𝑑𝑑𝑑) 𝐾𝐾𝑖𝑖(𝑖𝑖𝑑𝑑𝑑𝑑) 𝐾𝐾𝑝𝑝(𝑖𝑖𝑞𝑞𝑑𝑑) 𝐾𝐾𝑖𝑖(𝑖𝑖𝑞𝑞𝑑𝑑) 

20.7428 20.4191 19.4448 80.3962 
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Figure 4.43: Rotor current transient using PI at 90% dip. Figure 4.44: DC voltage transient using PI at 90% dip. 

 

 
    Figure 4.45: Rotor direct axis current ripple using PI at 90% dip.          Figure 4.46:Rotor direct axis current average using PI at 90% dip. 

 
Table 4.9 indicates the optimized gains for the DCI, considering a voltage dip of 90%. Figures 4.47 and 4.48 

represent the total rotor current magnitude and DC voltage, respectively, of the DCI. Figures 4.49 and 4.50 indicate 

the rotor direct axis current steady state ripple and steady state error, respectively, of the DCI. From Figure 4.47, 

the peak rotor current magnitude is observed to be 8679 A, indicating a superiority of 25.74% over the 

conventional PI controller. Figure 4.48 depicts the peak DC voltage as 2137 V, exhibiting a 18.65% better 

response than the PI controller. The steady-state ripple of the rotor direct axis current, as shown in Figure 4.49, is 

667.5 A, which is 60.46% inferior to the PI controller. The average steady state value in Figure 4.50 is 1230.17 

A. This correlates to an error percentage of 16.42%. This error is inferior to the conventional PI controller. 
 

Table 4.9: DCI controller gains at 90% dip. 

𝐾𝐾1 𝐾𝐾2 

100 24.3195 
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Figure 4.47: Rotor current transient using DCI at 90% dip Figure 4.48: DC voltage transient using DCI at 90% dip. 

 

 
    Figure 4.49: Rotor direct axis current ripple using DCI at 90% dip.    Figure 4.50: Rotor direct axis current average using DCI at 90% dip 

 
Table 4.10 indicates the optimized gains for the LQR, considering a voltage dip of 90%. Figures 4.51 and 4.52 

represent the total rotor current magnitude and DC voltage, respectively, of the LQR. Figures 4.53 and 4.54 

indicate the rotor direct axis current steady state ripple and steady state error, respectively, of the LQR. From 

Figure 4.51, the peak rotor current magnitude is observed to be 7245 A, indicating a superiority of 25.74% over 

the conventional PI controller. Figure 4.52 depicts the peak DC voltage as 1834 V, exhibiting a 18.65% better 

response than the PI controller. The steady-state ripple of the rotor direct axis current, as shown in Figure 4.53, is 

422 A, which is 1.4% inferior to the PI controller. The average steady state value in Figure 4.54 is 1172 A. This 

correlates to an error percentage of 21.87%. This error is inferior to the conventional PI controller. 
 

Table 4.10: LQR controller gains at 90% dip. 

𝐾𝐾1 𝐾𝐾2 𝐾𝐾3 𝐾𝐾4 

100 24.3195 44.45006 7.244542 
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Figure 4.51: Rotor current transient using LQR at 90% dip. Figure 4.52: DC voltage transient using LQR at 90% dip. 

 

 
     Figure 4.53: Rotor direct axis current ripple using LQR at 90% dip  Figure 4.54: Rotor direct axis current average using LQR at 90% dip. 

 
The results of the investigation conducted are summarized in Table 4.11. As evident in Table 4.11, the LQR, 

coupled with a strong metaheuristic optimization technique, has obtained significantly produced better results than 

the conventional PI controller on most of the occasions. Superiority in terms of rotor current peak, DC voltage 

peak, and steady-state ripple were in the order of 67.5%, 20.35, and 57.24%, respectively. In the case of steady-

state error, the PI controller seemed to produce better results. This is expected, as the LQR is not well-suited for 

tracking problems. Comparison between the LQR and DCI methods, it is observed that the latter surpasses the 

former on only just occasions. These are for the steady-state error at 70% and 90% voltage dips. Once again, since 

the DCI method utilized PI controllers, the outcome is expected. 
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Table 4.11: Summary of results for PI, DCI and LQR applied to DFIG under symmetrical voltage dip. 

  Rotor Current 

Peak (A) 

DC Voltage Peak 

(V) 

Rotor Direct Axis 

Current Steady-

State Ripple (A) 

Rotor Direct Axis 

Current Steady-State 

Error (%) 

70% dip PI 6256 1634 283 6.07 

DCI 5557 1597 379.5 6.89 

LQR 3735 1377 256.5 10.07 

80% dip PI 7550 1839 456 6.2 

DCI 7325 1787 357.5 19.74 

LQR 4954 1528 290 4.87 

90% dip PI 9110 2176 416 4.3 

DCI 8679 2137 667.5 16.42 

LQR 7245 1834 422 21.87 

 

4.6. Conclusion 
 
This work presented an investigation into the utilization of metaheuristic optimization techniques for the control 

of the doubly fed induction generator under the influence of symmetrical voltage dips. Two swarm intelligence 

techniques were proposed; the well-known particle swarm optimization, and the recently developed African 

vulture’s optimization algorithm. These techniques were first utilized to obtain the optimal crowbar resistance for 

protection of the DFIG. Next, the AVOA was applied to the linear quadratic regulator for low voltage ride through 

of the DFIG. These results were compared to the conventional PI controller, optimized via PSO. Considering the 

crowbar resistance investigation, it was observed that for moderately severe symmetrical voltage dips, PSO 

exhibited superior results to AVOA in terms of transient magnitude, albeit the settling times were nearly identical. 

For severe faults (less than 80%), the AVOA exhibited dominance over PSO. This was in terms of transient 

magnitude, as well as settling time.  

 
For the LVRT experiment, it was observed that the linear quadratic regulator, coupled with the AVOA, proved to 

be far superior to the PI controller, which was optimized using PSO. This superiority was with respect to transient 

magnitude and steady state ripple and was seen for almost every fault magnitude tested. However, as expected, 

despite the addition of the integrator, the LQR was inferior to the PI controller in terms of steady state error. 

Overall, it was observed that the LQR unanimously produced the best results. To further validate the effectiveness 

of such a controller, a 3% grid frequency perturbation was applied to the test system. Grid frequency perturbations 

are common occurrences with symmetrical faults, and it is therefore imperative that control systems do not lose 

their capabilities in such scenarios. The perturbation was applied for each of the three voltage dip magnitudes, 

with the results summarized in Table 4.12. As evident from Table 4.12, even when subject to grid frequency 

perturbations, the LQR still yielded superior rotor current and DC voltage peak magnitudes, when compared to 

both the PI controller and DCI methods. 
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Table 4.12: Summary of results for LQR applied subject to 3% grid frequency perturbation. 

 
Rotor Current Peak 

(A) 

DC Voltage Peak 

(V) 

Rotor Direct Axis 

Current Steady-

State Ripple (A) 

Rotor Direct Axis 

Current Steady-

State Error (%) 

70% dip 4276 1400 356 12.4 

80% dip 5516 1585 316 13.7 

90% dip 7706 1873 417 16.8 

 

When comparing the results of the crowbar experiment to the results of the LVRT experiment, it is evident that 

in all cases, the LQR produced a superior rotor current and DC voltage transient magnitude. However, as observed 

in the results, the settling time of the crowbar method was unanimously better than that of the LQR. Therefore, it 

can be concluded that each of these methods offer advantages and disadvantages. When coupled with powerful 

metaheuristic optimization techniques, these methods can be fine-tuned to produce the best possible results. Future 

work involves the enhancement of the linear quadratic regulator to achieve a better steady state error. This involves 

the utilization of the problem-specific transfer function to attempt to achieve a zero steady-state error.  
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Chapter 5 : Design of dual vector controller for control of the DFIG using swarm 
intelligence 

 
In chapter four, the effect of applying swarm intelligence to optimal crowbar setting and Low Voltage Ride 

Through of the DFIG was investigated. The results were positive, indicating the promising capabilities of swarm 

intelligence for the control of the DFIG under the influence of symmetrical voltage dips. However, most grid 

voltage anomalies are asymmetrical in nature. The voltage dips (or spikes) are usually not severe in nature but do 

have the ability to impact the performance of the conventional control system. This chapter serves to analyze the 

effect of applying swarm intelligence to the control of the DFIG under the influence of asymmetrical voltage dips. 

Single-phase voltage dips of 5% and 10%, as well as a dual-phase voltage dip of 7.5%, was considered. The 

control algorithm implemented was the dual vector control method, which is the most widely established method 

of control for such scenarios. The swarm intelligence technique applied to the system is Particle Swarm 

Optimization, Bat Algorithm, and Gorilla Troops Optimization Algorithm. The results were measured in terms of 

rotor direct and quadrature axis current steady state error, overshoot, and steady-state ripple. The chapter starts 

off by providing a background to the problem being investigated. Thereafter, a control block diagram, which will 

be implemented, is provided. This is succeeded by a comprehensive analysis of the obtained results. Lastly, the 

work is concluded.  

 
5.1. Background 
 
Asymmetrical grid conditions are common occurrences in areas where wind farms are situated. This is mostly due 

to the fact that wind farms are located in areas which are far away from transmission and/or distribution stations. 

The conventional field-oriented control has demonstrated competency in regulation of stator active and reactive 

powers. However, the effect of asymmetrical grids deteriorates the performance of such controllers. Under 

balanced grid conditions, there exists no negative sequence currents. This is not the case in the event of unbalanced 

grids. Therefore, to obtain normal operating conditions in the case of an unbalanced grid, the negative sequence 

rotor currents need also be regulated. This can be obtained via the use of PI controllers. In this method, two PI 

controllers regulate the positive sequence rotor currents (which in turn control the stator active and reactive 

powers), while another two PI controllers are utilized regulate the negative sequence currents [213]. The positive 

sequence rotor currents are analyzed in the synchronous rotating reference frame, whereas the negative sequence 

currents are realized in the inverse rotating reference frame [213]. Owing to the various negative effects of 

asymmetrical grid voltages, the rotor reference positive sequence currents may vary, depending on the desired 

target. These targets are: 

• Constant stator powers 

• Balanced stator currents 

• Constant electromechanical torque 

• Balanced rotor currents 

• Minimum rotor voltage 

The most common desired target is balanced rotor currents. Owing to the linear nature between the rotor currents, 

and stator power, adequate regulator of the rotor direct and quadrature axis currents will ensure acceptable stator 

power responses. To achieve the target of balanced rotor currents, the negative sequence rotor currents are forced 
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to zero, whereas the positive sequence rotor currents attempt to regulate the stator active and reactive powers. 

While achieving the desired result, this method has drawbacks. Firstly, it requires the decomposition of the rotor 

currents into positive and negative sequence components. This causes considerable time delay and reduces the 

reliability of the method [213]. Secondly, the use of an additional two PI controllers makes tuning of the 

controllers a more complex and tedious task. There exists a total of eight parameters to be optimized and 

attempting this via trial and error may lead to sup-optimal controller performance. The recent success of swarm 

intelligence in the optimization of control parameters in power systems, makes this a promising option of 

application to the dual vector control method. The aim of this chapter is to investigate the effect of applying swarm 

intelligence to the design of the four PI controllers for balanced rotor current control of the DFIG. 

 
5.2. Control structure of dual vector control 
 
As explained in 5.1, the dual vector control method makes use of individual PI controllers, to regulate the rotor 

direct and quadrature axis currents. The functional block diagram, to be implemented in this chapter, is shown in 

figure 5.1 [213]. In the figure, it is evident that two reference values are set to zero. This implies the desired target 

of balanced rotor currents. Note that c1-c4 in the figure refer to coupling terms, which form part of the basics of 

field-oriented control. 

 
Figure 5.1: Structure of dual-vector control for constant rotor current [213] 

 
5.3. Experimental results and analysis  
 
Three swarm intelligence algorithms were applied to the design of the dual vector control method These are across 

the timeline of the evolution of such algorithms. The first algorithm to be applied was the well-known particle 

swarm optimization [55]. Second, the bat algorithm [96], was tested. Lastly, application of the very recent gorilla 

troops optimizer was evaluated [149]. The control system implemented was stator flux-oriented control. This 
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means that the stator reactive power was controlled by the rotor direct current, and the stator active power by the 

rotor quadrature current. The results obtained were evaluated in terms of steady-state error, steady-state ripple, 

and overshoot. Owing to the direct proportional relationship between the rotor currents and the stator power, the 

output of the DFIG can be directly analyzed from the waveforms of the rotor currents. These relationships can be 

observed in [215]. It should be noted that owing to the complexity of the simulation circuit, each iteration takes a 

while to complete. To ensure that this did not take an unreasonable amount of time to execute, each of the three 

swarm intelligent algorithms were subject to 20 search agents and 20 iterations. This should suffice, considering 

that particle swarm optimization, which is the most established and widely used technique, is known to exhibit a 

fast convergence rate [55]. Rate of convergence is an important aspect when considering metaheuristic 

optimization techniques; hence, to ensure that this factor was considered, uniformity was applied throughout the 

experiments. The proportional and integral gains were given an upper limit of 100 and a lower limit of 0. This 

large controller gain range was chosen arbitrarily and was chosen as such so that the exploitation capability of the 

metaheuristic optimization technique can be tested. For application of the algorithm, the DFIG was operated at a 

speed of 150 rad/s. The simulation was carried out on MATLAB/Simulink, and the simulation was run for 2 s. 

Single-phase and dual-phase voltage dips were investigated. The voltage dips considered were at 5%, 7.5% and 

10%. To analyze the steady-state error, the output was obtained in intervals of 0.1 s. To analyze the overshoot and 

steady-state ripple, the output was obtained in intervals of 0.01 s. To ensure that the system was given sufficient 

time to reach steady state, the results were analyzed from 1.5 to 2 s. The rotor direct and quadrature current 

references were kept constant at 1434.6 A and 1281 A, respectively. 

 
5.3.1. Case a: Voltage Unbalance of 5%  
 
Upon application of the three swarm intelligence algorithms to the dual vector controller for a voltage unbalance 

of 5%, the resultant PI controller gains for the four controllers can be observed in Table 5.1. Figures 5.2–5.11 

depict the results of applying PSO to the controller design. Figures 5.2 and 5.3 depict the three-phase stator voltage 

and current, respectively, with figures 5.4 and 5.5 displaying the three-phase rotor voltage and current, 

respectively. Figures 5.6 and 5.7 show the rotor direct and quadrature axis negative sequence currents. Figures 

5.8 and 5.10 are utilized for analyzing the steady-state error of the positive sequence rotor currents, whereas 

Figures 5.9 and 5.11 are used to observe the overshoot and steady-state ripple, once again for the positive sequence 

rotor current.  
Table 5.1: Controller gains for 5% dip using dual vector control for each swarm technique 

 Gain range PSO BA GTO 

𝑲𝑲𝒑𝒑𝟏𝟏(𝒊𝒊𝒊𝒊𝒓𝒓+) 0-100 97.4531 99.0016 0.60363 

𝑲𝑲𝑖𝑖1(𝒊𝒊𝒊𝒊𝒓𝒓+) 0-100 9.45923 41.4079 0.015496 

𝑲𝑲𝒑𝒑𝟐𝟐(𝒊𝒊𝒊𝒊𝒓𝒓+) 0-100 3.43091 18.7909 0.16635 

𝑲𝑲𝑖𝑖2(𝒊𝒊𝒊𝒊𝒓𝒓+) 0-100 76.3631 21.987 0 

𝑲𝑲𝒑𝒑𝟑𝟑(𝒊𝒊𝒊𝒊𝒓𝒓−) 0-100 72.2922 9.95427 2.1047 

𝑲𝑲𝑖𝑖3(𝒊𝒊𝒊𝒊𝒓𝒓−) 0-100 98.6869 31.6091 0 

𝑲𝑲𝒑𝒑𝒑𝒑(𝒊𝒊𝒊𝒊𝒓𝒓−)  66.5793 60.0975 0.98995 

𝑲𝑲𝑖𝑖4(𝒊𝒊𝒊𝒊𝒓𝒓−)  18.2864 69.0138 0 
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Figure 5.2: Three-phase stator voltage at 5% dip  Figure 5.3: Three-phase stator current using PSO at 5% dip 

 
Figure 5.4: Three-phase rotor voltage using PSO at 5% dip Figure 5.5: Three-phase rotor current using PSO at 5% dip 

 
From Figure 5.8, the average rotor direct steady-state current error percentage is 4.99%, which is strong. The 

current ripple, as shown in figure 5.9, is large at 315 A. This is somewhat mitigated by the fact that the system is 

underdamped, thereby providing a 0% overshoot. The rotor quadrature current exhibits a steady-state error of 

70.73%, as evident by figure 5.10. Furthermore, the steady-state ripple, as depicted by figure 5.11 is once again 

large at 401 A. This is somewhat mitigated by the overshoot, which is 41.69%. 

 

 
         Figure 5.6: Overshoot and ripple of 𝑖𝑖𝑑𝑑𝑑𝑑 −  using PSO at 5% dip Figure 5.7: Response of 𝑖𝑖𝑞𝑞𝑑𝑑 − using PSO at 5% dip 
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          Figure 5.8: Steady-state error of 𝑖𝑖𝑑𝑑𝑑𝑑 +  using PSO at 5% dip             Figure 5.9: Overshoot and ripple of  𝑖𝑖𝑑𝑑𝑑𝑑 +  using PSO at 5% 

 

 
       Figure 5.10: Steady-state error of 𝑖𝑖𝑞𝑞𝑑𝑑 +  using PSO at 5% dip               Figure 5.11: Steady-state error of 𝑖𝑖𝑞𝑞𝑑𝑑 + using PSO at 5% dip 

 
Figures 5.12–5.20 depict the results of applying BA to the controller design. Figures 5.2 and 5.12 depict the three-

phase stator voltage and current, respectively, with figures 5.13 and 5.14 displaying the three-phase rotor voltage 

and current, respectively. Figures 5.15 and 5.16 show the rotor direct and quadrature axis negative sequence 

currents. Figures 5.17 and 5.19 are utilized for analyzing the steady-state error of the positive sequence rotor 

currents, whereas figures 5.18 and 5.20 are used to observe the overshoot and steady-state ripple, once again for 

the positive sequence rotor current.  

 
        Figure 5.12: Three-phase stator current using BA at 5% dip              Figure 5.13: Three-phase rotor voltage using BA at 5% dip 
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Figure 5.14: Three-phase rotor current using BA at 5% dip Figure 5.15: Response of 𝑖𝑖𝑑𝑑𝑑𝑑 −  using BA at 5% dip 

 
From Figure 5.17, the average rotor direct steady-state current error percentage is 4.42%, which is strong. The 

current ripple, as shown in figure 5.18, is large at 333 A. This is somewhat mitigated by the minute overshoot, 

which stands at a mere 6.72%. The rotor quadrature current exhibits a steady-state error of 76.17%, as evident by 

figure 5.19. This is unacceptable. Furthermore, the steady-state ripple, as depicted by figure 5.20 is once again 

large at 539 A. This is somewhat mitigated by the overshoot, which is 43.01%. 

 
Figure 5.16: Response of 𝑖𝑖𝑞𝑞𝑑𝑑 − using BA at 5% dip  Figure 5.17: Steady-state error of 𝑖𝑖𝑑𝑑𝑑𝑑 + using BA at 5% dip 

 

 
Figure 5.18: Overshoot and ripple of 𝑖𝑖𝑑𝑑𝑑𝑑 + using BA at 5% dip  Figure 5.19 : Steady-state error of 𝑖𝑖𝑞𝑞𝑑𝑑 + using BA at 5% dip 
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Figure 5.20: Overshoot and ripple of 𝑖𝑖𝑞𝑞𝑑𝑑 + using BA at 5% dip  

 
Figures 5.21–5.29 depict the results of applying GTO to the controller design. Figures 5.2 and 5.21 depict the 

three-phase stator voltage and current, respectively, with Figures 5.22 and 5.23 displaying the three-phase rotor 

voltage and current, respectively. Figures 5.24 and 5.25 show the rotor direct and quadrature axis negative 

sequence currents. Figures 5.26 and 5.28 are utilized for analyzing the steady-state error of the positive sequence 

rotor currents, whereas figures 5.27 and 5.29 are used to observe the overshoot and steady-state ripple, once again 

for the positive sequence rotor current.  

 
Figure 5.21: Three-phase stator current using GTO at 5% dip           Figure 5.22: Three-phase rotor voltage using GTO at 5% dip 

 

 
Figure 5.23: Three-phase rotor current using GTO at 5% dip  Figure 5.24: Response of 𝑖𝑖𝑑𝑑𝑑𝑑 − using GTO at 5% dip 
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From Figure 5.26, the average rotor direct steady-state current error percentage is 65.87%, which is unacceptable. 

The current ripple, as shown in figure 5.27, is exceptional at 39 A. The overshoot is somewhat acceptable and 

stands at a 63.6%. The rotor quadrature current exhibits a steady-state error of 86.9%, as evident by figure 5.28. 

This is once again unacceptable. The steady-state ripple, as depicted by figure 5.29 is once again minute at 58 A. 

This is complemented by the overshoot, which is strong at 20.22%. The results of the experiments are summarized 

in table 5.2. As evident, based on the various performance parameters, the best results are split among the various 

techniques. However, according to rankings, PSO produced the overall best performance, with BA exhibiting the 

worst results. 

 
 Figure 5.25: Response of 𝑖𝑖𝑞𝑞𝑑𝑑 − using BA at 5% dip  Figure 5.26: Steady-state error of 𝑖𝑖𝑑𝑑𝑑𝑑 + using GTO at 5% dip 

 

 
Figure 5.27: Overshoot and ripple of 𝑖𝑖𝑑𝑑𝑑𝑑 + using GTO at 5% dip  Figure 5.28: Steady-state error of 𝑖𝑖𝑞𝑞𝑑𝑑 + using GTO at 5% dip 

5.3.2. Case b: Voltage Unbalance of 10%  
 
Upon application of the three swarm intelligence algorithms to the dual vector controller for a voltage unbalance 

of 10%, the resultant PI controller gains for the four controllers can be observed in Table 5.3. Figures 5.30–5.39 

depict the results of applying PSO to the controller design. Figures 5.30 and 5.31 depict the three-phase stator 

voltage and current, respectively, with figures 5.32 and 5.33 displaying the three-phase rotor voltage and current, 

respectively. Figures 5.34 and 5.35 show the rotor direct and quadrature axis negative sequence currents. Figures 

5.36 and 5.38 are utilized for analyzing the steady-state error of the positive sequence rotor currents, whereas 



98 
 

figures 5.37 and 5.39 are used to observe the overshoot and steady-state ripple, once again for the positive 

sequence rotor current.  

 

 
Figure 5.29: Overshoot and ripple of 𝑖𝑖𝑞𝑞𝑑𝑑 + using GTO at 5% dip 

 
Table 5.2: Summary of results obtained for 5% dip using dual vector control for each swarm technique 

 PSO BA GTO 

Steady-state error 𝒊𝒊𝒊𝒊𝒓𝒓+ (%) 4.99 4.42 65.87 

Overshoot 𝒊𝒊𝒊𝒊𝒓𝒓+ (%) 0 6.72 63.6 

Ripple 𝒊𝒊𝒊𝒊𝒓𝒓+ (A) 315 333 39 

Steady-state error 𝒊𝒊𝒊𝒊𝒓𝒓+ (%) 70.73 76.17 86.9 

Overshoot 𝒊𝒊𝒊𝒊𝒓𝒓+ (%) 41.49 43.01 20.22 

Ripple 𝒊𝒊𝒊𝒊𝒓𝒓+ (A) 401 539 58 

 
Table 5.3: Controller gains for 10% dip using dual vector control for each swarm technique 

 PSO BA GTO 

𝑲𝑲𝒑𝒑𝟏𝟏(𝒊𝒊𝒊𝒊𝒓𝒓+) 56.68538 1.12463 0.41106 

𝑲𝑲𝑖𝑖1(𝒊𝒊𝒊𝒊𝒓𝒓+) 70.44795 0 0 

𝑲𝑲𝒑𝒑𝟐𝟐(𝒊𝒊𝒊𝒊𝒓𝒓+) 48.4827 11.9731 1.0507 

𝑲𝑲𝑖𝑖2(𝒊𝒊𝒊𝒊𝒓𝒓+) 62.29809 14.4136 0.066635 

𝑲𝑲𝒑𝒑𝟑𝟑(𝒊𝒊𝒊𝒊𝒓𝒓−) 42.99382 12.5631 0.54513 

𝑲𝑲𝑖𝑖3(𝒊𝒊𝒊𝒊𝒓𝒓−) 30.89764 26.9153 0 

𝑲𝑲𝒑𝒑𝒑𝒑(𝒊𝒊𝒊𝒊𝒓𝒓−) 59.44645 31.3774 0.58278 

𝑲𝑲𝑖𝑖4(𝒊𝒊𝒊𝒊𝒓𝒓−) 100 14.8617 0.78885 
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             Figure 5.30: Three-phase stator voltage at 10% dip         Figure 5.31:  Three-phase stator current using PSO at 10% dip 

 

 
Figure 5.32: Three-phase rotor voltage using PSO at 10% dip            Figure 5.33: Three-phase rotor current using PSO at 10% dip 

 
From figure 5.36, the average rotor direct steady-state current error percentage is 3.03%, which is excellent. The 

current ripple, as shown in figure 5.37, is large at 375 A. This is somewhat mitigated by the fact that the system 

is underdamped, thereby providing a 0% overshoot. The rotor quadrature current exhibits a steady-state error of 

81%.96, as evident by figure 5.38. Furthermore, the steady-state ripple, as depicted by figure 5.39is once again 

extremely large at 1652 A. This is somewhat mitigated by the overshoot, which is 0%. 

 
      Figure 5.34: Response of 𝑖𝑖𝑑𝑑𝑑𝑑 − using PSO at 10% dip  Figure 5.35: Response of 𝑖𝑖𝑞𝑞𝑑𝑑 − using PSO at 10% dip  
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Figure 5.36: Steady-state error of 𝑖𝑖𝑑𝑑𝑑𝑑 + using PSO at 10% dip Figure 5.37: Overshoot and ripple of 𝑖𝑖𝑑𝑑𝑑𝑑 + using PSO at 10% dip 

 

 
Figure 5.38:  Steady-state error of 𝑖𝑖𝑞𝑞𝑑𝑑 + using PSO at 10% dip        Figure 5.39: Overshoot and ripple of 𝑖𝑖𝑞𝑞𝑑𝑑 + using PSO at 10% dip 

 
Figures 5.40–5.48 depict the results of applying BA to the controller design. Figures 5.30 and 5.40 depict the 

three-phase stator voltage and current, respectively, with figures 5.41 and 5.42 displaying the three-phase rotor 

voltage and current, respectively. Figures 5.43 and 5.44 show the rotor direct and quadrature axis negative 

sequence currents. Figures 5.45 and 5.47 are utilized for analyzing the steady-state error of the positive sequence 

rotor currents, whereas figures 5.46 and 5.48 are used to observe the overshoot and steady-state ripple, once again 

for the positive sequence rotor current.  

 
Figure 5.40: Three-phase stator current using BA at 10% dip          Figure 5.41: Three-phase rotor voltage using BA at 10% dip 
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Figure 5.42: Three-phase rotor current using BA at 10% dip  Figure 5.43: Response of 𝑖𝑖𝑑𝑑𝑑𝑑 − using BA at 10% dip 

 
From figure 5.45, the average rotor direct steady-state current error percentage is 42.6%, which is unacceptable. 

The current ripple, as shown in figure 5.46, is also large at 253 A. This is mitigated by the 0% overshoot, owing 

to the overdamped nature of the response. The rotor quadrature current exhibits a steady-state error of 81.62%, as 

evident by figure 5.47. This is once again unacceptable. The steady-state ripple, as depicted by figure 5.48 is also 

large, at 296 A. The overshoot is respectable, at 35.68%.   

 

 
Figure 5.44: Response of 𝑖𝑖𝑞𝑞𝑑𝑑 − using BA at 10% dip  Figure 5.45: Steady-state error of 𝑖𝑖𝑑𝑑𝑑𝑑 + using BA at 10% dip 

 
Figure 5.46: Overshoot and ripple of 𝑖𝑖𝑑𝑑𝑑𝑑 + using BA at 10% dip              Figure 5.47:  Steady-state error of 𝑖𝑖𝑞𝑞𝑑𝑑 + using BA at 10% dip 
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Figure 5.48: Overshoot and ripple of 𝑖𝑖𝑞𝑞𝑑𝑑 + using BA at 10% dip  

 
Figures 5.49–5.57 depict the results of applying GTO to the controller design. Figures 5.30 and 5.49 depict the 

three-phase stator voltage and current, respectively, with figures 5.50 and 5.51 displaying the three-phase rotor 

voltage and current, respectively. Figures 5.52 and 5.53 show the rotor direct and quadrature axis negative 

sequence currents. Figures 5.54 and 5.56 are utilized for analyzing the steady-state error of the positive sequence 

rotor currents, whereas figures 5.55 and 5.57 are used to observe the overshoot and steady-state ripple, once again 

for the positive sequence rotor current.  

 
Figure 5.49: Three-phase stator current using GTO at 10% dip          Figure 5.50: Three-phase rotor voltage using GTO at 10% dip 

 
Figure 5.51: Three-phase rotor current using GTO at 10% dip  Figure 5.52: Response of 𝑖𝑖𝑑𝑑𝑑𝑑 − using GTO at 10% dip 
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From figure 5.54, the average rotor direct steady-state current error percentage is 53.5%, which is unacceptable. 

The current ripple, as shown in figure 5.55, is exceptional at 29 A. Further, owing to the overdamped nature of 

the response, the overshoot is excellent at 0%. The rotor quadrature current exhibits a steady-state error of 46.71%, 

as evident by figure 5.56. This is once again unacceptable. The steady-state ripple, as depicted by figure 5.57 is 

once again minute at 92 A. This is complemented by the overshoot, which is strong at 27%. The results of the 

experiment are summarized in table 5.4. As evident, based on the various performance parameters, the best results 

are split among the various techniques. However, according to rankings, GTO produced the overall best 

performance, with the BA exhibiting the worst results. 

 
Figure 5.53: Response of 𝑖𝑖𝑞𝑞𝑑𝑑 − using GTO at 10% dip               Figure 5.54: Steady-state error of 𝑖𝑖𝑑𝑑𝑑𝑑 + using GTO at 10% dip 

 
Figure 5.55: Overshoot and ripple of 𝑖𝑖𝑑𝑑𝑑𝑑 + using GTO at 10% dip             Figure 5.56: Steady-state error of 𝑖𝑖𝑞𝑞𝑑𝑑 + using GTO at 10% dip 

 
Table 5.4: Summary of results obtained for 10% dip using dual vector control for each swarm technique 

 PSO BA GTO 

Steady-state error 𝒊𝒊𝒊𝒊𝒓𝒓+ (%) 3.03 42.6 53.5 

Overshoot 𝒊𝒊𝒊𝒊𝒓𝒓+ (%) 0 0 0 

Ripple 𝒊𝒊𝒊𝒊𝒓𝒓+ (A) 375 253 29 

Steady-state error 𝒊𝒊𝒊𝒊𝒓𝒓+ (%) 81.96 81.62 46.71 

Overshoot 𝒊𝒊𝒊𝒊𝒓𝒓+ (%) 0 35.68 27 

Ripple 𝒊𝒊𝒊𝒊𝒓𝒓+ (A) 1652 296 92 
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Figure 5.57: Overshoot and ripple of 𝑖𝑖𝑞𝑞𝑑𝑑 + using GTO at 10% dip 

 

5.3.3. Case c: Voltage Unbalance of 7.5%  
 
Upon application of the three swarm intelligence algorithms to the dual vector controller for a dual-phase voltage 

unbalance of 7.5%, the resultant PI controller gains for the four controllers can be observed in Table 5.5. Figures 

5.58–5.67 depict the results of applying PSO to the controller design. Figures 5.58 and 5.59 depict the three-phase 

stator voltage and current, respectively, with figures 5.60 and 5.61 displaying the three-phase rotor voltage and 

current, respectively. Figures 5.62 and 5.63 show the rotor direct and quadrature axis negative sequence currents. 

Figures 5.64 and 5.66 are utilized for analyzing the steady-state error of the positive sequence rotor currents, 

whereas figures 5.65 and 5.67 are used to observe the overshoot and steady-state ripple, once again for the positive 

sequence rotor current. 
Table 5.5: Controller gains for 7.5% dip using dual vector control for each swarm technique 

 PSO BA GTO 

𝑲𝑲𝒑𝒑𝟏𝟏(𝒊𝒊𝒊𝒊𝒓𝒓+) 25.48194 47.0731 100 

𝑲𝑲𝑖𝑖1(𝒊𝒊𝒊𝒊𝒓𝒓+) 27.21281 0 1.985359 

𝑲𝑲𝒑𝒑𝟐𝟐(𝒊𝒊𝒊𝒊𝒓𝒓+) 8.821569 73.6876 72.92349 

𝑲𝑲𝑖𝑖2(𝒊𝒊𝒊𝒊𝒓𝒓+) 100 96.1084 1.223389 

𝑲𝑲𝒑𝒑𝟑𝟑(𝒊𝒊𝒊𝒊𝒓𝒓−) 3.545885 48.3316 100 

𝑲𝑲𝑖𝑖3(𝒊𝒊𝒊𝒊𝒓𝒓−) 100 3.81148 1.950241 

𝑲𝑲𝒑𝒑𝒑𝒑(𝒊𝒊𝒊𝒊𝒓𝒓−) 68.30388 3.65399 1.626019 

𝑲𝑲𝑖𝑖4(𝒊𝒊𝒊𝒊𝒓𝒓−) 18.20631 81.3853 0 

 
From Figure 5.64, the average rotor direct steady-state current error percentage is 10.71%, which is not the best, 

but acceptable. The current ripple, as shown in figure 5.65, is large at 305 A. This is somewhat mitigated by the 

fact that the system is underdamped, thereby providing a 0% overshoot. The rotor quadrature current exhibits a 

steady-state error of 69.54%, as evident by figure 5.66. Furthermore, the steady-state ripple, as depicted by figure 

5.67 is once again large at 494 A. The overshoot, which is 34.58%, is acceptable. 
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Figure 5.58: Three-phase stator voltage at 7.5% dip         Figure 5.59: Three-phase stator current using PSO at 7.5% dip 

 

 
Figure 5.60: Three-phase rotor voltage using PSO at 7.5% dip        Figure 5.61: Three-phase rotor current using PSO at 7.5% dip 

 

 
Figure 5.62:  Response of 𝑖𝑖𝑑𝑑𝑑𝑑 − using PSO at 7.5% dip   Figure 5.63: Response of 𝑖𝑖𝑞𝑞𝑑𝑑 − using PSO at 7.5% dip 
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Figure 5.64: Steady-state error of 𝑖𝑖𝑑𝑑𝑑𝑑 + using PSO at 7.5% dip         Figure 5.65: Overshoot and ripple of 𝑖𝑖𝑑𝑑𝑑𝑑 + using PSO at 7.5% dip 

 

 
Figure 5.66: Steady-state error of 𝑖𝑖𝑞𝑞𝑑𝑑 + using PSO at 7.5% dip      Figure 5.67: Overshoot and ripple of 𝑖𝑖𝑞𝑞𝑑𝑑 + using PSO at 7.5% dip 

 
Figures 5.68–5.76 depict the results of applying BA to the controller design. Figures 5.58 and 5.68 depict the 

three-phase stator voltage and current, respectively, with figures 5.69 and 5.70 displaying the three-phase rotor 

voltage and current, respectively. Figures 5.71 and 5.72 show the rotor direct and quadrature axis negative 

sequence currents. Figures 5.73 and 5.75 are utilized for analyzing the steady-state error of the positive sequence 

rotor currents, whereas figures 5.74 and 5.76 are used to observe the overshoot and steady-state ripple, once again 

for the positive sequence rotor current.  

 
Figure 5.68: Three-phase stator current using BA at 7.5% dip         Figure 5.69: Three-phase rotor voltage using BA at 7.5% dip 
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Figure 5.70: Three-phase rotor current using BA at 7.5% dip        Figure 5.71: Response of 𝑖𝑖𝑑𝑑𝑑𝑑 − using BA at 7.5% dip 

 
From Figure 5.73, the average rotor direct steady-state current error percentage is 2.19%, which is excellent. The 

current ripple, however, as shown in figure 5.74, is large at 384 A. This is mitigated by the minute 2.19% 

overshoot. The rotor quadrature current exhibits a steady-state error of 52.31%, as evident by figure 5.75. This is 

once again unacceptable. The steady-state ripple, as depicted by figure 5.76 is also large, at 356 A. The overshoot 

is respectable, at 42.7%. 

 
Figure 5.72: Response of 𝑖𝑖𝑞𝑞𝑑𝑑 − using BA at 7.5% dip  Figure 5.73: Steady-state error of 𝑖𝑖𝑑𝑑𝑑𝑑 + using BA at 7.5% dip 

 

 
Figure 5.74: Overshoot and ripple of 𝑖𝑖𝑑𝑑𝑑𝑑 + using BA at 7.5% dip  Figure 5.75: Steady-state error of 𝑖𝑖𝑞𝑞𝑑𝑑 + using BA at 7.5% dip 
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Figure 5.76: Overshoot and ripple of 𝑖𝑖𝑞𝑞𝑑𝑑 + using BA at 7.5% dip 

 
Figures 5.77–5.85 depict the results of applying GTO to the controller design. Figures 5.58 and 5.77 depict the 

three-phase stator voltage and current, respectively, with Figures 5.78 and 5.79 displaying the three-phase rotor 

voltage and current, respectively. Figures 5.80 and 5.81 show the rotor direct and quadrature axis negative 

sequence currents. Figures 5.82 and 5.84 are utilized for analyzing the steady-state error of the positive sequence 

rotor currents, whereas figures 5.83 and 5.85 are used to observe the overshoot and steady-state ripple, once again 

for the positive sequence rotor current.  

 
Figure 5.77: Three-phase stator current using GTO at 7.5% dip                  Figure 5.78: Three-phase rotor current using GTO at 7.5% dip 

 
Figure 5.79: Three-phase rotor current using GTO at 7.5% dip  Figure 5.80: Response of 𝑖𝑖𝑑𝑑𝑑𝑑 − using GTO at 7.5% dip 
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From figure 5.82, the average rotor direct steady-state current error percentage is 11.8%, which is somewhat 

acceptable. The current ripple, as shown in figure 5.83, is acceptable at 327 A. Further, owing to the overdamped 

nature of the response, the overshoot is excellent at 0.6%. The rotor quadrature current exhibits a steady-state 

error of 49.4%, as evident by figure 5.84. This is once again unacceptable. The steady-state ripple, as depicted by 

figure 5.85 is once again acceptable at 407 A. This is complemented by the overshoot, which is respectable at 

44.4%. The results of the experiment are summarized in table 5.6. As evident, based on the various performance 

parameters, the best results are split among the various techniques. However, according to rankings, PSO 

produced the overall best performance, with GTO exhibiting the worst results. 

 
Figure 5.81: Response of 𝑖𝑖𝑞𝑞𝑑𝑑 − using GTO at 7.5% dip                              Figure 5.82: Steady-state error of 𝑖𝑖𝑑𝑑𝑑𝑑 + using GTO at 7.5% dip 

 

 
Figure 5.83: Overshoot and ripple of 𝑖𝑖𝑑𝑑𝑑𝑑 + using GTO at 7.5% dip          Figure 5.84: Steady-state error of 𝑖𝑖𝑞𝑞𝑑𝑑 + using GTO at 7.5% dip 
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Figure 5.85: Overshoot and ripple of 𝑖𝑖𝑞𝑞𝑑𝑑 + using GTO at 7.5% dip 

 
Table 5.6: Summary of results obtained for 7.5% dip using dual vector control for each swarm technique 

 PSO BA GTO 

Steady-state error 𝒊𝒊𝒊𝒊𝒓𝒓+ (%) 10.71 2.94 11.8 

Overshoot 𝒊𝒊𝒊𝒊𝒓𝒓+ (%) 0 2.19 0.6 

Ripple 𝒊𝒊𝒊𝒊𝒓𝒓+ (A) 305 384 327 

Steady-state error 𝒊𝒊𝒊𝒊𝒓𝒓+ (%) 69.54 52.31 49.4 

Overshoot 𝒊𝒊𝒊𝒊𝒓𝒓+ (%) 34.58 42.7 44.4 

Ripple 𝒊𝒊𝒊𝒊𝒓𝒓+ (A) 494 356 407 

 

5.4. Conclusion  
This chapter provided insight into the application of swarm intelligence to the control of the DFIG under the 

influence of asymmetrical voltage dips. The control technique applied was the dual vector control method, with 

the control target being balanced rotor currents. Both single and dual-phase voltage dips were applied to the 

system. The PI controllers responsible for regulating both the positive and negative sequence rotor direct and 

quadrature axis currents, were optimized via three swarm intelligence techniques. There were chosen across the 

timeline spectrum, and were Particle Swarm Optimization, Bat Algorithm, and Gorilla Troops Optimization. For 

the single-phase voltage dips, it was observed that PSO produced the overall best steady-state error and overshoot 

of the rotor direct axis current. For the same experiments, the GTO exhibited exceptional rotor direct and 

quadrature axis current ripples. However, despite these adequate results, neither of the three algorithms failed to 

achieve an acceptable rotor quadrature axis current steady-state error. This also holds true for the dual-phase 

voltage dip and can be attributed to the algorithms inability to simultaneously optimize eight controller parameters. 

The computational complexity required in the optimization of eight controller gains significantly decreases the 

efficacy of the algorithm.  
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Chapter 6 : An investigation into the utilization of swarm intelligence in the design of 
Proportional Resonant controller 

 
As evident in chapter 5, it is observed that the use of metaheuristics in the optimization of the dual vector control 

produced a strong steady-state ripple and decent overshoot. Both parameters are important aspects to consider. 

However, it is seen that the steady-state error of the rotor quadrature axis currents proved to be extremely poor. 

This is undesirable, as it would lead to an unstable regulation of the stator active power. This section proposes the 

use of the Proportional Resonant controller for control of the DFIG subject to asymmetrical voltage dips. This 

controller possesses various favourable characteristics, such as the lack of sequence decomposition requirement, 

and infinite gain at the resonant frequency, leading to a zero steady-state error. The proposed controller will be 

optimized using the same three swarm intelligence techniques which were utilized in chapter 5. Further, a stability 

analysis of the designed controller is carried out, subject to a 3% perturbation in grid frequency.  

 
6.1. Background 
 
The use of a proportional–resonant controller was introduced in [215]. The controller is used to replace the 

conventional PI controller. The merits of the controller include the fact that there is no need for the individual 

control of positive and negative sequence decomposition, thereby eliminating the time delay and instability as 

seen in the conventional PI controller [216]. The PR controller can obtain an infinite gain at the fundamental 

frequency, and therefore can achieve a negligible steady-state error [217]. The general structure of DFIG control 

using PR controller can be observed in Figure 6.1 [218]. The controller outlined in [215] consisted of a 

proportional gain, a resonant gain, and a bandwidth gain. The bandwidth gain was utilized to negate the effects of 

grid frequency fluctuations on the operation of the controller. The proposed controller was compared to that of 

the conventional PI controller, as well as the dual vector control method, and exhibited superior performance. 

However, optimization of the controller gains was achieved via the tedious method of trial and error. Furthermore, 

the controller was only tested on a 10% voltage unbalance. The authors in [216] proposed the use of a main 

proportional–resonant controller, and two auxiliary PR controllers. The resonant frequency of each of the three 

controllers was different, each making use of the synchronous and/or rotor angular velocities. Each controller 

consisted of an independent proportional and resonant gain, and the output of each controller was summed. The 

proposed controller yielded superior results to the conventional control method; however, no mention of the 

controller gain optimization was made. This would have been a difficult task as there existed six gains to be 

optimized. The method introduced in [219] proposed a novel method to obtain the rotor reference currents in the 

case of an unbalanced grid. However, this required sequence decomposition and the use of a notch filter, which 

contributes to time delay and system instability. An enhancement of [219] is proposed in [220], with the control 

method this time not requiring sequence decomposition. However, the drawback is the tuning of two additional 

PI controllers, which significantly adds to the complexity of the control strategy. 

 
In [221], the transfer function of the PR controller was modified to eliminate fifth and seventh order harmonics. 

The result showed a significant reduction in stator current harmonic distortion. A comparative study between the 

PI, PID, and PR controllers for fault ride-through enhancement of the DFIG was carried out in [222] and [223]. 

Once again, in both studies, the PR controller outperformed the PI and PID controllers. A fuzzy-based PR 

controller was proposed in [224]. The proportional and resonant gains were dynamic and changed according to 
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the situation. While they exhibit a superior response to the conventional PI control system, fuzzy controllers are 

known to be unreliable. The PR controller was coupled with a two-stage matrix converter in [225]. However, this 

method made use of a notch filter and sequence decomposition, thereby reducing the reliability of the control 

system. The application 

of the PR controller to system stability was investigated in [226]. The control aimed at mitigating sub synchronous 

stator currents. In this case, the PR controller was applied to both the RSC and GSC and exhibited a strong 

dynamic response. 

 
The PR controller has been successfully applied to the control of the DFIG. This is not just for the mitigation of 

the effects of unbalanced grids, but also for aspects such as the reduction in harmonic distortion, low voltage ride 

through, and stability enhancement. The controller exhibits a superior response to that of the PI controller, 

particularly during the case of non-ideal occurrences. However, despite the application of the controller being 

mentioned in the literature, no mention is made regarding the optimization of gain values. Most instances utilize 

the concept of trial and error, which may lead to suboptimal performance of the controller. Swarm intelligence 

has recently been applied to the optimization of such controllers. In [227], the well-known PSO was utilized to 

obtain the gains of a PR controller, for application to a grid-tied PV inverter. Similar applications of PSO are 

observed in [228] and [229]. A PR-based PWM was applied to a three-phase, three-leg shunt active power filter 

in [230]. The controllers were optimized using the bat algorithm (BA). Compared to the PI controller, the BA-

based PR controller produced a lower harmonic regulation. However, the effectiveness of the BA as a tuning 

method was not investigated. In [231], the grey wolf optimizer was used to simultaneously optimize the 

parameters of PR controllers as well as an output filter for a three-phase grid connected inverter. It is evident that 

there have been instances whereby swarm intelligence was utilized for PR controller gain optimization. 

 

Figure 6.1: General structure of DFIG based PR control [218] 
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Considering the application of swarm intelligence to the DFIG, numerous scenarios exist. From the literature it is 

evident that PSO is the technique most widely applied to the DFIG. The authors in [60] utilized PSO optimization 

of sliding mode controller parameters. A small signal stability analysis was carried out in [61]. Here, PSO was 

responsible for rotor side controller, grid side controller, and pitch controller gain optimization. Considering the 

bat algorithm, this technique was also utilized to optimize the parameters of a sliding mode controller in [103]. In 

[232], the BA was used to optimize the parameters of a proportional–integral–resonant controller. However, this 

was only analysed in terms of harmonic distortion, and not for the effect of unbalanced grid voltages. There also 

exists other swarm intelligence techniques, such as artificial bee colony and grey wolf optimization, which have 

thus far displayed promising results when applied to the control of the DFIG [85], [75]. The gorilla troops 

optimizer is a recently developed swarm-based metaheuristic optimization technique [149]. This technique has 

thus far been applied to numerous optimization problems. In [150], the authors made use of GTO to optimize the 

frequency response of a microgrid. The algorithm was also utilized for the problem of optimal power flow in a 

power system [151], and for feature selection in cyber security [152]. However, no application of gorilla troops 

optimization to the control of the DFIG has yet been proposed in the literature. 

 
From the past application of swarm intelligence, it is evident that these algorithms produce excellent results. 

Therefore, there exists a strong possibility that the utilization of a swarm intelligence technique for the 

optimization of PR controller gains for DFIG control will exhibit exceptional results. Swarm intelligence has 

strong application in the field of data science [233]. Furthermore, large power utilities are moving towards the 

utilization of swarm intelligence for control and process optimization. For example, the concept of high impedance 

faults is a big concern. The use of swarm intelligence for high impedance fault detection has proved to be valuable 

[234]. The aim of this chapter is to investigate the effects of utilizing swarm intelligence techniques for the 

optimization of PI and PR controller gains, for application to the DFIG under the influence of asymmetrical 

voltage dips. Two well-known swarm techniques, particle swarm optimization and the bat algorithm, as well as 

the recently proposed gorilla troops optimization algorithm are applied and analysed in this investigation. The 

algorithms are applied to optimization problems across minor single-phase and phase-to-phase grid faults.  

 

6.2. The PR controller 
 
The structure of the PR controller is like that of the conventional PI controller, with the omission of the integral 

controller and the addition of a resonant controller. The resonant controller is commonly tuned at synchronous 

frequency [235], [236]. The general topology of the PR controller is observed in Figure 6.2 [60], [61]. The transfer 

function of the PR controller can therefore be expressed as [235], [236]: 

 𝐿𝐿(𝑠𝑠) = 𝑒𝑒(𝑡𝑡)(𝐾𝐾𝑝𝑝 +
𝐾𝐾𝑑𝑑𝑠𝑠

𝑠𝑠2 + 𝑤𝑤2) (6.1) 

where 𝐾𝐾𝑝𝑝 is the proportional gain, 𝐾𝐾𝑑𝑑  is the resonant gain, w is the frequency at which the resonant controller is 

tuned, 𝑒𝑒(𝑡𝑡) is the error signal that is input to the PR controller, and 𝐿𝐿(𝑠𝑠) is the output of the PR controller. The 

proportional gain, 𝐾𝐾𝑝𝑝, allows for a fast response of the control system. The resonant gain, 𝐾𝐾𝑑𝑑  allows for infinite 

gain at synchronous frequency 
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Figure .6.2: Structure of PR controller 

 
It is well known that when connected to an unbalanced grid, the DFIG produces negative sequence rotor and stator 

voltage and currents. These negative sequence components give rise to double frequency oscillatory terms. Theory 

pertaining to the behaviour of the DFIG under the influence of an unbalanced grid is thoroughly explained in 

[216], [219], [237] .The advantage of the PR controller is that it is capable of successfully tracking the ac reference 

current. This allows the controller to eliminate steady-state errors at the chosen frequency. 𝐾𝐾𝑝𝑝 plays the same role 

as that in a conventional PI controller. The resonant controller is the one that can reduce the double frequency 

oscillatory terms. Considering Figure 6.3, which depicts the bode diagram of the PI and PR controllers, it is evident 

that the PR controller produces a large gain at the resonant frequency, and thus can significantly reduce steady-

state error. 

 
Figure .6.3: Bode plots of PI and PR controllers 

 
The resonant gain, 𝐾𝐾𝑑𝑑 , becomes difficult to optimize. A large gain value will increase the frequency bandwidth 

but will reduce the reliability of the controller [236]. Similarly, a small gain value provides a reliable response but 

within a minute frequency range. Considering Figure 6.4, which depicts the bode diagram of a PR controller with 

different resonant gains, it is evident that larger resonant gains lead to larger bandwidths, a favourable outcome. 

Hence, it can be concluded that the optimization of the resonant gain is essential to provide both a reliable response 

and an acceptable bandwidth. 
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Figure .6.4: Bode plot of PR controller with differing resonant gains 

 
6.3. Experimental results and analysis 
 
Three swarm intelligence algorithms were applied to the design of the proportional–resonant controller. As 

evident from figure 6.1, the conventional PI controllers were utilized for the grid side converter. Further, these 

controllers were optimized prior to the fault condition being implemented. The reason for this is to clearly 

demonstrate the effect of applying the PR controller to the rotor side converter of the DFIG. These are across the 

timeline of the evolution of such algorithms. The first algorithm to be applied was the well-known particle swarm 

optimization, which was first described in 1995 [55]. Second, the bat algorithm, which was developed in 2012 

[96], was tested. Lastly, application of the very recent gorilla troops optimizer was evaluated [149]. The control 

system implemented was stator flux-oriented control. This means that the stator reactive power was controlled by 

the rotor direct current, and the stator active power by the rotor quadrature current. The results obtained were 

evaluated in terms of steady-state error, steady-state ripple, and overshoot. Owing to the direct proportional 

relationship between the rotor currents and the stator power, the output of the DFIG can be directly analyzed from 

the waveforms of the rotor currents. These relationships can be observed in [214]. It should be noted that owing 

to the complexity of the simulation circuit, each iteration takes a while to complete. To ensure that this did not 

take an unreasonable amount of time to execute, each of the three swarm intelligent algorithms were subject to 20 

search agents and 20 iterations. This should suffice, considering that particle swarm optimization, which is the 

most established and widely used technique, is known to exhibit a fast convergence rate [55]. Rate of convergence 

is an important aspect when considering metaheuristic optimization techniques; hence, to ensure that this factor 

was considered, uniformity was applied throughout the experiments. The proportional and resonant gains were 

given an upper limit of 100 and a lower limit of 0. For application of the algorithm, the DFIG was operated at a 

speed of 150 rad/s. The simulation was carried out on MATLAB/Simulink, and the simulation was run for 2 s. 

Only single-phase voltage dips were investigated. The voltage dips considered were at 5% and 10%. To analyze 

the steady-state error, the output was obtained in intervals of 0.1 s. To analyze the overshoot and steady-state 

ripple, the output was obtained in intervals of 0.01 s. To ensure that the system was given sufficient time to reach 

steady state, the results were analyzed from 1.5 to 2 s. The rotor direct and quadrature current references were 

kept constant at 1434.6 A and 1281 A, respectively. 
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6.3.1. Case a: Voltage Unbalance of 5% 
  
Upon application of the three swarm intelligence algorithms to the PR controller for a voltage unbalance of 5%, 

the resultant proportional and resonant gain for the two controllers can be observed in Table 6.1. Figures 6.5–6.12 

depict the results of applying PSO to the controller design. Figures 6.5 and 6.7 depict the three-phase stator voltage 

and current, respectively, with Figures 6.6 and 6.8 displaying the three-phase rotor voltage and current, 

respectively. Figures 6.9 and 6.11 are utilized for analyzing the steady-state error, whereas Figures 6.10 and 6.12 

are used to observe the overshoot and steady-state ripple. From Figure 6.9, the average rotor direct steady-state 

current is 1507.9 A. This correlates to an error percentage of 5.46%. In Figure 6.10, the overshoot of the rotor 

direct current reaches 1767 A, which translates to a percentage of 23.17% 

 
Table 6.1: Controller gains for 5% dip using PR controller for each swarm technique 

 PSO BA GTO 
𝑲𝑲𝒑𝒑(𝒊𝒊𝒊𝒊𝒓𝒓) 68.9238 96.2194 1.3393 
𝑲𝑲𝒓𝒓(𝒊𝒊𝒊𝒊𝒓𝒓) 86.9757 1.96022 6.5823 
𝑲𝑲𝒑𝒑(𝒊𝒊𝒊𝒊𝒓𝒓) 63.0181 87.7541 1.3586 
𝑲𝑲𝒓𝒓(𝒊𝒊𝒊𝒊𝒓𝒓) 2.07452 15.6185 0.55515 

 

Additionally, from Figure 6.10, the steady-state ripple of the rotor direct current is observed to be 373.5 A. From 

Figure 6.11, it is seen that the average rotor quadrature steady-state current is 1249.1 A. This correlates to an error 

percentage of 2.49%. The overshoot and steady-state ripple of the rotor quadrature current, as observed in Figure 

6.12, are 1850 A and 342 A, respectively. This translates to an overshoot percentage of 44.42%. Figures 6.13–

6.19 depict the results of applying BA to the controller design. Figures 6.5 and 6.13 depict the three-phase stator 

voltage and current, respectively, with Figures 6.14 and 6.15 displaying the three-phase rotor voltage and 

 
      Figure 6.5: Three-phase stator voltage at 5% dip                 Figure 6.6: Three-phase stator current using PSO at 5% dip 

 
current, respectively. Figures 6.16 and 6.18 are utilized for analyzing the steady-state error, whereas Figures 6.17 

and 6.19 are used to observe the overshoot and steady-state ripple. From Figure 6.16, the average rotor direct 

steady-state current is 1471.3 A. This correlates to an error percentage of 2.56%.  
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Figure 6.7: Three-phase rotor voltage using PSO at 5% dip  Figure 6.8: Three-phase rotor current using PSO at 5% dip 

 

 
Figure 6.9: Steady-state error of 𝑖𝑖𝑑𝑑𝑑𝑑 using PSO at 5% dip              Figure 6.10: Overshoot and ripple of 𝑖𝑖𝑑𝑑𝑑𝑑 using PSO at 5% dip 

 

 
Figure 6.11: Steady-state error of 𝑖𝑖𝑞𝑞𝑑𝑑 using PSO at 5% dip            Figure 6.12: Overshoot and ripple of 𝑖𝑖𝑞𝑞𝑑𝑑 using PSO at 5% dip 
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Figure 6.13: Three-phase stator current using BA at 5% dip   Figure 6.14: Three-phase rotor voltage using BA at 5% dip 

 

 
Figure 6.15: Three-phase rotor current using BA at 5% dip   Figure 6.16: Steady-state error of 𝑖𝑖𝑑𝑑𝑑𝑑 using BA at 5% dip 

 

 
Figure 6.17: Overshoot and ripple of 𝑖𝑖𝑑𝑑𝑑𝑑 using BA at 5% dip   Figure 6.18: Steady-state error of 𝑖𝑖𝑞𝑞𝑑𝑑 using BA at 5% dip 
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Figure 6.19: Overshoot and ripple of 𝑖𝑖𝑞𝑞𝑑𝑑 using BA at 5% dip 

 
In figure 6.17, the overshoot of the rotor direct current reaches 1751 A, which translates to a percentage of 22.05%. 

Additionally, from Figure 6.17, the steady-state ripple of the rotor direct current is observed to be 383 A. From 

Figure 6.18, it is seen that the average rotor quadrature steady-state current is 1277.6 A. This correlates to an error 

percentage of 0.27%. The overshoot and steady-state ripple of the rotor quadrature current, as observed in Figure 

6.19, are 1850 A and 267.9 A, respectively. This translates to an overshoot percentage of 44.42%. 

 
Figures 6.20–6.23 depict the results of applying GTO to the controller design. Figures 6.5 and 6.20 depict the 

three-phase stator voltage and current, respectively, with Figures 6.21 and 6.22 displaying the three-phase rotor 

voltage and current, respectively. Figures 6.23 and 6.25 are utilized for analyzing the steady-state error, whereas 

Figures 6.24 and 6.26 are used to observe the overshoot and steady-state ripple. From Figure 6.23, the average 

rotor direct steady-state current is 1464 A. This correlates to an error percentage of 2.05%. In Figure 6.24, the 

overshoot of the rotor direct current reaches 1767 A, which translates to a percentage of 22.75%. Additionally, 

from Figure 6.24, the steady-state ripple of the rotor direct current is observed to be 97.8 A. From Figure 6.25, it 

is seen that the average rotor quadrature steady-state current is 1300.6 A. This correlates to an error percentage of 

1.53%. The overshoot and steady-state ripple of the rotor quadrature current, as observed in Figure 6.26, are 1813 

A and 128 A, respectively. This translates to an overshoot percentage of 41.53%. 

 
Figure 6.20: Three-phase stator current using GTO at 5% dip        Figure 6.21: Three-phase rotor voltage using GTO at 5% dip 
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Figure 6.22: Three-phase rotor current using GTO at 5% dip  Figure 6.23: Steady-state error of 𝑖𝑖𝑑𝑑𝑑𝑑 using GTO at 5% dip 

 

 
Figure 6.24: Overshoot and ripple of 𝑖𝑖𝑑𝑑𝑑𝑑 using GTO at 5% dip   Figure 6.25: Steady-state error of 𝑖𝑖𝑞𝑞𝑑𝑑 using GTO at 5% dip 

 

 
Figure 6.26: Overshoot and ripple of 𝑖𝑖𝑞𝑞𝑑𝑑 using GTO at 5% dip 

 
The results from experiment a are displayed in Table 6.2. From Table 6.2, it is observed that GTO produced the 

best result on four out of the six occasions. BA proved superior to GTO with respect to the rotor direct current 

overshoot and rotor quadrature current steady-state error. However, this superiority is minute and negligible as 

compared to the large steady-state ripple produced by BA as compared to GTO. This holds true for both the direct 
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and quadrature rotor current. Furthermore, it is observed that GTO is the only algorithm to not be placed last for 

any of the six measurements. This points to a superior stability of GTO. 

 
Table 6.2: Summary of results obtained for 5% dip using PR control for each swarm technique 

 PSO BA GTO 
Steady-state error 𝒊𝒊𝒊𝒊𝒓𝒓 (%) 5.46 2.56 2.05 

Overshoot 𝒊𝒊𝒊𝒊𝒓𝒓 (%) 23.17 22.05 22.75 
Ripple 𝒊𝒊𝒊𝒊𝒓𝒓 (A) 373.5 383 97.8 

Steady-state error 𝒊𝒊𝒊𝒊𝒓𝒓 (%) 2.49 0.27 1.53 
Overshoot 𝒊𝒊𝒊𝒊𝒓𝒓 (%) 44.2 44.42 41.53 

Ripple 𝒊𝒊𝒊𝒊𝒓𝒓 (A) 304.2 267.9 128 
 

6.3.2. Case b: Voltage Unbalance of 10%    
 
Upon application of the three swarm intelligence algorithms to a voltage unbalance of 10%, the resultant 

proportional and resonant gain for the two controllers can be observed in Table 6.3. Once again, not much can be 

deduced from just analyzing the controller gains; hence, analysis of the waveforms is of paramount importance. 

 
Table 6.3: Controller gains for 10% dip using PR control for each swarm technique 

 PSO BA GTO 
𝑲𝑲𝒊𝒊𝒊𝒊𝒓𝒓 99.8036 1.29052 1.3436 
𝑹𝑹𝒊𝒊𝒊𝒊𝒓𝒓 25.7434 35.745 0.18306 
𝑲𝑲𝒊𝒊𝒊𝒊𝒓𝒓 94.0661 2.19815 1.3559 
𝑲𝑲𝒊𝒊𝒊𝒊𝒓𝒓 0 30.4797 0.0014881 

 

Figures 6.27–6.34 depict the results of applying PSO to the controller design. Figures 6.27 and 6.28 depict the 

three-phase stator voltage and current, respectively, with Figures 6.29 and 6.30 displaying the three-phase rotor 

voltage and current, respectively. Figures 6.31 and 6.33 are utilized for analyzing the steady-state error, whereas 

Figures 6.32 and 6.34 are used to observe the overshoot and steady-state ripple. 

 
Figure 6.27: Three-phase stator voltage at 10% dip               Figure 6.28: Three-phase stator current using PSO at 10% dip 
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Figure 6.29: Three-phase rotor voltage using GTO at 10% dip            Figure 6.30: Three-phase rotor current using PSO at 10% dip 

 

 
Figure 6.31: Steady-state error of 𝑖𝑖𝑑𝑑𝑑𝑑 using PSO at 10% dip          Figure 6.32: Overshoot and ripple of 𝑖𝑖𝑑𝑑𝑑𝑑 using PSO at 10% dip 

 

 
Figure 6.33: Steady-state error of 𝑖𝑖𝑞𝑞𝑑𝑑 using PSO at 10% dip         Figure 6.34: Overshoot and ripple of 𝑖𝑖𝑞𝑞𝑑𝑑 using PSO at 10% dip 

 
From Figure 6.31, the average rotor direct steady-state current is 1504.4 A. This correlates to an error percentage 

of 4.87%. In Figure 6.32, the overshoot of the rotor direct current reaches 1922 A, which translates to a percentage 

of 33.97%. Additionally, from Figure 6.32, the steady-state ripple of the rotor direct current is observed to be 

449.5 A. From Figure 6.33, it is seen that the average rotor quadrature steady-state current is 1215.4 A. This 

correlates to an error percentage of 5.12%. The overshoot and steady-state ripple of the rotor quadrature current, 
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as observed in Figure 6.34, are 1616.5 A and 272.5 A, respectively. This translates to an overshoot percentage of 

26.19%. 

 
Figures 6.35–6.41 depict the results of applying BA to the controller design. Figures 6.27 and 6.35 depict the 

three-phase stator voltage and current, respectively, with Figures 6.36 and 6.37 displaying the three-phase rotor 

voltage and current, respectively. Figures 6.38 and 6.40 are utilized for analyzing the steady-state error, whereas 

Figures 6.39 and 6.41 are used to observe the overshoot and steady-state ripple. 

 
Figure 6.35: Three-phase stator current using BA at 10% dip           Figure 6.36: Three-phase rotor voltage using BA at 10% dip 

 
From Figure 6.38, the average rotor direct steady-state current is 1474.8 A. This correlates to an error percentage 

of 2.80%. In Figure 6.39, the overshoot of the rotor direct current reaches 2287 A, which translates to a percentage 

of 59.42%. Additionally, from Figure 6.39, the steady-state ripple of the rotor direct current is observed to be 

130.5 A. From Figure 6.40, it is seen that the average rotor quadrature steady-state current is 1109.4 A. This 

correlates to an error percentage of 13.4%. The overshoot and steady-state ripple  

 
   Figure 6.37: Three-phase rotor current using BA at 10% dip             Figure 6.38: Steady-state error of 𝑖𝑖𝑑𝑑𝑑𝑑 using BA at 10% dip 
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      Figure 6.39: Overshoot and ripple of 𝑖𝑖𝑑𝑑𝑑𝑑 using BA at 10% dip   Figure 6.40: Steady-state error of 𝑖𝑖𝑞𝑞𝑑𝑑 using BA at 10% dip 

 

 
Figure 6.41: Overshoot and ripple of 𝑖𝑖𝑞𝑞𝑑𝑑 using BA at 10% dip 

 
of the rotor quadrature current, as observed in Figure 6.41, are 2238 A and 280 A, respectively. This translates to 

an overshoot percentage of 74.71%. Figures 6.42–6.48 depict the results of applying GTO to the controller design. 

Figures 6.27 and 6.42 depict the three-phase stator voltage and current, respectively, with Figures 6.43 and 6.44 

displaying the three-phase rotor voltage and current, respectively. Figures 6.45 and 6.47 are utilized for analyzing 

the steady-state error, whereas Figures 6.48 and 6.48 are used to observe the overshoot, and steady-state ripple. 

From Figure 6.45, the average rotor direct steady-state current is 1409.4 A. This correlates to an error percentage 

of 1.76%. In Figure 6.46, the overshoot of the rotor direct current reaches 1902 A, which translates to a percentage 

of 38.58%. Additionally, from Figure 6.46, the steady-state ripple of the rotor direct current is observed to be 65 

A. Both the overshoot and steady-state ripple of 𝑖𝑖𝑑𝑑𝑑𝑑  are excellent and are well within acceptable engineering 

limits. From Figure 6.47, it is seen that the average rotor quadrature steady-state current is 1264.5 A. This 

correlates to an error percentage of 1.29%. As with the rotor direct current, this error percentage is extremely low, 

and once again well within acceptable ranges. The overshoot and steady-state ripple of the rotor quadrature 

current, as observed in Figure 6.48, are 1757 A and 107 A, respectively. This translates to an overshoot percentage 

of 37.16%. 
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Figure 6.42: Three-phase stator current using GTO at 10% dip                 Figure 6.43: Three-phase rotor voltage using GTO at 10% dip 

 

 
Figure 6.44: Three-phase rotor current using GTO at 10% dip  Figure 6.45: Steady-state error of 𝑖𝑖𝑑𝑑𝑑𝑑 using GTO at 10% dip 

 

 
Figure 6.46: Overshoot and ripple of 𝑖𝑖𝑑𝑑𝑑𝑑 using GTO at 10% dip   Figure 6.47: Steady-state error of 𝑖𝑖𝑞𝑞𝑑𝑑 using GTO at 10% dip 
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Figure 6.48: Overshoot and ripple of 𝑖𝑖𝑞𝑞𝑑𝑑 using GTO at 10% dip 

 
The results from experiment b are displayed in Table 6.4. From Table 6.4, it is observed that GTO produced the 

best result on four out of the six occasions. PSO proved superior to GTO with respect to the rotor direct and 

quadrature current overshoot. However, as in case a, this superiority is minute and negligible as compared to the 

large steady-state ripple produced by PSO as compared to GTO. This holds true for both the direct and quadrature 

rotor current. Furthermore, it is observed that, once again, GTO is the only algorithm to not be placed last for any 

of the six measurements. This points to a superior stability of the GTO. 

 
Table 6.4: Summary of results obtained for 10% dip using PR control for each swarm technique 

 PSO BA GTO 
Steady-state error 𝒊𝒊𝒊𝒊𝒓𝒓 (%) 4.87 2.80 1.76 

Overshoot 𝒊𝒊𝒊𝒊𝒓𝒓 (%) 33.97 59.42 38.58 
Ripple 𝒊𝒊𝒊𝒊𝒓𝒓 (A) 449.5 130.50 65 

Steady-state error 𝒊𝒊𝒊𝒊𝒓𝒓 (%) 5.12 13.40 1.29 
Overshoot 𝒊𝒊𝒊𝒊𝒓𝒓 (%) 26.19 74.71 37.16 

Ripple 𝒊𝒊𝒊𝒊𝒓𝒓 (A) 272.5 280 107 
 

6.3.3. Case c: Dual-Phase Voltage Unbalance of 7.5% 
    
Upon application of the three swarm intelligence algorithms to a dual-phase voltage unbalance of 7.5%, the 

resultant proportional and resonant gain for the two controllers can be observed in Table 6.5. Once again, not 

much can be deduced from just analyzing the controller gains; hence, analysis of the waveforms is of paramount 

importance. 

 
Table 6.5: Controller gains for 7.5% dip using PR controller for each swarm technique 

 PSO BA GTO 
𝑲𝑲𝒊𝒊𝒊𝒊𝒓𝒓 72.8854 5.86008       1.317 
𝑹𝑹𝒊𝒊𝒊𝒊𝒓𝒓 17.7069 20.5559       0.51571 
𝑲𝑲𝒊𝒊𝒊𝒊𝒓𝒓 67.971 11.8835 1.2977 
𝑲𝑲𝒊𝒊𝒊𝒊𝒓𝒓 9.58148 96.8331 1.6227 
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Figures 6.49–6.56 depict the results of applying PSO to the controller design. Figures 6.49 and 6.50 depict the 

three-phase stator voltage and current, respectively, with Figures 6.51 and 6.52 displaying the three-phase rotor 

voltage and current, respectively. Figures 6.53 and 6.55 are utilized for analyzing the steady-state error, whereas 

Figures 6.54 and 6.56 are used to observe the overshoot and steady-state ripple. 

 
Figure 6.49: Three-phase stator voltage at 7.5% dip         Figure 6.50: Three-phase stator current using PSO at 7.5% dip 

 

 
Figure 6.51: Three-phase rotor voltage using PSO at 7.5% dip            Figure 6.52: Three-phase rotor current using PSO at 7.5% dip 

 
From Figure 6.53, the average rotor direct steady-state current is 1577A. This correlates to an error percentage of 

9.92%. In Figure 6.54, the overshoot of the rotor direct current reaches 1502 A, which translates to a percentage 

of 5.01%. Additionally, from Figure 6.54, the steady-state ripple of the rotor direct current is observed to be 341.5 

A. From Figure 6.55, it is seen that the average rotor quadrature steady-state current is 1307.5 A. This correlates 

to an error percentage of 2.03%. The overshoot and steady-state ripple of the rotor quadrature current, as observed 

in Figure 6.56, are 1874.5 A and 273 A, respectively. This translates to an overshoot percentage of 46.33%. 
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       Figure 6.53: Steady-state error of 𝑖𝑖𝑑𝑑𝑑𝑑 using PSO at 7.5% dip        Figure 6.54: Overshoot and ripple of 𝑖𝑖𝑑𝑑𝑑𝑑 using PSO at 7.5% dip 

 

 
         Figure 6.55: Steady-state error of 𝑖𝑖𝑞𝑞𝑑𝑑 using PSO at 7.5% dip             Figure 6.56: Overshoot and ripple of 𝑖𝑖𝑞𝑞𝑑𝑑 using PSO at 7.5% dip 

 
Figures 6.57–6.63 depict the results of applying BA to the controller design. Figures 6.49 and 6.57 depict the 

three-phase stator voltage and current, respectively, with Figures 6.58 and 6.59 displaying the three-phase rotor 

voltage and current, respectively. Figures 6.60 and 6.62 are utilized for analyzing the steady-state error, whereas 

Figures 6.61 and 6.63 are used to observe the overshoot and steady-state ripple. From Figure 6.60, the average 

rotor direct steady-state current is 1535 A. This correlates to an error percentage of 7%. In Figure 6.61, the 

overshoot of the rotor direct current reaches 1651 A, which translates to a percentage of 15.08%. Additionally, 

from Figure 6.61, the steady-state ripple of the rotor direct current is observed to be 303 A. From Figure 6.62, it 

is seen that the average rotor quadrature steady-state current is 1270.2 A. This correlates to an error percentage of 

0.84%. The overshoot and steady-state ripple of the rotor quadrature current, as observed in Figure 6.63, are 2366 

A and 412 A, respectively. This translates to an overshoot percentage of 84.7%. Figures 6.64–6.70 depict the 

results of applying GTO to the controller design. Figures 6.49 and 6.64 depict the three-phase stator voltage and 

current, respectively, with Figures 6.65 and 6.66 displaying the three-phase rotor voltage and current, respectively. 

Figures 6.67 and 6.69 are utilized for analyzing the steady-state error, whereas Figures 6.68 and 6.70 are used to 

observe the overshoot, and steady-state ripple. From Figure 6.67, the average rotor direct steady-state current is 

1480 A.  
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 Figure 6.57: Three-phase stator current using BA at 7.5% dip        Figure 6.58: Three-phase rotor voltage using BA at 7.5% dip 

 

 
      Figure 6.59: Three-phase rotor current using BA at 7.5% dip                 Figure 6.60: Steady-state error of 𝑖𝑖𝑑𝑑𝑑𝑑 using BA at 7.5% dip 

 

 
      Figure 6.61: Overshoot and ripple of 𝑖𝑖𝑑𝑑𝑑𝑑 using PSO at 7.5% dip            Figure 6.62: Steady-state error of 𝑖𝑖𝑞𝑞𝑑𝑑 using BA at 7.5% dip 
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Figure 6.63: Overshoot and ripple of 𝑖𝑖𝑞𝑞𝑑𝑑 using BA at 7.5% dip 

 
This correlates to an error percentage of 3.16%. In Figure 6.68, the overshoot of the rotor direct current reaches 

1472 A, which translates to a percentage of 2.6%. Additionally, from Figure 6.68, the steady-state ripple of the 

rotor direct current is observed to be 67.5 A. Both the overshoot and steady-state ripple of 𝑖𝑖𝑑𝑑𝑑𝑑  are excellent and 

are well within acceptable engineering limits. From Figure 6.69, it is seen that the average rotor quadrature steady-

state current is 1287.7 A. This correlates to an error percentage of 0.52%. As with the rotor direct current, this 

error percentage is extremely low, and once again well within acceptable ranges. The overshoot and steady-state 

ripple of the rotor quadrature current, as observed in Figure 6.70, are 1938 A and 42.5 A, respectively. This 

translates to an overshoot percentage of 51.29%. 

 
  Figure 6.64: Three-phase stator current using GTO at 7.5% dip                   Figure 6.65: Three-phase rotor voltage using GTO at 7.5% dip 

 
The results from experiment 2b are displayed in Table 6.6. From Table 6.6, it is observed that GTO produced the 

best result on five out of the six occasions. PSO proved superior to GTO with respect to the rotor quadrature 

current overshoot. However, as in cases a and b, this superiority is minute and negligible as compared to the large 

steady-state ripple produced by PSO as compared to GTO. This holds true for both the direct and quadrature rotor 

current. Furthermore, it is observed that, once again, GTO is the only algorithm to not be placed last for any of 

the six measurements. This points to a superior stability of the GTO. 
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Figure 6.66: Three-phase rotor current using GTO at 7.5% dip  Figure 6.67: Steady-state error of 𝑖𝑖𝑑𝑑𝑑𝑑 using GTO at 7.5% dip 

 

 
Figure 6.68: Overshoot and ripple of 𝑖𝑖𝑑𝑑𝑑𝑑 using GTO at 7.5% dip           Figure 6.69: Steady-state error of 𝑖𝑖𝑞𝑞𝑑𝑑 using GTO at 7.5% dip 

 

 
Figure 6.70: Overshoot and ripple of 𝑖𝑖𝑞𝑞𝑑𝑑 using GTO at 7.5% dip 
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Table 6.6: Summary of results obtained for dual-phase dip using PR control for each swarm technique 

 PSO BA GTO 
Steady-state error 𝒊𝒊𝒊𝒊𝒓𝒓 (%) 9.92 7 3.16 

Overshoot 𝒊𝒊𝒊𝒊𝒓𝒓 (%) 5.01 15.08 2.6 
Ripple 𝒊𝒊𝒊𝒊𝒓𝒓 (A) 341.5 303 67.5 

Steady-state error 𝒊𝒊𝒊𝒊𝒓𝒓 (%) 2.03 0.84 0.52 
Overshoot 𝒊𝒊𝒊𝒊𝒓𝒓 (%) 46.33 84.7 51.29 

Ripple 𝒊𝒊𝒊𝒊𝒓𝒓 (A) 273 412 42.5 
 
6.4. Robustness analysis of controller 
 
From the results of the experiments, it is concluded that swarm intelligence performs much better when paired 

with the PR controller, as compared to with the dual vector controller. This is largely due to the smaller number 

of variables to optimize, thereby providing precision. When considering the use of computational intelligence, the 

aspect of non-parametric statistical tests should be considered. Tests such as the sign test, Wilcoxon test, and the 

Friedman test are important measures of an algorithm’s relative performance [47]. In these tests, the algorithm is 

generally executed multiple times, and is compared to the performance of other algorithms. This may assist in 

determining the statistical significance of one algorithm relative to others. Owing to the nature of this research, 

and the time taken to execute one algorithm, these tests were omitted from this research. 

 
Considering the resonant gains generated for case b, it is observed that GTO produced significantly lower resonant 

gains than both PSO and BA. This can be verified by Figures 6.71 and 6.72, which depict the bode plots of the 

direct and quadrature rotor current controllers when designed using the various techniques. It is evident that in 

both cases, the bat algorithm produces a superior frequency bandwidth to gorilla troops optimization. This may 

degrade the results of GTO during grid frequency perturbations. In general, grid frequencies do not drop by more 

than 3%, which in this case is 1.5 Hz. To analyze the robustness of the designed controllers under the effects of 

grid frequency perturbations, the system was tested at a frequency of 48.5 Hz, which correlates to a frequency 

deviation of 3%. The results obtained are displayed in Table 6.7. From Table 6.7, it is clearly evident that GTO 

produced the best result for all six measurements. Considering both overshoot percentages, PSO came close to 

GTO but fell short. The same can be deduced for the direct rotor current steady-state error. However, for both 

current values, GTO produced a significantly better steady-state ripple to PSO. Hence it can be concluded that 

despite the low frequency bandwidth, the controller designed using GTO is able to produce acceptable results 

even when subject to a grid frequency fluctuation of 3%. 

 
Table 6.7: Summary of results for 10% dip and 3% perturbation using PR control 

 PSO BA GTO 
Steady-state error 𝒊𝒊𝒊𝒊𝒓𝒓 (%) 2 2.66 1.79 

Overshoot 𝒊𝒊𝒊𝒊𝒓𝒓 (%) 31.12 47.36 30.35 
Ripple 𝒊𝒊𝒊𝒊𝒓𝒓 (A) 430.8 16 105.8 

Steady-state error 𝒊𝒊𝒊𝒊𝒓𝒓 (%) 7.99 10.46 0.78 
Overshoot 𝒊𝒊𝒊𝒊𝒓𝒓 (%) 58.98 91.88 57.18 

Ripple 𝒊𝒊𝒊𝒊𝒓𝒓 (A) 408.5 334.5 123.5 
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Figure 6.71: Bode plot of 𝑖𝑖𝑑𝑑𝑑𝑑 using at 10% dip using PR control 

 

 
Figure 6.72: Bode plot of 𝑖𝑖𝑞𝑞𝑑𝑑 using at 10% dip using PR control 

 
6.5. Conclusion 
 
This chapter presented an investigation into the effects of applying swarm intelligence to the design of 

proportional–resonant controllers for control of a doubly fed induction generator subject to unbalanced grid 

voltages. Single-phase voltage unbalances of 5% and 10%, and a phase-to-phase voltage dip of 7.5% were 

investigated. Particle swarm optimization, the bat algorithm, and the gorilla troops optimization algorithm were 

applied and analyzed. The control method implemented was stator flux field-oriented control. The results were 

obtained as steady-state error, overshoot, and steady-state ripple. The results showed that due to the significantly 

reduced number of variables to be optimized, the proportional–resonant controller outperformed the dual vector 

controller. Considering PSO for the 5% voltage dip, the dual vector method produced superior results for the rotor 

direct current but was inferior to the PR controller for the rotor quadrature current. For the Bat Algorithm, the PR 

controller exhibited superior steady-state error and ripple values for both rotor currents. When GTO was applied 

to the dual vector controller, it was observed that the steady-state ripple was significantly smaller than that of the 

PR controller, however, the PR controller showed dominancy in all other instances. 

 

Considering PSO for the 10% voltage dip, the dual vector method produced superior results for the rotor direct 

current but was inferior to the PR controller for the rotor quadrature current steady-state error and ripple. For the 
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Bat Algorithm, the PR controller exhibited superior steady-state error values for both rotor currents. For the dual 

vector method, however, a better overshoot was observed.  When GTO was applied to the dual vector controller, 

it was observed that the steady-state ripple and overshoot were significantly smaller than that of the PR controller, 

however, this was at the expense of a much large steady-state error 

 

Considering PSO for the 7.5% voltage dip, the dual vector method produced superior results with regard to the 

rotor current overshoot but was inferior to the PR controller in terms of steady-state error and steady-state ripple. 

It was observed that for the Bat Algorithm, the dual vector controller outperformed the PR controller in four of 

the six tests, the inferiority occurring in the rotor direct current ripple, and rotor quadrature current steady-state 

error. When applied to the PR controller, the GTO exhibited dominancy with regards to the rotor direct and 

quadrature current steady-state error and steady-state ripple.  

 

Moreover, considering PR control, it was observed that GTO exhibited the best overall results. Furthermore, a 

robustness test of the proportional–resonant controller, in the form of a 3% grid frequency perturbation was carried 

out. The results showed that the gorilla troops optimization algorithm unanimously produced the best solution, in 

terms of all aspects. This indicates the growing potential of the application of such algorithms to controller design. 

It can also be concluded that as swarm intelligence evolves, their application in machine control becomes more 

promising. Another new swarm intelligence technique that should be considered is African vulture optimization 

algorithm [48]. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



135 
 

Chapter 7 : Conclusion 
 
The research work undertaken in this thesis aimed at thoroughly investigating the application of Metaheuristic 

Optimization Techniques to the control of the Doubly Fed Induction Generator. In particular, swarm intelligence 

was considered, and subsequently applied to the control of the DFIG when subject to symmetrical and 

asymmetrical voltage dips. The first chapter of this thesis dealt with the significance of this research, as well as 

any limitations and research questions to be answered. This gave the reader a thorough understanding of the 

remainder of the research work. 

 

7.1. Summary of conclusions 
 
In chapter 2, an in-depth analysis of fourteen swam intelligence techniques were carried out. These techniques 

were Particle Swarm Optimization, Bacteria Foraging Optimization Algorithm, Artificial Bee Colony, Whale 

Optimization Algorithm, Grey Wolf Optimizer, Crow Search Algorithm, Cuckoo Search Algorithm, Squirrel 

Search Algorithm, Shuffled Frog Leaping Algorithm, Sailfish Optimization, Moth Flame Optimization, Firefly 

Algorithm, Bat Algorithm and Antlion Optimizer. Each of these techniques were discussed in terms of inception, 

merits, demerits, and techniques proposed in current literature to mitigate any deficiencies. Upon completion of 

such, it was observed that Particle Swarm Optimization is the most established and researched method. This can 

be attributed to its fast convergence rate. Considering the demerits of PSO, several scholars have proposed 

mitigation techniques to ameliorate such. This is contrary to algorithms such as BFOA, where no demerits and 

subsequent mitigation techniques are recorded in current literature. This does not necessarily mean that the 

algorithm is void of deficiencies, but rather points to the lack of interrogation of these swarm intelligence 

techniques. Further, in chapter 2, an analysis of the application of the relevant techniques to the control of the 

DFIG was analyzed. The results showed that certain algorithms such as PSO and GWO, were applied somewhat 

thoroughly to the control of the DFIG. However, algorithms such as SSA and SFLA are yet to be applied for such 

purposes. Lastly, three well-known swarm intelligence techniques, Particle Swarm Optimization, Artificial Bee 

Colony, and Whale Optimization Algorithm, were applied to three benchmark functions at three dimension 

magnitudes. The results of the tests correlated with theory and indicated the superiority of Whale Optimization 

Algorithm over the others, in terms of exploration, exploitation, and convergence rate. 

 

Chapter 3 provides an insight into the research methodology that was utilized in the subsequent chapters of this 

research. The swarm intelligence techniques considered were Particle Swarm Optimization, Bat Algorithm, 

Gorilla Troops Optimizer, African Vulture Optimization Algorithm, and Whale Optimization Algorithm. The 

relevant equations required to execute each of these algorithms were provided, along with a flowchart, depicting 

the method of implementation. It was observed that PSO is relatively easy to implement, but this is at the cost of 

a poor exploration and exploitation capability. On the contrary, the GTO is a complex swarm technique, which 

undergoes a definite dual position change in every iteration. This will increase the random-access memory require 

for algorithm execution, as well as the time taken to execute the algorithm. However, in doing so, the algorithm 

will exhibit a higher probability of producing a more precise solution. Lastly in chapter 3, a modified Whale 

Optimization Algorithm for exploitation capability and stability enhancement is presented. The proposed WOA 

introduces various modifications to the position update equations of the WOA, as well as a change to the general 
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structure of the algorithm. The aim of such is the mitigate the two common demerits of the WOA: low accuracy 

and slow convergence, as well as to prevent possible local optima entrapment at higher dimension optimization 

problems. The proposed technique utilizes fragments of other conventional and modified techniques which are 

presented in literature. Additionally, a change in the algorithm structured is presented. The proposed algorithm 

was applied to the CEC2019 benchmark functions and compared to various conventional and modified techniques. 

The results show that the proposed algorithm produced the best result in 7 of the 10 functions. Further, the EWOA 

generated the best overall ranking. In addition, the reliability of the proposed method can be validated via 

observation that the poorest ranking of the proposed algorithm was third, lower than any other compared 

algorithm. When applied to the optimal design of a pressure vessel, the proposed algorithm yielded significantly 

superior results to the other tested techniques. However, investigations revealed that the proposed algorithm 

required a significant number of whales to prove superior. Further, based on the structure of the algorithm outlined, 

there could exist instances whereby the whales will undergo a dual position change within one iteration. This may 

put a strain on the RAM of the PC being used, and as a result may not be able to successfully be executed on PCs 

with poor random-access memory. Further, these two aspects contribute the time taken to execute the algorithm, 

which is higher than that of the other compared algorithms. However, this is somewhat compensated for by the 

requirement and subsequent use of a significant lower number of iterations. 

 

In chapter 4, a heuristic approach to optimal crowbar setting and low voltage ride through is presented. The aim 

of this section is the investigate the effect of applying swarm intelligence to the optimization of crowbar protection 

magnitudes, as well as the design of the demagnetizing current injection method and the Linear Quadratic 

Regulator. For this purpose, two swarm intelligence techniques were considered. These were the well-known 

Particle Swarm Optimization, and the recently developed African Vultures Optimization Algorithm. The test 

system was subject to symmetrical voltage dips of 70%, 80%, and 90%. The results of the experiments conducted 

concluded that for moderately severe symmetrical voltage dips, PSO is the preferred optimization technique. 

However, for voltage dips below 80%, the AVOA exhibits far more superior results. In particular, it was noted 

that for the 90% dip, AVOA exhibited a superior DC voltage settling time by a massive 101.8%. Considering the 

Low Voltage Ride Through experiments, it was observed that the Linear Quadratic Regulator, coupled with a 

strong heuristic technique, exhibited unanimous superiority in terms of rotor current and DC voltage transient 

peaks. There also existed dominance with regards to the rotor direct axis steady-state ripple, which gave an 

indication of the stator reactive power performance of the control system. However, the Linear Quadratic 

Regulator produced inferior steady-state error values. This was expected, as the LQR is not well-suited for 

tracking problems. A robustness analysis of the designed LQR was also conducted, whereby the controller was 

subject to a 3% perturbation in grid frequency. Once again, despite the disturbance, the LQR exhibited superior 

transient responses to both the PI control method and demagnetizing current injection method. However, despite 

the LQR providing fault ride through capabilities (whereas the crowbar method does not), it was observed that 

the crowbar method produced superior DC voltage transient settling times.  

 

Chapter five presented the application of swarm intelligence to the control of the DFIG when subject to 

asymmetrical grid voltages. The control method implemented was the well-established dual vector control 

method. The control target attempting to be achieved was constant rotor current. For optimization purposes, three 
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swarm intelligence techniques were utilized. There were across the evolutionary timeline of swarm intelligence. 

The techniques considered were the well-known Particle Swarm Optimization, Bat Algorithm, and the recently 

developed Gorilla Troops Optimization. The test system was subject to single-phase voltage dips of 5%, and 10%, 

as well as a dual-phase voltage dip of 7.5%. The results presented were comprehensive, and included the rotor 

and stator voltages and currents, as well as the rotor direct and quadrature axis positive and negative sequence 

currents. Results were analyzed in terms of steady-state error, overshoot, and steady-state ripple. For the single-

phase voltage dips, it was observed that PSO produced the overall best steady-state error and overshoot of the 

rotor direct axis current. For the same experiments, the GTO exhibited exceptional rotor direct and quadrature 

axis current ripples. However, despite these adequate results, neither of the three algorithms failed to achieve an 

acceptable rotor quadrature axis current steady-state error. This also holds true for the dual-phase voltage dip and 

can be attributed to the algorithms inability to simultaneously optimize eight controller parameters. 

 

Chapter 6 aimed to address to demerits of the dual vector control technique, as presented in chapter 5. For this 

purpose, the optimal design of the Proportional-Resonant controller was suggested. This was based on the premise 

that the PR controller can introduce infinite gain at resonant frequency, and hence achieve a zero steady-state 

error. To ensure equality, for optimization purposes, the same three swarm intelligence techniques applied in 

chapter 5 were utilized. The test system was subject to single-phase voltage dips of 5%, and 10%, as well as a 

dual-phase voltage dip of 7.5%. The results presented were comprehensive, and included the rotor and stator 

voltages and currents, as well as the rotor direct and quadrature axis currents. Results were analyzed in terms of 

steady-state error, overshoot, and steady-state ripple. For the 5% voltage dip, it is observed that GTO produced 

the best result on four out of the six occasions. BA proved superior to GTO with respect to the rotor direct current 

overshoot and rotor quadrature current steady-state error. However, this superiority is minute and negligible as 

compared to the large steady-state ripple produced by BA as compared to GTO. This holds true for both the direct 

and quadrature rotor current. For the 10% voltage dip, it is observed that GTO once again produced the best result 

on four out of the six occasions. PSO proved superior to GTO with respect to the rotor direct current overshoot 

and rotor quadrature current steady-state error. However, this superiority is also minute and negligible as 

compared to the large steady-state ripple produced by PSO as compared to GTO. This holds true for both the 

direct and quadrature rotor current. For the 7.5% voltage dip, the GTO exhibited superiority on five out of six 

occasions, failing only minutely short to PSO with regards to rotor quadrature current overshoot. Furthermore, it 

is observed that for the single-phase voltage dips, GTO is the only algorithm to not be placed last for any of the 

six measurements. This points to a superior stability of GTO. In addition to this, a robustness analysis of the PR 

controller for the 10% voltage dip was carried out. The controller was subject to a disturbance of a 3% grid 

frequency perturbation. The results indicated that the controller designed via the use of GTO produced the best 

results in all six occasions. This indicates the robust nature of the controller, when coupled with a strong heuristic 

technique.  
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7.2. Scope of future work 
 
Upon completion of this research work, it was observed that whilst swarm intelligence has been applied to the 

control of the DFIG, this aspect has not been thoroughly investigated. This holds particularly true for control of 

the DFIG subject to grid voltage anomalies. Wind farms are generally placed in areas where the national grid is 

weak, making voltage unbalances a common occurrence. This research has shown that optimization of established 

techniques via the use of swarm-based Metaheuristic Optimization techniques offer a strong probability for 

optimal performance of such control systems. This is particularly true for recently proposed swarm intelligence 

techniques. Upon completion of this research, the following are the future scope of work to be considered: 

 

• An investigation into the demerits of BFO and SFO and measures to overcome possible demerits. 

• The application of the SFLA, SSA and SFO to the control of the DFIG. 

• The application of the modified swarm-based MOT, which are discussed in this thesis, to the control of the 

DFIG. 

• An investigation into other swarm-based MOT. This is in terms of structure, mathematical modelling, 

shortcomings, advancements, and application to the control of the DFIG. 

• An investigation into physics-based algorithms, evolution-based algorithms, and human related algorithm. 

This is in terms of structure, mathematical modelling, shortcomings, advancements, and application to the 

control of the DFIG. 

• The combining of MOT and thereby creating hybrid algorithms to be applied to the DFIG. This would be for 

the intention of combining the merits of two algorithms and thereby eliminating the demerits of such 

algorithms. 

• Investigation of the effect of swarm intelligence on harmonic elimination in the DFIG. 

• Application of swarm intelligence to other types of controllers, such as sliding mode control and fuzzy logic 

control, for control of the DFIG as well as other application. 
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