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Abstract—Peripheral component interconnect express (PCIe) is 
a high-performance interconnect architecture widely adopted in 
the computer industry. The continuously increasing bandwidth 
demand from new applications has led to the development of the 
PCIe Gen5, reaching data rates of 32 GT/s. To mitigate undesired 
channel effects due to such high-speed, the PCIe specification 
defines an equalization process at the transmitter (Tx) and the 
receiver (Rx). Current post-silicon validation practices consist of 
finding an optimal subset of Tx and Rx coefficients by measuring 
the eye diagrams across different channels. However, these 
experiments are very time consuming since they require massive 
lab measurements. In this paper, we use a K-means approach to 
cluster all available post-silicon data from different channels and 
feed those clusters to a Gaussian process regression (GPR)-based 
metamodel for each channel. We then perform a surrogate-based 
optimization to obtain the optimal tuning settings for the specific 
channels. Our methodology is validated by measurements of the 
functional eye diagram of an industrial computer platform. 

Keywords—clustering, equalization, equalization maps, eye-
diagram, FIR, GPR, HSIO, high-speed links, metamodels, 
optimization, PCIe, post-silicon validation, receiver, signal 
integrity, transmitter, tuning 

I. INTRODUCTION

Post-silicon validation of modern embedded digital systems 
has become a huge task due to the increasing system complexity. 
It requires tens or hundreds of person-hours and needs the 
computing power of hundreds of workstations [1]. A significant 
portion of the circuits to be validated in modern 
microprocessors corresponds to high-speed input/output (HSIO) 
links, for which direct and surrogate-based optimization 
methods, including space mapping, have been employed to 
efficiently tune the transmitter (Tx) and receiver (Rx) 
equalizers [2].  

Peripheral component interconnect express (PCIe) is one of 
the most complex HSIO interfaces and the primary interface for 
a host central processing unit (CPU) to connect with 
input/output (I/O) devices. PCIe has been continuously 
evolving and the new PCIe Gen6 specification, released in 2021, 
has reached a data rate of 64 giga-transfers per second (GT/s). 
However, as transmission speeds increase, undesired channel 

effects such as reflections, crosstalk, jitter, and inter-symbol 
interference (ISI), are more severe, causing the signals to 
become more susceptible to errors [3]. Additionally, PCIe 
channels are bandwidth-limited by default, causing large signal 
attenuation at high frequencies. This generates distortion and 
spreading of the transmitted signal over multiple symbols, 
exacerbating ISI, which can make the signal unreadable at the 
Rx, producing bit errors. The most practical solution to this 
problem is signal conditioning to open the eye diagram [4].  

PCIe specification defines an adaptive mechanism for 
equalization (EQ) to determine the optimum values of the Tx 
and Rx EQ coefficients within a fixed time limit, across the 
allowed channel types. The most widely used current method 
consists of using maps of EQ coefficients, which are obtained 
from massive eye diagram measurements. The EQ maps are 
used to characterize the PCIe link across different channel 
losses and devices. Once the full characterization is completed, 
the best Tx EQ values are selected based on the input of an 
experienced validation engineer. This is a very time-consuming 
process and prone to human errors [5]. Direct measurement-
based numerical optimization approaches have also been 
employed for PCIe EQ tuning [4],[6].  

Machine learning algorithms are useful to build statistical 
models from examples, which are then used to make predictions 
when faced with cases not seen before [7]. Unsupervised 
machine learning algorithms are designed to learn patterns from 
untagged data. On the other hand, supervised machine learning 
models are trained to predict outputs from a given set of inputs. 
The large volume of data generated from typical post-silicon 
testing suggests the application of machine learning techniques 
[8] to identify underlying patterns, such as channel effects on
the analog behaviour of the HSIO link.

In this paper, we first use unsupervised machine learning 
techniques to cluster all available post-silicon data from 
different channels, dividing them into distinct sets of channel 
conditions. We then develop statistical supervised machine 
learning models, based on Gaussian process regression (GPR), 
to predict the eye diagram margins within each data subset. We 
finally optimize the GPR-based models to obtain the optimal 
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tuning settings for the specific channels. Our proposed method 
is validated by measurements of the functional eye diagram of 
an actual industrial computer platform. 

II. K-MEANS CLUSTERING 

Clustering is an unsupervised machine learning approach to 
find subsets, or clusters, of data based on the similarity between 
data points in the same cluster, and dissimilarity with data 
points in other clusters [9]. Clustering methods are divided 
based on how similarity and dissimilarity are measured, and as 
such, can be classified into hierarchical and partitional methods. 
Partitional methods suppose that the dataset can be divided into 
finite clusters by measuring distance.  

K-means is one of the most widely used partitional 
clustering methods. With a pre-defined k number of cluster 
centers (or centroids), it iteratively establishes the centroid 
coordinates and measure the Euclidean distance between each 
data point and each centroid, to group the data points based on 
minimum distance [10],[11]. In our work, we employ k-means 
to cluster margin data points based on channel loss similarities.  

III. GAUSSIAN PROCESS REGRESSION MODELING 

GPR is a non-parametric Bayesian approach to regression.  
Whereas many popular supervised machine learning algorithms 
aim to learn exact outputs for a given set of inputs, GPR looks 
to infer a probability distribution over all possible output values 
of the model. Additionally, GPR is non-parametric since rather 
than calculating a distribution of parameters for a specific 
function, it calculates the distribution over admissible functions 
that fit the data [12]. This is of extreme value for modelling 
non-deterministic data, e.g., obtained from physical 
measurements subject to statistical uncertainty and varying 
operating or environmental conditions [13], as in the case of 
typical post-silicon measurements of eye diagram margins. In 
contrast to the work in [14], where several deterministic 
surrogate models are developed from eye diagram margins 
obtained for a SATA Gen 3 HSIO interface, here we use GPR 
to create non-parametric, probabilistic models based on PCIe 
eye diagram margins data.  

IV. OBJECTIVE FUNCTION FORMULATION AND OPTIMIZATION 

We aim at finding the optimal set of EQ coefficients x* that 

maximizes the eye diagram based on the margin response. We 
follow [4] to define an initial objective function as 
 ( ) [ ( )][ ( )]w hu e e x x x  (1) 

where ew and eh are the width and height, respectively, of the 
eye diagram margins. The eye width and height are functions 
of the Tx finite impulse response (FIR) filter pre-cursor (Cm) 
and post-cursor (Cp) EQ coefficient values (integer numbers), 
contained in vector x. 

Additionally, we need to ensure that the system margin 
response at x* is not too sensitive, i.e., x* should lie in a 
sufficiently flat region of the EQ map space [4]. In order to 
satisfy this requirement, the four margin responses around u(x*) 
must be at least 80% of the value of u(x*). 

The new optimization problem can be defined through a 
constrained formulation, such that the optimal set of 
coefficients maximizes the system response without violating 
the lower bound of 0.8u(x*) in the vicinity, 
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A more convenient unconstrained formulation can be defined 
by adding a scaled penalty term, as 

 
Fig. 1. K-means clustering forms 3 clusters of eye diagram margins area values, 
divided by low-, mid-, and hi-loss channels. Each colored dataset is settled into 
one cluster segment. Cluster centroids are also indicated. 
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Fig. 2. Comparing the resultant GPR models responses versus actual 
measurements across all possible channels and Cm/Cp combinations: a) cluster
#1 (low-loss), b) cluster #2 (mid-loss), c) cluster #3 (hi-loss). See Fig. 1. 
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where x(0) is the starting point and L(x) is defined as 
 ( ) max{0, max{ ( )}}L x l x  (5) 

Our unconstrained objective reduces to 

 
* arg min ( )U

x
x x  (6) 

We aim at finding the optimal set of EQ coefficients values 
x* by solving (6) using the gradient-free computationally 
efficient direct-search optimization method Nelder-Mead [15]. 

V. RESULTS 

We first cluster all available post-silicon data across different 
channels, dividing them into distinct sets of channel losses. We 
infer the amount of losses by using an intermediate parameter 
(post-cursor estimator) from the microcontroller algorithm 
inside the CPU, which follows the trend of the channel loss. 
After applying the K-means clustering algorithm, we are able 
to cluster all margin data points (area of the eye diagram 
margins) based on channel loss similarities, creating the three 
clusters shown in Fig. 1.  

Then, the clustered data points are used to develop three GPR 
models, with the equalization coefficients as inputs and the area 
of the eye diagram margins as output. We evaluated the 

accuracy of the obtained GPR models by comparing with actual 
measured responses, using an average relative error defined as 
in [14]. The relative error for cluster 1 and 2 was 25%, and the 
error for cluster 3 was 30%. Fig. 2 shows the inherent large data 
variability, which causes these high average relative errors; 
however, it is also seen in Fig. 2 that the resultant GPR models 
are able to follow the overall trends of the actual measurements. 
While these models could not be regarded as highly accurate, 
they are good enough to perform effective and inexpensive 
surrogate-based optimization (SBO). 

We next perform a SBO with these GPR models using the 
formulation in Section IV, to obtain the optimal tuning Tx 
equalizer settings. Fig. 3 shows the EQ maps of one of the mid-
losses PCIe lanes (16.8 dB at 16 GHz) considering all Tx FIR 
filter Cm and Cp feasible combinations, comparing the position 
of the solution obtained using the current method against the 
position of x* obtained from proposed methodology. It is 
evident that x* obtained with the proposed methodology is in a 
more suitable region of the EQ map space and better satisfies 
the criteria of the four margin responses around u(x*) to be at 
least 80% of the value of u(x*). 

Finally, we validate the SBO results by measuring the PCIe 
Gen5 link Rx inner eye height/width at x* on the real validation 
platform with a PCIe Gen5 test card. The results, shown in Fig. 
4, indicate an improvement of 20% on eye diagram area as 
compared to the tuning settings with the current method, 
demonstrating the effectiveness of our approach. Moreover, a 
significant time reduction in post-silicon validation is achieved 
with the proposed new methodology. While the current method 
requires days of effort on data collection and EQ maps analysis 
for a complete optimization (prone to human errors), the 
proposed new method can be completed in a few hours. 

VI. CONCLUSION 

We proposed an SBO approach for PCIe Gen5 link 
equalization based on a suitable objective function formulation 
to efficiently tune the Tx FIR filter coefficients to maximize the 
area of the eye diagram margins and successfully comply with 
the PCIe specification. We use machine learning techniques to 
cluster all available post-silicon data from different channels 
and feed those clusters to a GPR-based metamodel for each 
channel. The optimized EQ coefficients were validated by 
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Fig. 3. PCIe lane (16.8 dB) EQ map Tx FIR filter pre-cursor (Cm) and post-
cursor (Cp) values. Comparing the solution found x* by the proposed 
methodology (purple marker) against that one found by the current method
(pink marker): a) eye width EQ map, b) eye height EQ map. 

 
Fig. 4. PCIe lane (16.8 dB) eye diagram margins comparing the proposed 
methodology against the current method. 



measuring the eye diagram margins of the physical system, 
demonstrating a significant increase in eye diagram margins 
area and accelerating the typical long time for EQ tuning. 
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