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Chapter 1. Introduction

1.1 Aim of this work

This work carries out an analysis of quantitative proteomics data, using three different
data experiments and proteomics approaches:

• In Chapter 3, the early hypoxic response in the cerebral cortex of rats, submitted to
two different hypoxic models is evaluated using an isobaric labeling quantification
technique (Tandem mass tags or TMT).

• In Chapter 4, proteomic biomarkers of polycystic ovary syndrome (PCOS) in plasma
are evaluated using a data independent acquisition proteomics approach (SWATH).

• In  Chapter  5,  a  public  data  set  (iprg2015)  is  reanalyzed  using  the  label-free
proteomics approach by means of different software pipelines, with the objective of
setting up an optimized strategy for label-free quantification and also presenting
the strengths and limitations of this particular technique. 

Additionally, in Chapter 2, the different software and hardware elements used in this work
are described, composing a fully functional bioinformatics platform for proteomics analysis.
Also, three appendixes have been included at the end of this work, containing methods,
pipelines and code used in Chapter 4 (Appendix 1 and 2) and Chapter 5 (Appendix 3).

The analysis of the aforementioned data sets have allowed an exhaustive overview of the
present state of the art of quantitative proteomics, both in terms of bioinformatics analysis
and  biological  interpretation  of  the  results  obtained.  As  it  will  be  shown  in  the  next
sections,  the  three  techniques  chosen  here  represent  the  most  popular  and  recent
approaches to unravel the complexity of protein functions in living organisms, what has
been recently described as “Next-generation proteomics” (1).

1.2 Present situation of proteomics

Proteomics  can  be  defined  as  “a  comprehensive,  quantitative  description  of  protein
expression and its changes under the influence of biological perturbations such as disease
or  drug  treatment”  (2).  With  a  direct  relationship  with  the  development  of  high
performance liquid chromatography (HPLC) and mass spectrometry (MS)  (3), proteomics
has experienced an intense development in recent years (4). In a given sample (or several
samples to campare), the expression levels of several thousand of proteins can now be
assessed just in a few hours using the approach called “shotgun proteomics” (5). 

In contrast to “top-down” proteomics (6), where complete proteins are analyzed, “bottom-
up” proteomics approach is based in the previous digestion of complex protein mixtures
using  enzymes,  the  most  commonly  used  being  trypsin  (7).  The   sample  is  then
transformed from an initially complex mixture of thousands of proteins into an even more
complex mixture of peptides. Using the “bottom-up” approach, there are also two possible
alternatives: “shotgun” and “targeted” proteomics,  where the former tries to identify all
peptides present in the sample, while the latter only focuses on certain peptides:  the ones
mapping to a sub-set of previously chosen proteins. The “shotgun” approach is therefore
used in studies where the aim is to analyze the greatest possible number of proteins, while
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the “targeted” technique studies preselected lists of  proteins of  interest (ranging from
several dozens to a few hundreds (8)).

At the present moment, “top-down” proteomics is becoming more popular  (9), but still
faces  several  important  limitations  (10):  both  HPLC  and  mass  spectrometry  devices
present limitations in terms of accuracy for a proper analysis of complex mixtures of whole
proteins (without enzymatic cleavage).

On the other hand, “targeted” proteomics is used for the study of a limited number of
proteins contained in a given sample. Using a mass spectrometry technique known as
“mass-reaction monitoring” (MRM), the highest levels of accuracy and reproducibility for
protein  quantification  are  produced  among  proteomics  techniques  (11,12),  being  also
capable  of  dealing  with  a  high  number  of  samples.  All  these  characteristics  make  of
“targeted” proteomics an excellent approach to the accurate quantification of a limited set
of proteins, but not for discovery stages, where a complete overview of the protein levels
is desired.

Finally, “shotgun” proteomics (also known as “discovery” proteomics), where thousands of
proteins can be identified (and quantified) at once from a given sample, is by far the most
popular approach nowadays. Once the sequence of the vast amount of peptides generated
after  enzymatic  cleavage  (usually  hundreds  of  thousands)  is  identified  using  mass
spectrometry and protein databases, the information needs to be integrated back into
proteins. This is achieved using different bioinformatics algorithms (13). An overview of the
different steps involving a typical “shotgun” experiment is shown in Figure 1.1.

The three methodologies presented in this work (Chapters 3 to 5) correspond to “shotgun”
proteomics  experiments;  thus,  the content of  this  thesis  will  deal  exclusively with  this
approach.

Figure 1.1 Overview of a typical proteomics work-flow, used in “shotgun” proteomics. Proteins
are digested (A) using some enzyme (trypsin usually) and processed in a HPLC-MS system (B
and C). After a MS-MS analysis, the sequence of the peptides analyzed is identified using protein
databases and bioinformatics algorithms (D). The sequenced peptides are then integrated to
reflect  the  sequences  of  the  original  proteins,  using  once  more,  different  bioinformatics
algorithms (E). 
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1.3 Quantitative proteomics strategies

Mass spectrometry based proteomics, at the beginning of the 2000’s, provided general
information about the proteins contained in certain organisms or tissues; hence, the so
called “proteomes” consisted essentially in large listings (from several hundreds up to a
few thousands) of proteins (14–16) contained in one sample. Studies providing quantitative
information were scarce and used rudimentary approaches based on peptides counts (17),
being at this time when several quantification methods started to be developed (18): the
analysis  of  raw peptide  signal  intensities  and  also  the  use  of  stable  (non-radioactive)
isotopes labels.  Both methods allowed the development of techniques that are widely
used these days.

Several classifications and terminologies have been proposed for quantitative proteomics
(19–21). In this work, the terms and classification established by Schuber et al. (22) in their
2017 review have been followed, with a few modifications (Figure 1.2). 

Figure 1.2 Quantitative proteomics approaches (in squares) with several examples (in circles) of the
more significant techniques in each case. Targeted proteomics and shotgun (or untargeted) proteomics
represent  the  main  subdivision.  The  untargeted  approaches,  also  known as  shotgun  proteomics  or
discovery proteomics, comprise labelled and label-free techniques. Terminology has been adapted from
Schuber et al.  (22), using throughout this work the term “shotgun” proteomics instead of “discovery”
proteomics.

The majority of the quantitative techniques exposed here produce a relative quantification:
the amount of a given protein is displayed as a ratio or fold change between two samples
or sets of  samples. Several  strategies allow the adaptation of  some of the techniques
shown to absolute quantification (23), using peptides labeled with stable isotopes, but the
use of relative quantification is still the predominant approach.
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Following the summarization used in Figure 1.2, the different quantification techniques in
proteomics are:

I. Targeted proteomics: a subset of the proteins contained in a particular sample
are chosen for analysis before the acquisition. Up to a few hundreds of proteins can
be analyzed. The two main techniques are Mass Reaction Monitoring (MRM)  (24)
and  Parallel  Reaction  Monitoring  (PRM)  (25),  the  former  being  the  traditional
approach, where a MS1-MS2 transition is selected for quantification purposes, while
the  later  is  a  modern  re-implementation,  based  on  high-resolution  and  high-
precision  mass  spectrometry,  where  not  only  one transition  is  recorded,  but  all
product  ions  are  analyzed.  That  makes  PRM capable  of  both  quantification  and
identification of peptides at acquisition time.

II. Shotgun  proteomics (Discovery  proteomics):  peptides  are  analyzed  without
previous knowledge of the proteins present in the sample.  

A) Labelled  quantification:  a  synthetic  reagent  or  “label”  is  introduced  in  the
sample to produce labelled peptides or proteins.

1) Metabolic isotopic labeling: cells are grown in culture media supplemented
with light and heavy versions of an amino acid, until all amino acids have
been replaced by the heavy versions of the amino acid. The most popular
method is know as SILAC (“Stable Isotope Labeling by Amino Acids in Cell
Culture”) (26,27).

2) Chemical isotopic labeling: chemical reagents are used to derivatize peptides
or  proteins  in  one  sample.  To  this  category  belong,  for  instance  18O
(Proteolytic  18O-labeling  (28)),  AQUA  (Absolute  quantification  of  proteins
(29)) and ICAT (Isotope-coded affinity tags (30)).

3) Isobaric tagging: multiplexed tags with the same total weight (“isobaric”) at
MS1 level but with different fragmentation patterns at MS2 are introduced in
the samples. Commercial  reagents like TMT (Tandem Mass Tags  (31))  and
iTRAQ (Isobaric tags for relative and absolute quantitation (32)) are the most
used.

B) Labelfree (label-free) quantification: the quantification is performed without the
use of labels added to the samples. The intensity of the precursor ions (peptides
at MS1), the combination of precursor and fragment ions (transitions) intensities
or simply peptide counting (spectral counting methods like emPAI (17)) are used
for protein quantification. 

1) Data  dependent  acquisition  (DDA)  label-free  quantification:  the  precursor
ions (peptides) intensities are used as a direct measure of the concentration
of proteins in a sample  (33). Although not the only DDA label-free method
(spectral counting methods are also in this category),  the tag “label-free” is
commonly  used  by  the  proteomics  community  to  refer  to  this  particular
approach.

2) Data  independent  acquisition  (DIA)  label-free  quantification:  the  most
popular  approach  nowadays  is  SWATH  quantification  (34),  where  a
combination of  a DDA library  and transitions acquired in  intervals  of  m/z
(mass to charge) windows are used for accurate and reproducible protein
quantification.   
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In  this  work,  we  have  used  data  obtained  using  three  of  the  quantitative  techniques
described above:

• Chapter 3, isobaric tagging using TMT

• Chapter 4, data independent acquisition (DIA) label-free quantification (SWAT)

• Chapter 5,  data dependent acquisition (DDA) label-free quantification

As shown in Figure 1.3, the two most popular approaches presently are isobaric tagging
and  label-free,  whereas  the  emerging  SWATH  analysis  (sometimes  referred  as  Next
Generation Proteomics (35)) is gaining ground. These three technologies will be covered in
detail in the next chapters.

Figure 1.3 Scientific publications related to several terms in quantitative proteomics found in Pubmed
between 2001 and 2019 (this last year up to September). Chemical isotopic labelling was searched using
the terms 18O, Icat and Aqua. Isobaric labelling was searched by TMT and iTRAQ terms. Labelfree was
searched using all the combinations of the term (“label-free”, “labelfree” and “label free”), similarly to
MRM and SRM for the targeted approaches. Metabolic isotopic labeling was represented only by its most
popular approach, SILAC. Finally, SWATH closes the list of the techniques compared.
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Chapter  2.  Setting  up  a  Proteomics  Analysis
Platform

2.1 Abstract

The complete infrastructure needed by a proteomics platform is described in this chapter.
Particularly, the tools needed for the production of this thesis are: operative systems and
virtual  machines,  scheduling  software,  protein  identification  and  quantification  tools,
statistical and tertiary analysis software and a documentation system. In all cases, free of
charge alternatives have been used.

2.2 Introduction

The  analysis  of  millions  of  mass  spectra  generated  in  a  quantitative  proteomics
experiment usually requires an advanced computational infrastructure, both in terms of
hardware and software. In many cases, budget and resources limitations play an important
role  in  the ability  to  perform advanced studies  with  the  available  data.  In  proteomics
facilities,  the  purchase  of  very  expensive  equipment  is  not  always  backed  by  a  good
enough data analysis infrastructure (computers and software),  despite the fact that an
adequate bioinformatics study is a limiting factor in the quality of the results obtained. 

Here, a platform capable of dealing with the analysis of proteomics data is described. A
single computer will be used and all software installed will be available at no charge: in
some cases "freeware" (with commercial license but freely available) and in most cases,
non-commercial and open source (1).

In  this  chapter,  not  all  the  possible  proteomics  techniques  will  be  covered  using  the
infrastructure described, but many of the most popular proteomics techniques in use these
days  can  be  analyzed  with  the  different  tools  discussed.  Moreover,  all  the  software
described here will be used, in one way or another, in the different chapters of this thesis.

2.3 General infrastructure

First of all, the computer used has an Intel  i7-8700 CPU (3,20 GHz, 6 cores working in 12
threads), with 32 Gb of RAM. The disk storage available sums up to 2 Tb.

The operative system of choice is Ubuntu 18.04 LTS. One of the most popular Linux  (2)
distributions is Ubuntu, a Debian based distribution that has become sort of a standard in
bioinformatics.  Two  tools  distributed  with  Ubuntu,  will  be  of  great  importance  in  this
analysis platform:

• R software (3), for statistical analysis and plots generation, alongside with RStudio
and Bioconductor (4) and all the necessary modules.

• Mono  (5),  an open source implementation of  Microsoft's  .NET Framework, allows
running on Linux some Windows native software.
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2.3.1 Job scheduling system: Slurm

In scientific analysis, is quite common that long and intensive informatics jobs are running
in the same system, being that system a cluster of many computational nodes or a single
computer. In proteomics, a single experiment takes several hours to be analyzed even in
the most powerful computers. We have used "job (or task) scheduling systems", in order to
share the resources of the system in an appropriate manner and queuing jobs waiting for
available resources. Typically found in computing clusters, job scheduling systems are also
very useful  in  single  computers,  offering the capability  of  assigning certain amount of
processors and memory to a given analysis,  queuing the jobs that cannot get enough
resources. There are many job scheduling systems (Moab-Torque, PBS, LSF,..) but Slurm (6)
has become very popular lately, being in use in 60% of the top 500 super-computers in the
world  (7). Slurm is a free and open-source job scheduler for Linux and Unix-like kernels,
and it is easy to install and use . It is a command line application that is usually launched
in the form of scripts; those scripts consist in two parts: a header with specifications about
number of tasks, processors, memory, paths,.. and a body with the instructions to execute
when the job has been allocated resources (Figure 2.1).

Figure 2.1 Slurm schedules jobs and assigns resources to them. (A) Command line Slurm output, where
four jobs have been scheduled: one of them is running (ST state as "R") and the other three are waiting
for resources (ST state as “PD”, with the reason being "Resources" or "Priority"). The working job has
been running for almost 11 hours.  (B)  A  Slurm script,  consisting of  a header (in  red,  with the first
character being a "#") with job parameters and a body (in black), that here corresponds to the execution
of the MaxQuant software through the Mono framework.

2.3.2  Virtualization: VirtualBox and Docker

Virtualization  systems  have  become  increasingly  popular:  the  allow  installing  an
encapsulated  operative  system  (guest)  into  the  main  operative  system  (host),  with
software installed and working in the guest operative system. The two main reason for
using such virtualization systems are:

• Some software applications are very complicated to install and configure, so one
option to distribute them is to install the software into a guest operating system and
distribute an image of this operating system. In this way, it is possible having a
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complete  reproducible  work-flow:  the  software  will  work  in  the  exact  same
conditions in all the instances of the same virtual machine.

• Many applications are nor compatible with some operating systems. On Linux is not
possible  running  some  Windows  applications,  despite  systems  like  Mono.  Using
virtualization, it is possible to run a Windows application inside a Windows virtual
machine working in a Linux host. 

Several  virtualization  systems  are  available  for  free,  being  the  most  popular  Oracle
VirtualBox (8), a proprietary application that can be used for free.

One disadvantage of the virtualization systems is that the host and guest systems have to
share the computational resources. To overcome this, a more flexible and efficient system
has been developed: the containers. Containers work in a similar way to virtual machines,
encapsulating an operative system and its applications, but are smaller and consume less
resources. With containers, though, there is no real virtualization: a Windows container can
not work on a Linux host. Namely, many Windows applications can be adapted, with a lot
of work in some cases, to work in a Linux system: once the work is done, they can be
encapsulated in a Linux container and distributed to Linux systems.

The most popular  system of  containers  is  Docker  (9).  It  is  widely used in all  areas of
bioinformatics (10), and it is going to be the preferred option here over the use of virtual
machines. "Dockerized" applications are shared in a public repository (Dockerhub) in the
form of "images", downloaded by Docker and run in form of containers.  Docker allows
linking directories inside the container with directories in the local machine, allowing in this
way directly work on locally located files and folders.

Docker has been used in three different ways throughout this thesis (Figure 2.2):

1) By means of a local console; this way allows a direct access of a program inside a
container from the command line: Proteowizard has been used in this way.

2) In interactive mode; this way is very convenient when several programs are to be
inspected and used: several applications of the Trans-Proteomic Pipeline have been
run inside an interactive console.

3) Running a web server and re-directing the output to a local port; this way allows the
local use of complex web applications without installing them: the Trans-Proteomic
Pipeline has also been used in this way.

Only in one case a virtual machine has been used in this platform: Skyline can not be
adapted (at the moment of writing this document) to work on Linux, being the only option
for  running Skyline on a Linux system the use of  a Windows host system in a virtual
machine (inside VirtualBox in this case).  
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Figure 2.2 The three ways in which Docker has been used in this work: local console, interactive mode
and as web server..

2.4 Proteomics software

2.4.1 Vendor formats converter: Proteowizard

The raw data produced by mass spectrometers is  delivered in the form of  proprietary
formats, most of the times binary and not accessible by third party software. Some of the
tools in this platform accept those proprietary formats, but other cannot work with them.
In  those  cases,  an  intermediary  file  format,  particularly  a  community  open  format,  is
needed to analyze the data generated by the mass spectrometer. Such formats (mzML for
raw data) are efficiently produced using an application named Proteowizard (11).

Proteowizard takes the files in the proprietary format and translates them into the mzML
format,   usable  by  most  of  the  proteomics  analysis  pipelines.  This  software  can  also
perform mass spectra peak integration, necessary for some software to quantify. Due to
the fact that vendor software libraries work on Windows systems, Proteowizard needs to be
adapted to work on Linux computers using Wine (12), a compatibility layer able to running
Windows applications on Linux, BSD and macOS. Adapting Proteowizard for running on
Linux  systems  is  not  straightforward,  so  the  most  convenient  way  for  using  this  is
downloading a Docker image and running locally the corresponding container.

2.4.2 Identification and quantification software

In the several chapters of this thesis, several software applications are going to be used for
protein  quantification:  Maxquant  (13),  Trans-Proteomic  Pipeline  ,  Skyline  (14),  OpenMS
(15), OpenSwath (16) and Proteome Discoverer (17).

The differential characteristics of these three software applications are the following:

• Maxquant  is  very  well  suited  software  for  labeled  and  unlabeled  proteomics
quantification. It is aimed to Data Dependent Acquisition (DDA). Recently ported to
Linux  (18) using the Mono framework, can run using a graphical  interface or  in
command  line.  This  last  feature  makes  Maxquant  is  especially  suited  for  high
performance computing (HPC) using Slurm as job scheduler. 

• The Trans-Proteomic Pipeline is a mature set of applications that enables working
with  several  search  engines,  integrating  the  results  into  a  single  search.  This
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platform has been used in this  work for  the generation of  a spectral  library for
Swath  quantification.  It  can  be  directly  installed  on  Linux  but  is  a  long  and
complicated process. A lot more convenient is using its official Docker image, that
points its web server to our host Linux system.

• Skyline is the software of reference for targeted proteomics (MRM), but it is also
used for DDA and DIA. In this work, has been tested for Swath quantitation. Provides
a  powerful  graphical  interface  to  explore  transitions  associated  to  peptide
assignments.

• OpenMS: is  an open-source software C++ library (+ python bindings) for  LC/MS
data management and analyses. It has been extensively used in this work in Swath
analysis and a one of the pipelines in data-dependent label-free quantification.

• OpenSwath: set of programs aimed to Swath analysis, recently integrated as part of
the OpenMS project.

• Proteome Discoverer:  integrated  platform for  identification  and  quantification  of
proteins.  It  is  proprietary  software  and can only  be  run on  Windows.  Also,  it  is
limited  to  data  generated  by Thermo Fisher  Scientific® instruments.  The  open-
source alternatives discussed here provide a complete alternative to its use.

2.4.3 Quantitative and statistical analysis

Quantitation software produces a list of proteins with intensity values associated. In order
to  organize  the  information,  normalize  signals  and  produce  meaningful  comparisons
between the various phenotypes studied, several solutions have been developed. Some
software platforms (like Proteome Discoverer) include this type of analysis as the final part
of their pipelines. In the case of Maxquant, a companion application named Perseus (19),
reads  the  output  of  Maxquant  and generates  this  kind  of  analysis  (and several  other
features  like  time-series  analysis,  cross-omics  comparisons  and  multiple-hypothesis
testing).  Finally,  several  other  applications  have  been  developed  in  the  Bioconductor
project,  allowing  the  import  of  different  quantification  pipelines  (Proteome Discoverer,
Maxquant,  Openswath,  OpenMS,  Skyline  among  them).  Some  examples  of  these
Bioconductor packages are  MSStats  (20), DEqMS (21) and DEP  (22). The three of them
have been used in this  work, testing their  performance with data-dependent label-free
quantification. 

2.5 Tertiary analysis

Tertiary analysis, a term popularized in genomics  (23,24), refers to the procedures that
allow biological interpretation of the results obtained with proteomics techniques. In this
way,  the  proteins  that  have been found differentially  expressed within  samples  under
study,  may  be  associated  with  specific  biological  processes.  For  elucidating  such
relationships,  several  approaches  have  been  developed:  gene  set  enrichment  (25),
pathway mapping  (26), cluster analysis  (27), literature annotations  (28) and ontologies
(29) are among them.

Many  of  these  applications  can  be  used  through  web  interfaces  publicly  available  in
internet:  some  examples  are  Toppgene  (30),  Kegg  (31),  AmiGO  (32) or  PubMed  (33).
Another important resource for tertiary analysis, is the Bioconductor  (34) project. It does
not only allow accessing hundred of proteins,  genes and annotation databases, but to
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directly use the information stored in those data bases and analyze it,  using powerful
statistical methods stored in libraries within the R project.

One  important  consideration  can  be  made  here:  the  use  of  publicly  available  data,
accessed directly from internet, allows the remote access to huge data bases (some of
them with  Terabytes  of  data  (35))  without  the  need of  having  the  information  locally
available. Only in the case of intensive use of the information, the local install of those
databases may be evaluated.

2.6 Reporting and documentation

The  last  step  of  any  bioinformatics  pipeline  is  reporting  the  results  obtained  in  some
adequate way. Traditionally, documents redacted using word processors (Word, LibreOffice
Writer)  with the description of  the pipelines and spreadsheets (Excel,  LibreOffice Calc)
containing the results have been employed for this purpose.

More  recently,  a  new  paradigm  has  been  introduced  by  the  introduction  of  Jupyter
Notebooks (36) for Python (and its R counterpart with R Notebooks). The system chosen to
analyze  a  significant  part  of  the  work  exposed  in  this  thesis,  using  RStudio  for  the
generation  of  R  notebooks,  is  designed  as  a  complete  integrated  development
environment:  the  code  and  the  documentation  are  integrated  in  the  same  working
environment,  as  well  as  code  execution  and  results  production.  When  finished,  these
notebooks can be exported using different formats, including html for web visualization or
pdf documents with high quality.  

While long lists of results are still reported as spreadsheets documents for convenience,
the rest of information produced in a bioinformatics pipeline can be reported into a single
document: the three Appendixes included at the end of this thesis have been completely
built using R notebooks. 

Another advantage of using R Notebooks is the fact that all the code and algorithms used
in some study are shown in a completely transparent way and, additionally, the pipelines
generated  can  be  totally  reproduced  if  needed:  full  reproducibility  in  bioinformatics
pipelines can be easily achieved in this way (37). 
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Figure 2.3 Screenshot of RStudio while elaborating an R Notebook used in this work.
 

2.7 Conclusions

When  complex bioinformatics  analyses  are  performed,  a  complete  informatics
infrastructure  is  needed,  both  in  terms  if  software  and  hardware.  The  informatics
infrastructure,  although usually  hidden into the materials  and methods sections in  the
literature, is essential for the development of a correct bioinformatics work . This does not
mean that exceptional investments should be done: the complete infrastructure described
in this chapter amounts for less than 1,000 euros, hardware and software included. That is
achieved thanks to the intensive employment of free of use software, thus reducing costs
exponentially. An additional fact that should be taken into account is that this software is in
many cases open source, with the advantages in terms of transparency and quality that
this represents.
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Chapter  3.  Isobaric  labeling  quantification:
early hypoxic response in the cerebral cortex

In  this  chapter,  the  main  steps  followed  in  the  analysis  of  a  TMT labeled  proteomics
experiment are detailed  using the data and methods in our study “Comparative proteomic
study of early hypoxic response in the cerebral cortex of rats submitted to two different
hypoxic models”, issued in the  Proteomics - Clinical Applications publication. Although a
complete description is going to be given in the Materials and Methods section, the main
focus of this chapter is the Bioinformatics analysis and the tools and algorithms used to
unravel  the  biological  meaning  of  the  mechanisms  at  work  in  the  cerebral  hypoxia
evaluated in the brains of the specimens used in this study.

3.1 Abstract
In “Comparative proteomic study of early hypoxic response in the cerebral cortex of rats
submitted to two different hypoxic models”, we analyzed and compared the cortical brain
proteomic  profiles  of  two  different  severity  models  of  cerebral  hypoxia  in  rats  (HH:
hypobaric hypoxia, HHI: ischemia followed by hypobaric hypoxia) with respect to a control
group, in an attempt to describe the alterations of the early molecular hypoxic adaptive
response underling each one. The main technology used was Mass Spectrometry and TMT
(Tandem mass tags), chemical labels that allow the relative quantification of proteins in
complex biological samples.

Altogether,  339  proteins  were  confidently  quantified,  99  of  them  showing  significant
variations in the hypoxic conditions with respect to the control. The HHI model presents a
global  effect  of  protein  down-regulation  while  HH produces  an  overall  increase  of  the
protein levels.  While HH mainly affecting oxidative and energetic metabolism, HHI also
interferes  with  synaptic  transmission,  neurotransmitter  secretion,  substantia  nigra
development and triggers apoptosis through mitochondrial pathway.

3.2 Introduction
Decline  or  complete  deprivation  of  oxygen flow to  brain  and posterior  re-oxygenation
represent a global health issue, as occur after an episode of hypobaric hypoxia or in the
cerebral ischemic diseases (1). Given that the decrease or lack of oxygen characterizes all
these illnesses, they share several molecular hallmarks: oxidative and nitrosative stresses
(2),  excitotoxicity  (3) or  apoptotic  and  necrotic  neuronal  death  (4).  Nevertheless,  the
available data point out to specific patterns of these molecular responses depending on
the multi-factorial aetiology, duration and severity of the hypoxic insult(5). Certainly, these
variables  define  and  modulate  the  type  of  hypoxic  adaptive  response  as  well  as  the
hypoxic  damage,  although the  specific  molecular  pattern  underlying  each ones  is  still
scarcely known. In the present work, we propose a quantitative analysis and comparison
using isobaric labeling (TMT) of the proteomic profiles of two cerebral hypoxic models of
different severity and scope, both simulating brain hypoxic pathologies: high altitude and
cerebral ischemic disease.
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3.3 Materials and Methods

3.3.1 Sample preparation from animal specimens

Our  study  has  been  performed  on  15  adult  male  Wistar  rats  provided  by  Harlan
Laboratories (Envigo) and weighing 350 g each, kept under standard conditions of light
and temperature and allowed  ad libitum access to food and water. All procedures were
performed in accordance with the EU Directive 2010/63/EU (2010), reviewed by the Ethics
Committee of the Spanish Council for Scientific Research, approved by the Committee of
Bioethics of the University of Jaén (Spain), and comply with the Uniform Requirements for
manuscripts submitted to biomedical journals.

Animals were distributed into three different groups (n=5 per group), one for each hypoxic
model  (HH:  hypobaric  hypoxia;  HHI:  ischemia followed by hypobaric  hypoxia)  and the
control group (sham animals under normobaric normoxic conditions). 

3.3.2 Hypoxic models

We developed two experimental models of oxygen deprivation with different degree of
severity:

1) A gentle model of hypobaric hypoxia (HH) using a slight modification of a previously
published  procedure  by  down-regulating  the  environmental  O2  pressure  to  a  final
barometric pressure of approximately 300 hPa inside a hypobaric chamber. The rats were
placed in the hypobaric chamber in which the air pressure was controlled by means of a
continuous vacuum pump and an adjustable inflow valve. The chamber was also provided
with a manometer to check the experimental altitude during the process. The conditions,
simulating an altitude of  9,144 m (30,000 feet),  were maintained for  1 h.  Ascent and
descent  rates  were  kept  below  300  m/min  (approximately  1,000  feet/min).  After  the
hypoxic period, the return to normobaric normoxic conditions spanned 30 min.

2) A more severe model of cerebral ischemia followed by hypobaric hypoxia (HHI), which
consists of unilateral left common carotid artery occlusion followed by a hypoxic stress for
a predetermined time. This model has been successfully applied both to neonatal  (6,7) ,
and adult  animals  (8,9)  and consists  on  a  slight  modification  of  the  Levine/Vannucci
model. Animals recovered for 2 h after surgery, were submitted to hypobaric hypoxia as
previously described. More specifically, rats were anesthetized with ketamine (100 mg/Kg
body weight, i.p.) and xylazine (5 mg/Kg body weight, i.p.). Then, we proceeded to the
isolation, ligation, and sectioning of left common carotid artery. Animals recovered for 2 h
after surgery, and were submitted to hypobaric hypoxia as previously described.

Body temperature was monitored and maintained throughout all the procedures. In both
HH and HHI animals were killed intermediately after the hypobaric chamber was opened.
Sham animals (controls) were submitted to surgery without vessel  sectioning and then
kept in the chamber under normobaric normoxic conditions.

3.3.3 Protein extraction

After HH or HHI the left-brain cortices from animals of all experimental groups including
controls were extracted and processed according to the following procedure: 0.1 g of the
cortices were homogenized with 1.5 mL of extraction buffer pH 8.0 containing 8 M urea, 20
mM dithiothreitol (DTT), 100 mM Tris–HCl, 0.75 mM phenylmethylsulfonyl fluoride (PMSF),
and 4% 3-[(3- cholamidopropyl)-dimethylammonio]-1-propane sulfonate (CHAPS). For each
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experimental group, there were three replicates of the homogenates, each replicate being
made up with a pool of the left-brain cortex from five rats. Proteins were extracted in this
buffer for 60 min on ice (the samples were moderately shaken in a vortex every 15 min)
and  afterwards  were  centrifuged  at  10,000  ×g  for  15  min  at  4  °C.  The  protein
concentration  of  the  supernatants  was  measured  using  the  CB-XTM Protein  Assay  (G-
Biosciences, St Louis, USA).

Lessening  of  detergents  from protein  extraction  buffer  was  carried  out  using  100mM
triethylammonium bicarbonate (TEAB) by ultrafiltration (millipore 3k)  during 30 min at
12500rpm and precipitation (BioRad Protein Sample Cleanup). Isobaric Label Reagent Set
(Thermo  TMTsixplex™)  was  performed  following  the  manufacturer’s  instructions,  and
followed by desalting (100 mg C18 cartridges, Schalau).

3.3.4 LC/MS/MS analysis

Peptides were scanned and fragmented with the LTQ Orbitrap mass spectrometer (Thermo
Fisher Scientific) equipped with a nano UHPLC Ultimate 3000 (Dionex-Thermo Scientifics).
Chromatography conditions were: Mobile phase solution A: 0.1% formic acid in ultrapure
water;  Mobile  phase  solution  B:  80%  acetonitrile,  0.1%  formic  acid.  Chromatography
gradient  was  performance in  C18  nanocapillary  column (Acclaim PepMap  C18,  75  um
internal diameter, 1.8 um particle size, Dionex-Thermo Scientifics) as follow: 5 min, 4%
solution B; 240 min, 4-35% solution B; 10 min, 35-80% B; 10 min, 80% B; 10 min 4% B.
The nanoelectrospray voltage was set to 1300 V and the capillary voltage to 50 V at 190
Cº. 

The  LTQ  Orbitrap  was  operated  in  the  parallel  mode,  allowing  for  the  accurate
measurement of the precursor survey scan (400–1500 m/z) in the Orbitrap selection, a 30
000  full-width  at  half-maximum  (FWHM)  resolution  at  m/z  400  concurrent  with  the
acquisition  of  three  CID/HCD  Data-Dependent  MS/MS  scans  in  the  LIT  and  C-Trap  for
peptide sequence and isotopes quantitation (100–2000 m/z), respectively. HCD Resolution
set to at 7500 FWHM at m/z 400.  Singly charged ions were excluded. The normalized
collision energies used were 40% for HCD and 35% for CID. The maximum injection times
for MS and MS/MS were set to 50 ms and 500 ms, respectively. The precursor isolation
width was 3 amu and the exclusion mass width was set to 5 ppm. Monoisotopic precursor
selection was allowed and singly charged species were excluded. The minimum intensity
threshold  for  MS/MS  was  500  counts  for  the  linear  ion  trap  and  1000  counts  for  the
Orbitrap. The Minimum Information About a Proteomics Experiment (MIAPE) (10) for Mass
Spectrometry, summarizing all relevant information in this paragraph is shown at Table
3.1.
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MIAPE-MS Mass Spectrometry  v2.98

1.  General features —1.1 Global descriptors

Responsible person or 
role

Santos Blanco (University of Jaen, sblanco@ujaen.es) and Maria Angeles
Peinado (University of Jaen, apeinado@ujaen.es)

Instrument 
manufacturer, model

LTQ Orbitrap mass spectrometer (Thermo Fisher Scientific)

Customisations HCD cell

2.  Ion sources —2.1 Electrospray Ionisation (ESI)

Supply type Sprayer fed by ultra performance liquid chromatography

Interface 
manufacturer, model 

Nano UHPLC Ultimate 3000 (Dionex-Thermo Scientifics)

Sprayer type NSI-2 dynamic

3. Post source component

3.1 Analyser Linear  trap  quadrupole.  MS1  survey  scans  in  an  Orbitrap  and  MS2
analysed in a linear trap. Dual conversion dynode detector.

3.2 Activation / 
dissociation

Acquisition of three CID/HCD Data-Dependent MS/MS scans in the LIT and
C-Trap for peptide sequence and isotopes quantification (100–2000 m/z),
respectively.

4. Spectrum and peak list generation and annotation

4.1 Data acquisition

Software Xcalibur (Thermo Fischer Scientific) version 2.5.5 SP1

Parameters Parallel mode: precursor survey scan (400–1500 m/z, 30 000 full-width at
half-maximum, FWHM), concurrent with the acquisition of three CID/HCD
Data-Dependent MS/MS scans in the LIT and C-Trap.HCD Resolution set to
at 7500 FWHM at m/z 400. The normalized collision energies used were
40eV for HCD and 35eV for CID.

4.2 Data analysis

Software Conversion  from  RAW  to  mzML  using  ProteoWizard  version  3.0.9576
(ProteoWizard Software Foundation). The RAW files where directly loaded
and spectra processed in Proteome Discoverer version 1.4.0.288.

Parameters used in the
generation of 
processed spectra

MS1 spectra used as precursor. Precursor masses where selected between
350-5000 Da. Filters: minimum peak count 1, maximum collision energy
100eV, S/N threshold 1.5.

4.3 Resulting data

Location of source  and
processed files

The  19  RAW  files  corresponding  to  this  study  are  stored  in  the
ProteomeXchange database (PXD004091)

m/z and intensity 
values

The m/z and intensity values can be accessed at the 19 mzML files stored
in the ProteomeXchange database (PXD004091).

MS level MS2 for CID and HCD

Ion mode Positive

Precursor m/z and 
charge

The precursor m/z and intensity values can be accessed at the 19 mzML
files stored in the ProteomeXchange database (PXD004091).

Table 3.1 The Minimum Information About  a  Proteomics  Experiment  (MIAPE)  Mass Spectrometry
v2.98 for the analysis performed to the samples in this work.
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3.3.5 Protein identification

The protein identification is performed using the software Proteome Discoverer  following
the Shotgun proteomics approach (11). By this methodology, the mass spectra generated
by the mass spectrometer are sequenced into a peptide sequence. These sequences, in
the order of several thousands, are integrated, using a protein database (12) into one or
more  proteins.  An  important  limitation  to  proteomics  is  that,  in  many  cases,  a  given
peptide  can  be  assigned  to  more  than  one  protein.  This  phenomenon,  known as  the
“protein inference problem” (13) is addressed by Proteome  Discoverer software (and other
software, e.g. Mascot  (14)) generating “groups” of proteins with a representative protein
reported. Four chromatographic runs have been used to identify and quantify the proteins
in this work; a summary of the main data descriptors for each sample is given in Figure
3.1.

Figure 3.1 The four experiments are described here showing the Protein coverage
(percent of the residues in each protein sequence that have been identified), Unique
peptides (peptides that map exclusively to a given protein), Number of Peptides and
PSMs (Peptide-Spectrum Matches, that is, number of spectra that are responsible for
the identification of a given protein). The box-plots show the log-scaled distributions
of  the  aforementioned  varia-bles  in  each  of  the  four  experiments.  The  table
summarizes the num-ber of proteins (n) and the previous values: their means (black)
and standard deviation (light blue).

The main steps involved in the protein identification procedure used in this work are:

1. Loading Raw files (produced by Xcalibur, the acquisition software attached to the
mass spectrometer) into Protein Discoverer.
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2. Spectra  are  sequenced (i.e.  the  signals  are  translated  into  sequences  of  amino
acids)  using  the  Sequest  (15) search  algorithm.  This  is  a  database  guided
sequencing process: tryptic peptides (16) are compared to the spectra provided and
proteins are then re-constructed in a final report.

3. The protein database used here is a combined target-decoy database: attached to
the  original  fasta  (17) format,  an  artificial  database,  consisting  in  the  reversed
sequences  of  the  original  database  is  used  to  asses  confidence  in  the  peptide
sequencing  (18,19). Decoy peptides are non-natural, artificial sequences: when a
decoy peptide is  identified by the search engine,  we can be sure  (20) that  the
corresponding hit is a false positive. 

4. Proteins are identified (and quantified) into four separated search processes (one
for  each  original  sample).  The  information  is  initially  stored  in  a  format  called
Magellan storage file (MSF), a SQLite (21) database file that stores identification and
quantification information.

5. The main parameters used in the search describe the precision used in the MS1 and
MS2 spectra (Precursor Mass Tolerance:  10 ppm, Fragment Mass Tolerance:  0.6 Da),
the amino acids that can experiment modifications or dynamic modifications (N-
Terminal  and K  by TMT reagent +229.163 Da,  M Oxidation:  +15.995 Da),  fixed
amino acid modifications (Carbamidomethylation of C +57.021 Da) and the peptide
lengths and charges that are going to be reported (between 6 and 144 amino acids
and +1 to +4).

6. A  strict  filter  is  performed  over  the  identified  peptides  (0.01),  using  the  False
discovery  rate  (22) (FDR)  values  obtained  with  the  help  of  the  target-decoy
database.

7. Results are provided in two different formats: peptide and protein lists, both offering
identification and quantification information. Although some information has been
extracted  from  the  peptides  listings  (e.g.  Figure  3.2  has  been  obtained  using
peptide quantitative information),  the main source of  data has been the protein
identification and quantification reports exported from Protein Discoverer software.
The information has been exported as an Excel workbook and converted to tab-
delimited files for further manipulation.

A detailed report of the steps, software and parameters used in the protein identification
used  in  this  work  is  offered  in  Table  3.2.  following  the  MIAPE  guidelines  for  Mass
Spectrometry Informatics (23).
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MIAPE-MSI Mass Spectrometry Informatics  v1.1
1.  General features – (a) Global descriptors

Date stamp 2015-01-01

Responsible person or
role

Santos  Blanco  (University  of  Jaen,  sblanco@ujaen.es)  and  Maria  Angeles  Peinado
(University of Jaen, apeinado@ujaen.es)

Software name, 
version and 
manufacturer

The  software  used  for  the  identification  and  quantitation  of  proteins  is  Proteome
Discoverer (Thermo Fisher Scientific) version 1.4.0.288.

Customisations The  msf  files  exported  from  Proteome  Discoverer  (Thermo  Fisher  Scientific)  where
exported to Excel (Microsoft) reports in the four different analysis performed. These four
analysis where integrated into one unique report using Perl scripting (integrating the
identification and quantification information coming from the four parallel analysis).

Availability of the 
software

Proteome  Discoverer  (Thermo  Fisher  Scientific)  can  be  obtained  at
www.thermofisher.com.  Perl  is  an  open  source  software  that  can  be  obtained  at
www.perl.org

Location of the files 
generated

The  four  msf  files  (Santos_TMTGroup1.msf  ,  Santos_TMTGroup2.msf  ,
Santos_TMTGroup3.msf and Santos_TMTGroup4.msf , corresponding to the four runs of
the mass spectrometry analysis and corresponding bioinformatics analysis) are stored in
the ProteomeXchange database (PXD004091).

2. Input data and parameters – (a) Input data

Description and type 
of MS data

The  data  submitted  to  the  Protein  Discoverer  package  were  the  original  RAW  files
generated by the mass spectrometer.

Availability of MS data The MS data can be accessed at the 19 mzML files stored in the ProteomeXchange
database (PXD004091).

2. Input data and parameters – (b) Input parameters

Database queried Uniprot Proteome of Rattus norvegicus (Rat) database, containing 27,820 sequences.
Version 2015.01.

Taxonomical 
restrictions

Rattus norvegicus (Rat), Uniprot Organism ID  10116

Description of tool 
and scoring scheme

Peak lists generated by Proteome Discoverer are analyzed using the vendors proposed
method:  CID  scans  are  using  for  peptide  identification  and  HCD  scans  used  for
quantitation of the reporter ions generated by fragmentation of the TMT-6plex reagent.
Afterwards, the Percolator component of the Proteome Discoverer package has been
applied with Maximum Delta Cn: 0.05 and Target FDR (Relaxed):  0.05 and Validation
based on:  q-Value.

Specified cleavage 
agent

Trypsin (cleaves after K or R, but not before P) with full cleavage.

Allowed number of 
missed cleavages

2 missed cleavages allowed.

Permissible amino 
acids modifications

One static  modification  set:  Carbamidomethyl  (+57.021 Da at  C),  and two dynamic
modifications allowed: TMT6plex (+229.163 Da at K or any N-term), Oxidation (+15.995
Da at M), with a maximum of three dynamic modifications per peptide.

Precursor-ion and 
fragment-ion mass 
tolerance for tandem 
MS

Precursor Mass Tolerance:  10 ppm and Fragment Mass Tolerance:  0.6 Da. Both cases
using exact mass.

Thresholds; minimum 
scores for peptides, 
proteins

Percolator parameters: Max. Delta Cn:  0.05  and Max. Number of Peptides Reported:
10. Proteins with at least 2 high confidence Peptide-Spectrum Matching (PSMs) and one
unique peptide allowed.

Any other relevant 
parameters

Spectrum matching ions: y and b, and neutral losses of a,b,y ions. Min. Peptide Length:
6  Max.  Peptide  Length:   144.  The  file  “Protocol.Identification.txt  “  stored
ProteomeXchange database (PXD004091) was exported from the Proteome Discoverer
software  analysis,  summarizing  all  the  steps  performed  during  the  identification
analysis.

3. The output from the procedure – (a) For identified proteins

Accession code in the 
queried database

For each identified protein, the Uniprot accession is provided in Supporting Information
1: Protein and peptide identifications

Protein description For each identified protein, the Uniprot description is provided in Supporting Information
1: Protein and peptide identifications

Protein scores For  each  identified  protein,  the  Protein  Discoverer  protein  score  is  provided  in
Supporting Information 1: Protein and peptide identifications, proteins tabs, column T:
“Score A(3,6)”

Validation status The proteins identified by the search engine were accepted without any post-processing.
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Number of different 
peptide sequences 
(without considering 
modifications) 
assigned to the 
protein.

The number  of  distinct  peptide  sequences for  each  identified  protein  is  provided  in
Supporting Information 1: Protein and peptide identifications, proteins tabs, column V:
“# Peptides A(3,6)”.

Percent peptide 
coverage of protein

The Percent peptide coverage of protein is provided in Supporting Information 1: Protein
and peptide identifications, proteins tabs, column C: “Σcoverage”.

3. The output from the procedure – (b) For identified peptides

Sequence The sequence of each identified peptide is provided in Supporting Information 1: Protein
and peptide identifications, peptides tabs, column A: “Sequence”.

Peptide scores The peptide scores of each identified peptide is provided as a q-value and a peptide
probability  score  in  Supporting  Information  1:  Protein  and  peptide  identifications,
peptides tabs, columns T and U: “q-Value” and “PEP”.

Chemical and post-
translational 
modifications

The chemical modifications of the peptide sequences are provided for each peptide in
Supporting Information 1: Protein and peptide identifications, peptides tabs, column F:
“Modifications”.

Corresponding 
Spectrum locus

The corresponding spectrum locus for each psm can be obtained from the four msf files
stored in the ProteomeXchange database (PXD004091).

Charge assumed for 
identification and a 
measurement of 
peptide mass error

The charge and peptide mass error can both be obtained from the four msf files stored
in the ProteomeXchange database (PXD004091).

3. The output from the procedure – (c) Quantitation for selected ions

Quantitation approach Quantification of TMT 6plex reporter ions. The peak integration for the quantification
used the most confident centroid peak integration approach, with a tolerance of 20 ppm.

Quantity 
measurement

The  quantity  measurement,  performed  by  Proteome  Discoverer  software,  is  done
following  the  Most  Confident  Centroid  algorithm: Lays  a  Gaussian  curve around the
target peak (the tag mass) with a sigma value equal to the mass accuracy or integration
window. Then the Gaussian curve normalizes all peaks in the window, and the largest is
considered to be the most confident peak.

Data transformation 
and normalization 
technique

The quantitative data was normalized by Proteome Discoverer using the protein median
ratio.

Number of replicates Different technical replicates (depending on sample availability) were used, as described
in Supporting Information 2: Materials and methods.

Acceptance criteria A protein quantitation value is only accepted when at least two peptides have been
quantified. Also, the coefficient of variation must be less than 30% for each protein. The
coefficient of variation is used by Proteome Discoverer as a measure of protein ratio
variability, and is calculated as a coefficient-of-variation for log-normal distributed data.

Estimates of 
uncertainty and the 
methods for the error 
analysis

After having used the Coefficient of Variation to limit the error introduced when multiple
peptides are used for the quantitation, the use (when possible) of information coming
from technical replicates, has been used to modulate (and in a few cases, to eliminate)
the quantitative information associated to each protein.

Results from controls No quantitative controls were used in this study.

4. Interpretation and validation

Assessment and 
confidence given to 
the identification and 
quantitation

The objective in this study was obtaining quantitative results with the higher possible
accuracy. In order to obtain this, in addition to the 30% coefficient of variation threshold
in the protein quantitation, the variability of the proteins with respect to the control has
been measured following a global standard deviation approach, common to all samples
under study. We have used two different thresholds: two standard deviations (equivalent
to the 95% of the distribution) and 1.5 (roughly the 87%), and have differeciated clearly
these two confidence intervals when interpreting data.

Results of statistical 
analysis or 
determination of false
positive rate in case 
of large scale 
experiments

At the Percolator component level in the Proteome Discoverer application, a Target FDR
(Strict):  0.01 and a Target FDR (Relaxed):  0.05 are applied. The subsequent validation
is based on the q-Value.

Inclusion/exclusion of 
the output of the 
software are provided

The protein and peptide reports were provided as produced by Proteome Discoverer in
Supporting  Information  1:  Protein  and  peptide  identifications.  The  files  “
Protocol.quantification1.txt“,  1  to  4,  stored  ProteomeXchange database (PXD004091)
were  exported from the Proteome Discoverer  software  analysis,  summarizing all  the
steps performed during the quantitation analysis.

Table 3.2 The Minimum Information About a Proteomics  Experiment  (MIAPE) Mass  Spectrometry
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Informatics v2.98 for the analysis performed to the samples in this work.

3.3.6 Protein quantification: TMT for relative protein quantification

The quantification of the proteins present in the samples is performed using Tandem Mass
Tags  (24),  also known as TMTTM,  which is one of the reagents (alongside with iTRAQTM)
known collectively as isobaric mass tags or reporter ion tags. For this analysis we have
used the TMT-6plex, that allows labeling of proteins in six different samples. The basic
principle  is  providing a chemical  label  that  can differentiate the origin (one of  the six
samples labeled) of a protein in a mixture and, quantify the amount of this protein in the
original  samples.  The  reagent  plays  with  several  isotopes  (of  C  and  N)  and  different
distributions in order to obtain a reactive that, when linked to the peptide weights the
same  in  all  six  peptides  (each  coming  from  a  different  samples)  but  when  the  MS2

fragmentation takes place, a fragment of different weight remains united to the peptide.
These MS2 fragments, known as reporter ions, weight 126, 127, 128, 129, 130 and 131
Daltons. Then, measuring the intensity of each fragment in the common  MS2 spectra,
it is possible to infer the relative amount of the original peptides (and by extension,  of
their corresponding proteins) into the six original samples (Figure 3.2).

Figure 3.2. Design of six TMT-6plex reagents taken from Product Sheet: TMT Mass Tagging
Kits and Reagents. The blue squares delimit the reporter ions and red dots identify the
isotopes used in each reagent. The mono-isotopic modification mass, that will be used as a
fixed modification  by the search engine, is  common for all reagents to the sixth decimal:
229.162932 Da. (Figure adapted from Thermo Fisher ScientificTM catalog)

In this work, the relative amount of proteins found in both hypoxic models (HH and HHI)
with  respect  of  the  sham controls  is  calculated.  In  order  to  do  such  comparison,  the
reagents used (the corresponding reporter ion mass) must be identified to perform the
comparisons. It is important to note that the “raw” quantitative information obtained here
is  going  to  be  related  to  peptides,  not  proteins.  The  software  for  the  quantification
(Proteome Discoverer) will integrate those peptide ratios (thousands of them) into a list of
protein ratios (hundreds).

The isobaric mass tags method has several, well known limitations (25–29):

1. In first place, not all peptides identifying one protein will have a quantitative tag.
That means that only peptides identified with high confidence (good enough score)
and with a quantitative tag will be used in the quantification. This will drastically
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reduce the amount of peptides available for quantification, notably in proteins that
were initially identified with a limited number of peptides. The number of identified
peptides for a set of randomly picked proteins in the set obtained in this work is
shown at Figure 3.3.  

Figure 3.3. Distribution of the Log2 ratios of intensities (three plots with Log2 ratios) and number of
peptides (Peptides per protein) from 23 proteins randomly chosen from the set that will be analyzed in
this work. In this experiment, the reagent 126 was used for labelling the control.The box-plots show how,
typically in this type of analysis, the precision is not as high as would be desirable.

2. The  protein  inference  problem  cited  before  (13) also  affects  the  protein
quantification using this approach. If some peptide is found in several proteins, its
quantitative information will be a mixture of the original amount of proteins where it
proceeds.  The ideal  approach against  this  effect  would  be the exclusive use of
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“unique  peptides”  (those  included  only  in  one  protein)  for  quantification.  The
problem  with  this  approach  is  that  it  would  reduce,  more  drastically  than  the
previous point, the population of peptides for quantification and therefore, is not
applied. 

3. Precision (how close are quantifications of  the same protein) and accuracy (how
close are measurements of the true amount of that protein) are sometimes quite
low.  The  aforementioned  protein  inference  problem,  the  inherent  instrumental
accuracy,  false positive peptides, and the protein dynamic range (30) are some of
the factors lowering precision and accuracy. With the experimental approach used
in this study, the accuracy can not be estimated, and the median value for the
replicated  measurements  of  the  same  protein  is  adopted  as  the  “true  value”.
Precision is typically estimated using the coefficient of variation (standard deviation
relative to the mean) of the ratios obtained with respect to the control (31).

Although the two first points can not be addressed using our experimental approach, the
precision can be at least controlled: proteins quantified with a coefficient of variation lower
than 30% will be considered as confidently quantified, and the rest will be discarded. This
is a conservative approach, limiting greatly the number of proteins that are going to be
quantified, but at the same time, increasing robustness and confidence in the results.

3.3.7 Samples and replicates

In the present study, three different samples belonging to each experimental condition are
analyzed:

• Control: Pool obtained from samples from five sham rats used as controls in the
quantification analysis.  The ratios are in all  cases calculated with respect to these
samples.

• HH: Pool of samples from five rats submitted to hypobaric hypoxia.

• HHI: Pool of samples from five rats submitted to ischemic and hypobaric hypoxia.

These  samples,  analyzed  using  mass  spectrometry  in  four  labeling  groups,  produced
different files depending on the number of chromatographic runs: several chromatographic
replicates  were  performed  when  sample  availability  allowed.  Into  each  of  these  mass
spectrometry  analyses,  different  combinations  of  samples  were  performed  using  the
distinct  labels  of  the  TMT  reagent.  The  number  of  technical  replicates  varies  among
samples  depending,  as  well,  on  the  sample  availability.  The  next  table  (Table  3.2)
summarizes the composition of the four different groups in which the data is organized,
with r1,r2,… meaning different technical  replicates. Samples labeled as “not avaliable”
(NA) represent samples from a previous experimental design  discarded for poor analytical
value and lack of proper controls.

126 127 128 129 130 131
Group 1 control HHI (r1) HHI (r5) NA NA HH (r3)
Group 2 HH (r2) NA NA HHI (r2) control HH (r1)
Group 3 NA NA NA control HHI (r3) NA
Group 4 NA NA control HHI (r4) NA NA

Table 3.2: TMT labeling of the nine samples used in this study: control (sham individuals), HH and
HHI.  Inside  parenthesis,  the  number  of  the  technical  replicate  (r1,  r2,...).  Samples  with  gray
background were rejected.
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The quantitative analysis was performed using the Proteome Discoverer software and the
protein reports were exported as four different text files. Inside each of the four groups,
the quantification ratios were calculated using the “control” group as reference.

A Perl script has been used to:

 parse: data exported from Proteome Discoverer as Protein reports, was converted
to tab-delimited text files and parsed by the script

 classify:  each data coordinate was mapped to the corresponding sample name
(e.g. Group2, label 126 was mapped to sample “HH (r2))

 filter:  only proteins quantified with two or  more peptides are used. In addition,
quantifications with a coefficient of variation higher than 30% are discarded.

 integrate the information, exporting the data to a tab delimited text file.

As a measure of quality for each sample quantification, the global standard deviation (gsd)
was used, calculating the standard deviation of the protein ratios for each TMT label. The
HHI condition has five technical replicates, and in order to fairly compare the HH and HHI
conditions, only the two with best (i.e. lower) gsd - HHI (R2) and HHI (R5) - will be used in
the analysis. The gsd values obtained for each sample are shown in Table 3.3.

sample gsd

HH
HH (R1) 0.245

HH (R2) 0.204

HHI

HHI (R1) 0.217

HHI (R2) 0.178

HHI (R3) 0.406

HHI (R4) 0.447

HHI (R5) 0.119

Table  3.3 Values  of  global  standard  deviation  (gsd)  for  each  sample.
Samples HHI (R1), HHI (R3) and HHI (R4) will  not be further used in the
analysis. Smaller gsd values mean narrower distributions and therefore, a
better chance to correctly distinguish the differentially expressed proteins
from the unchanged population.

The filtering process applied to proteins data includes:

 initial removal of proteins with less than 2 high confidence peptides,

 removal of quantification tags with a coefficient of variation higher than 30%,

 removal of proteins without data from both of HH and HHI experimental conditions

From an initial set of 1,409 identified-quantified proteins by Protein Discoverer across the
two  experimental  conditions,  1,069  proteins  where  discarded  following  the  previous
criteria, leaving 340 proteins that will be further analyzed.

3.3.8 Protein quantification: threshold for differential expression

In order to define a subset of differentially expressed proteins for each condition under
study, a fold-change threshold based on global standard deviation is used. Then, for each
of  the  samples  under  study,  a  different  global  standard  deviation  is  obtained  and
therefore, a different threshold will be used to delimit the proteins that are differentially
expressed in a given condition with respect to the proteins that remain unchanged (or with

34



non-significant changes).

Given that the distributions generated by quantified proteins usually resemble a normal
distribution, with a mean equal (or close) to 1, is a common approach (32–34)   to assume
that at a distance further than two standard deviations of the mean (considering a two-
tailed distribution), only the 5% of proteins with the highest difference will be considered.
We have used two different thresholds: two standard deviations (equivalent to the 95% of
the distribution) and 1.5 (roughly the 87%). The proteins with ratios bigger to the two gsd
threshold  will  then  show  an  important  change  in  their  expression,  while  the  proteins
between 1.5 and two gsd units will exhibit a moderate change. Four categories are used: 

 “proteins highly under-expressed”, with ratios under 1-(2*gsd)

 “proteins  moderately  under-expressed”,  with  ratios  between  1-(2*gsd)  and  1-
(1.5*gsd )

 “proteins  moderately  over-expressed”,  with  ratios  between  1+(1.5*gsd)  and
1+(2*gsd)

 “proteins highly over-expressed”, with ratios higher than 1+(2*gsd)

Proteins with a fold change between -1.5*gsd and 1.5*gsd values will have an unchanged
state. The thresholds for each sample are shown at Table 3.4.

Table  3.4:  Values  of  global  standard  deviation  (gsd)  and  thresholds  used  for  each  sample.  Four
categories of proteins are used: “highly under-expressed”, “moderately under-expressed”, “moderately
over-expressed” and “highly over-expressed”. In some samples, for big gsd values, the threshold will fall
under 0 for the under-expressed proteins; in these cases, a NA value is displayed, and no proteins will be
taken for that category.

For  obtaining  the  thresholds  in  the  quantification  of  the  different  samples,  we  have
followed a similar strategy to the one introduced by Pappin in US HUPO TechTalk, 2010 (32)
:“A simple approach is to use the global statistics derived from any given iTRAQ channel.
For example,  one can take all  ratio  measurements in any given iTRAQ channel for  all
peptides of p>0.05, and calculate mean and standard deviations. If normalized, the mean
will be at or close to unity, and standard deviations can be in the range of 0.15-0.5. As a
quick  filter,  one  can  judge  the  significance  of  fold-changes  very  broadly  using  this
measured value,  and fold changes can be ascribed simply in terms of  intervals of  SD
above and below unity (say >2SD up or down)” .

We have obtained the Quantile-Quantile plots of the samples under analysis, displayed at
Figure 3.4, where log2 ratios of the experimentally obtained results are confronted to the
values of a normal distribution in the corresponding range . As expected, the central area
of the seven distributions resembles quite well  a straight line, while the more extreme
values,  diverge.  Those  divergent  values  are  precisely  the  ones  that  will  provide  the
valuable  data  that  represent  the  proteins  that  are  under  or  over-expressed  into  each
experimental condition. Several times throughout this chapter, the log2 of the ratios will
be  used  instead  of  the  ratios  themselves.  This  is  done  for  convenience  only  when  a
graphical representation is better displayed centered at 0. All the cutoffs and results will
be expressed in terms of ratios, not their logarithms.
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Figure 3.4: Quantile-Quantile plots of the seven technical replicates (two and four respectively) of
the HH and HHI samples. The x-axis corresponds to the experimental ratios and the y-axis to the
theoretical  normal  distribution.  These plots  provide an asses-sment of  the goodness of  fit to a
normal distribution  of the experimental values obtained.  The thin red line plotted inside each of
the graphs crosses the points where the lower and upper quartiles (Q1 and Q3) are located in both
distribu-tions. All seven Q-Q plots appear to be fitted quite well to the red line at their central range:
thus we can accept that these distri-butions follow normality, at least in their central area. Extreme
values,  not fitting the line, represent protein ratios that,  in addition to the random error in the
quantification,  represent  a  significant  increase  or  decrease:  those  can  be  interpreted  as   the
proteins that are significantly under or over-expressed in a given sample (HH or HHI) with respect to
the sham controls.  The exact  point  to  start  considering  that  a  protein  is  actually  differentially
expressed in each distribution is addressed in Figure 3.5.       

In Figure 3.5, it is clear than most of the distributions present a profile close to the typical
“bell-shaped” normal distribution, with their maximum close to 1. This is consistent with
the  Q-Q  plots  discussed  before.  Only  HHI  replicates  with  the  lowest  gsd  (HHI.R2  and
HHI.R5)  are  used  in  this  analysis.  Assuming  the  cost  of  the  loss  of  some  precious
quantitative data from three HHI technical replicates, this approach will ensure a greater
level of confidence in the quantification finally reported, as will be demonstrated in the
next section.
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Figure 3.5 The seven plots correspond to the seven protein distributions in the corresponding samples.
Narrower  distributions  (lower  global  standard  deviation,  gsd)  will  represent  higher  accuracy  in  the
quantification and thus, provide more accurate quantification results. Each distribution has highlighted
four categories of protein differential expression: “highly under-expressed” (dark green), “moderately
under-expressed”  (light  green),  “moderately  over-expressed”  (orange)  and  “highly  over-expressed”
(red).

3.3.9 Protein quantification: treatment of the technical replicates

Following the experimental design explained above, two technical replicates are available
for  each  experimental  condition  (HH  or  HHI).  Then,  for  a  given  protein  in  each
experimental condition, we will have one or two quantitative determinations. Quantitative
information presented by these replicates for a given protein can be then coherent (both
replicates showing the over-expression, under-expression or not change at the same time)
or not. We also must have present that a protein can appear differentially expressed in one
replicate and do not show significant difference (or even show the opposite expression) in
the other replicate, this effect being caused by the low precision inherent to the method
(27).

To  address  this,  we  have  used  an  approach  that  unifies  the  quantitative  information
presented by both replicates, providing a simple and consistent method for merging the
information coming from two technical replicates. 
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We  have  chosen  an  approach  that  deals  with  experimental  evidence.  Every  ratio
associated to an individual measure (one technical replicate) will be translated to a given
category depending on the interval of global standard deviation (S) in which is located.
These categories of change in an experimental condition with respect to the control are:

• moderate under-expression (between 1.5 and 2 gsd values, -1S)

• no variation (between -1.5 and +1.5 gsd values, NV) 

• moderate over-expression (between +1.5 and +2 gsd values, +1S) 

• high over-expression (greater than 2 gsd values, +2S) 

In Table 3.4,  the mapping between a ratio interval and its corresponding category was
shown for each sample. Using these categories, we construct a numerical expression that
summarizes the behavior of one given protein in the two technical replicates, using the
-2S, -1S, NV, +1S and +2S:

• NV value adds 0

• +1S and +2S add +1 and +2, respectively

• -1S and -2S subtract -1 and -2, respectively

Thus, and overall  expression value ranging from -4 to +4 is obtained for every protein
quantified. A protein with a +4 or -4 is not necessarily more or less expressed than another
with +2 or -2: the real meaning of a high variation value is that there is more experimental
evidence of the change, not the overall variation. 

This can be better explained with two practical examples:

• If  we  have  only   one  measurement  for  a  protein,  coming  from  one  technical
replicate,  as  in   [1.779|G2,131],  it  means  that  for  this  protein  (Q68FY0,  HH
experimental  condition),  only  one  result  has  successfully  passed  the  quality
threshold (a coefficient of variation inferior to 30%). For the Group 2 of measures
(the group this example belongs to), the TMT label 131 presents a set of thresholds
as  [0,0.51]  (proteins  highly  under-expressed),  [0.51,0.632]  (proteins  moderately
under-expressed),  [1.368,1.49]  (proteins  moderately  over-expressed)  and
[1.49,+inf]  (proteins  highly  over-expressed).  That  gives  a  +2S  (plus  2  global
standard deviations) to a ratio of 1.779. The overall variation for this protein will be
+2S, meaning that one technical replicate has shown a high over-expression of this
protein versus the same protein in the control sample.

• A  different  measurement,  coming  from  two  technical  replicates,  as  in  [1.379|
G2,126],[1.075|G2,131]  (protein  P48500,  HH  experimental  condition)  presents  a
more challenging scenario.  The first replicate produces a +1S value, the second NV
(no variation). The global variation for this sample will be +1S (+1+0=+1). These
two replicates are not necessarily contradictory: with a 30% of variation used, both
results could actually be over-expressed or show no variation at all.

• Values of variation for all the proteins quantified in this study are found in Table 3.4
in the results section.

• Of the original 1,156 TMT tag quantifications, 153 were removed for presenting a
coefficient of variation higher than 30%. Of the remaining 1,003 quantification tags
reported in the 340 proteins confidently identified, only in one case (P63041 for
condition  HH,  with  -2S|+2S)  a  contradictory  result  was  obtained:  two  technical
replicates indicating over and under-expression at the same time. That proves, in
our opinion, the robustness of this specific approach. 
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• The  work-flow  used  to  generate  a  confident  set  of  protein  quantification  is
summarized in  Figure 3.6, reporting also the number of proteins in each step:

• From an  initial  set  of  1409 proteins  quantified  by  Protein  Discoverer,  we apply
several filters, that leave 339 confidently quantified proteins (only one discarded for
presenting contradictory quantitative information).

• In the set of 339 confidently quantified proteins, only 99 present a variations in HH
and/or HHI samples with respect to the controls.

• From these 99 proteins that differ in their expression to the controls, only 54 can be
included in enriched GO (gene ontology) categories, as will be explained in the next
section.  

Figure 3.6: Overview of the protein identification and quantification work-flow
used in the present analysis.

3.3.10 Gene set enrichment

To help in the interpretation of the results obtained in a proteomics experiment it is very
common the use of a technique known as gene set enrichment or functional enrichment
analysis (35). This technique uses the functional annotation of the proteins under study to
infer  which functions are more  present in  the set.  The most used resource to  extract
functional information of a gene or protein is the Gene Ontology, or GO (36). This ontology
is organized into three areas: molecular function (molecular activities of gene products),
cellular component (where gene products are active) and biological process (pathways and
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larger processes made up of the activities of multiple gene products). In addition to the
description provided by these areas of the GO ontology, another linked resource is used:
the Gene Ontology Annotation or GOA  (37). Inside the GOA for a given organism, each
gene (or protein) is associated with one or more terms of the GO. For Rattus norvegicus,
20,721 genes are annotated with 461,203 terms (march 2018).

In short, a gene set enrichment makes use of the GOA annotations to provide a list of GO
terms that  are over-represented.  This over-representation points to the fact  that  some
genes or proteins related to a given GO term appear in a higher frequency than expected
by chance.  To measure this  over-representation,  a statistical  test is  used,  frequently  a
binomial (sampling with replacement) or a hypergeometric test (without replacement).      

Several software are available at present to generate a gene set enrichment analysis, as
desktop software (Ingenuity Pathways Analysis  (38), Cytoscape  (39) BinGO  (40)) or web
based application (GOrilla (41) , David (42), Toppgene (43)). We have selected the ClueGO
(44) plug-in available in Cytoscape. Unlike other software like BinGO or Gorilla, that assess
for over-represented GO terms and reconstruct a hierarchical ontology tree, ClueGO uses
kappa statistics  (45) to generate a network with GO terms as  nodes in a network. To
illustrate the way ClueGO displays the information, the graphical output obtained from an
example dataset is shown in Figure 3.7.

Figure 3.7: Graphical  output  produced by ClueGO in an example dataset.  Each color  represents a
biological  process  representative  of  a  set  of  closely  related  biological  processes.  Each  node  of  the
network as one or more genes linked (not displayed here). The lines represent interactions between the
nodes 

ClueGO generates a dynamical network considering the genes of interest (i.e. those over-
represented) and integrating GO terms. In this network, genes belonging to two or more
functional categories act as links and enriched GO terms (with their corresponding genes)

40



act as nodes. The closer that the represented genes are allocated in this network, the
more likely they are going to interact in one or more biological functions . Additionally,
neighboring and higher number of links between biological functions (GO terms) in the
diagram will  suggest  that  those  functions  are  going  to  be  more  closely  related  in  a
biological sense.

3.4 Results

3.4.1 Protein identification and quantification

The results obtained in the proteomics experiment are displayed in Table 3.6, where 339
quantified proteins are shown; a complete description of  the fields  associated to each
protein is provided in Table 3.5. 

Protein Uniprot Accession Number 

Gene Gene symbol associated to the protein

Description Protein description

num Total number of quantifications considered in the two conditions evaluated (HH and HHI)

data origin Sample groups  where the data comes from (G1, G2, G3 or G4)  and TMT label (from 126 to 131).

variation     

Symbols  indicating  if  the  ratio  translates  as   high  under-expression  (-2S),  moderate  under-

expression (-1S), no variation (NV) moderate over-expression (+1S) or high over-expression (+2S)

with respect to the control. The table on top shows the mapping for each sample between the

ratio value and the correspondent expression.

global var.

The overall expression for the experimental condition considering one or two replicates. A NV

value adds 0, and the positive and negative values add or substract their value (e.g. +2S|+2S

equals to +4). Only in one case, this  method of global variation shows contradictory results:

P63041 for HH ratios. The data associated to this protein is shown in the table as red, striked out

values, leaving in 339 the set of confidently identified proteins.

symbol
“=” for same expression than the control, “+” for “moderate over-expression”, “++” for high

over-expression, “-” for moderate under-expression and “++” for high over-expression

Table 3.5 Values of  global  standard deviation (gsd) and thresholds used for each sample.  Four
categories  of  proteins  are  used:  “highly  under-expressed”,  “moderately  under-expressed”,
“moderately over-expressed” and “highly over-expressed”. In some samples, for big gsd values, the
threshold will fall under 0 for the under-expressed proteins; in these cases, a NA value is displayed,
and no proteins will be taken for that category.
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Protein Gene Description num HH data origin HHI data origin

A0MY09 Hsp90b1 Endoplasmin 3 [0.892|G2,131],[1.081|G2,126] NV|NV 0 = [0.932|G2,129] NV 0 =

A1L108 Arpc5l Actin-related protein 2/3 complex sub5-like prot 3 [0.894|G2,126],[1.050|G2,131] NV|NV 0 = [1.027|G2,129] NV 0 =

B0BNE6 Ndufs8 NADH dehyd(Ubiquinone) Fe-S prot8 (Pred), isofCRA_a 4 [0.454|G2,126],[1.219|G2,131] -2S|NV -2 - - [1.172|G1,128],[1.069|G2,129] NV|NV 0 =

B0K020 Cisd1 CDGSH iron-sulfur domain-containing protein 1 4 [0.814|G2,126],[1.024|G2,131] NV|NV 0 = [0.604|G1,128],[0.842|G2,129] -2S|NV -2 - -

B2GV73 Arpc3 Actin-related protein 2/3 complex subunit 3 4 [0.949|G2,131],[0.944|G2,126] NV|NV 0 = [0.985|G2,129],[1.223|G1,128] NV|+1S 1 +

B2RYG6 Otub1 Ubiquitin thioesterase OTUB1 3 [1.016|G2,126],[0.694|G2,131] NV|NV 0 = [0.755|G2,129] NV 0 =

B2RYS2 Uqcrb Cytochrome b-c1 complex subunit 7 4 [1.441|G2,131],[0.848|G2,126] +1S|NV 1 + [1.126|G2,129],[1.084|G1,128] NV|NV 0 =

B2RZ27 Sh3bgrl3 Protein Sh3bgrl3 3 [1.343|G2,131],[1.064|G2,126] NV|NV 0 = [1.160|G2,129] NV 0 =

B2RZD6 Ndufa4 Ndufa4 protein 4 [1.088|G2,126],[1.157|G2,131] NV|NV 0 = [0.944|G1,128],[1.021|G2,129] NV|NV 0 =

B3GNI6 Sept11 Septin-11 4 [1.088|G2,126],[0.986|G2,131] NV|NV 0 = [0.865|G1,128],[1.094|G2,129] NV|NV 0 =

B4F7C2 Tubb4a Protein Tubb4a 3 [0.908|G2,131] NV 0 = [0.979|G2,129],[1.093|G1,128] NV|NV 0 =

D3ZAF6 Atp5j2 ATP synthase subunit f, mitochondrial 4 [0.721|G2,131],[0.617|G2,126] NV|-1S -1 - [0.746|G2,129],[0.995|G1,128] NV|NV 0 =

D3ZAY7 Epb41l2 Protein Epb41l2 3 [0.791|G2,126],[1.056|G2,131] NV|NV 0 = [1.029|G2,129] NV 0 =

D3ZCN9 RGD1560073 Protein RGD1560073 3 [0.783|G2,131],[1.279|G2,126] NV|NV 0 = [0.843|G2,129] NV 0 =

D3ZCZ9 LOC100912599 Protein LOC100912599 2 [1.515|G2,126] +2S 2 + + [0.922|G2,129] NV 0 =

D3ZD09 Cox6b1 Cytochrome c oxidase subunit 6B1 3 [1.411|G2,131] +1S 1 + [1.231|G2,129],[1.135|G1,128] NV|NV 0 =

D3ZDF0 Nptn Neuroplastin 4 [0.994|G2,126],[0.737|G2,131] NV|NV 0 = [0.948|G1,128],[0.806|G2,129] NV|NV 0 =

D3ZDH8 Sept5 Platelet glycoprotein Ib beta chain 3 [0.879|G2,131],[1.197|G2,126] NV|NV 0 = [0.964|G2,129] NV 0 =

D3ZDU5 Pfn2 Profilin 2 [1.094|G2,131] NV 0 = [1.097|G2,129] NV 0 =

D3ZF13 LOC683884 Acyl carrier protein 3 [1.395|G2,131],[0.808|G2,126] +1S|NV 1 + [1.307|G2,129] +1S 1 +

D3ZG43 Ndufs3 NADH dehyd(Ubiquinone) Fe-S prot8 (Pred), isofCRA_c 3 [0.910|G2,126],[1.002|G2,131] NV|NV 0 = [0.963|G2,129] NV 0 =

D3ZH42 Mov10l1 Protein Mov10l1 3 [1.337|G2,126],[1.053|G2,131] +1S|NV 1 + [0.650|G2,129] -1S -1 -

D3ZH98 Uncharacterized protein 3 [1.586|G2,126],[1.549|G2,131] +2S|+2S 4 + + [1.377|G2,129] +2S 2 + +

D3ZJ08 Hist2h3c2 Histone H3 4 [1.308|G2,126],[0.998|G2,131] +1S|NV 1 + [1.174|G1,128],[1.219|G2,129] NV|NV 0 =

D3ZJF4 Uncharacterized protein (Fragment) 2 [0.988|G2,131] NV 0 = [0.999|G2,129] NV 0 =

D3ZKD9 Mapt Microtubule-associated protein 2 [1.199|G2,131] NV 0 = [1.114|G2,129] NV 0 =

D3ZNH4 Hist1h2bo Histone H2B 2 [1.228|G2,131] NV 0 = [1.041|G2,129] NV 0 =

D3ZNI9 Kcnt1 Potassium channel subfamily T member 1 3 [0.982|G2,126],[0.907|G2,131] NV|NV 0 = [0.610|G2,129] -2S -2 - -

D3ZPP8 Sept3 Neuronal-specific septin-3 3 [0.956|G2,131],[0.945|G2,126] NV|NV 0 = [0.927|G2,129] NV 0 =

D3ZQD3 Ogdhl 2-oxoglutarate dehydrogenase, mitochondrial 3 [1.121|G2,126],[0.902|G2,131] NV|NV 0 = [0.909|G2,129] NV 0 =

D3ZQL7 Tppp Protein Tppp 4 [1.108|G2,131],[1.039|G2,126] NV|NV 0 = [0.962|G2,129],[0.943|G1,128] NV|NV 0 =

D3ZS58 Ndufa2 3 [1.085|G2,126],[1.227|G2,131] NV|NV 0 = [1.082|G2,129] NV 0 =

D3ZXP3 H2afx Histone H2A 3 [1.068|G2,131],[1.014|G2,126] NV|NV 0 = [0.933|G2,129] NV 0 =

D3ZZ51 Prrc2b Protein Prrc2b (Fragment) 3 [0.869|G2,131],[1.216|G2,126] NV|NV 0 = [0.935|G2,129] NV 0 =

D4A0E2 Napg Protein Napg 3 [1.024|G2,126],[0.975|G2,131] NV|NV 0 = [0.952|G2,129] NV 0 =

D4A0F5 Sept7 Protein LOC100910754 4 [0.875|G2,131],[1.170|G2,126] NV|NV 0 = [0.962|G2,129],[1.043|G1,128] NV|NV 0 =

D4A0T0 Ndufb10 Protein Ndufb10 2 [1.450|G2,131] +1S 1 + [1.108|G2,129] NV 0 =

D4A133 Atp6v1a Protein Atp6v1a 4 [0.913|G2,131],[1.119|G2,126] NV|NV 0 = [1.038|G2,129],[0.992|G1,128] NV|NV 0 =

D4A678 Spta1 Protein Spta1 3 [1.394|G2,126],[0.854|G2,131] +1S|NV 1 + [1.009|G2,129] NV 0 =

D4A8H3 Uba6 Protein Uba6 3 [1.282|G2,131],[1.087|G2,126] NV|NV 0 = [1.110|G2,129] NV 0 =

D4AB12 Uncharacterized protein 3 [1.459|G2,126],[1.084|G2,131] +2S|NV 2 + + [1.130|G2,129] NV 0 =

D4ACQ2 LOC690384 Protein LOC690384 3 [1.370|G2,131],[1.067|G2,126] +1S|NV 1 + [1.217|G2,129] NV 0 =

F1LM47 Sucla2 Succinyl-CoA ligase subunit beta 3 [0.838|G2,131],[1.101|G2,126] NV|NV 0 = [0.870|G2,129] NV 0 =

F1LM82 Hnrnpa2b1 Heterogeneous nuclear ribonucleoproteins A2/B1 4 [1.087|G2,126],[1.236|G2,131] NV|NV 0 = [0.989|G1,128],[1.193|G2,129] NV|NV 0 =

F1LMR7 Dpp6 Dipeptidyl aminopeptidase-like protein 6 2 [1.334|G2,126] +1S 1 + [0.804|G2,129] NV 0 =

F1LMW7 Marcks Myristoylated alanine-rich C-kinase substrate 3 [0.883|G2,126],[1.515|G2,131] NV|+2S 2 + + [1.380|G2,129] +2S 2 + +

F1LNF7 Idh3a Isocitrate dehyd [NAD] subunit, mitoch. 3 [1.019|G2,131] NV 0 = [1.056|G2,129],[1.034|G1,128] NV|NV 0 =

F1LNN8 Dapk1 Protein Dapk1 3 [1.289|G2,131],[0.862|G2,126] NV|NV 0 = [1.160|G2,129] NV 0 =

F1LPP0 Amph Protein LOC100910792 (Fragment) 4 [1.260|G2,131],[1.221|G2,126] NV|NV 0 = [1.156|G2,129],[0.916|G1,128] NV|NV 0 =

F1LPS8 Pura Transcriptional activator protein Pur-alpha 3 [1.151|G2,131],[0.996|G2,126] NV|NV 0 = [1.088|G2,129] NV 0 =

F1LQ05 Sh3gl2 Endophilin-A1 (Fragment) 4 [1.056|G2,131],[0.904|G2,126] NV|NV 0 = [1.026|G2,129],[1.003|G1,128] NV|NV 0 =

F1LQ63 Tnr Tenascin-R 4 [0.778|G2,131],[0.903|G2,126] NV|NV 0 = [0.839|G2,129],[0.903|G1,128] NV|NV 0 =

F1LQ81 Nsf Vesicle-fusing ATPase (Fragment) 4 [0.769|G2,131],[1.108|G2,126] NV|NV 0 = [0.830|G2,129],[0.944|G1,128] NV|NV 0 =

F1LQ96 Sncg Gamma-synuclein 3 [1.598|G2,131],[1.444|G2,126] +2S|+2S 4 + + [1.269|G2,129] +1S 1 +

F1LRK1 Atp4a Potassium-transporting ATPase alpha chain 1 3 [0.882|G2,126],[0.566|G2,131] NV|-1S -1 - [0.586|G2,129] -2S -2 - -

F1LRZ7 Nefh Neurofilament heavy polypeptide 3 [0.918|G2,126],[1.135|G2,131] NV|NV 0 = [0.949|G2,129] NV 0 =

F1LTZ6 RGD1559921 Protein RGD1559921 (Fragment) 4 [1.293|G2,131],[0.972|G2,126] NV|NV 0 = [1.073|G2,129],[1.031|G1,128] NV|NV 0 =

F1LUM5 Tubal3 Protein Tubal3 2 [0.651|G2,131] NV 0 = [0.795|G2,129] NV 0 =

F1LUV9 Ncam1 Neural cell adhesion molecule 1 (Fragment) 3 [0.637|G2,131] NV 0 = [0.880|G1,128],[0.795|G2,129] NV|NV 0 =

F1M1D0 Krt79 Protein Krt79 2 [0.894|G2,131] NV 0 = [0.748|G2,129] NV 0 =

F1M208 Piezo2 Protein Piezo2 3 [1.309|G2,131],[1.229|G2,126] NV|NV 0 = [1.262|G2,129] NV 0 =

F1M269 Glyceraldehyde-3-phosphate dehydr (Frag) 3 [1.400|G2,126],[1.084|G2,131] +1S|NV 1 + [1.086|G2,129] NV 0 =

F1M2D3 Vdac1 Uncharacterized protein 4 [1.232|G2,131],[1.128|G2,126] NV|NV 0 = [1.163|G2,129],[1.284|G1,128] NV|+2S 2 + +

F1M779 Cltc Clathrin heavy chain 4 [0.626|G2,131],[0.784|G2,126] -1S|NV -1 - [0.637|G2,129],[0.824|G1,128] -2S|NV -2 - -

F1M953 Hspa9 Stress-70 protein, mitochondrial 3 [1.138|G2,131] NV 0 = [1.092|G2,129],[1.018|G1,128] NV|NV 0 =

F1M9C1 Leprel1 Prolyl 3-hydroxylase 2 (Fragment) 3 [1.101|G2,126],[1.035|G2,131] NV|NV 0 = [0.858|G2,129] NV 0 =

F1MA36 Sptbn2 Spectrin beta 3 3 [0.669|G2,131],[1.056|G2,126] NV|NV 0 = [0.764|G2,129] NV 0 =

F1MAQ5 Map2 Microtubule-associated protein 4 [1.100|G2,126],[1.223|G2,131] NV|NV 0 = [0.981|G1,128],[1.214|G2,129] NV|NV 0 =

F7EYB9 Omg Protein Omg 4 [0.675|G2,126],[0.904|G2,131] -1S|NV -1 - [0.855|G1,128],[0.924|G2,129] NV|NV 0 =

F7FEZ6 Hnrnpa1 Heterogeneous nuclear ribonucleoprotein A1 3 [0.997|G2,126],[0.951|G2,131] NV|NV 0 = [0.995|G2,129] NV 0 =

F7FKI5 Pdha1 Pyruvate dehydrogenase E1 comp.subunit alpha 4 [0.903|G2,131],[0.878|G2,126] NV|NV 0 = [0.985|G2,129],[1.011|G1,128] NV|NV 0 =

F8WG67 Acot7 Acyl-CoA thioesterase 7, isoform CRA_a 3 [0.934|G2,131],[1.029|G2,126] NV|NV 0 = [0.983|G2,129] NV 0 =

G3V6A4 Hnrpd Heterogeneous nuclear ribonucleop.D, isofCRA_b 4 [1.035|G2,126],[1.162|G2,131] NV|NV 0 = [1.157|G1,128],[1.260|G2,129] NV|NV 0 =

G3V6D3 Atp5b ATP synthase subunit beta 4 [0.809|G2,126],[1.404|G2,131] NV|+1S 1 + [1.118|G1,128],[1.143|G2,129] NV|NV 0 =

G3V6P2 Dlst 3 [1.020|G2,126],[1.239|G2,131] NV|NV 0 = [1.047|G2,129] NV 0 =

G3V6S0 Sptbn1 Protein Sptbn1 4 [1.072|G2,126],[0.698|G2,131] NV|NV 0 = [0.860|G1,128],[0.786|G2,129] NV|NV 0 =

G3V6S8 Srsf6 Serine/arginine-rich splicing factor 6 3 [0.941|G2,131],[1.241|G2,126] NV|NV 0 = [1.026|G2,129] NV 0 =

G3V6X7 Pcsk1n Proprotein convertase subtilisin/kexin type 1 inhibitor 3 [1.386|G2,131] +1S 1 + [1.110|G1,128],[1.246|G2,129] NV|NV 0 =

G3V6Y6 Pygb Alpha-1,4 glucan phosphorylase 3 [0.629|G2,131],[0.797|G2,126] -1S|NV -1 - [0.701|G2,129] -1S -1 -

G3V721 Wbp2 WW domain binding protein 2, isoform CRA_b 3 [1.098|G2,131],[0.980|G2,126] NV|NV 0 = [1.024|G2,129] NV 0 =

G3V733 Syn2 Synapsin-2 3 [0.884|G2,131] NV 0 = [0.982|G2,129],[1.133|G1,128] NV|NV 0 =

G3V7C6 Tubb4b RCG45400 3 [0.892|G2,131] NV 0 = [1.089|G1,128],[0.971|G2,129] NV|NV 0 =

G3V7J7 Eif5a2 Eukaryotic translation initiation factor 5A2 (Predicted) 4 [0.949|G2,126],[1.207|G2,131] NV|NV 0 = [0.970|G1,128],[1.076|G2,129] NV|NV 0 =

G3V7L8 Atp6v1e1 ATPase, H+ transport,V1 subunE isoform 1/CRA_a 3 [1.161|G2,131] NV 0 = [1.006|G1,128],[1.028|G2,129] NV|NV 0 =

G3V7Y3 Atp5d ATP synthase subunit delta, mitochondrial 4 [1.627|G2,131],[1.111|G2,126] +2S|NV 2 + + [1.319|G2,129],[0.971|G1,128] +1S|NV 1 +

G3V846 Slc1a3 Amino acid transporter 4 [0.618|G2,126],[0.638|G2,131] -1S|NV -1 - [0.928|G1,128],[0.620|G2,129] NV|-2S -2 - -

G3V874 Epb41l3 Erythrocyte protein band 4.1-like 3, isoform CRA_b 3 [0.911|G2,126],[1.102|G2,131] NV|NV 0 = [1.085|G2,129] NV 0 =

G3V8C3 Vim Vimentin 4 [1.234|G2,131],[0.966|G2,126] NV|NV 0 = [1.203|G2,129],[0.990|G1,128] NV|NV 0 =

G3V8K2 Gng3 Guanine nucleotide-binding protein subunit gamma 3 [0.743|G2,131],[1.021|G2,126] NV|NV 0 = [0.768|G2,129] NV 0 =

G3V8Q2 Ina Alpha-internexin 3 [1.369|G2,131] +1S 1 + [0.962|G1,128],[1.056|G2,129] NV|NV 0 =

G3V936 Cs Citrate synthase 3 [0.855|G2,131] NV 0 = [0.888|G2,129],[1.006|G1,128] NV|NV 0 =

G3V983 Gstm1 Glutathione S-transferase Mu 1 3 [0.948|G2,131],[1.020|G2,126] NV|NV 0 = [0.932|G2,129] NV 0 =

G3V9B3 Mag Myelin-associated glycoprotein 3 [0.668|G2,131] NV 0 = [0.590|G2,129],[0.841|G1,128] -2S|NV -2 - -

G3V9G3 Camk2b Calcium/calmodulin-dep Pkinase II, beta, isofCRA_a 4 [0.620|G2,131],[1.016|G2,126] -1S|NV -1 - [0.695|G2,129],[0.879|G1,128] -1S|NV -1 -

G3V9R8 Hnrnpc Heterogeneous nuclear ribonucleoprotein C 2 [1.257|G2,131] NV 0 = [1.180|G2,129] NV 0 =

M0R5J4 Uncharacterized protein 4 [1.302|G2,131],[1.289|G2,126] NV|NV 0 = [1.125|G2,129],[0.983|G1,128] NV|NV 0 =

M0R757 LOC100360413 Elongation factor 1-alpha 4 [1.182|G2,126],[0.851|G2,131] NV|NV 0 = [0.967|G1,128],[0.854|G2,129] NV|NV 0 =

M0RAD1 Crym Ketimine reductase mu-crystallin (Fragment) 3 [1.112|G2,131],[0.842|G2,126] NV|NV 0 = [1.091|G2,129] NV 0 =

M0RAU4 Uncharacterized protein (Fragment) 2 [1.322|G2,131] NV 0 = [1.122|G2,129] NV 0 =

M0RBJ0 Gng2 Guanine nucleotide-binding P.subunit gamma(Frag) 3 [1.148|G2,131],[0.829|G2,126] NV|NV 0 = [0.897|G2,129] NV 0 =

M0RDM4 LOC680322 Histone H2A 3 [1.014|G2,126],[1.082|G2,131] NV|NV 0 = [1.002|G2,129] NV 0 =

O08839 Bin1 Myc box-dependent-interacting protein 1 2 [1.082|G2,131] NV 0 = [1.058|G2,129] NV 0 =

O35244 Prdx6 Peroxiredoxin-6 4 [1.315|G2,131],[0.897|G2,126] NV|NV 0 = [1.042|G2,129],[1.069|G1,128] NV|NV 0 =

O35796 C1qbp Complement comp. 1Qsubc-bind prot, mitoch. 4 [1.133|G2,131],[0.824|G2,126] NV|NV 0 = [1.110|G2,129],[1.104|G1,128] NV|NV 0 =

O35814 Stip1 Stress-induced-phosphoprotein 1 3 [1.105|G2,131],[1.182|G2,126] NV|NV 0 = [1.092|G2,129] NV 0 =

O88339 Epn1 Epsin-1 2 [1.443|G2,131] +1S 1 + [1.124|G2,129] NV 0 =

O88989 Mdh1 Malate dehydrogenase, cytoplasmic 3 [0.967|G2,131] NV 0 = [0.938|G2,129],[1.006|G1,128] NV|NV 0 =

P00507 Got2 Aspartate aminotransferase, mitochondrial 3 [0.828|G2,131] NV 0 = [0.832|G2,129],[0.969|G1,128] NV|NV 0 =

P01830 Thy1 Thy-1 membrane glycoprotein 4 [0.864|G2,126],[0.809|G2,131] NV|NV 0 = [0.930|G1,128],[0.807|G2,129] NV|NV 0 =

P01946 Hba1 Hemoglobin subunit alpha-1/2 3 [0.969|G2,126],[0.957|G2,131] NV|NV 0 = [0.650|G2,129] -1S -1 -

P02091 Hbb Hemoglobin subunit beta-1 2 [0.931|G2,131] NV 0 = [0.613|G2,129] -2S -2 - -

P02650 Apoe Apolipoprotein E 3 [0.863|G2,126],[1.140|G2,131] NV|NV 0 = [1.077|G2,129] NV 0 =

P02688 Mbp Myelin basic protein 3 [1.094|G2,131] NV 0 = [0.809|G1,128],[0.736|G2,129] -1S|NV -1 -

P02770 Alb Serum albumin 4 [1.313|G2,126],[0.748|G2,131] +1S|NV 1 + [0.990|G1,128],[0.682|G2,129] NV|-1S -1 -

P04631 S100b Protein S100-B 4 [0.885|G2,126],[1.315|G2,131] NV|NV 0 = [0.795|G1,128],[1.122|G2,129] -1S|NV -1 -

P04636 Mdh2 Malate dehydrogenase, mitochondrial 3 [0.861|G2,131] NV 0 = [1.096|G1,128],[0.964|G2,129] NV|NV 0 =

HH 
variation

HH 
global 
var.

HH 
symbol

HHI 
variatio

n

HHI 
global 
var.

HHI 
symbol

NADH dehydrogenase [ubiquinone] 1 alpha 
subcomplex subunit 2

Dihydrolipoamide S-succinyltransferase (E2 comp. 
of 2-oxo-glutarate complex), isoform CRA_a



Protein Gene Description num HH data origin HHI data origin

P04642 Ldha L-lactate dehydrogenase A chain 4 [0.925|G2,126],[0.736|G2,131] NV|NV 0 = [0.974|G1,128],[0.815|G2,129] NV|NV 0 =

P04692 Tpm1 Tropomyosin alpha-1 chain 2 [1.369|G2,131] +1S 1 + [1.278|G2,129] +1S 1 +

P04785 P4hb Protein disulfide-isomerase 3 [0.806|G2,126],[0.961|G2,131] NV|NV 0 = [1.008|G2,129] NV 0 =

P04797 Gapdh Glyceraldehyde-3-phosphate dehydrogenase 4 [1.152|G2,131],[1.240|G2,126] NV|NV 0 = [1.132|G2,129],[1.115|G1,128] NV|NV 0 =

P04904 Gsta3 Glutathione S-transferase alpha-3 2 [1.002|G2,131] NV 0 = [0.794|G2,129] NV 0 =

P04906 Gstp1 Glutathione S-transferase P 4 [0.824|G2,131],[0.790|G2,126] NV|NV 0 = [0.804|G2,129],[0.986|G1,128] NV|NV 0 =

P05065 Aldoa Fructose-bisphosphate aldolase A 4 [1.330|G2,126],[0.945|G2,131] +1S|NV 1 + [1.028|G1,128],[0.891|G2,129] NV|NV 0 =

P05708 Hk1 Hexokinase-1 4 [0.683|G2,131],[0.796|G2,126] NV|NV 0 = [0.693|G2,129],[0.927|G1,128] -1S|NV -1 -

P06685 Atp1a1 NA/K-transporting ATPase subunit alpha-1 3 [0.629|G2,131] -1S -1 - [0.963|G1,128],[0.643|G2,129] NV|-2S -2 - -

P06686 Atp1a2 Na/K-transporting ATPase subunit alpha-2 3 [0.622|G2,131] -1S -1 - [0.634|G2,129],[0.963|G1,128] -2S|NV -2 - -

P06687 Atp1a3 NA/K-transporting ATPase subunit alpha-3 3 [0.606|G2,131] -1S -1 - [0.628|G2,129],[0.936|G1,128] -2S|NV -2 - -

P06761 Hspa5 78 kDa glucose-regulated protein 3 [1.349|G2,131] NV 0 = [1.015|G1,128],[1.206|G2,129] NV|NV 0 =

P07171 Calb1 Calbindin 3 [0.855|G2,126],[1.390|G2,131] NV|+1S 1 + [1.368|G2,129] +2S 2 + +

P07323 Eno2 Gamma-enolase 4 [1.215|G2,126],[1.259|G2,131] NV|NV 0 = [0.932|G1,128],[1.066|G2,129] NV|NV 0 =

P07335 Ckb Creatine kinase B-type 4 [1.063|G2,131],[1.018|G2,126] NV|NV 0 = [1.036|G2,129],[1.042|G1,128] NV|NV 0 =

P07340 Atp1b1 4 [0.662|G2,131],[0.830|G2,126] NV|NV 0 = [0.739|G2,129],[1.006|G1,128] NV|NV 0 =

P07483 Fabp3 Fatty acid-binding protein, heart 3 [0.922|G2,126],[1.080|G2,131] NV|NV 0 = [0.992|G2,129] NV 0 =

P07825 Syp Synaptophysin 3 [0.608|G2,131] -1S -1 - [0.931|G1,128],[0.736|G2,129] NV|NV 0 =

P07895 Sod2 Superoxide dismutase [Mn], mitochondrial 4 [1.197|G2,126],[1.232|G2,131] NV|NV 0 = [1.129|G1,128],[1.018|G2,129] NV|NV 0 =

P07936 Gap43 Neuromodulin 2 [1.624|G2,131] +2S 2 + + [1.277|G2,129] +1S 1 +

P07943 Akr1b1 Aldose reductase 3 [0.937|G2,131],[0.927|G2,126] NV|NV 0 = [0.994|G2,129] NV 0 =

P08009 Gstm3 Glutathione S-transferase Yb-3 4 [0.949|G2,131],[0.944|G2,126] NV|NV 0 = [1.026|G2,129],[1.135|G1,128] NV|NV 0 =

P08081 Clta Clathrin light chain A 3 [1.284|G2,131] NV 0 = [1.190|G2,129],[1.138|G1,128] NV|NV 0 =

P08082 Cltb Clathrin light chain B 4 [1.417|G2,131],[1.210|G2,126] +1S|NV 1 + [1.311|G2,129],[1.273|G1,128] +1S|+2S 3 + +

P08461 Dlat 3 [1.099|G2,131] NV 0 = [1.022|G2,129],[1.051|G1,128] NV|NV 0 =

P09117 Aldoc Fructose-bisphosphate aldolase C 3 [1.042|G2,131] NV 0 = [1.051|G1,128],[0.926|G2,129] NV|NV 0 =

P09495 Tpm4 Tropomyosin alpha-4 chain 3 [1.360|G2,131],[1.045|G2,126] NV|NV 0 = [1.242|G2,129] NV 0 =

P09606 Glul Glutamine synthetase 3 [0.959|G2,131] NV 0 = [1.038|G1,128],[0.937|G2,129] NV|NV 0 =

P09951 Syn1 Synapsin-1 3 [0.978|G2,131] NV 0 = [0.931|G2,129],[1.048|G1,128] NV|NV 0 =

P10111 Ppia Peptidyl-prolyl cis-trans isomerase A 3 [1.144|G2,131] NV 0 = [1.077|G1,128],[1.122|G2,129] NV|NV 0 =

P10860 Glud1 Glutamate dehydrogenase 1, mitochondrial 4 [1.390|G2,126],[0.933|G2,131] +1S|NV 1 + [0.991|G1,128],[1.037|G2,129] NV|NV 0 =

P10888 Cox4i1 Cytochrome c oxidase sub4 isof1, mitoch 4 [0.862|G2,131],[1.111|G2,126] NV|NV 0 = [0.793|G2,129],[1.001|G1,128] NV|NV 0 =

P10960 Psap Sulfated glycoprotein 1 3 [1.257|G2,131],[0.842|G2,126] NV|NV 0 = [1.138|G2,129] NV 0 =

P11232 Txn Thioredoxin 3 [1.274|G2,126],[1.367|G2,131] NV|NV 0 = [1.252|G2,129] NV 0 =

P11275 Camk2a Ca/calmodulin-dep PK type II subunit alpha 4 [0.994|G2,126],[0.631|G2,131] NV|-1S -1 - [0.928|G1,128],[0.718|G2,129] NV|-1S -1 -

P11598 Pdia3 Protein disulfide-isomerase A3 3 [0.966|G2,126],[0.862|G2,131] NV|NV 0 = [1.023|G2,129] NV 0 =

P11951 Cox6c2 Cytochrome c oxidase subunit 6C-2 4 [0.715|G2,131],[1.140|G2,126] NV|NV 0 = [0.745|G2,129],[0.904|G1,128] NV|NV 0 =

P11980 Pkm Pyruvate kinase PKM 4 [1.194|G2,126],[0.830|G2,131] NV|NV 0 = [1.021|G1,128],[0.892|G2,129] NV|NV 0 =

P12075 Cox5b Cytochrome c oxidase sub5B, mitoch. 4 [1.152|G2,131],[0.886|G2,126] NV|NV 0 = [1.061|G2,129],[0.987|G1,128] NV|NV 0 =

P12839 Nefm Neurofilament medium polypeptide 3 [1.364|G2,131] NV 0 = [1.053|G2,129],[0.957|G1,128] NV|NV 0 =

P13221 Got1 Aspartate aminotransferase, cytoplasmic 3 [0.970|G2,131],[0.972|G2,126] NV|NV 0 = [1.041|G2,129] NV 0 =

P13233 Cnp 2',3'-cyclic-nucleotide 3'-phosphodiesterase 4 [0.684|G2,131],[1.190|G2,126] NV|NV 0 = [0.599|G2,129],[0.835|G1,128] -2S|NV -2 - -

P13383 Ncl Nucleolin 3 [1.280|G2,126],[1.249|G2,131] NV|NV 0 = [1.153|G2,129] NV 0 =

P13668 Stmn1 Stathmin 3 [1.153|G2,126],[1.200|G2,131] NV|NV 0 = [1.182|G2,129] NV 0 =

P14408 Fh Fumarate hydratase, mitochondrial 2 [1.309|G2,131] NV 0 = [1.113|G2,129] NV 0 =

P14668 Anxa5 Annexin A5 2 [0.933|G2,131] NV 0 = [0.909|G2,129] NV 0 =

P15205 Map1b Microtubule-associated protein 1B 4 [1.288|G2,126],[1.297|G2,131] NV|NV 0 = [1.001|G1,128],[1.243|G2,129] NV|NV 0 =

P15999 Atp5a1 ATP synthase subunit alpha, mitochondrial 4 [1.143|G2,131],[0.945|G2,126] NV|NV 0 = [1.087|G2,129],[1.082|G1,128] NV|NV 0 =

P16086 Sptan1 Spectrin alpha chain, non-erythrocytic 1 4 [0.928|G2,131],[1.130|G2,126] NV|NV 0 = [1.042|G2,129],[0.943|G1,128] NV|NV 0 =

P16290 Pgam2 Phosphoglycerate mutase 2 3 [0.983|G2,126],[1.301|G2,131] NV|NV 0 = [1.162|G2,129] NV 0 =

P16617 Pgk1 Phosphoglycerate kinase 1 3 [1.144|G2,131] NV 0 = [1.055|G2,129],[0.987|G1,128] NV|NV 0 =

P17764 Acat1 Acetyl-CoA acetyltransferase, mitochondrial 3 [1.086|G2,131],[1.325|G2,126] NV|+1S 1 + [1.119|G2,129] NV 0 =

P18418 Calr Calreticulin 3 [1.058|G2,131],[1.128|G2,126] NV|NV 0 = [1.080|G2,129] NV 0 =

P19234 Ndufv2 NADH dehydr.[ubiquinone] flavoprot2, mitoch 4 [0.785|G2,126],[1.132|G2,131] NV|NV 0 = [0.944|G1,128],[1.054|G2,129] NV|NV 0 =

P19511 Atp5f1 ATP synthase F(0) complex subB1, mitoch 4 [0.726|G2,131],[0.897|G2,126] NV|NV 0 = [0.774|G2,129],[1.152|G1,128] NV|NV 0 =

P19527 Nefl Neurofilament light polypeptide 3 [1.114|G2,126] NV 0 = [0.991|G1,128],[1.060|G2,129] NV|NV 0 =

P19804 Nme2 Nucleoside diphosphate kinase B 3 [1.174|G2,131] NV 0 = [1.110|G1,128],[1.108|G2,129] NV|NV 0 =

P20788 Uqcrfs1 Cytochrome b-c1 complex subRieske, mitoch 2 [0.871|G2,131] NV 0 = [0.978|G2,129] NV 0 =

P21575 Dnm1 Dynamin-1 4 [0.901|G2,131],[0.991|G2,126] NV|NV 0 = [0.997|G2,129],[1.047|G1,128] NV|NV 0 =

P21707 Syt1 Synaptotagmin-1 4 [0.949|G2,126],[0.698|G2,131] NV|NV 0 = [0.914|G1,128],[0.702|G2,129] NV|-1S -1 -

P22062 Pcmt1 3 [0.795|G2,126],[1.023|G2,131] NV|NV 0 = [0.973|G2,129] NV 0 =

P23565 Ina Alpha-internexin 3 [1.373|G2,131] +1S 1 + [0.964|G1,128],[1.063|G2,129] NV|NV 0 =

P25113 Pgam1 Phosphoglycerate mutase 1 3 [1.007|G2,126],[1.353|G2,131] NV|NV 0 = [1.297|G2,129] +1S 1 +

P26772 Hspe1 10 kDa heat shock protein, mitochondrial 4 [1.464|G2,131],[1.053|G2,126] +1S|NV 1 + [1.275|G2,129],[0.951|G1,128] +1S|NV 1 +

P27139 Ca2 Carbonic anhydrase 2 3 [0.789|G2,131],[0.752|G2,126] NV|NV 0 = [0.718|G2,129] -1S -1 -

P29419 Atp5i ATP synthase subunit e, mitochondrial 4 [0.944|G2,126],[1.054|G2,131] NV|NV 0 = [1.021|G1,128],[0.992|G2,129] NV|NV 0 =

P31044 Pebp1 Phosphatidylethanolamine-binding protein 1 3 [1.040|G2,126] NV 0 = [1.036|G1,128],[1.174|G2,129] NV|NV 0 =

P31399 Atp5h ATP synthase subunit d, mitochondrial 2 [1.452|G2,131] +1S 1 + [1.271|G2,129] +1S 1 +

P31596 Slc1a2 Excitatory amino acid transporter 2 4 [0.676|G2,131],[0.803|G2,126] NV|NV 0 = [0.710|G2,129],[1.037|G1,128] -1S|NV -1 -

P32551 Uqcrc2 Cytochrome b-c1 complex sub2, mitoch 4 [1.041|G2,131],[0.964|G2,126] NV|NV 0 = [1.069|G2,129],[1.128|G1,128] NV|NV 0 =

P32851 Stx1a Syntaxin-1A 4 [0.959|G2,126],[0.626|G2,131] NV|-1S -1 - [0.950|G1,128],[0.642|G2,129] NV|-2S -2 - -

P34058 Hsp90ab1 Heat shock protein HSP 90-beta 4 [0.842|G2,131],[1.055|G2,126] NV|NV 0 = [0.939|G2,129],[0.987|G1,128] NV|NV 0 =

P34926 Map1a Microtubule-associated protein 1A 4 [1.308|G2,126],[1.093|G2,131] +1S|NV 1 + [1.001|G1,128],[1.081|G2,129] NV|NV 0 =

P35213 Ywhab 14-3-3 protein beta/alpha 3 [1.039|G2,131] NV 0 = [1.059|G2,129],[1.038|G1,128] NV|NV 0 =

P35332 Hpcal4 Hippocalcin-like protein 4 3 [0.954|G2,126],[1.399|G2,131] NV|+1S 1 + [1.133|G2,129] NV 0 =

P35704 Prdx2 Peroxiredoxin-2 3 [1.246|G2,131] NV 0 = [1.083|G2,129],[0.956|G1,128] NV|NV 0 =

P37805 Tagln3 Transgelin-3 4 [0.959|G2,126],[1.123|G2,131] NV|NV 0 = [1.016|G1,128],[1.032|G2,129] NV|NV 0 =

P39069 Ak1 Adenylate kinase isoenzyme 1 3 [1.041|G2,131] NV 0 = [0.891|G1,128],[0.827|G2,129] NV|NV 0 =

P42123 Ldhb L-lactate dehydrogenase B chain 4 [1.034|G2,126],[0.883|G2,131] NV|NV 0 = [1.001|G1,128],[0.930|G2,129] NV|NV 0 =

P45592 Cfl1 Cofilin-1 4 [1.256|G2,126],[1.267|G2,131] NV|NV 0 = [0.970|G1,128],[1.217|G2,129] NV|NV 0 =

P47728 Calb2 Calretinin 4 [1.292|G2,131],[0.931|G2,126] NV|NV 0 = [1.304|G2,129],[1.014|G1,128] +1S|NV 1 +

P47819 Gfap Glial fibrillary acidic protein 4 [1.420|G2,131],[1.107|G2,126] +1S|NV 1 + [1.147|G2,129],[1.038|G1,128] NV|NV 0 =

P47858 Pfkm ATP-dep.6-phosphofructokinase, muscle 2 [0.673|G2,131] NV 0 = [0.738|G2,129] NV 0 =

P47942 Dpysl2 Dihydropyrimidinase-related protein 2 4 [0.987|G2,126],[1.037|G2,131] NV|NV 0 = [1.008|G1,128],[1.012|G2,129] NV|NV 0 =

P48500 Tpi1 Triosephosphate isomerase 4 [1.379|G2,126],[1.075|G2,131] +1S|NV 1 + [1.003|G1,128],[1.059|G2,129] NV|NV 0 =

P49432 Pdhb Pyruvate DH E1 component sub.beta, mitoch. 3 [1.192|G2,131] NV 0 = [1.065|G2,129],[1.120|G1,128] NV|NV 0 =

P50399 Gdi2 Rab GDP dissociation inhibitor beta 4 [0.844|G2,131],[1.039|G2,126] NV|NV 0 = [0.894|G2,129],[1.117|G1,128] NV|NV 0 =

P50408 Atp6v1f V-type proton ATPase subunit F 3 [1.038|G2,131],[0.989|G2,126] NV|NV 0 = [0.997|G2,129] NV 0 =

P50503 St13 Hsc70-interacting protein 2 [0.818|G2,131] NV 0 = [0.864|G2,129] NV 0 =

P50554 Abat 4-aminobutyrate aminotransf., mitoch 3 [0.949|G2,126],[0.628|G2,131] NV|-1S -1 - [0.727|G2,129] -1S -1 -

P54311 Gnb1 Guanine nucleot-bind protG(S)(T) sub.b1 4 [0.817|G2,131],[1.316|G2,126] NV|+1S 1 + [0.907|G2,129],[1.039|G1,128] NV|NV 0 =

P54313 Gnb2 Guanine nucleot-bind protG(S)(T) sub.b2 3 [1.316|G2,126],[0.783|G2,131] +1S|NV 1 + [0.905|G2,129] NV 0 =

P56571 ES1 protein homolog, mitochondrial 3 [1.584|G2,126],[0.991|G2,131] +2S|NV 2 + + [1.042|G2,129] NV 0 =

P59215 Gnao1 Guanine nucleot-bind prot.G(o) sub.alpha 4 [0.697|G2,131],[1.033|G2,126] NV|NV 0 = [0.759|G2,129],[0.922|G1,128] NV|NV 0 =

P60881 Snap25 Synaptosomal-associated protein 25 3 [0.978|G2,131] NV 0 = [1.004|G1,128],[0.892|G2,129] NV|NV 0 =

P61206 Arf3 ADP-ribosylation factor 3 4 [0.780|G2,126],[0.815|G2,131] NV|NV 0 = [0.829|G1,128],[0.896|G2,129] NV|NV 0 =

P61765 Stxbp1 Syntaxin-binding protein 1 3 [0.749|G2,131] NV 0 = [1.019|G1,128],[0.785|G2,129] NV|NV 0 =

P61980 Hnrnpk Heterogeneous nuclear ribonucleoprotein K 3 [1.201|G2,131],[0.947|G2,126] NV|NV 0 = [1.133|G2,129] NV 0 =

P61983 Ywhag 14-3-3 protein gamma 3 [1.068|G2,131] NV 0 = [1.074|G2,129],[1.039|G1,128] NV|NV 0 =

P62161 Calm1 Calmodulin 2 [1.437|G2,131] +1S 1 + [1.189|G2,129] NV 0 =

P62260 Ywhae 14-3-3 protein epsilon 3 [1.003|G2,131] NV 0 = [1.057|G2,129],[1.021|G1,128] NV|NV 0 =

P62632 Eef1a2 Elongation factor 1-alpha 2 4 [1.246|G2,126],[0.851|G2,131] NV|NV 0 = [0.929|G1,128],[0.843|G2,129] NV|NV 0 =

P62749 Hpcal1 Hippocalcin-like protein 1 3 [1.341|G2,131],[0.940|G2,126] NV|NV 0 = [1.159|G2,129] NV 0 =

P62762 Vsnl1 Visinin-like protein 1 4 [0.879|G2,126],[1.394|G2,131] NV|+1S 1 + [0.997|G1,128],[1.198|G2,129] NV|NV 0 =

P62775 Mtpn Myotrophin 3 [1.047|G2,126],[1.247|G2,131] NV|NV 0 = [1.228|G2,129] NV 0 =

P62815 Atp6v1b2 V-type proton ATPase subunit B, brain isoform 3 [0.946|G2,131] NV 0 = [1.010|G1,128],[1.011|G2,129] NV|NV 0 =

P62836 Rap1a Ras-related protein Rap-1A 3 [0.718|G2,126],[0.767|G2,131] NV|NV 0 = [0.783|G2,129] NV 0 =

P62898 Cycs Cytochrome c, somatic 3 [1.045|G2,126],[1.000|G2,131] NV|NV 0 = [1.016|G2,129] NV 0 =

P62944 Ap2b1 AP-2 complex subunit beta 4 [0.938|G2,126],[0.642|G2,131] NV|NV 0 = [1.018|G1,128],[0.682|G2,129] NV|-1S -1 -

P62959 Hint1 Histidine triad nucleotide-binding protein 1 4 [1.148|G2,131],[1.013|G2,126] NV|NV 0 = [1.103|G2,129],[1.007|G1,128] NV|NV 0 =

P62963 Pfn1 Profilin-1 2 [1.032|G2,126] NV 0 = [0.946|G2,129] NV 0 =

P63012 Rab3a Ras-related protein Rab-3A 4 [0.927|G2,126],[0.633|G2,131] NV|NV 0 = [1.035|G1,128],[0.776|G2,129] NV|NV 0 =

P63018 Hspa8 Heat shock cognate 71 kDa protein 3 [1.340|G2,131] NV 0 = [1.061|G1,128],[1.223|G2,129] NV|NV 0 =

P63039 Hspd1 60 kDa heat shock protein, mitochondrial 3 [1.278|G2,131] NV 0 = [1.113|G2,129],[1.003|G1,128] NV|NV 0 =

P63041 Cplx1 Complexin-1 3 [1.516|G2,131],[0.497|G2,126] +2S|-2S NA NA [1.374|G2,129] +2S 2 + +

HH 
variation

HH global 
var.

HH 
symbol

HHI 
variation

HHI global 
var.

HHI 
symbol

Sodium/potassium-transporting ATPase 
subunit beta-1

Dihydrolipoyllysine-residue acetyltrans.component 
of pyruvate DHcomplex, mitoch.

Protein-L-isoaspartate(D-aspartate) O-
methyltransferase
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Protein Gene Description num HH data origin HHI data origin

P63086 Mapk1 Mitogen-activated protein kinase 1 4 [1.166|G2,126],[0.815|G2,131] NV|NV 0 = [1.007|G1,128],[0.913|G2,129] NV|NV 0 =

P63100 Ppp3r1 Calcineurin subunit B type 1 3 [0.810|G2,126],[0.795|G2,131] NV|NV 0 = [0.949|G2,129] NV 0 =

P63102 Ywhaz 14-3-3 protein zeta/delta 3 [1.029|G2,131] NV 0 = [1.071|G1,128],[1.063|G2,129] NV|NV 0 =

P63329 Ppp3ca 4 [0.703|G2,131],[1.346|G2,126] NV|+1S 1 + [0.815|G2,129],[0.959|G1,128] NV|NV 0 =

P67779 Phb Prohibitin 4 [0.930|G2,126],[1.292|G2,131] NV|NV 0 = [1.000|G1,128],[1.097|G2,129] NV|NV 0 =

P68035 Actc1 Actin, alpha cardiac muscle 1 2 [0.813|G2,131] NV 0 = [0.943|G2,129] NV 0 =

P68255 Ywhaq 14-3-3 protein theta 3 [0.998|G2,131] NV 0 = [1.042|G2,129],[0.999|G1,128] NV|NV 0 =

P68370 Tuba1a Tubulin alpha-1A chain 4 [0.783|G2,131],[0.957|G2,126] NV|NV 0 = [0.858|G2,129],[1.016|G1,128] NV|NV 0 =

P68511 Ywhah 14-3-3 protein eta 3 [1.044|G2,131] NV 0 = [1.037|G1,128],[1.062|G2,129] NV|NV 0 =

P69682 Necap1 Adaptin ear-binding coat-associated protein 1 2 [1.192|G2,131] NV 0 = [1.134|G2,129] NV 0 =

P69897 Tubb5 Tubulin beta-5 chain 3 [0.901|G2,131] NV 0 = [0.985|G2,129],[1.075|G1,128] NV|NV 0 =

P70566 Tmod2 Tropomodulin-2 2 [1.105|G2,131] NV 0 = [0.995|G2,129] NV 0 =

P70580 Pgrmc1 3 [0.831|G2,131],[1.170|G2,126] NV|NV 0 = [0.897|G2,129] NV 0 =

P80254 Ddt D-dopachrome decarboxylase 2 [1.388|G2,131] +1S 1 + [1.272|G2,129] +1S 1 +

P81155 Vdac2 4 [0.877|G2,131],[0.903|G2,126] NV|NV 0 = [0.887|G2,129],[0.938|G1,128] NV|NV 0 =

P82995 Hsp90aa1 Heat shock protein HSP 90-alpha 4 [0.825|G2,131],[1.094|G2,126] NV|NV 0 = [0.916|G2,129],[0.953|G1,128] NV|NV 0 =

P84076 Hpca 4 [1.229|G2,131],[0.966|G2,126] NV|NV 0 = [1.145|G2,129],[1.019|G1,128] NV|NV 0 =

P84087 Cplx2 Complexin-2 4 [0.497|G2,126],[1.327|G2,131] -2S|NV -2 - - [1.148|G1,128],[1.350|G2,129] NV|+1S 1 +

P84817 Fis1 Mitochondrial fission 1 protein 3 [0.895|G2,131],[0.568|G2,126] NV|-2S -2 - - [0.924|G2,129] NV 0 =

P85108 Tubb2a Tubulin beta-2A chain 3 [0.949|G2,131] NV 0 = [1.066|G1,128],[1.005|G2,129] NV|NV 0 =

P85515 Actr1a Alpha-centractin 3 [0.975|G2,126],[0.779|G2,131] NV|NV 0 = [0.932|G2,129] NV 0 =

P85834 Tufm Elongation factor Tu, mitochondrial 4 [1.168|G2,126],[0.897|G2,131] NV|NV 0 = [0.862|G1,128],[0.847|G2,129] NV|NV 0 =

P85845 Fscn1 Fascin 4 [1.335|G2,126],[0.867|G2,131] +1S|NV 1 + [1.103|G1,128],[0.987|G2,129] NV|NV 0 =

P85969 Napb Beta-soluble NSF attachment protein 3 [1.029|G2,131] NV 0 = [1.048|G1,128],[0.988|G2,129] NV|NV 0 =

Q00981 Uchl1 3 [1.273|G2,131] NV 0 = [1.194|G2,129],[1.015|G1,128] NV|NV 0 =

Q02563 Sv2a Synaptic vesicle glycoprotein 2A 3 [1.062|G2,126],[0.761|G2,131] NV|NV 0 = [0.925|G2,129] NV 0 =

Q03344 Atpif1 ATPase inhibitor, mitochondrial 4 [1.139|G2,126],[1.438|G2,131] NV|+1S 1 + [1.081|G1,128],[1.310|G2,129] NV|+1S 1 +

Q05140 Snap91 Clathrin coat assembly protein AP180 3 [1.222|G2,126],[0.971|G2,131] NV|NV 0 = [1.028|G2,129] NV 0 =

Q05175 Basp1 Brain acid soluble protein 1 3 [1.779|G2,131] +2S 2 + + [1.551|G2,129],[1.073|G1,128] +2S|NV 2 + +

Q05962 Slc25a4 ADP/ATP translocase 1 4 [0.638|G2,131],[0.783|G2,126] NV|NV 0 = [0.629|G2,129],[0.940|G1,128] -2S|NV -2 - -

Q05982 Nme1 Nucleoside diphosphate kinase A 4 [1.174|G2,131],[0.927|G2,126] NV|NV 0 = [1.138|G2,129],[1.109|G1,128] NV|NV 0 =

Q06645 Atp5g1 4 [0.818|G2,126],[0.527|G2,131] NV|-1S -1 - [0.918|G1,128],[0.597|G2,129] NV|-2S -2 - -

Q06647 Atp5o ATP synthase subunit O, mitochondrial 4 [0.877|G2,131],[0.903|G2,126] NV|NV 0 = [0.859|G2,129],[0.956|G1,128] NV|NV 0 =

Q09073 Slc25a5 ADP/ATP translocase 2 4 [0.653|G2,131],[0.896|G2,126] NV|NV 0 = [0.684|G2,129],[0.949|G1,128] -1S|NV -1 -

Q3KR86 Immt MICOS complex subunit Mic60 (Fragment) 3 [0.911|G2,131],[1.198|G2,126] NV|NV 0 = [0.998|G2,129] NV 0 =

Q3ZB98 Bcas1 3 [1.712|G2,131],[1.536|G2,126] +2S|+2S 4 + + [1.097|G2,129] NV 0 =

Q4FZY0 Efhd2 EF-hand domain-containing protein D2 3 [1.203|G2,131],[1.164|G2,126] NV|NV 0 = [1.083|G2,129] NV 0 =

Q4KLX9 Ccdc163 Protein Ccdc163 3 [0.891|G2,131],[0.616|G2,126] NV|-1S -1 - [0.979|G2,129] NV 0 =

Q4KM73 Cmpk1 UMP-CMP kinase 3 [1.206|G2,131],[0.724|G2,126] NV|NV 0 = [0.989|G2,129] NV 0 =

Q4KMA2 Rad23b UV excision repair protein RAD23 homolog B 3 [0.826|G2,126],[1.164|G2,131] NV|NV 0 = [1.126|G2,129] NV 0 =

Q4QQV0 Tubb6 Protein Tubb6 2 [0.920|G2,131] NV 0 = [1.014|G2,129] NV 0 =

Q4QRB4 Tubb3 Tubulin beta-3 chain 3 [0.908|G2,131] NV 0 = [0.990|G2,129],[1.071|G1,128] NV|NV 0 =

Q5BJT9 Ckmt1b Creatine kinase, mitochondrial 1, ubiquitous 4 [1.070|G2,126],[0.845|G2,131] NV|NV 0 = [0.982|G1,128],[0.874|G2,129] NV|NV 0 =

Q5FVI4 Cend1 3 [1.001|G2,131],[1.174|G2,126] NV|NV 0 = [0.889|G2,129] NV 0 =

Q5M7A7 Cnrip1 CB1 cannabinoid receptor-interacting prot 1 2 [0.835|G2,126] NV 0 = [1.018|G2,129] NV 0 =

Q5M7T6 Atp6v0d1 ATPase, H+ transp, lysos 38kDa, V0subd1 4 [0.958|G2,126],[0.742|G2,131] NV|NV 0 = [0.900|G1,128],[0.901|G2,129] NV|NV 0 =

Q5M9I5 Uqcrh Cytochrome b-c1 complex subunit 6, mitoch 2 [0.909|G2,126] NV 0 = [0.898|G2,129] NV 0 =

Q5PPN5 Tppp3 3 [1.170|G2,131],[1.163|G2,126] NV|NV 0 = [1.029|G2,129] NV 0 =

Q5PQK2 Fus 2 [1.015|G2,131] NV 0 = [1.048|G2,129] NV 0 =

Q5PQN0 Ncald Neurocalcin-delta 4 [0.874|G2,126],[1.345|G2,131] NV|NV 0 = [0.974|G1,128],[1.158|G2,129] NV|NV 0 =

Q5RJQ4 Sirt2 NAD-dependent protein deacetylase sirtuin-2 3 [0.977|G2,131] NV 0 = [0.919|G1,128],[0.983|G2,129] NV|NV 0 =

Q5RKJ9 Rab10 RAB10, member RAS oncogene family 4 [0.538|G2,126],[0.537|G2,131] -2S|-1S -3 - - [0.953|G1,128],[0.622|G2,129] NV|-2S -2 - -

Q5U318 Pea15 Astrocytic phosphoprotein PEA-15 4 [0.940|G2,126],[1.124|G2,131] NV|NV 0 = [0.911|G1,128],[1.119|G2,129] NV|NV 0 =

Q5XI34 Ppp2r1a Protein Ppp2r1a 3 [0.910|G2,131],[1.212|G2,126] NV|NV 0 = [0.904|G2,129] NV 0 =

Q5XI73 Arhgdia Rho GDP-dissociation inhibitor 1 4 [0.982|G2,126],[1.062|G2,131] NV|NV 0 = [1.062|G1,128],[1.088|G2,129] NV|NV 0 =

Q5XIF3 Ndufs4 3 [1.342|G2,126],[1.251|G2,131] +1S|NV 1 + [0.992|G2,129] NV 0 =

Q5XIF6 Tuba4a Tubulin alpha-4A chain 3 [0.777|G2,131] NV 0 = [0.987|G1,128],[0.830|G2,129] NV|NV 0 =

Q5XIH7 Phb2 Prohibitin-2 3 [0.925|G2,131],[0.866|G2,126] NV|NV 0 = [0.874|G2,129] NV 0 =

Q62669 Protein Hbb-b1 3 [0.972|G2,131],[1.092|G2,126] NV|NV 0 = [0.636|G2,129] -2S -2 - -

Q62950 Crmp1 Dihydropyrimidinase-related protein 1 4 [1.092|G2,131],[1.005|G2,126] NV|NV 0 = [1.099|G2,129],[1.146|G1,128] NV|NV 0 =

Q63028 Add1 Alpha-adducin 2 [0.925|G2,131] NV 0 = [1.024|G2,129] NV 0 =

Q63198 Cntn1 Contactin-1 2 [0.836|G2,131] NV 0 = [0.930|G2,129] NV 0 =

Q63228 Gmfb Glia maturation factor beta 3 [0.883|G2,126],[0.975|G2,131] NV|NV 0 = [1.023|G2,129] NV 0 =

Q63345 Mog Myelin-oligodendrocyte glycoprotein 3 [0.641|G2,131] NV 0 = [0.849|G1,128],[0.581|G2,129] NV|-2S -2 - -

Q63429 Ubc Polyubiquitin-C 2 [0.984|G2,126] NV 0 = [1.175|G2,129] NV 0 =

Q63560 Map6 Microtubule-associated protein 6 2 [1.207|G2,131] NV 0 = [1.047|G2,129] NV 0 =

Q63564 Sv2b Synaptic vesicle glycoprotein 2B 3 [0.604|G2,126],[0.733|G2,131] -1S|NV -1 - [0.813|G2,129] NV 0 =

Q63610 Tpm3 Tropomyosin alpha-3 chain 3 [1.064|G2,126],[1.259|G2,131] NV|NV 0 = [1.206|G2,129] NV 0 =

Q63716 Prdx1 Peroxiredoxin-1 3 [0.947|G2,126],[1.133|G2,131] NV|NV 0 = [0.965|G2,129] NV 0 =

Q63754 Sncb Beta-synuclein 3 [1.449|G2,126],[1.537|G2,131] +2S|+2S 4 + + [1.208|G2,129] NV 0 =

Q64119 Myl6 Myosin light polypeptide 6 3 [1.114|G2,131],[1.071|G2,126] NV|NV 0 = [1.032|G2,129] NV 0 =

Q66H11 RGD1306195 Protein RGD1306195 3 [1.040|G2,126],[1.034|G2,131] NV|NV 0 = [0.922|G2,129] NV 0 =

Q66HF1 Ndufs1 3 [0.967|G2,131],[1.005|G2,126] NV|NV 0 = [0.958|G2,129] NV 0 =

Q68FX0 Idh3B 4 [0.978|G2,131],[1.233|G2,126] NV|NV 0 = [1.064|G2,129],[1.087|G1,128] NV|NV 0 =

Q68FY0 Uqcrc1 3 [0.926|G2,131] NV 0 = [0.984|G1,128],[1.015|G2,129] NV|NV 0 =

Q6AXX6 Fam213a Redox-regulatory protein FAM213A 3 [0.638|G2,131],[0.676|G2,126] NV|-1S -1 - [0.626|G2,129] -2S -2 - -

Q6AYH5 Dctn2 Dynactin subunit 2 3 [0.906|G2,126],[1.187|G2,131] NV|NV 0 = [1.047|G2,129] NV 0 =

Q6AZ25 Tpm1 Tropomyosin 1, alpha 3 [1.296|G2,131],[0.989|G2,126] NV|NV 0 = [1.210|G2,129] NV 0 =

Q6P503 Atp6v1d 3 [0.870|G2,131],[0.771|G2,126] NV|NV 0 = [0.886|G2,129] NV 0 =

Q6P6R2 Dld Dihydrolipoyl dehydrogenase, mitochondrial 3 [0.841|G2,131] NV 0 = [1.028|G1,128],[0.968|G2,129] NV|NV 0 =

Q6P6V0 Gpi Glucose-6-phosphate isomerase 4 [0.932|G2,126],[0.701|G2,131] NV|NV 0 = [1.019|G1,128],[0.727|G2,129] NV|-1S -1 -

Q6P7Q4 Glo1 Lactoylglutathione lyase 2 [0.869|G2,131] NV 0 = [0.759|G2,129] NV 0 =

Q6PDU7 Atp5l ATP synthase subunit g, mitochondrial 4 [0.850|G2,131],[0.601|G2,126] NV|-1S -1 - [0.765|G2,129],[1.424|G1,128] NV|+2S 2 + +

Q6PEC4 Skp1 S-phase kinase-associated protein 1 3 [0.951|G2,126],[1.137|G2,131] NV|NV 0 = [1.104|G2,129] NV 0 =

Q6QI09 Taf3 ATP synthase subunit gamma, mitochondrial 3 [0.926|G2,131],[0.954|G2,126] NV|NV 0 = [1.015|G2,129] NV 0 =

Q6TXF3 Dbi Acyl-CoA-binding protein 3 [1.412|G2,131],[0.972|G2,126] +1S|NV 1 + [1.277|G2,129] +1S 1 +

Q71UE8 Nedd8 NEDD8 3 [0.912|G2,126],[1.178|G2,131] NV|NV 0 = [1.080|G2,129] NV 0 =

Q78P75 Dynll2 Dynein light chain 2, cytoplasmic 4 [1.051|G2,126],[0.738|G2,131] NV|NV 0 = [1.076|G1,128],[0.822|G2,129] NV|NV 0 =

Q7M0E3 Dstn Destrin 3 [1.113|G2,126],[1.351|G2,131] NV|NV 0 = [1.239|G2,129] NV 0 =

Q7M767 Ube2v2 Ubiquitin-conjugating enzyme E2 variant 2 3 [1.267|G2,126],[1.081|G2,131] NV|NV 0 = [1.044|G2,129] NV 0 =

Q7TPK5 Eef1b2l Ac2-067 3 [1.064|G2,126],[1.115|G2,131] NV|NV 0 = [0.906|G2,129] NV 0 =

Q812E9 Gpm6a Neuronal membrane glycoprotein M6-a 3 [0.727|G2,126] NV 0 = [0.715|G2,129],[0.906|G1,128] -1S|NV -1 -

Q8CHN7 Pcp4 Neuron-specific protein PEP-19 3 [0.952|G2,126],[1.273|G2,131] NV|NV 0 = [1.094|G2,129] NV 0 =

Q8R2H0 Atp6v1g2 3 [1.325|G2,126],[1.328|G2,131] +1S|NV 1 + [1.194|G2,129] NV 0 =

Q8SEZ5 Cytochrome c oxidase subunit 2 2 [0.715|G2,131] NV 0 = [0.609|G2,129] -2S -2 - -

Q920Q0 Palm Paralemmin-1 3 [1.194|G2,126],[1.215|G2,131] NV|NV 0 = [1.167|G2,129] NV 0 =

Q99MZ8 Lasp1 LIM and SH3 domain protein 1 3 [1.184|G2,126],[1.080|G2,131] NV|NV 0 = [1.117|G2,129] NV 0 =

Q9EQX9 Ube2n Ubiquitin-conjugating enzyme E2 N 3 [0.877|G2,126],[1.269|G2,131] NV|NV 0 = [1.091|G2,129] NV 0 =

Q9ER34 Aco2 Aconitate hydratase, mitochondrial 3 [0.843|G2,131] NV 0 = [0.861|G2,129],[1.029|G1,128] NV|NV 0 =

Q9JKB7 Gda Guanine deaminase 2 [0.918|G2,131] NV 0 = [1.110|G2,129] NV 0 =

Q9R063 Prdx5 Peroxiredoxin-5, mitochondrial 3 [1.327|G2,131],[1.023|G2,126] NV|NV 0 = [1.137|G2,129] NV 0 =

HH 
variation

HH global 
var.

HH 
symbol

HHI 
variation

HHI global 
var.

HHI 
symbol

Serine/threonine-protein phosphatase 2B 
catalytic subunit alpha isoform

Membrane-associated progesterone receptor 
component 1

Voltage-dependent anion-selective channel 
protein 2

Neuron-specific calcium-binding protein 
hippocalcin

Ubiquitin carboxyl-terminal hydrolase isozyme 
L1

ATP synthase F(0) complex subunit C1, 
mitochondrial

Breast carcinoma-amplified sequence 1 
homolog (Fragment)

Cell cycle exit and neuronal differentiation 
protein 1

Tubulin polymerization-promoting prot.family 
memb3

Fusion, derived from t(1216) malignant 
liposarcoma (Human)

NADH dehydrogenase [ubiquinone] iron-
sulfur protein 4, mitochondrial

NADH-ubiquinone oxidoreductase 75 kDa 
subunit, mitochondrial

Isocitrate dehydrogenase [NAD] subunit beta, 
mitochondrial

Cytochrome b-c1 complex subunit 1, 
mitochondrial

ATPase, H+ transporting, V1 subunit D, 
isoform CRA_c

ATPase, H+ transporting, V1 subunit G 
isoform 2

Table 3.6 Complete list of the 339 confidently identified and quantified proteins. P63041 protein is shown
in strike-through red: it is rejected for presenting a contradictory result for condition HH (with -2S|+2S).
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3.4.2 Gene ontology enrichment

To better understand the biological meaning of the changes in the proteins levels under
study, we have performed an enrichment analysis. Using the ClueGO plug-in under the
Citoscape software, we have performed the enrichment using the Gene Ontology-Biological
Process and GOA annotation, version 08.04.2016_08h58.

The analysis was performed using a two-sided hypergeometric test and the Bonferroni
step-down  correction  for  multiple  tests.  The  set  of  99  proteins  where  HH  and/or  HHI
significantly changed with respect to the controls was used. Moreover, the proteins were
separated into two different, but with some proteins in common, groups: proteins altered
in  HH (Cluster#1,  73  proteins),  and  proteins  altered  in  HHI  (Cluster#2 59).  Of  these,
respectively 12 and 10 proteins were not used by the software, because of lacking the
protein-to-gene mapping or  not being annotated into the GOA database.  A total  of  54
genes (37 differentially expressed in HH and 36 in HH) were found enriched in 20 different
Biological Process ontology terms.  The results obtained in the enrichment analysis are
shown in Figure 3.8 and Table 3.6. The different enriched functions, 20 in first place, are
grouped  by  ClueGO  in  a  functionally  grouped  annotation  network  that  reflects  the
relationships between the terms based on the similarity of their associated genes. The
degree of connectivity between terms (and therefore the establishment of a functional
group) is calculated using kappa statistics, in a similar way as described in W Huang et. al.
(42) .

This analysis offers 20 different biological processes enriched. The criteria here is allowing
into  the analysis  biological  processes that  are  enriched combining the genes for  both
conditions (HH and HHI), with a threshold that we have selected to be p<0.001. After the
analysis, we have post-processed the data in two steps:

First, we have calculated the individual enrichment of the two conditions (HH and HHI) for
each of  the 20 enriched biological  processes. To do this,  we have used the Bonferroni
correction factor  for  each one of  the biological  processes (from the ratio  between the
corrected and the uncorrected Pvalues) and knowing the total amount of annotated genes
used  in  the  calculations  (16,468),  and  the  genes  in  each  GO  term,  have  used  the
cumulative hypergeometric distribution to obtain the individual Pvalues and, later, used
the Bonferroni step-down correction factor to obtain the corrected Pvalues, that are used in
the main text for inferring the differential enrichment of the different biological processes.
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NAME Model EntrezID Aliases
Abat Both 81632 Gabat, beta-AlaAT
Acat1 HH 25014 RATACAL
Aldoa HH 24189 Aldo1, RNALDOG5
Ap2b1 HHI 140670
Atp1a1 Both 24211 Nkaa1b
Atp1a2 Both 24212 RATATPA2
Atp1a3 Both 24213 Atpa1a3
Atp5g1 Both 29754
Atp5h Both 641434 Atp5jd, Atpq
Atp5j2 HH 690441
Atp5l Both 300677

Atp6v1g2 HH 368044 ATP6G, NG38
Atpif1 Both 25392 Atpi, IF1PA
Basp1 Both 64160 NAP22
Calb1 Both 83839 CaBP28K
Calm2 HH 50663 Cam

Camk2a Both 25400 PK2CDD, PKCCD
Camk2b Both 24245 Ck2b

Car2 HHI 54231 Ca2
Cltb Both 116561
Cnp HHI 25275 CNPF, CNPI, Cnp1

COX2 HHI 26198 COII
Cplx2 Both 116657
Dpp6 HH 29272 DPP VI

Gap43 Both 29423 Basp2
Gfap HH 24387
Glud1 HH 24399 Gdh1, Glud,

Gpi HHI 292804 Amf, Nlk, Pgi
Gpm6a HHI 306439 M6a

Hk1 HHI 25058 HEXOKIN
Ina HH 24503 Inexa, Intlaa

LOC688869 HH 688869 Cox6b1
Mag HHI 29409

Marcks Both 25603 KINC, Macs
Mbp HHI 24547 Mbps

Ndufs4 HH 499529 Aqdq
Omg HH 450224

Pgam1 HHI 24642 PGAM-B, Pgmut
Ppp3ca HH 24674 Calna1
Rab10 Both 50993 Ac1075
S100b HHI 25742 S100P
Slc1a2 HHI 29482 Eaat2, Glt, Glt-1
Slc1a3 Both 29483 EAAT1, GLAST
Slc25a4 HHI 85333 Ant1
Slc25a5 HHI 25176 Ant2

Sncb HH 113893
Stx1a Both 116470
Syp HH 24804 Syp1
Syt1 HHI 25716 P65
Tpi1 HH 24849 Tpi

Uqcrb HH 362897 Uqcrbl
Vamp2 HHI 24803 RATVAMPB
Vdac1 HHI 83529
Vsnl1 HH 24877 Nvp1, Ratnvp1

Figure 3.8: The 54 genes found in enriched functions in this analysis. The bar chart shows the number
of functions in which each gene is included. A set of 20 GO function has been selected by the software as
being enriched in the analysis. Some proteins appear in only one GO biological process (e.g. Acat1) and
one (Vamp2) is included in 10.  The table details,  for each gene, the “cluster  origin” (if  the gene is
differentially expressed in HH and/or HHI), the Entrez Gen ID mapping and the different aliases for each
gene. For convenience, the alias Cox6b1 has been used for LOC688869 in the analysis of the enrichment
results.

Secondly, we have merged the 20 biological processes into 7 functional groups, in order to
better organize and analyze the data. These groups are: Proton, Hydrogen transmembrane
and Inorganic cation transport, Brain development, Regulation of mitochondrial membrane
permeability,  ATP  metabolic  process,  Substantia  nigra  development,  Synaptic
transmission,  Signal  release  and  Neurotransmitter  secretion  and  Neuron  projection
morphogenesis.  The  data  obtained  in  these  post-processing  steps  of  the  enrichment
information can be found in the Table 3.7.
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GO ID GOTerm
Nr.

Genes
 PValue

Corr
PValue 

Associated Genes Found Genes Cluster HH Genes Cluster HHI

GO:0006754 ATP biosynthetic process 4 6.3E-05 1.1E-03 Atp5g1, Atp5h, Atp5j2, Atp5l Atp5g1, Atp5h, Atp5j2, Atp5l Atp5g1, Atp5h, Atp5l

GO:0007268 synaptic transmission 18 1.4E-10 4.6E-09

Abat, Ap2b1, Calb1, Camk2a,
Camk2b, Car2, Cltb, Cplx2, Gfap,

Ppp3ca, S100b, Slc1a3, Sncb, Stx1a,
Syp, Syt1, Vamp2, Vdac1

Abat, Calb1, Camk2a,
Camk2b, Cltb, Cplx2, Gfap,

Ppp3ca, Slc1a3, Sncb, Stx1a,
Syp

Abat, Ap2b1, Calb1, Camk2a,
Camk2b, Car2, Cltb, Cplx2,
S100b, Slc1a3, Stx1a, Syt1,

Vamp2, Vdac1

GO:0007269 neurotransmitter secretion 7 4.8E-06 1.1E-04
Ap2b1, Camk2a, Cltb, Cplx2, Stx1a,

Syt1, Vamp2
Camk2a, Cltb, Cplx2, Stx1a

Ap2b1, Camk2a, Cltb, Cplx2,
Stx1a, Syt1, Vamp2

GO:0007420 brain development 13 4.3E-05 7.8E-04
Abat, Acat1, Basp1, Calm2, Cnp,
Glud1, Ina, Mag, Marcks, Mbp,

Ndufs4, Slc1a2, Syt1

Abat, Acat1, Basp1, Calm2,
Glud1, Ina, Marcks, Ndufs4

Abat, Basp1, Cnp, Mag, Marcks,
Mbp, Slc1a2, Syt1

GO:0009117
nucleotide metabolic

process
14 4.5E-07 1.2E-05

Aldoa, Atp1a2, Atp5g1, Atp5h, Atp5j2,
Atp5l, Atpif1, Calm2, Cnp, Gpi, Hk1,

Pgam1, Tpi1, Uqcrb

Aldoa, Atp1a2, Atp5g1, Atp5h,
Atp5j2, Atp5l, Atpif1, Calm2,

Tpi1, Uqcrb

Atp1a2, Atp5g1, Atp5h, Atp5l,
Atpif1, Cnp, Gpi, Hk1, Pgam1

GO:0015672
monovalent inorganic

cation transport
15 5.5E-08 1.5E-06

Abat, Atp1a1, Atp1a2, Atp1a3, Atp5g1,
Atp5h, Atp5j2, Atp5l, Atp6v1g2, COX2,
Dpp6, LOC688869, Slc25a4, Uqcrb,

Vamp2

Abat, Atp1a1, Atp1a2, Atp1a3,
Atp5g1, Atp5h, Atp5j2, Atp5l,

Atp6v1g2, Dpp6, LOC688869,
Uqcrb

Abat, Atp1a1, Atp1a2, Atp1a3,
Atp5g1, Atp5h, Atp5l, COX2,

Slc25a4, Vamp2

GO:0015991
ATP hydrolysis coupled

proton transport
4 2.3E-05 4.6E-04 Atp1a1, Atp1a2, Atp1a3, Atp5g1

Atp1a1, Atp1a2, Atp1a3,
Atp5g1

Atp1a1, Atp1a2, Atp1a3, Atp5g1

GO:0015992 proton transport 12 5.9E-12 2.0E-10
Atp1a1, Atp1a2, Atp1a3, Atp5g1,

Atp5h, Atp5j2, Atp5l, Atp6v1g2, COX2,
LOC688869, Slc25a4, Uqcrb

Atp1a1, Atp1a2, Atp1a3,
Atp5g1, Atp5h, Atp5j2, Atp5l,

Atp6v1g2, LOC688869, Uqcrb

Atp1a1, Atp1a2, Atp1a3, Atp5g1,
Atp5h, Atp5l, COX2, Slc25a4

GO:0017156
calcium ion regulated

exocytosis
5 3.2E-04 4.8E-03 Cplx2, Ppp3ca, Stx1a, Syt1, Vamp2 Cplx2, Ppp3ca, Stx1a Cplx2, Stx1a, Syt1, Vamp2

GO:0021762
substantia nigra

development
6 2.1E-08 6.0E-07 Basp1, Calm2, Cnp, Ina, Mag, Mbp Basp1, Calm2, Ina Basp1, Cnp, Mag, Mbp

GO:0023061 signal release 11 7.4E-06 1.5E-04
Abat, Ap2b1, Camk2a, Cltb, Cplx2,

Glud1, Ppp3ca, Stx1a, Syt1, Vamp2,
Vsnl1

Abat, Camk2a, Cltb, Cplx2,
Glud1, Ppp3ca, Stx1a, Vsnl1

Abat, Ap2b1, Camk2a, Cltb,
Cplx2, Stx1a, Syt1, Vamp2

GO:0046034 ATP metabolic process 12 1.5E-10 4.7E-09
Aldoa, Atp1a2, Atp5g1, Atp5h, Atp5j2,
Atp5l, Atpif1, Gpi, Hk1, Pgam1, Tpi1,

Uqcrb

Aldoa, Atp1a2, Atp5g1, Atp5h,
Atp5j2, Atp5l, Atpif1, Tpi1,

Uqcrb

Atp1a2, Atp5g1, Atp5h, Atp5l,
Atpif1, Gpi, Hk1, Pgam1

GO:0046902
regulation of mitochondrial

membrane permeability
5 1.9E-06 4.3E-05

Atpif1, Camk2a, Cnp, Slc25a4,
Slc25a5

Atpif1, Camk2a
Atpif1, Camk2a, Cnp, Slc25a4,

Slc25a5

GO:0048167
regulation of synaptic

plasticity
8 1.6E-06 3.8E-05

Calb1, Camk2a, Camk2b, Cplx2,
Gfap, S100b, Syp, Vamp2

Calb1, Camk2a, Camk2b,
Cplx2, Gfap, Syp

Calb1, Camk2a, Camk2b, Cplx2,
S100b, Vamp2

GO:0048489 synaptic vesicle transport 6 2.6E-05 5.0E-04
Ap2b1, Cltb, Cplx2, Stx1a, Syt1,

Vamp2
Cltb, Cplx2, Stx1a

Ap2b1, Cltb, Cplx2, Stx1a, Syt1,
Vamp2

GO:0048812
neuron projection
morphogenesis

10 2.2E-04 3.5E-03
Camk2b, Cnp, Gap43, Gpm6a,

Marcks, Mbp, Omg, Ppp3ca, Rab10,
Syt1

Camk2b, Gap43, Marcks,
Omg, Ppp3ca, Rab10

Camk2b, Cnp, Gap43, Gpm6a,
Marcks, Mbp, Rab10, Syt1

GO:0050804
modulation of synaptic

transmission
14 7.8E-10 2.4E-08

Abat, Calb1, Camk2a, Camk2b, Car2,
Cplx2, Gfap, Ppp3ca, S100b, Slc1a3,

Stx1a, Syp, Syt1, Vamp2

Abat, Calb1, Camk2a,
Camk2b, Cplx2, Gfap, Ppp3ca,

Slc1a3, Stx1a, Syp

Abat, Calb1, Camk2a, Camk2b,
Car2, Cplx2, S100b, Slc1a3,

Stx1a, Syt1, Vamp2

GO:0050806
positive regulation of
synaptic transmission

9 3.2E-08 9.0E-07
Abat, Camk2b, Car2, Gfap, S100b,

Slc1a3, Stx1a, Syt1, Vamp2
Abat, Camk2b, Gfap, Slc1a3,

Stx1a
Abat, Camk2b, Car2, S100b,
Slc1a3, Stx1a, Syt1, Vamp2

GO:0098662
inorganic cation

transmembrane transport
14 1.1E-06 2.8E-05

Atp1a1, Atp1a2, Atp1a3, Atp5g1,
Atp5h, Atp5l, Atp6v1g2, COX2,

Calm2, Dpp6, Gpm6a, LOC688869,
Uqcrb, Vamp2

Atp1a1, Atp1a2, Atp1a3,
Atp5g1, Atp5h, Atp5l,

Atp6v1g2, Calm2, Dpp6,
LOC688869, Uqcrb

Atp1a1, Atp1a2, Atp1a3, Atp5g1,
Atp5h, Atp5l, COX2, Gpm6a,

Vamp2

GO:1902600
hydrogen ion

transmembrane transport
10 2.1E-10 6.6E-09

Atp1a1, Atp1a2, Atp1a3, Atp5g1,
Atp5h, Atp5l, Atp6v1g2, COX2,

LOC688869, Uqcrb

Atp1a1, Atp1a2, Atp1a3,
Atp5g1, Atp5h, Atp5l,

Atp6v1g2, LOC688869, Uqcrb

Atp1a1, Atp1a2, Atp1a3, Atp5g1,
Atp5h, Atp5l, COX2

Table 3.6: The 20 Gene Ontology Biological Processes enriched in this analysis. The different columns
refer to: (1) GO ID - unique identifier in the ontology , (2) GO Term - description of the term, (3) Nr. Genes -
number of genes in the study included in the biological process, (4) % Associated Genes - ratio of genes in
the study associated with the process with respect to all genes associated to that function,  (5) Pvalue -
probability obtained with a two-sided hypergeometric test, (6) Corr Pvalue – result of the Bonferroni step-
down correction for multiple tests, (7) Associated Genes Found – genes found in the biological process
under the two conditions under study (HH and HHI), globally, (8) Genes Cluster HH – genes found for HH,
(9) Genes Cluster HHI – genes found for HHI.

As shown in Supp. Analysis Table 6, both conditions (HH or HHI) may present the same GO
term significantly enriched (p<0.001). In this case, the condition with the lowest Pvalue
will be chosen as the condition predominantly enriched for this GO term. In the case that
both conditions present the same Pvalue, this condition will be labeled as HH/HHI enriched.
Each one of the seven possible Functional groups will present also one condition specially
enriched; the condition will be chosen attending to the conditions that their individual GO
terms present. It is clear that, in almost all functional groups, genes (proteins) that have
been expressed differentially with respect to the control in both conditions, will be found at
the same time, as it is very usual finding genes included in several GO terms.
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Table 3.7: List of the biological processes enriched (GO ID and GO term), their grouping in Functional
groups, the number of genes (#genes) and calculation of the Pvalues (and their Bonferroni corrected
counterparts: “corr Pval”) for the genes found in both HH and HHI conditions (HH&HHI), only HH and only
HHI. The number and ID of genes can be checked in Supp. Analysis Table 6.  In bold, probabilities lower
than 0.001. The column “GO term - Condition” selects the condition with the lowest probability for each
GO term and the column “Functional group – Condition” choses the most abundant condition inside the
Functional group.

3.5 Discussion
Of the 99 proteins expressed differentially in HH and/or HHI conditions: 54 of them belong
to at least one of the 20 enriched biological processes found. Both hypoxic models present
a similar number of differentially expressed proteins (37 and 36 respectively), but with an
overall  positive expression in HH (22 over-expressed proteins) and negative in HHI (25
under-expressed proteins) (Figure 3.9). The similar set of processes affected both in HH
and HHI points to a common aetiology, while the overall inhibitory nature found in HHI is
explained by its greater severity in contrast to HH.
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Figure 3.9 The proportion of over/under-expressed proteins in HH (37 proteins) and HHI (36 proteins) is 
shown for each of the 20 GO biological processes, grouped into seven functional groups (bold). Under 
the bar chart, the total of over/under expressed proteins (in parentheses the number of times these 
proteins appear into one biological process), shows a general increase of protein expression in HH (22 
protein with increased levels versus 15 decreased) and decrease in HHI (25 decreased versus 11 
increased).

The 20 biological processes identified were grouped into seven functional groups attending
to the similarity of the processes and genes shared (Figure 3.10): 

(i) ATP metabolic process and (ii) Proton, Hydrogen transmembrane and Inorganic cation
transport, both showing higher enrichment in HH, present a more down-regulated state in
HHI: potassium import across plasma membrane is severely inhibited (Atp1a1, Atp1a3),
while  calcium  exocytosis  is  also  downregulated  (Atp1a2  and  Vamp2).  Furthermore,
response to hypoxia (Aldoa) and response to ischemia (HK1) markers show differential
expression on their respective conditions.

(iii)  Brain  development,  (iv)  Neuron projection morphogenesis and (v)  Substantia nigra
development present upregulated genes like Gap43, Maks and Basp1, all highly involved in
signal  transduction  pathways,  membrane  transport  and  cytoskeletal  dynamics  .  The
calmodulin-dependent  protein  kinases  (Camk2a,  and  Camk2b),  that  phosphorylate  the
central bioenergy sensor AMP-activated protein kinase, are downregulated in both HH and
HHI;  this  same tendency is  followed by Rab10,  a  small  GTPase  acting  as  regulator  of
membrane trafficking and fusion also involved in autophagy. Additionally, several proteins
related to substantia nigra development (Ina, Calm1, Mbp, Mag and Cnp) show variation in
HH and HHI, consistently with previous proteomic studies of changes in Substantia nigra
caused by neurodegenerative diseases.

(vi)  Synaptic  transmission,  Signal  release  and  Neuro-transmitter  secretion  are  greatly
impaired  under  HHI,  as  expected  under  severe  excitotoxic  damage;  interestingly,  the
SNARE protein Vamp2, and its regulatory proteins Syt1, both highly involved in glutamate
release and neuron damage after ischemic injury, are downregulated but only in HHI.

(vii)  Regulation  of  mitochondrial  membrane  permeability  points  to  the  activation  of
apoptosis through mitochondrial  pathways (down-regulation of  apoptosis inhibitors Gpi,
Slc25a4 Slc25a5 and activation of Atpif1). Components of the mPTP (adenine nucleotide
translocator: Slc25a4, Slc25a5 and Vdac1) where also differentially expressed in HH and
HHI.
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Figure 3.10 Gene enrichment analysis in HH and HHI. (A) Table showing GO terms associated to each
functional group, P-values obtained for HH and HHI related genes (in bold the lowest) and condition (HH
or HHI) in which the functional group is more enriched. (B) Relationships between functional groups and
genes in HH and HHI. Genes are coloured dark and light green for high and moderate evidence of under
expression, and dark and light red for high and moderate evidence of over-expression, respectively. (C)
For each functional group, using the same legend, the list of genes related to HH and HHI experimental
conditions.
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3.6 Conclusions
In conclusion, the HHI model presents a global effect of protein downregulation while HH
produces an overall increase of the protein levels. With HH mainly affecting oxidative and
energetic  metabolism,  HHI  also  interferes  with  synaptic  transmission,  neurotransmitter
secretion,  substantia  nigra  development  and  triggers  apoptosis  through  mitochondrial
pathway.
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Chapter 4. Swath quantification: study of PCOS
proteomic biomarkers in plasma

In this chapter, two methods of bioinformatics analysis performed on a proteomics data set
for the study of  Polycystic Ovary Syndrome (PCOS), using data-independent acquisition
mass  spectrometry  (SWATH),  are  described.  With  the  results  obtained,  several
bioinformatics and statistical techniques have been used to characterize the phenotypes
examined and to assess the different protein levels in them.

4.1 Abstract
The study of the plasma protein levels of twenty women, organized in four phenotypes of
lean and obese, diagnosed or not with PCOS, has been performed using data-independent
acquisition mass spectrometry. A total of 204 proteins have been quantified. PCOS and
obesity present very similar proteomics profiles. Five proteins (FLNA, ADIPOQ, LBP, RBP4
and APOC2) present significant variations between PCOS samples and healthy controls,
being RBP4 the most robust marker for PCOS even with interference from obesity. The
combination of  PCOS and obese phenotypes presents five proteins (ADIPOQ, COLEC11,
IGFBP3, SPP2 and IGFALS) down-regulated, as opposed to what happened in lean PCOS
subjects.

4.2 Introduction
Polycystic Ovary Syndrome is an hormonal disorder in women of reproductive age, its more
evident  signs  being  the  presence  of  cysts  in  the  ovaries,  high  levels  of  androgenic
hormones and irregular or skipped periods (1–3). PCOS diagnose, based mainly on these
three  criteria,  was  systematized  in  2003  at  the  Rotterdam  conference  on  PCOS  (4),
providing what is known as the “Rotterdam 2003 criteria”. Although recently questioned as
insufficient  in  their  prognosis  applicability  (5),  Rotterdam  criteria  are  still  the  best
organized approach to PCOS diagnose. Difficulties in PCOS diagnose have been extensively
reported, specially in younger patients (6), and the fundamental basis of PCOS condition is
not yet completely understood  (7): a set of genetic (PCOM, hyperandrogenemia, insulin
resistance, and insulin secretory defects) and environmental factors (prenatal androgen
exposure, poor fetal  growth and obesity) have been considered. The high number and
complexity of the biological pathways involved in PCOS symptomatology  (8), add to the
challenge of studying its molecular basis with the present knowledge in the area.

In this chapter, a proteomics study of plasma samples of healthy individuals and PCOS
patients is performed to unravel the protein signature of PCOS, using also a division of the
subjects under study based in their Body mass index (BMI): both lean an obese women
have been included in the study under the two categories examined, healthy controls and
PCOS patients. The premise here is that the interaction of PCOS with obesity may act as a
powerful co-variant and mask the fundamental changes in protein variation among the
phenotypes studied.

An introductory section in this chapter (“4.2.1 Phenotypes under study”) will deal with the
convenience  of  dividing  the  subjects  into  four  different  phenotypes  (according  to  the
positive or negative diagnose of PCOS and presence or absence of obesity) studying the
clinical variables collected for these women. Successfully classifying the subjects into the
four different categories described will provide basis for such division.    
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The technique used for quantitative proteomics is a type of data-independent acquisition
known  as  Swath  (9).  Bioinformatics  analysis  of  Swath  differs  substantially  from  the
traditional  data-dependent  “shotgun”  proteomics  approach  (10,11).  The  two  main
platforms  for  Swath  analysis  (Skyline  (12) and  OpenSwath  (13))  have  been  used  and
further compared with the data generated in this analysis: an overview of the pipelines
built and the results obtained is shown in this chapter, alongside with the reasons for the
use of OpenSwath, that generated the results that will be discussed here.

And lastly,  the  proteomics  results  obtained  from the  different  phenotypes  studied  are
systematically analyzed using different tertiary analysis (14) techniques for giving sense to
the different groups of proteins differentially expressed.   

4.3 Materials and methods

4.3.1 Phenotypes under study
For this study, plasma samples from a total of 20 females, with ages ranging from 20 to 40
years, are used; ten of them have been diagnosed with PCOS. This cohort, is a subset of a
bigger group of study comprising 164 subjects, from whom a comprehensive set of clinical
variables has been collected, including biochemical and physiological measures common
in  clinical  practice.  In  addition  of  a  PCOS  diagnose,  the  subjects  have  been  divided
according to their Body mass index (BMI)  (15), using a BMI of 30 as a threshold. BMI is
calculated  dividing  weight  in  kilograms  by  height  in  squared  meters.  Therefore,  four
different phenotypes will be discussed in this work: 

• HT (healthy-thin), five subjects with BMI under 30 and without a PCOS diagnose

• HO (healthy-obese), five subjects with BMI over 30 and without PCOS

• PT (PCOS-thin), five subjects with BMI under 30 and with a PCOS

• PO (PCOS-obese), five subjects with BMI over 30 and with a PCOS

As shown in Figure 1, the BMI of the patients with obesity is in all cases well over 30,
whereas the lean patients are also well below that value. In the case of the PT subjects,
their BMI values, are in two cases over 25: the relationship of PCOS with obesity (3), has
made the task of finding subjects with the pathology and an ideally low BMI difficult. 

Figure  4.1.  Distribution  of  BMI  of  the  20  subjects  under  study  grouped  by  their
phenotypes: HT (healthy-thin), HO (healthy-obese), PT (PCOS-thin) and PO (PCOS-obese).

In order to assess the biological validity of the four groups created, previously to the main
analysis of this work, a statistical validation of the four groups created is to be performed.
The aim of this statistical validation is, using the clinical variables collected, classify the
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group of subjects that are going to be analyzed by quantitative proteomics into one of the
HT,  HO,  PT  and  PO  groups.  Without  embarking  into  sophisticated  machine  learning
algorithms,  the aim of  this  analysis  is  to provide some physiological  basis to the four
groups created: besides the fact that it makes sense to stratify the subjects into these four
categories, the clinical variables alone will be able to support this logic. 

From the set of 24 initial clinical variables collected (shown in Table 4.1), a subset capable
of classifying the subjects into the four groups under study is going to be searched. For
this, the complete cohort of 162 subjects is used:

• 20 subjects, analyzed later in this chapter using proteomics, are going to conform a
“test subset”, where the variables chosen are tested in their ability to predict the
group which they belong.

• The remaining subjects, 142, will conform a “train subset”, where logistic regression
is used to extract a model that uses a subset of those variables.

Table 4.1 The 24 clinical variables collected.

The “train subset” is subjected to binary logistic regression:

• First, a logistic regression is performed taking into consideration two groups: one
conformed by HT subjects and the other by the subjects from other groups (i.e. HO,
PT  and  PO  together):  the  binary  logistic  approach  allows  only  two  classes  for
classification. A model is produced as a linear combination of the variables that best
predict this classification with HT versus HO+PT+PO. 

• An analysis of variance (ANOVA) is applied on the model, obtaining a P-value that
characterizes the performance of each variable in the model. 

• Once the model has been built, it is applied over the “train subset”, where each
subject is assigned to a group in an interval from 0 to 1, where 0 means complete
belonging  to  the  HT  group  and  1,  complete  belonging  to  the  second  group
containing the rest of the groups (HO, PT and PO).

• The performance of the model is tested using a “Receiver operating characteristic”
(ROC) curve. The area under the curve is a measure of  the performance of the
model.

• This  process  is  to  be  applied  likewise  with  HO  versus  HT+PT+PO,  PT  versus
HT+HO+PO,  PO  versus  HT+HO+PT  and  HT+HO  versus  PT+PO  (Healthy  versus
PCOS).
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A detailed report of the approach is provided at “Appendix 1: Chapter4, Phenotypes
inspected”. 

The five tables  with  variables  and P-values obtained using ANOVA in  each of  the five
iterations of logistic regressions, are summarized in Table 4.2.

Table 4.2 Five ANOVA tables obtained from the corresponding linear models obtained by step-
wise logistic regression.

In the five iterations, the optimal variables to discern among groups are obtained. From
that set of variables, the ones having a P-value inferior to 0.001 are selected: hip, FM,
androstenedione, waist, LDL, estradiol, hirsutism, waist.hip, height, weight and LH. And
with these variables a Principal Components Analysis (PCA) is implemented. The graphical
results are shown in Figure 4.2.

Figure 4.2  (A) PCA biplot (graphical  representation of the two principal  components) from the
PCA) of the eleven selected variables present in the 20 subjects used in the proteomics study.
Subjects  (identified by numbers as 1337, 1335,…) and variables (waist, FM,...) are projected over
the biplot. (B) The three first principal components of the same PCA are used and the subjects
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projected in three dimensions.

From observing the two plots displayed in Figure 4.2, it is clear that the four groups have
been clearly differentiated using the logistic regression approach described before. More
sophisticated methods of machine learning could be applied for this: multinomial logistic
regression, neural networks, support vector machines or k-nearest neighbor among them.
Furthermore, not previous study of  multicollinearity has been used in this  approach in
order to discard linearly related variables. But this simple approach has allowed to show
that classification using a few biochemical and physiological variables is possible for the 20
subjects under study among the four groups created for this work, QED.

4.3.2 Mass spectrometry analysis
Plasma samples have been depleted from high abundant albumin and IgG using a column
of  sepharose  based  resins  (HiTrap  Albumin  and  IgG  Depletion,  GE  Healthcare  Life
Sciences).  Then,  non-depleted  proteins  were  concentrated  and  cleaned  by  protein
precipitation with TCA / acetone and solubilized in 50 μL of 0.2% RapiGest SF (Waters) with
50 mM ammonium bicarbonate. The total protein content was measured using the Qubit
Protein Assay Kit (Thermo Fisher Scientific) and 50 μg of protein was subjected to trypsin
digestion following a protocol adapted from Vowinckel et al. (16). Retention time reference
peptides (iRT peptides, Biognosys) were spiked into each sample.

The proteomics analysis was performed using a TripleTOF 5600+ (Sciex) instrument, using
a nano-HPLC NanoSpray III (Sciex) with a sprayer PicoTip Emitter (New Objective) at 2600V
spray voltage. The acquisition software used was Analyst (Sciex). 

The library used in the study was created analyzing six independent samples created from
pools of the 20 samples studied. The acquisition methodology in use consisted in a  TOF
MS1 survey scan (350-1250 m/z, 250 ms acquisition time)  and a maximum of 65 MS2

scans (230-1700 m/z, 60 ms acquisition time). Results produced six wiff files used in the
next section to build the library.

The 20 subjects under study have been analyzed using a data independent quantitative
proteomics approach known as Swath (Sequential Window Acquisition of all  Theoretical
fragment  ions).  The  Swath  (9) technique  in  the  mass  spectrometry  field  refers  to  an
acquisition  setup  of  the  mass  spectrometer.  The  objective  of  the  Swath  technique  is
quantifying  proteins,  generally  in  a  relative  quantification  mode,  where  a  differential
analysis is performed using some type of sample as a reference (e.e. a healthy control),
although  some  examples  of  absolute  quantification  can  be  found  (17).  Typically,  this
analysis is performed using the TripleTOF (18) instruments, but it has also been adapted to
work with the more advanced models of  Orbitrap  (19).  In this  setup  (20),  ions from a
predefined m/z  window (called  Swath,  usually  close  to  25 m/z)  at  MS1  stage  (21) are
fragmented alongside, producing a highly complex and multiplexed set of MS2 signals. The
mass range where tryptic peptides are expected to be found (400-1200 m/z) is scanned in
a 2 to 4 seconds cycle. Then, if using a swath window of 25 m/z and inside a 400-1200 m/z
range, 32 “swaths” will be acquired every 2-4 seconds. The element that will allow the
interpretation of  the highly complex sets of  fragmented peptides in each swath is  the
elaboration, in parallel,  of  a spectral library acquired in the traditional data dependent
acquisition  method  using  the  same  sample  (or  pool  of  samples)  under  analysis.  This
spectral library will allow the mapping of the fragmented peptides inside each swath to
previously  identified  peptides.  An  additional  element  that  allows  the  unequivocal
identification of the peptides is the use of retention time re‐alignment techniques using
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commercially available reference peptides  (22), spiked both in the samples to elaborate
the library and the samples to be quantified. Ideally, the instrument and chromatographic
column used in the elaboration of the spectral library and the ones used with the samples
to quantify should also be the same, although this is not essential.

A total of 50 variable Swath windows were established in this analysis, with a minimum of
9.1 m/z and a maximum of 69.9 m/z, into a mass/charge range going from 399.5 to 1246.9
m/z, suited for detecting the most common peptides produced after protein digestion with
trypsin. The use of variable Swath window widths is an approach that ensures that every
window contains roughly the same number of precursors after a survey run is analyzed. In
the distribution of Swath windows used in this experiment (Figure 4.3), an increase of the
widths  is  observed  with  higher  Swath  numbers:  that  means  that  a  higher  number  of
precursor ions (peptides) is found at a lower m/z range and less peptides are found at
higher  mass  to  charge  ratios  (specially  starting  at  900  m/z)  for  a  given  range.  This
approach ensures that the same acquisition time is dedicated to each peptide, regardless
of the place where is located into the mass to charge scale.

Figure 4.3 Widths of the 50 Swath windows, spanning from 399.5 to 1246.9 m/z.

After the mass spectrometry analysis is done, several files are created:

• Six wiff files acquired in data-dependent mode, corresponding to the libraries.

• 20 wiff files acquired in Swath mode, corresponding to the samples to quantify.

4.3.3 Swath bioinformatics analysis
In  contrast with data dependent quantitative approaches,  where much proprietary and
open source software can be found  (23), choices for swath analysis software are more
limited. The bioinformatics analysis of a Swath experiment follows a general structure in
two steps: generation of the spectral library and swath quantification.

• Elaboration of a spectral library: several samples of the same type that the ones to
quantify are analyzed in the mass spectrometer. The bigger the number, the better:
these  samples  are  going  to  be  used  to  identify  the  peptides  that  later  will  be
quantified. Typically, a pool of the samples to be analyzed is used for this. One or
several  runs in  the mass spectrometer in  data dependent acquisition mode will
generate several  raw files that will  be sequenced using protein database search
engines. The identifications will be translated to “transitions”, term originating from
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the Selected reaction monitoring mode (24), where only a given ion is selected at
MS1 stage and only another one at  MS2.  One or more types of ions will be selected
to build this transitions library (with CID or HCD fragmentations, y and b ions, for
example).

• After  the  spectral  library  is  generated,  the  runs  (or  samples)  generated by the
Swath experiments will be analyzed, mapping the transitions stored in the spectral
library to the signals obtained from the Swath intensities.  The intensities of  the
mapped ions (mapped to peptides) along retention time are known as extracted ion
chromatograms  (XIC,  Figure  4.4).  Several  of  these  XIC  will  be  used  (the  most
intense and most stable alongside samples), using their areas as a measure of the
quantity of the peptide in the sample. Finally, like in data dependent acquisition,
proteins are constructed using these peptides and a total amount (signal intensity
when relative quantification is used) of protein will be calculated for each sample.

Figure 4.4 Six extracted ion chromatograms (4 y ions and two b ions) generated by
one peptide at a given time window (49 to 53 minutes).

The two pipelines more frequently used for Swath analysis to this date are OpenSwath (13)
and Skyline (25). Both have been used thoroughly for the analysis of Swath data, being the
former pipeline exclusive for Swath analysis and the later used also for Selected reaction
monitoring mode for more than ten years. In this work, both have been used to analyze
the 20 samples processed and the results obtained have been compared. In both cases,
the spectral library has been built using the software Trans-Proteomic Pipeline (26) and two
search engines in parallel: Comet (27) and XTandem (28). In the next sections, an overview
of the pipelines used with OpenSwath and Skyline will be provided and the reasons that led
to choose OpenSwath as the analysis pipeline in this work, explained.

4.3.3.1 OpenSwath analysis
The OpenSwath analysis pipeline uses not only its own tools, but makes extensive use of
several other software: 

• Proteowizard (29) for conversion of proprietary file formats to open formats.

• Trans-Proteomic pipeline (TPP) for library generation and statistical analysis.

• OpenMS (30) platform for statistical analysis and data conversion and integration.

61



With the exception of the TPP that can be used through a web interface, the rest of the
tools are command line applications, intended for their use in a Linux  (31) computer or
cluster. In addition, although feasible, the installation process of Proteowizard and the TPP
is quite complex: instead, a Docker (32) container has been installed and run in order to
use both applications in this pipeline. The method followed in this analysis corresponds to
the published material “Building high-quality assay libraries for targeted analysis of SWATH
MS data” (33). The complete OpenSwath workflow is included in “Appendix 2: Chapter4,
OpenSwath workflow”.

An overview of the complete workflow followed with OpenSwath (Figure 4.5) is described in
the next points:

• Library generation: the analysis of the pools samples produced six raw files from
the ABSciex instrument (TTOF) in the form of “wiff” files. These files were converted,
using Proteowizard, to the open format mzXML  (34).  Two parallel  searches were
performed using Comet and XTandem search engines, with a protein database in
fasta format from Uniprot  (35) (release April 2019) with 20,417 proteins and one
artificial  protein  containing the Biognosys  iRT  (22) peptides.  Decoy proteins  are
included too in the database, as reverse sequences of the originals. The search with
Comet will produce six pepXML (26) files and also the search with XTandem. Those
six  files  from each  search  engine  will  be  then  combined  into  two  files  by  the
software Interact, producing two other files: one interact.comet.pep.XML and one
interact.tandem.pep.XML.  Both  files  will  be  merged by  iProphet  to  produce one
iProphet.combined.pep.XML,  with  the  combined  and  non-redundant  results  from
Comet and XTandem.

Figure 4.5 Complete workflow with OpenSwath, from library generation to the generation of
the file to be used for differential analysis. In yellow circles the files generated and in green
squares,  the software.  All  software actions and files generated are enclosed in the Trans-
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Proteomic pipeline (TPP) and OpenMS set of tools.

• FDR control:  the  software  Mayu  (36) is  used  for  False  discovery  rate  control.
Choosing a FDR <5% at  the protein level,  a value of  IP/PPs of  0.63 is  found at
Mayu’s report: this is going to be the cut-off value used later to only use confident
proteins. Selecting lower cut-offs like 1% seemed too restrictive while further filters
are going to be applied later in the pipeline.

• SpectraST (37) software  is  used  to  convert,  in  various  steps,  the
iProphet.combined.pep.xml  into  a  spectral  library  file  in  Selected  reaction
monitoring format (SpecLib_pqp.mrm). In this step, the expected locations of the
reference peptides (iRT) are used to align the library. Also, the cut-off at protein
level obtained by Mayo is applied.

• OpenMS:  several steps of file conversion, optimization and generation of decoy
transitions are applied here. A file containing the Swath windows definition is used
here to align the transitions inside their  corresponding window. The final  library
produced  (transitionlist_optimized_decoys.pqp)  is  now  ready  to  be  used  by
OpenSwath to quantify the proteins in the Swath files.

• Swath samples: the 20 samples acquired in Swath mode, and also in wiff format,
are converted to mzXML format using Proteowizard.

• OpenSwathWorkflow software:  the 20 samples in  mzXML format,  the  spectral
database in pqp format and a transition list of the reference peptides in TraML (38)
format  (iRT.TraML)  are  fed  to  this  software  to  produce  20  osw  files  with  the
transitions mapped to peptides from the spectral database.

• pyprophet: this software will merge and apply some strict cut-offs to the peptides
and proteins identified (q-value<0.1 at peak group level, q-value<0.05 to peptides
and q-value<0.01 to proteins)

• TRIC (39):  this  software  performs cross-run  alignment;  cut-offs  0.05 have been
applied both at FDR level and with alignment score. An aligned.export.tsv file is
produced, containing a total of 6,645 transition groups (peptides).

• Normalization and  Differential  expression analysis:  using  the  Bioconductor
(40) package SWATH2stats  (41),  the data exported by TRIC is  transformed to a
format that can be used by the MSStats (42) software. Then, using this transformed
data and an additional text file mapping the files to the different phenotypes (HT,
HO, PT, PO), MSstats processes the data organizing the peptides into the different
proteins  and  samples,  normalizes  the  signals  among  samples  (Figure  4.6)  and
performs differential analysis (discussed in the section “4.4.1 Differential analysis,
general overview”). Once the contaminants (iRT synthetic protein included in the
fasta  database  and  four  keratines:  K2C1_HUMAN,  K1C10_HUMAN,  K22E_HUMAN,
K1C9_HUMAN) have been removed, a total of 204 proteins are quantified.

63



Figure 4.6 Signal normalization by MSStats. Log2 intensities of the 20 files analyzed, grouped
by phenotype, prior to normalization (left) and normalized (right).

   

4.3.3.2 Skyline analysis
The Skyline application is a Windows desktop, open source software that has been used for
targeted proteomics for more than ten years. More recently, it has been adapted to Swath
analysis. The analysis methodology used here follows the online materials published on
the DIA/SWATH Course organized by the Institute of Molecular Systems Biology, ETH Zürich
(http://dia-swath-course.ethz.ch/).  An  overview of  the  complete  workflow followed  with
Skyline is described in the next points:

• Data-independent acquisition settings are set to a maximum of 2000 m/z.

• The isolation scheme (Swath windows) is imported from one of the Swath wiff files.

• The transition parameters of the eleven iRT peptides (with a total of 66 transitions)
are imported using a tab-separated file.

• A  spectral  library  is  creating  by  importing  the  one  created  at  the  OpenSwath
pipeline: the file  iProphet.combined.pep.XML created by iProphet by merging the
results obtained by Comet and XTandem is imported by skyline.

• A protein  database  in  fasta  format  (without  decoy  proteins)  is  imported  as  the
targets to be used in the quantification. Then, decoy proteins are generated inside
Skyline.

• Then,  the  20  mzXML  files  (converted  by  Proteowizard  from  the  raw  wiff  files)
corresponding to the samples to be quantified, are imported.

• Once imported, the files are annotated, that is, the phenotype of each one (HT, HO,
PT, PO) is introduced in the workflow. Results can be visualized graphically inside
the application (Figure 4.7).
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Figure 4.7 Skyline with samples analyzed. On the left, the list of proteins and peptides that have
been quantified. On the right, extracted ion chromatograms (XIC) of the transitions corresponding
to one peptide selected in the left bar, showing in this example four different samples. The gray
bar with the “predicted” caption on each of the four windows represents the predicted retention
time for the peptide using the reference (iRT) peptides.

• Using the MSStats plugin that can be directly installed from Skyline,  results are
exported to a text file. A total of 2,540 transition groups has been exported. The
exported  file  has  to  be  manually  edited  to  remove  duplicates  (same  transition
reported twice for the same file).

• Now in the R environment, we import the transitions generated by Skyline using a
MSStats  function  (SkylinetoMSstatsFormat)  using  a  q-value_cut-off  of  0.01.  Data
now is processed by MSStats, normalized (results are visually very similar to the
ones generated by the OpenSwath pipeline, shown in Figure 4.5) and a differential
expression analysis is performed after including a text file mapping each file to its
respective phenotype. Once the contaminants are removed, a total of 209 proteins
have been quantified.

4.3.3.3 Skyline/OpenSwath: choosing one approach
As seen in the previous two sections, the two workflows differ greatly in complexity and
informatics knowledge required: OpenSwath is far more complex than Skyline, and takes
much longer to set up. Moreover, Skyline offers a great graphical interface where users
can inspect selected proteins and peptides to get a detailed view on how transitions are
quantified. On the other hand, OpenSwath allows a higher control of the procedures done
in the pipeline, using a set of filters and adjusts specifically designed for Swath analysis,
and this, is reflected in the results obtained: in Figure 4.8, significant proteins (P-values
under 0.05) are compared using OpenSwath and Skyline results for four of the possible
comparisons. In all cases, OpenSwath gives more proteins as differentially expressed. It is
certain that this is not an argument in favor of lack of performance against Skyline, with
the samples (and the settings) used in this analysis. But not disposing of reliable standard
samples analyzed using Swath, selecting the pipeline that performs better is maybe the
best thing to do.
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Another, and more objective argument in favor of OpenSwath is the number of peptides
quantified  by  both  pipelines:  2,540  transition  groups  by  Skyline  and  6,645  transition
groups by OpenSwath.  The difference is  so high that  having missed something in  the
Skyline pipeline appears as a probable explanation. Precisely, this is another argument
against Skyline: the amount of information for Swath analysis (published in papers and
tutorials) is quite larger in the case of OpenSwath.

Figure 4.8  Skyline and OpenSwath significant results (P-val<0.05) for HOvsHT,
POvsHO, POvsHT and PTvsHT. In all cases, OpenSwath outperforms Skyline. 

In  Figure 4.9,  the correlation plots  of  Log2 Fold  Changes obtained by OpenSwath  and
Skyline (without P-value filtering) in four different differential analyses are shown. Proteins
with higher residuals are marked. In some cases, like CFHR4 for PTvsHT, in Skyline we
obtain a log2FC of 1 and -0.5 for OpenSwath. Values of 0 and -2 respectively are obtained
for the same protein in HOvsHT. The number of samples with CFHR4 quantified is in both
cases almost complete: 19 samples with signal for this protein. The explanation for the
differences in log2FC obtained here is that a different number of transitions have been
used for the two pipelines. Further analysis of the causes of the differences and tuning the
parameters used within Skyline is needed to arrive to a well-founded explanation of these
differences.

Figure 4.9  Correlation of Log2 Fold Changes obtained by OpenSwath and Skyline
(without P-value filtering) in four different differential analyses. Proteins with higher

66



residuals are highlighted.

The fact that OpenSwath is specifically designed for Swath analysis, while Skyline is not,
was the last argument that made us to stop trying parameter optimization with Skyline
and proceed with the analysis of the data in this work using OpenSwath.

4.4 Results

4.4.1 Differential analysis, general overview
A study of differential analysis has been realized for different combinations of the samples
phenotypes using MSStats (42) Bioconductor package. Eight comparisons have been made
(Figure 4.10), keeping the “healthier” state in the denominator (healthy over PCOS, thin
over obese):

1. PCOS vs H (diseased versus healthy samples): PT and PO (ten PCOS samples, thin
and obese) are compared to HT and HO (ten healthy samples, thin and obese).

2. PCOS vs HT: ten disease (PCOS thin and PCOS obese) samples versus five healthy
thin samples (HT).

3. HO vs HT: five healthy obese samples compared to five healthy thin samples.

4. PT vs HT: five PCOS thin samples versus five healthy thin samples.

5. PO vs HT: five PCOS obese samples compared to five healthy thin samples.

6. PO vs HO: five PCOS obese samples compared to five healthy obese samples.

7. PT vs HO: five PCOS thin samples versus five healthy obese samples.

8. PO vs PT: five PCOS obese samples compared to five PCOS thin samples.

A detailed study on each of the comparisons is going to be performed in this section.

For each comparison, MSStats provides an evaluation of the ratio (in log 2 scale) between
the groups and a measure of probability, performing a t test for equal means (43), the null
hypothesis being that the two groups are actually the same: the lower the probability, the
more likely the two groups are different. MSStats also provides an adjusted P-value  (44)
using Benjamini and Hochberg (45) algorithm. In this work, only the direct P-value, without
correction, will  be used: the low power (i.e. low number of samples) generally used in
proteomics (46) and specifically in this work, makes of adjusted P-value a too harsh filter
for the results obtained in the comparisons being made. The distributions obtained from
these comparisons are shown in Figure 4.10. The cut-off used in this work for selecting a
protein as differentially expressed will a P-value<0.05 and a Log2 fold change (actually a
ratio) lower than -0.26 or higher to 0.26. The cut-off value 0.05 for probability is widely
used, whereas there is not a universally used cut-off value for fold change: 

• some  publications  use  and  arbitrary  value  of  fold  change:  for  example,  a  fold
change expressed as ratios (fold change ≥1.5 or ≤0.67, or expressed as FC=1.5
and FC=2/3 for increase and decrease) to make them match to a log2 fold change
of ±0.58 (47)

• in  other  papers,  not  fold  change  cut-off  is  applied  at  all,  although  usually  this
approach is associated to using an adjusted p-value 0.05 as the probability cut-off
(48)
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• due to the high variability and low abundance of proteins found at plasma (a few
hundreds instead of several  thousands found at tissue o cultures studies),  more
relaxed fold change cut-offs have been found in plasma related studies: not cutt-off
at  all  (49),  allowing  increments  as  low  as  the  12%  (using  p-value<0.05,  not
adjusted), a 10% ratio  increase/decrease (using adjusted p-value) (50).

Then, the cut-off selected for this work will be a p-value of 0.05 and a log2 fold change of
0.26; this represents a compromise between highly strict cut-offs employed in experiments
where  thousands  of  proteins  are  at  stake,  and  the  completely  permissive  approaches
where only a P-value is used to assess significant differences between samples. A Log2
fold change of 0.26 represents, roughly, a  ±20% minimal expression difference between
groups (a +20% increase and -16% decrease) for a given protein.

No  missing  value  imputation  (51) has  been  used  in  this  differential  analysis:  absent
proteins in a given sample will be considered as being below the quantification level.  

For each of the eight comparisons, differential expression will be evaluated in to ways:

• A  ratio  (expressed  as  a  log  2  fold  change)  obtained  from  the  division  of  the
intensities (mass spectrometry signal) of a group with respect to reference group
and a t-test probability of these groups being the same

• Individual intensities obtained from each sample will be used to build a hierarchical
cluster, where proteins and groups will group freely according to their intensities;
these clusters will  also provide visual  aid in detecting artifacts.  Log-transformed
individual  intensities  obtained from the  different  samples  were  scaled  and then
clustering was performed using the package “Pheatmap”  (52) from Bioconductor,
using  the  Ward.D  method  (dissimilarities  are  squared  and  then,  Ward's  (1963)
clustering  criterion  is  applied),  both  with  rows  (samples)  and  with  columns
(proteins).
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Figure 4.10 Graphical representation of the results obtained by differential expression of the
eight comparisons made. Two limits are applied: a log2 Fold change higher of 0.2 or lower than
-0.2  and  a  P-value  lower  than  0.05.  Proteins  passing  both  cut-offs  are  represented  in  red.
Proteins  failing  both  are  represented  in  black,  and  for  those  failing  only  one,  in  blue  (Fold
change)  or  green  (P-value).  All  eight  comparisons  comprise  204  proteins,  and  are  here
represented using the same scale, for comparison’s sake.   

The number of samples in which the proteins are found is also an important factor (Figure
4.11). For example, two proteins (IGHG3 and C1QA) appear in nine samples, not being
quantified in the other eleven samples. The fact that a sample appears as “quantified” for
a  given  protein  depends  on  several  factors,  mainly  both  quality  (of  the  mass  spectra
obtained)  and  amount  of  peptides  that  compose  the  protein:  thresholds  applied  at  a
peptide (or transition) level make possible that, even if a protein is there, is discarded on
behalf of the low quality of its constituent peptides. One factor that favors a low peptide
score is a very low concentration: the lower the concentration, the less peptides will be
correctly detected. In this scenario, as the minimum number of samples for these two
proteins is nine, it is then possible that for a given comparison where ten samples are
evaluated,  those proteins  will  still  be present  at  nine of  the samples.  For  this  reason,
proteins will be discarded for this reason (being present in too few samples) only for each
comparison, not globally. Only when it becomes clear that for a given comparison (e.g. HO
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vs HT) a protein is not found in enough samples for a robust quantification, this protein will
be discarded.

Figure 4.11 Number of proteins found at a given number of samples. The number of
proteins that are found in all samples (20 samples) is 169 proteins.

Another possible scenario is the case when, for a given phenotype, one protein is present
in all the samples and for the other phenotype (because is below the quantitation limit) the
same protein is not detected in some of the samples, presenting in the other samples
very low individual concentration levels. In this case, that protein will not be discarded and
the ratio (very likely a big one) still considered. This case can be explained as one protein
being literally absent in one phenotype and consistently present in the other. Keeping or
discarding proteins for a given comparison will be justified in each case.

Finally, for each differential analysis performed, an enrichment analysis will be done in two
steps:

1. A differential analysis for Gene Ontology (53) (Biological Process sub-ontology) will
be performed using JEPETTO (54), a Cytoscape (55) plugin that performs integrative
human gene set analysis, also allowing visualization of interaction networks formed
by the enriched terms (Figure 4.12). Using in this work an association threshold
equal to 1, a coverage threshold of 0.3 and a triangle threshold of 0.1, the software
uses a network-based association score (XD-score) to select significantly enriched
GO terms.

2. A second enrichment will  be performed used Toppgene  (56), using terms of less
than  200  genes  and  a  probability  density  function  (instead  of  cumulative
distribution),  and  showing  adjusted  P-values  using  Bonferroni  (57) adjustment,
more  strict  than  Benjamini  & Hochberg  and less  than Benjamini  &  Hochberg &
Yekutieli  (58).  The  enrichment  will  be  done  for  all  categories,  and  only  those
considered of interest for each comparison will be included here. 

The results for those enrichments will then be added to each comparison for helping in the
interpretation of the groups of proteins found in each of them. It is important to point out
that the absence of a GO Biological Process in one comparison does not mean that this
process is not taking place: it just means that the number of proteins is not enough to
present a significant enrichment. Sometimes, the presence or absence of a single protein
will make that one category is present or not for one comparison.
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Figure  4.12  JEPETTO  example  network.  The  interaction  network  used  is  String  (59)
network. The four highlighted entries (SERPINF2, F2, PROS1 and KLKB1) are proteins in
the sample matching the GO category (fibrinolysis in this example). Proteins with text in
red are those belonging to the GO category but not in the sample. Those with green text
are proteins in the sample but not in the GO category. And the ones in blue(only GP5) are
added terms as linking nodes for other interactions.

Then, in the next eight points, two notably interesting comparisons (PCOS vs Healthy and
PCOS vs HT) and the six possible comparisons of the four phenotypes studied (HO vs HT,
PT  vs  HT,  PO  vs  HT,  PO  vs  HO,  PT  vs  HO  and  PO vs  PT)  are  going  to  be  analyzed
systematically, using hierarchical clustering and several types of enrichment to get some
insight in the kind of changes in protein levels that the different phenotypes undergo.

4.4.1.1 PCOS vs H
Healthy samples (HO and HT) are compared to the ones diagnosed with PCOS (PT and PO),
independently if they come from an obese subject or not: PCOS vs H comparison, using
healthy samples as reference. Here, protein levels in a set of ten samples from healthy
subjects are compared to the protein levels in ten samples diagnosed with PCOS. In Figure
4.13, the list of 14 proteins differentially expressed obtained after applying the cut-offs; a
hierarchical cluster using the individual intensities has been built. From the cluster, two
aspects appear clear:

• The cluster does not produce a perfect grouping of the four phenotypes in display,
with a HT phenotype (1425) misplaced among HO.

• The result obtained with protein IGHG3, although appearing with a very high fold
change,  is  likely  an  artifact.  Only  nine  samples  out  of  the  20  possible  have
quantified for IGHG3 (five PCOS and four healthy). This protein will be discarded
from this comparison: showing a very high expression in one PT sample, while not
being detected in the other four, makes that these expression changes surely mean
an individual variation, and are not group-related.

Changes in PCOS vs H are mainly negative, with twelve of the proteins under-expressed in
PCOS with respect to the healthy samples.  Also, in both up and down regulated proteins,
changes  do  not  appear  to  be  drastic:  after  removal  of  IGHG3,  the  maximum  down-
regulation comes from FLNA (-1.13) and the higher up-regulation from APOC2 (0.92). 
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Figure 4.13 Sixteen differentially expressed proteins in PCOS vs Healthy comparison: list with the
log2 Fold Changes and P-values (left)  and a hierarchical  cluster  of  the individual  Log intensities
(right), clustering both for samples (rows) and proteins (columns), gray squares representing non-
quantified proteins.

Once removed (IGHG3), the resultant volcano plot, with labeled proteins is shown in Figure
4.14.  As  displayed  in  the  volcano  plot,  both  changes  in  fold  change  and  levels  in
probability are not very high. And special caution must be employed with proteins close to
P-value (THBS1 and FERMT3) and fold change (C8A, C8B, C8G) thresholds. 

Figure 4.14 Volcano plot  of  the  PCOS vs  Healthy  comparison.  Thirteen differentially
expressed  proteins  in  red  and  labeled.  Proteins  failing  for  both  fold  cut-offs  are
represented in black, and those failing only one, in blue (Fold change) or green (P-value).

The enrichment study of PCOS vs H is shown at Table 4.3. Both alternative and classical
pathways  appear  represented,  while  the  other  terms  have  been  introduced  mainly
because of interaction of its members with the aforementioned groups. The low P-values
here are caused by the low number of differentially expressed proteins (thirteen):  only
complement activation categories show consistent enrichment values. As it will be seen in
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the next comparison, PCOS vs HT, the low number of differentially proteins in this caused
by  interference  from HO samples:  while  HO and  PT  share  many  aspects  in  common,
differences between healthy and PCOS samples, the levels of the former being somewhat
diluted by the presence of HO samples.   

Table 4.3 Enriched terms for PCOS vs H. On the left, GO Biological Process terms analyzed with JEPETTO.
On the right, Pubmed entries and Disease terms (DisGeNET) from Toppgene.

4.4.1.2 PCOS vs HT
The ten samples diagnosed with PCOS (PT and PO) are compared to the five healthy thin
(HT) samples used as reference. In this comparison (PCOS vs HT), healthy obese samples
are not included, in order to simplify the model and have a true “healthy control” in use.

In Figure 4.15, the list of 27 deferentially expressed proteins and the hierarchical cluster
performed, where all samples have been correctly classified using three groups (splitting
into three the rows corresponding to the most separate branches of the dendogram). In
the  dendogram two  clear  groups  of  proteins  also  appear  when  splitting  the  two  first
branches  of  the  dendogram:  different  color  patterns,  contributing  to  an  easier  visual
classification.  Surprisingly,  proteins  within  the  PT  and  HT  groups  appear  as  the  more
opposite in the cluster, while proteins in the PO group present intensities that follow the
trends  in  PT  group  but  with  less  intensity.  This  fact  appears  to  be  contrary  to  the
expectation  of  finding  more  severe  changes  in  PO than in  PT  with  respect  to healthy
controls (HT).

The overall tendency of the proteins differentially expressed in PCOS vs HT is the over-
expression, with only IGHM clearly under the -1 log2 fold change (and a P-value just above
the cut-off).  
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Figure  4.15 27  differentially  expressed  proteins  in  PCOS  (PT+PO)  vs  Healthy  Thin  (HT)
comparison: list with the log2 Fold Changes and P-values (left) and a hierarchical cluster of the
individual Log intensities (right), clustering both samples (rows) and proteins (columns).

In Figure 4.16 (A), the volcano plot corresponding to PCOS (PT+PO) vs Healthy Thin (HT)
proteins  has  been represented.  From the  27  proteins  differentially  expressed,  five  are
shared with those found as also differentially expressed in the previous section (PCOS vs
Healthy (H)) and highlighted in yellow in the plot: FLNA, ADIPOQ, LBP, RBP4 and APOC2. 

Interestingly, besides we have taken out the healthy obese (HO) samples, proteins passing
the cutoff in the two comparisons, present similar fold changes: in Figure 4.16 (B), fold
changes for the two comparisons (the one in this point, PCOS vs HT, and the one in the
previous point, PCOS vs H) are shown. The five proteins that are differentially expressed in
both (P-value <0.05), are labeled with a star: their fold changes are quite similar, although
in the case of PCOS vs HT, the fold changes are slightly more extreme: if the protein is up-
regulated in both, PCOS vs HT has a higher fold change than PCOS vs H, and if down-
regulated, lower. The fact that introducing HO patients decreases differences within those
five proteins,  but  still  preserves  the differences,  suggests  that  changes related to  the
presence of FLNA, ADIPOQ, LBP, RBP4 and APOC2 are also present in both PT and HO, but
more intensely in the first case.

The effects of PCOS become clearer in this comparison than in the previous (PCOS vs H),
very likely because of PT and HO sharing many variations in common. Here is when the
five proteins shared in terms of differential  expression with PCOS vs H becomes more
important: those proteins resist quite well the “dilution” process (in terms of differential
expression) conducted by HO samples.
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Figure 4.16 (A) Volcano plot  of  proteins in  PCOS (PT+PO) vs Healthy Thin (HT).  Labeled those
considered  differentially  expressed.  Highlighted  in  yellow  proteins  coinciding  with  differentially
expressed in previous section: PCOS vs H.  (B) Plot representing fold changes for both comparisons
(orange PCOS vs  H,  blue PCOS vs  HT) in  proteins differentially  expressed in at  least  one them.
Proteins  labeled  with  a  yellow  star  are  the  ones  expressed  differentially  (Pval<0.05)  in  both
comparisons: FLNA, ADIPOQ, LBP, RBP4 and APOC2.

An enrichment study has been performed using the 27 differentially expressed proteins for
PCOS vs HT: results are collected in Table 4.4. Enrichment here loses the complement
components with two new appearing: coagulation (A2M, SERPINC1, FBLN1, F2, KLKB1 and
F11) and acute-phase response (APCS, SERPINC1, SERPINA1, SAA4, LBP, SERPINF2, F2,
KLKB1).  That  does  not  mean  that  the  complement  activation  is  completely  lost  here:
although not as highly enriched as in the previous comparison, several proteins related are
still clearly present here (A2M, APCS, C7, F2, CLU, IGHM and PROS1). Although interactions
between coagulation and complement have been described  (60),  looks like the overall
trend in expression changes in PCOS vs HT with respect to PCOS vs H, but the reduced
number of proteins in the previous comparison calls for caution in this respect. 
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Table  4.4 Enriched  terms for  PCOS vs  HT.  On the  left,  GO Biological  Process  terms analyzed with
JEPETTO. On the right, Pubmed entries and Stitch drug database (CID) from Toppgene.

4.4.1.3 HO vs HT
Five samples coming from subjects with a BMI over 30 (HO) are compared to five samples
from subjects with a BMI under 30 (HT):  HO vs HT  (Figure 4.17).  In this  comparison,
metabolic  effects  of  overweight  are  measured,  independently  of  the  PCOS  pathology
studied  in  this  work.  A  total  of  62  proteins  pass  the  cut-off  (P-value<0.05,  log2  fold
change= 0.26). 

The  hierarchical cluster in Figure 4.17 shows two very well defined groups of proteins: the
height of the dendogram clearly shows a group of 15 proteins under-expressed under HO
samples and over-expressed for HT samples, while the rest of the proteins present the
opposite behavior. While being well classified in the HT group , sample HT.1425 presents a
somewhat distinct pattern of expression than the other four HT samples: a more intense
over-expression and some of the proteins expected to be under-expressed, actually over-
expressed. 

In the Figure 4.17 cluster, the protein SOD1 appears over-expressed in HO samples and
under  expressed  in  one  HT  sample,  and  does  not  appear  at  all  in  the  other  five  HT
samples.  In  this  scenario,  the  protein  is  not  excluded  from  further  analysis  because
something that could be happening here is that the protein levels are under detection
levels in four of the HT samples. Instead of an artifact, maybe some valuable information
may be obtained by keeping this protein among the ones studied.

The  number  of  differential  proteins  obtained  in  HO  vs  HT  is  the  highest  of  all  the
comparisons done. The expression profile is clearly one of over-expression, with ¾ of the
proteins up-regulated in front of ¼ down-regulated.
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Figure 4.17 62 differentially expressed proteins in healthy obese (HO) vs healthy thin (HT) comparison:
list  with  the  log2  Fold  Changes  and  P-values  (up)  and  a  hierarchical  cluster  of  the  individual  Log
intensities (bottom), clustering both samples (rows) and proteins (columns).

The enrichment analysis, shown in Table 4.5, presents complement, coagulation and acute
phase as  the  most  prominent  categories.  The  high  number  of  differentially  expressed
proteins makes that the enrichment P-values and the coverage of the GO categories is
quite high.

Differences in plasma concentration of proteins have been widely reported in literature:
only one example has been included in Table 4.5 with several of the proteins found here.
Some pathologies and phenotypes have been included in the enrichment table as well, just
to highlight the elevated amount of enriched terms found with the proteins obtained here.
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This reflects the fact that this kind of comparison is a well-studied area of knowledge, and
that annotation using ontologies and literature is very common. 

Table 4.5 Enriched terms for HO vs HT. On the left, GO Biological Process terms analyzed with JEPETTO.
On the right, Pubmed entries, Disease terms (DisGeNET) and Stitch drug database (CID) from Toppgene.

4.4.1.4 PT vs HT
Five PT samples are compared to five healthy control  samples (HT)  here.  Without the
interference (or co-occurrence) introduced by PO and HO, this should the easiest way to
approach PCOS interpretation. The list of differentially expressed proteins and the cluster
done are shown in Figure 4.18.
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Figure 4.18 50 differentially expressed proteins in PCOS thin (PT) vs healthy thin (HT) comparison: list
with the log2 Fold Changes and P-values (up) and a hierarchical cluster of the individual Log intensities
(bottom), clustering both samples (rows) and proteins (columns).

From  the  five  proteins  (FLNA,  ADIPOQ,  LBP,  RBP4  and  APOC2)  found  differentially
expressed in both PCOS vs H and PCOS vs HT:

• LBP (+1.2), RBP4 (+0.6) and APOC2 (+1.5)  show very similar levels to those found
under PCOS vs HT.

• FLNA (-1.1), although not differentially expressed in this comparison (it has a P-
value of 0.053, slightly over the cut-off), shows almost the same log2 fold change
that in PCOS vs HT and therefore, should be considered as still being in the previous
group.

• With ADIPOQ, the opposite happens: while showing a clear down-regulation in PCOS
vs HT (-1.1)  here appears with a fold change close to 0 (log2FC=-0.027 and P-
value=0.95); while the difference between this comparison (PT vs PO) and PCOS vs
HT is the absence here of PO samples, it will be expected finding ADIPOQ highly
down-regulated in PO vs HT. 

From the cluster, patients appear perfectly classified and two clear groups of proteins are
separated by the dendogram. Comparing this cluster to the one obtained in HO vs HT, two
points must be considered:

• Similarly to what happened in HO vs HT, the sample HT.1425 is separated from the
other four, showing a more over-expressed pattern (although not so clearly).

• The overlap of differentially expressed proteins in HO vs HT and PT vs HT is evident;
taking a look at the cluster of  ten proteins on the left  here,  six of  the proteins
(SAA4, GPX3, F2, ORM2, IGHM and FBLN1) are also found in the left cluster under
HO vs HT, in bout cases corresponding to proteins under-expressed in PCOS; many
overlapping proteins can also bee found in the right clusters.

An  enrichment  analysis  for  PT  vs  HT is  shown  in  Table  4.6.  And  again  complement,
coagulation and acute phase response appear as the main enriched categories.
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Table 4.6 Enriched terms for PT vs HT. On the left, GO Biological Process terms analyzed with JEPETTO.
On the right, Pubmed entries and  Human Phenotype (HP) from Toppgene.

4.4.1.5 PO vs HT
Five PO samples are evaluated in front of five healthy controls (HT) in this comparison.
Being PO a more “extreme” phenotype, presenting both the conditions under study in this
work (PCOS and obesity), an exceptionally high number of differentially expressed proteins
could  be  expected.  As  shown  in  Figure  4.19,  the  opposite  happens:  only  20  proteins
differentially expressed appear, representing less than a half of the ones found under PT vs
HT.

Figure 4.19 20 differentially expressed proteins in PCOS obese (PO) vs healthy thin (HT) comparison:
list  with  the  log2  Fold  Changes  and  P-values  (up)  and  a  hierarchical  cluster  of  the  individual  Log
intensities (bottom), clustering both samples (rows) and proteins (columns).
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Enriched terms using JEPETTO are shown in Table 4.7: only one GO term. Using Toppgene
for a Gene Ontology search, using 20 genes as a limit of the groups searched, several
terms appear slightly enriched, for example:

• renal protein absorption (GO:0097017): GSN and ADIPOQ (2 out of 3 genes)

• complement activation, lectin pathway (GO:0001867): COLEC11 and A2M (2 out of
3 genes)

The poor enrichment here is obviously related to the limited number of proteins, but even
with that, the virtual absence of enriched GO terms should also be explained by some
other reason. 

Table 4.7  Enriched terms for PO vs HT. On the left,  one GO Biological  Process terms analyzed with
JEPETTO. On the right, Pubmed entries from Toppgene.

The  low  level  of  differential  expression  could  be  explained  by  some  sort  of  general
disorganization in the protein levels, where only proteins shown in Figure 4.19 would show
some coordinated trend.  Another  possible  reason is  the  emergence of  more  than one
biological  mechanism in  PO  individuals:  in  contrast  with  PT,  where  a  list  of  coherent
processes are described by up and under-expression of a set of proteins, in PO several
divergent processes in the samples studied would provide  several sub-phenotypes.  The
analysis  of  more  samples of  the PO phenotype would be necessary  for  studying such
hypotheses. The poor enrichment is compatible with the both explanations: the dispersion
of a few differentially expressed proteins among a bunch of ontology categories can be
explained by the involvement of many different and distant biological processes (general
disorganization) or by the existence of more than one phenotype (sub-phenotypes in PO).

As for the proteins differentially expressed here:

• ADIPOQ is highly down-regulated in PO vs HT, as expected from results previously
obtained: being present in PCOS vs HT among differential proteins (log2FC = -1.1),
and being absent in PT vs HT, only a very low log2FC here (-2.2) could compensate
things.

• FLNA  has  not  been  quantified  in  two  of  the  five  HT  samples,  what  would  be
compatible with the low expression in the other three inside the same phenotype;
but the appearance of another sample missed for this protein in PO subjects may
suggest some artifact related with this protein.

4.4.1.6 PO vs HO
In this comparison, five PO samples are evaluated in front of five healthy-obese samples as
controls (HO). The differentially expressed proteins here should reflect changes originated
by PCOS in obese patients. In Figure 4.20 the list of the 53 differential proteins and the

81



hierarchical cluster are shown. The cluster shows again phenotypes well classified and two
subsets  of  proteins,  one under-expressed in  HO with  only  five proteins.  The  profile  of
expression here is of global under-expression, that is, proteins generally present higher
levels  in  HO than in  PO.  Again,  this  goes  against  expectations,  where  a  more  severe
phenotype (PO), would be expected to produce more extreme protein changes.

Figure 4.20 53 differentially expressed proteins in PCOS obese (PO) vs healthy obese (HO) comparison:
list  with  the  log2  Fold  Changes  and  P-values  (up)  and  a  hierarchical  cluster  of  the  individual  Log
intensities (bottom), clustering both samples (rows) and proteins (columns).

In Table 4.8 the enrichment results are shown: coagulation, acute phase and complement
are the main categories, similarly to what happened in PT vs HT and HO vs HT. Proteins
related to the innate immune response (MASP1, CD14, SERPING1, C1S, C1RL, C4BPB, C5,
C8A, C8B, C8G and CFB) appear here forming a group not seen in previous enrichments.

The  consistent  way  in  which  PO  differentiates  from HO brings  some  light  to  the  low
differential expression of proteins in PO vs HT: instead of the co-occurrence of phenotypes
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(not likely because PO works as a well defined group here), the hypothesis that proteins
were  acting  in  an  uncoordinated way in  the  PO vs  HT comparison  is  strengthen.  The
conclusion here, with the data available, would be that HT is simply not a good reference
to PO for  many proteins  (but  it  is  for  the 20 proteins  found differential)  and that  the
complexity of changes taking place into PO phenotypes is better understood using PT as
reference.

Table 4.8 Enriched terms for PO vs HO. On the left, GO Biological Process terms analyzed with JEPETTO
(filtered terms due the long list provided). On the right, Pubmed entries and Human Phenotype (HP) from
Toppgene.

4.4.1.7 PT vs HO
Five PCOS thin (PT) samples are evaluated in front of five healthy obese samples (HO) in
this comparison, illustrating the differences between the simplest models for obesity and
PCOS in this work. As previously seen, PT vs HT and HO vs HT are quite similar: protein
levels have a lot in common in samples of lean patients diagnosed with PCOS and those
without PCOS but with a BMI index higher than 30. For this reason, the low number of
differential proteins found here (15 proteins) was in fact expected.

Protein  expression  levels  and the hierarchical  cluster  are  shown in  Table  4.21.  Protein
IGHG3 appears here in only three samples (two as HO control and one as PT);  in this case,
the protein will discarded for further analysis because, although its levels are consistent in
the respective groups, too few samples are analyzed. The hierarchical cluster in Table 4.21
is split in two levels for proteins and also for samples: differences in the dendogram’s
lengths  are  quite  big  between  the  two  first  levels  for  both  proteins  and  samples,
suggesting a strong division between groups.
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Figure 4.21  15 differentially  expressed proteins  after  discarding  IGHG3 in  PCOS thin  (PT)  vs
healthy  obese  (HO)  comparison:  list  with  the  log2  Fold  Changes  and  P-values  (up)  and  a
hierarchical cluster of the individual Log intensities (bottom), clustering both samples (rows) and
proteins (columns).

In Table 4.9, the enrichment results are shown. Two groups appear clearly enriched for this
comparison:  complement  activation,  alternative  and  classical  pathways.  Some  Human
Phenotype  categories,  diseases  (DisGeNET),  drugs  (Stich  database)  and  some
bibliographical entries are also included. 

Proteins related to complement show a general under-expression in PT with respect to HO
(FGB, CFB, C3, C8A, C8B and C8G) with the exception of MBL2 that is clearly up-regulated
in PT vs HO; the fact that MLB2 is over-expressed here is consistent with the fact that this
protein is under-expressed both in HO vs HT and PO vs HT, and over-expressed in PT vs HT,
even though in neither of the three cases (HO vs HT, PT vs HT and PO vs HT) the P-value
was even close to 0.05. It is only here in PT vs HO (and later in PO vs PT) that MBL2 has
significantly different levels from the reference (log2FC=1.53, P-value=2.96E-2).
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Table 4.9 Enriched terms for PT vs HO. On the left, GO Biological Process terms analyzed with JEPETTO.
On  the  right,  Pubmed  entries,  Human  Phenotype  (HP),  Disease  terms  (DisGeNET)  and  Stitch  drug
database (CID) from Toppgene.

4.4.1.8 PO vs PT
Finally, five PCOS obese (PO) samples are evaluated in front of five PCOS thin samples (PT)
here. This comparison allows to assess differences in protein concentrations for samples
diagnosed with PCOS with and without obesity.

Here, 61 proteins are differentially expressed, with an expression profile generally under-
expressed (Figure 4.22): the expression levels of proteins is very similar here to the one
analyzed  with  PO  vs  HO,  both  in  terms  of  proteins  involved  and  log2FC  levels.  The
hierarchical cluster shows two groups of samples (rows) and proteins (columns) clearly
separated. For the same reasons than in previous cases, IGHG3 will be discarded for PO vs
PT.
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Figure 4.22 61 differentially expressed proteins in PCOS obese (PO) vs PCOS thin (PT) comparison: list
with the log2 Fold Changes and P-values (up) and a hierarchical cluster of the individual Log intensities
(bottom), clustering both samples (rows) and proteins (columns).

In Table 4.10, the enrichment analysis for this comparison is shown. In the same way that
happened in HO vs HT, PT vs HT and PO vs HO, the main categories of Biological Process
GO  enrichment  are  coagulation,  acute  phase  and  complement  (here  classical  and
alternative pathways).
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Table 4.10 Enriched terms for PT vs HO. On the left, GO Biological Process terms analyzed with JEPETTO.
On the right,  Pubmed entries,  Human Phenotype (HP),  Disease terms (DisGeNET),  Mouse Phenotype
terms (MP) and Stitch drug database (CID) from Toppgene.

4.4.2 Comparative functional analysis of HO vs HT, PT vs HT and PO vs 
HT
Individual  enrichment  analyses performed so far  have been useful  to characterize the
different groups compared. A different approach of GO Biological Process enrichment is
applied  here.  Using  ClueGO  (61) Cytoscape  plugin,  the  enrichment  of  the  three
comparisons with healthy controls (HO vs HT, PT vs HT and PO vs HT) will be done in a
coordinated way here.

ClueGO performs its enrichment using two very useful approaches for this situation:

• ClueGO groups highly related GO terms (by the proteins they include), simplifying
and reducing the number of enriched categories, producing a subset of “overview”
categories that can be used to summarize the biological properties obtained in the
enrichment. 
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• It also performs a comparative enrichment analysis, assigning GO terms to one of
the three comparisons analyzed, depending on the number of proteins associated
to each of  them. Some GO terms will  not  be associated with  any of  the three
groups, because the relative amount of proteins associated to any of them is not
high enough to associate one comparison with the GO term.

The three categories  under study here present an intense overlapping of  the proteins
being differentially expressed on each of them. In Figure 4.23, a graphical representation
of this overlap and the main enrichment categories obtained for the three groups. 

Figure 4.23 (A) Euler-Venn diagram with the numbers of the proteins belonging to HO vs HT, PT vs
HT and PO vs HT comparisons.  (B) ClueGO analysis of the three comparisons produces a set of
interconnected GO categories.

Results for ClueGO enrichment are shown in Table 4.11. For a correct interpretation of
those results, it is important to keep in mind that a different number of proteins have been
introduced for each category: 62 proteins for HO vs HT, 50 for PT vs HT and only 20 for HO
vs HT. This fact will make a lot more likely that a given protein from the HO vs HT group
will be associated to a GO term than a protein from the PO vs HT comparison, just because
the great  overlap of  proteins between comparisons. Despite this  fact,  that  can not be
prevented,  the  percentage  of  proteins  inside  a  comparison  associated  to  a  given  GO
category will give an idea on how much related are proteins from a given comparison (for
example HO vs HT) to some GO term (for example “complement activation”). From Table
4.11, several conclusions:

• Several  terms  are  found  where  proteins  are  evenly  represented  for  the  three
comparisons: “Complement activation, lectin pathway”, “Regulation of superoxide
anion  generation”  and  “Plasma  lipoprotein  particle  organization”  are  some
examples.

• Some  terms  are  related  in  greater  proportion  to  HO  vs  HT  than  the  other
comparisons.  Examples  are  “positive  regulation  of  tumor  necrosis  factor
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production”, “acute-phase response” and the classical and alternative pathways of
the Complement activation.

• Only  one  term  is  obtained  where  PT  vs  HT  shows  preferential  association:
“triglyceride homeostasis”.

• Not a single GO term has been found preferentially related  to PO vs HT .  

Table 4.11 ClueGO analysis results for HO vs HT, PT vs HT and PO vs HT. Ten different GO groups have
been found (0 to 9). GO terms in bold font represent “overview” terms, and can be used to represent the
rest of GO terms inside a given group. P-values (Bonferroni corrected) are calculated for each term and
for the whole group. Also, a total number of genes and % of associated genes are shown for each GO
term. The “Cluster” column assigns each GO term to a given comparison where is more represented (HO
vs HT, PT vs HT or None). The three last columns provide percentages of proteins of each comparison
inside one GO term.

The obtained results from ClueGO showed that the three groups of proteins compared are
mainly related to the same GO terms. That is, the fact that the same set of GO terms is
shared among HO, PT and PO indicates that the comparison with more proteins will have
more associated enriched terms as is showed in table 4.11. Only in terms like “negative
regulation  of  fibrinolysis”,  where  the  ratio  for  HO  and  PT  was  79%-26%,  some  real
preeminence of HO over PT can be suggested. 

Besides  the  fact  that  not  real  differential  enrichment  has  been  obtained  among  the
phenotypes  studied,  ClueGO  has  provided  a  useful  overview  of  the  GO  enriched
categories.  Therefore, this  analysis  summarizes the biological  processes involved in all
experimental  groups  analyzed,  preventing  misleading  differentiation  criteria  between
phenotypes if only individual comparisons had been done between them.  
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4.4.3 Pathways analysis of HO vs HT, PT vs HT and PO vs HT
A pathways analysis has been done with protein levels in HO vs HT, PT vs HT and PO vs HT
comparisons, using KEGG (62) pathway database. For this study, all proteins and not only
those  with  P-values  under  0.05  have  been  used.  In  this  way,  general  trends  can  be
observed more easily but, on the other hand, caution must be taken with fold changes that
are not backed by a significant P-value. It is also true that proteins showing large fold
changes will be frequently associated to significant P-values (the larger the fold change,
the more usual), making easier the interpretation of the pathways analysis.

First,  an enrichment study has been performed with the 204 proteins expressed using
Toppgene (Table 4.12). However, some considerations should be made here:

• A pathway enrichment is very useful in some circumstances, but in this case, some
limitations introduce a big bias into the results, the most important being that this
study is based on plasma protein levels. That makes obvious that only pathways
with  a  significant  involvement  in  the  extracellular  space  can  be  conveniently
enriched.

• Several  diseases appear enriched as can be seen in Table 4.12. The reason, as
already seen for several comparisons in the previous sections, is that the immune
system is one of the affected biological processes. This immune component is the
responsible for the enrichment of pathways related to diseases.

• In  some  pathways,  the  same  protein  appears  several  times  interacting  with
different elements. Thus, it will be useful to explore pathways that are not enriched
or show few proteins mapped to the data set under study.

Table 4.12 Toppgene enrichment for KEGG pathways.

From the enrichment shown in Table 4.12, only “Complement and coagulation cascades”
and “PPAR signaling pathway” have some interest in this study.

For a thorough pathway study, instead of an enrichment, a different approach has been
followed: using the web application “KEGG Mapper”, the complete list of proteins has been
introduced and 111 proteins have been mapped to one or more KEGG pathways. The list of
some of the pathways obtained is shown in Table 4.13.
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Table  4.13  List  of  KEGG  pathways  where  some  of  the
proteins  related to  this  work  are  mapped.  The number  of
proteins inside a pathway is shown between parentheses.

After the list of pathways mapped by KEGG has been filtered, discarding members not
related  to  this  work  (for  example,  dropping  diseases),  the  Pathview  (63) Bioconductor
package was used to map protein expression to pathways using the pathway ID’s provided
by KEGG Mapper (Figure 4.25). 

Figure 4.25 Pathview code where sixteen pathways, iterating in a loop using a list, are matched
with expression values contained in a text file (imported as a data frame named “data.to.kegg”).
The number of  bins,  10 in this case, are important to highlight differences between different
expression levels.  Here, 10 bins are chosen, leaving the center in gray color,  which gives an
interval of -0.25 to + 0.25 as not quantified, matching the ±0.26 Log2 fold change used as the
cutoff used in this work.

In this pathway mapping, the expression values (without considering P-values) of the three
comparisons against the HT samples: HO vs HT, PT vs HT and PO vs HT. For every protein
found in the list that is provided, the software will split the area of the represented entity
into three spaces: the first for HO, the one in the middle for PT and the one on the right for
PO. In this way, the variation of protein levels can be compared between the three groups
in an easy and convenient way. The interval of fold changes inspected has been -1 to +1:

• Proteins for a given comparison within ±0.26 Log2 fold change will remain gray.

• Proteins with Log2 fold change higher than +0.26 will be increasingly red.
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• Proteins with Log2 fold change under -0.26 will be green.

• Over +1 and under -1 Log2 fold change, no changes will be seen: two proteins with
a +1 and a +2 Log2 fold change will be seen exactly in the same way. 

After  automatically  generating  those  pathways  with  the  quantitative  information  and
inspecting the results obtained, two of them have been found specially illustrative for the
changes produced by HO, PT and PO with respect to HT:

Figure 4.26 Complement and coagulation cascades (hsa04610) KEGG pathway. Proteins are split in
three areas, with left corresponding to HO vs HT, middle to PT vs HT and right to PO vs HT. Proteins
not quantified are left in white. Proteins under ±0.25 Log2 fold change in gray. Over-expression in
red (the higher the fold change, the darker) and under-expression in green.

1. Complement and coagulation cascades (Figure 4.26): an overall  activation is
seen  throughout  the  whole  pathway.  It  is  important  to  observe  than  in  KEGG
terminology, the point of an arrow means activation and a a line ending in a flat
extreme (like the  one joining  AT3 and F11 in  the  coagulation  cascade,  intrinsic
pathway)  means  inhibition.  Some  interesting  differences  can  be  spotted,  but
caution should be applied before interpreting the results seen here. For example, in
the complement cascade, lectin pathway, MBL is under-expressed both for HO and
PO, while over-expressed in PT. This protein corresponds to MBL2 in the lists used in
this work (as can be confirmed checking into KEGG webpage). In the three cases,
the darkest colors are used, meaning that Log2 fold changes close or higher to ±1
have been obtained. But taking a look into the results obtained, the protein MBL has
passed the cut-offs only for PTvsHO and POvsPT: the values seen for this protein
here (for HO vs HT, PT vs HT and PO vs HT) cannot be completely trusted, and used
only as an orientation on what is happening.

2. Cholesterol metabolism (Figure 4.27):  in this  pathway, almost all  the proteins
found at the extracellular space are quantified. It makes a lot of sense that the ones
exclusively  found  into  the  hepatocyte  (drawn  in  the  middle),  are  not  mapped:
proteins were isolated from plasma. An interesting case arises here: protein ApoC,
related  to  HDL  cholesterol,  is  shown  highly  over-expressed  in  the  three
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comparisons. But the mapping is not simple here: ApoC levels can be evaluated
from  APOC1,  APOC2,  APOC3  and  APOC4  levels,  all  of  them  being  among  the
proteins quantified in this work. All possible combinations of APOC proteins should
be inspected before arriving to conclusions. 

Figure 4.27 Cholesterol metabolism (hsa04979) KEGG pathway. Proteins are split in three areas,
with  left  corresponding to HO vs HT,  middle  to PT  vs  HT and right  to  PO vs  HT.  Proteins  not
quantified are left in white. Proteins under ±0.25 Log2 fold change in gray. Over-expression in red
(the higher the fold change, the darker) and under-expression in green.

4.5 Discussion
The  results  shown  in  the  previous  sections,  both  in  what  has  been  called  “clinical
variables” (“4.3.1 Phenotypes under study”)  and later  with protein  levels  found in the
different phenotypes in the results section (“4.4 Results”) confirm that BMI has a direct
impact  on  the  physiological  response  in  subjects  with  or  without  a  PCOS  diagnose.
Furthermore,  different  sets  of  proteins  have  been  found  differentially  expressed  at  a
statistically significant level in the four groups created (HT, HO, PT and PO), showing that
the generation of these groups makes sense when proteostasis studies are made in PCOS
patients. Despite the fact that more phenotypical variables can be in play, the approach
used here may be essential to understand changes in protein levels among PCOS patients.
It is certain that more variables could be used to stratify patients when studying PCOS
proteomics, but a BMI patient stratification has demonstrated its usefulness for classifying
both using clinical variables (Figure 4.2) and protein levels (cluster Figure 4.15) with the
different  phenotypes  studied.  Obtaining  more  clinical  variables  for  classification  or
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establishing a numerical threshold for BMI would require a higher number of samples from
each category (PCOS diagnosed and not) than the 20 sample used in this work.

The  data  independent  proteomics  (Swath)  analysis  has  shown  high  stability  in
measurements, providing in some cases more than 60 differentially expressed proteins out
of 204 proteins quantified. Only two proteins, IGHG3 and C1QA, have been detected in less
than ten samples, while 169 proteins have been detected in all 20 samples. This has made
unnecessary any imputation approach (that is, assigning mathematically obtained values
to undetected proteins). 

4.5.1 Overall effects of PCOS on protein levels
The  way  in  which  protein  levels  in  plasma  are  changed  by  the  effect  of  PCOS  is
summarized in “4.4.1.1 PCOS vs H” and more clearly in “4.4.1.2 PCOS vs HT” section. The
reason for using HT samples as reference is that they provide a clearer picture of the
changes originated by PCOS, both in terms of more extreme changes (more intense fold
changes)  and  number  of  proteins  differentially  expressed  (almost  double  the  proteins
found in the later):  in PCOS vs HT comparison, the interference introduced by the HO
samples  is  not  present.  As  will  be  demonstrated  in  the  next  point,  there  are  many
similarities  in  the  changes  introduced  at  protein  levels  in  plasma  by  both  PCOS  and
obesity.

Despite the fact that in PCOS vs H an interference is introduced by HO samples, this is a
very useful comparison because, comparing the proteins with altered levels in PCOS vs H
with the ones found in PCOS vs HT, a short list of proteins show consistent levels in both
groups. As shown in Figure 4.16, five proteins (FLNA, ADIPOQ, LBP, RBP4 and APOC2) show
the same direction in terms of differential expression (up or down-regulation) and similar
intensities in both comparisons. That means that, despite the fact that a high BMI samples
(HO) introduce similar  changes to the ones found in  PCOS, these five proteins remain
highly indifferent to this effect. This would apparently make those five proteins as strong
markers  for  PCOS in  the samples analyzed:  actually,  low levels  of  ADIPOQ have been
associated to PCOS  (64), while high levels have been in the case of LBP  (65) and RBP4
(66).

However, several considerations should be made here:

• LBP shows also high over-expression in HO vs HT, therefore making of it a good
marker for PCOS only in lean patients. 

• With FLNA, not significant results have been found in HO vs HT, but is somewhat
under-expressed  in  that  comparison  and  therefore,  could  interfere  with  PCOS
diagnose. Something similar happens with  APOC2.

• ADIPOQ, as will be seen later, shows an important under-expression for PCOS with
obesity, but not for lean PCOS patients, where remains unaltered.

• The only protein that remains as a potential marker for PCOS in all combinations
examined is RBP4: this protein has been found differentially over-expressed in PCOS
vs HT, PCOS vs H, PT vs HT and PO vs HT with a Log2 fold change close to +0.6 for
all these combinations. Furthermore, it also shows similar levels of fold change for
PO vs HO and PT vs HO, though with P-values over 0.05.
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For assessing the qualities of  any of  the five mentioned proteins as biomarkers,  a big
cohort  of  samples  of  the  same  phenotypes  should  be  analyzed  specifically  for  those
proteins.  

Lastly, from the list of proteins differentially expressed in PCOS vs HT, several proteins
(ADIPOQ, RBP4, F2, F5 among them) are well described in literature with respect to their
changes in plasma levels of PCOS patients. Other proteins, like CAMP (involved in chronic
inflammatory response) or PRG4 (related to immune response) have been less associated
with this disease and a lot more with obesity.

4.5.2 Similarities and differences between obesity and PCOS effects
The relationship between PCOS and obesity has been widely described before, because  of
their high co-occurring rates (3), or by the multiple underlying mechanisms linking the two
conditions (67). In this work, the main similarities at protein levels can be inspected from
the similarities between HO vs HT and PT vs HT comparisons. Such similarities are shown
on  Table  4.13,  where  all  the  proteins  that  showed  differential  expression  in  those
comparisons (P-value<0.05), shown exactly the same general trends (is they are up or
down-regulated), and quite similar fold changes. This can only be explained if very similar
biological  processes are taking effect.  This fact is confirmed by the enrichment results
shown in Table 4.11,  where the high overlapping among HO vs HT and PT vs HT was
assessed.

Without analyzing here the causes, it is clear that the consequences (effects at protein
level) are very similar both in PT and HO samples. Effects on biological processes such
complement  activation  (68,69),  lipoprotein  synthesis  (70,71),  inflammatory  response
(72,73) and coagulation (74,75) have been described both within PCOS and obesity, so it is
not strange that these same processes are affected in this study. But the results shown in
Table 4.14 demonstrate how close those effects are in quantitative terms.   
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Table  4.14  Similarities  between  HOvsHT  and  PTvsHT:  all  proteins  differentially
expressed  in  common  in  HO  and  PT  (35  proteins)  present  roughly  the  same
expression changes with respect to healthy thin controls (log2 fold change changing
in the same direction in all cases).

Differences in protein levels between obesity and PCOS conditions can be easily spotted
using  PT  vs  HO  comparison  (Figure  4.21).  Only  15  proteins  appear  as  differentially
expressed, half of them showing mild variations (between ±0.5).

Two proteins appear  highly under-expressed in PT samples with respect to HO: CRP and
P0DOX3. CRP levels have been consistently associated with obesity (76), while in PCOS, it
has been shown the opposite: CRP levels are not affected in lean PCOS patients (77). On
the other hand, P0DOX3 levels have not been associated with obesity or PCOS (to our
knowledge).

Additionally, several proteins appear up-regulated in PT samples with respect to HO: MBL2
(complement activation), SHBG (androgen binding) and SPP2 (coagulation) among others.

4.5.3 Combined effects of PCOS and obesity
Obesity is commonly found in PCOS patients, aggravating many of its reproductive and
metabolic symptoms  (78). To evaluate the differences between PO and the two closely
related HO and PT phenotypes, three comparisons have been used (Table 4.15): the 20
proteins found with a P-value<0.05 for PO vs HT have been aligned with the same proteins
found in HO vs HT and PT vs HT, independently of their P-values. 
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Table 4.15  Levels of proteins differentially expressed in PO vs HT compared to HOvsHT and PTvsHT.
Proteins labeled with a star (ADIPOQ, COLEC11, IGFBP3, SPP2 and IGFALS) present completely different
levels in PO vs HT (different direction in expression) compared to HO vs HT and PT vs HT. In bold, P-
values lower than 0.05.

Five proteins show very different expression levels in PO vs HT compared to the other two
phenotypes: ADIPOQ, COLEC11, IGFBP3, SPP2 and IGFALS.

In first place, ADIPOQ shows in PO vs HT a twofold negative change with respect to HO vs
HT and  PT  vs  HT.  This  means  that  contrary  of  what  has  been  published  (79),  where
decreased levels of ADIPOQ have been found independent of BMI, in our study the levels of
ADIPOQ only decreased for PO subjects,  not for PT ones. In the case of  RBP4, several
studies  (80,81) had  demonstrated  elevated  levels  of  this  protein  in  PCOS  patients,
independently if they were obese or not; this means that our results correspond to those
previously reported, with a nearly exact increment of RBP4 in PT and PO patients.. The fact
that ADIPOQ appeared in “4.5.1 Overall effects of PCOS on protein levels” and in Figure
4.15 with a logFC=-1.12 is explained because the high under-expression of ADIPOQ in PO
vs HT compensates the null variation of this protein with PT vs HT. In essence, results
obtained  here  contradict  BMI-independent  under-expression  of  ADIPOQ found  in  other
works. 

LBP, that was introduced previously as one potential marker for PCOS, shows also a high
over-expression in HO subjects, what makes it only useful for lean patients.

Additionally, from Table 4.15, several proteins show under-expression under PO and over-
expression in HO and PT: 

• COLEC11: related to innate immunity (82), apoptosis (83) and embryogenesis (84).
• IGFBP3: with antiproliferative and apoptotic effects (85).
• SPP2: found in association with metabolic disease (86). 
• IGFALS: related to the insulin-like growth factor (IGF) system (87).
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4.6 Conclusions
Five proteins (FLNA, ADIPOQ, LBP, RBP4 and APOC2) present significant variations between
PCOS samples and both H (HT+HO) and HT as controls. Protein RBP4 appears as the most
robust marker for PCOS even with interference from obesity.

PCOS and obesity share many traits in common, with at least 35 proteins differentially
expressed  in  both  conditions  showing  virtually  the  same  levels.  Proteins  related  to
complement show a general under-expression in PT with respect with HO (FGB, CFB, C3,
C8A, C8B and C8G) with the exception of MBL2 that is clearly up-regulated in PT vs HO.
Two proteins appear  highly under-expressed in PT samples with respect to HO: CRP and
P0DOX3, while SHBG (androgen binding) and SPP2 (coagulation) are down-regulated.

Finally,  related  to  the  combined  effects  of  PCOS  and  obesity,  five  proteins  (ADIPOQ,
COLEC11,  IGFBP3,  SPP2  and  IGFALS)  appear  down-regulated,  as  opposed  to  what
happened in lean PCOS subjects. 
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Chapter 5. Data Dependent Acquisition and 
Label Free Quantification: iprg2015 reanalysis

5.1 Abstract
The aim of this work is to find the most suitable tools and parameters for the analysis of
data-dependent, label free quantitative proteomics data. It is with that goal in mind that
the reanalysis of the data set provided by the iprg2015 study has been performed. Three
quantitative pipelines (Proteome Discoverer, MaxQuant and OpenMS) and three statistical
R packages (MSStats, DEqMS and DEP) have been evaluated. The use of MaxQuant and
MSstats,  using  a  P-value  of  0.05  and  a  Log2  fold  change  of  ±1  as  thresholds  has
demonstrated  to  be  the  most  robust  approach  when  dealing  with  complex  protein
mixtures.  Label  free  quantification  accuracy  has  been  evaluated,  with  overall  correct
results but with higher errors when measuring the more extreme ratios: accuracy is lower
for measures involving very high or very low ratios. Also, imputation of censored values
has been explored: the “accelerated failure time” model for imputation has been chosen
as the most robust approach, albeit the use of various imputation strategies may prevent
the emergence of artifacts. 

5.2 Introduction
In the year 2015, the Proteome Informatics Research Group (iPRG) of the Association of
Biomolecular Resource Facilities (ABRF) released the proteomics analysis of four samples
of  a  tryptic  digest  of  Saccharomyces  cerevisiae,  spiked  with  six  proteins  at  known
concentrations. Technical triplicates of the four samples were analyzed following a data-
dependent label-free quantification approach, using a a Thermo Scientific Q-Exactive mass
spectrometer. The spiked proteins presented different concentrations for each sample, only
known by the organizers of the project. Then, sixty anonymous volunteers from around the
world, used their bioinformatics pipelines to analyze the samples, and the results were
summarized  and  commented  in  the  publication  “ABRF  Proteome  Informatics  Research
Group  (iPRG)  2015  Study:  Detection  of  differentially  abundant  proteins  in  label-free
quantitative LC-MS/MS experiments” (1). The raw data and the protein database was made
available at the ProteomeXchange (2) platform under the identifier PXD010981.

The characteristics of the iprg2015 data set are summarized here:

• Four different samples, all containing the same amount of a tryptic protein digest
of  Saccharomyces  cerevisiae culture  (200  ng),  were  spiked  with  different
concentrations of six proteins (Table 5.1).

• The identity of the proteins was known at the moment of this reanalysis: chicken
ovoalbumin  (P01012,  OVAL_CHICK),  horse  myoglobin  (P68082,  MYG_HORSE),
rabbit  Glycogen  phosphorylase,  muscle  form  (P00489,  PYGM_RABIT),  Beta-
galactosidase  from  Escherichia  coli,  strain  K12  (P00722,  BGAL_ECOLI),  bovine
serum albumin (P02769, ALBU_BOVIN) and bovine Carbonic anhydrase 2 (P00921,
CAH2_BOVIN). For convenience, these six proteins have been respectively labeled
with letters A to F, in the same way that was done in the original study.
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• The four samples are named here as C1 to C4. The comparisons made throughout
this chapter will be only of C2, C3 and C4 with respect to C1 (C2 vs C1, C3 vs C1
and C4 vs C1). More combinations could have been used, but for the purpose of
this work and to limit the complexity and extent of the results presented, only
those three comparisons will  be made.  Due to the fact  that  the amount of  S.
cerevisiae is constant, the proteins coming from this background protein digest
should ideally have a Log2 fold change equal to zero. Any protein from the yeast
digest  that  shows differential  expression  in  some of  the  comparisons  must  be
accounted as an artifact or associated to some issue in the bioinformatics analysis
pipeline. 

• On the other hand, the six spiked proteins (A to F) must show, in almost all cases,
some significant difference in the three comparisons studied. Because the relative
concentrations (ratios or  fold changes) can be obtained as the quotient of  the
spikes  concentrations  in  the  samples  compared,  theoretical  Log2 fold  changes
have been calculated and shown in Table 5.1.

Samples Theoretical Log2 fold changes
C1 C2 C3 C4 C2 vs C1 C3 vs C1 C4 vs C1

A 65 55 15 2 -0.24 -2.12 -5.02
B 55 15 2 65 -1.87 -4.78 0.24
C 15 2 65 55 -2.91 2.12 1.87
D 2 65 55 15 5.02 4.78 2.91
E 11 0.6 10 500 -4.20 -0.14 5.51
F 10 500 11 0.6 5.64 0.14 -4.06

Table 5.1 Each sample contained 200 ng yeast tryptic digest spiked with the indicated amounts
(in fmols) of tryptic digest of  six individual proteins. The A to F labels correspond to P01012
(OVAL_CHICK),  P68082  (MYG_HORSE),  P00489  (PYGM_RABIT),  P00722  (BGAL_ECOLI),  P02769
(ALBU_BOVIN) and P00921 (CAH2_BOVIN). The theoretical ratios (Log2 fold changes) have been
calculated using the known amounts of the spiked proteins.

Throughout this chapter, data are going to be analyzed using different analysis pipelines
and  the  results  will  be  expressed  both  in  a  numerical  and  a  graphical  way.  For  the
graphical representation of those results, volcano plots (3) are going to be used. In Figure
5.1, three volcano plots, reproduced from the original publication (1) are shown: the dots
labeled as A to F letters represent the spiked proteins and the unlabeled dots, the proteins
coming from the yeast protein digest.

Figure 5.1 Results, in the form of volcano plots, for the C2 vs C1, C3 vs C1 and C4 vs C1 comparisons,
taken from the original publication (1) by Choi M. et al (2017) , Figure 4. The x axis represents the Log2
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fold change (ranging from -10 to +10) and the y axis the -Log10 adjusted P-Values. The cutoff (adjusted
P-value of 0.05) used in the original publication is drawn using a dashed line.

5.3 Materials and Methods
The analysis of the data from the iprg2015 study will be performed using three different
identification and quantification pipelines (MaxQuant  (4,5), OpenMS  (6,7) and Proteome
Discoverer  (8))  and  three  Bioconductor  (9) packages  for  the  statistical  analysis  of
quantitative proteomics data (MSStats  (10), DEqMS  (11) and DEP  (12)). The aim of this
work is not to compare the performance of those pipelines and software packages, but to
find  a  combination  of  software,  parameters  and  procedures  that  allows  a  confident
quantification  of  data-dependent  label  free  proteomics  experiments.  It  is  possible  that
using other parameters than those applied here would have allowed to improve the results
obtained  with  some  of  the  software  packages  tested;  but  following  the  different
documentation to the best of our knowledge has produced the results that will be shown
here.

5.3.1 Identification and quantification software
The data sets generated by the iprg2015 project have been analyzed using the raw files as
the starting point for the three pipelines: MaxQuant, Proteome Discoverer and OpenMS.
The protein database used for identification in this work is the one provided by the project
itself,  where  spiked  proteins  were  disguised  using  deceptive  S.cerevisiae  protein
accessions  (P44015,  P55752,  P44374,  P44983,  P44683  and  P55249  for  A  to  F
respectively). A decoy database (using reversed sequences) was employed by the three
pipelines in order to calculate the False Discovery Rate (FDR) at peptide and protein levels.
Also, Cysteine Carbamidomethylation as fixed modification and Oxidation of Methionine as
variable modification have been used. Digestion using trypsin (KR^P) was employed. The
description of the three pipelines is shown in the next sections.

5.3.1.1 MaxQuant
MaxQuant  is  described  as  “a  quantitative  proteomics  software  package  designed  for
analyzing large mass-spectrometric data sets”. It supports the analysis of several labeled
techinques  (iTRAQ  and  TMT  among  them)  and  label-free  quantification.  A  companion
application, named Perseus  (13),  is sometimes used in combination with MaxQuant for
statistical  analysis  of  the  quantitative  data  in  some  pipelines.  Perseus  has  not  been
employed  in  this  work  because  it  is  designed  for  its  use  in  combination  with  only
MaxQuant results.

MaxQuant provides a graphical  interface for  the elaboration  of  a parameters  text  file,
where all the information needed in the analysis is supplied (Figure 5.2). The MaxQuant
graphical interface is also capable of launching the application.
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Figure 5.2 Graphical interface to MaxQuant. Raw data menu is shown, with the list of raw files to be
analyzed in this work.

Once  the  parameters  have  been  introduced  by  using  the  graphical  interface,  the
MaxQuant  pipeline  can  be  launched using  the  command line  by  an  application  called
MaxQuantCmd.exe. This application can be used in Linux systems, through the Mono (14)
framework, and easily combined with the Slurm  (15) workload manager; it  is precisely
using this  setup in  which MaxQuant has been used in  this  work for  identification and
quantification of proteins. Using MaxQuant or any other pipeline, take several hours, and
automating and scheduling this process is very convenient. Parameters used by MaxQuant
include, for the identification, a peptide-spectrum matching (PSM) and protein FDR both of
0.01. The instrument setup selected has been an Orbitrap, with a “main search tolerance”
at MS1 level of 4.5 ppm. The rest of the parameters of importance (like nature and number
of  the  peptides  used in  the  quantification)  will  be  especified later  with  the  statistical
software used.

After  the  quantification  is  performed,  several  files  with  the  information  produced  by
MaxQuant  are  generated  into  a  folder  named  “combined/txt”;  two  of  these  files,
proteinGroups.txt (with a summary listing the proteins and the quantification information)
and evidence.txt  (with  a  detailed  list  of  the  peptides  quantified),  will  be  used by the
statistical packages used later. 

5.3.1.2 OpenMS
The OpenMS project comprises several software tools for the analysis (both for protein
identification and quantification) of mass spectrometry data. It can be used by means of
the command line or using the Knime (16) analytics platform. This platform helps building
scientific workflows and executing them into the workspace. Those workflows consist of
nodes that perform both general procedures (like generating a text file) or very specific
(like performing proteomics  identification)  and are  arranged answering for  the specific
needs of  the analysis.  The Knime platform can be run using Linux,  Windows and Mac
platforms
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Figure 5.3 First part of the OpenMS workflow for label-free quantification. Raw files are used as input
and a loop cycles over them (in blue, ZipLoopStart and ZipLoopEnd), executing two protein identification
steps  (Comet  and  MSGF-Plus)  and  merging  the  probabilities  produced  by  them  for  each  peptide.
Alongside  to  the  peptide  identification,  the  workflow  calculates  the  areas  of  the  centroided  peaks
(FeatureFinder) and maps the identification and quantitation information. 

Figure  5.4 Second  part  of  the  OpenMS workflow  for  label-free  quantification.  Features  (quantified
peptides) are aligned using retention times (Rt Alignment). Then, the information from different files is
merged (FeatureLinker), normalized (ConsensusMapNormalizer) and several text files are exported with
the  identifications  and  quantitative  information.  Ultimately,  two  text  files  are  produced:  a  generic
Quantitation  File  produced  by  OpenMS  and  a  MSStats-compatible  file  to  be  used  by  the  statistical
packages used later.

The OpenMS analysis platform was directly downloaded using the Knime application. Then,
following  the  documentation  available,  a  workflow  to  identify  and  quantify  the  data
provided by the iprg2015 study was built. An overview of the OpenMS quantitation pipeline
that was created for this work is provided in two parts: 

• In Figure 5.3, the initial part of the workflow is shown, with raw files processed in a
loop where peptides are identified and quantified.

• In Figure 5.4, the final part of the workflow, where identification and quantification
information is integrated and a text file, with the quantified data, is produced.
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As the main filter used, and FDR value of 0.05 for both protein and peptide identification
have  been  used.  After  the  pipeline  has  finished,  two  text  files  with  the  results  are
generated: a generic Quantitation File produced by OpenMS and a MSStats-compatible file
to be used by the statistical packages used later.

5.3.1.3 Proteome Discoverer
Proteome Discoverer is a proprietary software produced by the Thermo Fisher Scientific
company. The main limitation of Protein Discoverer is that it is designed to work only with
instruments  produced by the  same company.  Another  limitation is  that  only  works on
Windows operative systems. On the other hand, it has a very complete graphical interface
and some capabilities of batch processing for the files that are analyzed.

The software works by designing pipelines with nodes executing the different steps. The
analysis workflow is divided in two elements by the application:

• A “Child step” (or “Processing step”, Figure 5.5) that performs the identification of
proteins (using Sequest HT  (17) and Percolator  (18)) and a feature detection (at
MS1 level) for protein quantification. 

• A “Consensus step” (or “Integration step”, Figure 5.6 ) that integrates the results
obtained  from  different  files,  performing  the  quantification  using  the  features
detected in the “Processing step”.

The parameters used by the Proteome Discoverer pipeline are the ones provided by a
predefined  configuration  for  the  same  instrument  used  in  this  analysis:  Proteome
Discoverer  allows selecting a default  pipeline for  label-free quantification  using the Q-
Exactive mass spectrometer.

Figure 5.5 Child Step (Processing step) in Proteome Discoverer.

Proteome  Discoverer  shows  the  results  in  the  graphical  interface,  using  an  advanced
interface  that  allows  inspecting  spectra,  proteins,  quantification  information…  It  also
allows exporting the results produced in several formats: Excel files, some proteomics XML
standards and also tabulated text files. The file format that will allow the integration of
Proteome Discoverer with the statistical  packages used later,  is  the file containing the
identification  and  quantification  information  organized  as  PSM  (Peptide  Spectrum
Matches). This is a text file that will be imported by the R packages used later.
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Figure 5.6 Consensus Step (Integration step) in Proteome Discoverer.

5.3.2 Statistical protein quantification software
Three different R packages included in the Bioconductor project are used in the statistical
analysis,  integration  of  results  and  filtering  of  the  quantitative  data  produced  here:
MSStats, DEqMS and DEP. These packages are described in the next points.

5.3.2.1 MSStats
MSStats is a mature Bioconductor package (version 3.14.1 used here), that is used both in
data dependent and data independent (Swath) acquisition setups. With direct bindings to
the most used pipelines in quantitative proteomics, it is also very well documented and
widely used. The MSStats package includes:

• several functions to import data from the different pipelines supported,

• a processing step, where the quantitative information is integrated, normalized and
filtered using some advanced features and,

• a final step where the different conditions under study (phenotypes, times in time-
series experiments,…) are defined and compared.

MSStats  allows  different  methods  of  normalization  (median  equalization,  quantile
normalization  or  based on  standard  proteins).  It  also  performs quantification  by using
several combinations of features (using all peptides, the three most intense,…). Different
censoring methods are also supported. One interesting functionality (only available with
MaxQuant data) is the possibility of discarding peptides containing methionine, as will be
discussed in the section corresponding to the MaxQuant and MSStats combination.

In  addition  to  the  quantitative  information  related  directly  to  proteins,  MSStats  also
requires the use of the features identified at the PSM level.
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5.3.2.2 DEqMS
The DEqMS package is a more recent alternative for statistical analysis of label-free data
(1.0.1 version used here). It supports the two main kinds of data-dependent acquisition:
label-free quantization ans isobaric labeling (TMT and iTRAQ).  It  is  build on top of  the
limma (19) package, a widely used solution used in transcriptomics for more than fifteen
years.  It  is very flexible while importing data produced by different software pipelines,
allowing the direct import of MaxQuant data and also is capable of working with either PSM
or  protein  tables.  Different ways  of  importing  and analyzing the quantitative  data  are
described in its documentation.

Options for normalization are less advanced in this package compared to the other two:
only medianSummary, medianSweeping and medpolishSummary functions are available.

The workflow for DEqMS is by far the most complex of the three statistical packages used
here:  although  a  detailed  description  of  several  common  quantitative  pipelines  are
described in the documentation, processing the data with this  software involves many
steps that can be tuned in multiple combinations.

5.3.2.3 DEP
DEP, the last  of  the three statistical  packages used in  this  work,  is  a completely new
option: at the moment of writing this document, a dedicated publication has not been
released yet. It  is designed to work with only two quantitative pipelines (MaxQuant for
label  free  and  IsobarQuant  for  isobaric  labelling),  making  special  emphasis  on
visualization. It provides many integrated plots for quality control and results evaluation. It
only supports one method of normalization (variance stabilizing transformation), but on
the other hand,  provides many alternatives for  data imputation and graphical  tools to
explore the type of missing values predominant in the data analyzed.

The use of this package is very straightforward, providing a set of functions to be used
sequentially. Although DEP performs worse than DEqMS and MSStats (as will be shown
later),  it  presents  a  very  interesting  set  of  tools  and,  with  further  development,  can
become a very strong tool in quantitative proteomics analyses.  

5.3.3 Visualization software: Enhanced Volcano
The results obtained with the combination of  identification and quantification pipelines
(MaxQuant, Proteome Discoverer and OpenMS) with statistical analysis packages (MSStats,
DEqMS and DEP) are summarized in this work using two approaches:

• First, lists of Log2 fold changes and adjusted P-values will be displayed as tables for
the three comparisons and the six protein spikes used. 

• Secondly, volcano plots for every comparison will also be provided. 

The use of volcano plots with expression data in general (transcriptomics and proteomics)
is very common and convenient: in addition to supply a graphical representation of the
results, it provides a very good glimpse of the distribution that the quantified data follows
for every analysis. The cutoffs used in the comparisons made (corrected P-value<0.05 and
a Log2 fold change of ±0.5 will be used in most cases) are  represented using dotted lines,
and different colors will be used for points surpassing the different thresholds.
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The software used for drawing the volcano plots is EnhancedVolcano (20), that allows to
easily set thresholds, labelling specific proteins and scaling axis in the most convenient
way for visualization.

5.4 Results
In  the  reanalysis  of  the  iprg2015  data,  three  quantitation  pipelines  have  been  used
(MaxQuant,  OpenMS  and  Proteome  Discoverer)  in  combination  with  three  statistical
analysis packages (MSStats, DEqMS and DEP). In each case, different approaches have
been taken:

• MSStats incorporates direct methods for importing the data produced by MaxQuant,
Proteome Discoverer and OpenMS, something that has facilitated the combined use
of MSStats with the three quantitation pipelines used in this work. 

• In the case of DEqMS, the package has been designed to directly import MaxQuant
data, and has been adapted here, using a Perl script created specifically for this
purpose  in  this  work,  to  be  used  also  with  OpenMS  and  Proteome  Discoverer,
providing acceptable results, specially in its use with Proteome Discoverer. 

• In  the  case  of  DEP,  it  has  only  used  in  combination  with  MaxQuant:  several
attempts, using the same kind of script that was designed for DEqMS, produced
sub-optimal results that have not been included in this chapter.

In all combinations, the same threshold has been applied: a corrected P-value<0.05 and a
Log2 fold change of ±0.5. The spiked proteins, represented with letters A to F (Table 5.1)
will be inspected in each case, and the same will be done with the eventual apparition of
non-spiked proteins. Those non-spiked proteins, that will represent false positives in the
quantification  procedures,  will  be  represented  with  their  respective  Uniprot  Accession
Number (21) (e.g. P54000 or Q08773). The fold changes obtained for the spiked proteins
will be expected to be similar to the theoretical ones shown in Table 5.1, while non-spiked
proteins are not expected to pass the threshold used in the subsequent comparisons.

The different workflows are discussed below and the code that generated the results is
included in “Appendix 3: Chapter5, iprg2015 Reanalysis”.

5.4.1 MaxQuant and MSStats
The combination of MaxQuant and MSStats, in a first approach, has produced the results
shown in Figure 2.17. In the import of the MaxQuant data by MSStats, only unique peptides
(those mapping uniquely one protein) have been used, and proteins quantified only using
one peptide have been removed. Data processing has used “equalized medians” as the
normalization approach and Tukey's median polish as the summarization approach. A total
of 2,519, 2,515 and  2,509 proteins have been quantified for C2 vs C1, C3 vs C1 and C4 vs
C1 comparisons.

In C2 vs C1, four of the expected spikes (B, C, D and E) appear, three for C3 vs C1 (A, C
and D) and four spikes (A,C,D and E) and two false positives (P54000 and P08525) show up
in C4 vs C1.
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Figure 5.7 MaxQuant and MSStats results. Peptides containing methionine have been used. A total of
2519, 2515 and  2509 proteins have been respectively quantified for C2 vs C1, C3 vs C1 and C4 vs C1
comparisons.

Using the same parameters than before, but removing peptides containing methionine in
the import of MaxQuant data, has produced the results shown in Figure 5.8. In this case,
for C2 vs C1, five of the expected spikes (B, C, D, E and F) appear, three for C3 vs C1 (A, C
and D) and four spikes (A,C,D,E and F) for C4 vs C1. None of the non-spiked proteins have
appeared as differentially found in any of the comparisons.

Figure 5.8 MaxQuant and MSStats results with peptides containing methionine removed: 2365, 2360
and 2335 proteins have bee quantified for C2 vs C1, C3 vs C1 and C4 vs C1 comparisons, respectively.

The  removal  of  methionine  is  justified  by  the  oxidation  process  that  this  amino  acid
presents  with  high  frequency  in  the  proteomics  experiments  (22).  It  is  common  that
methionine sulfoxides appear as an artifact during the processing of samples in proteomics
experiments.  The  accidental  appearance  of  oxidized  methionines,  in  different  protein
locations for the different samples produced, may introduce a serious bias in quantification
if  this  is  not  corrected:  since  the  same  peptide  can  be  found  as  oxidized  for  some
percentage (for example, 80%) in some replicate and the corresponding peptide in another
replicate can appear differently oxidized (for example 50%), only a 20% of the original
peptide (not oxidized) will be considered in the first case and 50% in the second: this effect
will  produce an important underestimation of  this  peptide in the first  replicate and an
artifact will be introduced in the final quantification for the whole protein. This effect will
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be more important if a higher number of methionine residues are present in the tryptic
digest.

Comparing the results shown in figure 5.7 to the one in Figure 5.8, the removal of peptides
containing methionine has improved the results (with two more spikes detected and the
removal  of  non-spiked  proteins),  while  losing  a  relatively  low  amount  of  the  proteins
quantified (close to the 6% in the three comparisons).

Table 5.2 MaxQuant and MSStats results for the spiked proteins, using removal of peptides
containing methionine. Spike B for C3 vs C1 comparison is not detectable. 

Results  shown  in  Table  5.2  show  fold  changes  resembling  to  the  ones  expected  by
calculating  the  theoretical  fold  changes  (Table  5.1).  The  only  issue  found  with  the
MaxQuant and MSStats analysis is that the spiked protein B is missing completely for the
C3 vs C1 comparison. This artifact will be discussed later in this chapter.

5.4.2 MaxQuant and DEqMS
The results obtained for MaxQuant and DEqMS are shown in Figure 5.9 and Table 5.3. The
analysis  has  followed  the  process  described  in  the  DEqMS  documentation,  where
MaxQuant output file “proteinGroups.txt” was used. 

Figure 5.9 MaxQuant amd DEqMS results. A total of 1966, 1911 and 1911 proteins have been quantified
for C2 vs C1, C3 vs C1 and C4 vs C1, respectively. 

Roughly the same results that were shown with MaxQuant and MSStats are obtained here.
The number of quantified proteins is lower here (an average of 1930 proteins here, while
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2353 were quantified with MSStats), and one non-spiked protein, P05749, appears for C4
vs C1, while it is certain that with very low values of P-value and fold change.

Table 5.3 MaxQuant and DEqMS results for the spiked proteins. Spiked proteins B and A are
not quantified for C3 vs C1 and C4 vs C1, respectively.

Two spiked proteins have not passed the threshold here: B in C3 vs C1 and A in C4 vs C1
comparisons. The case of B in C3 vs C1 will be discussed later in the chapter, while the
case of A in C4 vs C4 is different. Having this spike a very low concentration (presenting a
theoretical Log2 fold change of -5.02) and with only two peptides detected in the three
replicates of C4 (as will be seen later in Figure 5.15), this protein has been filtered by the
DEqMS  algorithm  for  this  specific  comparison,  due  to  a  low  number  of  confidently
identified peptides.

5.4.3 MaxQuant and DEP
The results for the MaxQuant and DEP combinations are shown in Figure 5.10 and Table
5.4. DEP data is filtered for proteins with missing values for at least one condition and then
normalized  using  a variance  stabilizing transformation  function.  Then,  data  is  imputed
following the “MinProb” approach.

Figure  5.10 MaxQuant  and  DEP  results.  A  total  of  2019  proteins  have  been  quantified  for  all
comparisons.

From the distributions shown in Figure 5.10 it is clear that a considerable amount of false
positive (non-spiked) proteins appear as significantly differential in the groups compared.
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Further optimization of the parameters employed and more stringent filters could be tried
to remove the non-spiked proteins appearing here. On the other hand, all spiked proteins
appear correctly quantified: experimental and theoretical fold changes are close enough. 

One  factor  that  makes  the  DEP  package  an  interesting  choice,  is  that  it  approaches
imputation (as will  be discussed later  in this  chapter)  in a very rigorous way,  offering
several algorithms to deal with missing values.   

Table 5.4 MaxQuant and DEP results for the spiked proteins. In all  cases, an estimated  
P-value and fold change is reported for the spiked proteins.

5.4.4 OpenMS and MSStats
Data obtained with OpenMS have been processed using MSStats here, and results shown
in Figure 5.11 and Table5.5. MSStats parameters correspond to the ones used with the
MaxQuant  data,  with  the  difference  that  a  MSStats  compatible  file  has  been  created
directly  by  the  OpenMS  workflow  and  no  importing  function  has  been  needed  here.
Peptides containing methionine have not been removed in this analysis.  

Figure  5.11 OpenMS  and  MSStats  results.  A  total  of  2557,  2558  and  2555  proteins  have  been
respectively quantified for C2 vs C1, C3 vs C1 and C4 vs C1 comparisons.

From Figure 5.11, several non-spiked proteins appear for the three comparisons. It is also
certain that all the spiked proteins are present as well (the ones that are expected to show
up by their concentration values). The high amount of proteins quantified (averaging more
that 2550 proteins per comparison) suggests that room is left for more restrictive filters to
be applied  on  the  quantified proteins.  For  example,  removal  of  methionine  containing
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peptides could produce an improvement of the results obtained here; the problem here is
that MSStats does not allow this option for OpenMS data.

The accuracy shown in the spiked proteins quantification (Table5.5) and the fact that the
OpenMS pipeline includes many steps that can be optimized makes of the results obtained
here a first approach to the full capabilities of this pipeline.

Table 5.5 OpenMS and MSStats results for the spiked proteins.

5.4.5 OpenMS and DEqMS
DEqMS  does  not  support,  in  a  straightforward  way,  importing  results  from  OpenMS.
Nevertheless, the results produced by OpenMS have been adapted to be imported by this
statistical package writing and executing a Perl script. The results obtained are shown in
Figure 5.12 and Table 5.6.

Figure  5.12 OpenMS  and  DEqMS  results.  2527,  2529  and  2521  proteins  have  been  respectively
quantified for C2 vs C1, C3 vs C1 and C4 vs C1 comparisons.

In the same way that happened with the OpenMS and MSStats combined analysis, several
non-spiked  proteins  appear  in  the  three  comparisons.  Also,  several  spiked  proteins
disappear from the volcano plots, although for example, spike A is just below the threshold
for C3 vs C1 (with an adjusted P-value of 5.9E-2 and a Log2Fold change of -3.4). The same
conclusions can be extracted here: OpenMS conforms a highly complex pipeline and much
room is left for improving parameters in the different steps that conform it.

As shown in Table 5.6,  all  spikes are reported, with values that  are quite close to the
theoretical fold changes shown in Table 5.1. 
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Table 5.6 OpenMS and DEqMS results obtained for the spiked proteins.

5.4.6 Proteome Discoverer and MSStats
The results obtained after processing Proteome Discoverer results with MSStats are shown
in Figure 5.13 and Table 5.7. The first thing that can be observed is the high amount of
quantified proteins: this is actually the combination that includes more proteins reported.
The parameters used by MSStats are very similar to those used with MaxQuant results, the
only difference being that the import feature in MSStats for Proteome Discoverer does not
include  the  removal  of  methionine  containing  peptides:  it  only  allows  the  removal  of
peptides containing oxidized methionine residues; this  option has not been used here,
because some tests showed that no improvement was obtained with it.

Figure 5.13 Proteome Discoverer and MSStats results. A total of 2854, 2852 and 2824 proteins proteins
have been quantified for C2 vs C1, C3 vs C1 and C4 vs C1, respectively. 

From Figure 5.13, it is clear that the results provided by Proteome Discoverer and MSStats
are close to perfect: all the spikes that could be reported for the three comparisons are
present in the volcano plots, and not a single non-spiked protein can be shown.

In Table 5.7, all spikes have been detected by this combination of software, even spikes
with very low concentration levels (like B in C3 vs C1 and A in C4 vs C1 comparisons) have
been properly quantified here.

Alongside  with  the  MaxQuant  and  MSStats  combination,  this  one  will  be  selected  for
further  discussion,  as  presenting  the,  a  priori,  most  consistent  results  among  all  the
different possibilities evaluated.
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Table 5.7 Proteome Discoverer and MSStats results obtained for the spiked proteins.

5.4.7 Proteome Discoverer and DEqMS 
The  results  obtained  with  the  last  of  the  software  combinations  evaluated,  Proteome
Discoverer and DEqMS, are shown in Figure 5.14 and Table 5.8. As was the case with
OpenMS and DEqMS, a Perl script has been used to make possible the import and analysis
of the data produced by Proteome Discoverer by DEqMS.  

Figure 5.14 Proteome Discoverer and DEqMS results. A total of 2718, 2715 and 2666 proteins were
quantified for C2 vs C1, C3 vs C1 and C4 vs C1, respectively. 

Inspecting the volcano plots in figure 5.14, one non-spiked protein appear in C2 vs C1 and
four in C4 vs C1. Also, similarly to what happened with MaxQuant and DEqMS, the B spike
is missing from C3 vs C1 and A and F spikes from C4 vs C1 (although F is dismissed by
presenting an adjusted P -value of 5.81E-2, just below the cutoff). 
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Table 5.8 Proteome Discoverer and DEqMS results obtained for the spiked proteins.

5.5 Discussion
From the results shown in the previous points, it is clear that the three pipelines tested
(Proteome Discoverer, MaxQuant and OpenMS combined with MSStats, DEqMS and DEP)
perform quite well in terms of proteins quantified and correct detection of the spikes (A to
F letters) in terms of up and down-regulation of proteins levels. Some of them have not
been detected in some combinations, but it is necessary to highlight here the challenging
nature of the test: some of the spiked proteins show ratios of 50 to 1 in the upper region,
while  others  present  1  to  30  in  the  lower  zone.  To  evaluate  the  performance  of  the
different pipelines, the parameters that will be prioritized will be the proper detection of
the spikes (using adjusted P-value<0.05 and log2 fold change above/below ±0.5 cutoffs)
and  the  absence  of  proteins  not  among  the  spiked  (identified  using  Uniprot  AC,  e.g.
P32354).  The more spiked proteins and the less not-spiked in the significant area, the
better.

Using this criteria, two pipelines out-perform the rest: MaxQuant and Proteome Discoverer
combined with MSStats.  It  is  important  to insist  that the different applications are not
being compared here: choosing a more optimal set of analysis parameters, would surely
have  improved  OpenMS,  DEqMS  and  DEP  results.  But  following  the  different
documentation available, the results obtained are those that have been shown. In this
way, in the next points, the results obtained with MaxQuant and Proteome Discoverer used
in  combination  with  MSStats  are  going  to  be discussed.  The number  of  total  proteins
quantified and the ones that have been obtained as being significantly different (using two
different thresholds) are shown in Table 5.9. From that table, the first thing to highlight is
that the number of proteins quantified by Proteome Discoverer is roughly a 20% higher
than  using  MaxQuant.  This  can  be  explained  by  more  restrictive  settings  used  by
MaxQuant (the removal of peptides containing Methionine with MaxQuant is one example).
From Figure 5.13 (Proteome Discoverer) and Figure 5.8 (MaxQuant), all spikes have been
correctly quantified (with the only exception of B for C3 vs C1 in MaxQuant, that will be
discussed below), and not “false positives” have been found with any of them: not proteins
appear as differential using the Corrected P-value<0.05 and a Log2 fold change of ±0.5
used in all cases.

123



Total Sign.1 Sign.2 Total Sign.1 Sign.2

C2 vs C1 2365 22 5 2854 24 7
C3 vs C1 2360 43 4 2852 34 9
C4 vs C1 2335 66 7 2824 66 9

MaxQuant 
MSStats

Proteome Discoverer 
MSStats

Table 5.9 Proteins quantified using MaxQuant and Proteome Discoverer combined with MSStats.
The  three  comparisons  are shown (C2,  C3 and C4  samples  compared  to  C1)  and the  total
number of proteins quantified is shown. Also, the number of proteins detected as differentially
significant is shown, using two thresholds: for Sign.1, a P-value<0.05 and a Log2 fold change of
±0.5, for Sign.2, a P-value<0.05 and a Log2 fold change of ±1. In both cases, the P-values are
not adjusted.   

Both Proteome Discoverer and MaxQuant perform similarly in terms of results (with more
relaxed  cutoffs,  as  will  be  seen  later,  MaxQuant  performs  better),  but  one  important
difference among them must be emphasized here: Proteome Discoverer is a software that
works only with results obtained using a Thermo Fisher Scientific instruments (like the one
used to analyze the samples used in this work) and therefore, can not be used with data
coming from other instrument manufacturers. Also, Proteome Discoverer is a proprietary,
not free of charge software, while MaxQuant is a freeware (5) application.

As an illustration of the spikes (letters A to F) detection by the search engines, in Figure
5.15, the performance of MaxQuant and MSStats is shown, using three volcano plots where
all non-spiked proteins have been removed and one table showing the molecular weight of
each spiked protein in KDaltons, with their concentration in each sample and the number
of peptides obtained for each sample. 

From Figure 5.15, the spike B under C3 vs C1 appears with a theoretical Log2 Fold Change
value of -4.78, corresponding to 2 fmols of protein B in sample C3 and 55 fmols of protein
B in sample C1. The value of 2 fmols in the volume used for injection, although can be
close to the detection limit of the instrument used, has proved to be detectable by using
OpenMS and Proteome Discoverer, both providing values for B in this comparison. The
cutoffs used with MaxQuant, apparently more severe for this protein than with the other
two  software  tools,  have  eliminated  this  protein  in  the  MaxQuant  results  from  C2
replicates: the protein is simply not there. That can be explained by the low scores that
peptides at low concentrations are given: in this case, all peptides obtained for protein B at
C3 sample have been removed by MaxQuant (for C1, C2 and C4 samples and average of
11, 5 and 10 unique peptides have been found, respectively, as shown in Figure 5.15).

From observing the other spiked proteins in Table 5.15, the number of peptides detected
for quantification, can be correlated with two effects:

• Any given peptide, at a very low concentration in some sample, will be detected
with lower scores by the fact that its associated mass spectrum will be of lower
quality (23). This fact makes that for a less concentrated protein, fewer peptides will
be identified with enough reliability and therefore, will be lost for quantification.

• Secondly, the length of the protein studied will directly produce a higher amount of
different  tryptic  peptides.  The  number  of  those  peptides,  combined  with  the
concentration of  the protein  in  a given sample,  will  generate a higher or  lower
amount of peptide available for quantification.
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MW Spikes (fmol) Sample C1 Sample C2 Sample C3 Sample C4
KDa C1 C2 C3 C4 1A 1B 1C C2A C2B C2C C3A C3B C3C C4A C4B C4C

A 45 65 55 15 2 9 7 5 8 6 7 1 3 2 1 0 1
B 17 55 15 2 65 12 10 11 4 6 6 0 0 0 10 11 10
C 97 15 2 65 55 33 36 34 2 3 1 62 66 59 59 61 57
D 116 2 65 55 15 8 10 10 57 53 50 53 51 49 28 30 30
E 66 11 0.6 10 500 27 25 26 2 2 8 20 21 21 85 85 84
F 29 10 500 11 0.6 5 5 4 25 22 21 5 5 5 2 2 1

Figure 5.15 Above,  spiked proteins  (letters  A  to  F)  shown as  a  significantly  different  in  the three
conditions under study (C2 vs C1, C3 vs C1 and C4 vs C1) using three volcano plots where all non-spiked
proteins have been removed. Below, a table showing the molecular weight of each spiked protein in
KDaltons,  their  concentration  in  each  sample  (in  femto  mols)  and  the  number  of  unique-mapping
peptides obtained for each sample.

From the results obtained using MaxQuant and MSStats one fact can be underlined: using
more relaxed cutoffs with MaxQuant would surely have allowed the quantification of  B
spike under C3 vs C1 comparison, but at the same time, would have surely generated a
higher amount of proteins false quantified as significantly different between samples. 

5.5.1 Cutoffs for differential expression 
The cutoff used in the previous sections has been, in all cases, an adjusted P-value of 0.05
and a Log2 fold change of ±0.5 (amounting to a positive ratio of 1.41 and a negative of
0.71). That approach, used in the original publication where the data analyzed here was
made publicly available (1), has been questioned in the literature as being “too restrictive”
or simply “blunt”  (24). The use of corrected P-values as threshold, a practice frequently
used in  genomics  (25),  has  demonstrated to  be  too restrictive  in  proteomics  ,  mainly
because  the  lack  of  power  in  proteomics  measurements  caused  by  a  low  number  of
replicates combined with ratio compression; ratio compression refers to lower fold changes
obtained  in  proteomics  with  respect  to  the  ones  obtained  in  transcriptomics.  Other
alternatives have been suggested instead of the use of adjusted p-values; among them,
the control  of  false positives at the peptide level,  something that has been carried on
along this study.

Having said this, at the end, some threshold has to be chosen, in order to identify proteins
that are expressed in different ways among different phenotypes. It is precisely the data
obtained  in  this  work  the  kind  of  material  that  can  effectively  be  used  to  delimit  a
threshold that is not arbitrary: evaluating the number of detected spikes and the number
of non-spiked proteins, using a given threshold, provides a clear picture of what is going to
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be obtained when complex biological material is under study. Analyzing several times the
same dilution to be studied (technical replicates), the precision of the proteomics analysis
can be assessed and also, a threshold to be used with real comparisons can be obtained.  

Some considerations must be observed, though: the cutoff obtained, after delimiting the
non-spiked  proteins  into  optimal  intervals  of  P-value  and  fold  change,  should  not  be
extrapolated to other experimental set-ups (concentration ranges used, type of sample,
chromatography column, solvents,…) or instrument used (peptide ionization and detection
will change drastically using different instruments).

In Figure 5.16, a new cutoff has been applied on the proteins quantified by MaxQuant and
Proteome Discoverer in combination with MSStats: a P-value (not corrected) of 0.05 and a
fold change of ±1. As the six volcano plots demonstrate (the three conditions compared by
the two pipelines), these cutoffs are quite effective in separating the non-spiked proteins
from the spiked ones. Only three proteins are incorrectly classified as differential using
MaxQuant while 12 are using Proteome Discoverer. It is important to appreciate that the
fold change has been increased from ±0.5 to ±1: using a ±0.5 fold change cutoff with a
non-corrected  P-value  would  have  generated  many  proteins  wrongly  characterized  as
changing in a significant way. 

While the use of the more strict “adjusted P-value” threshold is very useful for highlighting
proteins that have been quantified with stronger confidence, it is clear that many proteins
that were actually differentially expressed will be lost by using this filter.

Finally,  using this new threshold is  evident that MaxQuant performs better in terms of
detecting spiked proteins while leaving out background proteins. One of the reasons for
this is that more strict cutoffs have been used with the default configuration employed by
MaxQuant. On the other hand, it is important to note that about 20% more proteins have
been quantified by using Proteome Discoverer: this comparison is not completely fair.
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Figure 5.16 Volcano plots of the proteins quantified using MaxQuant (above) and Proteome Discoverer
(below)  for  the  three  conditions  studied  (C2 vs  C1,  C3  vs  C1 and  C4  vs  C1)  using a  P-value  (not
corrected) of 0.05 and a Log2 fold change of ±1. The range of the volcano plots have been zoomed to
better appreciate the protein distributions, leaving most of the spiked proteins outside the inspected
range. In red, proteins passing both thresholds, in green proteins passing only the fold change threshold,
in blue proteins passing the P-value threshold and in black proteins passing none. 

5.5.2 Quantification accuracy
The differences between the real values of the spiked proteins (the ratios obtained from
known  concentrations)  and  the  experimental  ratios  obtained  (using  MaxQuant  and
Proteome discoverer) are evaluated here. The results are shown in Table 5.10. In all cases,
the  true  nature  of  the  differential  expression  has  been  detected:  over  and  under
expression are perfectly characterized in all cases. Only in the case of the detection of the
spiked protein B for C3 vs C1 using MaxQuant, an issue has appeared. It is an interesting
fact that the same ratio, generated by Proteome Discoverer, is four times lower than the
true ratio (0.01 in front of 0.04), pointing to a difficult detection of the peptides from B into
the C3 sample.

127



Theoretical ratios MaxQuant and MSStats ProtDiscov and MSStats
C2 vs C1 C3 vs C1 C4 vs C1 C2 vs C1 C3 vs C1 C4 vs C1 C2 vs C1 C3 vs C1 C4 vs C1

A 0.85 0.23 0.03 0.69 0.14 0.02 0.76 0.15 0.02
B 0.27 0.04 1.18 0.13 - 0.84 0.14 0.01 0.91
C 0.13 4.33 3.67 0.08 5.50 5.10 0.12 5.70 4.79
D 32.50 27.50 7.50 75.58 55.33 8.11 68.59 51.27 7.46
E 0.05 0.91 45.45 0.08 0.66 50.56 0.10 0.66 55.33
F 50.00 1.10 0.06 62.68 0.77 0.11 79.89 0.65 0.07

0.869 0.998 0.999 0.974 0.998 0.999
R² R²

Table 5.10 Ratios for the three comparisons (C2 vs C1, C3 vs C1 and C4 vs C1) of the six spiked proteins
(A  to  F)  are  shown  here  in  three  tables:  first,  the  theoretical  values  calculated  from  the  known
concentrations;  then,  the values obtained using MaxQuant and Proteome Discoverer.  Three squared
correlation coefficients (R2,  one for  each comparison) are shown at the bottom for  each of  the two
software pipelines.  

As the correlation coefficients shown in Table 5.10 show, the two software pipelines have
performed  quite  well,  although  some  serious  bias  can  be  observed  for  the  more
concentrated proteins in both cases. The accuracy of the measurements, though, is far
from ideal: accuracy found in the relative quantifications performed here is over 20% in
most cases. Said this, the detection of the overall tendencies and an approximation to the
true intensities of changes is achieved in a remarkable way by the two software pipelines
used here. 

5.5.3 Censored values and imputation
Censored values,  in  statistics,  correspond to  those values that  are  unknown for  being
above of a given point (right censoring), in a given interval (interval censoring) or below
some point (left censoring) (26). Imputation, is defined as the mechanism that deals with
censored values assigning numerical magnitudes to them. In proteomics, two scenarios
have been described (27):

• Missing Completely At Random (MCAR): the propagation of minor errors and random
effects  (peptides out  of  the retention time window in  quantitation or  below the
cutoffs in the identification steps) generate a non-quantified peptide. This is a sub-
type of the Missing At Random (MAR) case, and both can be treated equally in the
proteomics  landscape  (28).  Typically  in  this  scenario,  for  a  given  protein,  some
peptides are measured and others are not in one condition, while different peptides
can then be measured in a different condition. Imputation here is required in order
to generate more accurate results for differential expression. 

• Missing  Not  at  Random  (MNAR):  missing  values  respond  to  a  clear  cause.  In
proteomics, MNAR values are obtained because of a left censoring process: if all
peptides from a given protein are below the detection level, this protein will not be
quantified for a given phenotype or condition under study. For other conditions, the
concentrations can be well above the quantification threshold and therefore, some
way to deal with this scenario must be found if ratios (or fold changes) are going
calculated.

The  two  types  of  missing  values  (MCAR and  MNAR)  are  going  to  be  discussed  using
examples that have appeared in the analysis performed throughout this chapter.
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5.5.3.1 Example 1: dealing with MCAR values
In  order  to  detect  some  case  where  MCAR  values  are  important  in  the  differential
expression under study, the MaxQuant with MSStats pipeline has been run again twice: in
one case using imputation and in the other, not using it. The results obtained are shown in
Figure  5.17:  when not  using imputation at  all,  several  proteins  appear  as  diferentially
expressed in C3 vs C1 comparison (P38850) and C4 vs C1 comparison (P46675, P45000
and P38850). As those proteins are expected to have the same concentrations in the four
groups, it is clear that some error has been introduced when not using imputation.

Figure 5.17 Results obtained using MaxQuant and MSStats pipeline not using imputation (above) and
using “Accelerated failure model” imputation (below): several proteins appear as deferentially expressed
in the C3 vs C1 comparison (P38850) and in the C4 vs C1 comparison (P46675, P45000 and P38850) in
the “NOT Imputed” model. Also, F protein spike disappears from C4 vs C1 if imputation is not used. 

To illustrate why those proteins have been wrongly labeled as differentially expressed, the
protein P38850 for the  C3 vs C1 comparison has been inspected. In Table 5.11, the results
obtained for  this  protein  with  the MaxQuant-MSStats  pipeline,  both using or  not  using
imputation are shown: without imputation, protein P38850 is not detected in C2 vs C1, but
obtains a significant difference (adjusted P-values below 0.05) and intense fold changes
(four times less concentrated) with C3 vs C1 and C4 vs C1 comparisons. That means that
protein P38850 is completely missing from C2 with or without imputation (resembling a
case of censored value of the MNAR type, where this protein would be below the detection
limit) and detected four times less concentrated in C3 and C4 with respect to C1. 
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Protein P38850 Not Imputed

Comparison log2FC SE adj.pvalue issue

C2vsC1 -Inf NA 0.00E+00 OCM 75.00% 0.00%

C3vsC1 -2.023 0.053 2.30E-02 none 58.33% 0.00%

C4vsC1 -2.044 0.067 2.57E-02 none 66.67% 0.00%

Protein P38850 Imputed

Comparison log2FC SE adj.pvalue issue

C2vsC1 -Inf NA 0.00E+00 OCM 75.00% 25.00%

C3vsC1 0.024 0.042 9.42E-01 none 58.33% 41.67%

C4vsC1 0.007 0.053 9.62E-01 none 66.67% 33.33%

Missing 
Percentage

Imputation 
Percentage

Missing 
Percentage

Imputation 
Percentage

Table 5.11 Values obtained from the differential analysis with MaxQuant and MSStats
for protein P38850 in the three comparisons (C2 vs C1, C3 vs C1 and C4 vs C1) are
shown, not using imputation (above) and using “Accelerated failure model” imputation
(below). Column SE refers to “Standard error” and column “issue” highlights if an issue
has appeared in the quantification: “none” or “One Condition Missing (OCM)”.

Further inspecting this protein, only two peptides are used in P38850 quantification (Table
5.12): each replicate makes use of only those two peptides and, for some samples, only
two (in C3) and even one (in C4) peptides are used for quantification. The fact that in
sample C1 only one peptide is found (DCQVYISK) and in samples C3 and C4 the other one
is found (CINLVNDIPGGVDTIGSVLK),  makes this  protein prone to quantification errors  if
imputation is  not  used at  all.  It  is  important  to remark here that  the intensity values
obtained for these two peptides are just below the median (about 1E+07) and well above
of the minimum intensities (about 1.5E+06) obtained from all the peptides  analyzed in
the study: that means that, being low, the concentration of these peptides is well above
the limit of detection in the samples, placing these censored values inside the Missing
Completely At Random category.

Sample Replicate Peptide Intensity

C1

1 CINLVNDIPGGVDTIGSVLK_2 NA

1 DCQVYISK_2 1.08E+07

2 CINLVNDIPGGVDTIGSVLK_2 NA

2 DCQVYISK_2 1.15E+07

3 CINLVNDIPGGVDTIGSVLK_2 NA

3 DCQVYISK_2 9.84E+06

C2

1 CINLVNDIPGGVDTIGSVLK_2 NA

1 DCQVYISK_2 NA

2 CINLVNDIPGGVDTIGSVLK_2 NA

2 DCQVYISK_2 NA

3 CINLVNDIPGGVDTIGSVLK_2 NA

3 DCQVYISK_2 NA

C3

1 CINLVNDIPGGVDTIGSVLK_2 NA

1 DCQVYISK_2 NA

2 CINLVNDIPGGVDTIGSVLK_2 3.00E+06

2 DCQVYISK_2 NA

3 CINLVNDIPGGVDTIGSVLK_2 2.70E+06

3 DCQVYISK_2 NA

C4

1 CINLVNDIPGGVDTIGSVLK_2 NA

1 DCQVYISK_2 NA

2 CINLVNDIPGGVDTIGSVLK_2 NA

2 DCQVYISK_2 NA

3 CINLVNDIPGGVDTIGSVLK_2 2.59E+06

3 DCQVYISK_2 NA

Table 5.12 Peptide intensities of the two peptides quantified for protein P38850 (NA
values for not quantified peptides). Only two different peptides have been quantified
(CINLVNDIPGGVDTIGSVLK and DCQVYISK, both with charge 2), none for sample C2.

Fold change and probability values obtained for P38850 using imputation (Table 5.11), with
Accelerated Failure Time model (29,30), reflect more accurately the true concentrations of
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the protein and, more importantly, prevent the onset of artifacts like the one described
here.

5.5.3.2 Example 2: dealing with MNAR values
When all peptides for a given protein are under the limit of detection, not a single peptide
will  be  associated  to  the  protein  and  therefore,  the  corresponding  ratio  will  not  be
calculated and reported by the software in use. It is important to note that all peptides
associated to a certain protein for a given experimental condition (e.g. phenotype) must
act in a coordinated way: if some peptides or features show concentrations far from the
detection limit, this will be a case of MCAR censoring, not MNAR.  

The value obtained for the spike B under the C3 vs C1 comparison and using MaxQuant in
combination  with  MSStats  and  DEP,  will  allow  the  inspection  of  the  two  different
approaches  used  when  a  Missing  Not  at  Random  value  is  found  in  a  proteomics
experiment:

• The approach followed by the software DEP when imputation is used (Figure 5.10) is
assigning a value close to 0 (using some minimal value across features), and very
similar (or equal) between replicates. That will generate a set of proteins where a
maximum P-value is reached (in Figure 5.10, that corresponds to a corrected P-value
of 1.09E-13 for C3 vs C1) and for B, an extreme Log2 fold change of -7.190. 

• The approach followed by MSStats (Figure 5.7), even when using imputation (left
censoring assumed) is not providing any results associated to this protein for the C3
vs C1.

Not reporting a given protein, like MSStats does, is quite problematic: if  one protein is
perfectly quantified in a given experimental condition and disappears in another condition,
this can be the result of some important biological process, that will go unaccounted for if
not  reported in  some way.  On the  other hand,  the imputation approach used by DEP
generates  several  proteins  that  are  simply  artifacts,  not  being  spiked  proteins  and
detected as deferentially expressed.

In the case exposed here, it is clear that the B spike is present in both samples, because it
is correctly detected by, for example, Proteome Discoverer. The only reason that makes
spike B going undetected in C3 vs C1 using MaxQuant is that none of the peptides have
passed the cutoffs established by the software.

Using the MSStats imputation approach, given the quality of the results provided, seems
the more sensible thing to do; but this will mean that, in some cases, some of the proteins
experimenting dramatic under-expression in a biological context can go unnoticed. 

5.5.3.3 Coexistence of MCAR and MNAR values: a global strategy
One of the causes that makes imputation a serious issue in label free proteomics is the
fact that both MCAR and MNAR censored values coexist (31). Several mathematical tools
are used to deal with both kinds of missing values but, unfortunately, the are only well
suited to work with one kind at a time. 

The “accelerated failure time” method used by MSStats in this work, assumes that all
missing values are produced by left  censoring  (32).  In Figure 5.13,  the effect  and the
extent of imputation among the values obtained from the protein spikes under C2 vs C1 is
shown. 
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C2vsC1

A -0.24 -0.48 9.98E-01 2.38% -0.53 9.94E-01 2.38% 2.38%

B -1.87 -2.78 9.37E-04 37.96% -2.91 4.03E-04 37.96% 37.96%

C -2.91 -3.14 6.04E-08 77.59% -3.69 1.05E-05 77.59% 77.59%

D 5.02 6.16 1.41E-07 47.98% 6.24 9.88E-10 47.98% 47.98%

E -4.20 -3.43 4.28E-05 86.07% -3.65 2.85E-04 86.07% 86.07%

F 5.64 4.19 9.29E-03 40.38% 5.97 1.31E-06 40.38% 40.38%

True 
ratios

WITHOUT imputation 
C2 vs C1

WITH imputation 
C2 vs C1

Spike-
in

log2
FC

adj 
Pvalue

Missing 
%

log2
FC

adj 
Pvalue

Missing 
%

Imputation 
%

Table 5.13 Log2 Fold changes and corrected P-values obtained using MaxQuant and MSStats
without (left) and with (right) imputation. The percentage of missing values (peptides) for
every protein into the three possible replicates of each sample is provided under Missing%.
When imputation is used, all missing values are imputed.

From Table 5.13, several observations can be made:

• Imputation here, does not greatly affect the fold changes obtained with respect to
the ones obtained without imputation: in some cases, the values obtained resemble
more to the “true ratios” and in some cases, less.

• For some proteins, imputation values as high as the 86% are achieved. That does
not mean that 86% of peptides are undetected: one peptide can be detected many
times  in  the  case  of  an  abundant  protein,  in  several  retention  times  and  with
different charge states: this percentage refers to “features”, not peptides. Because
three  replicates  of  the  same  sample  are  used  in  this  quantification,  it  is  very
common that for one sample a peptide is detected in a given retention time for a
replicate and not detected in the other two. That said, for the proteins evaluated in
the table, quite good levels of accuracy have been achieved even with the high
levels of missing values obtained. In Figure 5.15, where the number of peptides for
each condition is shown, one possible explanation for this effect emerges: in the
case of  protein  E,  where the highest  amount of  missing values has been found
(86.07%), more that 25 unique peptides are found in replicates from sample C1,
while only 2 unique peptides are found for two of the replicates from sample C2: in
every case, when an unmatched peptide is found among samples, a missing value
will appear.

• The number of total and unique peptides used for quantification for every protein
are both important variables that can be used to assess the confidence for  the
concentration  levels  given  for  a  certain  protein  under  one  comparison.  This  is
possible when using MSStats, but not in a straightforward way.

At the moment of writing this work, a complete solution for the treatment of censored
values in label free proteomics is not yet available (27,33–35). One possible strategy, after
all that has been discussed in this chapter, would follow the next steps:

• MSStats, with “Accelerated failure model” imputation will be used as the primary
resource  for  obtaining  quantitation  values.  Using  P-value=0.05  and  Log2  fold
change ±1 as cutoffs.

• A second analysis, using DEP with a MNAR imputation approach (e.g. “MinProb”)
and highly restrictive cutoffs (Adjusted P-value=0.05, Log2 fold change=±1) would
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allow to highlight proteins that could have been removed from the report obtained
in the previous point.

• Inspection of the peptides associated to the quantified proteins, both in terms of
number and identification quality, will provide basis for inclusion or rejection of a
given protein from the final quantified set.

• Additionally,  several  imputation  approaches  can  be  tried  with  DEP,  in  order  to
retrieve more information about the way that missing data behaves into the data
set under study.

5.6 Conclusions
The reanalysis of the iPRG2015 data set has allowed the adoption of a set of criteria that
can be used as a guideline to perform label free quantitative analyses, defining cutoffs and
providing certain levels of confidence on the results obtained. It is certain that the values
obtained here can only be consistently applied if the same experimental setup is used: the
complexity  of  the  samples,  the  instrumentation  employed  and  experimental  protocols
followed should resemble the ones used to generate the data used here if the same values
are going to be employed. Nevertheless, the preparation of samples resembling the ones
that are used by the iprg2015 study and their analysis with the instrumentation employed
by a proteomics facility, should be something completely feasible, both in terms of work
and economic burden.

The use of MaxQuant and MSStats as the primary software pipeline seems clear from the
results obtained. Ease of use in an automated way (MaxQuant and MSStats can easily be
used in conjunction with Slurm in a Linux environment), and the consistency of the results
obtained make of this an ideal combination for a proteomics facility to use. Other software
packages and pipelines can be used as well in conjunction of the aforementioned. 

It is also clear that the use of MaxQuant and MSStats provides a robust quantification
pipeline,  offering an effective detection of  proteins  differentially  expressed in samples.
However, the accuracy on the ratios obtained with the different software packages used,
particularly with very low or very high ratios, is far from ideal.

The use of a P-value of 0.05 and Log2 fold changes ±1 as cutoff values, with the MaxQuant
and MSStats combination, provides a reliable filtering system where almost all proteins
labeled as significantly detected can be relied on.

Finally,  as  a  strategy  for  dealing  with  imputation  of  missing  values  in  label  free
quantitation, the use of MSStats and an “Accelerated failure model”, although far from
being  perfect,  has  proved  to  be  the  most  accurate.  Additionally,  the  use  of  different
imputation  strategies  with  DEP  may  help  to  detect  protein  ratios  that  would  go
unaccounted for if only MSStats is employed.
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Appendix 1: Chapter4, Phenotypes inspected
Dividing subjects into four classes
The 20 subjects analyzed using proteomics have been extracted from a bigger cohort (162 individuals). The criteria for generating
the four groups, HT-HO-PT-PO is their diagnose of PCOS (P from PCOS, H from Healthy) and their Body mass index (O
from obese, with BMI higher than 30, and T from thin, with BMI lower than 30). Here, using clinical variables collected for
the 20 patients and the bigger cohort, the four groups will be studied using Principal components analysis (PCA) and Logistic
regression.

Some of the procedures followed in this analysis have been inspired from the “Handbook of Biological Statistics” (John McDon-
ald) and its “R Companion” (Salvatore S. Mangiafico).

First, an exploration of the four groups divided according to their BMI is performed. A boxplot for each group is built and
each subject represented as a black dot.

clinical.data.df<-read.csv(file = "20patients.clinical.csv",header = TRUE)
bmi.boxplot <- ggplot(clinical.data.df, aes(x = Phen, y = BMI, fill=Phen)) +

geom_boxplot() + theme(legend.position = "none")
bmi.boxplot <- bmi.boxplot + geom_jitter()
bmi.boxplot
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Principal components analysis
A PCA is performed to assess the grouping of patients using the clinical variables. Twenty-four clinical variables are considered:
hirsutism, menarche, FM, homaindex, HDL, triglycerides, glucose, cholesterol, LDL, insulin, testosterone, SDHA, hidroxi, LH,
FSH, estradiol, thyrotropin, ast, Alt, LH.FSF, prolactina, cortisol, freeT4 and androstenedione. The PCA summary shows that
80% of variability is reached at PC6.

numeric.data<-as.data.frame(clinical.data.df[c(10:33)])
rownames(numeric.data)<-clinical.data.df$Patient
patients.clinical.data.pr <- prcomp(numeric.data, center = TRUE, scale = TRUE)
summary(patients.clinical.data.pr)

Two graphs below:

• the first 7 PCs are over the eigenvlaue=1, remaining the higher (until 12 in this graph) below. That means that they do
not further add significative information
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• a graphical display of the fact that 82% of variability is reached at PC6

plot(patients.clinical.data.pr, type = "l", npcs = 12, main = "First 12 PCs")
abline(h = 1, col="red", lty=5)
legend("topright", legend=c("Eigenvalue = 1"), col=c("red"), lty=5, cex=0.6)

cumpro <- cumsum(patients.clinical.data.pr$sdev^2 / sum(patients.clinical.data.pr$sdev^2))
plot(cumpro[0:15], xlab = "PC #", ylab = "Amount explained variance [0-1]", main = "Cumulative variance")
abline(v = 6, col="blue", lty=5)
abline(h = 0.8243, col="blue", lty=5)
legend("bottomright", legend=c("PC6 equals 82% variance"),col=c("blue"), lty=5, cex=0.6)
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PC6 equals 82% variance

A PCA using the clinical data of the samples used in the proteomics study (20 subjects) is done. As displayed, the four groups,
with the 24 variables in use, highly overlap, specially the PO group (green). HT is the only group that appears separated from
the other three.

fviz_pca_biplot(patients.clinical.data.pr, pointshape = 21,
fill.ind = clinical.data.df$Phen, col.ind = clinical.data.df$Phen, col.var = "grey",
palette = "Spectral", addEllipses = TRUE, pointsize = 2, ellipse.level=0.55,
repel = TRUE,legend.title = "Diagnosis") +

ggtitle("PCOS and obesity") + theme(plot.title = element_text(hjust = 0.5))
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Logistic regression
In order to reduce the number of variables used in the previous PCA plot (twenty-four), a binary logistic regression is going
to be used here. The aim is finding a sub-set of variables that improve the grouping of subjects according to their phenotype.
For this, five step-wise logistic regressions are performed, using the “step” function, that selects models to minimize AIC. No
correlation study is performed with the variables used in the models. Each logistic regression takes into account one of the five
different scenarios:

• Logistic reg: HT. HT is considered one group (0), and HO ,PT and PO a different single group (1)
• Logistic reg: HO. HO is considered one group (0), and HT ,PT and PO a different single group (1)
• Logistic reg: PT. PT is considered one group (0), and HT ,HO and PO a different single group (1)
• Logistic reg: PO. PO is considered one group (0), and HT ,PT and HO a different single group (1)
• Logistic reg: H vs D. Healthy subjects (HT and HO) are considered one group (0), and diseased (PT and PO) another

group (1)

For each of the logistic regressions, a set of variables will be obtained as significants, and as suggested by the function “step”,
will be directly used (without checking correlations or biological significance) to build a definitive model. This model will be
checked using ANOVA and a ROC curve with the predicted vs. real results.

The complete list of clinical data over 162 subjects is used here. The subjects not included in the proteomic study are ging to
be used as TRAIN data (142), and the 20 used in proteomics analysis, will be the TEST data.

complete.clinical.data <- read.csv("162patients.clinical.csv", header = T)
complete.clinical.data.df<-complete.clinical.data[,c(5:33)]
complete.clinical.data.df$Phen <-complete.clinical.data$Phen
complete.clinical.data.df$Patient <-complete.clinical.data$Patient

Binary Logistic regression: HT

Obtaining the variables that better differentiate between HT and the rest of the groups is the purpose of the logistic regression
and the subsequent ANOVA analysis. Clinical data from the big cohort (162 subjects) is used. The phenotypic group is changed
from HT to 0, and the other three (HO, PT and PO) to 1. Once the data is organized, a null (empty model, the starting point
of the step function) and full (using all variables) models are obtained. Then, the step function minimizes the AIC (Akaike
information criterion) combining the different variables fed to the algorithm. A final model is produced as a linear combination
of a subset of the original variables.

data.used.HT<-as.matrix(complete.clinical.data.df)
data.used.HT[data.used.HT=="HT"]<-0
data.used.HT[data.used.HT=="PT"]<-1
data.used.HT[data.used.HT=="PO"]<-1
data.used.HT[data.used.HT=="HO"]<-1
data.used.HT<-as.data.frame(data.used.HT)
rownames(data.used.HT)<-NULL
data.used.HT[] <- lapply(data.used.HT, function(x) {

if(is.factor(x)) as.numeric(as.character(x)) else x
})
train.HT <- data.used.HT[!data.used.HT$Patient %in% clinical.data.df$Patient,]
test.HT <- data.used.HT[data.used.HT$Patient %in% clinical.data.df$Patient,]
test.HT.list.patients<-test.HT$Patient
train.HT<-subset(train.HT, select=-c(Patient))
test.HT<-subset(test.HT, select=-c(Patient))

model.null.HT = glm(Phen ~ 1, data=train.HT, family = binomial(link="logit"))
model.full.HT = glm(Phen ~ ., data=train.HT, family = binomial(link="logit")

)
step(model.null.HT, scope = list(upper=model.full.HT), direction="both", test="Chisq", data=train.HT)

We build the final model using the significant variables. The model in this case is a linear combination of 10 variables (with a
positive or negative sign) and an intercept. In this case, ann increase of waist, testosterone, weight, estradiol and hirsutism will
favor belonging to any or some of the HO, PO or PT groups, while an incrrease of FM, height, freeT$, LDL and hidroxi will
favor belonging to the HT group.

model.final.HT = glm(formula = Phen ~ waist + FM + testosterone + weight + height +
freeT4 + LDL + hidroxi + estradiol + hirsutism, family = binomial(link = "logit"), data = train.HT)

model.final.HT
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Table 1: HT ANOVA
Var. Pr(>Chi)
waist 3.67e-14 ***
FM 4.46e-05 ***
testosterone 3.85e-03 **
weight 6.05e-03 **
height 3.58e-03 **
freeT4 2.73e-02 *
LDL 5.62e-04 ***
hidroxi 3.44e-02 *
estradiol 1.70e-04 ***
hirsutism 2.48e-05 ***

##
## Call: glm(formula = Phen ~ waist + FM + testosterone + weight + height +
## freeT4 + LDL + hidroxi + estradiol + hirsutism, family = binomial(link = "logit"),
## data = train.HT)
##
## Coefficients:
## (Intercept) waist FM testosterone weight
## 4141.087 17.004 -778.323 2972.392 32.472
## height freeT4 LDL hidroxi estradiol
## -4260.005 -61.352 -3.136 -750.536 15.582
## hirsutism
## 17.578
##
## Degrees of Freedom: 141 Total (i.e. Null); 131 Residual
## Null Deviance: 151.5
## Residual Deviance: 1.091e-06 AIC: 22

An ANOVA test is performed with the variables selected for the final model for HT. Variables that more accurately contribute
to the model will have lower Probability. Here, waist, FM, LDL, estradiol and hirsutism are the best ones, with a P-value lower
than 0.001 (three stars).

best1<-names(model.final.HT$coefficients)[-1]
best2<-as.numeric(anova(model.final.HT, test="Chisq")$`Pr(>Chi)`[-1])
best.coeff.HT<-data.frame(best1,best2)
best.coeff.HT<-best.coeff.HT[best.coeff.HT$best2<0.001,]
colnames(best.coeff.HT)<-c("Variable","Prob.")

anova.HT<-anova(model.final.HT, test="Chisq")
stars.HT <-with (anova.HT,ifelse(`Pr(>Chi)`< 0.001,"***",

ifelse(`Pr(>Chi)`< 0.01,"**",ifelse(`Pr(>Chi)`< 0.05,"*",""))))
anova.HT.df<-data.frame(rownames(anova.HT),

as.character(formatC(anova.HT[[5]],format = "e", digits = 2)),stars.HT)
colnames(anova.HT.df)<-c("Var.","Pr(>Chi)","")
rownames(anova.HT.df)<-NULL
anova.HT.df<-anova.HT.df[-1,]
kable(anova.HT.df,row.names = FALSE,digits = 3,label = "",caption = "HT ANOVA") %>%

kable_styling(full_width = F,
bootstrap_options = c("striped", "condensed"), font_size = 9)

A ROC curve is drawn comparing the predicted and real values. In this case, a 97% of the aurea under the curve is obtained.
Inspecting the table test.HT, one prediction mistake is found: Patient 1320, actually PT, is classified as HT.

fitted.results.HT <- predict(model.final.HT,test.HT,type="response")
test.HT$predy<-predict(model.final.HT,test.HT,type="response")
test.HT$patient<-test.HT.list.patients
roc<-roc(test.HT$Phen, as.numeric(test.HT$predy), percent = TRUE, print.auc=TRUE, print.auc.col = "#1c61b6",

auc.polygon = TRUE, max.auc.polygon = TRUE, main = "HT", plot=TRUE)
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Table 2: HO ANOVA
Var. Pr(>Chi)
hip 1.49e-14 ***
FM 3.31e-11 ***
hirsutism 1.46e-03 **
weight 2.44e-02 *
insulin 7.44e-03 **
height 3.35e-02 *
menarche 7.18e-02
estradiol 8.06e-02
glucose 5.21e-02
HDL 8.85e-02
waist.hip 6.28e-02
waist 8.22e-02
LH 1.23e-01
homaindex 3.79e-02 *
androstenedione 1.86e-06 ***

Table 3: PT ANOVA
Var. Pr(>Chi)
weight 7.45e-10 ***
FM 1.32e-07 ***
thyrotropin 1.21e-03 **
HDL 6.50e-03 **
hip 1.38e-02 *
LH.FSF 6.81e-02
prolactina 3.52e-02 *
hirsutism 3.33e-02 *
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Binary Logistic regression: HO, PT, PO and H vs PCOS

Same process than in “Binary Logistic regression: HT” is performed here. For HO, PO and H vs PCOS, a 100% AUC is
obtained in the ROC curves. Only for PT , a 91% of AUC is obtained. Inspecting test.PT we realize that two patients are
predicted as inter-class: PO-1315 (0.3) PT-1320 (0.5), and one is wrongly classified: PT-1307, classified as no-PT when she
actually is PT. Variables and P-value for these comparisons are shown at “Table 2: HO ANOVA”, “Table 3: PT ANOVA”,
“Table 4: PO ANOVA” and “Table 5: H vs PCOS ANOVA”.

PCA using variables with P<0.001 for each comparison
A new PCA is performed using only the variables showing a Pval<0.001 at the ANOVA test on any of the five models obtained.
The list of variables is composed by: hip, FM, androstenedione, waist, LDL, estradiol, hirsutism, waist.hip, height, weight and
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Table 4: PO ANOVA
Var. Pr(>Chi)
waist.hip 2.46e-09 ***
FM 2.67e-07 ***
hip 6.22e-04 ***
hirsutism 4.68e-05 ***
height 8.95e-04 ***
LH.FSF 3.04e-02 *
freeT4 3.54e-02 *
thyrotropin 5.51e-02
ast 1.08e-01
cholesterol 1.11e-01
glucose 1.31e-01

Table 5: H vs PCOS ANOVA
Var. Pr(>Chi)
FM 8.41e-21 ***
hirsutism 3.98e-07 ***
LH 3.45e-05 ***
insulin 1.28e-02 *
height 2.68e-02 *
menarche 2.16e-02 *
homaindex 5.50e-02
estradiol 1.56e-01

LH. Interestingly, if one of “hip”, “waist” or “waist.hip” (a priori redundant) is removed, the PCS significantly worsens. So, the
eleven variables remain.

patients.clinical.data.filtered<-clinical.data.df
#three.stars<-c(three.stars.HO,three.stars.HT,three.stars.PO,three.stars.PT)
three.stars<-c(as.character(best.coeff.HO$Variable), as.character(best.coeff.HT$Variable),

as.character(best.coeff.PO$Variable), as.character(best.coeff.PT$Variable),
as.character(best.coeff.HvsPcos$Variable))

three.stars<-unique(three.stars)
three.stars<-c("Phen","Patient",three.stars)
patients.clinical.data.filtered<-patients.clinical.data.filtered[,

colnames(patients.clinical.data.filtered) %in% three.stars]
rownames(patients.clinical.data.filtered)<-patients.clinical.data.filtered$Patient
numeric.data.filtered<-as.data.frame(patients.clinical.data.filtered[c(3:11)])

patients.clinical.data.pr.filtered <- prcomp(numeric.data.filtered, center = TRUE, scale = TRUE)
summary(patients.clinical.data.pr.filtered)

Only the three first principal components appear to be useful and PC4 equals 87% variance

screeplot(patients.clinical.data.pr.filtered, type = "l", npcs = 15, main = "Screeplot of the first 10 PCs")
abline(h = 1, col="red", lty=5)
legend("topright", legend=c("Eigenvalue = 1"), col=c("red"), lty=5, cex=0.6)

cumpro.filtered <- cumsum(patients.clinical.data.pr.filtered$sdev^2
/ sum(patients.clinical.data.pr.filtered$sdev^2))

plot(cumpro.filtered[0:15], xlab = "PC #", ylab = "Amount explained variance [0-1]",
main = "Cumulative variance")

abline(v = 4, col="blue", lty=5)
abline(h = 0.87013, col="blue", lty=5)
legend("topleft", legend=c("PC4 equals 87% variance"), col=c("blue"), lty=5, cex=0.6)
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Screeplot of the first 10 PCs
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PC4 equals 87% variance

The biplot obtained from the PCA shows the groups of five subjects clearly separated. The second component, the vertical
axis, with healthy subjects on top and diseased below, has FM, LH and hirsutism as the predominant variables.

library("factoextra")
fviz_pca_biplot(patients.clinical.data.pr.filtered, pointshape = 21,

pointsize = 2, fill.ind = patients.clinical.data.filtered$Phen,
col.ind = patients.clinical.data.filtered$Phen, palette = "RdBu", addEllipses = TRUE,
label = "all", col.var = "black", repel = TRUE, ellipse.level=0.7, legend.title = "Phenotype") +

ggtitle("Four groups resolved") + theme(plot.title = element_text(hjust = 0.5))
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For inspecting the first three components of the PCA, gathering 77% of variablity, a library called “pca3d” is used. Because
creates a graphical device is not included here, but the 3D display is included in the main text though.

library(pca3d)
pca3d(patients.clinical.data.pr.filtered, group=patients.clinical.data.filtered$Phen,

radius = 2,fancy = TRUE, col = c("red","red","red","red","red","burlywood1",
"burlywood1","burlywood1","burlywood1","burlywood1", "lightblue","lightblue",
"lightblue","lightblue","lightblue","blue","blue","blue","blue","blue"))
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Appendix 2: Chapter4, OpenSwath workflow
Files conversion and Comet and Xtandem searches
First, a conversion of all wiff raw files (library and Swath files) to mzXML format is performed with Proteowizard, using a
Docker container. When all files are converted, searches of files that will build the library are performed with the web interface
of TPP (from a TPP Docker container redirecting the TPP web server to 10401 port in the local machine). The search engines
used are Comet and XTandem. The search will generate two pepXML files (one from each search engines) for each wiff file.
Those pepXML will be merged, generating two files: interact.tandem.pep.xml and interact.comet.pep.xml files.

# Conversion of wiff files to mzXML

docker run -it --rm -e WINEDEBUG=-all \
-v /mnt/data2/swath:/data proteowizard/pwiz-skyline-i-agree-to-the-vendor-licenses wine \
msconvert --mzXML --filter "peakPicking true 1-" /data/*.wiff

Building the spectral library
Then, a Trans-Proteomic pipeline (TPP) Docker image is run in interactive mode, to generate the spectra library. Several
programs are going to be used sequentially : xinteract, iProphet, Mayu and spectraST. After spectraST, we will go outside the
Docker image, and will use a local installation of OpenMS, executing TargetedFileConverter and OpenSwathAssayGenerator.
The spectral library generated (transitionlist_optimized_decoys.pqp) will be used in the next point to quantify the Swath files.

# Interactive console to TPP
docker run --memory="20g" -it -v /mnt/data2/swath:/data spctools/tpp /bin/bash

# Searches were performed with the web interface of TPP, producing
#interact.tandem.pep.xml and interact.comet.pep.xml files

### PeptideProphet on Comet and Tandem pep.xml. Then, iProphet joining
# interact.comet.pep.xml and interact.tandem.pep.xml
# -OARPdl parameter not used => scoring with Rt (R param) caused problems with comet
#Run PeptideProphet on Comet and XTandem
xinteract -dDECOY_ -OAPdl -Ninteract.tandem.pep.xml \

/data/pools/*.pep.xml &>> PCOS_log1.txt
xinteract -dDECOY_ -OAPdl -Ninteract.comet.pep.xml \

/data/pools/*.pep.xml &>> PCOS_log2.txt

# Run iProphet
InterProphetParser DECOY=DECOY_ interact.comet.pep.xml interact.tandem.pep.xml \

iProphet.combined.pep.xml &>> PCOS_log3.txt

# Mayu : 2019-08-06_10.01.14_main_1.07.xlsx with 0.01 and 0.05, we select IP/PPs
# value corresponding to <5% protein FDR (0.630895)
perl /usr/local/tpp/bin//Mayu.pl -A iProphet.combined.pep.xml \

-C uniprot.SP.human.apr2019.irt.DECOY.fasta -E DECOY_ \
-G 0.01 -H 101 -I 0 &>> PCOS_log4.txt

#Combination of search results to a spectral library
# irtkit.txt file used from DIA2018 tutorial
# generation of a spectral library using SpectraS.
# mzXML files need to be avaliable under the location where iProphet file is
# Careful about -c_IRT.. argument! : exactly this spelling
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# The iRT.txt file MUST have exactly the format used
spectrast -cNSpecLib -cICID-QTOF -cf'Protein!~DECOY_' -cP0.630895 \

-algorithm:retentionTimeInterpretation -c_IRT../data/iRT.txt \
-c_IRR iProphet.combined.pep.xml

# generate a consensus library by running the following command:
spectrast -cNSpecLib_cons -cICID-QTOF -cAC SpecLib.splib

#generate a SpectraST MRM transition list:
spectrast -cNSpecLib_pqp -cICID-QTOF -cM SpecLib_cons.splib

#### Now outsite TPP !
cd /mnt/data2/pcos.proteomics/analysis.pcos.swath

# Peptide-query parameter library generation and conversion of the SpectraST MRM to TraML
TargetedFileConverter -in SpecLib_pqp.mrm -out transitionlist.TraML &>> PCOS_log8.txt

#Generate target assays
# isolation.windows.txt obtained from one of the wiffs with Skyline
OpenSwathAssayGenerator -in transitionlist.TraML -out transitionlist_optimized.TraML \
-swath_windows_file isolation.windows.txt &>> PCOS_log9.txt

#Append decoy transitions to the spectral library:
OpenSwathDecoyGenerator -in transitionlist_optimized.TraML \
-out transitionlist_optimized_decoys.TraML -method shuffle &>> PCOS_log9.txt

#Convert the library to the pqp format for the further OpenSWATH analysis
TargetedFileConverter -in transitionlist_optimized_decoys.TraML \
-out transitionlist_optimized_decoys.pqp &>> PCOS_log11.txt

# Finally, to inspect the library, we will convert it back to the tsv format.
TargetedFileConverter -in transitionlist_optimized.TraML \
-out transitionlist_optimized.tsv &>> PCOS_log12.txt

Quantification of Swath files
Swath files in mzXML format, are quantified and processed using OpenSwathWorkflow, pyprophet and TRIC (fea-
ture_alignment.py). The aligned quantitation data generated (in “tab separated values” format) is called aligned.export.tsv
here. This file will be converted to a MSStats compatible format.

##### OpenSwath
# hroest_DIA_iRT.TraML file from DIA2018 course
for file in $(ls /mnt/data2/pcos.proteomics/swath/swaths.mzxml/*.mzXML)
do
OpenSwathWorkflow -in ${file} -tr transitionlist_optimized_decoys.pqp \
-tr_irt hroest_DIA_iRT.TraML -batchSize 1000 -min_upper_edge_dist 1 \
-Scoring:stop_report_after_feature 5 -out_osw $(basename ${file}).osw \
-threads 10 &>> PCOS_log13.txt
done

### Merge osw files with PyProphet ans analyze them
pyprophet merge --out=training.osw --subsample_ratio=0.33 pcos*.osw
pyprophet merge --out=merged.osw --subsample_ratio=1 pcos*.osw
pyprophet score --in=training.osw --level=ms2
pyprophet score --in=merged.osw --level=ms2 --apply_weights=training.osw
pyprophet peptide --in=merged.osw --context=run-specific peptide \

--in=merged.osw --context=experiment-wide \
peptide --in=merged.osw --context=global
pyprophet export --in=merged.osw --out=merged_export.tsv --format=legacy_merged \

--max_rs_peakgroup_qvalue 0.1 --max_global_peptide_qvalue 0.05 \
--max_global_protein_qvalue 0.01

pyprophet export --in=merged.osw --format=score_plots

### TRIC software
feature_alignment.py --in merged_export.tsv --out aligned.export.tsv --method LocalMST \
--realign_method lowess --max_rt_diff 60 --mst:useRTCorrection True \
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--mst:Stdev_multiplier 3.0 --target_fdr -1 --fdr_cutoff 0.05 \
--max_fdr_quality -1 --alignment_score 0.05

MSstats format conversion
The SWATH2stats Bioconductor library is used to import the quantified data (aligned.export.tsv ) into a data structure
compatible with MSStats. Several steps are followed using the documentation to filter the data and generate a data frame that
can be used by MSStats.

library(SWATH2stats)
library(MSstats)

data.openswsath <- read.delim2('aligned.export.tsv',
dec='.',
sep='\t',
header=TRUE,
stringsAsFactors = FALSE)

#Due to the new format of our data, we need to adjust some column names in order to
#be recognized in the following procedure.
names(data.openswsath)[names(data.openswsath) == "FullUniModPeptideName"] <-
"FullPeptideName"

names(data.openswsath)[names(data.openswsath) == "aggr_fragment_annotation"] <-
"aggr_Fragment_Annotation"

names(data.openswsath)[names(data.openswsath) == "aggr_peak_area"] <-
"aggr_Peak_Area"

dim(data.openswsath)
#Before we apply this filter on the actual data, we reduce the number of columns to the
#ones we really need for the further analysis.
data.openswsath.reduced <- reduce_OpenSWATH_output(data.openswsath)
#View(data.reduced)

#We also want to get rid of iRT peptides that are still in the data, we only needed them
#for RT calibration. Additionally we will filter out all non-proteotypic peptides.

data.openswsath.reduced <- data.openswsath.reduced[grep("iRT",
data.openswsath.reduced$ProteinName,invert = TRUE),]

data.openswsath.reduced <- data.openswsath.reduced[grep(";",
data.openswsath.reduced$ProteinName, invert = TRUE),]

annotation.file <- read.delim(file = 'analysis.PCOS.openswath.annotation.txt',
sep='\t',header=TRUE)

data.openswsath.annotated <- sample_annotation(data.openswsath.reduced, annotation.file)

count_analytes(data.openswsath.annotated)
# We can now filter our data set and to make sure that we just use complete observations.
data.openswsath.filtered <- filter_mscore_condition( data.openswsath.annotated,

mscore=0.01, n.replica=5)
count_analytes(data.openswsath.filtered)
# To feed the data into MSstats (or mapDIA) we need to split the transition groups
# into single transitions.
data.openswsath.transition <- disaggregate(data.openswsath.filtered)
# columns are renamed to match the requirements for MSstats
MSstats.openswath.input <- convert4MSstats(data.openswsath.transition)

MSstats data processing
The MSStats function “dataProcess” will process the Swath data, assigning transitions to peptides (and protein) quantification.
It will also perform data normalization between samples, using the “equalizeMedians” method.

#MSstats analysis
data.openswath.processed.normalized <- dataProcess(MSstats.openswath.input,

normalization = "equalizeMedians",
featureSubset="all",
summaryMethod = "TMP", censoredInt = "NA",
cutoffCensored = "minFeature", MBimpute = FALSE)
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MSstats group comparison
The different comparisons to be made are designed here. Eight comparisons are built: “HOvsHT”,“PTvsHT”,“POvsHT”,
“POvsHO”, “PTvsHO”, “POvsPT”,“PCOS.vs.HT”,“PCOS.vs.H”. Before those comparisons are calculated, we remove the ker-
atines found in the samples (ProcessedData and RunlevelData levels in the normalized data structure). The result for each
comparison will be accessed using the names provided to each of them (e.g. “HOvsHT”).

# 3.2. Group Comparison
levels(data.openswath.processed.normalized$ProcessedData$GROUP_ORIGINAL)
# We get the order of the different phenotypes: "HO" "HT" "PO" "PT"
# Then, each comparison is built as a matrix. If four groups are used, a 0.5 is used,
# with a negative sign if the group is used as the reference
comparison1<-matrix(c(1,-1,0,0),nrow=1)
comparison2<-matrix(c(0,-1,0,1),nrow=1)
comparison3<-matrix(c(0,-1,1,0),nrow=1)
comparison4<-matrix(c(-1,0,1,0),nrow=1)
comparison5<-matrix(c(-1,0,0,1),nrow=1)
comparison6<-matrix(c(0,0,1,-1),nrow=1)
comparison7<-matrix(c(0,-1,0.5,0.5),nrow=1)
comparison8<-matrix(c(-0.5,-0.5,0.5,0.5),nrow=1)
comparison <- rbind(comparison1, comparison2, comparison3, comparison4,comparison5,

comparison6,comparison7,comparison8)
row.names(comparison)<-c("HOvsHT","PTvsHT","POvsHT", "POvsHO", "PTvsHO",

"POvsPT","PCOS.vs.HT","PCOS.vs.H")

#Removal of keratines
keratines<-c("sp|P04264|K2C1_HUMAN","sp|P13645|K1C10_HUMAN",

"sp|P35908|K22E_HUMAN","sp|P35527|K1C9_HUMAN")
data.openswath.processed.normalized$ProcessedData<-
data.openswath.processed.normalized$ProcessedData[

!data.openswath.processed.normalized$ProcessedData$PROTEIN %in% keratines,]
data.openswath.processed.normalized$RunlevelData<-
data.openswath.processed.normalized$RunlevelData[

!data.openswath.processed.normalized$RunlevelData$Protein %in% keratines,]

result.GroupComparison.openswath <- groupComparison(
contrast.matrix = comparison,
data = data.openswath.processed.normalized)
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Appendix 3: Chapter5, iprg2015 Re-analysis
The iprg2015 dataset consists in four samples of known composition, each containing 200 ng of tryptic digests from S. cerevisiae
cultures. Each sample has been independently spiked with different quantities of six individual protein digests, as shown in
the table below (from “ABRF Proteome Informatics Research Group (iPRG) 2015 Study: Detection of differentially abun-
dant proteins in label-free quantitative LC-MS/MS experiments”). Raw data has been downloaded from ProteomeXchange
(PXD010981): http://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD010981

The four samples generated in the iprg2015 experiment are called here C1, C2, C3 and C4. The “differential expression” has
been calculated using C1 as reference in all cases studied here. Although more combinations could be made, we think that
this approach is sufficient: the Log 2 fold changes obtained for the spiked proteins range from 5.6 for F protein in C2 with
respect to C1 (almost 50 times more concentrated) to -5.02 for protein A in C4 with respect to C1 (more than 30 times less
concentrated). In “Table 1: theoretical Log2 FC”, the theoretical Log2 Fold change values of the spiked in proteins (using
sample C1 as reference) are shown.

In this document, three different quantification pipelines are used (MaxQuant, OpenMS and Proteome Discoverer) and three
Bioconductor packages for differential expression analysis used (MSStats, DEqMS and DEP). In the case of OpenMS and
Proteome Discoverer pipelines, the DEP approach has not been used, because it is not designed for them and attempts to adapt
the data in a convenient way produced aberrant results. The R code used with them and the results obtained are shown here.
The chunks of code that are redundant, are hidden for convenience.

1. MaxQuant Analysis
Information generated by MaxQuant will be used for normalization and statistical analysis. Two files from the “combined/txt”
directory produced by MaxQuant will be used: “proteinGroups.txt” and “evidence.txt”. The number of target and decoy PSM
hits is shown.

MaxQuant.proteinGroups <- read.table("./data/iprg2015.MaxQuant.proteinGroups.txt",sep = "\t", header = TRUE)
MaxQuant.evidence <- read.table("./data/iprg2015.MaxQuant.evidence.txt", sep = "\t", header = TRUE)
decoy.hits<-nrow(MaxQuant.proteinGroups[MaxQuant.proteinGroups$Reverse=="+",])
target.hits<-nrow(MaxQuant.proteinGroups[!MaxQuant.proteinGroups$Reverse=="+",])
cat(decoy.hits," decoy / ",target.hits," target")

Figure 1: Spiked proteins
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Table 1: Spikes, theoretical Log2 FC
C2 vs C1 C3 vs C1 C4 vs C1
log2 FC log2 FC log2 FC

A P01012 (OVAL_CHICK) -0.24 -2.12 -5.02
B P68082 (MYG_HORSE) -1.87 -4.78 0.24
C P00489 (PYGM_RABIT) -2.91 2.12 1.87
D P00722 (BGAL_ECOLI) 5.02 4.78 2.91
E P02769 (ALBU_BOVIN) -4.20 -0.14 5.51
F P00921 (CAH2_BOVIN) 5.64 0.14 -4.06

## 39 decoy / 3268 target

1.1. MaxQuant and MSStats

Data generated by MaxQuant is converted to a data frame using the MSstats function MaxQtoMSstatsFormat. Three arguments
are needed: an annotation file with the information of groups to be formated, and two data frames produced by reading the
evidence and proteinGroups text files. Function dataProcess is used to produce a list of data frames with all the quantitative
information needed br MSstats to generate the differential analysis.

MSStats.annot <- read.csv("./data/iprg2015.MSStats.design.csv", header = TRUE)
MaxQtoMSstatsFormat.data <- MaxQtoMSstatsFormat(evidence=MaxQuant.evidence, annotation=MSStats.annot,

proteinGroups=MaxQuant.proteinGroups,
useUniquePeptide=TRUE,
removeMpeptides=TRUE,
fewMeasurements='remove', removeProtein_with1Peptide=TRUE)

MaxQuant.MSstats.processed.quant <- dataProcess(MaxQtoMSstatsFormat.data, logTrans=2,
normalization='equalizeMedians', fillIncompleteRows=TRUE,
featureSubset="all", summaryMethod="TMP",
cutoffCensored="minFeature",
censoredInt="NA",remove50missing=FALSE,MBimpute=TRUE,
maxQuantileforCensored=0.999)

The four conditions are compared using condition 1 (Sample 1 in Figure 1) as reference using groupComparison function. A
matrix is built with the three comparisons done (“C2vsC1”,“C3vsC1”,“C4vsC1”).

comparison1<-matrix(c(-1,1,0,0),nrow=1)
comparison2<-matrix(c(-1,0,1,0),nrow=1)
comparison3<-matrix(c(-1,0,0,1),nrow=1)
comparison <- rbind(comparison1, comparison2, comparison3)
row.names(comparison)<-c("C2vsC1","C3vsC1","C4vsC1")
MaxQuant.MSstats.Comparisons <-groupComparison(contrast.matrix=comparison,

data=MaxQuant.MSstats.processed.quant)

Deceptive proteins (the six spike-ins showed in figure 1: P44015, P55752, P44374, P44983, P44683, P55249 ) are replaced by
letters A to F, and the three comparisons are subsetted. Then, proteins having an NA value as pvalue (due to compare one
group without values) are removed.

MaxQuant.MSstats.results<-MaxQuant.MSstats.Comparisons$ComparisonResult

MaxQuant.MSstats.results$Protein<-as.character(MaxQuant.MSstats.results$Protein)
MaxQuant.MSstats.results$Protein<-str_split_fixed(MaxQuant.MSstats.results$Protein, "\\|", 3)[,2]
MaxQuant.MSstats.results$Protein[MaxQuant.MSstats.results$Protein=='P44015']<-"A"
MaxQuant.MSstats.results$Protein[MaxQuant.MSstats.results$Protein=='P55752']<-"B"
MaxQuant.MSstats.results$Protein[MaxQuant.MSstats.results$Protein=='P44374']<-"C"
MaxQuant.MSstats.results$Protein[MaxQuant.MSstats.results$Protein=='P44983']<-"D"
MaxQuant.MSstats.results$Protein[MaxQuant.MSstats.results$Protein=='P44683']<-"E"
MaxQuant.MSstats.results$Protein[MaxQuant.MSstats.results$Protein=='P55249']<-"F"

MaxQuant.MSstats.results.c2.c1<-subset (MaxQuant.MSstats.results,MaxQuant.MSstats.results$Label=='C2vsC1')
MaxQuant.MSstats.results.c3.c1<-subset (MaxQuant.MSstats.results,MaxQuant.MSstats.results$Label=='C3vsC1')
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MaxQuant.MSstats.results.c4.c1<-subset (MaxQuant.MSstats.results,MaxQuant.MSstats.results$Label=='C4vsC1')

MaxQuant.MSstats.results.c2.c1.clean<-MaxQuant.MSstats.results.c2.c1 %>% drop_na(pvalue)
MaxQuant.MSstats.results.c3.c1.clean<-MaxQuant.MSstats.results.c3.c1 %>% drop_na(pvalue)
MaxQuant.MSstats.results.c4.c1.clean<-MaxQuant.MSstats.results.c4.c1 %>% drop_na(pvalue)

C2.C1.prots<-nrow(MaxQuant.MSstats.results.c2.c1.clean)
C2.C1.prots.removed<- nrow(MaxQuant.MSstats.results.c2.c1)-nrow(MaxQuant.MSstats.results.c2.c1.clean)
C3.C1.prots<-nrow(MaxQuant.MSstats.results.c3.c1.clean)
C3.C1.prots.removed<- nrow(MaxQuant.MSstats.results.c3.c1)-nrow(MaxQuant.MSstats.results.c3.c1.clean)
C4.C1.prots<-nrow(MaxQuant.MSstats.results.c4.c1.clean)
C4.C1.prots.removed<- nrow(MaxQuant.MSstats.results.c4.c1)-nrow(MaxQuant.MSstats.results.c4.c1.clean)

cat (" C2vsC1 comp.: ",C2.C1.prots, "prots (after ",C2.C1.prots.removed," NA removed)","\n",
"C3vsC1 comp.: ",C3.C1.prots, "prots (after ",C3.C1.prots.removed," NA removed)","\n",
"C4vsC1 comp.: ",C4.C1.prots, "prots (after ",C4.C1.prots.removed," NA removed)")

## C2vsC1 comp.: 2365 prots (after 10 NA removed)
## C3vsC1 comp.: 2360 prots (after 15 NA removed)
## C4vsC1 comp.: 2352 prots (after 23 NA removed)

The differential abundance of proteins observed in the different comparisons is compared using volcano plots.

pv.cut<-0.05
fc.cut<-0.5
MaxQuant.MSstats.volcano.c2.c1<-EnhancedVolcano(MaxQuant.MSstats.results.c2.c1.clean,

lab = as.character(MaxQuant.MSstats.results.c2.c1.clean$Protein),title = "", subtitle = "",
axisLabSize = 10, titleLabSize = 8, caption="",
captionLabSize = 4, legendVisible=FALSE,
transcriptPointSize=3.2,
x = 'log2FC',y = 'adj.pvalue', pCutoff = pv.cut, FCcutoff = fc.cut,
drawConnectors=TRUE,boxedlabels=TRUE)

MaxQuant.MSstats.volcano.c3.c1<-EnhancedVolcano(MaxQuant.MSstats.results.c3.c1.clean,widthConnectors = 0.9,
lab = as.character(MaxQuant.MSstats.results.c3.c1.clean$Protein),title = "", subtitle = "",
axisLabSize = 10, titleLabSize = 8, caption="", captionLabSize = 4, legendVisible=FALSE,
transcriptPointSize=3.2, x = 'log2FC',y = 'adj.pvalue', pCutoff = pv.cut, FCcutoff = fc.cut,
drawConnectors=TRUE,boxedlabels=TRUE)

MaxQuant.MSstats.volcano.c4.c1<-EnhancedVolcano(MaxQuant.MSstats.results.c4.c1.clean,
lab = as.character(MaxQuant.MSstats.results.c4.c1.clean$Protein),title = "", subtitle = "",
axisLabSize = 10, titleLabSize = 8, caption="", captionLabSize = 4, legendVisible=FALSE,
transcriptPointSize=3.2, x = 'log2FC',y = 'adj.pvalue', pCutoff = pv.cut, FCcutoff = fc.cut,
drawConnectors=TRUE,boxedlabels=TRUE)

ggarrange(MaxQuant.MSstats.volcano.c2.c1, MaxQuant.MSstats.volcano.c3.c1, MaxQuant.MSstats.volcano.c4.c1,
labels = c("MSStats.Maxquant, C2 vs C1","MSStats.Maxquant, C3 vs C1","MSStats.Maxquant, C4 vs C1"),
ncol = 3, nrow = 1,hjust = -0.1)
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MaxQuant.MSstats.sign.c2.c1<-nrow(rbind(
subset(MaxQuant.MSstats.results.c2.c1.clean,log2FC< -fc.cut & pvalue<pv.cut),
subset(MaxQuant.MSstats.results.c2.c1.clean,log2FC> fc.cut & pvalue<pv.cut)))

MaxQuant.MSstats.sign.c3.c1<-nrow(rbind(
subset(MaxQuant.MSstats.results.c3.c1.clean,log2FC< -fc.cut & pvalue<pv.cut),
subset(MaxQuant.MSstats.results.c3.c1.clean,log2FC> fc.cut & pvalue<pv.cut)))

MaxQuant.MSstats.sign.c4.c1<-nrow(rbind(
subset(MaxQuant.MSstats.results.c4.c1.clean,log2FC< -fc.cut & pvalue<pv.cut),
subset(MaxQuant.MSstats.results.c4.c1.clean,log2FC> fc.cut & pvalue<pv.cut)))

cat ("Number of significant proteins using P-value<0.05 (not adjusted P-value):\n C2vsC1 sign. proteins: ",
MaxQuant.MSstats.sign.c2.c1," Total proteins: ",nrow(MaxQuant.MSstats.results.c2.c1.clean),"\n",
"C3vsC1 sign. proteins: ",MaxQuant.MSstats.sign.c3.c1,
" Total proteins: ",nrow(MaxQuant.MSstats.results.c3.c1.clean),"\n",

"C4vsC1 sign. proteins: ",MaxQuant.MSstats.sign.c4.c1,
" Total proteins: ",nrow(MaxQuant.MSstats.results.c4.c1.clean))

## Number of significant proteins using P-value<0.05 (not adjusted P-value):
## C2vsC1 sign. proteins: 22 Total proteins: 2365
## C3vsC1 sign. proteins: 43 Total proteins: 2360
## C4vsC1 sign. proteins: 66 Total proteins: 2352

We extract the fold changes and P-values from the spiked proteins for each condition, to generate a table with Fold Changes
and adjusted P-values obtained for each comparison (C2vsC1, C3vsC1 and C4vsC1) using Maxquant pipeline and MSStats:
“Table 2: MaxQuant and MSStats quantitation”.

# We filter only results for spikes.
# C2 vs C1
MaxQuant.MSstats.c2.c1.spiked.results <- subset(MaxQuant.MSstats.results.c2.c1.clean[,

c("Protein","log2FC","adj.pvalue")],
Protein %in% c("A","B","C","D","E","F"))

MaxQuant.MSstats.c2.c1.spiked.results <- MaxQuant.MSstats.c2.c1.spiked.results[
order(MaxQuant.MSstats.c2.c1.spiked.results$Protein),]

# C3 vs C1
MaxQuant.MSstats.c3.c1.spiked.results <- subset(MaxQuant.MSstats.results.c3.c1.clean[,

c("Protein","log2FC","adj.pvalue")],
Protein %in% c("A","B","C","D","E","F"))

# B is not quantified in C3.C1, but we need to add it,
# to produce a 6 rows data frame like C2.C1 and C4.C1
MaxQuant.MSstats.c3.c1.spiked.results <- rbind(MaxQuant.MSstats.c3.c1.spiked.results,c("B",0,0))
MaxQuant.MSstats.c3.c1.spiked.results <- MaxQuant.MSstats.c3.c1.spiked.results[

order(MaxQuant.MSstats.c3.c1.spiked.results$Protein),]
# C4 vs C1
MaxQuant.MSstats.c4.c1.spiked.results <- subset(MaxQuant.MSstats.results.c4.c1.clean[,

c("Protein","log2FC","adj.pvalue")],
Protein %in% c("A","B","C","D","E","F"))

MaxQuant.MSstats.c4.c1.spiked.results <- MaxQuant.MSstats.c4.c1.spiked.results[
order(MaxQuant.MSstats.c4.c1.spiked.results$Protein),]

# And join the four sorted data frames
rownames(MaxQuant.MSstats.c2.c1.spiked.results) <- c()
rownames(MaxQuant.MSstats.c3.c1.spiked.results) <- c()
rownames(MaxQuant.MSstats.c4.c1.spiked.results) <- c()
MaxQuant.MSstats.c2.c1.spiked.results <- MaxQuant.MSstats.c2.c1.spiked.results[,2:3]
MaxQuant.MSstats.c3.c1.spiked.results <- MaxQuant.MSstats.c3.c1.spiked.results[,2:3]
MaxQuant.MSstats.c4.c1.spiked.results <- MaxQuant.MSstats.c4.c1.spiked.results[,2:3]
colnames(MaxQuant.MSstats.c2.c1.spiked.results) <- c("FC.C2vsC1","pval.C2vsC1")
colnames(MaxQuant.MSstats.c3.c1.spiked.results) <- c("FC.C3vsC1","pval.C3vsC1")
colnames(MaxQuant.MSstats.c4.c1.spiked.results) <- c("FC.C4vsC1","pval.C4vsC1")
MaxQuant.MSstats.spiked.results <- cbind(MaxQuant.MSstats.c2.c1.spiked.results,

MaxQuant.MSstats.c3.c1.spiked.results,
MaxQuant.MSstats.c4.c1.spiked.results)

MaxQuant.MSstats.spiked.results <- as.data.frame(sapply( MaxQuant.MSstats.spiked.results, as.numeric ))
rownames(MaxQuant.MSstats.spiked.results) <-c ("A","B","C","D","E","F")
MaxQuant.MSstats.spiked.results$FC.C2vsC1<-formatC(MaxQuant.MSstats.spiked.results$FC.C2vsC1, format = "f",digits = 2)
MaxQuant.MSstats.spiked.results$FC.C3vsC1<-formatC(MaxQuant.MSstats.spiked.results$FC.C3vsC1,
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Table 2: MaxQuant and MSStats quantitation
C2 vs C1 C3 vs C1 C4 vs C1

log2 FC P-value log2 FC P-value log2 FC P-value
A -0.53 9.94e-01 -2.79 1.34e-02 -5.40 2.16e-04
B -2.91 4.03e-04 0.00 0.00e+00 -0.25 5.09e-01
C -3.69 1.05e-05 2.46 3.74e-04 2.35 2.16e-04
D 6.24 9.88e-10 5.79 1.80e-09 3.02 3.24e-07
E -3.65 2.85e-04 -0.60 8.21e-01 5.66 1.82e-05
F 5.97 1.31e-06 -0.37 8.41e-01 -3.22 1.14e-04

format = "f",digits = 2)
MaxQuant.MSstats.spiked.results$FC.C4vsC1<-formatC(MaxQuant.MSstats.spiked.results$FC.C4vsC1,

format = "f",digits = 2)
MaxQuant.MSstats.spiked.results$pval.C2vsC1<-formatC(MaxQuant.MSstats.spiked.results$pval.C2vsC1,

format = "e",digits = 2)
MaxQuant.MSstats.spiked.results$pval.C3vsC1<-formatC(MaxQuant.MSstats.spiked.results$pval.C3vsC1,

format = "e",digits = 2)
MaxQuant.MSstats.spiked.results$pval.C4vsC1<-formatC(MaxQuant.MSstats.spiked.results$pval.C4vsC1,

format = "e",digits = 2)
kable(MaxQuant.MSstats.spiked.results,row.names = TRUE,digits = 3,label = "",align=rep('c', 6),

caption = "MaxQuant and MSStats quantitation",
col.names = c("log2 FC","P-value","log2 FC","P-value","log2 FC","P-value")) %>%

kable_styling(full_width = F,bootstrap_options = c("striped", "condensed"), font_size = 9) %>%
row_spec(row = c(1:6),color = "black") %>%
add_header_above(c(" " = 1, "C2 vs C1" = 2, "C3 vs C1" = 2, "C4 vs C1" = 2))

1.2. MaxQuant and DEqMS

DEqMS requires several elements, extracted from the ProteinGroups MaxQuant file export to work properly:

• “LFQ intensity 1A” to “LFQ intensity 4C” values,
• “Razor + unique peptides 1A” to “Razor + unique peptides 4C”

# We remove reverse proteins from the list
MaxQuant.proteinGroups.DEqMS<-MaxQuant.proteinGroups[!MaxQuant.proteinGroups$Protein.IDs %like% "REV__", ]
# Only proteins uniquely mapped
MaxQuant.proteinGroups.DEqMS<-MaxQuant.proteinGroups.DEqMS[MaxQuant.proteinGroups.DEqMS$Number.of.proteins == 1, ]
#Only proteins with more than one peptide
MaxQuant.proteinGroups.DEqMS<-MaxQuant.proteinGroups.DEqMS[

!as.numeric(MaxQuant.proteinGroups.DEqMS$Peptide.counts..unique.) <2, ]
# We obtain the Uniprot AC and replace the skiked proteins
MaxQuant.proteinGroups.DEqMS$Majority.protein.IDs<-str_split_fixed(

MaxQuant.proteinGroups.DEqMS$Majority.protein.IDs, "\\|", 3)[,2]
MaxQuant.proteinGroups.DEqMS$Majority.protein.IDs[MaxQuant.proteinGroups.DEqMS$Majority.protein.IDs=='P44015']<-"A"
MaxQuant.proteinGroups.DEqMS$Majority.protein.IDs[MaxQuant.proteinGroups.DEqMS$Majority.protein.IDs=='P55752']<-"B"
MaxQuant.proteinGroups.DEqMS$Majority.protein.IDs[MaxQuant.proteinGroups.DEqMS$Majority.protein.IDs=='P44374']<-"C"
MaxQuant.proteinGroups.DEqMS$Majority.protein.IDs[MaxQuant.proteinGroups.DEqMS$Majority.protein.IDs=='P44983']<-"D"
MaxQuant.proteinGroups.DEqMS$Majority.protein.IDs[MaxQuant.proteinGroups.DEqMS$Majority.protein.IDs=='P44683']<-"E"
MaxQuant.proteinGroups.DEqMS$Majority.protein.IDs[MaxQuant.proteinGroups.DEqMS$Majority.protein.IDs=='P55249']<-"F"
# We extract columns of Label free quantitation intensities from the previously loaded MaxQuant.proteinGroups
# (iprg2015.MaxQuant.proteinGroups.txt). To select the proper columns, we execute colnames
# (MaxQuant.proteinGroups) and choose columns from "LFQ.intensity.1A" to "LFQ.intensity.4C", that correspond
# to columns 80:91. This, of curse, depends on the number of samples.
MaxQuant.DEqMS.df = MaxQuant.proteinGroups.DEqMS[,80:91]
MaxQuant.DEqMS.df[MaxQuant.DEqMS.df==0] <- NA
# Rownames are added using the "Majority.protein.IDs" column
rownames(MaxQuant.DEqMS.df) = MaxQuant.proteinGroups.DEqMS$Majority.protein.IDs
# Number of NA is counted for each sample group (4 conditions) and columns are created accordingly.
MaxQuant.DEqMS.df$na_count_1 = apply(MaxQuant.DEqMS.df,1,function(x) sum(is.na(x[1:3])))
MaxQuant.DEqMS.df$na_count_2 = apply(MaxQuant.DEqMS.df,1,function(x) sum(is.na(x[4:6])))
MaxQuant.DEqMS.df$na_count_3 = apply(MaxQuant.DEqMS.df,1,function(x) sum(is.na(x[7:9])))
MaxQuant.DEqMS.df$na_count_4 = apply(MaxQuant.DEqMS.df,1,function(x) sum(is.na(x[10:12])))
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In the same way we did with MSStats, the three comparisons made here are C2 vs C1, C3 vs C1 and C4 vs C1.

# Filter protein table. DEqMS requires a minimum of two values for each group. This needs to be done
# separately because NAs will differ between groups.
MaxQuant.DEqMS.df.12<-MaxQuant.DEqMS.df[,c(1:6,13:14)]
MaxQuant.DEqMS.df.13<-MaxQuant.DEqMS.df[,c(1:3,7:9,13,15)]
MaxQuant.DEqMS.df.14<-MaxQuant.DEqMS.df[,c(1:3,10:12,13,16)]
MaxQuant.DEqMS.df.filter.12 = MaxQuant.DEqMS.df.12[MaxQuant.DEqMS.df.12$na_count_1<2 &

MaxQuant.DEqMS.df.12$na_count_2<2, 1:6]
MaxQuant.DEqMS.df.filter.13 = MaxQuant.DEqMS.df.13[MaxQuant.DEqMS.df.13$na_count_1<2 &

MaxQuant.DEqMS.df.13$na_count_3<2, 1:6]
MaxQuant.DEqMS.df.filter.14 = MaxQuant.DEqMS.df.14[MaxQuant.DEqMS.df.14$na_count_1<2 &

MaxQuant.DEqMS.df.14$na_count_4<2, 1:6]
# A data frame of unique peptide minimum count per protein (Unique + Razor) is made for the groups involved
# in the three comparisons: 23:28 for C2 vs C1, 23:25 and 29:31 for C3 vs C1 and 23:25 and 32:34 for C4 vs C1
pep.count.table.12 = data.frame(count = rowMins(as.matrix(MaxQuant.proteinGroups.DEqMS[,23:28])),

row.names = MaxQuant.proteinGroups.DEqMS$Majority.protein.IDs)
pep.count.table.13 = data.frame(count = rowMins(as.matrix(MaxQuant.proteinGroups.DEqMS[,c(23:25,29:31)])),

row.names = MaxQuant.proteinGroups.DEqMS$Majority.protein.IDs)
pep.count.table.14 = data.frame(count = rowMins(as.matrix(MaxQuant.proteinGroups.DEqMS[,c(23:25,32:34)])),

row.names = MaxQuant.proteinGroups.DEqMS$Majority.protein.IDs)
# As the DEqMS software documentation states, a minimum peptide count of some proteins can be 0 and
# adding a pseudocount 1 to all proteins is needed
pep.count.table.12$count = pep.count.table.12$count+1
pep.count.table.13$count = pep.count.table.13$count+1
pep.count.table.14$count = pep.count.table.14$count+1
#Finally, the DEqMS analysis on LFQ data
protein.matrix.12 = log2(as.matrix(MaxQuant.DEqMS.df.filter.12))
protein.matrix.13 = log2(as.matrix(MaxQuant.DEqMS.df.filter.13))
protein.matrix.14 = log2(as.matrix(MaxQuant.DEqMS.df.filter.14))
class.12 = as.factor(c("1","1","1","2","2","2"))
class.13 = as.factor(c("1","1","1","2","2","2"))
class.14 = as.factor(c("1","1","1","2","2","2"))
# Fitting without intercept
design.12 = model.matrix(~0+class.12)
design.13 = model.matrix(~0+class.13)
design.14 = model.matrix(~0+class.14)
fit1.12 = lmFit(protein.matrix.12,design = design.12)
fit1.13 = lmFit(protein.matrix.13,design = design.13)
fit1.14 = lmFit(protein.matrix.14,design = design.14)
# Here we need to check the colnames for the class factors
cont.12 <- makeContrasts(class.122-class.121, levels = design.12) # The reference goes on the right
cont.13 <- makeContrasts(class.132-class.131, levels = design.13)
cont.14 <- makeContrasts(class.142-class.141, levels = design.14)
fit2.12 = contrasts.fit(fit1.12,contrasts = cont.12)
fit2.13 = contrasts.fit(fit1.13,contrasts = cont.13)
fit2.14 = contrasts.fit(fit1.14,contrasts = cont.14)
fit3.12 <- eBayes(fit2.12)
fit3.13 <- eBayes(fit2.13)
fit3.14 <- eBayes(fit2.14)
fit3.12$count = pep.count.table.12[rownames(fit3.12$coefficients),"count"]
fit3.13$count = pep.count.table.13[rownames(fit3.13$coefficients),"count"]
fit3.14$count = pep.count.table.14[rownames(fit3.14$coefficients),"count"]
fit4.12 = spectraCounteBayes(fit3.12)
fit4.13 = spectraCounteBayes(fit3.13)
fit4.14 = spectraCounteBayes(fit3.14)
MaxQuant.DEqMS.results.12 = outputResult(fit4.12,coef_col = 1)
MaxQuant.DEqMS.results.13 = outputResult(fit4.13,coef_col = 1)
MaxQuant.DEqMS.results.14 = outputResult(fit4.14,coef_col = 1)
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Table 3: MaxQuant and DEqMS quantitation
C2 vs C1 C3 vs C1 C4 vs C1

log2 FC P-value log2 FC P-value log2 FC P-value
A -0.38 3.93e-01 -3.02 1.20e-03 0.00 0.00e+00
B -3.08 7.98e-07 0.00 0.00e+00 -0.26 8.22e-01
C -6.35 2.07e-07 2.56 2.84e-07 2.51 2.77e-07
D 7.73 3.09e-09 7.25 1.11e-08 4.73 2.23e-07
E -6.38 1.17e-02 -0.52 6.40e-01 6.59 1.37e-07
F 7.55 7.98e-07 -0.19 8.78e-01 -3.13 5.71e-03
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MaxQuant.DEqMS.sign.c2.c1<-nrow(rbind(
subset(MaxQuant.DEqMS.results.12,logFC< -fc.cut & P.Value<pv.cut),
subset(MaxQuant.DEqMS.results.12,logFC> fc.cut & P.Value<pv.cut)))

MaxQuant.DEqMS.sign.c3.c1<-nrow(rbind(
subset(MaxQuant.DEqMS.results.13,logFC< -fc.cut & P.Value<pv.cut),
subset(MaxQuant.DEqMS.results.13,logFC> fc.cut & P.Value<pv.cut)))

MaxQuant.DEqMS.sign.c4.c1<-nrow(rbind(
subset(MaxQuant.DEqMS.results.14,logFC< -fc.cut & P.Value<pv.cut),
subset(MaxQuant.DEqMS.results.14,logFC> fc.cut & P.Value<pv.cut)))

cat ("Number of significant proteins using P-value<0.05 (not adjusted P-value):\n C2 vs C1 sign. proteins: ",
MaxQuant.DEqMS.sign.c2.c1," Total proteins: ",nrow(MaxQuant.DEqMS.results.12),"\n",
"C3 vs C1 sign. proteins: ",MaxQuant.DEqMS.sign.c3.c1,
" Total proteins: ",nrow(MaxQuant.DEqMS.results.14),"\n",
"C4 vs C1 sign. proteins: ",MaxQuant.DEqMS.sign.c4.c1,

" Total proteins: ",nrow(MaxQuant.DEqMS.results.14))

## Number of significant proteins using P-value<0.05 (not adjusted P-value):
## C2 vs C1 sign. proteins: 7 Total proteins: 1966
## C3 vs C1 sign. proteins: 18 Total proteins: 1911
## C4 vs C1 sign. proteins: 8 Total proteins: 1911

1.3. MaxQuant and DEP

Elements needed by DEP are:

• MaxQuant.proteinGroups: iprg2015.MaxQuant.proteinGroups.txt
• DEP.annot: experimental design for iprg2015. It is a csv file with “label”, “condition” and “replicate” as columns.

DEP.annot<-read.table("./data/iprg2015.DEP.design.csv",sep=",",header = TRUE)
DEP.annot$label<-as.character(DEP.annot$label)
# We remove reverse proteins from the list
MaxQuant.proteinGroups.DEP<-MaxQuant.proteinGroups[!MaxQuant.proteinGroups$Protein.IDs %like% "REV__", ]
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# Only proteins uniquely mapped
MaxQuant.proteinGroups.DEP<-MaxQuant.proteinGroups.DEP[MaxQuant.proteinGroups.DEP$Number.of.proteins == 1, ]
#Only proteins with more than one peptide
MaxQuant.proteinGroups.DEP<-MaxQuant.proteinGroups.DEP[!as.numeric(

MaxQuant.proteinGroups.DEP$Peptide.counts..unique.) < 2, ]
MaxQuant.data.DEP<-import_MaxQuant(MaxQuant.proteinGroups.DEP, DEP.annot,

#filter = c("Reverse","Potential.contaminant"),
intensities = "LFQ", names = "Protein.IDs",
ids = "Protein.IDs", delim = ";")

Data is filtered for proteins with missing values for at least one condition (thr=0) and then normalized using the function
normalize_vsn, where variance stabilizing transformation is performed using the vsn-package.

# Filter
MaxQuant.data.DEP_fil <- filter_missval(MaxQuant.data.DEP, thr = 0)
#Normalize
MaxQuant.data.DEP_norm <- normalize_vsn(MaxQuant.data.DEP_fil)

Data is imputed following MinProb approach. Many other approaches are avaliable: “bpca”, “knn”, “QRILC”, “MLE”, “Min-
Det”, “MinProb”, “man”, “min”, “zero”, “mixed” or “nbavg”. Here, missing not at random (MNAR) censored values was
assumed.

# Imputation not used
MaxQuant.data_imp <- impute(MaxQuant.data.DEP_norm, fun = "MinProb")
# test_diff performs a differential enrichment test based on protein-wise linear models and empirical Bayes
# statistics using limma.
# The control used (Cond1) is defined as the condition introduced in DEP.annot file
MaxQuant.data_diff <- test_diff(MaxQuant.data_imp, type = "control", control = "Cond1")
# add_rejections marks significant proteins based on defined cutoffs.
MaxQuant.dep <- add_rejections(MaxQuant.data_diff, alpha = 0.05, lfc = log2(1.5))
# Generate a results table, where the three possible comparisons (C2 vs C1, C3 vs C1 and C4 vs C1) are done.
MaxQuant.dep.data_results <- get_results(MaxQuant.dep)
MaxQuant.dep.data_results$ID<-str_split_fixed(MaxQuant.dep.data_results$ID, "\\|", 3)[,2]
# Spiked proteins are converted to letters A to F
MaxQuant.dep.data_results$ID[MaxQuant.dep.data_results$ID=='P44015']<-"A"
MaxQuant.dep.data_results$ID[MaxQuant.dep.data_results$ID=='P55752']<-"B"
MaxQuant.dep.data_results$ID[MaxQuant.dep.data_results$ID=='P44374']<-"C"
MaxQuant.dep.data_results$ID[MaxQuant.dep.data_results$ID=='P44983']<-"D"
MaxQuant.dep.data_results$ID[MaxQuant.dep.data_results$ID=='P44683']<-"E"
MaxQuant.dep.data_results$ID[MaxQuant.dep.data_results$ID=='P55249']<-"F"
# Number of significant proteins in the three comparisons. This gives the proteins found significant in at
# least one comparison: here we obtain 98 proteins. For the individual comparisons we obtain 26, 72 and 32
# for C2vsC1, C3vsC1 and C4vsC1.
MaxQuant.dep.number.sign<-as.numeric(MaxQuant.dep.data_results %>% filter(significant) %>% nrow())
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Table 4: MaxQuant and DEP quantitation
C2 vs C1 C3 vs C1 C4 vs C1

log2 FC P-value log2 FC P-value log2 FC P-value
A -0.38 6.62e-01 -2.99 8.71e-14 -4.89 8.89e-14
B -3.07 7.26e-14 -7.27 8.71e-14 -0.25 7.47e-01
C -6.65 7.26e-14 2.58 8.71e-14 2.51 8.89e-14
D 7.73 7.26e-14 7.28 8.71e-14 4.73 8.89e-14
E -6.38 7.26e-14 -0.50 9.47e-01 6.59 7.62e-13
F 7.56 7.26e-14 -0.16 9.47e-01 -3.11 8.89e-14

## Number of significant proteins using P-value<0.05 (not adjusted P-value):
## C2vsC1 sign. proteins: 34 Total proteins: 2019
## C3vsC1 sign. proteins: 46 Total proteins: 2019
## C4vsC1 sign. proteins: 41 Total proteins: 2019

2. OpenMS Analysis
The results obtained with OpenMS are going to be analyzed using MSStats and DEqMS. OpenMS automatically generates a
text file that can be directly imported by MSStats. For DEaMS, a Perl script has been made to generate a text file (combining
the data generated by the MSStats-ready file) that is compatible with what DEqMS expects. In the case of DEP, writing a
different script was attempted to adapt information required by DEP from OpenMS export, but the results were not satisfactory.

2.1. OpenMS and MSStats

OpenMS generates (by using an exporter in the worflow) a file that can be directly used by MSStats (iprg2015.OpenMS.Norm.MSstats.no1pep.csv).
With the exception of the file import by MSStats, code is hidden here because is quite simiar to what was done before using
MSStats for MaxQuant data.

OpenMS.MSStats.Formated.results<-read.csv("./data/iprg2015.OpenMS.Norm.MSstats.no1pep.csv")
OpenMS.MSstats.processed.quant <- dataProcess(OpenMS.MSStats.Formated.results, logTrans=2,

normalization='equalizeMedians', fillIncompleteRows=TRUE, featureSubset="all",
summaryMethod="TMP", cutoffCensored="minFeature", censoredInt="NA",
remove50missing=FALSE, MBimpute=TRUE, maxQuantileforCensored=0.999)
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## Number of significant proteins using P-value<0.05 (not adjusted P-value):
## C2vsC1 sign. proteins: 26 Total proteins: 2557
## C3vsC1 sign. proteins: 41 Total proteins: 2558
## C4vsC1 sign. proteins: 52 Total proteins: 2555
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Table 5: OpenMS and MSStats quantitation
C2 vs C1 C3 vs C1 C4 vs C1

log2 FC P-value log2 FC P-value log2 FC P-value
A -0.27 9.99e-01 -3.02 1.04e-02 -3.25 5.12e-03
B -2.63 2.12e-02 -5.07 4.08e-04 -0.23 8.51e-01
C -1.58 1.42e-04 2.62 4.01e-06 2.43 4.80e-06
D 5.50 6.29e-09 4.97 1.40e-08 2.33 2.92e-06
E -2.18 2.45e-04 -0.46 5.21e-01 5.71 6.26e-07
F 5.91 6.28e-07 0.10 9.14e-01 -1.11 3.75e-02

2.2. OpenMS and DEqMS

We use the output from OpenMS that was intended for use with MSstats and transform it to the format needed by DEqMS.
Is important to note here that the OpenMS output provides unique or proteotypic peptides, not razor peptides.In order to
perform that conversion, we have used a Perl script that reorganizes the information and counts the unique peptides found for
each condition and protein.

################################## Perl script ##################################
open my $openMSExportData,"<","./data/iprg2015.OpenMS.Norm.MSstats.no1pep.csv";
my %protein_data;
my $number_of_runs=12;
# We read the information storing it in a hash. The number of runs is introduced manually, although it
# could be inferred directly from the data.
while(<$openMSExportData>){

next if /^ProteinName/;
chomp;
my ($ProteinName,$PeptideSequence,$PrecursorCharge,$FragmentIon,$ProductCharge,$IsotopeLabelType,

$Condition,$BioReplicate,$Run,$Intensity)= split /\,/,$_;
if(defined $protein_data{$ProteinName}{$Run}{TotalIntensitiy}){

$protein_data{$ProteinName}{$Run}{TotalIntensitiy}=
$Intensity+$protein_data{$ProteinName}{$Run}{TotalIntensitiy};

$protein_data{$ProteinName}{$Run}{Peptides}+=1;
}

else{
$protein_data{$ProteinName}{$Run}{TotalIntensitiy}=$Intensity;
$protein_data{$ProteinName}{$Run}{Peptides}=1;
}

}
# Then, we write that information in a tabular format
open OUT,">","./data/iprg2015.OpenMS.DEqMS.txt";
print OUT "Protein\t";
for my $i(1..$number_of_runs){

print OUT "Run$i\t";
}

for my $i(1..$number_of_runs){
print OUT "Unique$i\t";
}

print OUT "\n";
foreach my $prot(sort keys %protein_data){

print OUT $prot,"\t";
for my $i(1..$number_of_runs){

defined $protein_data{$prot}{$i}{TotalIntensitiy} ?
printf OUT ("%d",$protein_data{$prot}{$i}{TotalIntensitiy}) : print OUT 0;

print OUT "\t";
}

for my $i(1..$number_of_runs){
defined $protein_data{$prot}{$i}{Peptides} ? print OUT $protein_data{$prot}{$i}{Peptides} : print OUT 0;
print OUT "\t";

}
print OUT "\n";
}

################################## end of Perl script ##################################

The Perl script generates a file named “iprg2015.OpenMS.DEqMS.txt” that is imported by DEqMS.
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Table 6: OpenMS and DEqMS quantitation
C2 vs C1 C3 vs C1 C4 vs C1

log2 FC P-value log2 FC P-value log2 FC P-value
A 0.10 1.00e+00 -3.41 5.93e-02 -4.31 6.29e-01
B -2.60 5.73e-04 -6.37 1.40e-02 -0.06 8.95e-01
C -1.84 3.10e-02 2.53 9.85e-04 2.50 9.63e-04
D 6.16 7.57e-06 5.62 2.24e-05 3.20 2.16e-04
E -3.10 9.85e-03 -0.31 9.41e-01 6.19 4.80e-05
F 6.79 7.57e-06 -0.45 9.41e-01 -1.50 3.94e-02

OpenMS.DEqMS.table<-read.table("./data/iprg2015.OpenMS.DEqMS.txt",header = TRUE)
# We extract columns of Label free quantitation intensities from the tabular data file we have created
# (iprg2015.OpenMS.DEqMS.txt).
# Then, we select the proper columns, organized by the previous Perl script in a convenient way.
OpenMS.DEqMS.df = OpenMS.DEqMS.table[,2:13]
OpenMS.DEqMS.df[OpenMS.DEqMS.df==0] <- NA
# Rownames are added using the "Majority.protein.IDs" column
rownames(OpenMS.DEqMS.df) = OpenMS.DEqMS.table$Protein
# Number of NA is counted for each sample group (4 conditions) and columns are created accordingly.
OpenMS.DEqMS.df$na_count_1 = apply(OpenMS.DEqMS.df,1,function(x) sum(is.na(x[1:3])))
OpenMS.DEqMS.df$na_count_2 = apply(OpenMS.DEqMS.df,1,function(x) sum(is.na(x[4:6])))
OpenMS.DEqMS.df$na_count_3 = apply(OpenMS.DEqMS.df,1,function(x) sum(is.na(x[7:9])))
OpenMS.DEqMS.df$na_count_4 = apply(OpenMS.DEqMS.df,1,function(x) sum(is.na(x[10:12])))

D

F

P33327BE

C

P08539

P06781

P43565

0.0

2.5

5.0

7.5

10.0

−5.0 −2.5 0.0 2.5 5.0

 Log2 fold change

 −
Lo

g 1
0 P

DEqMS.OpenMS, C2 vs C1

DC

B
P40061

0.0

2.5

5.0

7.5

10.0

−6 −3 0 3 6

 Log2 fold change

 −
Lo

g 1
0 P

DEqMS.OpenMS, C3 vs C1

E

DC P32828P03965

P40061 P39705

P25617

Q03102

P07257

Q06143

P43565

F

P29703P38804 P22135
0.0

2.5

5.0

7.5

−2.5 0.0 2.5 5.0

 Log2 fold change

 −
Lo

g 1
0 P

DEqMS.OpenMS, C4 vs C1

## Number of significant proteins using P-value<0.05 (not adjusted P-value):
## C2 vs C1 sign. proteins: 75 Total proteins: 2527
## C3 vs C1 sign. proteins: 82 Total proteins: 2529
## C4 vs C1 sign. proteins: 116 Total proteins: 2521

We extract the fold changes and P-values from the spiked proteins for each condition.

3. Proteome Discoverer Analysis
Data generated by Proteome Discoverer is analyzed here. Both MSStats and DEqMS are used, the later using an strategy
equivalent the one used with OpenMS: a Perl script generated a text file that can be properly used by DEqMS using the data
generated by Proteome Discoverer.

3.1. Proteome Discoverer and MSStats

Using the PSMs file exported from Proteome Discoverer (iprg2015.ProteomeDiscoverer_PSMs.txt), data is imported by MSStats.
The rest of the workflow is equivalent to previous MSStats data analysis, and therefore, hidden.
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Table 7: ProtDiscov and MSStats quantitation
C2 vs C1 C3 vs C1 C4 vs C1

log2 FC P-value log2 FC P-value log2 FC P-value
A -0.39 9.94e-01 -2.76 2.37e-03 -6.00 1.83e-04
B -2.85 1.41e-03 -6.08 3.07e-04 -0.14 7.30e-01
C -3.02 1.41e-03 2.51 6.63e-03 2.26 1.39e-02
D 6.10 7.64e-08 5.68 1.34e-07 2.90 1.38e-05
E -3.35 3.17e-04 -0.60 8.55e-01 5.79 8.59e-06
F 6.32 5.74e-04 -0.63 9.36e-01 -3.77 1.66e-02

ProteomeDiscoverer.annot <- read.csv("./data/iprg2015.MSStats.ProteomeDiscoverer.design.csv", header = TRUE)
ProteomeDiscoverer.psms <- read.table("./data/iprg2015.ProteomeDiscoverer_PSMs.txt", sep = "\t", header = TRUE)

ProteomeDiscoverertoMSstatsFormat.data <- PDtoMSstatsFormat(ProteomeDiscoverer.psms,
annotation=ProteomeDiscoverer.annot,which.quantification ="Precursor.Abundance",
which.proteinid = 'Protein.Accessions',which.sequence = 'Annotated.Sequence',
useUniquePeptide=TRUE,fewMeasurements=TRUE,
removeProtein_with1Peptide=TRUE)

The four conditions are compared using condition 1 (Sample 1 in Figure 1) as reference using groupComparison function. A
matrix is built with the three comparisons done (“C2−C1”,“C3−C1”,“C4−C1”).

## C2vsC1 comp.: 2854 prots (after 115 NA removed)
## C3vsC1 comp.: 2852 prots (after 117 NA removed)
## C4vsC1 comp.: 2824 prots (after 145 NA removed)
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## Number of significant proteins using P-value<0.05 (not adjusted P-value):
## C2vsC1 sign. proteins: 24 Total proteins: 2854
## C3vsC1 sign. proteins: 34 Total proteins: 2852
## C4vsC1 sign. proteins: 66 Total proteins: 2824

3.2. Proteome Discoverer and DEqMS

With DEqMS and Proteome Discoverer, a Perl script has been used, in the same way that in the previous section with Open
MS.

################################## Perl script ##################################
my %protein_data;
my $number_of_runs=12;
my @runs=qw /F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12/;
open IN, "<","./data/iprg2015.ProteomeDiscoverer_PSMs.txt";
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while(<IN>){
next if /^\"Checked/;
chomp;
s/\"//g;
my $Annotated_Sequence=(split /\t/)[4];
my $num_proteins=(split /\t/)[7];
next if $num_proteins>1;
my $protein=(split /\t/)[9];
my $charge=(split /\t/)[11];
my $peptide=$Annotated_Sequence."_".$charge;
my $group=(split /\t/)[28];
my $abundance=(split /\t/)[34];

if(defined $protein_data{$protein}{$group}{TotalIntensitiy}){
next unless $abundance;
$protein_data{$protein}{$group}{TotalIntensitiy}=

$abundance+$protein_data{$protein}{$group}{TotalIntensitiy};
$protein_data{$protein}{$group}{Peptides}+=1;
}

else{
next unless $abundance;
$protein_data{$protein}{$group}{TotalIntensitiy}=$abundance;
$protein_data{$protein}{$group}{Peptides}=1;
}

}
open OUT,">","./data/iprg2015.ProteinDiscoverer.DEqMS.txt";
print OUT "Protein\t";
print OUT "$_\t" foreach @runs;
print OUT "Unique $_\t" foreach @runs;
print OUT "\n";
foreach my $prot(sort keys %protein_data){

print OUT $prot,"\t";
foreach my $i(@runs){

defined $protein_data{$prot}{$i}{TotalIntensitiy} ?
printf OUT ("%d",$protein_data{$prot}{$i}{TotalIntensitiy}) : print OUT 0;

print OUT "\t";
}

foreach my $i(@runs){
defined $protein_data{$prot}{$i}{Peptides} ? print OUT $protein_data{$prot}{$i}{Peptides} : print OUT 0;
print OUT "\t";

}
print OUT "\n";
}

################################## end of Perl script ##################################

ProteomeDiscoverer.DEqMS.table<-read.table(
"./data/iprg2015.ProteinDiscoverer.DEqMS.txt",header = TRUE,sep = "\t")

# We extract columns of Label free quantitation intensities from the tabular data file
# we have created (iprg2015.OpenMS.DEqMS.txt).

# Then, we select the proper columns, organized by the previous Perl script in a convenient way.
ProteomeDiscoverer.DEqMS.df = ProteomeDiscoverer.DEqMS.table[,2:13]
ProteomeDiscoverer.DEqMS.df[ProteomeDiscoverer.DEqMS.df==0] <- NA
# Rownames are added using the "Majority.protein.IDs" column
rownames(ProteomeDiscoverer.DEqMS.df) = ProteomeDiscoverer.DEqMS.table$Protein
# Number of NA is counted for each sample group (4 conditions) and columns are created accordingly.
ProteomeDiscoverer.DEqMS.df$na_count_1 = apply(ProteomeDiscoverer.DEqMS.df,1,function(x) sum(is.na(x[1:3])))
ProteomeDiscoverer.DEqMS.df$na_count_2 = apply(ProteomeDiscoverer.DEqMS.df,1,function(x) sum(is.na(x[4:6])))
ProteomeDiscoverer.DEqMS.df$na_count_3 = apply(ProteomeDiscoverer.DEqMS.df,1,function(x) sum(is.na(x[7:9])))
ProteomeDiscoverer.DEqMS.df$na_count_4 = apply(ProteomeDiscoverer.DEqMS.df,1,function(x) sum(is.na(x[10:12])))
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Table 8: ProtDiscov and DEqMS quantitation
C2 vs C1 C3 vs C1 C4 vs C1

log2 FC P-value log2 FC P-value log2 FC P-value
A -0.31 9.99e-01 -3.44 1.38e-02 0.00 0.00e+00
B -3.39 5.17e-03 0.00 0.00e+00 -0.08 9.10e-01
C -5.80 2.10e-01 2.98 1.81e-02 2.67 1.28e-02
D 7.72 3.35e-05 7.33 6.21e-05 4.46 9.83e-04
E -5.78 5.17e-03 -0.58 9.85e-01 6.58 1.21e-04
F 7.63 8.07e-05 -0.48 9.85e-01 -5.00 5.81e-02
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## Number of significant proteins using P-value<0.05 (not adjusted P-value):
## C2 vs C1 sign. proteins: 97 Total proteins: 2718
## C3 vs C1 sign. proteins: 103 total proteins: 2715
## C4 vs C1 sign. proteins: 210 Total proteins: 2666
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Summary of the thesis in Spanish

La presente tesis describe el análisis bioinformático de las principales técnicas sobre cuantificación
“label-free”  utilizadas  en  proteómica.  En  los  diferentes  capítulos  se  abordan  diversas
aproximaciones a la cuantificación de proteínas aplicadas sobre estudios concretos; concretamente:

 Capítulo  1:  Incluye  una  introducción  a  los  aspectos  actuales  de  la  cuantificación  en
proteómica,  ofreciendo  un visión  general  del  campo  y  poniendo  en  contexto  el  trabajo
elaborado en esta tesis.

 Capítulo 2: En este capítulo se ofrece una visión general de los diferentes elementos que
componen una infraestructura de análisis de datos cuantitativos, generados en experimentos
de  proteómica.  Se  describen  elementos  de  hardware y  de  software,  explicando  cómo
interaccionan para conseguir un grado elevado de automatización.

 Capítulo 3: Se centra en la siguiente temática: “Cuantificación mediante marcaje isobárico:
repuesta  hipóxica  temprana  en  la  corteza  cerebral”.  Concretamente  en  la  aproximación
realizada en este capítulo, se aborda mediante el uso de un reactivo de marcaje isotópico
(TMT), la medición de las variaciones de los niveles de proteínas en la corteza cerebral de
ratas, en dos estados de hipoxia con diferente severidad: hipoxia hipobárica (HH) e  hipoxia
hipobárica con isquemia (HHI).  El  modelo HHI presenta un perfil  global de inhibición,
mientras HH presenta un incremento generalizado de los niveles proteicos. Mientras en HH
se afecta principalmente el metabolismo oxidativo y energético, en HHI se observa también
interferencias  en  la  transmisión  sináptica,  secreción  de  neurotransmisores,  desarrollo  de
substancia nigra y activación de la apoptosis mediante la vía mitocondrial.

 Capítulo 4: Incluye una aproximación que se centra en: “Cuantificación SWATH: estudio de
marcadores  proteicos  en  plasma”.  En  este  caso  se  utiliza  una  técnica  de  Adquisición
Independiente de Datos (DIA) llamada SWATH para cuantificar  proteínas  en plasma de
pacientes con Ovario Poliquístico (PCOS) y obesidad con respecto a pacientes sanas. Cinco
proteínas (FLNA, ADIPOQ, LBP, RBP4 y APOC2) presentan variaciones significativas en
pacientes con PCOS, con RBP4 como el marcador más robusto incluso en pacientes con
obesidad. Obesidad y PCOS presentan muchas características en común, con al menos 35
proteínas diferencialmente expresadas y en ambos casos con niveles similares. 

 Capítulo 5: Este capítulo trata sobre la “Adquisición Dependiente de Datos y cuantificación
sin marcaje: re-análisis del estudio iprg2015 ”. Concretamente se usan los datos públicos
generados en el estudio iprg2015 para analizar diferentes tipos de software y técnicas de
análisis  en cuantificación sin marcaje (label-free) en proteómica.  La combinación de los
software MaxQuant y MSStats ha sido escogida como la más conveniente en términos de
resultados  alcanzados,  capacidad  de  automatización  y  aplicabilidad  a  datos  obtenidos
mediante  espectrómetros  de  masas  de  diferentes  fabricantes.  También  se  han  evaluado
estrategias de filtrado de resultados, mediante el establecimiento de valores de corte donde
un P-value de 0.05 y un ratio de ±1 han sido seleccionados como valores de referencia para
posteriores estudios. Por último, se han estudiado diferentes aproximaciones a la imputación
de valores no informados (“missing values”). Dicho estudio arroja la conclusión de que el
uso  del  modelo  “Accelerated  failure”  representa  la  aproximación  más  conveniente,
demostrándose además que la combinación de diferentes modelos resulta de gran utilidad. 
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Purpose: The present study analyses and compares the cortical brain proteomic profiles of two
different models of cerebral hypoxic insult in rats (HH: hypobaric hypoxia and HHI: ischemia
followed by hypobaric hypoxia) in an attempt to describe the alterations of the early molecular
hypoxic adaptive response underlying each one.
Experimental Design: A quantitative proteomic profile of left-brain cortices of rats under HH,
HHI, and control conditions was determined using isobaric labeling (Tandem Mass TagTM)
on the protein extracts from pools of five individuals. Data are available via ProteomeXchange
with identifier PXD004091.
Results: Altogether, 339 proteins were confidently quantified, 99 of them showing significant
variations in the hypoxic conditions with respect to the control. The HHI model presents a
global effect of protein downregulation while HH produces an overall increase of the protein
levels. While HH mainly affecting oxidative and energetic metabolism, HHI also interferes with
synaptic transmission, neurotransmitter secretion, substantia nigra development, and triggers
apoptosis through mitochondrial pathway.
Conclusions and Clinical Relevance: The findings obtained show an overview of protein
alterations under two hypoxic models of different aetiology and provide a basis for more detailed
studies in order to unravel new specific mechanisms and therapies for hypoxic pathologies.

Keywords:

Hypoxia / Ischemia / Proteomics / TMT

� Additional supporting information may be found in the online version of this article at
the publisher’s web-site

1 Introduction

Decline or complete deprivation of oxygen flow to brain and
posterior reoxygenation represent a global health issue, as
occur after an episode of hypobaric hypoxia or in the cerebral
ischemic diseases [1]. Given that decrease or lack of oxygen
characterizes all these illnesses, they share several molecular
hallmarks: oxidative and nitrosative stresses [2], excitotoxicity
[3] or apoptotic and necrotic neuronal death [4]. Nevertheless,

Correspondence: Marı́a Ángeles Peinado, Department of Experi-
mental Biology, University of Jaén, Campus Las Lagunillas s/n,
23071 Jaén, Spain
E-mail: apeinado@ujaen.es

Abbreviations: g.s.d, global standard deviation; GO, Gene Ontol-
ogy; HH, Hypobaric hypoxia; HHI, Ischemia followed by hypobaric
hypoxia; TMT, Tandem Mass TagTM

the available data point out to specific patterns of these molec-
ular responses depending on the multifactorial aetiology, du-
ration, and severity of the hypoxic insult [5]. Certainly, these
variables define and modulate the type of hypoxic adaptive
response as well as the hypoxic damage, although the spe-
cific molecular pattern underlying each ones is still scarcely
known. In the present work, we propose a quantitative anal-
ysis and comparison using isobaric labeling (TMT, Tandem
Mass TagTM) of the proteomic profiles of two cerebral hy-
poxic models of different aetiology and scope, both simulating
brain hypoxic pathologies: high altitude and cerebral ischemic
disease.

Our study has been performed on 15 adult male Wistar
rats provided by Harlan Laboratories (Envigo) and weighing

∗These authors have contributed equally to this work.
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350 g each, kept under standard conditions of light and tem-
perature and allowed ad libitum access to food and water,
all procedures performed in accordance with the EU animal
welfare directive 2010/63/EU. Animals were distributed into
three different groups (n = 5 per group) depending on the
hypoxic model: hypobaric hypoxia (HH), ischemia followed
by hypobaric hypoxia (HHI) and a sham control group with-
out any ischemic or hypoxic manipulations. The first one
was submitted to a model of hypobaric hypoxia (HH) using
a slight modification of a previously published procedure [6]
by downregulating the environmental O2 pressure to a fi-
nal barometric pressure of approximately 300 hPa inside a
hypobaric chamber. The rats were placed in the hypobaric
chamber in which the air pressure was controlled by means
of a continuous vacuum pump and an adjustable inflow valve.
The conditions, simulating an altitude of 9144 m, were main-
tained for 1 h (temperature and humidity conditions being
23±1�C and 60–70%, respectively). Ascent and descent rates
were kept below 300 m/min and the return to normobaric
normoxic conditions spanned 30 min. The second group was
submitted to a model of cerebral ischemia followed by hypo-
baric hypoxia (HHI), which consists of unilateral left common
carotid artery occlusion followed by a hypoxic stress for a pre-
determined time, consisting of a slight modification of the
Levine/Vannucci model [7]. Animals, recovered for 2 h after
surgery, were then exposed to hypobaric hypoxia as previously
described. Sham control animals were submitted to surgery
without vessel sectioning and then kept in the chamber un-
der normobaric normoxic conditions. In all cases, the sur-
vival rate was 100% and animals were anesthetized with ke-
tamine (100 mg/Kg body weight, i.p.) and xylazine (5 mg/Kg
body weight, i.p.) and killed after the hypobaric chamber was
opened. Body temperature was monitored and maintained
throughout all procedures.

The left-brain cortices from animals of all exper-
imental groups were extracted and processed accord-
ing to the following procedure: 0.1 g of the cortices
were homogenized with 1.5 mL of extraction buffer pH
8.0 containing 8 M urea, 20 mM dithiothreitol (DTT),
100 mM Tris–HCl, 0.75 mM phenylmethylsulfonyl fluoride
(PMSF), and 4% 3-[(3-cholamidopropyl)-dimethylammonio]-
1-propane sulfonate (CHAPS). Proteins were extracted in this
buffer for 60 min on ice. Every 15 min, the samples were mod-
erately shaken in a vortex and afterwards were centrifuged at
10 000 × g for 15 min at 4�C. The protein concentration of su-
pernatants was measured using the CB-XTM Protein Assay
(G-Biosciences, St Louis, USA). Lessening of detergents from
protein extraction buffer was carried out using 100 mM tri-
ethylammonium bicarbonate (TEAB) by ultrafiltration (mil-
lipore 3 k) during 30 min at 12 500 rpm and precipitation
(BioRad Protein Sample Cleanup). Isobaric Label Reagent Set
(Thermo TMTsixplexTM) was performed following the man-
ufacturer’s instructions, and followed by desalting (100 mg
C18 cartridges, Schalau). Experiments and analysis were per-
formed in blind manner.

The different experimental conditions were then
distributed into four different Tandem mass TagTM

(TMTsixplexTM) labeled samples, which were analysed us-
ing a LTQ Orbitrap mass spectrometer (Thermo Fisher Sci-
entific). Briefly, peptides were analyzed with the Orbitrap
mass spectrometer equipped with a nano UHPLC Ultimate
3000 (Dionex-Thermo Scientifics). Chromatography condi-
tions were: mobile phase solution A: 0.1% formic acid in
ultrapure water; mobile phase solution B: 80% acetonitrile,
0.1% formic acid, in a C18 nanocapillary column (Acclaim
PepMap C18, 75 um internal diameter, 1.8 um particle size,
Dionex-Thermo Scientifics) as follow: 5 min, 4% solution B;
240 min, 4–35% solution B; 10 min, 35–80% B; 10 min, 80%
B; 10 min 4% B. Nanoelectrospray voltage was set to 1300
V and capillary voltage to 50 V at 190C�. The LTQ Orbitrap
was operated in parallel mode, allowing for the accurate mea-
surement of the precursor survey scan (400–1500 m/z) in
the Orbitrap selection, a 30 000 full-width at half-maximum
(FWHM) resolution at m/z 400 concurrent with the acqui-
sition of three CID/HCD Data-Dependent MS/MS scans in
the LIT and C-Trap for peptide sequence and isotopes quan-
titation (100–2000 m/z), respectively. HCD Resolution set to
7500 FWHM at m/z 400. Singly charged ions were excluded.
The normalized collision energies were 40% for HCD and
35% for CID. The maximum injection times for MS and
MS/MS were set to 50 and 500 ms, respectively. The pre-
cursor isolation width was 3 amu and the exclusion mass
width was set to 5 ppm. Monoisotopic precursor selection
was allowed and singly charged species were excluded. A
more extensive description of the experimental procedures
and a MIAPE [8] compliant report are found in Supporting
Information Methods.

The MS proteomics data have been deposited to the Pro-
teomeXchange Consortium via the PRIDE [9] partner repos-
itory with the dataset identifier PXD004091 (Username: re-
viewer12476@ebi.ac.uk, Password: tAAJD9QV). Data were
analyzed afterwards using Proteome Discoverer (Thermo
Fisher Scientific) and searched against a Uniprot Proteome of
Rattus norvegicus database, containing 27 820 sequences (ver-
sion 2015.01), resulting in the initial identification of 1409
proteins. Of this initial set of proteins, only 339 were further
used in this study as confidently quantified. For a protein to
be considered so, it had to present at least two identified pep-
tides with FDR<5%, present quantitative information into
the three groups of the analysis (HH, HHI, and control)
and its quantitation tags with a coefficient of variation in-
ferior to 30%. The complete list of 339 quantified proteins
can be consulted in Supporting Information Data. Of these
proteins, only 99 showed differential expression with respect
to the control in HH, HHI, or both conditions (Table 1).
The variability of a given protein is reported as the amount
of positive or negative variation evidence: taking the global
standard deviation of the ratios distribution (g.s.d.) as thresh-
old, proteins over/under expressed more than two units of
g.s.d. in the same technical replicate, or between 1.5 and two
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Table 1. List of 99 rat proteins expressed differentially in HH and HHI with Uniprot accession, gene symbol, description, ratios, and overall
evidence of variation: “++” high, “+” moderate, “– –” high, and “–” moderate evidence of over and underexpression, respectively,
and “ = ” for unchanged expression

Protein Gene Description HH data �HH HHI data �HHI

G3V6Y6 Pygb �-1,4 glucan phosphorylase 0.63 ± 0.2
0.80 ± 0.2

– 0.70 ± 0.1 –

G3V9G3 Camk2b Ca/calmodulin-dep. PK II, �,
isof.CRA_a

1.02 ± 0.3
0.62 ± 0.2

– 0.69 ± 0.1
0.88 ± 0.1

–

P11275 Camk2a Ca/calmodulin-dep.PK type II
sub.�

0.99 ± 0.2
0.63 ± 0.1

– 0.93 ± 0.1
0.72 ± 0.1

–

P50554 Abat 4-aminobutyrate aminotransf.
Mitoch

0.95 ± 0.1
0.63 ± 0.0

– 0.73 ± 0.1 –

F1LRK1 Atp4a K-transporting ATPase � chain 1 0.57 ± 0.1
0.88 ± 0.1

– 0.59 ± 0.1 – –

F1M779 Cltc Clathrin heavy chain 0.78 ± 0.2
0.63 ± 0.1

– 0.64 ± 0.1
0.82 ± 0.1

– –

G3V846 Slc1a3 Amino acid transporter 0.62 ± 0.0
0.64 ± 0.1

– 0.93 ± 0.2
0.62 ± 0.0

– –

P06685 Atp1a1 Na/K-transporting ATPase sub.
�-1

0.63 ± 0.2 – 0.64 ± 0.1
0.96 ± 0.1

– –

P06686 Atp1a2 Na/K-transporting ATPase sub.
�-2

0.62 ± 0.1 – 0.63 ± 0.1
0.96 ± 0.1

– –

P06687 Atp1a3 Na/K-transporting ATPase sub.
�-3

0.61 ± 0.1 – 0.94 ± 0.1
0.63 ± 0.1

– –

P32851 Stx1a Syntaxin-1A 0.96 ± 0.0
0.63 ± 0.1

– 0.95 ± 0.2
0.64 ± 0.1

– –

Q06645 Atp5g1 ATP synthase F(0) complex
sub.C1,mitoch

0.53 ± 0.0
0.82 ± 0.0

– 0.60 ± 0.0
0.92 ± 0.1

– –

Q6AXX6 Fam213a Redox-regulatory protein
FAM213A

0.68 ± 0.1
0.64 ± 0.0

– 0.63 ± 0.0 – –

Q6PDU7 Atp5l ATP synthase sub. g,
mitochondrial

0.85 ± 0.1
0.60 ± 0.1

– 1.42 ± 0.1
0.77 ± 0.1

+ +

D3ZAF6 Atp5j2 ATP synthase sub. f,
mitochondrial

0.62 ± 0.1
0.72 ± 0.0

– 0.99 ± 0.0
0.75 ± 0.1

=

F7EYB9 Omg Protein Omg 0.90 ± 0.0
0.68 ± 0.1

– 0.85 ± 0.1
0.92 ± 0.0

=

P07825 Syp Synaptophysin 0.61 ± 0.0 – 0.93 ± 0.1
0.74 ± 0.1

=

Q4KLX9 Ccdc163 Protein Ccdc163 0.62 ± 0.1
0.89 ± 0.0

– 0.98 ± 0.0 =

Q63564 Sv2b Synaptic vesicle glycoprotein
2B

0.60 ± 0.1
0.73 ± 0.2

– 0.81 ± 0.1 =

Q5RKJ9 Rab10 RAB10, member RAS oncogene
family

0.54 ± 0.0
0.54 ± 0.0

– – 0.62 ± 0.0
0.95 ± 0.2

– –

P84087 Cplx2 Complexin-2 1.33 ± 0.4
0.50 ± 0.1

– – 1.15 ± 0.3
1.35 ± 0.3

+

B0BNE6 Ndufs8 NADH-DH(Ubiq.)Fe-S prot8
(Pred),isoCRA_a

0.45 ± 0.1
1.22 ± 0.1

– – 1.17 ± 0.2
1.07 ± 0.1

=

P84817 Fis1 Mitochondrial fission 1 protein 0.90 ± 0.2
0.57 ± 0.0

– – 0.92 ± 0.1 =

D3ZH42 Mov10l1 Protein Mov10l1 1.34 ± 0.1
1.05 ± 0.0

+ 0.65 ± 0.0 –

P02770 Alb Serum albumin 0.75 ± 0.1
1.31 ± 0.3

+ 0.68 ± 0.1
0.99 ± 0.1

–

D3ZF13 LOC683884 Acyl carrier protein 0.81 ± 0.0
1.40 ± 0.1

+ 1.31 ± 0.1 +

P04692 Tpm1 Tropomyosin �-1 chain 1.37 ± 0.2 + 1.28 ± 0.2 +
P26772 Hspe1 10 kDa heat shock protein,

mitochondrial
1.46 ± 0.4
1.05 ± 0.3

+ 0.95 ± 0.1
1.27 ± 0.3

+

P31399 Atp5h ATP synthase sub. d,
mitochondrial

1.45 ± 0.3 + 1.27 ± 0.3 +

(Continued)
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Table 1. Continued

Protein Gene Description HH data �HH HHI data �HHI

P80254 Ddt D-dopachrome decarboxylase 1.39 ± 0.2 + 1.27 ± 0.1 +
Q03344 Atpif1 ATPase inhibitor, mitochondrial 1.44 ± 0.2

1.14 ± 0.1
+ 1.31 ± 0.2

1.08 ± 0.1
+

Q6TXF3 Dbi Acyl-CoA-binding protein 0.97 ± 0.1
1.41 ± 0.1

+ 1.28 ± 0.2 +

P07171 Calb1 Calbindin 1.39 ± 0.1
0.85 ± 0.1

+ 1.37 ± 0.2 + +

P08082 Cltb Clathrin light chain B 1.21 ± 0.3
1.42 ± 0.2

+ 1.31 ± 0.1
1.27 ± 0.0

+ +

B2RYS2 Uqcrb Cytochrome b-c1 complex sub.
7

1.44 ± 0.1
0.85 ± 0.2

+ 1.13 ± 0.1
1.08 ± 0.2

=

D3ZD09 Cox6b1 Cytochrome c oxidase sub. 6B1 1.41 ± 0.3 + 1.23 ± 0.2
1.14 ± 0.2

=

D3ZJ08 Hist2h3c2 Histone H3 1.00 ± 0.1
1.31 ± 0.2

+ 1.17 ± 0.0
1.22 ± 0.2

=

D4A0T0 Ndufb10 Protein Ndufb10 1.45 ± 0.0 + 1.11±0.1 =
D4A678 Spta1 Protein Spta1 0.85 ± 0.1

1.39 ± 0.1
+ 1.01±0.0 =

D4ACQ2 LOC690384 Protein LOC690384 1.37 ± 0.0
1.07 ± 0.1

+ 1.22±0.1 =

F1LMR7 Dpp6 Dipeptidyl aminopeptidase-like
p6

1.33 ± 0.2 + 0.80±0.0 =

F1M269 NA Glyceraldehyde-3-phosphate
DH Frag.

1.08 ± 0.1
1.40 ± 0.2

+ 1.09±0.1 =

G3V6D3 Atp5b ATP synthase sub. � 1.40 ± 0.4
0.81 ± 0.2

+ 1.14 ± 0.2
1.12 ± 0.2

=

G3V6 × 7 Pcsk1n Proprot. convertase
subtilisin/kexin T1 inhib

1.39 ± 0.4 + 1.11 ± 0.1
1.25 ± 0.3

=

G3V8Q2 Ina �-internexin 1.37 ± 0.3 + 0.96 ± 0.1
1.06 ± 0.2

=

O88339 Epn1 Epsin-1 1.44 ± 0.1 + 1.12±0.1 =
P05065 Aldoa Fructose-bisphosphate aldolase

A
0.94 ± 0.1
1.33 ± 0.4

+ 0.89 ± 0.1
1.03 ± 0.1

=

P10860 Glud1 Glutamate DH 1, mitochondrial 0.93 ± 0.1
1.39 ± 0.4

+ 1.04 ± 0.1
0.99 ± 0.1

=

P17764 Acat1 Acetyl-CoA acetyltrans. Mitoch. 1.09 ± 0.0
1.32 ± 0.1

+ 1.12±0.0 =

P23565 Ina �-internexin 1.37 ± 0.4 + 0.96 ± 0.1
1.06 ± 0.2

=

P34926 Map1a Microtubule-associated protein
1A

1.09 ± 0.2
1.31 ± 0.3

+ 1.08 ± 0.2
1.00 ± 0.2

=

P35332 Hpcal4 Hippocalcin-like prot. 4 1.40 ± 0.3
0.95 ± 0.2

+ 1.13±0.2 =

P47819 Gfap Glial fibrillary acidic protein 1.11 ± 0.2
1.42 ± 0.4

+ 1.15 ± 0.2
1.04 ± 0.2

=

P48500 Tpi1 Triosephosphate isomerase 1.07 ± 0.1
1.38 ± 0.3

+ 1.06 ± 0.1
1.00 ± 0.1

=

P54311 Gnb1 Guanine nucl-bind prot
G(I)/G(S)/G(T) sub. �-1

0.82 ± 0.1
1.32 ± 0.1

+ 1.04 ± 0.1
0.91 ± 0.2

=

P54313 Gnb2 Guanine nucl-bind prot
G(I)/G(S)/G(T) sub. �-2

0.78 ± 0.1
1.32 ± 0.1

+ 0.91±0.0 =

P62161 Calm1 Calmodulin 1.44 ± 0.4 + 1.19±0.2 =
P62762 Vsnl1 Visinin-like protein 1 1.39 ± 0.3

0.88 ± 0.2
+ 1.00 ± 0.2

1.20 ± 0.1
=

P63329 Ppp3ca Ser/Thr-prot Pase 2B catalytic
sub. � isof

0.70 ± 0.1
1.35 ± 0.3

+ 0.81 ± 0.2
0.96 ± 0.1

=

P85845 Fscn1 Fascin 1.33 ± 0.4
0.87 ± 0.1

+ 1.10 ± 0.2
0.99 ± 0.3

=

(Continued)
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Table 1. Continued

Protein Gene Description HH data �HH HHI data �HHI

Q5XIF3 Ndufs4 NADH DH [ubiquinone] Fe-S
prot4, mitoch

1.25 ± 0.2
1.34 ± 0.4

+ 0.99±0.3 =

Q8R2H0 Atp6v1g2 ATPase, H+ transporting, V1
sub. G isoform 2

1.32 ± 0.4
1.33 ± 0.2

+ 1.19±0.1 =

F1LQ96 Sncg Gamma-synuclein 1.44 ± 0.1
1.60 ± 0.1

+ + 1.27±0.1 +

G3V7Y3 Atp5d ATP synthase sub. delta,
mitochondrial

1.63 ± 0.2
1.11 ± 0.1

+ + 0.97 ± 0.1
1.32 ± 0.1

+

P07936 Gap43 Neuromodulin 1.62 ± 0.3 + + 1.28±0.4 +
D3ZH98 NA Uncharacterized protein 1.55 ± 0.2

1.59 ± 0.5
+ + 1.38±0.2 + +

F1LMW7 Marcks Myristoylated Ala-rich C-kinase
substrate

1.52 ± 0.1
0.88 ± 0.2

+ + 1.38 ± 0.1 + +

Q05175 Basp1 Brain acid soluble protein 1 1.78 ± 0.3 + + 1.55 ± 0.2
1.07 ± 0.0

+ +

D3ZCZ9 LOC100912599 Protein LOC100912599 1.52 ± 0.2 + + 0.92 ± 0.0 =
D4AB12 NA Uncharacterized protein 1.46 ± 0.2

1.08 ± 0.1
+ + 1.13 ± 0.1 =

P56571 NA ES1 protein homolog,
mitochondrial

1.58 ± 0.4
0.99 ± 0.2

+ + 1.04 ± 0.0 =

Q3ZB98 Bcas1 Breast carcinoma-
ampl.seq1.hom(Frag)

1.71 ± 0.2
1.54 ± 0.4

+ + 1.10 ± 0.2 =

Q63754 Sncb �-synuclein 1.54 ± 0.2
1.45 ± 0.3

+ + 1.21 ± 0.1 =

P01946 Hba1 Hemoglobin sub. �-1/2 0.96 ± 0.1
0.97 ± 0.2

= 0.65 ± 0.2 -

P02688 Mbp Myelin basic protein 1.09 ± 0.1 = 0.74 ± 0.1
0.81 ± 0.1

-

P04631 S100b Protein S100-B 1.31 ± 0.4
0.89 ± 0.2

= 1.12 ± 0.1
0.80 ± 0.0

-

P05708 Hk1 Hexokinase-1 0.80 ± 0.1
0.68 ± 0.1

= 0.93 ± 0.1
0.69 ± 0.1

-

P21707 Syt1 Synaptotagmin-1 0.95 ± 0.2
0.70 ± 0.1

= 0.91 ± 0.1
0.70 ± 0.1

-

P27139 Ca2 Carbonic anhydrase 2 0.79 ± 0.1
0.75 ± 0.1

= 0.72 ± 0.1 -

P31596 Slc1a2 Excitatory amino acid
transporter 2

0.80 ± 0.2
0.68 ± 0.1

= 1.04 ± 0.3
0.71 ± 0.2

-

P62944 Ap2b1 AP-2 complex sub. � 0.64 ± 0.2
0.94 ± 0.0

= 1.02 ± 0.1
0.68 ± 0.0

-

Q09073 Slc25a5 ADP/ATP translocase 2 0.90 ± 0.2
0.65 ± 0.1

= 0.68 ± 0.1
0.95 ± 0.1

-

Q6P6V0 Gpi Glucose-6-phosphate
isomerase

0.93 ± 0.2
0.70 ± 0.1

= 0.73 ± 0.1
1.02 ± 0.0

-

Q812E9 Gpm6a Neuronal membrane
glycoprotein M6-a

0.73 ± 0.1 = 0.71 ± 0.2
0.91 ± 0.0

-

B0K020 Cisd1 CDGSH Fe-S domain-cont.
Prot1

1.02 ± 0.1
0.81 ± 0.2

= 0.84 ± 0.1
0.60 ± 0.1

- -

D3ZNI9 Kcnt1 K channel subfamily T member
1

0.98 ± 0.3
0.91 ± 0.1

= 0.61 ± 0.1 - -

G3V9B3 Mag Myelin-associated glycoprotein 0.67 ± 0.0 = 0.59 ± 0.0
0.84 ± 0.1

- -

P02091 Hbb Hemoglobin sub. �-1 0.93 ± 0.1 = 0.61 ± 0.1 - -
P13233 Cnp 2’,3’-cyclic-nucleotide

3’-Pdiesterase
1.19 ± 0.3
0.68 ± 0.1

= 0.60 ± 0.1
0.83 ± 0.2

- -

Q05962 Slc25a4 ADP/ATP translocase 1 0.78 ± 0.2
0.64 ± 0.2

= 0.63 ± 0.1
0.94 ± 0.1

- -

Q62669 NA Protein Hbb-b1 1.09 ± 0.2
0.97 ± 0.2

= 0.64 ± 0.1 - -

(Continued)
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Table 1. Continued

Protein Gene Description HH data �HH HHI data �HHI

Q63345 Mog Myelin-oligodendrocyte
glycoprotein

0.64 ± 0.1 = 0.58 ± 0.1
0.85 ± 0.1

- -

Q8SEZ5 NA Cytochrome c oxidase sub. 2 0.71 ± 0.0 = 0.61 ± 0.1 - -
R9PY00 Vamp2 Vesicle-assoc membr. prot2

(Frag)
0.94 ± 0.2 = 0.76 ± 0.0 - -

B2GV73 Arpc3 Actin-related protein 2/3
complex sub. 3

0.94 ± 0.0
0.95 ± 0.1

= 0.98 ± 0.0
1.22 ± 0.2

+

P25113 Pgam1 Phosphoglycerate mutase 1 1.01 ± 0.2
1.35 ± 0.2

= 1.30 ± 0.4 +

P47728 Calb2 Calretinin 1.29 ± 0.2
0.93 ± 0.1

= 1.30 ± 0.2
1.01 ± 0.2

+

F1M2D3 Vdac1 Uncharacterized protein 1.23 ± 0.2
1.13 ± 0.3

= 1.28 ± 0.2
1.16 ± 0.2

+ +

Q9Z2L0 Vdac1 Voltage-dep anion-sel. channel
prot1

1.19 ± 0.2
1.07 ± 0.3

= 1.28 ± 0.2
1.12 ± 0.2

+ +

g.s.d. in two technical replicates, are considered as highly
over/under expressed, while variation between 1.5 and two
g.s.d in a single technical replicate is considered as moderate
evidence of over/under expression (Supporting Information
Analysis).

Using Cytoscape ClueGO plug-in [10], we performed a
Gene Ontology (GO) enrichment analysis (two-sided hyper-
geometric test and Bonferroni step-down correction) of the
99 proteins expressed differentially in HH and/or HHI con-
ditions: 54 of them belong to at least one of the 20 enriched
biological processes found. Both hypoxic models present a
similar number of differentially expressed proteins (37 and
36, respectively), but with an overall positive expression in
HH (22 overexpressed proteins) and negative in HHI (25

underexpressed proteins) (Fig. 1). The similar set of affected
processes, both in HH and HHI, points to similar pathologic
patterns [1], while the overall inhibitory nature found in HHI
is explained by its greater severity in contrast to HH [5].

The 20 biological processes identified were grouped into
seven functional groups attending to the similarity of the
processes and genes shared (Fig. 2):

(i) ATP metabolic process and (ii) Proton, Hydrogen trans-
membrane, and Inorganic cation transport, both show-
ing higher enrichment in HH, present a more downregu-
lated state in HHI: potassium import across plasma mem-
brane is severely inhibited (Atp1a1, Atp1a3), while calcium

Figure 1. The proportion of over/underexpressed proteins in HH (37 proteins) and HHI (36 proteins) is shown for each of the 20 GO biological
processes, grouped into seven functional groups (bold). Under the bar chart, the total of over/underexpressed proteins (in parentheses the
number of times these proteins appear into one biological process), shows a general increase of protein expression in HH (22 protein with
increased levels versus 15 decreased) and decrease in HHI (25 decreased versus 11 increased).
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Figure 2. Gene enrichment analysis in HH and HHI. (A) Table showing GO terms associated to each functional group, p-values obtained for
HH and HHI related genes (in bold the lowest) and condition (HH or HHI) in which the functional group is more enriched. (B) Relationships
between functional groups and genes in HH and HHI. Genes are coloured dark and light green for high and moderate evidence of under
expression, and dark and light red for high and moderate evidence of overexpression, respectively. (C) For each functional group, using
the same legend, the list of genes related to HH and HHI experimental conditions.

exocytosis is also downregulated (Atp1a2 and Vamp2). Fur-
thermore, response to hypoxia (Aldoa) and response to is-
chemia (HK1) markers [11] show differential expression
on their respective conditions.

(iii) Brain development, (iv) Neuron projection morphogene-
sis, and (v) Substantia nigra development present upregu-
lated genes—Gap43, Maks, and Basp1—all highly involved
in signal transduction pathways, membrane transport and
cytoskeletal dynamics [12]. The calmodulin-dependent pro-
tein kinases (Camk2a and Camk2b), that phosphorylate
the central bioenergy sensor AMP-activated protein kinase

[13], are downregulated in both HH and HHI; this same
tendency is followed by Rab10, a small GTPase acting as
regulator of membrane trafficking and fusion also involved
in autophagy [14]. Additionally, several proteins related to
substantia nigra development (Ina, Calm1, Mbp, Mag, and
Cnp) show variation in HH and HHI, consistently with
previous proteomic studies of changes in Substantia nigra
caused by neurodegenerative diseases [15].

(vi) Synaptic transmission, Signal release, and Neuro-
transmitter secretion are greatly impaired under HHI, as
expected under severe excitotoxic damage; interestingly,

C© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.clinical.proteomics-journal.com
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the SNARE protein Vamp2, and its regulatory proteins
Syt1, both highly involved in glutamate release and neu-
ron damage after ischemic injury, are downregulated but
only in HHI [16].

(vii) Regulation of mitochondrial membrane permeability
points to the activation of apoptosis through mitochondrial
pathways (downregulation of apoptosis inhibitors Gpi,
Slc25a4 Slc25a5, and activation of Atpif1). Components
of the mPTP (adenine nucleotide translocator: Slc25a4,
Slc25a5, and Vdac1) [17] where also differentially expressed
in HH and HHI.

In conclusion, HHI model presents a global effect of pro-
tein downregulation while HH produces an overall increase
of the protein levels. With HH mainly affecting oxidative
and energetic metabolism, HHI also interferes with synap-
tic transmission, neurotransmitter secretion, substantia nigra
development and triggers apoptosis through mitochondrial
pathway.

This study was supported by the Spanish Ministry of Science
and Innovation (SAF2008-03938).

The authors have declared no conflict of interest.
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