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Abstract
This paper presents new specification tests for a general synchronous additive con-
current model formulation. As a novelty, our proposal does not require a preliminary
model or error structure estimation. No tuning parameters are involved either. We
develop a suitable test statistic using the martingale difference divergence coefficient.
As a result, this statistic measures the departure from the conditional mean indepen-
dence in the concurrent model framework, considering the information of all observed
time instants. In particular, global as well as partial dependence tests are introduced.
Then, we allow one to quantify the effect of a group of covariates or to apply covariates
selection one by one. We obtain its asymptotic distribution under the null and pro-
pose a bootstrap algorithm to compute the p-values in practice. Through simulations,
we illustrate our method, and its performance is compared to existing competitors.
In addition, we use this in the analysis of three real datasets related to gait data, flu
activity, and casual bike rentals.
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1 Introduction

A general concurrent model is a regression model where the response Y =
(Y1, . . . ,Yq) ∈ R

q , for q ≥ 1, and p ≥ 1 covariates X = (X1, . . . , X p) ∈ R
p

are all functions of the same argument t ∈ D, and the influence is concurrent, simul-
taneous or point-wise in the sense that X is assumed to only influence Y (t) through
its value X(t) = (

X1(t), . . . , X p(t)
) ∈ R

p at time t by the relation

Y (t) = m(t, X(t)) + ε(t), (1)

where m(·) is an unknown function collecting the E
[
Y (t)|X(t)

]
information and ε(t)

is the error of the model. This last is a process which is assumed to have mean zero,
independent of X and with covariance function �(s, t) = C [ε(s), ε(t)], being C[·, ·]
the covariance operator.

The concurrentmodel displayed in (1) is in themiddle of longitudinal and functional
data. This classification depends on the number of observed time instants in the t
domain D. When this number is dense enough, the sample data can be treated as
curves, translating into a functional data framework. Otherwise, if time instants are
spaced respective to the t domain and not dense, a longitudinal framework will be
more suitable. Determining the inflection point between both situations is still an
open problem. For a discussion on this topic, we refer the reader to the work of Wang
et al. (2017).

There are plenty of contexts where the (1) formulation arises both in functional or
longitudinal framework form. The functional concurrent model can be employed in
any situation where data can be monitored, like in health, environmental or financial
issues among others. Some examples can be seen in works such as the ones of Xue and
Zhu (2007) or Jiang and Wang (2011) for the longitudinal data context. They perform
epidemiology studies of AIDS datasets. Other real data examples in medicine can
be found in Goldsmith and Schwartz (2017) or Wang et al. (2017). Goldsmith and
Schwartz (2017) perform a blood pressure study to detect masked hypertension. For
their part, authors in Wang et al. (2017) use the concurrent model in a data study of
flu prevalence in the USA. Furthermore, they model Alzheimer’s disease progression
using brain neuroimaging data. More examples of health and nutrition are displayed
in Kim et al. (2018) and Ghosal and Maity (2022a). They perform studies related
to gait deficiency, dietary calcium absorption, and the relation between child mortal-
ity and financial power in different countries. Examples in the environmental field
are collected in works such as Zhang et al. (2011) or Ospína-Galindez et al. (2019).
These studies are based on describing forest nitrogen cycling andmodeling the rainfall
ground, respectively. A completely different example is the work of Ghosal andMaity
(2022b), where casual bike rentals in Washington, D.C., are concurrently explained
using meteorological variables. This extensive list of examples reveals that the con-
current model is a very transversal and wide-employed tool nowadays.

An inconvenience of the concurrent model general formulation, displayed in (1),
is that the m(·) structure is quite difficult to be estimated in practice. For this reason,
it is common to consider some assumptions about its form. In the literature, it is quite
common to assume linearity, which translates into taking m(t, X(t)) = β(t)X(t) in
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(1), and work under this premise. However, this assumption can be quite restrictive in
practice. Thus, more general structures are needed to model real examples properly.
This last results in a gain in flexibility but adds complexity to the estimation process.
Maity (2017) discusses the effort made for estimating different concurrent model
structures. This paper highlights that more information is needed to correctly estimate
the function m(·). In conclusion, it is crucial to guarantee that there exists useful
information on the covariates X to model the behavior of Y as a preliminary step.
Therefore, covariates selection algorithms for the concurrent model are of interest to
avoid irrelevant covariates and simplify the estimation process.

As a result, the first step to assure the veracity of themodel structure displayed in (1)
is to verify if all p covariates {X1(t), . . . , X p(t)} contribute to the correct explanation
of Y (t), or some can be excluded from the model formulation. For this purpose, taking
D ⊆ {1, . . . , p}, a dependence test can be performed by means of testing

H0 : E
[
Y (t)|XD(t)

] = E [Y (t)] almost surely ∀t ∈ D \ N
Ha : P

(
E

[
Y (t)|XD(t)

] �= E [Y (t)]
)

> 0 ∀t ∈ V

where XD(t) denotes the subset of X(t) considering only the covariates with index in
D,D \N is the domain of t minus a null setN ⊂ D and V ⊂ D is a positive measure
set.

Quoting Zhang et al. (2018), the above problem is very challenging in practice
without assuming any structure of m(·). This drawback is due to the vast class of
alternatives targeted, related to growing dimension and nonlinear dependence. To
solve this inconvenience, the authors propose testing the nullity of the main effects
first, keeping a type of hierarchical order. Then, it is tested if additive and separate
effects first enter the model before considering interactive structures. This results in
the new test displayed in (2).

H0 : E
[
Y (t)|X j (t)

] = E [Y (t)] almost surely ∀t ∈ D \ N and ∀ j ∈ D

Ha : P
(
E

[
Y (t)|X j (t)

] �= E [Y (t)]
)

> 0 ∀t ∈ V and some j ∈ D
(2)

Then, rejection of the null hypothesis of (2) automatically implies the rejection of
the H0 : E

[
Y (t)|XD(t)

] = E [Y (t)] hypothesis. It is important to highlight that the
reciprocal is not always true. In thisway, themodel (1) onlymakes sense if it is possible
to reject the H0 hypothesis of (2). Otherwise, the covariates do not supply relevant
information to explain Y . It is notorious that formulation (2) collects a wide range of
dependence structures between X and Y in terms of additive regression models, where
m (t, X(t)) = F1 (t, X1(t)) + · · · + Fp

(
t, X p(t)

)
. Moreover, it is no need to know

the real form of m(·) to determine whether the effect of X is significant.
To the best of our knowledge, there is no literature on significance tests for the

additive concurrent model that avoids previous model estimation or extra tuning
parameters. We refer to Wang et al. (2017) and Ghosal and Maity (2022a) for these in
the linear formulation. They both propose effect tests over the β(t) function making
use of the empirical likelihood. Thus, once the model parameters are estimated in the
linear framework, the authors provide tools to test if all p covariates are relevant or,
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on the contrary, if some can be excluded from the model. Nevertheless, a suitable
effects estimation involves several tuning parameters and the linearity hypothesis.
These are necessary to guarantee the adequate performance of the cited procedures. In
terms of the β(t) structure estimation, different approaches arise. For example, Wang
et al. (2017) propose using a local linear estimator, which depends on a proper band-
width selection. In contrast, Ghosal and Maity (2022a) employs an expansion into a
finite number of elements of a functional basis. This expansion requires the number
of considered terms selection. In addition, this last procedure needs to estimate the
error model structure. This process translates into an additional functional basis rep-
resentation and estimation of extra parameters. All this translates into difficulties in
the estimation process, even if the linear hypothesis can be accepted. Currently, Kim
et al. (2018) developed a new significance test in a more general framework to allevi-
ate the linear hypothesis assumption: additive effects are considered in (1). This work
employs F-test techniques over a functional basis representation of the additive effects
to detect relevant covariates. Again, this technique depends on an adequate prelimi-
nary estimation of the model effects to be able to select relevant covariates by applying
significance tests. However, the correct selection of the number of basis functions for
each considered covariate/effect representation is still an open problem. These quanti-
ties play the role of tuning parameters. Furthermore, a proper error variance estimation
is needed to standardize the covariates as an initial step. As this structure is unknown
in practice, Kim et al. (2018) assumes that this can be decomposed as a sum of two
terms. The first one is a zero-mean smooth stochastic process, and the second term is
a zero-mean white noise measurement error with variance σ 2, resulting in the autoco-
variance function �(s, t) = �(s, t) + σ 2

I{s = t}. Nevertheless, this assumption can
be restrictive in practice. In consequence, significance tests without any assumption
in the model structure and no necessity of a preliminary estimation step are desirable.

Other procedures for covariates selection with a different methodology are the
Bayesian selectors and the penalization techniques used in the concurrent model esti-
mation process. We can highlight the works of Goldsmith and Schwartz (2017) or
Ghosal et al. (2020) in the linear formulation and the one of Ghosal andMaity (2022b)
for general additive effects.While Goldsmith and Schwartz (2017) uses the spike-and-
slab regression covariates selection procedure, Ghosal et al. (2020) and Goldsmith and
Schwartz (2017) implement penalizations based on LASSO (Tibshirani 1996), SCAD
(Fan and Li 2001), MCP (Zhang 2010) or its grouped versions (Yuan and Lin 2006),
respectively. As a result, the selection of covariates is implemented together with esti-
mation. Nevertheless, some tuning parameters are needed in all these methodologies:
it is necessary to determine the number of basis functions to represent the effects in
all of them, jointly with prior parameters, in case of the spike-and-slab regression, or
the amount of penalization otherwise. As a result, the estimation of tuning parameters
applies in these approaches as well.

In this paper, we deal with this concern by bridging a gap for significance tests
without previous model estimation. The new proposal for specification testing can
assess the usefulness of a vector X for modeling the expectation of the Y vector in
a pretty general formulation. Besides, this approach avoids extra tuning parameters
estimation, as well as the need to model the error structure. For this aim, we propose a
novel statistic for the concurrent model based on the martingale difference divergence
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ideas of Shao and Zhang (2014) to perform (2). As a result, this approach tests the
effect of the covariates in the explanation of Y no matter the underlying form of m(·)
while assuming additive effects.

It is important to notice that one can consider D = {1, . . . , p} to perform (2), which
translates in testing if all p covariates are relevant, or only a subset D ⊂ {1, . . . , p}
with cardinality 1 ≤ d < p. In this last case, one tests if only a bunch of covariates are
relevant, excluding the rest from the model. A special case is to consider D = { j} for
some j = 1, . . . , p. This approach allows to implement covariates screening with no
need to estimate the regressor function. Thus, it is possible to test the effect of every
covariate. This results in j = 1, . . . , p partial tests of the form

H0 j : E
[
Y (t)|X j (t)

] = E [Y (t)] almost surely ∀t ∈ D \ N
Haj : P

(
E

[
Y (t)|X j (t)

] �= E [Y (t)]
)

> 0 ∀t ∈ V
(3)

Thus, one can test if a small subset of {1, . . . , p} is suitable to fit the model or if all
covariates need to be considered. As a result, it is possible to avoid noisy covariates
entering the model and reduce the problem dimension.

The rest of the paper is organized as follows. In Sect. 2, the martingale differ-
ence divergence coefficient is introduced along with some remarkable properties. We
present the new specification tests in Sect. 3. A theoretical justification for their proper
behavior is given and a bootstrap scheme is proposed to calibrate these in practice.
A simulation study to test their performance is carried out in Sect. 4, jointly with a
comparison involving Ghosal and Maity (2022a) and Kim et al. (2018) competitors.
Next, the proposed tests are applied to three real datasets in Sect. 5. Eventually, some
discussion arises in Sect. 6.

2 Martingale difference divergence (MDD)

The martingale difference divergence (MDD) was introduced by Shao and Zhang
(2014). This coefficient is a natural extension of the distance covariance (Székely et al.
2007; Szekely and Rizzo 2017). The MDD measures the departure from conditional
mean independence between a vector response variable Y ∈ R

q and a vector predictor
X ∈ R

p. This coefficient was introduced in Shao and Zhang (2014) for the scalar
response case, taking q = 1, and was later generalized in Park et al. (2015) for values
of q ≥ 1. Hence, this idea can be used to screen out numerical variables that do not
contribute to the conditional mean explanation of Y . This translates into the test

H0 : E[Y |X ] = E[Y ] almost surely

Ha : P (E[Y |X ] �= E[Y ]) > 0
(4)

Therefore, a coefficient measuring the difference between the conditional mean
and the unconditional one is needed to perform (4). For this aim, following similar
ideas and argumentation of the distance covariance measure of Székely et al. (2007),
it emerges the MDD coefficient.
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Then, for Y ∈ R
q and X ∈ R

p, the MDD of Y given X is the nonnegative number
MDD(Y |X ) defined by

MDD2(Y |X ) = 1

cp

∫

Rp

|ψY ,X (s) − ψYψX (s)|2q
‖s‖p+1

p

ds (5)

where cp = π(1+p)/2/	((1 + p)/2), being 	(·) the gamma function, ψY ,X (s) =
E[Yei<s,X>], ψY = E[Y ] and ψX (s) = E[ei<s,X>]. i = √−1 is the imaginary unit,
< ·, · > the inner product, |z|q = √

zH z the complex norm of z ∈ C
q , where zH

denotes the conjugate transpose and ‖·‖p is the Euclidean norm of the R
p space.

It can be seen in Theorem 1 of Shao and Zhang (2014) and Proposition 3.1 of Park
et al. (2015) that, if it is verifiedE[‖Y‖2q ]+E[‖X‖2p] < ∞ andE[‖Y‖3q ]+E[‖X‖3p] <

∞ respectively, and being (X ′,Y ′) and (X ′′,Y ′′) independent copies of (X ,Y ), an
alternative way to the definition (5) is

MDD2(Y |X ) = − E

[
(Y − E[Y ]) (

Y ′ − E[Y ′]) ‖X − X ′‖p

]

= E
[
J (X , X ′)L(Y ,Y ′)

] + E
[
J (X , X ′)

]
E

[
L(Y ,Y ′)

]

− 2E
[
J (X , X ′)L(Y ,Y ′′)

]
(6)

where L(y, y′) = ‖y − y′‖2q/2 and J (x, x ′) = ‖x − x ′‖p.
A proof for first expression of Eq. (6), considering q = 1, follows from Theorem

1 of Shao and Zhang (2014). Similar arguments can be employed for general q ≥ 1
considering the q-norm instead. The second formulation results from expanding and
canceling terms. Some guidelines can be found in the proof of Theorem 1 of Shao and
Zhang (2014) as well.

Since, in general, MDD(Y |X ) �= MDD(X |Y ), this is named divergence instead
of distance. The MDD equals 0 if and only if it is verified the H0 hypothesis of (4)
and otherwise MDD > 0. Therefore, the test (4) can be rewritten as the new one
displayed in (7).

H0 : MDD2(Y |X ) = 0 almost surely

Ha : P

(
MDD2(Y |X ) �= 0

)
> 0

(7)

Next, an unbiased estimator of MDD introduced in Zhang et al. (2018) is pre-
sented. Then, given n independent observations (Xn,Yn) = {(Xi ,Yi ), i = 1, . . . , n}
from the joint distribution of (X ,Y ), with Xi = (Xi1, . . . , Xip)

 ∈ R
p and

Yi = (Yi1, . . . ,Yiq) ∈ R
q , it is possible to define A = (Ail)

n
i,l=1 and B = (Bil)ni,l=1,

where Ail = ‖Xi − Xl‖p and Bil = ‖Yi − Yl‖2q/2 for i, l = 1, . . . , n. Following
the U-centered ideas of Park et al. (2015), the U-centered versions of A and B can be
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defined, A and B respectively, given by

Ail = Ail − 1

n − 2

n∑

q=1

Aiq − 1

n − 2

n∑

q=1

Aql + 1

(n − 1)(n − 2)

n∑

q,r=1

Aqr

Bil = Bil − 1

n − 2

n∑

q=1

Biq − 1

n − 2

n∑

q=1

Bql + 1

(n − 1)(n − 2)

n∑

q,r=1

Bqr

As a result, an unbiased estimator for MDD is defined as

MDD2
n(Yn|Xn) = (A · B) = 1

n(n − 3)

∑

i �=l

Ail Bil . (8)

A proof that MDD2
n(Yn|Xn) is an unbiased estimator for MDD2(Y |X ) can be found

in Section 1.1 of the supplementary material of Zhang et al. (2018) for the q = 1 case.
An extension for the case considering q ≥ 1 is displayed in the proof of Proposition
3.4 given in Park et al. (2015).

An important characteristic of the MDD2
n(Yn|Xn) unbiased estimator defined in

(8) is that this is a U-statistic of order four. In fact, with some calculation, it can be
proved that

MDD2
n(Yn|Xn) = 1

(n
4

)
∑

i<k<l<r

φ(Zi , Zk, Zl , Zr ) (9)

with symmetric kernel function

φ(Zi , Zk, Zl , Zr ) = 1

4!
(i,k,l,r)∑

(s,w,u,v)

(AswBuv + AswBsw − 2AswBsu)

= 1

6

(i,k,l,r)∑

s<w,u<v

(AswBuv + AswBsw) − 1

12

(i,k,l,r)∑

(s,w,u)

AswBsu

where Zi = (Xi ,Yi ) for i = 1, . . . , n and the summation is over all permutation of
the 4-tuples of indices (i, k, l, r).

A justification for this selection of kernel function can be found in Section 1.1 of the
supplementarymaterial of Zhang et al. (2018). There, it is also proved the unbiasedness
of the MDD estimator displayed in (8) for the q = 1 case. It is straightforward to
generalize these results to q ≥ 1 just considering the R

q metric in the Bil definition.
Then, the φ(·) kernel is obtained again.

Then, given the (9) formulation with kernel φ(·), one can directly notice that
MDD2

n(Yn|Xn) is a U-statistic of order four by proper definition (see for example
Lee (1990)). Then, theoretical results of U-statistics can be employed to obtain its
asymptotic distribution and to perform the specification test displayed in (4). Specifi-
cally, an example of this last is collected in Theorem 2.1 for the q = 1 case in Zhang
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et al. (2018). Next, this property is used in the next section to derive the asymptotic
distribution of new statistics devoted to testing specification in the concurrent model.

3 Significance tests based onMDD

Once we have a tool to measure conditional mean independence between Y =
(Y1, . . . ,Yq) ∈ R

q and a vector X = (X1, . . . , X p)
 ∈ R

p, this approach is adapted
to the concurrent model case. For this aim, we use the ideas presented in the work of
Zhang et al. (2018) for the vectorial framework.

Henceforth, we assume a situation where all points of the curves are observed
synchronously. However, the preliminary assumption that all trajectories are fully
observed can be quite restrictive in practice. Section3.2 it is showed how to adapt
this requirement to contexts where some points are missed, adjusting the procedure
to more realistic situations. Thus, a total of {tu}Tu=1 ∈ D time instants are considered
and there are nu observed samples, each of them of the form {Yiu (tu), Xiu (tu)}nuiu=1. As
mentionedbefore, assuming all curves observed at the same time instants translates into
nu = n for all u = 1, . . . , T . Then, we have a sample of the form (Yn(t),Xn(t)) =
{(Yi (tu), Xi (tu)) , u = 1, . . . , T }ni=1. A graphic example of our current situation
considering q = 1 and p = 2 covariates for a concurrent model with a structure
similar to (1) is displayed in Fig. 1.

In this way, we want to include all the information provided by the observed time
instants {tu}Tu=1 ∈ D in a new statistic. Besides, as mentioned above, we can be
interested in testing dependence not only considering all covariates but a subset D ⊂
{1, . . . , p}. As a result, an integrated dependence test is applied over the complete
trajectory, considering the information provided by D. Rewriting (2), this gives place
to the test

H0 :
∫

D\N
MDD2(Y (t)|X j (t))dt = 0 almost surely for every j ∈ D

Ha : P

(∫

V
MDD2(Y (t)|X j (t))dt �= 0

)
> 0 for some j ∈ D

(10)

−4
−2

0
2

4
6

X1(t)

t1 t2 . . . tτ−1tτ

−1
2

−1
0

−8
−6

−4

X2(t)

t1 t2 . . . tτ−1tτ

−1
5

−1
0

−5
0

5

Y(t)

t1 t2 . . . tτ−1tτ

Fig. 1 Example of a sample of five curves measured at same time instants {tu}Tu=1 ∈ D considering p = 2
covariates (X1(t) and X2(t)) to explain Y (t). Filled points simulate a total of nu = 3 observed points at
each instant tu
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In order to implement the new test introduced in (10) a proper estimator of∫
D MDD2(Y (t)|X j (t))dt for every j ∈ D is needed. For this purpose, we propose an
integrated statistic based on

TD =
√(

n

2

)∑
j∈D M̃DD

2

n(Yn(t)|Xnj(t))

̂̃SD

, (11)

being M̃DD
2

n(Yn(t)|Xnj(t)) = ∫
D MDD2

n(Yn(t)|Xnj(t))dt and

̂̃S
2
D = 2

n(n − 1)cn

∑

1≤k<l≤n

∑

j, j ′∈D

∫

D

(
Akl(t)

)
j

(
Akl(t)

)
j ′ B

2
kl(t)dt (12)

a suitable variance estimator of
∑

j∈D M̃DD
2

n(Yn(t)|Xnj (t)) with cn

cn = (n − 3)4

(n − 1)4
+ 2(n − 3)4

(n − 1)4(n − 2)3
+ 2(n − 3)

(n − 1)4(n − 2)3
≈ (n − 3)4

(n − 1)4
. (13)

See Sect. 3.1 for in-depth details about ̂̃S
2
D calculation.

The integrated version M̃DD
2

n(Yn(t)|Xnj(t)) remains a U-statistic of order

four. This is because, denoting by Zi j (t) = (
Xi j (t),Yi (t)

)
and ( ÃswBuv) j =

∫
D (Asw(t)) j (Buv(t)) j dt for all (s, w, u, v),wehave that ˜φ(Zi j (t), Zkj (t), Zl j (t), Zr j (t))
equals to

∫

D
φ(Zi j (t), Zkj (t), Zl j (t), Zr j (t))dt

= 1

4!
(i,k,l,r)∑

(s,w,u,v)

{(
ÃswBuv

)

j
+

(
ÃswBsw

)

j
− 2

(
ÃswBsu

)

j

}

= 1

6

(i,k,l,r)∑

s<w,u<v

{(
ÃswBuv

)

j
+

(
ÃswBsw

)

j

}
− 1

12

(i,k,l,r)∑

(s,w,u)

(
ÃswBsu

)

j

(14)

and this remains a measurable and symmetric function. Then, similar to (9) argumen-
tation, it is easy to see that it is possible to write

M̃DD
2

n(Yn(t)|Xnj(t)) = 1
(n
4

)
∑

i<k<l<r

˜φ(Zi j (t), Zkj (t), Zl j (t), Zr j (t))

which keeps the structure of a U-statistic of order 4. It can be proved that

M̃DD
2

n(Yn(t)|Xnj(t)) is an unbiased estimator of M̃DD
2
(Y (t)|X j (t)). See Section

1 of the Online Supplementary Material.
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Theorem 1 Under the assumption of H0 and verifying

E

[
˜G(Z(t), Z ′(t))

2
]

{
E

[
˜H(Z(t), Z ′(t))

2
]}2 −→ 0

E

[
˜H

(
Z(t), Z ′(t)

)4]
/n + E

[
˜H

(
Z(t), Z ′′(t)

)2
˜H

(
Z ′(t), Z ′′(t)

)2]

n

{
E

[
˜H(Z(t), Z ′(t))

2
]}2 −→ 0

E

[
˜U̇

(
X(t), X ′′(t)

)2
˜V

(
Y (t),Y ′(t)

)2]

S̃2
D

= o(n)

∑
j, j ′∈D

∫
D V

[
Y (t)

]2
dcov

(
X j (t), X j ′(t)

)2
dt

S̃2
D

= o(n2)

for V[·] the variance operator and dcov(·, ·) the distance covariance, it is guarantee
that TD −→d N (0, 1) when n −→ ∞ and ̂̃S

2
D/S̃2

D −→p 1.

Theorem 1 guarantees the asymptotic convergence of the TD statistic displayed
in (11) to a normal distribution under some assumptions. Proof of this result is col-
lected in Section 3 of the Supplementary Material, which makes use of the Hoeffding
decomposition for U-statistics carried out in Section 2 of the same document.

One drawback is that the asymptotic convergence of the TD statistic can be very
slow in practice. To solve this issue we approximate the p-value using a wild bootstrap
scheme. Its scheme is collected in Algorithm 2. The proof of the consistency related
to the proposed wild bootstrap procedure and that of the variance estimator for the
concurrent model case is omitted due to extension. However, the proof results from
plugging the integrated version in that of Zhang et al. (2018), introduced in Section
1.6 of their supplementary material.

Algorithm 2 (Wild bootstrap scheme for global dependence test using MDD)

1. For u = 1 . . . , T :

1.1. Calculate

(Tu)D =
√(

n

2

) ∑

j∈D
MDD2

n(Y (tu)|X j (tu)).
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1.2. Obtain

(Ŝu)D =
√√
√√

2

n(n − 1)cn

∑

1≤k<l≤n

∑

j, j ′∈D

(
Akl(tu)

)
j

(
Akl(tu)

)
j ′ B

2
kl(tu),

where
(
Akl(tu)

)
j and Bkl(tu) are the U-centered versions of (Akl(tu)) j =

|Xkj (tu) − Xl j (tu)| and Bkl(tu) = ‖Yk(tu) − Yl(tu)‖2q/2, respectively.
1.3. Generate the sample {ei }ni=1, where ei are i.i.d. N(0,1).
1.4. Define the bootstrap MDD∗2

n (Y (tu)|X j (tu)) version as

MDD∗2
n (Y (tu)|X j (tu)) = 1

n(n − 1)

∑

k �=l

(
Akl(tu)

)
j Bkl(tu)ekel

1.5. Obtain the bootstrap statistic numerator

(T ∗
u )D =

√(
n

2

) ∑

j∈D
MDD∗2

n (Y (tu)|X j (tu)).

1.6. Calculate the bootstrap variance estimator

(Ŝ∗
u )D =

√√√√
1

(n
2

)
∑

1≤k<l≤n

∑

j, j ′∈D

(
Akl(tu)

)
j

(
Akl(tu)

)
j ′ B

2
kl(tu)e

2
ke

2
l .

1.7. Repeat steps 1.3−1.6anumber B of times obtaining the sets {(T ∗
u )

(1)
D , . . . , (T ∗

u )
(B)
D }

and {(Ŝ∗
u )

(1)
D , . . . , (Ŝ∗

u )
(B)
D }.

2. Approximate the sample statistic ˜(E)D = ∫
D(Tt )D/(Ŝt )Ddt value by means of

numerical techniques using {(T1)D, . . . , (TT )D} and {(Ŝ1)D, . . . , (ŜT )D}.
3. For every b = 1, . . . , B, approximate the bootstrap statistic value given

by (Ẽ∗)(b)D = ∫
D(T ∗

t )
(b)
D /(Ŝ∗

t )
(b)
D dt, by means of numerical techniques using

{(T ∗
1 )

(b)
D , . . . , (T ∗

T )
(b)
D } and {(Ŝ∗

1 )
(b)
D , . . . , (Ŝ∗

T )
(b)
D }.

4. Obtain the bootstrap p-value as 1
B

∑B
b=1 I{(Ẽ∗)(b)D ≥ (Ẽ)D}, where I(·) is the

indicator function.

Moreover, the test is guaranteed to be powerful under local alternatives. A charac-
terization of local alternatives is given in Section 1.7 of the supplementary material of
Zhang et al. (2018). This result can be proved simply by plugging in the correspond-
ing integrated versions in Theorem 2.4 of Zhang et al. (2018). This proof is omitted
because of the extension.

In terms of D, a particular case is to consider all covariates, D = {1, . . . , p}. First of
all, onemust check if, at least, some covariates supply relevant information tomodelY .
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Considering D the set of all covariates indices, we can verify this premise performing
(10). In case of not having evidence to reject the null hypothesis of conditional mean
independence, it does not make sense to model Y with the available information.
Otherwise, if one discards the conditional mean independence in this initial step, one
can be interested in searching for an efficient subset of covariates to reduce the problem
dimension.

Then, for a subset D ⊂ {1, . . . , p} with cardinality d, 1 ≤ d < p, it is pos-
sible to test if these d covariates play a role in terms of the concurrent regression
model by means of (10). If not, it is possible to discard them and reduce the problem
dimensionality to p− d. In case we are interested in covariates screening one by one,
which corresponds with the case where D = { j}, we can apply the j = 1, . . . , p
tests displayed in (3). This results in p consecutive partial tests for j = 1, . . . , p
considering H0 j : E

[
Y (t)|X j (t)

] = E [Y (t)] almost surely ∀t ∈ D \N or equivalently

H0 j : M̃DD
2 (

Y (t)|X j (t)
) = 0 almost surely ∀t ∈ D\N . One drawback of carrying

out p consecutive tests is that the initial prefixed significance level is violated if this
is not modified considering the total number of tests to be performed. As a result,
the significance level has to be adequately corrected. Some techniques, such as the
classic but conservative Bonferroni’s correction, or the false discovery rate alternative
(see Benjamini and Yekutieli (2001), and Cuesta-Albertos et al. (2017)) can be easily
applied to avoid this inconvenience.

3.1 Derivation of ̂

˜S
2

In this section, we prove that the estimator of the variance considered in (12) for

the term M̃DD
2

n(Yn(t)|Xnj(t)) = ∫
D MDD2

n(Yn(t)|Xnj(t))dt correctly estimates this
quantity.

As mentioned above, M̃DD
2

n(Yn(t)|Xnj(t)) is a U-statistic of order four. This result
implies that using the Hoeffding decomposition, this quantity can be expressed as

M̃DD
2

n(Yn(t)|Xnj(t)) = 1
(n
2

)
∑

1≤k<l≤n

˜Uj (Xkj (t), Xl j (t)) · ˜V (Yk(t),Yl(t)) + (Rn) j

where ˜Uj (x, x ′) is equal to

∫

D

{
E

[
J (x, X ′

j (t))
]

+ E
[
J (X j (t), x

′)
] − J (x, x ′) − E

[
J (X j (t), X

′
j (t))

]}
dt

and Ṽ (y, y′) = ∫
D(y−μY )(y′−μY )dt forμY = E[Y (t)], being (Rn) j a remainder

term.
Calculation about Hoeffding decomposition for our framework is collected in Sec-

tion 2 of the Online Supplementary Material.
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If we define the theoretical test statistic

T̆n =
√(

n

2

)∑
j∈D M̃DD

2

n(Yn(t)|Xnj(t))

S̃
,

considering S̃ the true integrated version of the variance, we can see that

T̆n =
∑

j∈D

1
√(n

2

)
S̃

∑

1≤k<l≤n

˜Uj (Xkj (t), Xl j (t)) · ˜V (Yk(t),Yl(t)) +
√(n

2

)

S̃
∑

j∈D
(Rn) j

= 1

S̃
(Dn,1 + Dn,2)

where Dn,1 = (n
2

)−1/2 ∑
1≤k<l≤n

∑
j∈D ˜Uj (Xkj (t), Xl j (t)) · ˜V (Yk(t),Yl(t)) is the

leading term and Dn,2 = (n
2

)1/2 ∑
j∈D(Rn) j is the remainder one. Under the H0

assumption of (2) it is verified that

V
[
Dn,1

] =
∑

j, j ′∈D
E

[
˜V (Y (t),Y ′(t))

2
]

˜Uj (X j (t), X ′
j (t)) · ˜Uj ′(X j ′(t), X ′

j ′(t))

Since the contribution from the term Dn,2 is asymptotically negligible, we may set
S̃2 = V

[
Dn,1

]
, and then construct the variance estimator displayed in Eq. (12).

3.2 Somemissing points in curves trajectories

Until now, we haveworked under the assumption that complete curve trajectories were
observed. In contrast, in this part, somemissing points are allowed. Then, for each time
point tu there are 1 ≤ nu ≤ n observed samples of the form {Yiu (tu), Xiu (tu)}nuiu=1. A
graphic example for the case considering q = 1 and p = 2 covariates is displayed in
the first row of Fig. 2. In this example, we have n = 5 curves and a different number
of observations. For instance, there are n1 = 4 points for t1.

In this context, our proposed method cannot be applied directly. This is because
it is not verified nu = n for all u = 1, . . . , T . However, we can solve this problem
by estimating the missing curve values when is possible. This option translates into a
recovering of the whole curve trajectories on the grid {tu}Tu=1 ∈ D, verifying now that
nu = n for all u = 1, . . . , T .

A simple but efficient idea is to recover the complete trajectory of the curves using
some interpolating method with enough flexibility. For example, making use of cubic
spline interpolation ideas for each of the 1, . . . , n curves. Results of this recovery for
our example are displayed in the second row of Fig. 2. In this case, the spline func-
tion of the stats library of the R software (R Core Team 2019) has been employed.
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Fig. 2 First row: sample of five curves measured at different time instants {tu}Tu=1 ∈ D considering p = 2
covariates (X1(t) and X2(t)) to explain Y (t). Second row: same example adding the recovered points
by means of splines interpolation. Filled dots (•) represent the nu observed points at each instant tu and
asterisks (∗) the recovered ones

In addition, other approaches for recovering the missing points are also available.
Next,we propose one based on functional basis representation following the guidelines
ofKimet al. (2018),Ghosal et al. (2020), andGhosal andMaity (2022b). If it is possible
to assume that the total number of time observations

⋃T
u=1 tu is dense in D, then the

eigenvalues and eigenfunctions corresponding to the original curves can be estimated
using functional principal component analysis (see Yao et al. (2005)). We refer to Yao
et al. (2005) for more details about the procedure. As a result, one can get the estimated
trajectory X̂i j (·) of the true curves Xi j (·) for i = 1, . . . , n and j = 1, . . . , p, given

by X̂i j (t) = μ̂ j (t) + ∑Q
q=1 ζ̂iq j �̂q j (t). Here, Q denotes the number of considered

eigenfunctions, which can be chosen using a predetermined percentage of explained
variance criterion. Consequently, it is possible to recover the value of X1(·), . . . , X p(·)
on all grid {tu}Tu=1 ∈ D. In the same way, the values of Y1(·), . . . ,Yq(·) can also be
recovered. Thus, it is possible to work again in the context of synchronously measured
data. This procedure is implemented in the fpca.sc function belonging to the library
refund of R (see Goldsmith et al. (2021)). For our proposed naive example, we have
obtained similar results to the splines interpolation methodology displayed in Fig. 2.
As a result, these are omitted.

4 Simulation studies

In this section, we consider two simulated concurrent model scenarios to assess the
performance in the practice of the new significance tests introduced above. We dis-
tinguish between linear (Scenario A) and nonlinear (Scenario B) formulation of the
model (1). For the sake of simplicity, we consider only the casewhere the data aremea-
sured at the same instants of time. For this aim, a Monte Carlo study with M = 2000
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replicas in each case is performed using the R software (R Core Team 2019). Besides,
we compare the performance of our test with two competitors. These are the procedure
introduced in Ghosal and Maity (2022a), developed in the linear framework, and the
method of Kim et al. (2018) for the additive formulation. Henceforth, we refer to them
by FLCM and ANFCM, respectively. We refer to Section A of the Appendix for more
details about competitors’ implementation.

• Scenario A (Linear model): We assume linearity in (1), take t ∈ D = [0, 1] and
consider q = 1 and p = 2 covariates entering the model.
As a result, the simulated model is given by the structure

Y (t) = β1(t)X1(t) + β2(t)X2(t) + ε(t)

with

X1(t) = 5 sin

(
24π t

12

)
+ ε1(t), X2(t) = −(24t − 20)2

50
− 4 + ε2(t).

Here, β1(t) = −
(
24t−15

10

)2−0.8 and β2(t) = 0.01((24t−12)2−122+100). The

error terms represented by ε1(t), ε2(t) and ε(t) are simulated as random Gaussian

processes with exponential variogram �(s, t) = 0.1 exp
(
− 24|s−t |

10

)
. We assume

that a total number of T = 25 equispaced instants are observed in D = [0, 1]
({tu}25u=1) and there are n = 20, 40, 60, 80, 100 curves available for each of them.
An example of these functions is displayed in Fig. 3. We remark that we have not
included intercept in our linear formulation because this can be done without loss
of generality just centering both Y (t) and X(t) = (X1(t), X2(t)) ∈ R

2 for all
t ∈ D.
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Fig. 3 Left: simulated sample values of the functional variables along the grid [0, 1] taking n = 20.
Right: real Y (t) structure jointly with partial effects corresponding to X1(t) (F1(t, X1(t))) and X2(t)
(F2(t, X2(t)))
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• Scenario B (Nonlinear model): A nonlinear structure of (1) is assumed for this
scenario. Again, we take t ∈ D = [0, 1] and consider q = 1 and p = 2 covariates
to explain the model.
Then, this model has the expression

Y (t) = F1(t, X1(t)) + F2(t, X2(t)) + ε(t)

being F1(t, X1(t)) = exp((24t + 1)X1(t)/20) − 2 and F2(t, X2(t)) =
−1.2 log(X2(t)2) sin(2π t), with X1(t) and X2(t) equally defined as in the lin-
ear case (Scenario A) and using the same observed discretization time points.
Now, the errors ε1(t), ε2(t) and ε(t) are assumed to be random Gaussian pro-

cesses with exponential variogram �(s, t) = 0.02 exp
(
− 24|s−t |

10

)
. An example

of this scenario is displayed in Fig. 4.

In all tests, wemake use of thewild bootstrap techniques introduced above in Sect. 3
to approximate the p-values. We have employed B = 1000 resamples on each case.
Besides, as we mentioned before, sample test size and power are obtained by Monte
Carlo techniques. In order to know if the p-values under the null take an adequate
value, the 95% confidence intervals of the significance levels are obtained by making

use of expression

[
α ∓ 1.96

√
α(1−α)

M

]
. Here, α is the expected level and M is the

number of Monte Carlo simulated samples. As a result, we consider that a p-value is
acceptable for levels α = 0.01, 0.05, 0.1 if this is within the values collected in Table
1 for the Monte Carlo replicates. We highlight the values out of these scales in bold
for simulation results.
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Fig. 4 Left: simulated sample values of the functional variables along the grid [0, 1] taking n = 20. Middle:
real partial effects corresponding to X1(t) (β1(t)) and X2(t) (β2(t)). Right: simulated regression model
components β1(t)X1(t) and β2(t)X2(t)

Table 1 Confidence intervals at
95% of the Monte Carlo
proportions for M replicates

M α = 0.01 α = 0.05 α = 0.1

1000 [0.004, 0.016] [0.036, 0.064] [0.081, 0.119]
2000 [0.006, 0.014] [0.040, 0.060] [0.087, 0.113]
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4.1 Results for scenario A (linear model)

We start analyzing the performance of the global mean dependence test in the linear
model formulation, using Scenario A introduced above in Sect. 4. For this purpose,
we consider three different scenarios. In the first one, the null hypothesis of mean
independence is verified by simulating under the assumption that β1(t) = β2(t) = 0.
Next, the remaining two cases are simulated under the alternative hypothesis. This
claims that information provided by X(t) = (X1(t), X2(t)) is useful in some way:
only the X2(t) covariate is relevant (fixing β1(t) = 0) or both covariates X1(t) and
X2(t) support relevant information to correctly explain Y (t).

Obtained results are collected in Table 2 for n = 20, 40, 60, 80, 100. In view
of the results, it is appreciated as the empirical sizes approximate the significance
levels under H0 (H0 : β1(t) = β2(t) = 0) as n increases. Moreover, the empirical
distribution of the p-values seems to be a U [0, 1] as it is appreciated in Fig. 8 of
Section B of the Appendix. In contrast, simulating under the alternative hypothesis,
Ha : β1(t) = 0, β2(t) �= 0 and Ha : β1(t) �= 0, β2(t) �= 0 scenarios, the test power
tends to one as the sample size increases. As a result, we can claim that the test is
well-calibrated and has power.

Once we have rejected the null hypothesis that all covariates are irrelevant in
practice, we can detect which of them play a role in terms of data explanation.
For this aim, partial tests can be carried out, testing if every covariate is irrelevant,
H0 j : β j (t) = 0 ∀t ∈ D, or not, Haj : β j (t) �= 0 for some t ∈ V , being j = 1, . . . , p.

Again, we consider different scenarios. First of all, it is assumed that X(t) is not
significant taking β1(t) = β2(t) = 0. Then, we move to the situation where only
X2(t) is relevant. Finally, we consider the model including both X1(t) and X2(t)
effects to explain Y (t). Results of these scenarios are displayed in Table 3. Here, we
appreciate as the empirical sizes tend to the significance levels simulating under the
null hypothesis that both covariates have not got a relevant effect on the response,
separately. Besides, we see as in case of having β1(t) = 0 and β2(t) �= 0, these tests
help us to select relevant information, X2(t), and discard noisy one, X1(t). Otherwise,
when both covariates are relevant, the partial tests clearly reject the H0 j hypothesis of
null effect, tending their powers to the unit as sample size increases.

Table 2 Empirical sizes and powers of the MDD-based global test for mean independence testing using
wild bootstrap approximation with B = 1000 resamples in Scenario A

Model β1(t) = β2(t) = 0 (H0) β1(t) = 0, β2(t) �= 0 (Ha) β1(t) �= 0, β2(t) �= 0 (Ha)

1% 5% 10% 1% 5% 10% 1% 5% 10%

n = 20 0.010 0.045 0.092 0.574 0.797 0.882 1 1 1

n = 40 0.013 0.050 0.093 0.984 0.998 1 1 1 1

n = 60 0.007 0.052 0.103 1 1 1 1 1 1

n = 80 0.009 0.045 0.094 1 1 1 1 1 1

n = 100 0.012 0.050 0.088 1 1 1 1 1 1
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Table 3 Empirical sizes and powers of the partial MDD-based global tests for mean independence testing
considering as null hypothesis H01 : E[Y (t)|X1(t)] = E[Y (t)] and H02 : E[Y (t)|X2(t)] = E[Y (t)], and
using wild bootstrap approximation with B = 1000 resamples in Scenario A

Model β1(t) = β2(t) = 0 β1(t) = 0, β2(t) �= 0 β1(t) �= 0, β2(t) �= 0

H01 H02 H01 H02 H01 H02
5%/10% 5%/10% 5%/10% 5%/10% 5%/10% 5%/10%

n = 20 0.040/0.078 0.043/0.101 0.041/0.087 0.919/0.966 1/1 0.330/0.490

n = 60 0.048/0.101 0.049/0.103 0.047/0.098 1/1 1/1 0.935/0.971

n = 100 0.046/0.089 0.047/0.096 0.046/0.086 1/1 1/1 0.998/1

4.2 Results for scenario B (nonlinear model)

In this section, we analyze the performance of the MDD global mean independence
test in a more difficult framework: a nonlinear effects formulation. For this purpose,
Scenario B introduced in Sect. 4 is employed. Again, three different situations of
dependence are considered, following the same arguments of Sect. 4.1. As a result,
we simulate under the no effect case (H0 : F1(t, X1(t)) = F2(t, X2(t)) = 0), which
corresponds with independence, and two dependence frameworks: where only one
covariate is relevant (Ha : F1(t, X1(t)) = 0, F2(t, X2(t)) �= 0) or both of them are
(Ha : F1(t, X1(t)) �= 0, F2(t, X2(t)) �= 0).

Results of the M = 2000 Monte Carlo simulations for the MDD-test taking
n = 20, 40, 60, 80, 100 are displayed in Table 4. We appreciate simulating under
the null hypothesis H0 that the p-values tend to stabilize around the significance lev-
els. Figure9, collected in Section B of the Appendix, shows as these seem to follow a
uniform distribution in [0, 1]. So, we can conclude that our test is well calibrated even
for nonlinear approaches. Concerning the power, when the independence assumption
is violated, the p-values tend to 1 as the sample size increases. Two examples of this
phenomenon are displayed in Table 4 simulating the different alternative hypotheses.
Summing up, our proposal is also a well-calibrated and powerful test in a nonlinear
framework.

Table 4 Empirical sizes and powers of the MDD-based global test for mean independence testing using
wild bootstrap approximation with B = 1000 resamples in Scenario B

Model F1(·) = F2(·) = 0 (H0) F1(·) = 0, F2(·) �= 0 (Ha) F1(·) �= 0, F2(·) �= 0 (Ha)

1% 5% 10% 1% 5% 10% 1% 5% 10%

n = 20 0.011 0.049 0.096 0.215 0.426 0.563 0.989 1 1

n = 40 0.013 0.05 0.094 0.564 0.793 0.886 1 1 1

n = 60 0.009 0.053 0.105 0.871 0.956 0.979 1 1 1

n = 80 0.01 0.046 0.096 0.974 0.996 1 1 1 1

n = 100 0.013 0.054 0.093 0.994 1 1 1 1 1
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Table 5 Empirical sizes and powers of the partial MDD-based global tests for mean independence testing
considering H01 : E[Y (t)|X1(t)] = E[Y (t)] and H02 : E[Y (t)|X2(t)] = E[Y (t)], and using wild bootstrap
approximation with B = 1000 resamples in Scenario B

Model F1(·) = F2(·) = 0 F1(·) = 0, F2(·) �= 0 F1(·) �= 0, F2(·) �= 0

H01 H02 H01 H02 H01 H02
5%/10% 5%/10% 5%/10% 5%/10% 5%/10% 5%/10%

n = 20 0.04/0.078 0.043/0.101 0.04/0.077 0.567/0.692 1/1 0.18/0.299

n = 60 0.048/0.101 0.049/0.103 0.053/0.107 0.987/0.995 1/1 0.621/0.783

n = 100 0.046/0.089 0.047/0.096 0.044/0.09 1/1 1/1 0.915/0.971

Next, our interest focuses on partial tests to apply covariates selection in this nonlin-
ear scenario. Again, we consider the three different dependence scenarios introduced
above. However, we test the independence for each covariate separately. This results
in applying a total of j = 1, . . . , p tests. In this way, we expect the test in a situation
as F1(t, X1(t)) = 0, F2(t, X2(t)) �= 0 to be capable of detecting relevant covariates
(X2(t)), rejecting its corresponding H0 j hypothesis, and excluding noisy ones from
the model otherwise (X1(t)). Results for partial tests are collected in Table 5. One can
see as these tests allow us to determine which covariates play a relevant role in each
scenario, being those with p-values higher than the significance levels and tending to
1 as sample size increases. Conversely, those verifying that its associated p-values are
less or equal to significance levels are assumed irrelevant.

4.3 Comparison with FLCM and ANFCM algorithms

Next, our novel procedure is compared with existing competitors in the literature.
For this aim, we have considered the FLCM algorithm of Ghosal and Maity (2022a)
for the linear framework and the ANFCM procedure of Kim et al. (2018) for a more
flexible model, assuming additive effects. Both have displayed excellent results in
practice considering a proper selection of the tuning parameters. We refer the reader
to Appendix A for more details.

In the simulation scenarios introduced inSect. 4,we consider a dependence structure
where all instants relate between them.This structure emulates a real functional dataset.
Nevertheless, this does not apply in the simulation scenarios of Ghosal and Maity
(2022a) and Kim et al. (2018). Conversely, they consider independent errors. As a
result, to perform a fair competition, we start analyzing the behavior of our MDD-
based tests in their simulation scenarios. Specifically, we compare the performance of
our proposal with the results of FLCM in Scenario A of Ghosal and Maity (2022a).
Next, we implement a comparison with the ANFCM procedure. For this purpose, we
consider Scenario (B) of Kim et al. (2018), taking the error E3. In this last case, we
implement a modification to perform Algorithm 1. In particular, we only consider
the second covariate associated with the nonlinear effect. In both borrowed scenarios,
we simulate under the dense assumption being {tu}81u=1 a total of m = 81 equidistant
time points in [0, 1]. We keep the authors’ parameters selection and perform a Monte
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Table 6 Summary of empirical sizes and powers of the FLCM and MDD effect tests

Model H0 (d = 0) Ha (d = 3) Ha (d = 7)

1% 5% 10% 1% 5% 10% 1% 5% 10%

n=60 FLCM 0.007 0.054 0.103 0.776 0.888 0.937 0.999 1 1

MDD 0.014 0.052 0.097 0.341 0.550 0.671 0.992 0.997 1

n=100 FLCM 0.005 0.038 0.077 0.964 0.979 0.992 1 1 1

MDD 0.013 0.049 0.103 0.619 0.796 0.871 1 1 1

Carlo study with M = 1000 samples in all cases, obtaining the p-values through
B = 200 bootstrap replicates. Besides, following the author’s recommendation after
a preliminary study to determine the optimal number of basis functions for these
examples, we work with 7 components for FLCM and ANFCM procedures. More
details can be found in Ghosal and Maity (2022a) or Kim et al. (2018), respectively.
We remind the structure of the scenarios and explain implementation issues in Section
A of the Appendix.

Results of the comparison between FLCM and MDD effect tests for scenario A
of Ghosal and Maity (2022a) are collected in Table 6. We appreciate that simulating
under the null (d = 0), one value of the FLCM algorithm is out of the 95% confidence
interval. In contrast, the MDD procedure does not suffer from this issue. Moreover,
paying attention to the p-values distributions under the null, which are displayed in
Fig. 10 (see Section B of the Appendix), one can see the FLCM p-values do not follow
a uniform distribution. In contrast, the MDD-based test corrects this phenomenon. As
a result, it seems that our test provides a better calibration than the FLCM approach.
Regarding the power, levels for both algorithms tend to 1 as sample size increases,
and their values are higher for the d = 7 scenario than for the d = 3 one, as would be
expected. Now, the FLCM algorithm outperforms the MDD results in all scenarios.
However, our procedure is still quite competitive even considering that the data are
simulated under the linear assumption, giving an advantage to the FLCM procedure.

Next, we compare the performance of the MDD with the ANFCM approach in
an additive framework. Table 7 collects the simulation results for both procedures.
We can see as both methodologies are well calibrated under the null (d = 0) for all
levels, except for the 1%, where their values are out of the 95% confidence interval
for n = 60. Nevertheless, taking greater values of n, as n = 100, solves this issue.
Moreover, simulating under H0, the p-values follow a uniform distribution. This is
illustrated in Fig. 11 displayed in Section B of the Appendix. If we simulate under the
alternative hypotheses (d = 3 and d = 7), we see that these quantities tend to 1 as the
sample size increases. In addition, as the covariate effect becomes more noticeable,
going from d = 3 to d = 7, the power of ANFCM and MDD procedures increases.
Again, the power of the ANFCM algorithm is always higher than the MDD one. At
this point, we should notice that the ANFCM algorithm takes advantage of the fact
that an additive structure with an intercept function is assumed. In contrast, our MDD
test does not consider any model structure, not even the inclusion of intercept in the
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Table 7 Summary of empirical sizes and powers of the ANFCM and MDD effect tests

Model H0 (d = 0) Ha (d = 3) Ha (d = 7)

1% 5% 10% 1% 5% 10% 1% 5% 10%

n=60 ANFCM 0.021 0.063 0.117 1 1 1 1 1 1

MDD 0.019 0.058 0.102 0.410 0.811 0.944 0.747 0.984 1

n=100 ANFCM 0.014 0.056 0.094 1 1 1 1 1 1

MDD 0.008 0.046 0.095 0.929 0.999 1 0.999 1 1

Table 8 Empirical sizes and powers of the FLCMeffect test considering H01 : β1(t) = 0 and H02 : β2(t) =
0 in Scenario A

Model β1(t) = β2(t) = 0 β1(t) = 0, β2(t) �= 0 β1(t) �= 0, β2(t) �= 0

H01 H02 H01 H02 H01 H02
5%/10% 5%/10% 5%/10% 5%/10% 5%/10% 5%/10%

n = 20 0.1/0.174 0/0.002 0.104/0.172 0.622/0.758 1/1 1/1

n = 60 0.09/0.152 0/0.004 0.09/0.158 0.709/0.875 1/1 1/1

n = 100 0.074/0.125 0/0.003 0.1/0.17 0.913/0.983 1/1 1/1

model. As a result, our competitor has to measure all possible forms of departure from
conditional mean independence.

It is relevant to notice that, in both previous scenarios, covariates are related to the
response employing trigonometric functions when it corresponds. Then, modeling the
effects takes advantage of the B-spline basis representation. In addition, the errors are
assumed to be time-independent between them in the FLCM and ANFCM scenarios.
These considerations are a clear advantage for the FLCM and the ANFCM algorithms
compared to our procedure. Thus, to test the FLCM and ANFCM performance in a
functional context with time-correlated errors and when the model structure does not
depend on only trigonometric functions, we apply these to the simulation scenarios
introduced in Sect. 4. For this purpose, a partial approach is considered, testing the
effect of the covariates separately using the FLCM procedure in Scenario A and the
ANFCM one in Scenario B. To compare our results with theirs, we simulate now
M = 2000 Monte Carlo replications and use B = 1000 bootstraps resamples for
ANFCM. Again, we follow the authors’ recommendation and use Q = 7 basis terms
in both procedures.1 We refer to Section A of the Appendix for a summary of the
simulation parameters selection.

Results of partial FLCM tests in scenario A are displayed in Table 8. It can be seen
how, regardless of the size of the sample used, the test is always poorly calibrated.
In fact, all obtained p-values are out of the 95% confidence intervals. These results
contrast with the MDD ones displayed in Table 3, where the test is well calibrated.
This phenomenon may be because, as mentioned above, it is considered a different

1 In this setup, we have T = 25 time instants. Then, for the ANFCM procedure, as the function
fpca.face employs by default a total of 35 knots to carry out FPCA, we have to reduce this. We
decided to take 12 knots to solve this issue.
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Table 9 Empirical sizes and powers of the ANFCM effect test considering H01 : F1 (t, X1(t)) = 0 and
H02 : F2 (t, X2(t)) = 0 and using B = 1000 bootstrap resamples in Scenario B

Model F1(·) = F2(·) = 0 F1(·) = 0, F2(·) �= 0 F1(·) �= 0, F2(·) �= 0

H01 H02 H01 H02 H01 H02
5%/10% 5%/10% 5%/10% 5%/10% 5%/10% 5%/10%

n = 20 0.098/0.17 0.102/0.176 0.134/0.203 0.043/0.08 0.662/0.8 0.123/0.191

n = 60 0.068/0.118 0.058/0.113 0.071/0.128 0.013/0.028 1/1 0.117/0.216

n = 100 0.047/0.102 0.055/0.106 0.049/0.1 0.063/0.114 1/1 0.147/0.293

dependence structuremore related to a functional nature. In terms of power, there is not
a clear winner. Our test is more powerful in the Ha : β1(t) = 0, β2(t) �= 0 scenario
in test H02, but FLCM is a bit more powerful in the last scenario for H02. However,
this difference is small, and considering that the FLCM is not well calibrated, it makes
sense to conclude that the MDD-based procedure outperforms this.

Next, the performance of the ANFCM algorithm is tested by simulating under
Scenario B of Sect. 4. Results are collected in Table 9. Again, comparing the ANFCM
results with the ones of the MDD test (Table 5), we see that the MDD test is well
calibrated even for small values as n = 20 (except for a couple of cases). This fact
contrasts with the results of the ANFCM procedure. In this last, most of the values are
out of the 95% confidence intervals. Moreover, the MDD test has more power than
ANFCM in almost all cases. As a particularity, the ANFCM algorithm is not able to
detect the relevance of X2(t) in the Ha : F1(·) = 0, F2(·) �= 0 scenario. Instead,
the percentage of rejections is around the significance values and does not provide
significant evidence to reject the null hypothesis H02 of independence. Thus, we can
conclude that the MDD outperforms the ANFCM procedure.

In summary, we have proved that the MDD algorithm performs pretty well in sce-
narios where the FLCM and the ANFCM procedures have an advantage, considering
uncorrelated errors and trigonometric functions. Moreover, our test outperforms these
when we move on to a more functional context, as in scenarios A and B introduced
in Sect. 4. In these scenarios, we consider related errors and other types of relations
different from trigonometric functions.

5 Real data analysis

In this section,we test the performanceof the proposed algorithms in three real datasets.
Firstly, the well-known gait dataset of Olshen et al. (1989) is considered. This dataset
is an example of a linear effects model and has already been studied in the concurrent
model framework in works as the one of Ghosal and Maity (2022a) or Kim et al.
(2018). Next, a google flu database from the USA, borrowed fromWang et al. (2017),
is studied. In this work, Wang et al. (2017) assume a linear formulation to model
the data. Eventually, an example of a model with nonlinear effects and some missing
points is studied. For this purpose, the bike sharing dataset of Fanaee-T and Gama
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(2014) is analyzed. Obtained results are compared with the ones of Ghosal and Maity
(2022b) in this concurrent model framework.

5.1 Gait data

Here, we analyze the performance of the new dependence test in a well-known dataset
from the functional data context. These data are the gait database (Olshen et al. 1989;
Ramsay and Silverman 2005), in which the objective is to understand how the joints
in the hip and the knee interact during a gait cycle in children. This problem has
already been studied in the concurrent model context using a different methodology
(see Ghosal and Maity (2022a), or Kim et al. (2018)). As a consequence, we compare
our results with theirs.

The data consist of longitudinal measurements of hip and knee angles taken on
39 children with gait deficiency. These are measured as they walk through a single
gait cycle. These data can be found in the fda library (Ramsay et al. 2020) of the R
software (R Core Team 2019). The hip and knee angles are measured at 20 evaluation
points {tu}20u=1 in [0, 1]. These values correspond to the completed percentage of a
single gait cycle. Following previous studies, we have considered as response Y (t)
the knee angle and as explanatory covariate X(t) the hip angle. Data are displayed in
Fig. 5.

Applying our dependence test, we obtain a p-value close to 0. Thus, we have strong
enough evidence to reject the independence hypothesis to the usual significance levels.
This conclusion translates into a dependency between knee and hip angle in one
cycle of gait data in children with poor gait. This result agrees with the ones of Kim
et al. (2018) or Ghosal and Maity (2022a), among others, in the concurrent model
framework. They obtain p-values less than 0.004 and 0.001, respectively. Summing
up, the hip angle measured at a specific time point in a gait cycle has an effect on the
knee angle at the same time point in children.
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Fig. 5 Hip (left) and knee (right) angles measurements of a complete gait cycle
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5.2 Google flu data from USA

Google flu data are used in Wang et al. (2017) to model the relationship between flu
activity and temperature fluctuation in theUSA. For this purpose, influenza-like illness
(ILI) cases per 100000 doctor visits are considered in the 2013-2014 flu season (July
2013-June 2014). This information is got from theGoogle flu trendWebsite.Moreover,
dailymaximum andminimum temperature averaged over weather stations within each
continental state is obtained by means of the US historical climatology network. The
daily temperature variation (MDTV) is considered the explanatory covariate, being
the difference between the daily maximum and daily minimum. The temperature
fluctuation is aggregated to the same resolution as the flu activity data by taking the
MDTV each week. Only 42 states are considered due to missed records. We refer to
Wang et al. (2017) for more details.

The original dates from July 1st, 2013, to June 30th, 2014, were numbered by
integers from 1 to 365. Then, time t is rescaled to the [0, 1] interval by dividing the
numbers by 365. Besides, we consider regional effects by dividing the data into four
sets in terms of midwest, northeast, south, or west region to study them separately.
Following Wang et al. (2017), the ILI percentage and MDTV are standardized at each
time point t by dividing the variables by their root mean squares. Data of study are
shown in Fig. 6 separating this by the considered regions.

Therefore, we want to test if theMDTV has relevant information in the flu tendency
modeling of the four considered regions. For this aim, we can apply a global test for
each one separately. Results of dependence tests are displayed in Table 10. In view
of all p-values being higher than 0.1, we can conclude that we do not have enough
evidence to reject the null hypothesis of mean conditional independence for levels as
10%. As a result, the MDTV does not play a relevant role in the ILI modeling, no
matter the US region. We can argue that perhaps the regional effect is unimportant,
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Fig. 6 MDTV (left) and flu activity or ILI (right) data in terms of their corresponding regions: northeast
(•), midwest (�), south (�) and west (�)

Table 10 P-values of the
MDD-based tests for the
different regions

p-value Midwest Northeast South West

0.106 0.761 0.623 0.667
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and we should consider the data as a whole. For this purpose, we implement a global
test considering all the states, obtaining a p-value close to 0. This result highlights that
there is strong evidence to reject the conditional mean independence between MDTV
and ILI. As a result, MDTV provides notable information to explain the ILI behavior,
but this is equal in the four considered regions, so a distinction does not make sense.

Our results agree with the ones of Wang et al. (2017). First, they reject the loca-
tion effect for the linear model formulation. Secondly, they claim that one can avoid
the MDTV covariate from the linear model for a 10% significance level but not for
the 5% (p-value=0.052). Thus, they have moderately significant evidence that the
MDTV plays a role in the ILI explanation, at least in the linear context. It is important
to remark that differences may be because they assume linearity in their regression
model. Furthermore, a first preprocessing step is applied in their case to remove spatial
correlations.

5.3 Bike sharing data

Next, a bike-sharing dataset of the Washington, D.C., program is analyzed. This is
introduced in Fanaee-T and Gama (2014). The data are obtained daily by the Cap-
ital bike-share system in Washington, D.C., from 1 January 2011 to 31 December
2012. The aim is to explain the number of casual rentals in terms of meteorological
covariates. As a result, this dataset contains information on casual bike rentals in the
cited period along with other meteorological variables such as temperature in Celsius
(temp), the feels-like temperature in Celsius (atemp), relative humidity in percentage
(humidity), and wind speed in Km/h (windspeed) on an hourly basis. In particular,
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Fig. 7 Daily temperature (temp), feeling temperature (atemp), humidity, wind speed and casual bike rentals
on an hourly basis in Washington D.C. on Saturdays
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only the data corresponding with Saturdays are considered because of the dynamic
changes between working and weekend days. This selection results in a total of 105
Saturdays barring some exceptions (8 missings). All covariates are normalized by for-
mula (t − tmin)/(tmax − tmin) in case of temp and atemp, and these are divided by the
maximum for the humidity and windspeed case. In order to correct the skewness of
the hourly bike rentals distribution (Y (t)), a log transformation is applied considering
as response variable Y (t) = log(Y (t) + 1). These are showed in Fig. 7.

First, the missing data are recovered employing splines interpolation as described
in Sect. 3.2. Then, once we have a total of n = 105 data points at each time instant,
the global significance MDD-based test is performed. We obtain a p-value close to 0,
which rejects the null hypothesis of independence for usual significant levels as the
5% or the 1%.

Next, we perform partial tests to detect if any of the four considered covariates
(temp, atemp, humidity, andwindspeed) can be excluded from themodel.We obtain p-
values of 0, 0, 0.007, and 0.001 for temperature (temp), feels-like temperature (atemp),
relative humidity (humidity), and wind speed (windspeed), respectively. Thus, we can
claim that all of these affect the number of casual rentals at significance levels as the
1%. This last result agreeswith other studies, like the one ofGhosal andMaity (2022b).
In this study, different covariates are selected by the distinct considered penalizations.
In an overview of their results, each covariate is selected at least two times over the
five considered procedures. As a result, all covariates seem to play a relevant role
separately.

6 Discussion

We propose novel significance tests for the additive functional concurrent model,
which collects a wide range of different structures between functional covariates and
response. As a result, the relevance of a subset of covariates to model the response
in a regression setting is tested, including global and partial tests to apply covariates
screening. This approach allows one to detect irrelevant variables and reduce the
problem dimensionality, facilitating the subsequent estimation procedure. For this
aim, we construct test statistics based on MDD insights and taking into consideration
all observed time instants. This process results in general significance tests able to
determine the covariates’ relevance over the complete trajectory. In contrast with
existing methodology in literature for significance tests in the concurrent model, as
the FLCM (Ghosal and Maity 2022a) or the ANFCM (Kim et al. 2018) procedures
among others, our approach has the novel property that there is no need of a preliminary
estimation of the model structure. Besides, this new procedure allows multivariate
responses Y (t) ∈ R

q for q ≥ 1 and t ∈ D. Furthermore, no tuning parameters
are involved in contrast with previous methodologies. Instead, it is only needed to
compute a U-statistic version of the MDD to be able to apply the tests. Using the
theory of U-statistics, good properties of this estimator are guaranteed in practice, as
its unbiasedness. In addition, its asymptotic distribution is obtained both under the null
and local alternative hypotheses. Eventually, bootstrap procedures are implemented
to obtain its p-values in practice.
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The new tests proposed have displayed good performance in linear formulations as
well as in nonlinear structures. This is appreciated by means of the results of scenarios
A and B considered in the simulation study of Sect. 4. These procedures are well
calibrated under the null hypothesis of no effect, tending to the significance level as
the sample size increases. Moreover, they have power under alternatives, which one
can deduce from observing that p-values tend to the unit as sample size increases
when associated covariates are relevant. Besides, these procedures seem to perform
well in real datasets too. We display an example of this result in Sect. 5, where we
analyze three real datasets.Other authors have already studied these, sowecompare our
outcomeswith existing literature, obtaining similar results when these are comparable.
As a result, the MDD-based test is a pretty transversal tool to detect additive effects
in the concurrent model framework without the need for previous assumptions or
model structure estimation. Moreover, notice that all these ideas could be extended
to conditional quantile dependence testing in the concurrent model framework. For
this purpose, a similar development would be enough, following the guidelines and
adapting the ideas of Section 3 in Zhang et al. (2018).

In terms of performance comparison with existing literature, the MDD-based test
methodology is put together with Ghosal and Maity (2022a) (FLCM) and Kim et al.
(2018) (ANFCM) algorithms in the linear and additivemodel framework, respectively.
Based on the obtained results, it is possible to claim that the new procedure is quite
competitive. Even when the FLCM and ANFCM procedures have the advantage of
being implemented assuming the correct model structure and an optimal number of the
basis components, the new procedure results are comparable to theirs. These results
arise in Sect. 4.3. In contrast, our procedure outperforms their results by simulating a
more functional scenario and avoiding only trigonometric expressions in the model.
Besides, another disadvantage of the competitors is that m(t, X(t)) is unknown in
practice, so a misguided assumption of the model structure could lead to poor results.
In addition, as discussed in Ghosal andMaity (2022a) and Kim et al. (2018), a suitable
selection of the number of the basis components is problematic in practice. This
issue is still an open problem. This quantity plays the role of tuning parameter, so an
appropriate value is needed to guarantee a proper adjustment. In contrast, our proposal
has the novelty that this does not require previous estimation or tuning parameters
selection. Our approach bridges a gap and solves the problems mentioned above.

One limitation of the present form of our test is that this only admits the study
of numerical covariates. This restriction is quite common for the concurrent model
framework. Some examples are the works of Ghosal and Maity (2022a) or Kim et al.
(2018). If one wants to be able to include categorical variables, as in other works such
as in Wang et al. (2017), a different metric is needed to correctly define the U-statistic
of the MDD test. Some solutions for this problem have already been proposed for
the distance covariance approach in the presence of noncontinuous variables. Similar
ideas could be translated to theMDD context to solve this issue. An option is to extend
the ideas proposed in Lyons (2013) for general metric spaces to this case. We leave
this topic for future research.

Another drawback is related to the disposal of the observed time instants. It is
necessary to monitor the same number of curves at each instant of time to be able to
construct our proposed statistic. This restriction translates into synchronous observa-
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tions with nt = n points of the observed curves for all t ∈ D. When the number of
missed points is small, we can impute these using interpolation techniques. An exam-
ple is given in Sect. 3.2. However, in a sparse context where one observes each curve
in a different number of time points, and these measures may not agree (asynchronous
pattern), it is not possible preprocessing the data to obtain our starting point. Therefore,
we need a new methodology based on different dependence measures. This problem
is a pretty interesting area of study for future work. Concerning the observed time
points, an additional drawback is the statistics computational time, being of the order
of O(n(n − 1)(n − 2)(n − 3)T ) operations. Then, this procedure is quite competi-
tive for “moderate” values of n and T . However, for large values of these quantities,
especially those related to n, the statistic has a high computational cost. Consequently,
simplification techniques in the number of required operations are of interest to make
the procedure more tractable.

Eventually, we remark that our tests only collect additive effects. This phenomenon
is due to the statistics structure displayed in (11). Although this formulation embraces
a wide variety of different structures, this does not consider some complex relations.
An example is the detection of possible interactions without a prespecified definition
of a new variable collecting this information. Nevertheless, we think that our ideas can
be extended to the general concurrent model formulation by resorting to projection
techniques. Another interesting idea, pointed out by one of the referees, is to directly
consider the integral of the vectorial version of the MDD coefficient and adapt the
theoretical results of Székely et al. (2007). This expansionwould translate into studying
the convergence of the integrated version of an infinity family of empirical processes.
Nevertheless, this procedure is not straightforward in this context. Both approaches
are entirely new lines for future research that would need further study.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s11749-023-00857-y.

Acknowledgements We want to sincerely acknowledge the work of the associated editor and two anony-
mous referees. Specifically, we thank them for their insightful and constructive comments. These have
helped us to improve the quality of the manuscript and to consider interesting extensions for future
research. We also want to acknowledge Rahul Ghosal for his generosity in providing the code for the
FLCM algorithm. The research of Laura Freijeiro-González is supported by the Consellería de Cultura,
Educación e Ordenación Universitaria along with the Consellería de Economía, Emprego e Industria of the
Xunta de Galicia (project ED481A-2018/264). Laura Freijeiro-González, Wenceslao González-Manteiga
and Manuel Febrero-Bande acknowledged the support from Project PID2020-116587GB-I00 funded by
MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe” and the Competitive Ref-
erence Groups 2021-2024 (ED431C 2021/24) from the Xunta de Galicia through the ERDF. We also
acknowledge the Centro de Supercomputación de Galicia (CESGA) for computational resources.

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

https://doi.org/10.1007/s11749-023-00857-y
https://doi.org/10.1007/s11749-023-00857-y
http://creativecommons.org/licenses/by/4.0/


Novel MDD specification tests for additive concurrent models

Appendix A: Simulation details for considered competitors

In this appendix, we remind the scenario A structure of the FLCM algorithm imple-
mented in Ghosal and Maity (2022a) in Section A.1. Besides, the form of scenario
(B) for the ANFCM testing performance introduced in Kim et al. (2018) is reviewed
in Section A.2. Moreover, we explain how these algorithms are implemented in the
simulation study of Sect. 4.3.

Code for simulations and real datasets analysis is available in the public GitHub
repository https://github.com/LauraFreiG/Covariates_selection.git. In particular, this
is summarized in the folder “Synchronous FCM”, inside the folder “Functional Con-
current Model”.

A.1 Implementation details for FLCM algorithm

Under the linear assumption, data for i = 1, . . . , n are generated as

Yi (t) = β0(t) + Xi (t)β1(t) + εi (t)

where β0(t) = 1 + 2t + t2 and β1(t) = d · t/8, for d ≥ 0. The original covariate
samples Xi (·) are i.i.d. copies of X(·), where X(t) = a+b

√
2 sin(π t)+c

√
2 cos(π t),

with a ∼ N (0, 1), b ∼ N (0, 0.852) and c ∼ N (0, 0.702) independent. It is assumed
that the covariate Xi (t) is observed with error, i.e., Wi (t) = Xi (t) + δi t is getting
instead, where δi t ∼ N (0, 0.62) and changes with every i and t . The error process is
considered as

εi (t) = ξi1
√
2 cos(π t) + ξi2

√
2 sin(π t) + ξi3t

where ξi1
i id∼ N (0, 2), ξi2

i id∼ N (0, 0.752) and ξi3t
i id∼ NT (0, 0.92 IT ), with ξi3t being

generated as a multivariate normal of dimension T and these values change with i and
t .

We consider the dense design, taking a total of T = 81 equidistant time points in
[0, 1], being t1 = 0 and t81 = 1. A Monte Carlo study is carried out using M = 1000
replicates to measure calibration and power, and p-values are calculated using B =
100000 samples generated under the null hypothesis of no effect (H0 : β1(t) = 0 for
all t). Following the authors’ guidelines, the number of basis components considered
is Q = 7. To measure calibration and power we consider d = 0 and d = 3, 7,
respectively. Besides, we take n = 60, 100 to compare their results with the MDD-
based test ones. To implement this algorithm, we have used the public code which can
be found in 10.1016/j.ecosta.2021. 05.003. In particular, we generate the data and use
the FLCM.test1 function of the test.R script to implement the test.

A.2 Implementation details for ANFCM algorithm

In the case of the ANFCM approach, we perform Algorithm 1 of Kim et al. (2018)
in hypothesis testing, which translates into testing the nullity of the second additive
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effect by

H0 : E
[
Y (t)|X1(t)=x1

] = F0(t).

In this scenario, samples are generated verifying the additive assumption of

Yi (t) = F0(t) + F1(X1i (t), t) for i = 1, . . . , n

where F0(t) = 2t + t2 and F1(X1i (t), t) = d{2 cos(X1(t)t)} for d ≥ 0. The
covariate X1(t) is given by X1(t) = a0 + a1

√
2 sin(π t) + a2

√
2 cos(π t), where

a0 ∼ N
(
0, {2−0.5}2), a j1 ∼ N

(
0, {0.85 × 2−0.5}2) and a2 ∼ N

(
0, {0.7 × 2−0.5}2).

However, it is assumed that this covariate is observed with error. In particular, we
get W1i = X1i (t) + δi t where δi t ∼ N (0, 0.62) varies with respect to i and t . The
considered error process is

εi (t) = ξi1
√
2 cos(π t) + ξi2

√
2 sin(π t) + ξi3t

where ξi1
i id∼ N (0, 2), ξi2

i id∼ N (0, 0.752) and ξi3t
i id∼ NT (0, 0.92 IT ), being ξi3t generated

as a multivariate normal of dimension T . All these values are simulated changing with
i and t .

Here, the dense design scenario is considered with T = 81 equidistant time points
in [0, 1], being t1 = 0 and t81 = 1. To study its calibration and power behavior aMonte
Carlo study is carried out. We employ a total of M = 1000 replicates to study both. In
this case, p-values are calculated by means of B = 200 bootstrap samples in all cases.
Besides, following Kim et al. (2018) parameters selection, the number of the basis
components taken is Q = 7. In order to measure calibration and power we test with
d = 0 and d = 3, 7, we simulate under null and alternative hypotheses, respectively.
Besides, we take n = 60, 100 to compare their results with the MDD-based test ones.
Wehave found the code available in https://www4.stat.ncsu.edu/~maity/software.html
andwe borrowed it to reproduce theANFCMsimulations. Specifically, wemake use of
the anova.datagen function of the datagenALL.R2 script to generate the data
and apply test.anova function of the test.R script to implement the algorithm,
using now list(null.data.dn$Weval[[2]]).

2 We have adapted the code to correctly generate X1(t) and Y (t).
In particular, in the X function, we have changed X.list[[q]]
=2^(1-q)*(a0%*%t(ones)+a1%*%t(phi1)+a2%*%t(phi2)) for the expression
X.list[[q]] = (a0%*%t(ones)+a1%*%t(phi1)+a2%*%t(phi2))/sqrt(2^(q-1))
to correct a typo. Besides, it is needed to change F.anova2 =
function(x1,x2,t,d)2*t+t^2+x1*sin(pi*t)/4+d*2*cos(x2*t) by
F.anova2 = function(x2,t,d)2*t+t^2+d*2*cos(x2*t) as well as Fanova =
F(Xeval[[1]],Xeval[[2]],trep,d) by Fanova = F(Xeval[[2]],trep,d) in function
anova.datagen to correctly define the modified version.

123

https://www4.stat.ncsu.edu/~maity/software.html


Novel MDD specification tests for additive concurrent models

Appendix B: Graphics
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Fig. 8 Histograms of the p-values of the test statistics under H0 using the wild bootstrap critical value for
some values of n in Scenario A
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Fig. 9 Histograms of the p-values of the test statistics under H0 using the wild bootstrap critical value for
some values of n in Scenario B
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Fig. 10 Histograms of the test statistics p-values under H0 for the FLCM (left column) and MDD (right
column) methods in scenario A of Ghosal and Maity (2022a)
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Fig. 11 Histograms of the test statistics p-values under H0 for the ANFCM (left column) and MDD (right
column) methods in modified scenario B of Kim et al. (2018)
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