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Abstract

In a Big Data context, the number of covariates used to explain a variable of interest, p, is
likely to be high, sometimes even higher than the available sample size (p > n). Ordinary
procedures for fitting regression models start to perform wrongly in this situation. As
a result, other approaches are needed. A first covariates selection step is of interest to
consider only the relevant terms and to reduce the problem dimensionality. The purpose
of this thesis is the study and development of covariates selection techniques for regression
models in complex settings. In particular, we focus on recent high dimensional or functional
data contexts of interest. Assuming some model structure, regularization techniques are
widely employed alternatives for both: model estimation and covariates selection simul-
taneously. Specifically, an extensive and critical review of penalization techniques for
covariates selection is carried out. This is developed in the context of the high dimensional
linear model of the vectorial framework. Conversely, if no model structure wants to be
assumed, state-of-the-art dependence measures based on distances are an attractive option
for covariates selection. New specification tests using these ideas are proposed for the
functional concurrent model. Both versions are considered separately: the synchronous
and the asynchronous case. These approaches are based on novel dependence measures
derived from the distance covariance coefficient.

KEYWORDS: High dimension; Covariates selection; Regularization techniques; Distance
covariance; Functional concurrent model.
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Introduction

Massive amounts of data have emerged in the last century in different fields due to enormous
computational and technological progress. This phenomenon knows as the beginning of
the “Big Data” age. Big Data was initially defined by three V’s that characterize the new
type of generated data: volume, velocity, and variety. Because of the high impact of this
phenomenon on the population, other features were added, such as veracity, validity, and
value. These characteristics question the quality of the information provided. Variability,
volatility, and visualization have been new additions related to the complexity of managing
these big data sets. These last three terms warn about the possible difficulties of extracting
and interpreting results. Finally, other qualities, such as vulnerability, venue, or virality,
have also been added to this list. These are related to computing management. All the
cited features support that Big Data scenarios are challenging in several disciplines. In
particular, these have a special interest in Statistics, where one wants to be able to manage
the information provided by all new types of complex data.

As a result, Big Data sets have quite varied natures and characteristics. In Statistics,
those derived from the volume feature are of great interest, giving place to new complex
statistical objects. Some examples are the high dimensional framework or the ones known
as high-frequency or functional data sets, among others. Therefore, it is necessary to
develop suitable techniques for their management and analysis.

In the current Big Data context, it is of great interest the high dimensional case related
to the concern for volume, where the number of covariates considered (p) is high, even
higher than the available sample size (n). Examples of this framework are stock prices in
Economics, genomic studies in Biology, or data from social media in Computing Science.
Classical techniques start to perform poorly in this context. In the case of p > n, these are
not available. Hence, new statistical procedures are required to deal with these drawbacks.

Another interesting type of data that has appeared in recent decades, related to the
volume characteristic, is functional or high-frequency data. Here, variables are functions
that depend on some t argument, resulting in objects with infinity dimensions. Thus, given
a “time” instant t, the observed data are discretized values of the functions at that moment.
Some examples of the use of functional data are meteorological modeling, statistical image
or signal processing, monitored measures in medicine, functional magnetic resonances,
and energy demand or consumption modeling. For these statistical objects, completely
new procedures have been developed to deal with their functional nature. This has been
another implication of the Big Data phenomenon.

The requirement of new procedures in the high dimensional and functional contexts
also applies to regression models. In the first case, classical techniques for model estimation
in the vectorial framework, which assumes that n > p, start to perform poorly for a large
number p of covariates. This is due to the curse of dimensionality, where the local character
is lost as p increases. This drawback also has an impact on model estimation in functional
data. Specifically when considering a large number of covariates. Furthermore, these

vii
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approaches are not available when p > n. An additional drawback is that the increment
of the p value, i.e. the increment of the considered covariates in the regression model,
enhances the apparition of collinearity or concurvity effects. Therefore, not all covariates
are relevant, but only a bunch are needed to explain the available information. As a
result, the difficulty increases as this number grows. This fact is especially harmful in the
functional context, where functions are estimated instead of vectors.

Given all these drawbacks, covariates selection techniques to reduce the problem
dimensionality, i.e. to consider fewer than p covariates, and being able to include only
the relevant terms, are desirable in the Big Data context. Specifically, covariates selection
algorithms are an essential preliminary step to solve volume issues. Nevertheless, similar
to prediction, ordinary procedures for covariates selection in regression models fail in these
scenarios. Consequently, covariates selection, estimation, and prediction in these settings
are a big challenge in contemporary Statistics.

Penalization techniques are a well-known and widely employed alternative for both:
model estimation and covariates selection simultaneously. In particular, these add a
regularization term to the estimation process. According to the penalization type, these
could apply covariates selection, as in the L1 case. An example is the noted LASSO
regression of Tibshirani (1996). Furthermore, this approach works in the p > n framework.
These properties make the penalization procedures an outstanding option for the high
dimensional context. However, it is necessary to assume some structure in the regressor
function in advance (linear, additive, etc.), and this assumption could be incorrect or
restrictive in practice. This last is especially tricky in the p > n case, where there are no
(or almost no) tools to test its adequacy.

An alternative idea to avoid assumptions about the model is the use of dependence
coefficients for covariates selection. A novel measure of dependence is the distance covariance
of Székely et al. (2007). This coefficient detects any dependence structure between two
random vectors of arbitrary dimensions and, as a result, can be used as a covariates selector.
Thus, it is enough to consider only the covariates with the highest distance covariance
value with the response in the regression model. This idea can also be applied in the case of
p > n and has been shown that protects against the curse of dimensionality. Now assuming
some structure of the regression model or estimating this is unnecessary. As a result, this is
an attractive alternative to penalization techniques. Due to its good statistical properties,
adaptations for conditional mean independence and tests of conditional independence have
been proposed in the recent literature. Besides, some extensions of these coefficients for
the functional framework have also been derived.

The main topic of this thesis project is the study and development of covariates
selection techniques for regression models in complex settings. In particular, we focus
on recent and high dimensional or functional data contexts of interest related to the
high volume characteristic. Assuming some model structure, regularization techniques
are widely employed alternatives for both: model estimation and covariates selection
simultaneously. Specifically, an extensive and critical review of penalization techniques for
covariates selection is carried out. This is developed in the context of the high dimensional
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linear model of the vectorial framework. This study is followed by a critical analysis
under dependence and considering covariates in different scales. Conversely, if no model
structure wants to be assumed, state-of-the-art dependence measures based on distances
are an attractive option for covariates selection. Concerning functional data, the functional
concurrent model is considered. New specification tests focused on covariates selection
are proposed for both: the synchronous and the asynchronous case. These approaches are
based on novel dependence measures derived from the distance covariance coefficient.

The document is organized as follows. This manuscript begins with a review of the
problems that regression models have to deal with in the high dimensional framework,
motivating the need for covariates selection in Chapter 1. Next, a complete review of
penalization techniques performs in Chapter 2. This study focuses on the linear model in the
vectorial context with the LASSO regression as the core. Its advantages and disadvantages
as a covariate selector are analyzed. Next, some modifications and alternatives are presented.
In Chapter 3, a comparison of the performance of these regularization techniques is carried
out. For this aim, complex scenarios are considered. In particular, data is simulated
assuming distinct dependence structures and covariates in different scales. Some guidelines
are given about what can be expected and what is the best procedure in terms of the data
nature. Furthermore, these procedures are tested in real data sets. Later, in Chapter 4, an
extensive review of the distance covariance properties, characteristics, and processes for
the construction of estimators is collected. This analysis is also extended to its derivatives.
Finally, some comments about their use for covariates selection in complex models arise.
Then, the functional framework appears through the study of the functional concurrent
model. Specifically, Chapter 5 is devoted to the development of new significance tests
for its synchronous version using a mean conditional measure of dependence based on
distances. Their theoretical properties are studied and examples of their good performance
in practice are displayed. Besides, some applications in real data sets are illustrated. In
Chapter 6 some ideas for the extension of the significance tests to the asynchronous version
are displayed. In particular, new global tests are proposed using a conditional dependence
measure derived from the distance covariance. A proper statistic is obtained and its good
behavior is exemplified through a simulation study. Eventually, some conclusions and
future work are discussed.





Chapter 1
Problems of regression models in the high

dimensional framework: the need for
dimensionality reduction

This chapter introduces problems that different regression models face in a high dimensional
framework. These will motivate the content of the following chapters of this thesis document.
First, in Section 1.1, some concepts about different structures of regression models employed
throughout the manuscript are briefly reviewed. In the first place, the linear model,
related to Chapters 2 and 3, is introduced in Section 1.1.1. Subsequently, the additive
formulation is presented in Section 1.1.2 and employed later in Chapter 5. Finally, the local
regression is analyzed in Section 1.1.3, connecting with the general formulation considered
in Chapter 6. In all these cases, problems arising in a Big Data context are argued.
Specifically, the difficulties arising in a high-dimensional framework for these formulations,
considering a great value of p or even p > n, are discussed in detail in Section 1.2. These
problems are classified into three groups: the curse of dimensionality (Section 1.2.1), model
estimation inconsistencies (Section 1.2.2), and collinearity or concurvity effects (Section
1.2.3). Eventually, the need for dimensionality reduction in this framework is motivated
in Section 1.3. This discussion gives rise to the necessity of employing covariate selection
techniques as a preliminary step in high dimensional contexts, motivating the main topic
of this thesis project.

1.1 Brief introduction to regression models

In a regression model, a variable of interest or response, Y , is explained in terms of p ≥ 1
explanatory covariates X = (X1, . . . , Xp)⊤. For this purpose, one can assume that Y is
related to X by a regression function m(·), which is typically unknown. As a result, the
regression model is given by

Y = m(X) + ε, (1.1)

where ε is the model error, not directly observed in practice. This error is commonly
assumed to be conditional independent of X in terms of m(·).

It is usual to assume m(X) = E [Y |X ] in (1.1) in practice, which translates into the
explanation of the conditional mean of Y , given X. Besides, it is usual to ask for condition
E [ε|X ] = 0 to guarantee independence between model error and covariates. However, there
are other options available for the regressor function, such as considering certain quantile
information, i.e. m(X) = Q [Y |X ]. This last results in a quantile regression formulation.
Following usual guidelines, m(X) = E [Y |X ] is assumed from now on as the information
explained by the regressor function.

1
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Regardless of the operator choice, once the type of information collected by m(·) is
selected, it is needed to estimate its form. For this purpose, there are two possible options:
to assume some structure in m(·), such as linear (m(X) = Xβ) or additive (m(X) =∑p

j=1 fj(Xj)), or directly resort to nonparametric techniques without any assumption
about this. The first option is more restrictive but allows us to know how each covariate
impacts the response. Examples of the linear and additive formulations are presented in
Sections 1.1.1 and 1.1.2, respectively. The linear model is assumed in Chapters 2 and 3,
whereas the additive formulation is considered in Chapter 5 in terms of covariates selection
algorithms. In contrast, the nonparametric approach, considering the general function
m(X) where X ∈ Rp, allows more flexibility but loses the interpretability of covariates
effects. The local regression is introduced in Section 1.1.3 as an example of a nonparametric
approach. This approach relates to the general regression formulation proposed in Chapter
6. It is in the case of having a high number of covariates, p, or even if p > n, when the first
choice is more tractable. This result is due to dimensionality problems of nonparametric
techniques. In particular, because of the phenomenon known as the curse of dimensionality
and estimation inconsistencies. These problems are introduced and treated in more detail
below, in Sections 1.2.1 and 1.2.2, respectively. However, assuming a preliminary structure
also has some limitations in the p > n case. These are related to the estimation of the
model and collinearity or concurvity effects. These problems will be discussed later in
Sections 1.2.2 and 1.2.3, respectively. Consequently, a dimensionality reduction to consider
not p covariates, but just a bunch of them, is of special interest in the high dimensional
framework. A safe passage is to appeal to covariates selection techniques. Nevertheless,
classical approaches do not perform well in a high dimensional context. Instead, other
procedures have to be considered. Similar to the estimation of the regressor function, there
are now again two possible paths, depending on whether or not one assumes some structure
on m(X). A discussion about this topic takes place in Section 1.3.

It is remarkable to notice that the response, Y , and the explanatory covariatesX1,. . . ,Xp,
can have quite different natures: scalar variables, vectorial variables, functional data, etc.
Therefore, the estimation procedure of the regression model must be adapted on a case-by-
case basis accordingly to these. As the high dimensional framework is quite tricky, we start
working in the vectorial context because of simplicity. This framework is of great interest
regarding the penalization techniques considered in Chapters 2 and 3. Later, a particular
example of the functional model formulation is introduced and studied in Chapters 5 and
6. So, as mentioned above, three practical and widely employed fitting model techniques
are displayed next, assuming Y ∈ R and X = (X1, . . . , Xp)⊤ ∈ Rp where p ≥ 11. These
are the linear model, additive formulation, and local regression.

1.1.1 Linear model

Assuming without loss of generality that Y and X are centered variables, the linear
model corresponds with taking m(X) = X⊤β for β ∈ Rp in (1.1) formulation. This

1Results could be extended for multivariate response Y ∈ Rq with q ≥ 1, but we restrict ourselves to
this framework just for simplicity.
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formulation is a parametric model assuming a linear structure in m(·). Then, the model
estimation translates into the proper estimation of the β ∈ Rp vector. One can estimate
this vector by minimizing the mean squared error. Thus, assuming a fixed design and
given (Xn,Yn) = {(xi, yi) , i = 1, . . . , n} an iid sample from the joint distribution function
of (X,Y ) ∈ Rp × R, this results in minimizing the ϕ(β) function defined as

min
β
ϕ(β) = min

β

n∑
i=1

(yi − x⊤
i β)2 = min

β
(Yn −Xnβ)⊤(Yn −Xnβ) = min

β
∥Yn −Xnβ∥2n,

(1.2)
being ∥·∥n the euclidean norm in Rn.

Expanding the above expression (1.2), one gets

ϕ(β) :=∥Yn −Xnβ∥2n = (Yn −Xnβ)⊤ (Yn −Xnβ) =
(
Yn

⊤ − (Xnβ)⊤
) (

Yn −Xnβ
)

=
(
Yn

⊤ − β⊤Xn
⊤
) (

Yn −Xnβ
)

= Yn
⊤Yn − β⊤Xn

⊤Yn −Yn
⊤Xnβ + β⊤Xn

⊤Xnβ,

next, differentiating and equating to zero

∂ϕ(β)
∂β

= −2Yn
⊤Xn+2β⊤Xn

⊤Xn = 0⇒ 2β⊤Xn
⊤Xn = 2Yn

⊤Xn ⇒ Xn
⊤Xnβ = Xn

⊤Yn

and it is known that

∂ϕ2(β)
∂β2 = Xn

⊤Xn and det(Xn
⊤Xn) ≥ 0 because Xn

⊤Xn is positive semi-definite.

This guarantees that the solution of the normal equations

Xn
⊤Xnβ = Xn

⊤Yn ⇒ β̂ =
(
Xn

⊤Xn
)−1

Xn
⊤Yn (1.3)

is a minimum and β̂ is known as the ordinary least squares (OLS) estimator. An illustration
of this estimator in three dimensions, jointly with a smooth version, is given in Figure 1.1.
See Sections 1.1.2 and 1.1.3 for examples of this last.

The OLS estimator has good statistical properties. It is easy to see that this term is
an unbiased estimator as

E[β̂] = E
[
(Xn

⊤Xn)−1Xn
⊤Yn

]
= (Xn

⊤Xn)−1Xn
⊤E [Yn]

= (Xn
⊤Xn)−1Xn

⊤E [Xnβ + ε] = (Xn
⊤Xn)−1Xn

⊤ (E [Xnβ] + E[ε])
= (Xn

⊤Xn)−1Xn
⊤Xnβ = β

and under the assumption of normality in the model error, the OLS estimator of (1.3)
corresponds to the one that results from maximizing the likelihood. Besides, if the errors
are uncorrelated with mean zero and homoskedastic with finite variance, the Gauss-Markov
theorem (Theorem 1.1) guarantees that the OLS estimator has the lowest sampling variance
within the class of linear unbiased estimators.
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(a) Linear regression (b) Smooth regression

Figure 1.1: OLS method in three dimensions. This fits a surface (dark blue) by minimizing
the sum of the positive (light blue) as well as negative (pink) squared residuals.

Theorem 1.1 (Gauss-Markov). Suppose m(X) = E[Y |X ] = Xβ and C(X) = σ2Ip, being
C[·] the covariance operator and Ip ∈ Rp the identity matrix. Then, for all ϕ̃ = c⊤Y linear
unbiased estimators of ϕ = z⊤β, where z is a random vector, it is verified that

V(ϕ̃) ≥ V(ϕ̂)

where V[·] is the variance operator and ϕ̂ = z⊤β̂, with β̂ the OLS estimator.

Some problems of the linear model displayed in (1.2) for the p > n context are related
to the estimation of the model and collinearity effects. Specifically, the β̂ OLS estimator
of (1.3) could not be obtained in this case, as is discussed in Section 1.2.2. Moreover,
considering a large number of covariates makes collinearity effects more likely. This last
topic is treated in Section 1.2.3. All these inconveniences bring the fact that, although
the linear model is a fairly tractable formulation for the problem (1.1), this does not work
in the high dimensional framework in the present form. As a result, covariates selection
techniques are of interest in the p > n case to reduce the problem dimensionality and solve
these drawbacks. Next, more complicated structures are proposed and analyzed.

1.1.2 Additive model

In the additive model, the assumption that variables Y and X are centered remains, but
one allows the regression formulation to have more flexibility than in the linear form. An
illustrative example of linear and other smoothing effects is collected in Figure 1.1. This
illustration gives a first intuition about the larger number of structures that a more flexible
approach, like smoothing, could collect. In particular, each covariate effect is modeled by
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an unknown function fj(·), for j = 1, . . . , p to allow more flexibility in the model, and these
effects are assumed to be additive. Hence, this results in plug-in the m(X) = ∑p

j=1 fj(Xj)
structure in the general regression model (1.1). This expression is a nonparametric model,
where it is needed to search for a proper estimation of each fj(·) function without assuming
any structure in these. There are two options to estimate these functional terms

• Kernel smoothing techniques: functions fj(·), for j = 1, . . . , p, are estimated as
the weighted local average of observed data values. The weights are given by a kernel
function that satisfies specific requirements, obtaining greater values for closer points.
Examples of kernel functions are shown in Figure 1.2. The local character is ruled by
a bandwidth parameter that needs estimation in practice.
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Figure 1.2: Example of univariate kernel functions.

• Representation by means of functional basis: each function fj(·) is represented
in terms of Qj ≥ 1 elements of a functional basis for all j = 1, . . . , p. Then, given
Qj elements of a certain basis, partial effects are rewritten as a linear combination
of these. As a result, the problem of estimating fj(·) translates into estimating the
coefficients of the linear combination of the functional basis terms that can be solved
using similar techniques to the ones employed for linear regression (see Section 1.1.1).
An example of some functional basis elements is displayed in Figure 1.3.

In both options mentioned above, given (Xn,Yn) = {(xi, yi) , i = 1, . . . , n} an iid
sample from the joint distribution function of (X,Y ) ∈ Rp × R, one needs to resort to
iterative algorithms to adjust the additive model. One of the most employed techniques is
the backfitting algorithm (Algorithm 1.2).
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Figure 1.3: Example of the first 11th elements of the Fourier (left) and B-splines (right)
functional basis.

Algorithm 1.2 (Backfitting).

1. Initialize f̂j = 0 for j = 1, . . . , p.

2. For each f̂j , j = 1, . . . , p, iteratively recalculate f̂j = Sj

(
Yn −

∑
k ̸=j f̂k|Xj

)
, being

Sj(·) a smoother of the response over Xj .

3. Repeat step 2 until convergence is achieved.

In this algorithm, for the Sj(·) smoother function, it is necessary to apply kernel
smoothing or functional basis representation techniques.

A problem with Algorithm 1.2 is its related high computational cost. In the additive
model fitting, each sample requires kp steps, where k ≥ 1 is the number of cycles of the
fitting algorithm. Then, for n samples, a total of kpn operations are needed. Besides,
the computational complexity of the smoother terms Sj(·) has to be added as well. For
example, in the case of using cubic smoothing splines, this number is pn log(n), resulting
in a total of pn log(n) + kpn operations (see Section 9.7 of Hastie et al. (2009) for more
details). This fact translates into complexity in the estimation procedure for large values
of p, which implies more complexity in high dimensional contexts.

Next, the ideas of applying representation using functional bases to estimate the fj(·)
functions are detailed. We refer the reader to Section 1.1.3 for more details about kernel
smoothing techniques implementation.

Functional basis representation

Once a functional basis is selected (Splines, Fourier, Wavelets, etc.) for each covariate
effect, the fj(·) functions are expressed in terms of Qj ∈ N elements of the basis {Bjq(·), q =
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1, . . . , Qj}. This representation results in

fj(x) =
Qj∑
q=1

αjqBjq(x),

being αjq the unknown coefficients of the linear combination of basis functions that require
estimation for j = 1, . . . , p and q = 1, . . . , Qj .

It is quite common to assume the same class of functional bases for all effects, when
possible, and the same number of considered basis terms. Roughly speaking Qj = Q for all
j = 1, . . . , p. However, we work under the most general context, allowing different bases
and numbers of components.

Considering the basis representation, one obtains that yi = ∑p
j=1

∑Qj

q=1 αjqBjq(xi) + εi.
Then, the additive model can be rewritten as

Yn = Bnα+ ε (1.4)

where Bn =
[
{B1q(X1)}Q1

q=1; . . . ; {Bpq(Xp)}Qp

q=1

]
is a matrix of dimension n×

∑p
j=1Qj and

α = [{α1q}Q1
q=1, . . . , {αpq}

Qp

q=1] is a vector of dimension ∑p
j=1Qj .

The resulting linear expression given in (1.4) allows us to estimate the αjq coefficients
using the OLS procedure introduced above for the linear model. Nevertheless, we need
to choose a proper value of Qj first. As this is a difficult task, it is common to consider
a great enough value and penalize the excess of possible curvature. As a result, for each
fj(·) term it is added a λj

∫
Dj

(f ′′
j (x))2dx one to the model, being λj > 0 a penalization

parameter and Dj the domain of Xj for j = 1, . . . , p. In practice, the regularization values
of λj > 0 are usually obtained using cross-validation techniques over a grid of values. It
is verified that

∫
Dj

(f ′′
j (x))2dx = α⊤BjBjBjα, where BjBjBj =

∫
Dj

(B′′
nj(x))⊤(B′′

nj(x))dx is a known∑p
j=1Qj ×

∑p
j=1Qj dimensional matrix since B′′

nj(x) = [B′′
j1(x), . . . ,B′′

jQj
(x)] is the n×Qj

matrix which only depends on the known basis functions. Here, each BjBjBj term is a matrix
of zeros except for elements Bj (k+Qj−1,l+Qj−1) = (B′′

jk(x) · B′′
jl(x)) with k, l = 1, . . . , Qj and

being Q0 = 0 for j = 1, . . . , p.
Then, the cited problem is rewritten as a penalized linear regression model given by

the minimization problem
min

α
∥Yn − Bnα∥2n + α⊤BBB α,

being BBB = ∑p
j=1 αjBjBjBj a matrix of dimension ∑p

j=1Qj ×
∑p

j=1Qj such that

BBB =


Q1︷ ︸︸ ︷
λ1B̃1B̃1B̃1 · · ·

Qp︷︸︸︷
0

... . . . ...
0 · · · λpB̃pB̃pB̃p


} Q1

} Qp

where B̃jB̃jB̃j represents the submatrices of BjBjBj which elements are not null.
Thus, obtaining the penalized OLS estimator of α is possible once values for λj are
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defined. This estimation translates into solving the minimization problem

min
α
∥Yn − Bnα∥2n + α⊤BBB α = min

α
(Yn − Bnα)⊤(Yn − Bnα) + α⊤BBB α

= min
α

Yn
⊤Yn −Yn

⊤Bnα− (Bnα)⊤Yn + (Bnα)⊤(Bnα)

+ α⊤BBB α

= min
α
ϕ(α).

Deriving, one gets to

∂ϕ(α)
∂α

= 0⇒ −2Yn
⊤Bn + 2(Bnα)⊤Bn + 2α⊤BBB = 0

⇒ −2Yn
⊤Bn + 2α⊤Bn

⊤Bn + 2α⊤BBB = 0
⇒ −2Yn

⊤Bn + 2α⊤(Bn
⊤Bn + BBB) = 0

⇒ 2α⊤(Bn
⊤Bn + BBB) = 2Yn

⊤Bn

⇒ α⊤ = Yn
⊤Bn(Bn

⊤Bn + BBB)−1

⇒ α̂ = (Bn
⊤Bn + BBB)−1Bn

⊤Yn,

(1.5)

where α̂ is guaranteed to be the OLS estimator because ∂ϕ2(α)
∂α2 = 2Bn

⊤Bn + 2BBB and
Bn

⊤Bn + BBB is a positive semi-definite matrix.
In the p > n context, other inconvenience arises, apart from the high computational

cost required as a trade-off for more flexibility due to additive effects consideration. Similar
to collinearity effects in the linear model, this formulation suffers from possible concurvity
effects. See Section 1.2.3 for more details. Again, a preliminary covariates selection step is
desirable to consider a small number of covariates entering the model and avoid the high
dimensional drawbacks in this setting.

Eventually, we allow for more flexibility in the regressor function considering the general
formulation in the local regression adjustment.

1.1.3 Local regression

The local regression is a nonparametric technique designed to estimate the general form of
the m(·) function of (1.1). This procedure allows complete flexibility and does not require
model assumptions as a preliminary step. As its name suggests, for a given value x of the
covariates X ∈ Rp, the idea is to adjust a local model using the values of close observations.
For this purpose, one can resort to kernel functions to weight these quantities as necessary.

This results in estimating the regressor function as a locally weighted average of the
response values, given by

m̂(x) = 1
n

n∑
i=1

ΦH(x)yi with ΦH(x) = KH(xi − x)
1
n

∑n
i=1KH(xi − x)

, (1.6)

where H is a p× p bandwidth matrix, being symmetric and positive definite, and KH(xi−
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x) = |H|−1K
(
H−1(xi − x)

)
is the rescaled kernel with K(·) a p dimensional kernel function.

Here | · | applies for the matrix determinant. Some examples of kernel functions for the
p = 1 case are displayed in Figure 1.2. Multivariate kernels can be obtained as the product
of these univariate versions.

The bandwidth matrix H controls the shape and size of the local neighborhood and
must be estimated. When this takes small values, which translates into few data in the
neighborhood, undersmoothing will occur in each direction. Conversely, taking large
values will include too many observations in the adjustment. This scenario will produce
oversmoothing. Thus, obtaining a proper estimate of the H matrix values is a difficult
task, and its complexity increases with the p dimension.
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Figure 1.4: Example of modeling a nonlinear relation in two dimensions. Left: real model
in green and linear fit in blue. Right: local linear regression at the point x = −1.5 in red.

Another local regression alternative is the local polynomial estimators. These, for each
value x ∈ R, adjust a polynomial of degree d ≥ 1 using the neighborhood information. An
example of the local linear case (d = 1) in two dimensions is displayed in Figure 1.4. Thus,
for a point x and a fixed degree d, the value of m(x) is estimated by means of a b(x)⊤β(x)
term, where the β(x) vector is obtained solving the problem

min
β(x)

n∑
i=1

(
yi − b(xi)⊤β(x)

)2
KH(xi − x) = min

β(x)
(Yn −Bnβ(x))⊤ Kn(x) (Yn −Bnβ(x))

(1.7)
where b(u) is a vector ∑p

j=1
(p

j

)
dj dimensional of polynomial terms in the point u of

maximum degree d, Bn = [b(x1)⊤; . . . ; b(xn)⊤]⊤ is a n×∑p
j=1

(p
j

)
dj matrix and Kn(x) =

diag{KH(x1 − x), . . . ,KH(xn − x)} is a n× n matrix.
As the problem (1.7) is just a weighted version of the linear formulation displayed in



10 CHAPTER 1. HIGH DIMENSIONAL PROBLEMS

equation (1.2), the same steps and argumentation of Section 1.1.1 can be employed to
obtain a proper estimator. In particular, this results in

m̂(x) = b(x)⊤β̂(x) = b(x)⊤
(
Bn

⊤Kn(x)Bn
)−1

Bn
⊤Kn(x)Yn. (1.8)

It is easy to see that the local estimator displayed in (1.8) is just a particular case
of the Nadaraya-Watson estimator for local regression considering the weights ΦH(x) =
b(x)⊤

(
nBn

⊤Kn(x)Bn
)−1

Bn
⊤Kn(x) in (1.6). Additional details about local regression

in Rp can be found in Section 6.3 of Hastie et al. (2009).
The addition of flexibility in the model estimation process has some additional problems

as a trade-off. The first drawback relates to the difficult interpretation of the model effects
for values of p ≥ 3, even if n > p. Concerning the increment of covariates appears the
curse of dimensionality. As was mentioned above and will be discussed in more detail
in Section 1.2.1, great dimensionality spoils the local character. As a result, a proper
selection of the H values is still more difficult in a high dimensional framework. Similar
procedures to the linear model ones were employed to obtain the local estimator of the
equation (1.8). Then, this estimator also inherits its inconsistency problems when p > n.
A more detailed explanation is given in Section 1.2.2. Eventually, as the local regression is
a broad approach, this can also suffer from collinearity and concurvity effects. These will
be introduced next in Section 1.2.3. Summing up, it is also desirable to be able to reduce
the problem dimensionality in the local regression framework. For this purpose, one can
resort to covariates selection techniques in the high dimensional context.

1.2 High dimensional problems

In a Big Data context, it is quite common to face high dimensional situations. These
translate into considering a large number of covariates, p. This amount could be even higher
than the available sample size (p > n). It is in these situations that new drawbacks arise,
and classical techniques start to perform poorly. In this section, we introduce the main
problems of regression models in the framework of high dimensions. These inconveniences
are related to the phenomenon known as the curse of dimensionality (Section 1.2.1), the
appearance of inconsistencies in the model estimation procedures (Section 1.2.2), and the
increased probability of collinearity and concurvity effects (Section 1.2.3).

1.2.1 The curse of dimensionality

In a high dimensional framework, the local nature is lost as the dimension of p increases.
This phenomenon is known as the curse of dimensionality. As a result, the neighborhood
concept is missed, and larger areas are needed. This effect is a drawback that affects several
statistical techniques in high dimensions. Some comments about its cause and implications
can be found in Hastie et al. (2009), Giraud (2014), or Hastie et al. (2015).

This phenomenon can be understood through a simple example. For a fixed number
of points uniformly simulated in the unit hypercube of the p-dimensional space, we can
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consider a hypercube inside the first one with the origin as an edge and containing, on
average, a span of the total number of points. Therefore, a side length is set for the small
cube of span1/p to verify this last condition. Then, for a span=0.1, one needs a side length
of 0.1 for p = 1 and a side length of 0.8 for p = 10. This example states the loss of local
character when the dimension of the covariates increases. See Figure 1.5 for an illustration.
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Figure 1.5: Left: the red cube is a unit cube containing points uniformly distributed in
three dimensions, whereas the blue and small one is a cube with a volume equal to a value
of span. Right: relation between the span and side length of the blue cube for different
dimensions in p.

In conclusion, the curse of dimensionality is a hard inconvenience for local procedures.
Specifically, this is a problem for nonparametric techniques, which rely on the local nature,
employing a proper selection of the bandwidth parameters. Then, even for a moderate
dimension of p, it is expected to require larger values of the bandwidths associated with
X1,. . . ,Xp, or the bandwidth matrix, respectively, to guarantee that a given span of
information is collected. This drawback also applies to other procedures which make use
of local ideas as well, for example, the K-nearest neighbors. Hence, techniques such as
the local regression introduced in Section 1.1.3 to estimate the m(·) general function of
(1.1) perform poorly for large values of p. This fact states the usefulness of considering
some structure on the regressor function to avoid the curse of dimensionality in a high
dimensional context.

Another problem related to the curse of dimensionality is the loss of interpretability for
models considering p > 3 covariates. If it is assumed the general formulation displayed
in equation (1.1), the hypersurface resulting from the m(X1, . . . , Xp) function estimation
is quite difficult to be interpreted in practice. Then, procedures to reduce the number of
considered covariates are of interest as a preliminary step. Covariates selection techniques
for general formulations of the regression model are available using the distance covariance
ideas introduced by Székely et al. (2007). These are displayed and treated later in
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Chapter 4 and employed in Chapters 5 and 6. However, these do not apply to model
estimation, and details about the model structure are not provided in practice. To solve
the problem concerning interpretability is quite common to resort to simpler and more
specific formulations of m(·) in the high dimensional context. Two popular options are
the linear model structure, taking Y = Xβ + ε, or the additive formulation given by
Y = f1(X1) + · · · + fp(Xp) + ε. Both have been introduced previously in Section 1.1.
However, some inconsistency problems appear when p > n. Next, we analyze the proper
adjustment of these models in the high dimensional framework.

1.2.2 Model estimation inconsistencies

As seen above, because of the curse of dimensionality, taking simple structures in the
(1.1) formulation could be of interest when p is large. Nevertheless, in a high dimensional
context where p is equal or larger than n, denoting as p > n henceforth, some usual
techniques for regression model estimation do not perform correctly. They suffer from
inconsistencies in the estimation process. Next, we explain these problems for the linear and
additive formulations, jointly with the local regression drawbacks. All these formulations
are introduced above in Section 1.1.

Linear regression

In the situation of p > n, it is not possible to obtain the OLS estimator, β̂, displayed
in expression (1.3). This is because Xn is a matrix of n× p dimension, Xn

⊤Xn is p× p
dimensional matrix, and Corollary 1.3 guarantees that rank(Xn

⊤Xn) ≤ n < p. As we
know that

∃(Xn
⊤Xn)−1 ⇔ det(Xn

⊤Xn) ̸= 0 ⇔ rank(Xn
⊤Xn) = p,

where det(·) denoting the determinant operator, the inverse (Xn
⊤Xn)−1 cannot be guar-

anteed to exist in a unique way. Then, there is not uniqueness of the OLS estimator.

Corollary 1.3. Being A a matrix of p× n dimension and B a matrix of n× p dimension
where p > n, then

rank(A ·B) ≤ rank(A)
and

rank(A ·B) ≤ rank(B)

⇒ rank(A ·B) ≤ n

given that rank(A) ≤ n and rank(B) ≤ n because p > n.

A widely employed way of solving this drawback is imposing a penalization in the OLS
problems displayed in (1.2) over the β parameters. Some examples of these approaches
are the LASSO regression (Tibshirani (1996)), the SCAD penalization (Fan (1997)) or the
Dantzig selector (Candes and Tao (2007)), among others. These are reviewed in subsequent
Chapters 2 and 3.



1.2. High dimensional problems 13

Local regression

In the case of the local regression treated in Section 1.1.3, as the estimator obtained in (1.8)
is a result of solving a weighted linear regression problem, this inherits its inconsistency
in the estimation procedure. In particular, estimator b(x)⊤β̂(x) will exists if there is a
unique inverse of Bn

⊤Kn(x)Bn. For this aim, similar to linear regression, it is necessary
to guarantee that rank(Bn

⊤Kn(x)Bn) = ∑p
j=1

(p
j

)
dj ≥ p, otherwise, the determinant of

the resulting matrix will be null.
Applying Corollary 1.3, it can be easily seen that, when n > p, it is verified that

rank(Bn
⊤Kn(x)Bn) ≤ n < p ≤

∑p
j=1

(p
j

)
dj . As a result, there is not a unique estimator

resulting in solving equation (1.8). Following the guidelines of linear regression to protect
against estimation inconsistency, one could think about the imposition of penalties. Nev-
ertheless, this is not straightforward for local regression techniques. It is unclear how to
penalize the model coefficients for high degrees d of the b(x) polynomial function. Also,
the penalty would have to depend on the bandwidth matrix H. Due to these drawbacks,
penalization procedures are not a good safe passage in this context. An example of using
regularization techniques for the case of d = 1 is the work of Vidaurre et al. (2012) using
L1 penalty ideas.

Additive regression

The additive regression allows more flexibility than the linear model but less than the
local regression approach. In particular, the linear model is a specific case of additive
regression, where each covariate function takes the fj(Xj) = βjXj value for all j = 1, . . . , p.
In consequence, assuming that there are, at least, k < p covariates that have a linear effect,
it is needed for the submatrix XK = (X1, . . . , Xk)⊤ formed by these terms to have rank
greater or equal to k. Otherwise, the matrix XK is ill-conditioned, and the estimation
procedure of the additive model would be inconsistent for these covariates, similar to the
linear regression case. This implication is, again, a risky situation for the high-dimensional
framework where high values of p are expected. However, we will see that this does not
apply to nonlinear additive effects.

In the case of estimating an additive model, the limitations of kernel smoothing
techniques when p is large have already been justified due to the curse of dimensionality
problem exposed in Section 1.2.1. One expects many covariates in the p > n context, so
previous limitations could be an issue.

In terms of the representation of the basis, this problem is avoided. After applying
basis representation and penalizing the possible excess of curvature, we get to the OLS
estimator of the corresponding linear formulation, α̂, displayed in (1.5). This is given by
α̂ = (Bn

⊤Bn + BBB)−1Bn
⊤Yn. Similar to the linear regression problems, using Corollary 1.3,

it can be seen that do not exist a unique (Bn
⊤Bn)−1 inverse. Now, this problem is solved

considering (Bn
⊤Bn + BBB)−1, after adding the curvature penalization terms collected in BBB.

If these penalizations were not added, two limitations would arise: the consideration of too
many elements of the basis could result in an exceed of curvature, and it is not possible to
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get the OLS estimator displayed in (1.5) for the p > n case.
Another restrictive limitation of the additive model is the threat of possible collinearity

or concurvity effects when p is large. This inconvenience is treated in the next section.

1.2.3 Collinearity and concurvity

The collinearity effect appears when some of the 1, . . . , p considered covariates can be
explained in terms of the remaining ones employing a linear relationship. This consequence
translates into ill-conditioned of the matrix X in linear regression or the submatrix XK

considering only the covariates with linear effects for the additive model and the local
regression. In contrast, the concurvity effect is analogous to collinearity, but this also
collects nonlinear effects. This condition is based on the fact that a smooth model effect
fj(·) can be completely explained as a linear combination of the remaining fk(·) terms,
where j ̸= k = 1, . . . , p. Then, linear regression avoids this phenomenon, but additive or
local regression can suffer from this. The concurvity effect results in inconsistencies in the
estimation procedures too.

Thus, consideration of a large number of covariates, p, increases the probability of the
linear model suffering from collinearity and the ones of the additive and local formulations
suffering from concurvity effects. Besides, this is more likely and much more difficult to
detect in the case of concurvity because of its functional nature. As a result, procedures
for dimensionality reduction are desirable to avoid these effects, with a notable emphasis
on nonlinear formulations.

1.3 Need for dimensionality reduction: covariates selection approaches

The high dimensional framework in regression models is quite challenging in practice,
especially for the p > n context. Its most remarkable limitations have been displayed in
Section 1.2. These refer to the curse of dimensionality (Section 1.2.1), possible inconsisten-
cies in the model estimation process (Section 1.2.2), and collinearity or concurvity effects
(Section 1.2.3). In particular, it has been shown that estimating the regression function
under the general formulation displayed in (1.1) is a rough problem. Local regression
techniques (Section 1.1.3) suffer from the curse of dimensionality in terms of the bandwidth
parameters selection when p is high. Besides, these have inconsistency problems in the
estimation procedure for the p > n case and are more prone to collinearity or concurvity
effects when the covariates dimension increases. All these drawbacks state the necessity
to resort to simpler formulations when p > n, such as the linear model (Section 1.1.1) or
the additive regression (Section 1.1.2). However, both alternatives present some problems
in the high dimensional framework. In the case of linear regression, this also suffers from
model estimation inconsistencies when p > n and collinearity effects. Nevertheless, the
inconsistency problem is solved through the imposition of penalties in the estimation
process can solve the inconsistency problem. This solution is treated in Chapters 2 and
3. By its part, the additive formulation inherits the estimation problems of the linear
case, resulting in estimation inconsistency only in the linear effects, and can suffer from
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collinearity and concurvity effects. Again, estimation drawbacks of the additive model,
related to its linear part, can be solved using penalization techniques. However, the curse of
dimensionality, introduced in Section 1.2.1, or the collinearity/concurvity effects of Section
1.2.3, can only be avoided just by reducing the problem dimensionality.

Given all these inconveniences, it is clear that simple models are more tractable in the
high dimensional framework. Furthermore, a first step of dimensionality reduction is always
desirable to avoid some of the cited problems, such as possible collinearity or concurvity
effects. Regarding regression models, one way to apply dimensionality reduction is to resort
to covariates selection techniques. These select which of the p covariates considered are
relevant and exclude the rest from the adjustment. As a result, they seek to ensure that
all provided information is valuable and that the noise is excluded from the model. In
addition, this selection results in a dimensionality reduction, considering fewer than p terms
in the posterior estimation process. Nevertheless, for the p > n case, classical techniques
for covariates selection do not perform well. As a result, specific approaches are needed
in this context. The development of these procedures is the main topic of the remaining
document. A review of traditional, as well as novel covariates selection techniques, specially
designed for the p > n context, is performed in subsequent chapters.

Similar to regression model estimation argued in Section 1.1, there are two possible
ways to apply covariates selection techniques: assuming some model structure or selecting
terms without any assumption about its form. This classification also applies to the
p > n context. In the case of the first option, using penalization techniques in the high
dimensional framework performs both simultaneously: covariates selection and model
estimation. These procedures are studied and analyzed in more detail in Chapters 2 and 3
under the linear assumption in the vectorial framework. Conversely, completely different
approaches are necessary to apply covariates selection without any model assumption when
p > n. A possibility is the employment of novel dependence coefficients based on distances.
These coefficients are introduced in detail in Chapter 4. These procedures propose to
implement independence tests to detect the relevant terms. Thus, one can select covariates
without any assumption, but no model estimation is performed as a trade-off. We employ
these techniques in Chapters 5 and 6 for a particular case of the functional model.

It is important to remark that developments carried out in this chapter assume that
response and explanatory covariates are vectorial. This choice is so because, although the
vectorial case is one of the easiest contexts, worrying limitations already appear here when
working in a high dimensional framework.





Chapter 2
The least absolute shrinkage and selection

operator (LASSO)

Once the need for dimensionality reduction has been motivated in Chapter 1, especially
for the p > n context, some covariates selection techniques are proposed. For this aim, we
start giving solutions for the most naive framework: assuming linearity in the vectorial
regression model. This results in the (1.2) formulation. In this context, a great effort has
been made in the literature by means of the study and implementation of regularization
techniques. The most well-known and still widely employed approach is the Least Absolute
Shrinkage and Selection Operator (LASSO) introduced by Tibshirani (1996). In this
chapter, the LASSO procedure is motivated and presented in Section 2.1, followed by an
analysis of its requirements and inconveniences as a variable selector (Section 2.2). Then,
a brief review of the evolution of the LASSO is carried out in Section 2.3, resulting in
new procedures which try to solve some of its limitations. In Section 2.4, a list of quite
employed or novel competitors of the LASSO is proposed, analyzing its advantages and
drawbacks. Eventually, the study is motivated by some examples of real data problems
where the necessity of dimension reduction arises. These are presented in Section 2.5. Part
of the content of this chapter is collected in Freijeiro-González et al. (2022a).

2.1 Introduction to the LASSO regression

As it has been proved in Chapter 1 when p > n, the classic OLS estimation procedure
for linear regression fails. This implication is because there are infinite solutions for
the resulting system of equations displayed in (1.2). Then, it is necessary to impose
modifications or to propose new estimation methods capable of recovering the β values.

There are many situations where not all pexplanatory covariates are relevant, but
several are unnecessary. In these scenarios, we can assume that the β vector is sparse
and then search for the relevant covariates, avoiding noisy ones. The idea is, somehow, to
obtain a methodology able to compare the covariates and select only those most important,
avoiding irrelevant information and keeping the prediction error as small as possible. As
there are 2p possible sub-models, it is unattainable to compare all of them using techniques
such as forward selection or backward elimination.

One of the most typical solutions is restricting the number of included covariates,
selecting only the relevant ones. This option can translate into adding some constraints to
the OLS problem (1.2). This way of proceeding brings up the idea of a model selection
criterion, which expresses a trade-off between the goodness of fit and the complexity of the
model, such as the AIC (Akaike (1998)) or BIC (Schwarz (1978)) criteria. Nevertheless,

17



18 CHAPTER 2. LASSO

these approaches are computationally intensive, hard to derive sampling properties, and
unstable. As a result, they are not suitable for scenarios where the dimension of p is large.

Hence, having a scenario where the number of covariates is greater than the number of
available samples (p > n) and verifying that the true β has (or can be approximated by) a
sparse structure, we could think in penalizing the irrelevant information employing the
number of coefficients included in the model. As a result, we could resort to imposing a
penalization on the β coefficients in the OLS problem using a penalty factor pλ(β) as

min
β


n∑

i=1

yi −
p∑

j=1
xijβj

2

+ pλ(β)

 . (2.1)

For this purpose, following the ideas of goodness-of-fit measures, a L0 regularization,
λ∥β∥0 = λ

∑p
j=1 Iβj ̸=0, could be applied. Here Ia denotes the indicator function, taking the

unit value if condition a is verified and zero otherwise, and λ > 0 is the penalty parameter.
This criterion penalizes models that include more covariates but do not improve so much
the performance results. This translates into a model with the best trade-off between
interpretability and accuracy, as the AIC or BIC criterion philosophy does, obtaining

β̂L0 = arg min
β


n∑

i=1

yi −
p∑

j=1
xijβj

2

+ λ
p∑

j=1
Iβj ̸=0

 . (2.2)

The problem of the L0 penalization is known as the best subset selection (Beale et al.
(1967), Hocking and Leslie (1967)). This problem is non-smooth and non-convex, which
hinders achieving an optimal solution. As a result, the estimator β̂L0 is infeasible to
compute when p is of medium or large size, as (2.2) becomes an NP-hard problem with
exponential complexity (Natarajan (1995)). However, when p is small, this estimator
can still be used in practice. Moreover, it is known that this estimator is optimal in the
minimax sense (Bunea et al. (2007)), even when the assumptions required for the LASSO
are not satisfied. These assumptions are treated in Section 2.2. See Hastie et al. (2017) for
a comparison of this procedure with more current methodologies.

q = 0.1 q = 0.5 q = 1 q = 2 q = 3

Figure 2.1: Contours of the constant restrictions ∥β∥q = 1 for some values of q.

To avoid this drawback, one can replace λ∥β∥0 with other classes of penalizations.
Taking into account that this belongs to the family pλ(βj) = λ∥β∥q := λ

(∑p
j=1 |βj |q

)1/q
,

with | · | the absolute value operator and q ≥ 0, we can commute this for a more appropriate
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one. See Figure 2.1 for a comparison between ∥β∥q possible structures. The problem (2.1)
with this type of penalization is known as the bridge regression (Fu (1998)). The caveat
of this family is that this only selects covariates for the 0 < q ≤ 1 values. Moreover, the
problem (2.1) is only convex for the q = 1 case (see Figures 2.1 and 2.2). Then, it seems
reasonable to work with the norm ∥β∥1 = ∑p

j=1 |βj |, which is convex, allows covariates
selection and leads to the extensively studied Least Absolute Shrinkage and Selection
Operator (LASSO) regression, see Tibshirani (1996) and Tibshirani (2011). See Figure 2.2
for a comparison between L1 penalization form and other well-known as well as widely
employed penalties in the literature. These are introduced later in Section 2.4.
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Figure 2.2: Comparison of different penalization methods: L2 or RIDGE penalization
(RIDGE), L1 or LASSO penalization (LASSO), SCAD regularization (SCAD), Elastic
Net penalization method for α = 0.7 (ENET (α = 0.7)) and L0.5 regularization (L0.5).

The LASSO regression, also known as basis pursuit in image processing (Chen et al.
(2001)), was introduced by Tibshirani (1996). This approach proposes the imposition of a
L1 penalization in (1.2) to perform covariates selection and overcome the drawback of the
β estimation in high dimensional frameworks where p > n. In this way, one needs to solve
the problem given by

β̂LASSO = arg min
β


n∑

i=1

yi −
p∑

j=1
xijβj

2

+ λ
p∑

j=1
|βj |

 , (2.3)
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which can be rewritten in an analogous way like the optimization problem

β̂LASSO = arg min
β

n∑
i=1

yi −
p∑

j=1
xijβj

2

,

subject to
p∑

j=1
|βj | ≤ θ.

In these problems, the term θ > 0, or λ > 0 equivalently, is the shrinkage parameter in
charge of regulating the coefficients penalization. For large values of λ (small values of θ),
the coefficients of β are more penalized, which results in a higher number of elements that
are shrinkaged to zero. Nevertheless, the estimator β̂LASSO introduced in (2.3) has not
got an explicit expression.

These formulations translate into convex optimization problems, which guarantee that
there is always at least a solution, although if p > n, there may be multiple minima (see
Tibshirani (2013) for more details). This problem is illustrated for the two-dimensional
case in Figure 2.3. Besides, if we think of the noise term ε of (1.2) as being Gaussian,
β̂LASSO (2.3) can be interpreted as a penalized maximum likelihood estimate, in which
the fitted coefficients are penalized in a L1 sense, thereby encouraging sparsity.

Figure 2.3: Graphics of the LASSO regression estimation (left) and RIDGE regression
(right). The blue areas are the restrictions |β1|+ |β2| ≤ t and β1

2 + β2
2 ≤ t2 respectively,

while the red ellipses are the contours of the mean square error function.

The LASSO procedure, defined in (2.3), can be viewed as a convex relaxation of the
optimization problem with the L0 analog of a norm in (2.2). Then, the requirement of
computational feasibility and statistical accuracy can be met by the LASSO estimator.

For a properly chosen value of λ > 0, it is needed to solve the convex optimization
problem (2.3). The computational complexity of the ordinary LASSO is O(npmin{n, p}),
as there are m = O(min{n, p}) steps, each of complexity O(np). Its complexity corresponds
with O(n2p) in the p > n framework. For this purpose, there are several efficient algorithms
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like the typical coordinate descent method, the FISTA algorithm, or the famous LARS
procedure (Efron et al. (2004)). See, for example, Giraud (2014) for more details. A proper
selection of the λ parameter is treated in Section 2.2.4.

As commented above, it is noticeable that the problem (2.3) is equivalent to the basis
pursuit denoising (Chen et al. (2001), Candes et al. (2006), Donoho et al. (2005)). This
last is a problem well studied in mathematical signal processing given by formulation

min
β
∥β∥1,

subject to ∥y −Xβ∥2 ≤ θ.
(2.4)

The LASSO problem has been widely studied over the last years owing to its good
statistical properties. See, for example, the review of Tibshirani (2011). It has been shown
that this procedure is consistent in terms of prediction (see Van De Geer and Bühlmann
(2009) for an extensive analysis), and this guarantees consistency of the parameter estimates
at least in a L2 sense (Van De Geer and Bühlmann (2009), Meinshausen and Yu (2009),
Candes and Tao (2007)); besides, this is a consistent variable selector (Meinshausen and
Bühlmann (2006), Wainwright (2009), Zhao and Yu (2006)).

In spite of all these good qualities, the LASSO regression has some important limitations
in practice (see for example Zou and Hastie (2005) or Su et al. (2017)). These limitations
are analyzed in the next section.

2.2 Analysis of the LASSO regression requirements and inconveniences

In this section, we introduce the requirements and problems of the LASSO regression. These
are related to the inherent bias of the LASSO estimator (Section 2.2.1), the imposition
of necessary conditions over the design matrix as well as the vector of parameters to
guarantee consistency (Section 2.2.2), a large number of false discoveries (Section 2.2.3)
and the proper selection of the λ value (Section 2.2.4). These limitations are analyzed
in the subsequent sections, collecting some theoretical properties recently developed and
displaying how far it is possible to ensure its good behavior.

2.2.1 Biased estimator

In the context of having more covariates p than a number of samples n, it depends on
the class of optimization algorithm employed to solve (2.3) that the LASSO regression
can identify more than n relevant covariates. For example, resorting to algorithms as
the coordinate descent (see, for example, Section 4.2.4 of Giraud (2014)) allows this to
select until p covariates. However, using the LARS algorithm of Efron et al. (2004), the
LASSO procedure can pick at most n variables before this saturates (see Zou and Hastie
(2005)). This restriction is usual for almost all regression adjustment methods that appeal
to penalizations in this framework, especially for those based on L1 ideas.

Another caveat of penalization processes is their bias, which produces higher prediction
errors. In the LASSO adjustment, the imposition of the L1 penalization in the OLS
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problem (1.2) as a safe passage to estimate β has a cost. This payment translates into
bias (see Chapter 3 of Hastie et al. (2009), Chapter 4 of Giraud (2014) or Chapter 2 of
Hastie et al. (2015)). This can be easily illustrated under orthogonal design, where the L1
penalization results in a perturbation of the unbiased OLS estimator β̂OLS given by

β̂LASSO
j = sign(β̂OLS

j )(|β̂OLS
j | − λ)+, (2.5)

where sign(·) denotes the sign of the coefficients and (·)+ equals to zero all quantities which
are not positive. This results in a soft threshold of the ordinary mean square estimator
ruled by the λ > 0 parameter, where the coefficients |β̂OLS

j | ≤ λ are adjusted to zero.
In order to correct the bias, it is usual to apply a two-step LASSO-OLS procedure: first,

we employ a LASSO regression to select variables, and then, we obtain a least squared
estimator using the selected variables. The properties of this procedure are studied in
Belloni and Chernozhukov (2013).

Other options are weighted versions of the LASSO method based on iterative schemes.
An example is the popular adaptive LASSO (Zou (2006), Huang et al. (2008), Van de Geer
et al. (2011)). This procedure gives different weights to each covariate in the penalization
part, readjusting these in every step of the iterative process until convergence. More details
on these procedures are given in Section 2.3.1.

2.2.2 Consistency of the LASSO: neighborhood stability condition

Despite the fact that the LASSO is a broadly employed procedure, it is not always possible
to guarantee its proper performance as a variable selector in practice (Bunea (2008), Lounici
(2008)). As we can see in Bühlmann and Van De Geer (2011), certain conditions are
required to guarantee an efficient screening property for variable selection. However, this
presents some important limitations as a variable selector when these do not hold.

For example, when the model has several highly correlated covariates with the response,
LASSO tends to pick only one or a few of them randomly and shrinks the rest to 0 (see
Zou and Hastie (2005)). This fact results in a confusion phenomenon if there are high
correlations between relevant and unimportant covariates, and in a loss of information when
the subset of important covariates have a strong dependence structure. Some algorithms
that result in non-sparse estimators try to relieve this effect, like the RIDGE regression
(Hoerl and Kennard (1970)) or the Elastic Net (Zou and Hastie (2005)). An interpretation
of their penalties is displayed in Figure 2.2.

Besides, denoting S = {j : βj ̸= 0} the set of non-zero real values, for consistent variable
selection using ŜL1 = {j : β̂LASSO

j ≠ 0}, the design matrix of the model, Xn, needs to
satisfy some assumptions. The strongest of which is arguably the so-called “neighborhood
stability condition” (Meinshausen and Bühlmann (2006)). This condition is equivalent to
the irrepresentable condition (Zhao and Yu (2006); Zou (2006); Yuan and Lin (2007)):

max
j∈Sc
|sign(βS)⊤(XnS

⊤XnS)−1XnS
⊤Xj | ≤ θ for some 0 < θ < 1, (2.6)
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being βS the subvector of β, Sc the complementary of S and XS the submatrix of X
considering the elements of S.

If this condition is violated, all that we can hope for is a recovery of the regression vector
β in an L2-sense of convergence by achieving ∥ β̂LASSO − β ∥2 −→p

n→∞
0 (see Meinshausen

and Bühlmann (2010) for more details). Moreover, under some assumptions in the design,
the irrepresentable condition can be expressed as the called “necessary condition” (Zou
(2006)). It is not an easy task to verify these conditions in practice, especially in contexts
where p can be huge.

Quoting Bühlmann and Van De Geer (2011): roughly speaking, the neighborhood
stability or irrepresentable condition (2.6) fails to hold if the design matrix X is too
much “ill-posed” and exhibits a too strong degree of linear dependence within “smaller”
sub-matrices of X.

In addition, we need to ensure that enough information and suitable characteristics are
available for “signal recovery” of the sparse β vector. These conditions require coefficients
of relevant covariates to be large enough to distinguish them from the zero ones. Then,
the non-zero regression coefficients need to satisfy

inf
j∈S
|βj | >

√
s log(p)/n, (2.7)

where s = #S is the cardinal of S, in order to guarantee the consistency of the β̂LASSO

estimator of problem (2.3). This is called a beta-min condition. Nevertheless, this
requirement may be unrealistic in practice, and small non-zero coefficients may not be
detected (in a consistent way). See Bühlmann and Van De Geer (2011) for more information.

Eventually, related to all these requirements, it is important to remind that for all
covariates selection procedures, an estimator Ŝ trying to recover S would be consistent if
this verifies

P(Ŝ = S) −→
n→∞

1. (2.8)

The condition (2.8) places a restriction on the growth of the number p of variables and
sparsity s = #S, typically of the form s log(p) = o(n) (see Meinshausen and Bühlmann
(2006)). Then, this forces the necessity of n > s log(p) in order to achieve consistency.

Bunea (2008) explains that, under mild assumptions, the LASSO verifies condition
(2.8) and, in consequence, this is capable of selecting the relevant variables. However, one
needs more assumptions, as the irrepresentable condition of (2.6), to verify the suitable
recovering of S. This may explain why the LASSO overestimates the support of β.

Owing to these difficulties, different methodologies based on ideas derived from sub-
sampling and bootstrap have been developed. Examples are the random LASSO (Wang
et al. (2011)), an algorithm based on subsampling, or the stability selection method mixed
with randomized LASSO of Meinshausen and Bühlmann (2010). This last searches for
consistency, although the irrepresentable condition introduced in (2.6) would be violated.
These are introduced in Section 2.3.2.
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2.2.3 False discoveries of the LASSO

As explained in Su et al. (2017): In regression settings where explanatory variables have
very low correlations and relatively few effects, each of great magnitude, we expect the
LASSO to find the relevant variables with few errors, if any. Nevertheless, in a regime
of linear sparsity, there exists a trade-off between false and true positive rates along the
LASSO path, even when the design variables are stochastically independent. Besides, this
phenomenon occurs no matter how strong the effect sizes are. By linear sparsity, one
understands that the fraction of variables with a non-vanishing effect, i.e. s = #S, tends
to a constant, however small.

This existing trade-off between the false discovery proportion (FDP) and the true
positive proportion (TPP) translates into one of the major disadvantages of using LASSO
as a variable selector. These quantities are defined as

FDP (λ) = F (λ)
#{j : β̂j(λ) ̸= 0} ∨ 1

and TPP (λ) = T (λ)
s ∨ 1 , (2.9)

where F (λ) = #{j ∈ Sc : β̂j(λ) ̸= 0} denotes the number of false discoveries, T (λ) =
#{j ∈ S : β̂j(λ) ̸= 0} is the number of positive discoveries and a ∨ b = max{a, b}.

Then, it is unlikely to simultaneously achieve high power and a low false positive rate.
Being FDP a natural measure of type I error, and 1− TPP the fraction of missed signals
(a natural notion of type II error), the results say that nowhere on the LASSO path can
both types of error rates be simultaneously low. This also happens even for noiseless
situations with stochastically independent regressors. Hence, there exists only a possible
reason: it is because of the L1 shrinkage that results in pseudo-noise. Furthermore, this
does not occur with other types of penalizations, like the L0 penalty. See Su et al. (2017)
for more details.

In fact, it can be proved in a quite global context, that the LASSO is not capable
of selecting the correct subset of important covariates without adding some noise to the
model in the best case (see Wasserman and Roeder (2009) or Su et al. (2017)).

Then, modifications of the traditional LASSO procedure are needed to control the
FDP. Some alternatives, such as the boLASSO procedure (see Bach (2008)), which uses
bootstrap to calibrate the FDP , the thresholded LASSO (Lounici (2008), Zhou (2010)),
based on the use of a threshold to avoid noisy covariates or more recent ones, like the
stability selection method (see Meinshausen and Bühlmann (2010)) or the use of knockoffs
(see Hofner et al. (2015), Weinstein et al. (2017), Candes et al. (2018) and Barber and
Candès (2019)), were proposed to solve this drawback. To the best of our knowledge, there
is no version of this last for the p > n framework yet. These modifications and alternatives
are presented along Sections 2.3.2, 2.3.3, and 2.4.

2.2.4 Correct selection of the penalization parameter λ

One of the most important parts of a LASSO adjustment is the suitable selection of the
penalization parameter λ ≥ 0. Its size controls both: the number of selected variables and
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the degree to which their estimated coefficients are shrunk to zero, ruling the bias as well.
A too-large value of λ forces all coefficients of β̂LASSO to be null, while a quantity next to
zero includes too many noisy covariates. Then, a good choice of λ is needed in order to
achieve a balance between simplicity and selection accuracy. See the work of Lahiri (2021)
for a current analysis of the required λ conditions.

It is essential to highlight that it is possible to understand variable selection in two
different ways: trying to identify the right set of relevant covariates or applying dimension
reduction in order to improve predictions without guaranteeing the recovery of the true
model. It is well-known that both are not compatible. See, for example, Yang (2005)).
Thus, we need to pick one of them. In the LASSO case, for example, the optimal value of
the penalization parameter λ may not be the same for both objectives (Leng et al. (2006),
Bühlmann and Van De Geer (2011)). Besides, some drawbacks for the real recovery of the
not null elements of the β vector are less harmful to the prediction accuracy target. See,
for example, Dalalyan et al. (2017).

The problem of the proper choice of the λ parameter depends on the unknown error
variance σ2. We can see in Bühlmann and Van De Geer (2011) that the oracle inequality
states to select λ of order σ

√
log(p)/n to keep the mean squared prediction error of LASSO

as the same order as if we knew the active set S in advance. In practice, the σ value is
unknown, and its estimation with p > n is quite complex. To give some guidance on this
topic, we refer to Fan et al. (2012) or Reid et al. (2016). However, σ estimation for p > n

is still a growing study field.
Thus, other methods to estimate λ are proposed in the literature. Following the

classification of Homrighausen and McDonald (2018), we can distinguish three categories:
minimization of a generalized information criterion (like AIC or BIC), using resampling
procedures (such as cross-validation or bootstrap) or reformulating the LASSO optimization
problem. Due to computational cost, the most used criteria to fit a LASSO adjustment
are cross-validation techniques. Nevertheless, it can be shown that this criterion achieves a
suitable λ value for prediction risk, but this leads to inconsistent model selection for sparse
methods (see Meinshausen and Bühlmann (2006)). Then, for recovering the set S, a larger
penalty parameter would be needed (Bühlmann and Van De Geer (2011)).

Su et al. (2017) argue that the LASSO estimator is seriously biased downwards when
the regularization parameter λ is needed to be large for a proper variable selection. The
residuals still contain much of the effects associated with the selected variables, and this
phenomenon is called shrinkage noise. As many strong variables get picked up, this gets
inflated, and its projection along the directions of some of the null variables may actually
dwarf the signals coming from the strong regression coefficients, selecting null variables.

Nevertheless, to the best of our knowledge, there is no mutual agreement about how
to choose the λ value. Hence, cross-validation techniques are widely used to adjust the
LASSO regression. See Homrighausen and McDonald (2018) for more details.

Modifications of the LASSO algorithm as the square-root LASSO (Belloni et al. (2011)),
which does not need to know σ to obtain an optimal λ, the work of Städler et al. (2010) or
the scaled LASSO (Sun and Zhang (2012)), which simultaneously estimate σ and β, have
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been proposed to relieve these inconveniences. A complete survey on this topic is carried
out in Giraud et al. (2012). The square-root LASSO and the scaled LASSO are introduced
in Section 2.4.

2.3 Evolution of the LASSO in the last years

Once all the inconveniences of the standard LASSO have been introduced in Section 2.2,
the necessity of finding modifications or alternatives arises. For this purpose, a review of
the existing literature is carried out in this section, where different methodologies that
solve these issues are introduced and analyzed. Nevertheless, it is impossible to include all
the existing algorithms here. Instead, we attempted to collect the most relevant ones. As
a result, a summary of the most innovative and used methodologies nowadays is provided.

Methods proposed to alleviate the limitations of the LASSO algorithm employ a wide
range of different philosophies. Some of them opt to add a second selection step after solving
the LASSO problem, such as the relaxed LASSO (Meinshausen (2007)) or thresholded
LASSO (Lounici (2008), Zhou (2010), Van de Geer et al. (2011)). Other alternatives focus
on giving different weights to the covariates proportional to their importance, such as the
adaptive LASSO (Zou (2006), Huang et al. (2008), Van de Geer et al. (2011)), and some
techniques pay attention to the group structure of the sparse vector β when this exists,
like the grouped LASSO procedure (Yuan and Lin (2006)) or the fused LASSO (Tibshirani
et al. (2005)) to say a few.

The resampling or iterative procedures are other approaches that make use of subsam-
pling or computational power, algorithms like boLASSO (Bach (2008)), stability selection
with randomized LASSO (Meinshausen and Bühlmann (2010)), the random LASSO (Wang
et al. (2011)), the scaled LASSO (Sun and Zhang (2012)) or the combination of traditional
estimators with variable selection diagnostics measures (Nan and Yang (2014)), among
others, are based on this idea. Furthermore, more recent techniques, like the Knockoff
filter (Barber and Candès (2015), Candes et al. (2018)) or SLOPE (Bogdan et al. (2015)),
have been introduced to control some measures of the type I error. However, as far as we
know, the Knockoff filter is not yet available for the p > n case.

Other alternatives modify the constraints of the LASSO problem (2.3) in order to
achieve better estimators of β, like the Elastic Net (Zou and Hastie (2005)) or the Dantzig
selector (Candes and Tao (2007)). Other different options have been developed recently,
such as the Elem-OLS Estimator (Yang et al. (2014)), the LASSO-Zero (Descloux and
Sardy (2021)), the spike-and-slab LASSO (Ročková and George (2018)) or some Bayesian
approaches (see for example Castillo et al. (2015) or Bhadra et al. (2019)).

Quoted Descloux and Sardy (2021): although differing in their purposes and perfor-
mance, the general idea underlying these procedures remains the same. Roughly speaking,
to avoid overfitting by finding a trade-off between the fit y −Xβ and some measure of the
model complexity.

Along the many papers, we have found that a modest classification of the different
proposals can be done, although, in this classification, some of the procedures do not only
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fit in a single class. These categories are

• Weighted LASSO: weighted versions of the LASSO that attach the particular
importance of each covariate for a suitable selection of the weights. Joint with
iteration, this modification allows a reduction of the bias.

• Resampling LASSO procedures: mix of the LASSO adjustment with resampling
procedures for randomizing the covariates selection process to reduce unavoidable
random noise.

• Thresholded versions of the LASSO: a second thresholding step in the covariates
selection is implemented in order to reduce the irrelevant ones.

• Alternatives to the LASSO: procedures with different nature and aims designed
to solve the LASSO drawbacks.

This extensive list of procedures makes noticeable the impact the LASSO has nowadays.
A summary is displayed in Table 2.1 at the end of Section 2.4.

Next, we provide details about the weighted LASSO, LASSO versions using resampling
ideas, a threshold version and special structures of the LASSO. Alternatives to the LASSO
philosophy are analyzed in Section 2.4.

2.3.1 Weighted LASSO

In the LASSO procedure (2.3), all the covariates are penalized by the same quantity, λ > 0.
So, assuming that all the explanatory variables are on the same scale, every covariate has
the same prior importance as the rest. Then, the algorithm determines which covariates
enter the model based on their estimated values β̂j .

Nevertheless, we may want to make a difference between the covariates in terms of their
importance or scale. For this purpose, we would need to define a different penalization
term for each covariate. This regularization could be expressed as λj = λwj , where λ > 0
is a common term and wj > 0 are specific weights of each covariate. Following this idea,
the penalized mean square problem of (2.3) is reformulated as

min
β


n∑

i=1

yi −
p∑

j=1
xijβj

2

+ λ
p∑

j=1
wj |βj |

 . (2.10)

Accordingly, we should search for j = 1, . . . , p penalization parameters. It is possible to
use preliminary information to define the weights wj , like in the adaptive LASSO algorithm
(Zou (2006), Huang et al. (2008)) or an external information criterion, see for example
Bergersen et al. (2011). Then, the problem becomes again a LASSO regression adjustment
for which we know how to obtain a solution.

Next, we introduce some examples of these algorithms and explain how to implement
them for the p > n context of interest.
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Adaptive LASSO algorithm

The adaptive LASSO procedure was proposed by Zou (2006) and Huang et al. (2008). This
procedure is based on the idea of using adaptive weights for penalizing different coefficients
in the L1 penalty of (2.3). So, for an initial vector β̂, the problem (2.10) is solved several
times, recomputing the weights wj of the β̂ vector until convergence. As a result, this
iterative procedure helps to reduce the bias suffered by the LASSO algorithm.

If we take a β̂
√
n-consistent estimator of β, for example that obtained through the

OLS estimator of (1.2), choose a value γ > 0 and define the weights vector w = 1/|β̂|γ , the
adaptive LASSO estimator is given by the expression

β̂AdapL = arg min
β


n∑

i=1

yi −
p∑

j=1
xijβj

2

+ λ
p∑

j=1

|βj |
|β̂j |γ

 . (2.11)

In this context, we need to estimate an optimal value for two parameters, λ > 0 and
γ > 0, which control the penalization and the weighting, respectively.

Another advantage of the adaptive LASSO is that its good characteristics guarantee
that, for a proper selection of the β̂ estimator to define the weights wj , this procedure
enjoys the oracle properties (see Zou (2006) for more information).

In order to estimate the weights vector w = 1/|β̂|γ , Zou (2006) suggests using the
estimator β̂OLS of (1.2) unless collinearity is a concern, in which case we can try the
RIDGE estimator, β̂RIDGE (Hoerl and Kennard (1970)). This is due to the fact that, in
practice, adaptive LASSO with β̂OLS suffers from the multicollinearity caused by strong
correlations among covariates. Using the RIDGE coefficients as initial weights helps to
keep the stability of the process.

In a high dimensional problem with p > n, it is nontrivial to find an initial consistent
estimator for constructing the weights of (2.11). A practical solution is to use the RIDGE
estimator to guarantee that the adaptive LASSO is well-defined. Note that, in this case,
an extra tuning parameter is included in the procedure. This parameter is devoted to
correctly estimating the penalization term of the RIDGE regression. Huang et al. (2008)
study other initial estimators, and the consistency of the procedure is proved.

Again, due to the intrinsic constraint of the L1-norm penalty, the number of variables
selected by the adaptive LASSO cannot exceed n when p > n. This procedure can be
implemented using schemes like the one proposed in the Algorithm 2.1.

Algorithm 2.1 (Adaptive LASSO).

1. Compute the RIDGE regression estimator β̂RIDGE and the weights wj = 1/|β̂RIDGE
j |γ

for a given γ > 0, ∀j = 1, . . . , p.

2. Define x∗
j = wjxj , ∀j = 1, . . . , p.

3. Apply iteratively the procedure
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i) Solve the LASSO problem for λ > 0:

β̂∗ = arg min
β


n∑

i=1

yi − β0 −
p∑

j=1
x∗

ijβj

2

+ λ
p∑

j=1
|βj |

 .
ii) Update wj = 1/|β̂∗

j |γ and x∗
j = wjxj , ∀j = 1, . . . , p.

4. Output β̂AdapL
j = wj β̂

∗
j , ∀j = 1, . . . , p.

Other variations of the adaptive LASSO procedure considering different weight functions
have been proposed over the last few years. Some of these modify the penalization weights
wj using the information of the data, like the correlation between the variable of interest,
Y , and the explanatory covariates (Jiang et al. (2014)). In contrast, other authors include
external information that they consider relevant to pick covariates under a certain criterion
(Bergersen et al. (2011)). However, as far as we know, the consistency properties of this
type of adaptive LASSO procedure have not yet been proved in the p > n context. As a
result, we recommend using these approaches “carefully”.

2.3.2 Resampling LASSO procedures

One may think of creating an indicator to decide when a covariate is included just because
of randomness or if this is really important. This implementation would help to reduce
the number of irrelevant covariates randomly selected by the LASSO. For this purpose, it
is possible to resort to resampling procedures, such as bootstrap (Tibshirani and Efron
(1993)). Then, subsamples of size m < n are selected, and a LASSO model is adjusted
with these. This procedure is repeated a total of B times. Next, we count the number of
times that each covariate has been selected and decide if the quantity is large enough to
include this in the final model.

Thus, we can define a criterion based on the results of the B repetitions to determine
the importance of every covariate. Some examples are selecting only those which, in mean,
have an associated coefficient β̂j big enough (Wang et al. (2011)) or defined an adequate
“cut point” (Meinshausen and Bühlmann (2010)) to discriminate between the relevant
covariates and the noise.

As a trade-off, these procedures required a significant increment in computational
complexity and time. Furthermore, a proper selection criterion is needed.

Next, some examples of these types of algorithms are displayed. These are the BoLASSO
(Bach (2008)), the random LASSO (Wang et al. (2011)) and the Stability selection technique
with randomized LASSO (Meinshausen and Bühlmann (2010)).

BoLASSO algorithm

From an asymptotic analysis of model consistency point of view, the LASSO selects all
the variables that should enter the model with probability tending to one exponentially
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fast. Instead, the rest of the covariates are only guaranteed to be selected with strictly
positive probability. Therefore, if several data sets generated from the same distribution
were available, this last property would suggest considering the intersection of all supports
of the LASSO estimates. Thus, all relevant variables would always be selected for all data
sets, while the irrelevant ones would enter the model randomly. As a result, the intersection
would eliminate the noise. However, it is common to have a single data set in practice.
Resampling methods, such as the bootstrap, are dedicated to mimicking the availability of
these data sets. The boLASSO (bootstrap-enhanced least absolute shrinkage operator) of
Bach (2008) carries out this idea.

It can be seen in Bach (2008) that the use of this procedure gets a consistent model
estimate, without the consistency condition required by the regular LASSO given in (2.6).
As explained in Bach (2008), the boLASSO procedure is consistent for a proper selection
of the penalization parameter. Indeed, in this situation, the correct signs of the relevant
variables (those in S) are recovered with probability tending to one. Nevertheless, all
possible sign patterns consistent with the true configuration are also recovered, i.e. all
other variables (those not in S) may be non-zero with asymptotically strictly positive
probability. See Bach (2008) for more information.

Therefore, for a given (Xn,Yn) = {(xi, yi) , i = 1, . . . , n} iid sample from the joint
distribution function of (X,Y ) ∈ Rp × R, a total of B bootstrap replications of the n
data points are considered (Tibshirani and Efron (1993)). That is, for b = 1, . . . , B,
it is generated a ghost sample (X(b)

n ,Y(b)
n ) =

{(
x

(b)
i , y

(b)
i

)
, i = 1, . . . , n

}
. The n pairs(

x
(b)
i , y

(b)
i

)
result from randomly sampling with the original data points. Then, for each

of the b = 1 . . . , B resamples, the support S(b) = {j : β̂(b) ≠ 0} is obtained and the true

support is estimate by S =
B⋂

b=1
S(b). Once S is selected, we estimate β by the OLS procedure

restricted to variables in S. This procedure is summarized in Algorithm 2.2.

Algorithm 2.2 (BoLASSO). For a given data (Xn,Yn) ∈ Rn×p, number of bootstrap
replicates B and regularization parameter λ:

1. For b = 1, . . . , B:

i) Generate bootstrap samples (X(b)
n ,Y(b)

n ) ∈ Rn×p.

ii) Compute the LASSO estimate β̂ from (X(b)
n ,Y(b)

n ).

iii) Compute support S(b) = {j : β̂(b) ̸= 0}.

2. Compute S =
B⋂

b=1
S(b).

3. Compute β̂S from (XnS,YnS).

One drawback of this methodology is that this has been developed under the assumption
that there are more observations than variables, i.e. in the n > p framework. Next, we
propose alternatives based on resampling and apt to the high dimensional framework.
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Random LASSO algorithm

Another approach in this line is the random LASSO algorithm proposed by Wang et al.
(2011). This method is a modification of the LASSO procedure based on subsampling. As
said by the authors, this procedure can handle highly correlated variables more flexibly
than RIDGE regression (Zou and Hastie (2005)), especially when their effects have different
magnitudes and signs. This can also select more variables than the sample size n in the
p > n framework.

As we saw in Section 2.2, one of the limitations of LASSO is that this procedure selects
only a set of essential variables when all of these are highly correlated. Thus, if we generated
several independent data sets from the same distribution, we would expect LASSO to
select nonidentical subsets of those relevant variables strongly correlated among them.
Then, taking the union of the selected covariates in every data set, the final collection
may be most, or even all, of the relevant variables. Such a process may yield more than n

covariates when p > n, overcoming other limitations of the LASSO.
Since only a single data set is available in practice, bootstrap techniques are needed.

Then, we can randomly select q candidate variables, with q ≤ p, for each bootstrap sample.
This process becomes the basic idea of the proposed random LASSO approach of Wang
et al. (2011).

In Wang et al. (2011), the Algorithm 2.3 is proposed to implement this methodology.

Algorithm 2.3 (Random LASSO).

1. Generating importance measures for all coefficients:

i) Draw B bootstrap samples with size n by sampling with replacement from the
original training data set.

ii) For each bth
1 bootstrap sample, b1 ∈ {1, . . . , B}, randomly select q(b1) ≤ p

candidate covariates, and apply LASSO to obtain estimators β̂(b1)
j for j = 1, . . . , p.

Estimators are zero for coefficients of the not selected covariates (p− q(b1)) or
the ones excluded by LASSO.

iii) Compute the importance measure of every Xj by wj = |B−1∑B
b1=1 β̂

(b1)
j |.

2. Selecting variables:

i) Draw another set of B bootstrap samples with size n by sampling with replace-
ment from the original training data set.

ii) For each bth
2 term of the new bootstrap sample, b2 ∈ {1, . . . , B}, select again

q(b2) ≤ p candidate covariates with a selection probability proportional to its
importance wj . Next, apply LASSO (or Adaptive LASSO) to obtain estimators
β̂

(b2)
j . Estimators are zero for coefficients associated with covariates outside the

subset of q(b2) elements or excluded by LASSO.

iii) Compute the final estimators as β̂j = B−1∑B
b2=1 β̂

(b2)
j .
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Now, there is the added difficulty of choosing suitable values for q(b1), q(b2), and B. The
procedure may return incorrect results if these parameters are not well defined.

For variable selection with random LASSO, since the final estimator is the average of
all bootstrap samples, it is very easy for a covariate to have a nonzero coefficient. To solve
this problem, Wang et al. (2011) introduce a threshold δn, and consider a variable Xj to
be selected, only if the corresponding coefficient verifies |β̂j | > δn. In this article, they
choose δn = 1/n. With the addition of this threshold value, one needs to estimate another
parameter, increasing the problem’s complexity.

Stability selection with randomized LASSO algorithm

The stability selection procedure is proposed by Meinshausen and Bühlmann (2010). This
technique is introduced as a procedure based on subsampling in combination with high
dimensional selection algorithms. This approach provides finite sample control for some
error rates of false discoveries. Hence, this is a transparent principle to choose a proper
amount of regularization for a suitable structure estimation or relevant covariates recovery.

Specifically, the stability selection is introduced using the LASSO as a selector. Thus,
for every value λ in a positive path Λ ∈ R+, we obtain what is denoted as a structure
estimate Ŝλ ⊆ {1, . . . , p}. Then, it is interesting to determine whether there is a λ ∈ Λ
value such that Ŝλ is identical to S with high probability and how to achieve that right
amount of regularization.

Stability paths are derived from the concept of regularization paths. A regularization
path is given by the coefficient values of each variable over all regularization parameters:
{β̂λ

j ;λ ∈ Λ, j = 1, . . . , p}. Stability paths are, in contrast, the probability for each variable
to be selected when randomly resampling from the data. For any given regularization
parameter λ ∈ Λ, the selected set Ŝλ is implicitly a function of the samples L = {1, . . . , n}.
We write Ŝλ = Ŝλ(L) where necessary to express this dependence.

Definition 2.1. (Selection probabilities) Let L be a random subsample of {1, . . . , n} of
size ⌊n/2⌋, drawn without replacement. For every set M ⊆ {1, . . . , p}, the probability of
being in the selected set Ŝλ(L) is

Π̂λ
J = P∗{M ⊆ Ŝλ(L)}.

Thus, for every variable j = 1, . . . , p, the stability path is given by the selection
probabilities Π̂λ

j . We remind that variable selection would be equivalent to choosing an
element of the set of models {Ŝλ;λ ∈ Λ} in a traditional setting. Therefore, there are
typically two problems. First, the correct model S might not be a member of this set.
Second, even if this model is contained, it is typically challenging for high dimensional data
to determine the right amount of regularization λ to select exactly S, or, at least, a close
approximation. Nevertheless, the stability selection approach proposes perturbing the data
many times and then choosing all structures or variables that occur in a large fraction of
the resulting selection sets to alleviate this drawback. For this purpose, one selects what
they denote as stable variables, keeping only variables with a high selection probability.
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Definition 2.2. (Stable variables) For a cut-off δ, with 0 < δ < 1, and a set of regularization
parameters Λ, the set of stable variables is defined as

Ŝstable = {j : max
λ∈Λ

(Π̂λ
j ) ≥ δ}.

The exact cut-off δ, with 0 < δ < 1, is a new tuning parameter to determine. In
practice, quoting Meinshausen and Bühlmann (2010), results tend to be quite similar for
sensible values in the range δ ∈ (0.6, 0.9).

Furthermore, when one tries to recover the set S, a natural goal is to include as few
noisy variables as possible. Hence, the choice of the regularization parameter is crucial. An
advantage of this method is that the selection of the initial set of regularization parameters
Λ has not got a pretty strong influence on the results typically, as long as Λ varies within
reason. Another advantage is its ability to choose this set of regularization parameters in a
way that guarantees, under stronger assumptions, some bound on the expected number of
false selections. Specifically, this algorithm enables us to control the per-family error rate
(PFER), defined as E(V ) where V is the expected number of falsely selected variables,
employing an upper bound (see the Additional file 1 of Hofner et al. (2015)).

Then, controlling the PFER is a (very) conservative approach for controlling errors in
multiple testing situations. Hence, a procedure that controls the PFER at a certain level
α also controls other error rates such as the per-comparison error rate (PCER), the family-
wise error rate (FWER) or the false discovery rate (FDR). We refer to Meinshausen and
Bühlmann (2010) for more details.

As a result, if we understand the selection of relevant variables like a hypothesis test,
where we test if H0 : βj = 0, ∀j = 1, . . . , p, we can fix a value α ∈ [0, 1] as the proportion
of misclassification allowed in the adjustment. Meinshausen and Bühlmann (2010) show
that choosing PFER = αp is a suitable option to control this error rate and verify that
the model includes, at most, a percentage α of noisy covariates.

Additionally, Meinshausen and Bühlmann (2010) propose to use the stability selection
criterion mixed with what they call randomized LASSO. As the name suggests, this
algorithm is a modification of the LASSO, adding randomness to the selection procedure.
In particular, the randomized LASSO changes the penalty λ to a randomly chosen value
in a range [λ, λ/α]. Therefore, this new selection adds more complexity to the estimation
procedure because one has to determine a suitable value for α. Meinshausen and Bühlmann
(2010) propose to choose this in the range (0.2, 0.8). As a result, what Meinshausen and
Bühlmann (2010) propose in their article is to apply a stability selection procedure over
a randomized LASSO adjustment. This process is claimed to be consistent for variable
selection even though the “irrepresentable condition” of (2.6) is violated. An example of
the implementation scheme of this procedure is introduced in the Algorithm 2.4.
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Algorithm 2.4 (Randomized LASSO).

1. Compute the LASSO regression estimator β̂LASSO and the weights wj = 1/α, for α,
with probability pw ∈ (0, 1) and wj = 1 otherwise, ∀j = 1, . . . , p.

2. Define x∗
j = wjxj , ∀j = 1, . . . , p.

3. Apply iteratively the procedure:

i) Solve the LASSO problem for λ > 0:

β̂∗ = arg min
β


n∑

i=1

yi − β0 −
p∑

j=1
x∗

ijβj

2

+ λ
p∑

j=1
|βj |

 .
ii) Update wj = 1/α, with probability pw or wj = 1 otherwise, and x∗

j = wjxj ,
∀j = 1, . . . , p.

4. Output β̂Rand
j = wj β̂

∗
j , ∀j = 1, . . . , p.

A proposal for the distribution of the weights wj is to take wj = α with a given
probability pw ∈ (0, 1) and wj = 1 otherwise.

As a result, a combination of the randomized LASSO and the stability selection
procedure is capable of overcoming the problem of the LASSO trade-off between the FDP
and the TPP . However, this methodology has several disadvantages. Apart from the
computational cost, the estimation of several tuning parameters that hinders its correct
implementation is needed.

2.3.3 Thresholded LASSO

Due to the huge amount of false positives, the LASSO tends to include in the model,
a two-step procedure is proposed to select only those covariates that provide important
information. Firstly, a screening procedure that reduces the possible subset of relevant
covariates is performed and the β vector is calculated using this information. Secondly,
to guarantee that all selected covariates are important, a threshold is employed in a
second step, establishing a cut point over the absolute value of each component of β̂.
Eventually, the β vector is estimated considering only the selected covariates. As in the
p > n framework, a sparse estimator is needed for the first step, so one can resort to
the LASSO estimator β̂LASSO as a screening method. This scheme gives place to the
thresholded LASSO algorithm (Lounici (2008), Zhou (2010), Van de Geer et al. (2011)).

Thresholded LASSO algorithm

The thresholded LASSO algorithm (Lounici (2008), Zhou (2010), Van de Geer et al. (2011))
proposes to implement a thresholded version of the LASSO estimator. As a result, one
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would obtain a vector β̂T hr, computing the OLS estimator over the parameters which
verify {j : |β̂LASSO| > δ} for a given value δ > 0. Now, the challenge is how to define the
threshold value and guarantee good statistical properties for this methodology, as well
as the correct recovery of S. For this last, we expect the thresholded version to require
weaker conditions than the ones the classical LASSO requires. See, for example, Tardivel
and Bogdan (2022) and references therein.

Additionally, the thresholded version of the LASSO guarantees the recovery of the signs
under milder assumptions than those of the classical LASSO regression. A review of this
issue, comparing LASSO and thresholded LASSO requirements and collecting a complete
list of references about this topic, can be found in Tardivel and Bogdan (2022).

Concerning the estimation of the threshold value, different approaches can be employed.
A first option is to select δ as a given quantile of the {β̂LASSO

j }pj=1 terms, similar to
Descloux and Sardy (2021) ideas. However, no theoretical guarantees are given for proper
selection following these guidelines. A more conservative way to proceed is to define the
cut-off in terms of the model error variance. An example is the work of Zhou (2010),
extending theoretical results regarding the adequate selection of the LASSO penalty for
this purpose. In Zhou (2010), authors propose to obtain the thresholded LASSO estimator
following the iterative procedure displayed in Algorithm 2.5.

Algorithm 2.5 (Thresholded LASSO).

1. Obtain an initial estimator using the usual LASSO procedure β̂LASSO. Let Ŝ0 = {j :
|β̂LASSO

j | > λn} and β̂(0) := β̂LASSO, being λn = 0.69λσ and λ =
√

2 log(p)/n.

2. Iterate through the following steps twice, for i = 0, 1:

i) Set L := Ŝi, compute β̂(i)
L = (XnL

⊤XnL)−1XnL
⊤Yn and δi = σλ.

ii) Threshold β̂
(i)
L with δi to obtain L := Ŝi+1 where

Ŝi+1 =
{
j ∈ Ŝi : |β̂(i)

jL| ≥ δi

}
.

3. Compute β̂(2)
L = (XnL

⊤XnL)−1XnL
⊤Yn and output β̂T hr = β̂

(2)
L .

Return the final set of variables in Ŝ2 and output β̂ such that β̂Ŝ2
= β̂

(2)
Ŝ2

and β̂j = 0,
∀j ∈ Ŝc

2, being Ŝc
2 the complementary of S.

One important caveat of this implementation is the necessity of knowing the σ parameter
in advance to define the threshold. However, this is not possible in practice. Thus, we
notice that the complexity of finding a correct threshold is similar to obtaining the optimal
value of λ for the LASSO adjustment. In both cases, we would need to know the dispersion
of the error σ2 in advance.

Next, related to the LASSO family, modifications that take advantage of special
structures in the data sets are introduced and analyzed.
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2.3.4 Special structures of the LASSO

There are contexts where the sparsity of the β vector of the problem (1.2) can have a special
structure. Examples are when we can assume some order in the covariates X1, . . . , Xp or
when the sparsity is in terms of groups of variables. As a result, the LASSO approach fails
to recover the correct sparsity structure, and new estimators are needed.

In those contexts spring up methods such as the fused LASSO of Tibshirani et al. (2005)
or the group LASSO introduced by Yuan and Lin (2006). The fused LASSO technique
uses the L1 penalization philosophy of the LASSO, but this also adds a new constraint to
the optimization problem incorporating the order of the considered covariates. In the case
of the group LASSO algorithm, this penalizes the covariates by splitting them into groups.
In this way, this achieves a group sparse estimator of β. Next, we briefly introduced three
approaches that make use of these ideas: the fused LASSO (Tibshirani et al. (2005)), the
group LASSO (Yuan and Lin (2006)), and the sparse-group LASSO (Simon et al. (2013)).

Fused LASSO

The fused LASSO was introduced by Tibshirani et al. (2005) for frameworks where quoting
the authors: features can be ordered in some meaningful way. We can think of contexts
where our data has a spatial or time series structure as simple examples. Besides, we can
see that this approach can be useful when we want to establish an “artificial” order in our
covariates. For this purpose, we can employ some measures of importance, like correlation.

Therefore, if we denote X(1), . . . , X(p) as the ordered covariates set and β(1), . . . , β(p)
their associated coefficients to estimate, we can define the fused LASSO problem as

β̂FL = arg min
β

n∑
i=1

yi −
p∑

j=1
xi(j)β(j)

2

,

subject to
p∑

j=1
|β(j)| ≤ θ1 and

p∑
j=2
|β(j) − β(j)−1| ≤ θ2,

which can be rewritten in the compact form

β̂FL = arg min
β


n∑

i=1

yi −
p∑

j=1
xi(j)β(j)

2

+ λ1

p∑
j=1
|β(j)|+ λ2

p∑
j=2
|β(j) − β(j)−1|

 , (2.12)

being λ1 and λ2 the shrinkage parameters to estimate, which are inversely proportional to
θ1 and θ2 terms.

The problem (2.12) is convex and tends to shrink the value of consecutive covariates to
equal them up to a constant. A two-dimension interpretation is displayed in Figure 2.4.
Now, one needs to estimate two regularization parameters: λ1 and λ2.

More discussion about asymptotic properties, computational approach, or degrees of
freedom can be found in Tibshirani et al. (2005).
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Figure 2.4: Interpretation of the fused LASSO problem in two dimensions. The light blue
area denotes the LASSO restriction |β1| + |β2| ≤ θ1, whereas the dark one corresponds
with the penalization term |β2 − β1| ≤ θ2 . The orange ellipses are the contours of the
mean square errors function.

Group LASSO

Sometimes, the high dimensional vector β carries a group structure partitioned into disjoint
pieces. The group LASSO (Yuan and Lin (2006)) is designed to select grouped variables,
which can be designated as factors instead of individual variables. The most well-known
example is the multiple-factor analysis of variance or ANOVA. Another ordinary example is
basis expansions in additive models. There, the selection of relevant variables corresponds
to the choice of groups of basis functions.

Thus, the penalization term is applied over the grouped covariates. As a result, assuming
a number K of groups, the group LASSO problem has the form

β̂GL = arg min
β


n∑

i=1

(
yi −

K∑
k=1

Xkβk

)2

+ λ
K∑

k=1
∥βk∥Zk

 , (2.13)

where ∥w∥Zk
= (w⊤Zkw)1/2 for a vector w ∈ Rd, d ≥ 1, and Zk is a symmetric d × d

positive definite matrix Zk, for k = 1, . . . ,K. To simplify, it is assumed that the Xk are
orthonormalized, i.e. X⊤

k Xk = Ipk
, for k = 1, . . . ,K and being pk the number of covariates

of the k factor, ∑K
k=1 pk = p.

One can choose the Zk matrices displayed in (2.13) as reproducing kernels of the
functional space induced by the kth factor. See Yuan and Lin (2006) for more information.
Besides, it is clear that, for the special case of p1 = · · · = pK = 1, this problem corresponds
with the ordinary LASSO adjustment of (2.3).

Furthermore, we can extend this idea of penalizing the group dependence to other
approaches, such as the LARS procedure or the non-negative garrote.
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More information about algorithms for solving these problems, similarities and differ-
ences, or even the estimation of the tuning parameter can be found in Yuan and Lin (2006)
or Bühlmann and Van De Geer (2011).

Sparse-group LASSO

One drawback of the formulation (2.13) is that all the covariates of the non-used groups are
forced to be zero. However, there are situations where we want not only sparsity by groups
but within each group too. Examples are some genomics studies, where one is interested
not only in which groups are important in explaining a particular disease, but also in the
importance of particular genes in each group. With this objective, Simon et al. (2013)
introduced the sparse-group LASSO. This procedure is based on solving the problem

β̂SGL = arg min
β


n∑

i=1

(
yi −

K∑
k=1

Xkβk

)2

+ (1− α)λ
K∑

k=1
∥βk∥Zk

+ αλ∥β∥1

 , (2.14)

where α ∈ (0, 1). For α = 0 we obtain the group LASSO fit (2.13) and for α = 1 the classic
LASSO problem (2.3). The rest of the parameters are the ones defined above.

This criterion resembles the RIDGE regression approach of Zou and Hastie (2005) with
the L2 penalty. Nevertheless, they differ in that the norm ∥.∥Zk

is not differentiable at
zero, and therefore, some groups are zeroed out completely.

More details about this methodology are given in Simon et al. (2013). They discuss its
properties, present algorithms for solving the problem (2.14), study its extension to other
contexts, and compare its performance with the LASSO and the group LASSO.

Once the possible modifications of the LASSO have been studied, we want to exploit
other alternatives to improve the LASSO results. Thus, in the next section, we present
different approaches.

2.4 Alternatives to the LASSO

In Section 2.2, the problems the LASSO selector has to deal with in practice were intro-
duced, motivating the need for modifications or alternatives. Subsequently, in Section 2.3,
modifications of the LASSO to solve some of these inconveniences were introduced and
analyzed, although none can solve all drawbacks at once. In parallel with the LASSO
adjustment, alternatives to this approach have been developed. Some of these still have a
high impact on literature nowadays. As a result, it is of interest to review and consider
some of these procedures as possible alternatives to the LASSO.

There are a lot of different approaches designed to select relevant information and
adjust a regression model able to explain the behavior of the response variable. Especially,
covariates selection in the linear regression model for the β sparse framework is the focus
of the study. For this purpose, a few of the most popular methodologies concerning
the comparison, or improvement of the LASSO, have been selected among the existing
literature. In addition, we add some of the most recent covariate selection algorithms that



2.4. Alternatives to the LASSO 39

have been proven efficient and provide novel approaches over the last years, apart from the
classic LASSO competitors.

Next, we briefly describe these procedures, arguing their good qualities, explaining
their methodology, and analyzing some drawbacks. Besides, references for more detailed
information are given. We introduce the methods in timeline order. Table 2.1 at the end
of this section displays a summary of the approaches that can be directly compared with
the LASSO structure.

2.4.1 SCAD penalization

The smoothly clipped absolute deviation (SCAD) penalty was proposed by Fan (1997). This
approach is non-convex and non-differentiable at zero penalization, able to simultaneously
select variables and estimate their regression coefficients (Fan et al. (2004)).

To select a good penalty function, Fan and Li (2001) proposed three principles that
this should satisfy: unbiasedness, in which there is no over-penalization of high parameters
to avoid unnecessary bias; sparsity, automatically setting the insignificant parameters to 0
to reduce model complexity; and continuity to avoid instability in model prediction. For
this last, the penalty function should be chosen such that its corresponding optimization
problem produces continuous estimators.

Then, a penalty function in terms of Fan and Li (2001) is wanted to plug this in (2.1).
A first option could be the L1 regularization, leading to the LASSO regression displayed
in (2.3). The LASSO problem results in sparse solutions, but this procedure can not
keep the resulting estimators unbiased for large values of the penalty parameter. The
higher the penalty value, the greater the bias. See Section 2.2.1 for more details. Thus,
other functions with better properties are needed. Another type of penalty function is
the hard thresholding penalty, given by pλ(|β|) = λ2 − (|β| − λ)2I(|β|<λ), which results
in β̂ = β · I(|β|>λ), where I(·) is the indicator operator. However, this estimator is not
continuous in terms of β.

As the penalty functions introduced above can not simultaneously satisfy the three
principles mentioned above, motivated by wavelet analysis, Fan (1997) proposed the SCAD
continuous differentiable penalty function, which derivative function is defined by

p′
λ(β) = λ

{
I(β≤λ) + (aλ− β)+

(a− 1)λ I(β>λ)

}
for some a > 2.

This penalization corresponds to a quadratic spline function with knots at λ and aλ.
Explicitly, the penalty is

pλ(β) =



λ|β|, if |β| ≤ λ,
2aλ|β| − β2 − λ2

2(a− 1) , if λ < |β| ≤ aλ,

λ2(a+ 1)
2 , otherwise.
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The SCAD penalty retains the penalization rate (and bias) of the LASSO for small
coefficients. Conversely, this procedure continuously relaxes the penalty rate as the absolute
value of the coefficient increases. This new penalization satisfies the three properties
proposed by Fan and Li (2001).

Under orthogonal design, taking zj = X⊤
j y, we get the SCAD solution

(β̂λ)j =


sign(zj)(zj − λ)+, if |zj | ≤ 2λ,
(a− 1)zj − sign(zj)aλ

a− 2 , if 2λ < |zj | ≤ aλ,

zj , otherwise.

Figure 2.5 shows how the SCAD estimate looks like (λ = 1, a = 3). The dotted line
is the y = x line. We see as the SCAD estimates are the same as soft-thresholding for
|x| ≤ 2λ and are equal to hard-thresholding for |x| > aλ. The estimates in the remaining
regions are linear interpolations of these two regimes. This penalization keeps the bias of
the LASSO estimator for little shrinkaged values of β, which absolute values are close to λ,
and applies a hard threshold for distant ones removing the bias.

−4 −2 0 2 4

−
4

−
2

0
2

4

x

β

LASSO
SCAD
Hard−thresholding

Figure 2.5: Shrinkage of the β parameter with the LASSO (soft-thresholding), SCAD and
hard-thresholding penalizations taking λ = 1 and a = 3 under orthogonal design.

As a result, one appreciates that the SCAD penalization reduces the estimator bias
and keeps the continuity. Nevertheless, two regularization parameters, λ and a, have to be
selected here. This fact notably increases the computational cost if one wants to search for
an optimal combination of both.

2.4.2 Elastic-Net algorithm

The Elastic Net (ENET) algorithm of Zou and Hastie (2005) was one of the first proposed
methods to deal with the LASSO drawbacks. This method was born to protect against
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the “correlation confusion phenomenon” of the LASSO estimator mentioned in Section
2.2.2: the LASSO procedure tends to select only a predictor among a bunch of them that
are highly correlated.

Taking into account the quality of the L1 regularization as a covariates selector, jointly
with the gain in prediction accuracy of the L2 penalty, it seems reasonable to establish
an appropriate combination of both to avoid spurious correlations. So, this methodology
imposes a combination of the L1 and L2 penalizations, from the LASSO (Tibshirani (1996))
and RIDGE regression (Hoerl and Kennard (1970)) respectively, in the linear regression
problem (1.2) resulting in

β̂ENET = arg min
β


n∑

i=1

yi −
p∑

j=1
xijβj

2

+ λ
p∑

j=1

(
α|βj |+ (1− α)β2

j

) withα ∈ (0, 1).

Due to the inclusion of the L2 penalization, this model has the advantage that the
number of covariates selected by the sample size n in the p > n case is no longer limited.
Besides, the quadratic penalty corrects the confusion effect of the L1 penalization caused by
highly correlated covariates. Nevertheless, the L2 penalty forces the estimated coefficients
of highly correlated predictors to be close to each other, which adds bias to the model.
One can appreciate this phenomenon graphically through the two-dimensional framework
displayed in Figure 2.3. Furthermore, we need to estimate an extra parameter, α ∈ (0, 1),
for example employing cross-validation techniques, although this last implementation
increases the computational cost. Also, the ENET algorithm will only select covariates for
values of α close to zero. Otherwise, if the L2 penalty has a large enough load, the ENET
procedure does not perform covariates screening. As a result, a suitable choice of α is so
tricky in practice.

2.4.3 Dantzig selector

The Dantzig selector (Dant) is a method for covariates selection based on linear programming
ideas. This was introduced by Candes and Tao (2007), and its name pays tribute to the
father of linear programming: George Bernard Dantzig, developer of the simplex algorithm.

The Dantzig estimator is the result of solving the convex optimization problem

min
β
∥β∥1,

subject to ∥X⊤r∥∞ ≤ λp · σ,
(2.15)

for some λp > 0, where ∥X⊤r∥∞ := sup
1≤j≤p

|(X⊤r)j |, r = y −Xβ is the vector of residuals

and σ is the standard deviation of the model errors.
The reason to constrain the size of the correlated residual vector X⊤r, rather than the

size of the residual vector r, is to guarantee invariance to orthonormal transformations.
Suppose an orthonormal transformation is applied to the data, giving ỹ = Uy, where
U⊤U is the identity. It is clear that a good estimation procedure for estimating β
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should not depend upon U (after all, one could apply U⊤ to return to the original
problem). It turns out that the estimation procedure (2.15) is, actually, invariant to
orthonormal transformations applied to the data vector since the feasible region is invariant:
(UX)⊤(UXβ̃ − Uy) = X⊤(Xβ̃ − y).

It can be shown that, taking λp = (1 + δ−1)
√

2 log(p) where δ is a positive scalar,
if X obeys a uniform uncertainty principle (with unitnormed columns), and if the true
parameter vector β is sufficiently sparse (which here roughly guarantees that the model is
identifiable), then it is verified with a very high probability that

∥β̂ − β∥22 ≤ C2 · 2 log(p) ·

σ2 +
∑

j

min(β2
j , σ

2)

 .
We refer to Candes and Tao (2007) or Bickel et al. (2009) for more information about

the consistency of the Dantzig selector.
It is important to notice that the Dantzig selector (2.15) uses the unknown noise

parameter σ2. The estimation of this value in the p > n case is not simple, as we have
discussed early for the LASSO in Section 2.2.4. A solution in practice is to change the
λp · σ value for a generic λ > 0, although one loses information about the scale of the
penalization. Besides, due to the non-convex nature of the problem (2.15), it is highly
costly to find an approximate solution for a high dimensional case in general. This last is
due to the presence of local minima in the objective function.

2.4.4 Relaxed LASSO

As seen in Section 2.2.2, if no consistency condition is verified, the LASSO adjustment has
an L2-loss rate of convergence when the number of predictor variables grows fast with the
number of observations. See Meinshausen (2007)). However, this can be quite slow for a
sparse high dimensional context. Moreover, many noisy variables are prone to be selected
if the estimator is chosen using cross-validation techniques. The relaxed LASSO (RelaxL)
is a two-stage procedure introduced in Meinshausen (2007) to achieve a faster convergence
rate. Besides, this new approach produces sparser models with equal or lower prediction
loss than the regular LASSO estimator in high dimensions.

Keeping a similar philosophy to the SCAD procedure displayed in Section 2.4.1, the
relaxed LASSO is a generalization of both soft and hard thresholding. See Figure 2.5. This
method controls model selection and shrinkage estimation by two separate parameters,
λ ∈ [0,∞] and θ ∈ (0, 1], through the optimization problem

β̂RelaxL = arg min
β

{
n−1

n∑
i=1

(
yi − x⊤

i {β · IMλ
}
)2

+ θλ∥β∥1

}
, (2.16)

where IMλ
is the indicator function on the set of variablesMλ ⊆ {1, . . . , p}, which cardinal
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is m. So that, for all j ∈ {1, . . . , p},

{β · IMλ
}j =

{
0, j ̸∈ Mλ,

βj , j ∈Mλ.

Notably, the LASSO and the relaxed LASSO estimators are identical for the θ = 1
value in (2.16). In contrast, for θ < 1, the shrinkage of the coefficients in the new model is
reduced compared to ordinary LASSO estimation.

This method has a low computational cost. Often, this is identical to that of an ordinary
LASSO solution, and unlike the LASSO, convergence rates are fast, irrespective of the
growth rate of the number of predictor variables. However, for high dimensional problems
with p > n, the computational cost of the relaxed LASSO O(m2np) translates into O(n3p)
and hence slightly more expensive than the O(n2p) computations of the standard LASSO.

Moreover, relaxed LASSO leads to consistent variable selection under a prediction-
optimal choice of the penalty parameters, which does not hold for traditional LASSO
solutions in a high dimensional setting. In addition, the rate of convergence of the relaxed
LASSO estimator is not influenced by the presence of many noise variables. See Meinshausen
(2007) for more information.

The main advantages of RelaxL over the classical LASSO in the high dimensional
setting are two. On the one hand, this estimator achieves sparser estimates: it selects fewer
coefficients without compromising the accuracy, producing more harmonious models. On
the other hand, its predictions are more accurate: the accuracy of relaxed and ordinary
LASSO is comparable in a low signal-to-noise ratio; however, for a high signal-to-noise
ratio, the RelaxL often achieves more accurate predictions. This phenomenon explains
that the relaxed LASSO is adaptive to the signal-to-noise ratio.

Nevertheless, the inclusion of an extra tuning parameter, θ, increases the model
complexity. Furthermore, the computational cost of the RelaxL is greater than the one of
the standard LASSO. These all translate into more complexity in the estimation procedure.

2.4.5 Square root LASSO

The Square root LASSO (SqrtL), see Belloni et al. (2011), is an alternative that allows
one to solve a least squares problem without assumptions on the error distribution. In
particular, we do not need to know the variance σ to obtain an optimal penalization value,
unlike the LASSO procedure. In contrast, this method only requires assumptions about
the moments of the error distribution and suitable design conditions.

This estimator is the result of solving the problem

β̂SqrtL = arg min
β


 n∑

i=1

yi −
p∑

j=1
xijβj

2


1/2

+ λ
p∑

j=1
|βj |

 , (2.17)

which is a convex conic programming problem.



44 CHAPTER 2. LASSO

The resulting estimate of (2.17) has a computational cost similar to that of the LASSO
problem displayed in (2.3).

As mentioned above, the main advantage of this procedure is that the optimal value
of the penalization parameter λ does not depend on the knowledge of the error variance
σ2. This fact contrasts with the LASSO requirements. See Section 2.2.4 for more details.
Then, it is possible to match the near oracle performance of the LASSO when the noise
level is unknown.

In particular, to guarantee with approaching probability 1− α that

∥β̂SqrtL − β∥2 ≤ σ{s log(2p/α)/n}1/2,

the optimal value of λ needed is given by the expression

λ = c · n−1/2Φ−1(1− α/2p) for some c > 1.

See Belloni et al. (2011) for more information.
A posterior analysis of its characteristics and behavior in comparison with more recent

methods can be found in papers such as Giraud et al. (2012) or Wang (2013), among others.
Besides, a generalization of this methodology to the nonparametric regression model is
also possible. See Belloni et al. (2014) for more details about this topic.

2.4.6 Scaled LASSO

Another possibility is the use of the scaled LASSO algorithm of Sun and Zhang (2012)
(ScalL). The ScalL is constructed to avoid the LASSO regression drawback that the penalty
term, λ, should be proportional to the model error variance to achieve consistency. See
Section 2.2.4 for more details.

For this purpose, the regression approach estimates the noise level, σ2, and the regression
coefficients vector, β, at the same time. This procedure iteratively estimates the noise
level using the mean residual square to achieve a consistent estimator of β. Subsequently,
this approach scales the penalty using this obtained value. This process is performed by
following the ideas of the iterative algorithm introduced in Städler et al. (2010). As a
result, knowing the value of σ2 in advance is unnecessary. This results in a sparse estimator
β̂ and an error variance estimator σ̂2.

In order to implement this procedure, it is taken into account that an estimation vector
β̂ is a critical point of the LASSO penalized loss function

Lλ(β) = ∥y −Xβ∥
2
2

2n + λ
p∑

j=1
βj (2.18)

if and only if this verifies{
x⊤

j (y −X⊤β̂)/n = λsign(β̂j), β̂j ̸= 0,
x⊤

j (y −X⊤β̂)/n ∈ λ[−1, 1], β̂j = 0.
(2.19)
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Due to the convexity of the loss function (2.18), this last condition (2.19) corresponds to
the Karush–Kuhn–Tucker condition for its minimization.

How a penalty term λ is still needed to characterize the solutions of (2.19), an iterative
algorithm minimizing the scaled penalized least-squares estimator is proposed. Its scheme
is collected in Algorithm 2.6.

Algorithm 2.6 (Scaled LASSO).

• σ̂ ← ∥y −X⊤β̂old∥2/n1/2,

• λ← σ̂λ0,

• β̂ ← β̂new, Lλ(β̂new) ≤ Lλ(β̂old).

where λ0 is a prefixed-penalty level, not depending on σ, σ̂ estimates the noise level, Lλ is
given in (2.18) and β̂new is a solution of (2.19) for the given λ.

As is explained in Sun and Zhang (2012), the first step of the implementation is the
computation of a solution path β̂(λ) of (2.19) beginning from β̂(λ) = 0 for λ = ∥X⊤y/n∥∞.
The second step of the implementation is the iteration of Algorithm 2.6 along the solution
path β(λ) computed in the first step. Thus, the previously computed β̂new = β̂(λ) is
employed in Algorithm (2.6). Furthermore, for large data sets, to compute β̂new from β̂old,
one may use a few steps of a gradient descent algorithm.

An analysis of the theoretical properties of this procedure, as well as numerical results,
is displayed in Sun and Zhang (2012) and Sun and Zhang (2013).

2.4.7 SLOPE

The Sorted L-One Penalized Estimation (SLOPE) algorithm is another alternative proposed
by Bogdan et al. (2015). The resulting new estimator β̂SLOP E is the solution of the convex
optimization problem given by

β̂SLOPE = arg min
β

1
2

n∑
i=1

yi −
p∑

j=1
xijβj

2

+
p∑

j=1
λj |β|(j)

 , (2.20)

where λ1 ≥ λ2 ≥ . . . λp ≥ 0 and |β|(1) ≥ |β|(2) ≥ · · · ≥ |β|(p) are the absolute values of the
entries of β in decreasing order. Here, the penalty term is a sorted L1 norm. This term
penalizes the regression coefficients according to their rank. Then, the higher the rank, the
stronger the signal and the larger the penalty value, respectively.

This procedure is motivated by the need to select relevant variables to avoid noise. For
this purpose, this approach seeks to control the expected proportion of irrelevant variables
among the selected ones. This process translates into controlling the False Discovery Rate
(FDR). In particular, Bogdan et al. (2015) propose some results of FDR expression under
orthogonality and Gaussian assumptions.

The problem of covariates selection in the p > n framework can be seen as a multiple-
testing problem where p simultaneous contrasts are needed. Then, a covariate j, for
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j = 1, . . . , p, would be included in the model if the null hypothesis H0j : βj = 0 is rejected.
However, one needs to adjust the significance levels αj of each test to guarantee, in the
end, a prefixed significance level α. Then, a correction for multiple testing implementation
is needed. Strategies such as the well-known Bonferroni’s method (Dunn (1958)) or the
Benjamini and Hochberg (1995) procedure (BH) are some of the possible options proposed.

Assuming orthogonal design and Gaussian errors, i.e. Xn
⊤Xn = Ip and ε ∈ N

(
0, σ2In

)
,

it is possible to obtain an expression for FDR using BH ideas. This method begins by
sorting the entries of ỹ = Xn

⊤y in decreasing order of magnitude, |ỹ|(1) ≥ · · · ≥ |ỹ|(p),
which yields corresponding ordered hypotheses H(01), . . . ,H(0p). Then, to control the FDR
at level q ∈ [0, 1], BH rejects all hypothesis H(0i) for which i ≤ iBH , where iBH is

iBH = max{i : |ỹ|(i)/σ ≥ Φ−1(1− qi)}, qi = i · q/2p.

Letting V , respectively R, be the total number of false rejections, respectively the total
number of rejections, Benjamini and Hochberg (1995) shown that for BH

FDR = E
[

V

R ∨ 1

]
= q

s0
p
,

where s0 is the number of true null hypotheses, s0 := #{i : βi = 0} = p− ∥β∥0.

The employed threshold of the BH procedure, |y|(iBH), is data-dependent in the sense
that this is sensitive to the sparsity and magnitude of the true signal. Quoting Bogdan
et al. (2015): in a setting where there are many large βj ’s, the last selected variable needs
to pass a far less stringent threshold than it would in a situation where no βj is truly
different from 0. Hence, this behavior allows BH to adapt to the unknown signal sparsity.

Given the BH methodology, this idea applies to the SLOPE algorithm. For this
purpose, a sorted L1 norm that penalizes the coefficients attended to their magnitude as a
regularization of the problem (1.2) is introduced. Then, letting λ ̸= 0 be a nonincreasing
sequence of nonnegative scalars λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0, it is defined the sorted L1 norm
of a vector β ∈ Rp as pλ(β) = λ1|β|(1) + λ2|β|(2) + · · ·+ λp|β|(p). This new regularization
gives place to the SLOPE problem (2.20).

The convexity of (2.20) guarantees that the SLOPE problem is tractable. In fact, its
computational cost is similar to the LASSO one because this is a sorted extension of the
L1 norm. However, the general formulation of the SLOPE allows one to achieve more
adaptivity. See Bogdan et al. (2015) for more information about optimization techniques
for this problem.

It is interesting to highlight that the idea behind SLOPE contrasts with the one
associated with the adaptive LASSO procedure introduced in Section 2.3.1. In the AdapL,
the penalty tends to decrease as the magnitude of coefficients increases. Conversely, for
the SLOPE approach, the opposite happens. However, the control of the FDR can only
be theoretically guaranteed when the orthogonal and Gaussian assumptions are verified.
These assumptions can be quite restrictive in practice.
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2.4.8 Knockoffs filter

Another procedure devoted to controlling the inclusion of unnecessary noise in the model,
i.e. to control the False Discovery Rate (FDR), is the knockoff algorithm introduced
by Barber and Candès (2015). This approach is named the knockoffs filter. Again,
the covariates selection problem is rewritten as a multiple hypothesis testing with null
hypothesis H0j : βj = 0 for each of the j = 1, . . . , p covariates. This procedure needs
the Gaussian assumption but allows all types of fixed designs, not only restricted to the
orthogonal framework as in some previous techniques.

For this aim, given a level q ∈ [0, 1], it is said that a selection rule controls the FDR
at level q if FDR ≤ q regardless of the value of the β coefficients. This corresponds to
controlling for type I error in testing problems.

Next, three steps to carry out this methodology are given.
Step 1: Construct knockoffs. For each feature Xj in the model, a new “knockoff” feature

X̃j is built, for j = 1, . . . , p. These knockoff variables mimic the correlation structure of
the original features in a particular way that allows for FDR control.

After normalizing each variable, the Gram matrix Σ = Xn
⊤Xn is calculated for all

j = 1, . . . , p. Then, knockoffs features X̃n are generated verifying

X̃⊤
n X̃n = Σ, Xn

⊤X̃n = Σ− diag{η},

where η ∈ Rn is a non-negative vector adequately chosen. Thus, X̃n has the same covariance
structure as Xn, and correlations between original and knockoff variables are the same as
the ones of the original design.

Step 2: Calculate statistics for each pair of original and knockoff variables. Now, Wj

statistics are introduced for each βj to carry out partial tests for j = 1, . . . , p. These Wj ’s
are constructed to ensure that large enough positive values are evidence against the null
hypothesis of H0j : βj = 0. So, defining λj as the penalization value λ on the LASSO path
at which covariate Xj first enters the model:

λj = sup{λ : β̂jλ ̸= 0},

then, Wj can be defined by means of

Wj = λj ∨ λ̃j ·
{

+1, λj > λ̃j ,

−1, λj < λ̃j

where λj ∨ λ̃j = max{λj , λ̃j}. When λj = λ̃j , set Wj = 0.
A large enough positive value of Wj means that variable Xj enters the LASSO model

early, and before its knockoff copy X̃j (λj > λ̃j). This last happens because a decreasing
sequence of λ values is considered. Therefore, this fact indicates that the associated variable
has a genuine signal and belongs to the relevant terms of the model.

Step 3: Calculate a data-dependent threshold for the statistics. As we want to select
covariates with large and positive Wj values, one has to find a correct value δ > 0 able to
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verify that, taking Ŝ = {j : Wj ≥ δ}, the FDR ≤ q for a fixed q. For this purpose, it is
enough to take δ = T , being

T = min
{
δ ∈ W : |j : Wj ≤ −δ|

|j : Wj ≥ δ| ∨ 1 ≤ q
}

(or T = +∞ if this set is empty),

where W = {|Wj | : j = 1, . . . , p} \ {0}. Hofner et al. (2015) can be consulted for extra
information about the procedure implementation.

The problem of this methodology is the necessity of assuming that n ≥ p, opposite
to the high dimensional framework of interest. Barber and Candès (2019) propose a
modification of this algorithm that allows one to work with fewer samples than covariates,
guaranteeing the control of FDR too. However, the idea of this last modification is to split
the process into two parts: in the first one, a subset of {1, . . . , p} covariates is selected, of
size r, imposing that |r| ≤ n and then, the usual knockoff filter is implemented. As a result,
this methodology needs to apply a preliminary covariates selection algorithm suitable for
high dimensions to select the initial r covariates efficiently. As far as we know, there is still
no other extension in the literature of this procedure to the high dimensional context.

2.4.9 Debiased LASSO

The debiased LASSO of Javanmard and Montanari (2018) (DebL) is an alternative approach
concerning multiple hypothesis testing to select covariates in the p > n regime. This
methodology transfers the debiased ideas proposed in Bühlmann et al. (2013) and Van de
Geer et al. (2014), among others, to the LASSO context. As a result, a sparse estimator of
β for the high dimensional context with a Gaussian known distribution for each component
is achieved. It is the first time that one of the procedures presented in Section 2.4 gives a
distribution for the β components, which allows us to make inferences about these.

Therefore, to be able to characterize the distribution of a β̂ estimator for the p > n

framework, a debiased (or de-sparsified) estimator is needed. Javanmard and Montanari
(2018) propose to consider

β̂DebL = β̂LASSO + 1
n

MnXn
⊤(y −Xn

⊤β̂LASSO), (2.21)

where Mn ∈ Rp×p is a function of Xn, but not of y.
Quoted Javanmard and Montanari (2018): the intuition is that Mn should be a good

estimator of the precision matrix Σ−1. Then, using the LASSO vector and if s <
√
n/ log(p)

(n > (s log(p))2), it is possible to guarantee that

β̂DebL
j ∈ N(βj , σ

2/n) ∀j ∈ {1, . . . , p}. (2.22)

In Javanmard et al. (2019) it is proposed to use the estimation of Mn of Javanmard and
Montanari (2014) to control the FDR. Then, the decorrelating matrix Mn is constructed
via a convex optimization problem focused on reducing bias and variance of the coordinates
of the β̂DebL vector at the same time.
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Thus, Mn = (m1, . . . ,mp)⊤ ∈ Rp×p, where each mj ∈ Rp is the solution of the convex
problem given by

min
m

m⊤Σ̂nm,

subject to ∥Σ̂nm− ei∥∞ ≤ θ,

where ei ∈ Rp is the ith standard unit vector, Σ̂n = (Xn
⊤Xn)/n and θ is a constraint

properly chosen (see Javanmard et al. (2019) for more information).
Once we can assure the limit normal distribution of (2.21), we need to estimate the

error variance σ2 in order to characterize this. Javanmard et al. (2019) propose to make use
of procedures like the scaled LASSO (Section 2.4.6) to estimate this quantity. Eventually,
one can perform partial tests of the form H0j : β̂DebL

j = 0 to verify if some of the selected
covariates by β̂DebL can be omitted in the regression model, reducing noise.

Although its good properties, this procedure has some drawbacks in practice. The first
ones are related to the Gaussian assumption of the model errors or the sparsity condition of
s <
√
n/ log(p). Both might not be possible to verify in practice. Another inconvenience is

to estimate the Mn matrix when Σ is unknown, which requires the solution of an additional
optimization problem.

2.4.10 Distance covariance algorithm

Next, a completely different approach is proposed employing the novel distance covariance
coefficient (DC) of Székely et al. (2007). This measure of dependence is introduced in more
detail in Section 4.2.1. In particular, here, a covariates selection procedure for regression
models using the DC philosophy is introduced: the distance covariance algorithm for
variable selection (DC.VS) of Febrero-Bande et al. (2019).

The main advantage of the DC coefficient is that this allows measuring the grade of
dependence between two random vectors X ∈ Rp and Y ∈ Rq for all possible dependence
patterns. As a result, this coefficient characterizes the independence between X and
Y . In Particular, the DC.VS algorithm employs the scale-invariant version of the DC
coefficient: the distance correlation coefficient (DCor). As its name suggests, this verifies
that 0 ≤ DCor(X,Y ) ≤ 1; besides, X and Y are independent if and only ifDCor(X,Y ) = 0.
A more detailed explanation can be found in Section 4.2.1.

The DC.VS algorithm has a similar philosophy to the LARS one (Efron et al. (2004))
but uses the DCor coefficient as a measure of dependence. Namely, this is based on a
sequential process that tests, at each step and among the remaining covariates, if the most
correlated term with the model residuals contributes to improving the explanation of the
response. For this last, the DCor coefficient is used. Then, this covariate could be included
in the present model or ignored according to the test result. Once this decision is taken, if
a new covariate is incorporated, the model is updated, and the residuals recalculated. The
complete process repeats until all the p covariates are tested or if the correlation distances
of the remaining ones are negligible. We refer the reader to Febrero-Bande et al. (2019) for
a more detailed scheme of its implementation.
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This algorithm has shown good performance in terms of selecting relevant covariates and
avoiding noise (see Febrero-Bande et al. (2019) for more information). However, due to its
implementation, a high computational time is required. As a result, in a high dimensional
context where p > n, this could result in an expensive process, which may be an important
caveat, especially when the number of covariates, p, is high.

2.4.11 LASSO-Zero

The LASSO-Zero (Descloux and Sardy (2021)) is a new L1-based estimator whose novelty
lies in an “overfit then threshold” paradigm and the use of noise dictionaries concatenated
to X to overfit the response.

This procedure relies on ideas of the basis pursuit denoising approach (see Chen
et al. (2001)). A naive interpretation of the LASSO-Zero estimator is that this solves
an adaptation of the basis pursuit problem in a first step, and then, this thresholds the
obtained solution appropriately to retain only the largest coefficients. The principal novelty
of LASSO-Zero resides in the use of several random noise dictionaries in the overfitting
step, followed by the aggregation of the corresponding estimates.

Then, this method uses a noise dictionary consisting of a random matrix G ∈ Rn×q.
The purpose of the random dictionary G is to provide new columns in Xn that can be
selected to fit the noise term ε. Thus, columns of Xn can be mostly used to fit the true
signal Xn

⊤β. Indeed, if rank(G) = n, there exists a vector γε,G ∈ Rq such that ε = Gγε,G

and the model (1.2) can be rewritten as Yn = Xn
⊤β +Gγε,G. The estimates for β and

γ ≡ γε,G are attained solving the basis pursuit problem (2.4) for the extended matrix
X̃n = (Xn;G) ∈ Rn×(p+q). The resulting problem is displayed in equation (2.23).

min
β
∥β∥1 + ∥γ∥1

subject to y = X̃⊤
nβ +Gγ.

(2.23)

This procedure repeats several times to take the median for each component of the β̂
vector. Then, these medians are thresholded, and only the covariates with an associated
value large enough are selected. The scheme to obtain this estimator is collected in
Algorithm 2.7.

Algorithm 2.7 (LASSO-Zero).
Given q ∈ N, M ∈ N and a threshold θ ≥ 0:

1. For k = 1, . . . ,M : generate G(k) ∈ Rn×q with entries G(k)
ij

iid∼ N(0, 1) and compute
the solution (β̂(k), γ̂(k)) to (2.23) with G = G(k).

2. Define β̂L1
j = median{β̂(k)

j , k = 1, . . . ,M} for j ∈ {1, . . . , p}.

3. Threshold the coefficients at level θ to obtain β̂LASSO−Z
θ,j := ηθ(β̂L1

j ) for j ∈ {1, . . . , p},
where ηθ denotes any thresholding function satisfying ηθ(x) = 0 if |x| ≤ θ and
sign(ηθ(x)) = sign(x) otherwise; typically soft or hard thresholding are used.
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One can appreciate as the LASSO-Zero can be considered an extension of thresholded
basis pursuit (Saligrama and Zhao (2011)). Concerning an appropriate selection of the
threshold θ ≥ 0, the quantile universal thresholding (QUT) is employed (Giacobino et al.
(2017)). More information about the implementation of this thresholding function, jointly
with how to choose proper values for the parameters q or M , is detailed in Descloux and
Sardy (2021). Furthermore, the theoretical properties of this new method are also analyzed.

An important drawback of this methodology is the computational time required because
of the use of the noise dictionaries G. As a result, for medium or great values of n and p, the
problem is intractable. In addition, it is necessary to select, apart from the threshold, two
additional tuning parameters: q and M . Although some recommendations arise in Descloux
and Sardy (2021) for these values selection, all these characteristics of the LASSO-Zero
adjustment translate into a costly procedure.



PROBLEM FORMULATION PROS

▲ Best subset selection – Beale et al. (1967),

Better selectionHocking and Leslie (1967)
min

β

{∑n
i=1

(
yi −

∑p
j=1 xijβj

)2
+ λ

∑p
j=1 1βj ̸=0

}
×

■ LASSO – Tibshirani (1996)

–min
β

{∑n
i=1

(
yi −

∑p
j=1 xijβj

)2
+ λ

∑p
j=1 |βj |

}
✓

▲ SCAD – Fan (1997)

Better selection

min
β

{∑n
i=1

(
yi −

∑p
j=1 xijβj

)2
+ pλ(β)

}
×

Bias reductionwith pλ(β) =



λ|β|, if |β| ≤ λ,
2aλ|β| − β2 − λ2

2(a− 1) , if λ < |β| ≤ aλ (a > 2)

λ2(a+ 1)
2 , otherwise.

■ Basis Pursuit Denoising – Chen et al. (2001)
min

β
∥β∥1 subject to ∥y −Xβ∥2 ≤ θ × –

▲ Elastic Net – Zou and Hastie (2005) Better prediction

Possible selection
of more than n

covariates (p > n)

min
β

{∑n
i=1

(
yi −

∑p
j=1 xijβj

)2
+ λ

∑p
j=1

(
α|βj |+ (1− α)β2

j

)}
✓

withα ∈ (0, 1)

▲ Fused LASSO – Tibshirani et al. (2005)
Ordered structuremin

β

{∑n
i=1

(
yi −

∑p
j=1 xijβj

)2

+λ1
∑p

j=1 |βj |+ λ2
∑p

j=2 |βj − βj−1|
}

✓

 Adaptive LASSO – Zou (2006)
min

β

{∑n
i=1

(
yi −

∑p
j=1 xijβj

)2
+ λ

∑p
j=1 wj |βj |

}
✓

Better selection
(taking wj = 1/|β̂RIDGE

j |q where β̂RIDGE is the ridge estimator Bias reduction
(Hoerl and Kennard (1970)) and q ≥ 1)

▲ Group LASSO – Yuan and Lin (2006)

min
β

{∑n
i=1

(
yi −

∑K
k=1 Xkβk

)2
+ λ

∑K
k=1 ∥βk∥Zk

}
✓ Group structure

with ∥w∥Zk
= (w⊤Zkw)1/2

(Zk are kernel matrices of the functional space induced by the kth factor)
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▲ Dantzig selector – Candes and Tao (2007)
Consistent to

orthogonal
transformations

min
β
∥β∥1 subject to ∥X⊤r∥∞ ≤ λp · σ ×

(with ∥X⊤r∥∞ := sup
1≤j≤p

|(X⊤r)j | and r = y − Xβ)

Faster
convergence rates

More accurate
predictions

▲ Relaxed LASSO – Meinshausen (2007)
min

β

{
n−1∑n

i=1
(
yi − x⊤

i {β · 1Mλ
}
)2 + θλ∥β∥1

}
with θ ∈ (0, 1] ✓

▲ Square-root LASSO – Belloni et al. (2011) It is not needed to
known σ to obtain

an optimal λ
min

β

{[∑n
i=1

(
yi −

∑p
j=1 xijβj

)2
]1/2

+ λ
∑p

j=1 |βj |

}
✓

▲ Scaled LASSO – Sun and Zhang (2012)
σ̂ ← ∥y −X⊤β̂old∥2/n

1/2, λ← σ̂λ0

Simultaneous
estimation of σ

and β

β̂new = arg min
β

{
x⊤

j (y −X⊤β̂)/n = λsign(β̂j), β̂j ̸= 0,
x⊤

j (y −X⊤β̂)/n ∈ λ[−1, 1], β̂j = 0.
✓

β̂ ← β̂new, Lλ(β̂new) ≤ Lλ(β̂old)(
where Lλ(β) = ∥y−X⊤β∥2

2
2n

+ λ
∑p

j=1 |βj |
)

 SLOPE – Bogdan et al. (2015) Control of the
False Discovery

Rate (FDR)
min

β

{
1
2
∑n

i=1

(
yi −

∑p
j=1 xijβj

)2
+
∑p

j=1 λj |β|(j)

}
✓

▲ Debiased LASSO – Javanmard and Montanari (2018)

β̂debiased = β̂LASSO + 1
nMX⊤(y −Xβ̂LASSO) ∼ N(β, σ2/n) Characterization

of the probability
distribution for β̂

(β̂debiased)

with M = (m1, . . . , mp)⊤ ∈ Rp×p, where each mi ∈ Rp is the solution of
✓min

m
m⊤Σ̂m subject to ∥Σ̂m− ei∥∞ ≤ µ

(ei ∈ Rp is a standard unit vector, Σ̂ = (X⊤X)/n and µ a constraint)

▲ LASSO-Zero – Descloux and Sardy (2021) Excellent
trade-off between
high TPR and

low false discovery
rate FDR

min
β
∥β∥1 + ∥γ∥1

×subject to y = X̃β +Gγ

(G ∈ Rn×q a noise dictionary and X̃ = (X|G))

Table 2.1: Formulated problems to estimate the β vector for linear regression in a high
dimensional framework (p > n). It is indicated if the optimization problems are convex
(✓) or not (×). Their main advantages in comparison with the LASSO are displayed in
column (PROS) and it is shown if they shared LASSO properties (■), are a weighted
version of the LASSO ( ) or alternatives to this procedure (▲).
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2.5 Examples of real data problems

This section collects some examples of real problems where covariates selection arises
naturally. These data sets contain different relations between p and n, distinct dependence
patterns, and covariates in different scales. These will be employed later in Chapter 3 to
test the performance of LASSO and its derivatives for covariates selection. In particular,
four data sets of different characteristics and natures are considered for this purpose.

The first one is a genomic study. In this example, the production rate of riboflavin (vita-
min B2) of the bacterium Bacillus subtilis is modeled employing different gene expressions.
A total of p = 4088 expression levels of genes have been measured in n = 71 experiments.
This data set is a high dimensional example where the number of covariates is higher than
the number of available samples (p > n). Moreover, there are different strengths and types
of dependence between these genes. This fact displays in Section 2.5.1. In terms of scales,
all covariates are of a similar magnitude. This results in a high dimensional example where
some dependence patterns and covariates on a similar scale arise.

The second example is a well-known prostate cancer clinical study of male patients
subjected to radical prostatectomy. This was introduced in Stamey et al. (1989) for the
first time. This is presented and analyzed in more detail in Section 2.5.2. In this study, one
wants to determine what factors affect the level of prostate-specific antigen before surgery.
For this aim, eight clinical measures are taken in n = 97 patients. Different covariates
selection techniques based on penalties or distance covariance ideas (see Section 4.2.1 of
Chapter 4) have been employed in literature to detect which features are the most involved
with this antigen. This example has covariates in a different range of values. Besides, this
mainly contains medium and strong positive dependence relations between explanatory
terms. The previous analysis will allow us to compare our results with the preceding ones.
In particular, suitable penalization techniques, introduced in Chapter 2 and detailed in
Section 3.1.3 of Chapter 3, will be tested. This comparison is carried out throughout
Section 3.4 of Chapter 3.

Next, in Section 2.5.3, a third data set is studied. This is related to body fat prediction
in men using body measures (see Siri (1956)). A total of p = 14 variables are measured in
n = 174 men. This study aims to determine which are the important covariates in terms
of body fat explanation. In this case, there are again covariates with different scales, and
there exist a lot of dependence structures with varied strengths between them.

Eventually, a wine data set from Portuguese regions studied in Cortez et al. (2009)
is employed for covariates selection. This is introduced in Section 2.5.4. In this case, we
aim to explain the percentage of alcohol based on eight chemical measures. This database
collects information about n = 1599 samples, resulting in a case where n >> p. Moreover,
this is an example where only two feature scales are quite different, and only some strong
dependence structures exist between them.

Summing up, all these examples have some dependence structure between covariates.
Moreover, measured covariates tend to be in different scales. This fact motivates the
critical analysis under dependence and different scales on covariates performed in Chapter
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3. Next, these databases are detailed throughout this section. These will be employed
and analyzed later in Section 3.4 of Chapter 3 to illustrate the dependence as well as the
different scale effects for LASSO and derivatives in real problems.

2.5.1 Riboflavin

The first example is the high dimensional genomic data set riboflavin available in library
hdi (Dezeure et al. (2015)) of R Core Team (2019). In this data set, the logarithm of
the riboflavin (vitamin B2) production rate of the Bacillus subtilis bacterium is measured.
This vitamin is necessary for the cellular respiration of the body. This vitamin is found in
foods such as eggs, green vegetables, or milk, among others.
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Figure 2.6: Correlation matrix of the first 100 covariates of the riboflavin data set.
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Then, in order to identify which genes are crucial to explaining the riboflavin production
of this bacterium, the logarithm of the expression level of p = 4088 genes has been measured
in n = 71 experiments. See Bühlmann et al. (2014) for more details. Therefore, covariates
selection algorithms in the p > n framework are required to identify relevant genes. This
data set has already been studied in works as the one of Bühlmann et al. (2014).

Figure displays 2.6 a summary of the data structure. For this purpose, we calculate
the correlation matrix of the first 100 genes. As can be seen, there are many dependence
structures of quite different magnitudes between some subsets of genes. As a result, not all
genes, but a bunch of them may be enough to explain correctly the riboflavin production.

Furthermore, concerning covariates scales, Figure 2.7 shows their values varying between
the [0.1, 1.84] rank. Thus, there are slight differences in covariates scales, especially between
low and high values. Then, we can assume that genes are on a similar scale.
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Figure 2.7: Histogram (top) and boxplot (bottom) of the standard deviation of the genes
from the riboflavin data set.

As a result, this is a high dimensional data set where p > n with several dependence
structures between covariates and similar scale effects.

2.5.2 Prostate cancer

Next, we consider an additional example of medical data. This data set collects information
about men suffering from prostate cancer1. In particular, these patients were about to have
a radical prostatectomy to remove their prostate. This data was introduced in Stamey
et al. (1989) and has been previously studied in the covariates selection field in works as
Hastie et al. (2009) or Székely and Rizzo (2014). In the first work, they apply classical
techniques as principal component analysis (PCA) and partial least squares (PLS) analysis,

1This is available in https://hastie.su.domains/ElemStatLearn/

https://hastie.su.domains/ElemStatLearn/
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jointly with ordinary LASSO, Ridge regression (Hoerl and Kennard (1970)) or Best subset
selection (Miller (2002)). In contrast, Székely and Rizzo (2014) focus on partial covariates
selection, assuming nonlinear effects of the covariates over the response. For this aim, they
propose a new adaptation of the distance correlation (Székely et al. (2007), Szekely and
Rizzo (2017)) defining the partial distance correlation coefficient.
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Figure 2.8: Histograms of explanatory covariates (the first two rows) and response (the
last row) of the prostate cancer data set.

In this clinical study, doctors want to model the logarithm of the level of prostate-specific
antigen before surgery, lpsa henceforth, in terms of eight clinical measures: log cancer
volume (lcavol), log prostate weight (lweight), age, log of benign prostatic hyperplasia
amount (lbph), seminal vesicle invasion (svi), log of capsular penetration (lcp), Gleason
score (gleason) and percentage of Gleason scores 4 or 5 (pgg45). We refer the reader to
Stamey et al. (1989) for more details about data. A summary of these variables is displayed
in Figure 2.8. For the modeling purpose, a linear relation is assumed. There were a total
of 97 men in the study, and this sample was randomly divided into a training set of size
67 and a test set of size 30 (see Hastie et al. (2009)). Following Hastie et al. (2009) and
Székely and Rizzo (2014) guidelines, the training sample of n = 67 individuals is employed
to select covariates and then, the remaining 30 samples are used to perform prediction.

In this case, there are covariates in quite different scales. The lowest value is 0.41, and
this scale corresponds with the chlorides variable. In contrast, the variable with the highest
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scale value is pgg45, taking a quantity of 28.20. The associated standard deviations of all
covariates are displayed in Table 2.2.

X1 X2 X3 X4 X5 X6 X7 X8 Y
sd 1.18 0.43 7.45 1.45 0.41 1.40 0.72 28.20 1.15

Table 2.2: Standard deviations of X1: lcavol, X2: lweight, X3: age, X4: lbph, X5: svi,
X6: lcp, X7: gleason, X8: pgg45 and Y : lpsa.

In terms of dependence structures, one can pay attention to the correlation matrix.
There, we can appreciate as these covariates are related to each other. Specifically, there
are high positive correlations. The correlation matrix is displayed in Figure 2.9.
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Figure 2.9: Correlation matrix of the prostate cancer data set.

In conclusion, this is a well-known example in the covariates selection field that exhibits
different covariates scales and strong dependence structures between covariates. Comments
about covariates selected in existing literature arise in Section 3.4 of Chapter 3.

2.5.3 Body fat

The body fat data set2 consists in measures of 252 men to determine their percentage of
body fat. This quantity is obtained using Siri’s equation (Siri (1956)). For this aim, several
measures about their body are taken. These are density determined from underwater
weighing, age (years), weight (lbs), height (inches), and neck, chest, abdomen, hip, thigh,
knee, ankle, biceps (extended), forearm as well as wrist circumference (cm). As a result,
the aim is to determine which covariates are the most relevant ones in terms of proper
body fat explanation.

2See https://www.kaggle.com/datasets/fedesoriano/body-fat-prediction-dataset

https://www.kaggle.com/datasets/fedesoriano/body-fat-prediction-dataset
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Figure 2.10: Histograms of explanatory covariates (the first three rows) and response (the
last row) of the body fat data set.

In the first place, Box-Cox transformations are applied in X+0.01 and Y+0.01 variables
to avoid skewness3. Next, we remove some outliers. For this aim, the Mahalanobis distance
is employed over the data matrix to detect the 5% of less depth samples4. As a result, all
samples out of this condition are removed. The preprocessed data has a sample size of
length n = 239 and p = 14 covariates. The resulting variables are displayed in Figure 2.10.

The scales of the transformed covariates vary between them. These quantities are
displayed in Table 2.3. These standard deviations range between values of [0.02, 26.38]. As
a result, we can not assume that these terms are on a similar scale.

3The boxcox function of the MASS library of R (R Core Team (2019)) is used to perform the Box-Cox
transformations of the covariates.

4The mdepth.MhD function of the library fda.usc (Febrero-Bande and Oviedo de la Fuente (2012)) is
employed to detect outliers in a multivariate way.
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X1 X2 X3 X4 X5 X6 X7 X8

sd 0.02 12.76 26.38 2.57 2.21 7.86 9.92 6.13

X9 X10 X11 X12 X13 X14 Y

sd 4.80 2.32 1.33 2.89 1.91 0.88 8.17

Table 2.3: Standard deviations of X1: Density, X2: Age, X3: Weight, X4: Height, X5: Neck,
X6: Chest, X7: Abdomen, X8: Hip, X9 : Thigh, X10 : Knee, X11 : Ankle, X12 : Biceps,
X13 : Forearm, X14 : Wrist and Y : BodyFat.

Next, it is of interest to inquire about possible dependence structures. Similar to
previous examples, one can resort to the sample correlation matrix to have an idea. The
resulting correlation matrix of the clean data is displayed in Figure 2.11. In this, strong
relationships, positive and negative ones, are appreciated between most of the covariates.
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Figure 2.11: Correlation matrix of the body fat data set.

Thus, this is an example of a real data set with great discrepancies in covariates scales
and with a lot of strong dependence patterns between the explanatory covariates.

2.5.4 Portuguese wine

In the last example, a selection process is carried out for a totally different framework. This
is the Portuguese red wine data set studied in Cortez et al. (2009) 5. Several physicochemical
parameters are measured about the red vinho verde, which is a typical wine type from the
northwest regions of Portugal. These parameters are fixed acidity (X1), volatile acidity

5This is available in http://www3.dsi.uminho.pt/pcortez/wine/



2.5. Examples of real data problems 61

(X2), citric acid (X3), residual sugar (X4), chlorides (X5), free sulfur dioxide (X6), total
sulfur dioxide (X7), density (X8), pH (X9), sulphates (X10) and alcohol (Y ). All of
them are continuous variables, and a total of n = 1599 samples, taken from May/2004 to
February/2007, are available. Our objective is to model the alcohol by volume content
using the rest of the p = 10 covariates.
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Figure 2.12: Histograms of explanatory covariates (the first two rows) and response (the
last row) of the Portuguese wine data set.

Following the guidelines introduced above in Section 2.5.3, we first apply Box-Cox
transformations over the X+0.01 and Y+0.01 variables to correct possible skewness. Next,
data is cleaned from outliers, removing the 5% of extreme values. The less-depth samples
are detected in the same way as in Section 2.5.3 and these are removed from the data set.
This procedure results in a total of n = 1519 samples, removing 80 ones. A summary of
the resulting variables is displayed in Figure 2.12.

After applying Box-Cox transformations and cleaning outliers, we can check for scales
between covariates. These are estimated utilizing their standard deviations and are
displayed in Table 2.4. We can see that all scales are between (0, 30.39]. Thus, this is
an example where covariates scales differ among them. In particular, all covariates have
similar scales except for X6: free sulfur and X7: total sulfur.
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X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 Y
sd 1.67 0.17 0.19 1 0.02 9.88 30.39 < 10−2 0.14 0.14 1.05

Table 2.4: Standard deviations of X1: fixed acidity, X2: volatile acidity, X3: citric acidity,
X4: sugar, X5: chlorides, X6: free sulfur, X7: total sulfur, X8: density, X9: pH,X10: sulphates
and Y : alcohol.

A study of correlation values after removing outliers is displayed in Figure 2.13 com-
puting the sample correlation matrix. In this case, we appreciate that there exists some
strong dependence relation between some covariates, but most of them are weak.
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Figure 2.13: Correlation matrix of the Portuguese wine data set.

In this last case, there are only two considered covariates that have a quite different
range of values. Besides, there are some, but not too many, strong correlations.

2.6 Analysis of the LASSO evolution and alternatives

Motivated by the increasing number of data sets in the high dimensional framework, the
LASSO regression has gained vast popularity in the last few years. Some examples are the
ones introduced in Section 2.5. Consequently, the LASSO procedure results in a tool widely
employed due to its desirable qualities, such as convexity or getting a sparse estimator β̂
in the linear regression model formulation given in (1.2). This last property allows one to
implement covariates selection, even when p > n. We refer to Section 2.1 for more details.
However, the LASSO approach has some important limitations in practice. These are
related to bias, strict theoretical properties to ensure consistency, the occurrence of false
discoveries in the LASSO selection, and the difficulty in selecting a suitable value for the
penalty term λ. All these inconveniences have been explained in detail in Section 2.2.
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As a result of these limitations, new adaptations of the usual LASSO were proposed.
See Section 2.3 for an overview. We do a humble classification by distinguishing between
weighted versions, resampling techniques mixed with LASSO, or thresholded versions.
Whereas the weighted versions are devoted to correcting the bias, the remaining two
groups focus on reducing false discoveries. Moreover, different formulations of the LASSO
approach were also developed to consider the information provided by special structures of
the data in the selection process. Nevertheless, these options keep some of the limitations
of the usual LASSO. For example, some conditions in the matrix design, β vector, and
sample size are still necessary to guarantee the proper recovery of the relevant terms. In
addition, a suitable selection of the penalty parameter is necessary as well. In addition,
new tuning parameters appear for weighted and thresholded versions, which translates into
greater complexity. In contrast, the resampling LASSO procedures “solve” the problem
of false discoveries, but requires high computational cost and suffer from the previously
mentioned problems as well.

To deal with the drawbacks mentioned above, alternatives to LASSO have also been
proposed in the literature. A summary of some of the most employed or more innovative
approaches is collected in Table 2.1. Besides, these are treated in more detail throughout
Section 2.4. These procedures have diverse forms and natures. Some examples of these
ideas are based on the use of concave penalties to reduce bias, as the SCAD penalization
(Section 2.4.1), or the mix of L1 and L2 penalizations via the ENet penalty (Section 2.4.2)
to protect against the confusion phenomenon. An additional alternative is a non-convex
penalty proposed by the Dantzig selector (Section 2.4.3), resulting in an estimator invariant
to orthonormal transformations. The relaxed LASSO (Section 2.4.4) is another option
that achieves a faster converge rate than the LASSO one and obtains sparser estimators.
Related to the optimal choice of the λ term, which depends on the unknown error variance
σ2 (see Section 2.2.4), arises the square root LASSO (Section 2.4.5) and the scaled LASSO
(Section 2.4.6). The first approach guarantees that a proper selection of the penalty term
does not depend now on the error variance, whereas the second one provides a two-step
procedure capable of estimating this variance. Alternative procedures devoted to correcting
the false discoveries produced by the LASSO algorithm are the SLOPE penalization
(Section 2.4.7) or the innovative knockoffs filter (Section 2.4.8). However, to the best
of our knowledge, this last procedure is only available for the n > p framework. Other
novel procedures which perform covariates selection by means of hypothesis testing are the
debiased LASSO (Section 2.4.9) and the distance covariance algorithm (Section 2.4.10).
The debiased LASSO obtains a sparse estimator with a Gaussian known distribution and
allows one to perform multiple hypothesis testing to select covariates. By its part, the
distance covariance algorithm employs the distance correlation coefficient of Székely et al.
(2007), which will be treated in more detail in Chapter 4, to perform independence tests.
This last translates into a covariates selection procedure. The last proposed procedure is
the LASSO-zero (Section 2.4.11). This technique, using noise dictionaries concatenated to
X, is consistent for sign recovery of the true β vector and obtains good results in terms of
avoiding false recoveries. In spite of these improvements, all alternative procedures also
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suffer from some of the LASSO drawbacks. So these approaches are expected to improve
the LASSO performance in some sense, but there is no one-size-fits-all solution. As a result,
it will depend on the desired goal that one algorithm is more suitable than others.

Although varying in their form and characteristics, all proposed algorithms have been
developed to answer the covariates selection problem. In particular, these procedures have
been built to solve some of the LASSO drawbacks introduced in Section 2.2. Nevertheless,
it is not clear which of these proposals is the best option in terms of recovery of the
relevant covariates. This topic is discussed below in Chapter 3. Specifically, their behavior
is compared under tricky contexts, as assuming distinct dependence structures between
variables (Section 3.1) or when there are covariates in different scales (Section 3.2). These
frameworks are motivated by the usual properties of real data sets. In Section 2.5, four
examples are given in which these phenomena arise. The performance of the considered
algorithms is also tested in these examples in Section 3.4 of Chapter 3.

Apart from the linear formulation of (1.2), studied in Section 1.1.1, penalization
techniques can be extended to more complex models. An example is their use in the
additive regression model introduced in Section 1.1.2. The work of Ravikumar et al. (2009),
with the SpAM (Sparse Additive Models) procedure, is an example where a L1 penalty is
imposed to force covariates selection and avoid the concurvity effect discussed in Section
1.2.3. The Lazy LASSO is an alternative proposed by Vidaurre et al. (2012) to penalize the
local regression introduced in Section 1.1.3. In particular, this imposes a type of L1 penalty
to avoid overfitting and apply covariates selection in local regression settings. Another
possibility is their implementation in generalized linear models (see McCullagh and Nelder
(2019)), including the well-known logistic regression. A survey in the use of the L1 penalty
for these models can be found in Vidaurre et al. (2013). Even for the generalized additive
model (see Hastie and Tibshirani (1990)), penalization techniques like the generalized
SpAM algorithm of Haris et al. (2022) can be employed for covariates selection.

Furthermore, the L1 penalty philosophy of the LASSO has been extended to trickier
contexts. An example is the work of Lee et al. (2016) for the varying coefficient models of
Hastie and Tibshirani (1993). The form of these models is introduced in equation (4.28).
The authors propose an adaptation of the group LASSO procedure (see Section 2.3.4) to the
varying coefficient models in order to obtain a sparse version in a high dimensional context.
Besides, in the case of functional regression models, approaches applying penalizations
for covariates selection have been proposed as well. A review of this topic can be seen in
Aneiros et al. (2022). There, several covariates selection procedures related to LASSO ideas
are collected. A particular case of a functional model is the functional concurrent model
(FCM). In this, the relation between covariates and response is concurrent or point-by-point.
A more detailed introduction is given in Section 5.1. For this model, Ghosal and Maity
(2022b) propose a covariates selection procedure using ideas of group penalizations. In
particular, the group LASSO approach of Section 2.3.4 is considered. Below, in Chapter 4,
novel selection techniques are introduced, and a discussion about their implementation
in the commented contexts arises in Section 4.3. In particular, new covariates selection
approaches for the FCM are introduced in Chapters 5 and 6 using these methodologies.



Chapter 3
LASSO regression as a variable selector.

Performance under dependence structures
and different scales on covariates

In this chapter, we analyze the LASSO performance as variables selector under different
dependence frameworks where all covariates are in a unit scale. For this aim, an extensive
simulation study is performed. Its behavior is also compared with that of some adequate
derivatives and competitors. This analysis is carried out in Section 3.1. Complete Section
3.1 is collected in Freijeiro-González et al. (2022a). Next, in Section 3.2, there are considered
not only dependence structures but covariates with different scales as well. In this case,
we test how LASSO and its competitors perform in these contexts. Besides, we compare
the use of without or univariate standardizations for all contexts. Next, in Section 3.3,
the possibility of applying a first screening step for dimensionality reduction is analyzed,
considering different dependence coefficients. Eventually, we analyze the four real data
sets introduced in Section 2.5 of Chapter 2, considering all the proposed guidelines. This
analysis is developed in Section 3.4.

3.1 Problems of the LASSO regression under dependence structures

As commented in Section 2.2, the LASSO suffers from some limitations as a variable
selector. These are related to its biased nature, the great number of false discoveries, and
its difficulty in estimating a proper value of the regularization parameter λ in practice.
Furthermore, an additional limitation is the requirement of strict conditions in the model
design. These can not be always verified in practice, specifically when there exist strong
dependence patterns between covariates, resulting in possible collinearity effects. Related
to this last, Zou and Hastie (2005) proved that, when high dependence structures exit,
i.e. some covariates highly correlated, the LASSO algorithm tends to pick some of them
randomly and avoid the remaining ones. This selection could result in a loss of information
if these related terms are relevant or in a confusion phenomenon when there are strong
relations between important and noisy covariates. In practice, one expects to have some
class of dependence structure in the study data and face this issue. Some examples are the
real data sets introduced in Section 2.5. Consequently, it is of great interest to determine
how LASSO works under different dependence structures, whether any covariates selection
technique can prevent these drawbacks, and to what extent.

Thus, is LASSO the best option or at least a good starting point to identify the relevant
covariates? Although some studies like the one of Su et al. (2017) discuss this topic, one
can not find a totally convincing answer to this question for dependence scenarios. In
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order to shed light on this topic, the LASSO performance is tested under some different
and controlled dependence structures. Both are analyzed: the classic situation considering
n ≥ p and the high dimensional framework where p > n.

Furthermore, in view of the LASSO limitations, a global comparison with suitable
modifications and alternatives is developed. These competitors are introduced throughout
Sections 2.3 and 2.4. Hence, we test what procedures are capable of overcoming the LASSO
drawbacks in the proposed dependence contexts. For this comparison, we select different
approaches that have proved their efficiency in practice. Finally, some conclusions are
drawn based on the simulation results about what is the best possible option in terms of
the dependence nature of the data.

3.1.1 Simulation scenarios

In this section, we introduce different simulation scenarios to test the performance of
LASSO as a covariates selector under different dependence structures. Scenarios verifying
and not the consistency conditions mentioned in Section 2.2.2 are simulated, and their
results are compared with those of other procedures. For this purpose, we carry out a Monte
Carlo study taking M = 500 simulations. Three dependence scenarios are introduced,
simulating them under the linear regression model structure given by (1.2). Being S

the index set of relevant covariates with s = #S, β is considered as a sparse vector of
length p with only s < p values not equal zero, Xn ∈ Rn×p where n is the sample size
and ε ∈ Nn(0, σ2In). We fix p = 100 and chose σ2 by verifying that the percentage of
explained deviance is explicitly the 90%. Calculation of this parameter is collected in
Section A.1 of the Appendix A. To guarantee an optimal LASSO performance, it is needed
n > 4.61s as seen in (2.8), inf |βj | > 2.15

√
s/n for j ∈ S as in (2.7) and to take λ of order

2.15σ
√

1/n. We test its behavior considering different combinations of parameter values,
taking n = 25, 50, 100, 200, 400 and s = 10, 15, 20. A study of when these conditions hold
is shown in Section A.2 of the Appendix A. In every simulation, the number of covariates
correctly selected (|Ŝ ∩S|) and the noisy ones (|Ŝ \S|) are counted. Besides, the prediction
power of the algorithm is measured using the mean squared error (MSE) and the percentage
of explained deviance %Dev = (RSS−RSS0)/(RSS0), being RSS = ∑n

i=1(yi− β̂Xi)2 the
residual sum of squares of the model and RSS0 = ∑n

i=1 y
2
i . The MSE gives one an idea

about the bias produced by the LASSO (see Section 2.2.1).

• Scenario 1 (Orthogonal design). Only the first s values are not equal zero for βj with
j = 1, . . . , s and p > s > 0, β1 = · · · = βs = 1.25, while βj = 0 for all j = s+ 1, . . . , p.
X is simulated as a Nn(0, Ip).

• Scenario 2 (Dependence by blocks). The vector β has the first s < p components
not null, of the form β1 = · · · = βs = 1 and βj = 0 for the rest. X is simulated as
a Nn(0,Σ), where σjj = 1 and σjk = cov(Xj , Xk) = 0 for all pairs (j, k) except if
mod10(j) = mod10(k), in that case σjk = ρ, taking ρ = 0.5, 0.9.

• Scenario 3 (Toeplitz covariance). Again, only s (p > s > 0) covariates are important,
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simulating X as a Nn(0,Σ) and assuming βj = 0.5 in the places where β ̸= 0. In this
case, σjk = ρ|j−k| for j, k = 1, . . . , p and ρ = 0.5, 0.9. Now, we analyze two different
dependence structures varying the location of the s relevant covariates:

– Scenario 3.a: we assume that the relevant covariates are the first s = 15.

– Scenario 3.b: consider s = 10 relevant variables placed every 10 sites, which
means that only the β1, β11, β21, . . . , β91 terms of β are not null.

The first choice, the orthogonal design of Scenario 1, is selected as the best possible
framework. This scenario verifies the consistency conditions for values of n large enough
and avoids the confusion phenomenon, given that there are no correlated covariates.

In contrast, to assess how the LASSO behaves in the case of different dependence
structures, Scenario 2 and Scenario 3 are proposed. In the dependence by blocks context
(Scenario 2), the design is forced to have a dependence structure where the covariates are
correlated ten by ten. As a result, a more challenging scenario for the LASSO is induced,
in which the algorithm has to overcome a fuzzy signal produced by irrelevant covariates.
Different magnitudes of dependence are considered in Scenario 2 with ρ = 0.5 and ρ = 0.9
to test the effect of the confusion phenomenon. As a result, different sizes of n are needed
in terms of s to guarantee the proper behavior of the LASSO. This scenario has already
been studied in other works, like in Meinshausen and Bühlmann (2010).

Eventually, we test the LASSO performance in a scenario where all the covariates are
correlated: the Toeplitz covariance structure (Scenario 3). This scenario mimics a type
of functional dependence pattern. This setting is an example where the irrepresentable
condition holds (see Bühlmann and Van De Geer (2011)), but the algorithm suffers from
highly correlated relations between the actual set of covariates and unimportant ones.
The LASSO has been employed previously to study this framework. See, for example,
Meinshausen and Bühlmann (2010) or Bühlmann and Van De Geer (2011). Because
the distance between covariates is relevant to establish their dependence, two different
frameworks are studied. In the first scenario (Scenario 3.a), the important covariates are
highly correlated among them and little with the rest. Particularly, there are only notable
confusing correlations in the case of the last variables of S = {1, . . . , 15} with their noisy
neighbors. Here, the LASSO can only recover S in the n = 400 case. In contrast, in
Scenario 3.b, the important covariates are markedly correlated with unimportant ones, so
this location magnifies the spurious correlations phenomenon. For this scenario, a sample
size of n = 200, 400 is necessary.

3.1.2 Performance of the LASSO in practice under dependence

In order to test the inconveniences of the LASSO when there exists dependence among
covariates, a complete simulation study is carried out. For this purpose, the simulation
scenarios introduced above in Section 3.1.1 are employed. Here, a summary of the results is
shown, and the behavior of LASSO in the three proposed frameworks is analyzed. Complete
results are collected in Section A.6 of the Appendix A.
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The performance of the standard LASSO is tested using the library glmnet (Friedman
et al. (2010)) implemented in R (R Core Team (2019)). This algorithm uses K-fold cross-
validation (CV) to select the λ parameter that minimizes the MSE, λmin. This procedure
is denoted by LASSO.min. See Friedman et al. (2010) for more details. As explained
in Section 2.2.4, this is one of the most popular ways of estimating λ. To be capable of
comparing different models and following recommendations of the existing literature, we
fix K = 10 for all simulations. Besides, the response Yn is centered, and the matrix Xn is
standardized by columns. This last would not be really necessary for these frameworks
because the covariates are all on the same scale. However, this last is done to keep the
usual implementation of LASSO-type algorithms in practice. A two-step LASSO-OLS
version to adjust the model is applied (see Belloni and Chernozhukov (2013)). This scheme
is also followed for the rest of the procedures. The grid of values for the tuning parameter is
taken of length 100 and is calculated based on the sample data and methodology employed,
following the author’s recommendation. More details are given in Section A.3 of the
Appendix A.

There are other faster algorithms available in R, such as the famous LARS procedure
(Efron et al. (2004), Hastie and Efron (2013)). However, the decision of making use of the
glmnet library is due to its easy implementation and interpretation, jointly with its simple
adaptation to other derivatives of the LASSO that are tested in this study later.

In the orthogonal design of Scenario 1, one would expect the LASSO to recover the
whole set of important covariates and not add too much noise into the model for a large
enough value of n. However, different results have been observed.
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Figure 3.1: Number of important covariates (dark area) and noisy ones (soft area) selected
by the LASSO.min in Scenario 1. The dashed line marks the s value.

Firstly, one can appreciate that it does not really matter the number of relevant
covariates considered (s = 10, 15, 20) in relation to the capability of recovering this set.
It is because the algorithm only includes the complete set under the n ≥ p framework
except for the s = 10 scenario taking n = 50. See this fact in Figure 3.1. This can be easily
explained in terms of the consistency requirements given in (2.8). Besides, although we are
under orthogonal design assumption, this includes a lot of noisy variables in the model.
What is shocking is the fact that the number of irrelevant covariates selected is always
larger than the important ones. This exemplifies the existing trade-off between FDP and
TPP introduced in (2.9) as well as that both quantities can not be simultaneously low.
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s = 10 s = 15 s = 20

MSE (1.736) % Dev MSE (2.604) % Dev MSE (3.472) % Dev
n = 50 0.169 0.990 0.579 0.973 1.747 0.944
n = 100 0.702 0.959 0.841 0.967 0.914 0.973
n = 200 1.164 0.932 1.628 0.936 2.060 0.940

Table 3.1: Summary of the LASSO.min results for Scenario 1. The oracle value for the
deviance is 0.9 and those for the MSE are in brackets.

In the second place, one notices that this procedure clearly overestimates its results.
This obtains values for the MSE and percentage of explained deviance fewer and greater,
respectively, of the oracle ones (see values in brackets in Table 3.1). In conclusion, this toy
example, it is illustrated how the LASSO.min procedure performs very poorly and presents
important limitations even in an independence framework.

The overestimation of the set S is likely because a larger value of λ is necessary for
proper covariates selection. In Section A.3.2 of the Appendix A, some values greater than
λmin are chosen and tested. These outperform the LASSO.min performance regarding the
recovery of S and avoid irrelevant information. Nevertheless, some guidance criterion is
needed to select a penalization value in practice. Friedman et al. (2010) proposed the
alternative of estimating the mean cross-validated error for every value of the λ grid and
taking λ1se. This value is the largest value of λ verifying that its error is within 1 standard
error of the minimum (λmin). Complete results of LASSO using λ1se (LASSO.1se) are
collected in Section A.6 of the Appendix A. Given the results, one can appreciate that this
selection of the penalization term makes sense and improves the LASSO.min performance.

The inclusion of too many noisy covariates could also be due to the selection criterion.
Cross-validation searches for the λ value minimizing the mean squared error, which is
helpful for estimation of Xβ but can fail for covariates selection. As mentioned in Section
2.2.4, the optimal value of λ changes according to one or the other objective. Thus, different
techniques as a criterion based on information theory may achieve a better performance
recovering S. To fill this gap, we carry out a comparison with the Bayesian information
criterion (BIC). This methodology is denoted by LASSO.BIC. A summary of its results
is displayed in Figure A.6 and Table A.2. See the complete results and details bout its
implementation in Section A.3.3 of the Appendix A.

It is possible to appreciate as the BIC criterion helps to reduce the inclusion of noisy
covariates for n > p. Besides, this approach corrects a bit of the overestimation in this
framework, although this is not removed. In contrast, its performance is pretty bad for
p ≥ n. The BIC criterion strongly overfits the results in the last cases: this adds more noise
to the model and produces more overestimation than the LASSO.min. See an analysis of
this topic in Giraud et al. (2012) for more details.

Next, the results of the dependence by blocks context are analyzed. In the case of
dependence, one expects a “smart” algorithm to be capable of selecting a portion of relevant
covariates and explaining the remaining ones using the existing correlation structure. The
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Figure 3.2: Number of important covariates (dark area) and noisy ones (soft area) selected
by the LASSO.BIC in Scenario 1. The dashed line marks the s value.

s = 10 s = 15 s = 20

MSE (1.736) % Dev MSE (2.604) % Dev MSE (3.472) % Dev
n = 50 0.001 1 0.001 1 0.001 1
n = 100 0.014 0.999 0.011 1 0.005 1
n = 200 1.544 0.910 2.272 0.911 2.950 0.913

Table 3.2: Summary of the LASSO.BIC results for Scenario 1. The oracle value for the
deviance is 0.9 and those for the MSE are in brackets.

subset of S that is really necessary to explain this type of model is denoted as “effective
covariates” and is unknown in practice. An idea to calculate this is to measure how
many terms are necessary to explain a certain percentage of ΣS variability, being ΣS the
submatrix of Σ considering the elements of S. This number is inversely proportional to
the dependence strength. For example, to explain the 90− 95% of variability in Scenario
2 with ρ = 0.5, we need about 12 − 14 covariates taking s = 15 and about 16 − 18 for
the case of s = 20. Conversely, only 10 terms are necessary for Scenario 2 with ρ = 0.9.
The complete calculation for the different combinations of parameters in the simulated
scenarios is displayed in Section A.5 of the Appendix A. Again, the LASSO.min presents
some difficulties for an efficient recovery in the dependence by blocks context.
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Figure 3.3: Number of important covariates (dark area) and noisy ones (soft area) selected
by the LASSO.min in Scenario 2 with ρ = 0.5. The dashed line marks the s value.

A summary of the results for the Scenario 2 with ρ = 0.5 is displayed in Table 3.3 and
Figure 3.3, while for the Scenario 2 with ρ = 0.9 is shown in Table 3.4 and Figure 3.4. If
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s = 10 s = 15 s = 20

MSE (0.556) % Dev MSE (1.389) % Dev MSE (2.222) % Dev
n = 50 0.438 0.956 1.095 0.956 1.752 0.956
n = 100 0.495 0.951 1.238 0.951 1.981 0.951
n = 200 0.523 0.951 1.307 0.950 2.091 0.951

Table 3.3: Summary of the LASSO.min results for Scenario 2 with ρ = 0.5. The oracle
value for the deviance is 0.9 and those for the MSE are in brackets.

only s = 10 relevant explanatory variables are considered, its behavior is quite similar to
the one in Scenario 1. Besides, in both scenarios with s = 10, LASSO.min almost recovers
the complete set S, even for n = 25, although its proper recovery is guaranteed from
n = 50. However, more noise is included in this scenario as expected.
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Figure 3.4: Number of important covariates (dark area) and noisy ones (soft area) selected
by the LASSO.min in Scenario 2 with ρ = 0.9. The dashed line marks the s value.

s = 10 s = 15 s = 20

MSE (1) % Dev MSE (2.5) % Dev MSE (4) % Dev
n = 50 0.784 0.926 1.96 0.925 3.137 0.926
n = 100 0.888 0.918 2.22 0.918 3.551 0.918
n = 200 0.939 0.913 2.347 0.913 3.756 0.913

Table 3.4: Summary of the LASSO.min results for Scenario 2 with ρ = 0.9. The oracle
value for the deviance is 0.9 and those for the MSE are in brackets.

In contrast, the situation is different if we simulate with s = 15 or s = 20 relevant
covariates. Then, the LASSO.min does not tend to recover all the covariates of S, not
even for values of n verifying n ≥ p as well as conditions (2.8) and (2.7). See Section A.2
of the Appendix A for more information. However, this selects more than the effective
number of covariates. It seems the LASSO.min tries to recover the set S but, due to the
presence of spurious correlations, this randomly chooses between two highly correlated
and important covariates. We can appreciate in Tables A.35 and A.36 in Section A.7.1
of the Appendix A that the 10 first covariates are selected with high probability, near 1.
However, due to the confusion phenomenon, some of these are interchanged by a different



72 CHAPTER 3. DEPENDENCE AND SCALE EFFECTS ON LASSO

representative term. The following s− 10 relevant variables have a lower selection rate,
and some irrelevant ones are selected a higher number of times, adding quite a noise to
the model. This inconvenience seems not to be overcome by increasing the number of
samples n. Again, we can see by the percentage of explained deviance and the MSE as the
LASSO.min keeps overestimating its results.

We observe a similar behavior selecting the λ value greater than λmin (see LASSO.1se)
and using the BIC criterion, although this last tends to add more noise. Furthermore,
for p ≥ n, the LASSO.BIC can not deal with the dependence structure, selecting fewer
than s covariates in some cases and overestimating the prediction results. In contrast, the
LASSO.1se does not improve the LASSO.min performance in this scenario. We observe
the same phenomenon for greater values than λ1se. See Section A.3.2 of the Appendix A.
Results for the LASSO.BIC and LASSO.1se algorithms are collected in Sections A.3.3 and
Section A.6 of the Appendix A, respectively.
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Figure 3.5: Number of important covariates (dark area) and noisy ones (soft area) selected
by the LASSO.min in Scenario 3.a. The dashed line marks the s = 15 value.

Scenario 3.a Scenario 3.b
ρ = 0.5 ρ = 0.9 ρ = 0.5 ρ = 0.9

MSE % Dev MSE % Dev MSE % Dev MSE % Dev
(1.139) (3.807) (0.278) (0.53)

n = 50 0.19 0.983 1.894 0.950 0.034 0.987 0.147 0.971
n = 100 0.546 0.951 2.815 0.928 0.123 0.955 0.309 0.94
n = 200 0.825 0.927 3.302 0.916 0.195 0.929 0.417 0.920

Table 3.5: Summary of the LASSO.min results for Scenario 3.a and Scenario 3.b. The
oracle value for the deviance is 0.9 and those for the MSE are in brackets.

Finally, the results of LASSO in the Toeplitz covariance structure framework are studied.
For this aim, there are considered Scenario 3.a, where the relevant covariates are the first
s = 15 (Table 3.5 and Figure 3.5), and the Scenario 3.b, where there are only s = 10
important variables placed every 10 sites (Table 3.5 and Figure 3.6).

Interpreting its results, one sees that the LASSO.min procedure recovers the important
set of covariates for ρ = 0.5, taking a value of n = 100, 200, 400. Nevertheless, the
LASSO.min exceeds the number of efficient covariates selected in Scenario 3.a for ρ = 0.9,
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Figure 3.6: Number of important covariates (dark area) and noisy ones (soft area) selected
by the LASSO.min in Scenario 3.b. The dashed line marks the s = 10 value.

because with just 10 covariates it is explained the 98% of variability. Moreover, this
algorithm returns to include many pointless covariates in the model and overestimates the
prediction accuracy.

The LASSO.1se behavior is quite similar to the LASSO.min, although the LASSO.1se
reduces the noise and corrects the overestimation a bit. Taking larger values than λ1se, the
performance of the LASSO is even better. However, it seems quite difficult to establish a
common rule for the optimal λ selection in the different frameworks of Scenarios 3.a and
3.b. Specifically, Scenario 3.b with ρ = 0.9 seems to need a larger value than the remaining
ones. See Section A.3.2 of the Appendix A for a graphical comparison.

In contrast, the BIC adjustment selects fewer covariates, tending #Ŝ = s as n increases,
except in Scenario 3.b with ρ = 0.9. For Scenario 3.a, this selection procedure tends to
recover S for a large enough value of n, avoiding irrelevant information. Nevertheless,
something different happens for Scenario 3.b. In this last, the algorithm interchanges
relevant covariates with irrelevant ones quite correlated with the ones of S. Despite
this, the algorithm includes with high probability representatives of the s = 10 relevant
covariates, especially for ρ = 0.9, capturing the essential information. This can be
appreciated in Section A.7.2 of the Appendix A. Moreover, this procedure corrects a bit
of the overestimation of the CV technique. Results are collected in the Appendix A: in
figures in Sections A.3.3 and A.7.2, and Table A.5 in Section A.3.3.

3.1.3 Comparison with competitors

In Sections 2.3 and 2.4 of Chapter 2, an extensive list of adaptations and competitors of
the LASSO is given. Nevertheless, not all these procedures are considered for the study.
A selection of the most relevant methodologies in terms of good qualities and reasonable
computational time has been made. Because of the nature of the simulation scenarios of
Section 3.1.1, some procedures have been discarded due to their unsuitable characteristics.

Owing to the computational cost required by the resampling LASSO procedures, such
as the boLASSO of Bach (2008) or the random LASSO algorithm (Wang et al. (2011)),
these procedures are too slow. Even for small values of p, computational time was high.
For this reason, these are excluded from the comparative analysis studio. The LASSO-Zero



74 CHAPTER 3. DEPENDENCE AND SCALE EFFECTS ON LASSO

technique of Descloux and Sardy (2021) suffers from the same issue, so this is excluded too.
Another problem springs up for the thresholded versions of the LASSO. In this case,

the complexity of finding a correct threshold is similar to that of obtaining the optimal
value of λ for the LASSO adjustment. In both cases, it would be necessary to know the
dispersion of the error σ in advance, which is unknown in practice and can be difficult to
estimate, especially when p > n. Then, procedures like the thresholded LASSO algorithm
of Lounici (2008) are excluded to avoid more complications in the adjustment.

A method in the middle of both groups is the stability selection procedure proposed by
Meinshausen and Bühlmann (2010). This methodology pays attention to the probability
of each covariate being selected. Only the covariates with probability greater than a fixed
threshold q ∈ (0, 1) are added to the final model. Although the authors recommend taking
q ∈ (0.6, 0.9), we have observed in practice that a proper choice of the threshold value
seems to depend on the sample size considered, n, as well as the sparsity of the vector β.
Besides, an extra tuning parameter is needed: the bound for the expected number of false
positives. See Dezeure et al. (2015) for more practical details. For all these reasons, this
approach is not included in the comparison either.

In addition, methodologies with available code in R (R Core Team (2019)) are chosen,
so everyone can make use of them. Thus, there have been chosen libraries that provide one
with enough resources to fit the models, selecting those created by the author’s methodology
or the most recently updated option in case of doubt. This selection is:

LASSO: glmnet of Friedman et al. (2010), last update November 27, 2022.

SCAD: ncvreg of Breheny and Huang (2011), last update October 13, 2022.

AdapL: glmnet of Friedman et al. (2010), last update November 27, 2022.

Dant: flare of Li et al. (2019), last update October 13, 2022.

RelaxL: relaxo of Meinshausen (2012), last update May 23, 2022.

SqrtL: flare of Li et al. (2019), last update October 13, 2022.

ScalL: scalreg of Sun (2019), last update October 14, 2022.

Distance correlation algorithm for variable selection (DC.VS): fda.usc of
Febrero-Bande and Oviedo de la Fuente (2012), last update October 17, 2022.

Next, we display the results of the simulation study, comparing the performance of
different procedures that have shown suitable properties.

The first framework to be studied is the easiest one: the orthogonal design (Scenario
1). In the case of simulating under independence between covariates, one can see that any
of the studied algorithms performs better than the LASSO.min. These obtain good results
searching for the s relevant covariates when p > n, and they seem to be able to recover the
set S for a large enough value of n (see Figure 3.7). Besides, all of them add less noise to
the model and do not overestimate the prediction results too much, as the LASSO.min
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does. See Table 3.6 for a brief comparison. Nevertheless, only the AdapL.1se algorithm
recovers the complete set S without including any noise in the model for a large enough
value of n. This last procedure performs incredibly well in this setting. The performance of
the LASSO.BIC and RelaxL are also remarkable, although the first one only outperforms
the LASSO.min for values of n > p. The Dant achieves good results in terms of avoiding
noise too, however, its convergence to the set S seems slower.
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Figure 3.7: Comparison of the important covariates number (dark area) and noisy ones
(soft area) for n = 400 in Scenario 1. The dashed line marks the s value.

Scenario |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev
(15) (2.604) (0.9)

LASSO.min 15 26.3 41.3 2.091 0.919
LASSO.1se 15 7.6 22.6 2.300 0.911
LASSO.BIC 15 1 16 2.443 0.905
AdapL.min 15 11.2 26.2 2.235 0.913
AdapL.1se 15 0 15 2.491 0.903

SCAD 15 2 17 2.425 0.906
Dant 14.6 0 14.6 2.976 0.885

RelaxL 15 0.3 15.3 2.478 0.904
SqrtL 15 2.6 17.6 2.403 0.907
ScalL 15 3.9 18.9 2.371 0.908

DC.VS 15 1.8 16.8 2.421 0.906

Table 3.6: Comparison of all proposed algorithms for Scenario 1 taking n = 400 and s = 15.
The oracle values are in brackets.

Once we have seen that the proposed alternatives to the LASSO.min improve the
results when there is no correlation structure between covariates, it is interesting to test
their performance under dependence. The first considered model is the dependence by
blocks context (Scenario 2), simulating a correlation structure of value ρ every ten places.
In Section 3.1.2, we saw that the LASSO.min does not select a representative subset of S
formed by a bunch of efficient covariates as expected. Instead, this procedure always tries
to recover the complete set, adding many noisy ones in the process, which translates into
overestimation. A comparative example of all algorithms performance in this scenario, for
s = 15 and n = 400, is displayed in Table 3.7 taking ρ = 0.5 (Scenario 2 with ρ = 0.5) and
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in Table 3.7 simulating with ρ = 0.9 (Scenario 2 with ρ = 0.9). Visual examples are shown
in Figure 3.8 and Figure 3.9, respectively.
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Figure 3.8: Comparison of the important covariates number (dark area) and noisy ones
(soft area) for n = 400 in Scenario 2 with ρ = 0.5. The dashed line marks the considered s
value while the continuous line where s = 10.

ρ = 0.5 ρ = 0.9

|Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev
(15) (1.389) (0.9) (15) (2.5) (0.9)

LASSO.min 14 31.6 45.6 1.346 0.949 14 31.7 45.7 2.42 0.912
LASSO.1se 13.8 32.1 45.9 1.346 0.949 13.7 31.6 45.2 2.420 0.912
LASSO.BIC 14.4 40.3 54.7 1.346 0.949 14.4 41.7 56.1 2.420 0.912
AdapL.min 10 0 10 1.346 0.949 10 0 10 2.423 0.912
AdapL.1se 10 0 10 1.346 0.949 9.9 0.1 10 2.423 0.912

SCAD 10.1 0 10.1 1.346 0.949 10.1 0 10.1 2.423 0.912
Dant 11.2 50.4 61.6 4.968 0.811 11.1 50.2 61.3 6.013 0.781

RelaxL 3.7 8 11.7 1.377 0.947 4.5 7.2 11.7 2.438 0.911
SqrtL 15 85 100 1.346 0.949 15 84.9 100 2.42 0.912
ScalL 3.4 7.1 10.4 1.374 0.948 4 6.5 10.4 2.567 0.906

DC.VS 3.4 6.6 10 1.346 0.949 3.8 6.2 10 2.423 0.912

Table 3.7: Comparison of all proposed algorithms for Scenario 2 with ρ = 0.5 and with
ρ = 0.9 taking n = 400 and s = 15. The oracle values are in brackets.

The LASSO.1se, LASSO.BIC, Dant algorithm, and SqrtL suffer from the same issue.
These algorithms are not capable of interpreting the data structure. As a result, these
tend to select almost the p covariates in some cases. Here, Dant mimics the performance
of the LASSO.min when there is an equal correlation between the relevant covariates and
noisy ones. Examples are the s = 15 and s = 20 frameworks. In these situations, this
algorithm recovers 10 out of the s relevant variables, but then, this is unable to distinguish
between the rest of the relevant covariates and noise. It is due to the dependence by blocks
structure. Relevant covariates already selected by the model have an equal correlation
with the rest of the relevant ones, as with noisy covariates placed every ten locations.

In contrast, the rest of the alternatives seem to perform better, trying to select a
representative subset of length 10 approximately. However, not all the remaining procedures
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Figure 3.9: Comparison of the important covariates number (dark area) and noisy ones
(soft area) for n = 400 in Scenario 2 with ρ = 0.9. The dashed line marks the considered s
value while the continuous line where s = 10.

select a representative subset between the s relevant variables. Instead, the majority change
relevant covariates for noisy ones strongly correlated with the previous ones, covering the
complete set S. In a word, if a procedure chooses a noise covariate, it is expected this
last to be a representative of some relevant one not included in the model yet to achieve a
good explanation of the data. We can see proof of this phenomenon for RelaxL, ScalL,
and DC.VS in Section A.6.1 of the Appendix A. Only the AdapL.min, AdapL.1se, and
the SCAD algorithms seem to behave properly in this sense, recovering 10 elements of
the set S. All these methodologies correct a bit of the overestimation produced by the
LASSO.min algorithm.
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Figure 3.10: Comparison of the important covariates number (dark area) and noisy ones
(soft area) for n = 400 in Scenario 3.a. The dashed line marks the s value.

Finally, the Toeplitz covariance structure of Scenario 3 is analyzed. It is considered
a first scenario, where the relevant covariates are located in the first s = 15 placements
(Scenario 3.a), and a second one, where there are simulated only s = 10 important variables
and they are placed every ten sites (Scenario 3.b). Hence, one expects Scenario 3.a to
obtain a representative subset of the set S, with cardinal less than s as it was explained in
Section 3.1.2. Especially, when the correlation between covariates is strong, as for ρ = 0.9.
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It is because one has, in this scenario, several relevant covariates with a representative
correlation between them. Roughly speaking, because of the Toeplitz covariance structure,
one variable could be “easily” explained by others in its neighborhood. This translates
into the possibility of interchanging the last variables of S with nearby ones. Then, for
ρ = 0.5, because 0.55 ≤ 0.05, one considers as good representatives those covariates whose
distance is less than 4 to some position of the terms in S. When ρ = 0.9, this distance
enlarges, and there are many more possibilities. In contrast, simulating Scenario 3.b, one
would expect the algorithm to select all the 10 relevant covariates in the best case or a
representative subset following this criteria.

ρ = 0.5 ρ = 0.9

|Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev
(15) (1.139) (0.9) (15) (3.807) (0.9)

LASSO.min 15 14.4 29.4 0.972 0.914 14.1 5.8 19.9 3.620 0.908
LASSO.1se 15 1.5 16.5 1.063 0.906 13.9 0.4 14.3 3.762 0.905
LASSO.BIC 15 1 16 1.066 0.906 11.8 0.1 11.9 3.824 0.903
AdapL.min 15 9 24 0.995 0.912 11 5.3 16.3 3.593 0.909
AdapL.1se 13.7 0 13.7 1.195 0.894 4 0 4 4.543 0.885

SCAD 15 6.1 21.1 1.016 0.910 9.1 7 16 3.658 0.907
Dant 12.8 0 12.8 1.443 0.873 6.6 0 6.6 4.92 0.875

RelaxL 15 0.6 15.6 1.078 0.905 13.6 1.6 15.2 3.728 0.906
SqrtL 15 2.4 17.4 1.053 0.907 14.1 1.8 15.9 3.717 0.906
ScalL 15 3.4 18.4 1.039 0.908 14.1 2 16.1 3.701 0.906

DC.VS 15 1.6 16.6 1.061 0.906 4.8 0.8 5.6 4.285 0.891

Table 3.8: Comparison of all proposed algorithms for Scenario 3.a taking n = 400 with
ρ = 0.5 and ρ = 0.9. The oracle values are in brackets.

For Scenario 3.a, it is appreciated in Figure 3.10 a similar phenomenon as the one
observed in Scenario 2. This translates into the existence of algorithms that try to recover
the complete set S, like the LASSO.min, the AdapL.min, the SCAD, the RelaxL, the
SqrtL, or the ScalL. One could also include the LASSO.1se, the LASSO.BIC and the
DC.VS to this list for the ρ = 0.5 case. The rest of the algorithms, the AdapL.1se, and
the Dant algorithm, always search for a representative subset without including noise. A
summary of their performance is displayed In Table 3.8. Taking ρ = 0.5, one appreciates
that the AdapL.1se and the Dant are the only procedures that select the number of efficient
covariates needed to explain, at least, the 90% of the covariance. A similar behavior could
be considered for the DC.VS, but this adds more noise and selects more than s = 15
covariates for ρ = 0.5. Section A.6.3 of the Appendix A displays the percentage of times
the relevant covariates are selected for these algorithms.

Studying the provided results for ρ = 0.9 (Table 3.8) one can claim that DC.VS achieves
the best results in terms of prediction when the correlation is large, but this pays the price
of including more irrelevant information than the AdapL.1se or the Dant. In contrast,
when ρ = 0.5, the selection of covariates made by the DC.VS results in an overestimation
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Figure 3.11: Comparison of the important covariates number (dark area) and noisy ones
(soft area) for n = 400 in Scenario 3.b. The dashed line marks the s value.

of the model. Finally, if the results of AdapL.1se and the Dant algorithms are compared,
it seems like the first one obtains a better trade-off between the selection of covariates
and estimation. For ρ = 0.9, the AdapL.1se selects fewer covariates of S but achieves a
better performance in terms of the explanation of the data. These three approaches select
fewer than s = 15 covariates for ρ = 0.9, but a number large enough to guarantee a good
explanation of the covariance. See Section A.5 of the Appendix A for more details.

At this point, it is interesting to notice that the Dant performs correctly in this
dependence context in contrast to the Scenario 2 framework. Now, this procedure can
recover a representative subset of S without adding noise to the model. This phenomenon
could be explained by considering that in Scenario 3.a there are not too many noisy
covariates highly correlated with the ones of S, especially for ρ = 0.5. Only those in the
neighborhood of the 15th could be a threat. However, in Scenario 2, there are covariates
correlated ten by ten, and every relevant covariate is correlated with 8 irrelevant ones at
least. Conversely, the SqrtL keeps misbehaving, and the SCAD algorithm starts to perform
poorly. This last result brings out the fact that the SCAD procedure suffers when all the
covariates are correlated among them. This happens when the important covariates are
close in location, as in the case of Scenario 3.a. However, the algorithm performs better
when these covariates are more scattered, like in Scenario 3.b.

Next, we compare results obtained for Scenario 3.b. An example is displayed in Figure
3.11, and the rest of the results are provided in Appendix A. Simulating for ρ = 0.5, we
observe that all the proposed algorithms outperform the LASSO.min results. At first
sight, it may seem that the LASSO.BIC does not perform properly, however, this selects
a representative subset of S but changes relevant covariates for correlated ones. The
remained procedures try to recover the complete set S as expected, considering that the
number of efficient covariates is 10 now. Nevertheless, when ρ = 0.9, some drawbacks come
up. Some of them interchange relevant covariates with irrelevant ones quite correlated
with these. This results from the strong correlation structure of the Toeplitz covariance.
These are the LASSO.BIC, the SCAD, and the DC.VS algorithms. Maybe, we can include
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in this last group the Dant, although this is doubtful. Section A.6.2 of the Appendix A
collects the percentage of times a representative of the 10 relevant covariates enters the
model. Other procedures, like the RelaxL, the SqrtL, or the ScalL add unnecessary noise,
overestimating the model. Even the LASSO.BIC could be included in this list. Only one
algorithm is almost capable of recovering the s variables without adding more noise to the
model, this is the AdapL.1se algorithm. All the alternatives correct the overestimation in
the prediction made by the LASSO.min though.

Eventually, it is important to highlight that computational time varies from one
methodology to another. This is because of the way these are implemented and their
nature. Some of them have the cross-validation scheme integrated into the employed R
library considered. For example, the famous library glmnet (Friedman et al. (2010)) has
implemented an optimal cross-validation algorithm in Fortran code, which improves the
computational cost of the R language. This results in a quite competitive computational
time for the LASSO and AdapL adjustments. The library ncvreg (Breheny and Huang
(2011)) for the SCAD has utilities for carrying out cross-validation also. In contrast, other
methods have not got implemented this scheme as for the flare library used for the Dant
and the SqrtL. In this case, it is needed to program the cross-validation scheme, resulting
in higher computational costs. Besides, the SqrtL pays the price of higher computational
time required to be able to select an optimal λ without knowing σ. As a result, SqrtL
is the slowest algorithm of the study. Another distinct procedure, the ScalL, is fitted
by employing an iterative algorithm rather than a cross-validation process. Then, its
computational time depends on convergence criteria. Last, the DC.VS of Febrero-Bande
et al. (2019) has a different nature to the previous ones. This applies a special forward
selection scheme recalculating the distance matrices between samples on every step to
obtain the correlation distance coefficients (Székely et al. (2007), Szekely and Rizzo (2017)),
increasing its computational time in terms of n. A merely illustrative comparison of the
computational time of our implementations is collected in Section A.4 of Appendix A, as
this comparison is not totally fair for the given reasons.

3.1.4 Discussion: some guidance about LASSO under dependence

Currently, the LASSO regression keeps being a broadly employed covariates selection
technique. Despite its several advantages, some strict requirements could make difficult a
correct performance of this methodology, as was explained in Section 2.2. As we argued at
the beginning of this chapter, there are no global recommendations about the LASSO use in
terms of the nature of the data under dependence or when some of these conditions do not
hold. The LASSO drawbacks have been analyzed (Section 2.2). In addition, modifications
(Section 2.3) as well as alternatives (Section 2.4) able to overcome these have been studied
to shed light on this topic. Besides, we implement an extensive simulation study throughout
this chapter. This study illustrates the behavior of the LASSO in the best possible scenario
and trickier ones carefully chosen (Sections 3.1.1 and 3.1.2). Besides, we compare its
behavior with recent modifications and alternatives (Section 3.1.3). In view of the results,
some guidance on how to choose a proper covariates selector according to the nature of the
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data is given. Results are summarized in Table 3.9.

Orthogonal
design

Dependence by
blocks

Toeplitz covariance

3.a 3.b

AdapL.1se
Dant
RelaxL
DC.VS

AdapL.min
AdapL.1se
SCAD

AdapL.1se
Dant
DC.VS

AdapL.1se

LASSO.1se, LASSO.BIC,
AdapL.min, SCAD, SqrtL, ScalL

RelaxL, ScalL,
DC.VS

LASSO.1se,
LASSO.BIC

SCAD, Dant,
DC.VS

Table 3.9: Most competent procedures in terms of the considered simulation scenarios.
Under the dashed line other studied techniques that improve the LASSO.min performance
in practice are shown.

One sees that, even in scenarios with no dependence, the LASSO procedure performs
poorly regarding recovery of the relevant covariates and avoiding noisy ones. This procedure
adds more noise than relevant covariates to the model when λ is selected by cross-validation
techniques minimizing a prediction criterion, like the LASSO.min or LASSO.1se (see
Section 3.1.2). Nevertheless, this recovers the complete set S, paying the price of noise
addition. As a result, this selection of covariates overestimates the prediction errors. This
phenomenon is also appreciated for the BIC version (LASSO.BIC) when p > n, although
this improves the results for n ≥ p performing a good covariates selection for a large enough
value of n. These drawbacks can be overcome easily using other penalization techniques,
keeping the ideas of the L1 regularization, as the ones proposed in Section 3.1.3. All
these procedures improve the LASSO results in this independence context, decreasing the
number of selected noisy covariates and correcting the overestimation. We can highlight
the adaptive LASSO of Zou (2006) (AdapL.1se), the relaxed LASSO of Meinshausen
(2007) (RelaxL), the Dantzig selector of Candes and Tao (2007) (Dant) and the distance
correlation algorithm of Febrero-Bande et al. (2019) (DC.VS) as the best of the proposed
algorithms for this framework. They can recover the complete set S, adding little noise for
a great enough value of n. Besides, they correct the prediction errors.

These disadvantages of the LASSO are also transferred to dependence structures. The
confusion phenomenon appears in these situations involving an increment of false discoveries
and overestimation. Here, not all the proposed methods of Section 3.1.3 perform properly.
The selection of an efficient methodology depends on the nature of the correlation. To
test their adequacy, we consider different scenarios: simulating under a dependence by
blocks structure and a time series style structure. We found that a version of the adaptive
LASSO of Zou (2006) (AdapL.1se) and the distance correlation algorithm of Febrero-Bande
et al. (2019) (DC.VS) are the only procedures reasonably competent in all these scenarios
concerning different types of dependence.

The quality of some procedures’ performance varies accordingly to the type of correlation
structure of the data. Examples of this fact are the SCAD penalization of Fan (1997)
(SCAD) and the Dantzig selector of Candes and Tao (2007) (Dant). The first one achieves
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a good performance except for the case when there exist strong correlations between all the
relevant covariates. In contrast, the Dantzig selector performs properly in these scenarios.
However, this procedure is not capable of recovering the important covariates and avoiding
noise under a dependence structure by blocks.

The rest of the analyzed methods: relaxed LASSO (RelaxL), square-root LASSO
(SqrtL), and scaled LASSO (ScalL), present a deficient behavior when there exists some
class of dependence structure between the covariates. In the case of the dependence by
blocks, as in Scenario 2, the relaxed LASSO and the scaled LASSO mix relevant covariates
with unimportant ones even for ρ = 0.5, whereas the square-root LASSO does not take
advantage of the correlation structure. For the Toeplitz covariance scenario, all of them
mimic the LASSO behavior trying to recover the complete set S instead of making use of
the structure of the data to adjust the regression model correctly.

As mentioned in Section 3.1.1, in the different considered dependence structures, all
covariates are in the same scale. Analysis of the effect of different scales on the covariates,
combined with dependence structures, would be of interest. Consequently, the effect of the
covariates scales under dependence scenarios is analyzed next.

3.2 Problems of the LASSO regression facing covariates with different scales
under dependence

Along Section 3.1, some problems of the LASSO regression under different dependence
structures have been displayed. Nevertheless, the covariates were on a unit scale in all the
considered frameworks. In practice, it is usual to have dependence scenarios with covariates
in quite different ranges of values. Some real data examples verifying these conditions
are displayed in Section 2.5 of Chapter 2. As a result, it is interesting to know what one
can expect about the LASSO as a variable selector in this context. In particular, it is
interesting to determine if the scale effect of the covariates has a role in LASSO selection,
translating this, for example, in an increment of confusion phenomenon when there are
noisy covariates with higher scales than relevant ones.

To the best of our knowledge, no existing literature studies this topic in the LASSO
framework. As a result, we extend the analysis developed in Section 3.1, adding the
study of the scale effect of the covariates. For this purpose, we consider two cases: results
selecting covariates using the raw data (without standardization case) and employing the
classical LASSO approach standardizing these first in a univariate manner (univariate
standardization case). This last procedure is the usual way to proceed when applying the
LASSO, as mentioned in Section 3.1.2. Thus, for the univariate standardization case, it is
observed that the algorithm can draw the important terms better than the raw data when
there are covariates with different scales.

Hence, the LASSO performance is tested under controlled simulation scenarios with
different dependence structures and covariates scales. Besides, similar to Section 3.1, these
results are compared with suitable modifications and alternatives to the LASSO in new
simulation scenarios. In particular, the same procedures selected in Section 3.1.3 are
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employed. Eventually, some discussion arises about the obtained results.

3.2.1 Simulation scenarios

Here, we consider new versions of simulation scenarios for testing the standardization effect
in covariates selection. For this purpose, we simulate under distinct dependence structures
considering variables with varied scales. This study starts analyzing the performance
of without and univariate standardizations under independence between covariates with
different scales (Scenario 1). There are considered three different scenarios in this orthogonal
framework: all covariates are standardized (Scenario 1.a), only some relevant covariates are
not standardized (Scenario 1.b), and when some nonstandardized noisy ones are added as
well to the previous model (Scenario 1.c). Next, we move to dependence structures. In the
first place, we assume that all covariates have unit variance and that all of them are related
through a Toeplitz covariance matrix (Scenario 2). As the relevant covariates’ location
plays an important role, we consider two configurations: relevant covariates in the first
s = 15 locations (Scenario 2.a) and s = 10 important covariates spread every three places
(Scenario 2.b). Eventually, Scenario 2 is mixed with different scales. In particular, we
modify the structure of Scenario 2.b, considering the values of Scenario 1 for the covariates
scales. This procedure gives place to two new adaptations of Scenario 2.b: only important
covariates with different scales (Scenario 3.a) and the previous scenario changing the
variance of some noisy terms related to the important ones (Scenario 3.b). There have
been considered a total of p = 100 covariates and sample sizes of n = 25, 50, 100, 150, 300.
All these sample sizes verify the consistent condition of n > log(p)s ≈ 4.61s displayed
in (2.8) except for n = 25, being S the set of true relevant covariates and s = #S its
cardinal. Furthermore, β is generated guaranteeing that the signal recovery property of
infj∈S |βj |>

√
s log(p)/n displayed in (2.7) is always guaranteed for Scenario 1, but for

n = 25, and only taking n = 300 in Scenarios 2 and 3. The variance of the error term of
the model, σ2, is calculated to verify that the 90% of deviance can be explained at most
(see Section B.1 of the Appendix B). For this study, we carry out a total of M = 500 Monte
Carlo replicates. Similar to Section 3.1.1, the selection capability is tested by counting the
number of covariates corrected selected (|Ŝ∩S|) and the noisy ones picked (|Ŝ \S|) over the
total (Ŝ). Moreover, the prediction accuracy is measured by computing the mean square
error (MSE) and the percentage of explained deviance as %Dev = (RSS −RSS0)/RSS.

• Scenario 1 (Independence). Only the first s = 10 values are not equal zero for βj

with j = 1, . . . , s, β1 = · · · = βs = 1.25, while βj = 0 for all j = s + 1, . . . , p. X

is simulated as a Nn(0,Σp), where the covariance matrix Σ has different diagonal
structures:

– Scenario 1.a: all covariates in the same scale taking Σ = Ip.

– Scenario 1.b: only some relevant covariates are not standardized. Covariance
matrix is given by the structure diag(Σ1.b) = (0.5, 0.5, 1, 1, 3, 3, 10, 10, 25, 25; 1, p−s. . . , 1)
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– Scenario 1.c: keep the structure of Scenario 1.b and add different scales for the
next 12 noisy covariates (j = 11, . . . , 22). This translates into the diagonal co-
variance matrix diag(Σ1.c) =

((
diag(Σ1.b)j

)s

j=1
, 0.5,0.5,1.5,1.5,3,3,10,10,25,25,

50,50; 1, p−s−12. . . , 1
)
.

• Scenario 2 (Toeplitz covariance with unit scales). Again, only s (p > s > 0)
covariates are important. X is simulated as a Nn(0,Σ), and βj = 0.5 are assumed in
the places where β ̸= 0. In this case, σjk = ρ|j−k| for j, k = 1, . . . , p, and ρ = 0.5, 0.9.
Now, two different dependence structures varying the location of the s relevant
covariates are analyzed:

– Scenario 2.a: the relevant covariates are the first s = 15.
– Scenario 2.b: consider s = 10 relevant variables placed every 3 sites, which

means that only the β3, β6, β9, . . . , β30 terms of β are not null.

• Scenario 3 (Toeplitz covariance with different scales). Similar structure as Scenario
2.b but adding different covariates scales. It is taken Σ = DΣ2.bDt with ρ = 0.5, 0.9
and D a diagonal matrix given by diag(D) = (σ1, σ2, . . . , σp)t:

– Scenario 3.a: relevant covariates have variance equal to diag(Σ1.b). This means
σ2

3 = 0.5, σ2
6 = 0.5, σ2

9 = 1 . . . , σ2
30 = 25 and the rest equal one.

– Scenario 3.b: same as Scenario 3.a but adding noisy covariates with different
scales. In particular, it is defined σ2

2 = 0.5, σ2
5 = 0.5, σ2

8 = 1.5, σ2
11 = 1.5, σ2

14 =
3, σ2

17 = 3, σ2
20 = 10, σ2

23 = 10, σ2
26 = 25, σ2

29 = 25, σ2
32 = 50 and σ2

35 = 50.

Again, Scenario 1 is the easiest context concerning dependence structure and possible
confusion phenomena. Thus, one would expect an efficient algorithm to be able to detect
relevant covariates without adding too much noise, especially in Scenario 1.a. Moreover,
for Scenario 1.b and Scenario 1.c, a suitable algorithm is expected not to be influenced
by different scales, particularly in Scenario 1.c, where there are noisy covariates with
larger scales than important ones. In all these three scenarios, without and univariate
standardizations are applied, and their results are compared.

Next, a Topelitz covariance structure is simulated. In Scenario 2 (2.a and 2.b), all
covariates are assumed to have a unit scale. Two different configurations for relevant
covariates disposition are considered, as in Section 3.1.1, to have distinct confounding
effects. More details can be found in Section 3.1.1. Scenario 2.a has been introduced above
in Section 3.1.1, and Scenario 2.b is similar to Scenario 3.b of that section. Nevertheless,
we compare now if differences exist between the without and the univariate standardization
techniques when some class of dependence pattern arises.

Finally, more complexity is added to Scenario 2, resulting in a Toeplitz covariance
structure with different scales on covariates (Scenario 3). In this context, we consider
Scenario 2.b, but there are changes in the scale values of the relevant covariates (Scenario
3.a), as well as in some irrelevant terms pretty related to the first ones (Scenario 3.b).
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Thus, this is a dependence structure with covariates in different scales, mimicking a real
data problem. It is expected for an adequate procedure to be able to use the dependence
structure, especially for strong correlations (ρ = 0.9), and avoid irrelevant covariates even
though these are highly correlated with the important ones and have a larger scale.

Note that when assuming different scales for some covariates, we take amounts less
than and greater than unity for the scales associated with these terms. Also, we consider
important as well as irrelevant covariates in different scales. Furthermore, when some
of the scales of unimportant covariates are assumed to be different from the unit, some
greater values than those considered for the relevant ones are taken.

3.2.2 Performance of the LASSO in practice considering covariates with
different scales

In this section, we analyze the performance of LASSO methods for the different simulation
scenarios introduced above in Section 3.2.1. In this way, we test the effect of the covariates
scales under different dependence structures. Complete results are collected in Section B.3
in Appendix B.

The LASSO is implemented following the guidelines previously given in Section 3.1.2,
using the glmnet library of Friedman et al. (2010) and considering the LASSO.min,
LASSO.1se and LASSO.BIC variants. See Section 3.1.2 for more details.

Therefore, we begin testing the effect of standardization in the covariate selection
procedure when covariates are independent, considering a different configuration of the
scale values. Next, we move on to dependence scenarios.

First, we start studying the LASSO performance in Scenario 1.a, simulating under
the assumption of Σ = Ip. A summary of its results is collected in Figure 3.12 and Table
3.10. Complete results display in Tables B.4 and B.5 of Section B.3.1 of the Appendix
B. Due to the identity covariance structure, similar performance is expected for the two
types of considered standardization techniques (without and univariate). This fact is
verified since both standardizations select the same number of variables in all cases, as
appreciated in Figure 3.12. Nevertheless, this number exceeds the optimal value s = 10
always for all LASSO techniques, as was expected due to the obtained results of the
dependence study (Section 3.1). The three considered procedures (LASSO.min, LASSO.1se,
and LASSO.BIC) completely recover all relevant covariates for n ≥ 50, i.e. when consistent
conditions are verified. However, all add noisy covariates to the model in the process. In
contrast, for n = 25, the LASSO variations can not recover S and keep adding noise to the
model. LASSO.BIC is the methodology that obtains the best results about avoiding noisy
covariates for n > p, followed by the LASSO.1se and LASSO.min. Opposite, in scenarios
where p ≥ n, the LASSO.1se and LASSO.min outperform the LASSO.BIC results.

In terms of prediction, the three variants tend to overestimate the results. Table 3.10
displays an example. Here the value of the mean squared error (MSE) and the percentage
of explained deviance (% Dev) are smaller and higher than the oracle values, respectively.
In particular, the LASSO.min is the approach that overestimates most of the prediction
accuracy results when n > p. This phenomenon also occurs in the above study of Section



86 CHAPTER 3. DEPENDENCE AND SCALE EFFECTS ON LASSO

0

25

50

75

100

n=25 n=50 n=100 n=150 n=300

LASSO.min

0

25

50

75

100

n=25 n=50 n=100 n=150 n=300

LASSO.1se

0

25

50

75

100

n=25 n=50 n=100 n=150 n=300

LASSO.BIC

0

25

50

75

100

n=25 n=50 n=100 n=150 n=300

LASSO.min

0

25

50

75

100

n=25 n=50 n=100 n=150 n=300

LASSO.1se

0

25

50

75

100

n=25 n=50 n=100 n=150 n=300

LASSO.BIC

0

25

50

75

100

n=25 n=50 n=100 n=150 n=300

LASSO.min

0

25

50

75

100

n=25 n=50 n=100 n=150 n=300

LASSO.1se

0

25

50

75

100

n=25 n=50 n=100 n=150 n=300

LASSO.BIC

Figure 3.12: Number of important covariates (dark pink/blue area) and noisy ones (soft
pink/blue area) for p = 100 selected in terms of the without/univariate standardization in
Scenarios 1.a (the first row), 1.b (the second row) and 1.c (the third row). The dashed line
marks the s = 10 value.

3.1. In contrast, the worst results concerning overestimation in the p ≥ n framework are
the ones of the LASSO.BIC. The reader can see Tables B.4 and B.5 of Section B.3.1 of
the Appendix B for complete results. Given these results, under orthogonal design and
when all covariates are in the same scale, it seems similar to work under the without or
univariate standardization frameworks.

Scenario 1.a Scenario 1.b Scenario 1.c
WITHOUT UNIV. WITHOUT UNIV. WITHOUT UNIV.

METHOD MSE % Dev MSE % Dev MSE % Dev MSE % Dev MSE % Dev MSE % Dev
(1.736) (0.9) (1.736) (0.9) (13.715) (0.9) (13.715) (0.9) (13.715) (0.9) (13.715) (0.9)

LASSO.min 1.345 0.922 1.346 0.922 10.972 0.919 10.638 0.922 10.866 0.920 10.677 0.921
LASSO.1se 1.538 0.910 1.539 0.910 12.972 0.904 12.174 0.910 12.813 0.891 12.180 0.891
LASSO.BIC 1.616 0.906 1.616 0.906 12.671 0.907 12.739 0.906 12.729 0.906 12.722 0.906

Table 3.10: Results of LASSO.min, LASSO.1se and LASSO.BIC for p = 100 and n = 300
using different standardization techniques in Scenario 1. Oracle values are in brackets.

Secondly, we consider an independence framework where all covariates have a unit scale
but for s − 2 of the relevant ones (Scenario 1.b). A summary of the results displays in
Figure 3.12 and Table 3.10. Tables B.4 and B.5 of Section B.3.1 of the Appendix B collect
the complete results. Related to covariates selection in Scenario 1.b, it can be seen in
Figure 3.12 as both standardizations recover the same amount of relevant covariates for
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each n although the univariate version adds more noise in the process. This difference of
noise addition tends to vanish as the sample size increases and n > p is verified. The rate
of recovering the S set is similar to that of Scenario 1.a for each algorithm. Besides, the
change of scales in the relevant covariates helps the LASSO to select fewer noisy covariates,
especially in the without standardization case. This result can be explained considering
that the newly considered scales are higher than 1 for 8 out of 10 terms. Compared to the
noisy covariates, all in unitary scale, this fact endows the relevant covariates with more
importance. This fact reveals that the LASSO seems to be influenced by covariates scale
effects. Furthermore, if one studies the percentage of times each of the j = 1, . . . , p relevant
terms are included in the model for the without/univariate standardization taking n = 300
(see Figure B.1 in Section B.3.1 of the Appendix B), some small differences are appreciated
between LASSO.min, LASSO.1se and LASSO.BIC. One can see as LASSO.min selects
a greater percentage of times the covariates with the lowest scales (j = 1, 2, 3, 4, 5, 6),
followed by the LASSO.BIC and LASSO.1se. In all cases, we appreciate as covariates with
scales greater than the noisy terms are always selected, whereas those with smaller values
(j = 1, 2, 3, 4) are chosen a lower percentage of times. This brings out the fact that LASSO
techniques suffer from scale effects.

For prediction, similar to Scenario 1.a, one appreciates that the LASSO.min is the
procedure that overestimates the results most when n > p. This procedure always obtains
values for MSE and %Dev under and above, respectively, of the oracle quantities. This
fact happens no matter the type of standardization employed. In contrast, LASSO.1se and
LASSO.BIC correct this overestimation a bit, although they also obtain smaller and greater
values than oracle ones for MSE and %Dev. However, for the p ≥ n case, LASSO.BIC
again produces the largest overestimation.

Next, more complexity is added. In Scenario 1.c, the scales of relevant covariates
introduced in Scenario 1.b are held, and there are set 12 extra noisy terms with different
scales as well. One can check the details in Section 3.2.1. Besides, the diagonal covariance
matrix structure is maintained, which results in independence between covariates. Results
for Scenario 1.c related to estimation are displayed in Table 3.10, taking n = 300, and
those collecting the number of selected covariates in Figure 3.12. Full results are displayed
in Tables B.4 and B.5 in Section B.3.1 of the Appendix B.

It is appreciated in Figure 3.12 as results for covariates selection are quite similar
between Scenario 1.b and Scenario 1.c. However, this last scenario adds a bit more noise
using without standardization. Thus, univariate standardization seems to protect against
false discoveries when there are noisy covariates with greater scales than those associated
with important terms. One also observes this consequence by paying attention to the
percentage of times that the first 22 covariates are selected. An example of these percentages
taking n = 300 is displayed in Figure B.2 in Section B.3.1 of the Appendix B.

In this framework, prediction results are similar to the ones of Scenario 1.b. Then,
similar conclusions are derived.

Summing up all the information, different scale effects are appreciated in the LASSO
performance. First, it seems that the LASSO is influenced by the presence of covariates
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in different scales, even in an orthogonal context. For example, the LASSO.BIC tends to
select those with the highest values, no matter if they are relevant or not. Secondly, it
depends on the type of effect, whether one or another standardization technique is more
suitable. The without standardization approach makes use of the covariates scales, reducing
the number of false negatives when only relevant terms have high scales. Nevertheless, the
without version adds more noise when relevant and noisy covariates have different scales.
In contrast, univariate standardization protects against this phenomenon.
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Figure 3.13: Number of important covariates (dark pink/blue area) and noisy ones (soft
pink/blue area) for p = 100 and ρ = 0.9 selected in terms of the without/univariate
standardization in Scenarios 2.a (the first row) and 2.b (the second row). The dashed line
marks the s = 15 and s = 10 value for the first and the second row, respectively.

Next, we test the scale effect in a dependence framework. For this purpose, we
employ the Toeplitz covariance dependence framework given in Scenario 2. Firstly, we
start considering that all covariates are in the same unitary scale to analyze how these
standardization procedures perform under this class dependence pattern. Two different
cases of dependence structures are considered: when relevant covariates are the first s = 15
(Scenario 2.a) and when there are only s = 10 and these are placed every three locations in
j = 3, . . . , 30 (Scenario 2.b). LASSO results are summarized in Figure 3.13 and Table 3.11
for scenarios 2.a and 2.b taking ρ = 0.9. Complete results are collected in Section B.3.2
of the Appendix B. As expected, we obtain similar results using without or univariate
standardization techniques in all cases, indistinctly. Thus, conclusions are similar to the
ones previously exposed in Section 3.1.2 for selection capability and prediction accuracy.

Eventually, we move to a challenging framework considering dependence and covariates
with different scales. For this purpose, Scenario 3 introduced above in Section 3.2.1 is
employed. This configuration is an extension of Scenario 2.b where relevant covariates
(Scenario 3.a) and relevant jointly with related unimportant ones (Scenario 3.b) have
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Scenario 2.a Scenario 2.b
WITHOUT UNIV. WITHOUT UNIV.

METHOD MSE % Dev MSE % Dev MSE % Dev MSE % Dev
(3.807) (0.9) (3.807) (0.9) (1.244) (0.9) (1.244) (0.9)

LASSO.min 3.525 0.910 3.526 0.910 1.096 0.911 1.098 0.911
LASSO.1se 3.715 0.905 3.715 0.905 1.154 0.906 1.154 0.906
LASSO.BIC 3.822 0.902 3.800 0.903 1.183 0.904 1.180 0.904

Table 3.11: Results of LASSO.min, LASSO.1se and LASSO.BIC for p = 100, n = 300
and ρ = 0.9 using different standardization techniques in Scenario 2. Oracle values are in
brackets.

different scales. In particular, these quantities are the scale values considered for Scenarios
1.b and 1.c, respectively. A summary of the obtained results for these scenarios is displayed
in Figure 3.14 for covariates selection and in Table 3.12 in terms of prediction. The
remaining results are displayed in Tables B.10-B.11 in Section B.3.3 of the Appendix B.

0

25

50

75

100

n=25 n=50 n=100 n=150 n=300

LASSO.min

0

25

50

75

100

n=25 n=50 n=100 n=150 n=300

LASSO.1se

0

25

50

75

100

n=25 n=50 n=100 n=150 n=300

LASSO.BIC

0

25

50

75

100

n=25 n=50 n=100 n=150 n=300

LASSO.min

0

25

50

75

100

n=25 n=50 n=100 n=150 n=300

LASSO.1se

0

25

50

75

100

n=25 n=50 n=100 n=150 n=300

LASSO.BIC

Figure 3.14: Number of important covariates (dark pink/blue area) and noisy ones (soft
pink/blue area) for p = 100 and ρ = 0.9 selected in terms of the without/univariate
standardization in Scenarios 3.a (the first row) and 3.b (the second row). The dashed line
marks the s = 10 value.

Comparing Scenario 3.a and Scenario 3.b, displayed in Figure 3.14, it is appreciated
that the rate of recovery of the s relevant covariates is equal in all cases for ρ = 0.9.
Nevertheless, we observe more noise addition in the second scenario because of unimportant
covariates with high scales, especially for the without standardization approach. Although
the univariate standardization seems more “consistent” to scale effects, this adds more noise
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than the without approach. Furthermore, both techniques recover a quite similar number
of covariates of S. An explanation is that, as mentioned above, the without standardization
framework tends to select covariates with the highest scales. As a result, this selects the
terms that better explain the variability of the data and needs fewer covariates than the
univariate approach, which searches for efficiency. Besides, s− 2 of the relevant covariates
have scales greater than the unit, and hence, these are possible candidates to be selected
by this methodology. In contrast, if the large-scale variables were only the unimportant
ones, we would expect the without standardization methodology to not recover the S set.
Opposite, one expects the univariate standardization to correct this drawback, achieving
a better recovery. Similar behavior is observed, respectively, for scenarios 3.a and 3.b
taking ρ = 0.5, although, in this last case, the algorithms early recover the complete set
S. However, these add more noise to the model. See Figure B.15 in Section B.3.3 of
the Appendix B. In addition, when the dependence structure is not too strong, taking
ρ = 0.5, the LASSO variations can completely recover S. In contrast, when the dependence
is strong, as for the ρ = 0.9 case, these procedures can not detect the s relevant terms.
Instead, these algorithms interchange some of the s variables for noisy ones. The noisy
terms tend to be representative variables of the missing relevant covariates. Figure B.17
collected in Section B.3.3 of the Appendix B displays an example of their results. It is
important to notice that the effects of the covariates are more notable for the without
standardization case. This can be seen by paying attention to the percentage of times each
of the relevant covariates is selected. See Figure B.16 for Scenario 3.a and Figure B.17 for
Scenario 3.b in Section B.3.3 of the Appendix B. The considered procedures always select
the important covariates associated with high scales (j = 21, 24, 27, 30) with probability
one. In contrast, the algorithms select the covariates with the lowest scales a smaller
percentage of times, especially when dependence is strong, as in the ρ = 0.9 case.

Scenario 3.a Scenario 3.b
WITHOUT UNIV. WITHOUT UNIV.

METHOD MSE % Dev MSE % Dev MSE % Dev MSE % Dev
(7.818) (0.9) (7.818) (0.9) (7.818) (0.9) (7.818) (0.9)

LASSO.min 7.100 0.908 6.920 0.910 7.022 0.909 6.926 0.911
LASSO.1se 7.561 0.902 7.302 0.906 7.563 0.902 7.302 0.906
LASSO.BIC 7.643 0.901 7.527 0.903 7.546 0.903 7.526 0.903

Table 3.12: Results of LASSO.min, LASSO.1se and LASSO.BIC for p = 100, n = 300
and ρ = 0.9 using different standardization techniques in Scenario 3. Oracle values are in
brackets.

For prediction, the considered procedures keep overestimating the prediction results in
all cases and both considered scenarios (Table 3.12). This result is appreciated through
values of the MSE and %Dev fewer and higher, respectively, than oracle values. Again,
LASSO.BIC is the procedure that overestimates less for n > p, followed by LASSO.1se and
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LASSO.min. In these scenarios, there are not too many differences between the prediction
accuracy of the three procedures, no matter the type of standardization employed. In
contrast, for p ≥ n, things turn around, being the LASSO.BIC the worst option, and
LASSO.1se the best one.

Given the results for Scenarios 2 and 3, it is possible to conclude that the without
standardization approach could help to reduce the noise without sacrificing relevant
covariates. Nevertheless, this consideration must be taken cautiously, as the without
framework suffers from scale effects. This means that if the covariates with the highest
scales correspond to irrelevant ones, this could result in a confusion phenomenon. This
result is because the without standardization tend to select covariates with large scales
a percentage of times greater than the univariate case. On its own, the univariate
standardization is less sensitive to the scale values. In conclusion, it seems more suitable
to apply the univariate scheme when quite different scales are observed in practice.

3.2.3 Comparison with competitors

Next, we compare LASSO results with adaptations and competitors of this procedure. For
this purpose, simulation scenarios introduced in Section 3.2.1 are employed. Specifically,
a distinction between results for the p > n framework and those for the n > p context is
made. We simulate by taking n = 50, guaranteeing that p > n for the first case. Opposite,
n = 300 scenarios are considered for the n > p framework. These values satisfy the required
consistency conditions, as was argued in Section 3.2.1.

Context of p > n

Following the guidelines of Section 3.1.2, the performance of these algorithms under the
independence assumption, considering different scales for covariates, is tested first. Next,
scenarios with a different dependence structure are analyzed.

In particular, we consider Scenarios 1.b and 1.c in the first place. There are relevant,
jointly with noisy covariates, respectively, with different scales. Results taking n = 50
are displayed in Figure 3.15 and Table 3.13. Similar behavior of the studied procedures
is appreciated between both scenarios, although some more noise is added for LASSO or
ScalL algorithms for Scenario 1.c.

In terms of covariates selection, similar to the conclusions of Section 3.1, it is possible
to distinguish between two different types of algorithms based on their selection strategy:
the first group tries to recover the set S completely, whereas the second one tends to select
a representative subset of covariates making use of the data structure. The AdapL.min,
AdapL.1se, Dant, and DC.VS approaches belong to this second group, whereas the rest
of the procedures belong to the first class. The LASSO.min, and the LASSO.BIC are
the noisiest algorithms that attempt to recover all covariates of S in the model. These
select more irrelevant covariates than important ones. Only the AdapL.1se and Dant
methodologies avoid including noisy covariates. However, none of the procedures succeeds
in recovering S. Concerning the standardization effect, SCAD, Dant, RelaxL, SqrtL, and
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Figure 3.15: Number of important covariates (dark pink/blue area) and noisy ones (soft
pink/blue area) for proposed algorithms taking p = 100 and selected in terms of the
without/univariate standardization in Scenarios 1.b (the first row) and 1.c (the second
row) for n = 50. The dashed line marks the s = 10 value.

DC.VS do not seem to be affected by the type of standardization employed, obtaining the
same or quite similar results for both frameworks. This result holds when we move on to
dependence scenarios as well. In contrast, for the remaining procedures, using univariate
standardization seems to help recover a few more elements of S but pays the price of
adding more noise. Only for the ScalL happens the opposite. This procedure recovers
better the relevant covariates but adds more irrelevant terms using the raw data.

Moreover, as mentioned above, AdapL.1se, Dant, and DC.VS are the procedures that
select the less amount of covariates but the ones that avoid more noise. In particular, these
choose the relevant covariates with the highest scales a higher percentage of times than the
ones with a value for the standard deviation less or equal to one. This fact is illustrated in
Figure B.3, collected in Section B.3.1 of the Appendix B. This phenomenon also happens
for the n > p case (see Figure B.4 in Section B.3.1 of the Appendix B). This consequence
contrasts with observed results for the orthogonal scenario considering covariates with a
unitary scale (see results for Scenario 1 in Section 3.1.3). AdapL.1se, Dant, and DC.VS
perform well when all covariates are in the same scale, recovering the s relevant terms and
avoiding noise. However, things change when there are different scales between covariates.
These three procedures, AdapL.1se, Dant, and DC.VS, select fewer than s = 10 terms now.
Paying attention to the eigenvalues of covariance matrices for Scenarios 1.b and 1.c (see
Table B.1 in Section B.2 of the Appendix B), it is proved that this amount of elements is
not enough to explain the variability of the data correctly.

Besides, for Scenarios 1.b and 1.c, one can appreciate that all considered algorithms
overestimate the results obtaining less MSE and greater %Dev values than the oracle ones,
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Scenario 1.b Scenario 1.c
WITHOUT UNIV. WITHOUT UNIV.

METHOD MSE % Dev MSE % Dev MSE % Dev MSE % Dev
(13.715) (0.9) (13.715) (0.9) (13.715) (0.9) (13.715) (0.9)

LASSO.min 6.257 0.953 2.476 0.982 6.147 0.953 2.394 0.982
LASSO.1se 12.624 0.905 7.092 0.947 12.366 0.905 6.806 0.948
LASSO.BIC 2.468 0.983 0.024 1 1.860 0.987 0.022 1
AdapL.min 17.46 0.87 11.604 0.914 17.275 0.869 11.709 0.912
AdapL.1se 23.520 0.823 21.975 0.834 24.107 0.816 22.031 0.832

SCAD 5.892 0.956 5.892 0.956 6.181 0.952 6.181 0.952
Dant 30.202 0.775 30.202 0.775 30.584 0.769 30.584 0.769

RelaxL 9.298 0.929 9.789 0.925 9.250 0.929 9.849 0.924
SqrtL 9.789 0.925 9.789 0.925 13.856 0.891 13.856 0.891
ScalL 8.186 0.938 11.054 0.914 6.950 0.947 11.038 0.914

DC.VS 73.652 0.901 73.652 0.901 21.029 0.838 22.618 0.818

Table 3.13: Comparison of all proposed algorithms for p = 100 and n = 50 using different
standardization techniques in Scenarios 1.b and 1.c. Oracle values are in brackets.

except for AdapL.1se, Dant, and DC.VS. Results do not change too much for prediction in
terms of the employed standardization technique either.

Next, results for competitors in Scenario 2 are analyzed. In this case, a Toeplitz
dependence structure is assumed for a different disposition of the relevant terms: the first
15th locations (Scenario 2.a) or every 3 places, from 3 to 30 (Scenario 2.b). Results taking
ρ = 0.9 are summarized in Figure 3.16 and Table 3.14. Those for the ρ = 0.5 case are
collected in Figure B.10 and Table B.8 in Section B.3.2 of the Appendix B.

Again, as already noted in Section 3.1 for the Toeplitz scenario, some procedures
attempt to recover the whole set S, whereas others use the dependence structure and select
a representative subset for the p > n framework. This last is especially remarkable in the
ρ = 0.9 case of Figure 3.16. There, one can appreciate that the algorithms select fewer
covariates in comparison with the ρ = 0.5 scenario (Figure B.10 in Section B.3.2 of the
Appendix B). Some examples of this second group are the AdapL.1se, Dant, and DC.VS
algorithms, which seem to employ the data dependence structure selecting a subset of
S. In Table B.2 of Section B.2 in the Appendix B, it can be seen that with a bunch of
covariates smaller than s, it is possible to explain a large amount of variability. Besides, as
expected because of data structure and results of Section 3.1.3, more noise is added for
Scenario 2.b than for Scenario 2.a. Furthermore, results are pretty similar between both
types of standardization techniques for each procedure.

Seeing the percentage of times each of the first 20 covariates enters the model for
AdapL.1se, Dant, and DC.VS taking n = 50 in Scenario 2.a, one appreciates as the
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Figure 3.16: Number of important covariates (dark pink/blue area) and noisy ones (soft
pink/blue area) for proposed algorithms taking p = 100 and selected in terms of the
without/univariate standardization in Scenarios 2.a (the first row) and 2.b (the second
row) for ρ = 0.9 and n = 50. The dashed lines mark the s = 15 and s = 10 value for the
first and the second row, respectively.

AdapL.1se and Dant selector protect against false discoveries, especially for the ρ = 0.9
framework. In contrast, the DC.VS selects some covariates in the neighborhood of the
15th term because of their correlation structure. See Figure B.8 in Section B.3.2 of the
Appendix B. In the case of Scenario 2.b with n = 50 (Figure B.10 in Section B.3.2 of the
Appendix B), one can appreciate as the three approaches perform well for the ρ = 0.5
case, selecting important variables the highest percentage of times (Figure B.9 in Section
B.3.2 of the Appendix B). However, these approaches are not able to fully recover S. In
particular, a greater value of n may be required for its proper recovery. This hypothesis
is proved next for the n > p case (see Figure B.12 in Section B.3.2 of the Appendix B).
Nevertheless, things change moving on to a more complicated context, Scenario 2.b taking
ρ = 0.9. One sees in Figure B.9 in Section B.3.2 of the Appendix B as the confusion
phenomenon appears. Noisy covariates, related to relevant ones, are selected a greater
percentage of times for these procedures. Specifically, it is quite difficult to distinguish the
true signal based on the covariates selection percentages in the Dant and DC.VS case.

Concerning prediction, we note that all algorithms overestimate the results, but for
the AdapL.1se, Dant, and DC.VS. These results coincide with those that search for a
representative subset of S. Besides, no relevant distinctions are appreciated between
without or univariate standardization versions having all covariates on a unit scale. A
summary of these results is displayed in Table 3.14 for ρ = 0.9, and those for ρ = 0.5 are
collected in Table B.8 in Section B.3.2 of the Appendix B.

Eventually, some complexity is added to Scenario 2.b, simulating relevant covariates
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Scenario 2.a Scenario 2.b
WITHOUT UNIVARIATE WITHOUT UNIVARIATE

METHOD MSE % Dev MSE % Dev MSE % Dev MSE % Dev
(3.807) (0.9) (3.807) (0.9) (1.244) (0.9) (1.244) (0.9)

LASSO.min 1.914 0.948 1.898 0.948 0.514 0.955 0.513 0.955
LASSO.1se 2.643 0.928 0.728 0.937 0.728 0.937 0.713 0.938
LASSO.BIC 0.956 0.976 0.847 0.979 0.224 0.982 0.188 0.985
AdapL.min 3.183 0.915 3.171 0.915 0.897 0.923 0.895 0.923
AdapL.1se 4.818 0.870 4.713 0.872 1.580 0.864 1.554 0.866

SCAD 2.757 0.926 2.757 0.926 1.554 0.866 1.554 0.866
Dant 4.82 0.87 4.82 0.87 1.554 0.866 1.554 0.866

RelaxL 2.671 0.928 2.714 0.926 0.729 0.937 0.734 0.936
SqrtL 2.623 0.929 2.623 0.929 0.734 0.936 0.749 0.935
ScalL 2.562 0.930 2.534 0.931 0.743 0.935 0.726 0.937

DC.VS 3.958 0.894 3.958 0.894 1.402 0.880 1.402 0.880

Table 3.14: Comparison of all proposed algorithms for p = 100, n = 50 and ρ = 0.9 using
different standardization techniques in Scenario 2. Oracle values are in brackets.

with different scales (Scenario 3.a) and adding noisy ones with different scales to this last
case (Scenario 3.b) too. Results for covariates selection in the p > n case taking n = 50 are
summarized in Figure 3.17 for ρ = 0.9. Results for the ρ = 0.5 framework are displayed in
Figure B.18 of Section B.3.3 in the Appendix B.

Taking ρ = 0.9, we see in Figure 3.17 as results are pretty similar to the ones of
Scenario 2.b for both, Scenario 3.a and 3.b. Here, some differences arise between the type
of employed standardization for the considered LASSO versions. The univariate option
selects a similar number of important terms as the without version but adds more noise
during the process. Besides, a slight increment of noise is appreciated for some algorithms
in Scenario 3.b, with the addition of noisy covariates in different scales than the unit.
Similar behavior for each algorithm is observed for the ρ = 0.5 case adding a little less
noise. This can be seen in Figure B.18 of Section B.3.3 in the Appendix B.

For ρ = 0.5, the AdapL.1se, Dant, and DC.VS procedures select the covariates with the
greatest scales a higher percentage of times for both scenarios (see Figure B.19 in Section
B.3.3 of the Appendix B). This selection also happens for the ρ = 0.9 case. See Figure B.20
in Section B.3.3 of the Appendix B. Particularly, relevant covariates with the largest scales
(j=15,18,21,24,27,30) are selected a higher number of times than the remaining ones. This
behavior is especially remarkable for AdapL.1se considering the without standardization
approach. Dant and DC.VS also select these last covariates, jointly with some noisy ones
related to these, a significant percentage of times. While the AdapL.1se seems to be affected
by the type of standardization employed, this phenomenon does not occur with the Dant
and DC.VS algorithms. Similar results are appreciated for n = 300 in Figures B.22 and
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Figure 3.17: Number of important covariates (dark pink/blue area) and noisy ones (soft
pink/blue area) for proposed algorithms taking p = 100 and selected in terms of the
without/univariate standardization in Scenarios 3.a (the first row) and 3.b (the second
row) for ρ = 0.9 and n = 50. The dashed line marks the s = 10 value.

B.23, collected in Section B.3.3 of the Appendix B.
For prediction, it can be seen in Table 3.15 as the same pattern is repeated. Again,

only AdapL.1se, Dant, and DC.VS can correct the overestimation, obtaining MSE and
%Dev values greater and fewer than the oracle ones, respectively.

Context of n > p

Again, similar to the p > n study, the orthogonal framework of Scenario 1 is analyzed
first and then dependent ones using Scenarios 2 and 3. In this case, we take a sample size
n = 300, which verifies that n > p.

Results for Scenarios 1.b and 1.c are collected in Figure 3.18 and in Table 3.16 taking
n = 300. Similar behavior to the p > n case for the recovery of S applies for all studied
algorithms. Now, in this n > p scenario, all methodologies, even the DC.VS algorithm
searches for a complete recovery of S, except for AdapL.1se and Dant. In contrast, these
select fewer than s = 10 terms. In particular, these two procedures recover the relevant
covariates with the largest scales. An example of this fact is displayed in Figure B.4,
collected in Section B.3.1 of the Appendix B. However, the amounts of selected variables
by these two procedures are not enough to correctly explain the variability of the data
(see Table B.1 in Section B.2 of the Appendix B). Despite this, both procedures are the
only ones able to guarantee the absence of added noise in the selection process. In this
framework, most algorithms detect all the relevant covariates and reduce the noisy ones
selection. Nevertheless, the LASSO.min, AdapL.min, and SCAD get the worst results,
selecting a higher percentage of unimportant covariates. One can note that the LASSO.BIC
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Scenario 3.a Scenario 3.b
WITHOUT UNIVARIATE WITHOUT UNIVARIATE

METHOD MSE % Dev MSE % Dev MSE % Dev MSE % Dev
(7.818) (0.9) (7.818) (0.9) (7.818) (0.9) (7.818) (0.9)

LASSO.min 5.060 0.932 3.577 0.952 4.828 0.935 3.570 0.952
LASSO.1se 6.927 0.907 4.871 0.934 6.500 0.913 4.856 0.935
LASSO.BIC 5.258 0.929 1.596 0.980 5.265 0.930 1.505 0.981
AdapL.min 8.358 0.888 6.077 0.919 7.683 0.898 6.157 0.918
AdapL.1se 12.461 0.83 10.416 0.860 11.898 0.841 10.349 0.862

SCAD 5.348 0.928 5.348 0.928 10.349 0.862 10.349 0.862
Dant 10.899 0.853 10.899 0.853 10.905 0.855 10.905 0.855

RelaxL 4.925 0.933 5.051 0.932 4.899 0.934 5.083 0.932
SqrtL 5.051 0.932 5.051 0.932 4.971 0.933 4.971 0.933
ScalL 5.562 0.925 4.843 0.934 5.114 0.931 4.838 0.935

DC.VS 8.724 0.883 8.724 0.883 8.649 0.885 8.649 0.885

Table 3.15: Comparison of all proposed algorithms for p = 100, n = 50 and ρ = 0.9 using
different standardization techniques in Scenario 3. Oracle values are in brackets.

improves its performance a lot when n > p, as expected and as already mentioned in
Section 3.2.2. In fact, the LASSO.BIC is the approach with the best selection results in
the n > p framework.

Once again, similar to the p > n framework, all algorithms continue to overestimate the
prediction results. Only the AdapL.1se and Dant correct a bit this overestimation. This
fact could be motivated due to the selection of fewer than s = 10 terms in total. Results
for prediction are displayed in Table 3.16.

Next, the number of important and noisy covariates selected in Scenario 2 is displayed
in Figure 3.19 for n = 300 and taking ρ = 0.9. Results for ρ = 0.5 are collected in Table
B.9 and Figure 3.19 of Section B.3.2 in the Appendix B. In all cases, performance between
without or univariate standardization frameworks is quite similar because all covariates are
in unit scales. As a result, we do not notice a significant distinction. Then, Scenario 2.a,
where the relevant covariates are placed together, is analyzed first. Scenario 2.b, where
important terms are scattered every three places, follows this.

Concerning covariates selection for Scenario 2.a with n > p, one observes a different
performance of the algorithms for ρ = 0.5 (Figure B.10 in Section B.3.2 of the Appendix B)
and ρ = 0.9 (Figure 3.19). In the ρ = 0.5 case, all algorithms try to recover S, except for
AdapL.1se and Dant, whereas for ρ = 0.9, more procedures as LASSO.1se, LASSO.BIC and
DC.VS join to select a representative subset of relevant covariates. The DC.VS algorithm
adds some noise to the model, as can be appreciated in Figure B.11 in Section B.3.2 of the
Appendix B. For ρ = 0.5, the best results focused on the total recovery of S, adding little
or no noise, are obtained for RelaxL, LASSO.BIC and LASSO.1se. On the other hand,
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Figure 3.18: Number of important covariates (dark pink/blue area) and noisy ones (soft
pink/blue area) for proposed algorithms taking p = 100 and selected in terms of the
without/univariate standardization in Scenarios 1.b (the first row) and 1.c (the second
row) for n = 300. The dashed line marks the s = 10 value.

AdapL.1se and Dant select fewer than s = 10 covariates. These two procedures use the
dependence structure, guaranteeing that all covariates entering the model are relevant. For
ρ = 0.9, no procedure is able to achieve a complete recovery of S. Instead, some important
covariates exchange for irrelevant ones pretty correlated. Procedures that recover a great
amount of the s = 10 important terms without adding too much noise are LASSO.1se,
RelaxL, SqrtL, and ScalL. The AdapL.min and the SCAD approaches tend to select a total
of s = 10 covariates, but so many are noise. The rest of the algorithms, as LASSO.BIC,
AdapL.1se, Dant, or DC.VS add fewer covariates to the model, but they guarantee that all
are relevant terms. As a result, there are always procedures that search for the full recovery
of S, exchanging some relevant variables for noisy ones in some cases, and approaches that
make use of the dependence structure and select a small number of terms guaranteeing the
relevance of all of them as a trade-off.

Next, we consider Scenario 2.b. For ρ = 0.5 (Figure B.10 in Section B.3.2 of the
Appendix B), all algorithms try to completely recover the whole bunch of relevant co-
variates for both employed standardizations. However, the LASSO versions (LASSO.min,
LASSO.1se, and LASSO.BIC) can not recover S but rather select spurious covariates.
The rest of the approaches recover the s = 10 terms successfully, but procedures as the
AdapL.min, SqrtL, or ScalL add too much noise compared to the remaining algorithms.
Conversely, one can appreciate different behaviors regarding ρ = 0.9 (Figure 3.19). Again,
there are two groups: the first group trying to fully recover S (LASSO.min, LASSO.1se,
LASSO.BIC, AdapL.min, SCAD, RelaxL, SqrtL, and ScalL), and the second one selecting
a representative bunch of them (AdapL.1se, Dant and DC.VS). It is interesting to note
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Scenario 1.b Scenario 1.c
WITHOUT UNIV. WITHOUT UNIV.

METHOD MSE % Dev MSE % Dev MSE % Dev MSE % Dev
(13.715) (0.9) (13.715) (0.9) (13.715) (0.9) (13.715) (0.9)

LASSO.min 10.972 0.919 10.638 0.922 10.866 0.920 10.677 0.921
LASSO.1se 12.972 0.904 12.174 0.910 12.813 0.891 12.180 0.891
LASSO.BIC 12.671 0.907 12.739 0.906 12.729 0.906 12.722 0.906
AdapL.min 11.115 0.918 11.138 0.918 11.117 0.918 11.136 0.918
AdapL.1se 15.921 0.883 15.024 0.889 15.901 0.883 14.977 0.890

SCAD 11.441 0.916 11.441 0.916 11.453 0.915 11.453 0.915
Dant 29.407 0.784 29.407 0.784 29.549 0.782 29.549 0.782

RelaxL 12.630 0.907 12.754 0.906 12.687 0.906 12.813 0.905
SqrtL 12.521 0.908 12.521 0.908 12.508 0.908 12.508 0.908
ScalL 12.324 0.909 12.270 0.910 12.096 0.911 12.286 0.909

DC.VS 12.353 0.909 12.353 0.909 12.371 0.909 13.595 0.894

Table 3.16: Comparison of all proposed algorithms for p = 100 and n = 300 using different
standardization techniques in Scenarios 1.b and 1.c. Oracle values are in brackets.

here that for Scenario 2.b, procedures such as RelaxL, SqrtL, and ScalL can select the
covariates of S but add a vast amount of noise to the model, especially for the ρ = 0.9 case.
This fact contrasts with their performance in Scenario 2.a. Moreover, the AdapL.1se seems
to be the most reliable option for the second group because this pretty much only selects
relevant covariates regardless of the dependence strength. Moreover, in Table B.2, collected
in Section B.2 of the Appendix B, one appreciates as with a small number of covariates is
possible to explain a large enough percentage of variability correctly. As a result, this fact
justifies the proper performance of the algorithms which select a representative subset of S
for Scenarios 2.a and 2.b.

A summary of prediction results in terms of MSE and %Dev are collected in Table 3.17.
We can see in Tables 3.17 and B.9 concerning Scenario 2.a that most studied algorithms
overestimate prediction results, but for AdapL.1se and Dant. It is also possible to add the
DC.VS procedure to this list, although only in the ρ = 0.9 case. In contrast, in Scenario
2.b, only the Dant selector corrects the overestimation for all contexts jointly with the
AdapL.1se and the DC.VS in the ρ = 0.9 framework.

Eventually, we analyze results for scenarios where not only a dependence structure plays
a relevant role but also the scales of covariates. For this purpose, we extend Scenario 2.b:
considering that relevant covariates can have different scales from irrelevant ones (Scenario
3.a) and the case where both important and unimportant variables have different scales
(Scenario 3.b). These scenarios are introduced above in Section 3.2.1 in detail. Again, we
consider different magnitudes of dependence, taking ρ = 0.5 and ρ = 0.9. Results taking
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Figure 3.19: Number of important covariates (dark pink/blue area) and noisy ones (soft
pink/blue area) for proposed algorithms taking p = 100 and selected in terms of the
without/univariate standardization in Scenarios 2.a (the first row) and 2.b (the second
row) for ρ = 0.9 and n = 300. The dashed lines mark the s = 15 and s = 10 value for the
first and the second row, respectively.

ρ = 0.5 are collected in Figure B.21 and Table B.13 in Section B.3.3 of the Appendix B
and results for ρ = 0.9 are displayed in Figure 3.20 and Table 3.18.

For covariates selection in Scenario 3.a we appreciate that the univariate standardization
selects more noisy covariates in the case of LASSO.min, LASSO.1se, LASSO.BIC for ρ = 0.9,
AdapL.min, and ScalL. Only the RelaxL algorithm in the univariate case selects fewer
covariates than the without standardization approach. In contrast, both standardizations
play a similar role for the rest of the techniques (AdapL.1se, SCAD, Dant, SqrtL, and
DC.VS) . Again, as it happened for Scenario 2.b, some procedures try to completely
recover S (LASSO.min, AdapL.min, SCAD, RelaxL, SqrtL, ScalL), and others make use
of the dependence structure selecting fewer covariates (AdapL.1se, Dant and DC.VS),
especially for the ρ = 0.9 value. Besides, we must add a new category for procedures that
change their objective based on the employed standardization when the correlation is high
(ρ = 0.9). These are the LASSO.1se and the LASSO.BIC. Both try to recover S for the
univariate standardization case, whereas both select a representative subset for the without
standardization context. For ρ = 0.5 (Figure B.21 in Section B.3.3 of the Appendix B) the
best procedures that guarantee a proper recovery of S with small noise addition are the
LASSO.1se, LASSO.BIC and DC.VS. In contrast, AdapL.1se and Dant are the best options
to guarantee that all selected covariates are important, and that overestimation is corrected.
Conversely, for ρ = 0.9 (Figure 3.20), any of the proposed approaches is capable of selecting
all variables of S. However, spurious correlations appear and some noisy variables are
selected instead of important ones. We can highlight the without LASSO.1se, without
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Scenario 2.a Scenario 2.b
WITHOUT UNIVARIATE WITHOUT UNIVARIATE

METHOD MSE % Dev MSE % Dev MSE % Dev MSE % Dev
(3.807) (0.9) (3.807) (0.9) (1.244) (0.9) (1.244) (0.9)

LASSO.min 3.525 0.910 3.526 0.910 1.096 0.911 1.098 0.911
LASSO.1se 3.715 0.905 3.715 0.905 1.154 0.906 1.154 0.906
LASSO.BIC 3.822 0.902 3.800 0.903 1.183 0.904 1.180 0.904
AdapL.min 3.513 0.910 3.518 0.910 1.117 0.909 1.116 0.909
AdapL.1se 4.540 0.884 4.533 0.884 1.501 0.878 1.509 0.877

SCAD 3.602 0.908 3.602 0.908 1.116 0.909 1.116 0.909
Dant 4.886 0.875 4.886 0.875 1.700 0.862 1.700 0.862

RelaxL 3.683 0.906 3.685 0.906 1.143 0.907 1.144 0.907
SqrtL 3.654 0.906 3.654 0.906 1.139 0.908 1.139 0.908
ScalL 3.636 0.907 3.634 0.907 1.137 0.908 1.137 0.908

DC.VS 4.194 0.892 4.194 0.892 1.347 0.891 1.347 0.891

Table 3.17: Comparison of all proposed algorithms for p = 100, n = 300 and ρ = 0.9 using
different standardization techniques in Scenario 2. Oracle values are in brackets.

LASSO.BIC, AdapL.1se, Dant, and DC.VS like options that select a bunch of S terms
without adding too much noise during the process.

Finally, we pay attention to covariates selection in Scenario 3.b taking ρ = 0.5 (Figure
B.21 in Section B.3.3 of the Appendix B) and for ρ = 0.9 (Figure 3.20). In this case,
complexity is added to the selection process, including irrelevant terms with scales greater
than important variables. For the ρ = 0.5 case, there are not quite relevant differences for
selection between Scenarios 3.a and 3.b. Specifically, the noise increases for the without
LASSO procedures (LASSO.min, LASSO.1se, and LASSO.BIC) as well as for the without
ScalL. See Figure B.21 in Section B.3.3 of the Appendix B. The performance of the rest
of the procedures is completely similar. As a result, one can say that the inclusion of
irrelevant covariates with scales even greater than the ones of the important terms does
not affect the selection procedure when the dependence relation is not so great, like taking
ρ = 0.5. Nevertheless, things change when there is a strong dependence relation. An
example of this can be seen in Figure 3.20 for ρ = 0.9. In this, we can see as it is the
first time that the LASSO techniques (LASSO.min, LASSO.1se, and LASSO.BIC) do not
search for the complete recovery of S. Furthermore, the without ScalL selects more noise
than Scenario 3.a. Only AdapL.min, SCAD, RelaxL, SqrtL, and ScalL seem to follow
this purpose, adding a lot of noisy terms. In contrast, the remaining procedures use the
dependence structure and select a bunch of covariates. Only the AdapL.1se procedure
includes just relevant covariates. Concerning the employed standardization, we can see
that results are quite similar for both approaches.

Lastly, in terms of prediction accuracy (Tables B.13 and 3.18), there have been appreci-
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Figure 3.20: Number of important covariates (dark pink/blue area) and noisy ones (soft
pink/blue area) for proposed algorithms taking p = 100 and selected in terms of the
without/univariate standardization in Scenarios 3.a (the first row) and 3.b (the second
row) for ρ = 0.9 and n = 300. The dashed line marks the s = 10 value.

ated similar results as the ones for Scenario 2.b. All procedures overestimate their results,
obtaining MSE and %Dev values fewer and larger than the oracle ones, respectively, except
for AdapL.1se and Dant algorithms, jointly with DC.VS for ρ = 0.9.

3.2.4 Discussion: scale effects on LASSO under dependence

Along Section 3.1, some limitations of the LASSO and derivatives under different dependence
frameworks have been displayed. This analysis concludes with a discussion in Section 3.1.4
about the best possible option based on the studied dependence scenarios. Nevertheless,
in all of them, covariates are assumed to have unit scales, resulting in covariates in equal
scale. This framework contrasts with real problems where dependence patterns, and
covariates in different scales, are expected. Motivated by this fact, throughout Section 3.2,
an analysis of the LASSO and alternatives is carried out by modifying the covariates scales
under dependence and allowing relevant, as well as unimportant ones, to have different
magnitudes. We introduce these scenarios in Section 3.2.1. This study brings a gap between
the dependence study of Section 3.1 and scale effects for LASSO and derivatives. Next, we
give some guidelines for the best procedure selection in the scenarios considered based on
the obtained results.

First of all, we observe that the type of employed standardization technique has an
effect only when there are covariates in different scales. Conversely, similar results hold
when some dependence structure exists, but the assumption of the equality of scales in the
covariates is guaranteed, as in Scenario 2. Furthermore, the main differences are appreciated
for the considered LASSO versions (LASSO.min, LASSO.1se, and LASSO.BIC), especially
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Scenario 3.a Scenario 3.b
WITHOUT UNIVARIATE WITHOUT UNIVARIATE

METHOD MSE % Dev MSE % Dev MSE % Dev MSE % Dev
(7.818) (0.9) (7.818) (0.9) (7.818) (0.9) (7.818) (0.9)

LASSO.min 7.100 0.908 6.920 0.910 7.022 0.909 6.926 0.911
LASSO.1se 7.561 0.902 7.302 0.906 7.563 0.902 7.302 0.906
LASSO.BIC 7.643 0.901 7.527 0.903 7.546 0.903 7.526 0.903
AdapL.min 7.060 0.909 6.920 0.91 7.052 0.909 6.919 0.911
AdapL.1se 8.924 0.885 8.790 0.886 8.936 0.885 8.773 0.887

SCAD 7.149 0.907 7.149 0.907 7.146 0.908 7.146 0.908
Dant 11.804 0.847 11.804 0.847 11.906 0.846 11.906 0.846

RelaxL 7.182 0.907 7.221 0.907 7.197 0.907 7.245 0.906
SqrtL 7.192 0.907 7.192 0.907 7.186 0.907 7.186 0.907
ScalL 7.337 0.905 7.184 0.907 7.259 0.906 7.181 0.907

DC.VS 8.059 0.896 8.059 0.896 8.050 0.896 8.050 0.896

Table 3.18: Comparison of all proposed algorithms for p = 100, n = 300 and ρ = 0.9 using
different standardization techniques in Scenario 3. Oracle values are in brackets.

for the p > n framework. In Scenarios 1.b, 1.c, 3.a, and 3.b both standardizations select
a similar number of relevant terms, but the univariate version adds more noise in the
selection process. The remaining procedures perform quite similarly for both types of
standardizations. Thus, the choice of whether or not to apply a previous standardization
step does not seem very relevant to the selection results.

In the case of orthogonal scenarios with different scales of the covariates (Scenario 1),
there is no clear winner between compared procedures. A proper selection would depend
on the research aim. If one wants to guarantee the recovery of as much relevant covariates
as possible, no matter the additional noise, LASSO.min, SCAD and RelaxL for the p > n

case or LASSO.BIC, RelaxL, SqrtL, ScalL, and DC.VS for the n > p case seem to be the
most suitable procedures. However, if it is more valuable to ensure that all selected terms
are important, procedures like AdapL.1se or Dant are the best options.

Conversely, different results are obtained when all covariates are related among them
and on the same scale. An example of this situation is Scenario 2, simulating under
a Toeplitz covariance structure with unitary terms. Now, it depends on the relevant
covariates’ location, the dependence strength (ρ = 0.5 or ρ = 0.9), and if n > p, or not,
performing an adequate recovery.

In the case of p > n, a perfect recovery of S without noise addition is not possible, no
matter the correlation strength (ρ = 0.5 or ρ = 0.9) or the relevant covariates disposition
(Scenarios 2.a and 2.b). AdapL.1se, Dant, and DC.VS are the most remarkable procedures
in the p > n context. These algorithms include more relevant terms than noisy ones.
Nevertheless, these also add noise for Scenario 2.b. In the case of a low or moderate
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correlation, ρ = 0.5, approaches as the LASSO versions, RelaxL, SqrtL, and ScaL almost
include all the s important terms but add too much noise as a trade-off.

In the case of n > p, we distinguish between results for Scenario 2.a and those for
Scenario 2.b. For the case of Scenario 2.a, the best option would depend again on what
is the main aim. If one wants to verify that S is recovered although some noise is
included, procedures such as RelaxL, SqrtL, and ScalL are more suitable. Nevertheless, if
the main interest is to guarantee that all selected covariates are relevant and to obtain
prediction results without overestimation, AdapL.1se and Dant procedures are a better
option. Concerning Scenario 2.b, one has to resort to procedures that may add noise to
the model (AdapL.min, SCAD, RelaxL, SqrtL, or ScalL) to perform the complete recovery
of S. Instead, if one is interested in guaranteeing that all selected covariates are relevant,
the AdapL.1se seems the best possible option. In this last case, one has also the benefit
that overestimation for prediction is corrected.

Eventually, we move on to the case of adding covariates with different scales to Scenario
2. This results in the Toeplitz covariance structure considering covariates in different scales
(Scenarios 3.a and 3.b). It is not possible the recovery of S in the p > n context, not
even allowing noise to enter the model. Instead, some procedures like AdapL.1se, Dant, or
DC.VS try to use the covariance structure and scale effects to select only a portion of the
relevant terms with the associated highest scales. When the correlation strength increases
to ρ = 0.9, the Dant and DC.VS interchange these relevant terms with some noisy ones
strongly correlated. In contrast, in the n > p context, procedures such as RelaxL, SqrtL,
ScalL, or even DC.VS for ρ = 0.5 are capable of recovering S, adding not too much noise
in the process. In contrast, AdapL.1se and Dant selector keep choosing fewer terms but
guaranteeing that the selected ones are relevant with high probability. Again, only these
last procedures correct a bit the overestimation of the prediction.

Summing up all the information, to chose a proper selector algorithm will depend on
our objective. There are two possibilities. The first possibility focuses on minimizing the
number of false discoveries, guaranteeing that all selected terms are relevant, although we
can not assure the complete recovery of S. The second option is to maximize the number
of true positive discoveries, recovering the highest possible number of terms of S. In this
last case, noise addition has to be allowed as a trade-off for a proper recovery. For the
first objective, AdapL.1se and Dant have displayed the best qualities for all dependence
structures and different covariates scales. These procedures add the least amount of noise
to the model and, as a result, guarantee more consistency in the recovery. A drawback
of these approaches is that they do not tend, in general, to a complete recovery of S.
Instead, they usually select fewer than s terms. Besides, this quantity decreases for the
p > n selection case. Nevertheless, if one is interested in guaranteeing recovery of a large
number of true positives, procedures such as the RelaxL, SqrtL, or ScalL are more suitable.
However, there are some cases where these do not verify that the complete set S is retrieved,
as in Scenarios 2.a and 2.b for p > n or in Scenarios 3.a and 3.b for p > n or for n > p

with ρ = 0.9. This behavior happens because of dependence and scale effects. These last
scenarios are the trickiest, and none of the considered algorithms can get the s influential
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terms. The strong dependence structure and the confusing phenomenon of different scales
on covariates could explain this situation. Finally, the DC.VS algorithm is in the middle of
both philosophies. For the p > n case, its behavior resembles the first group, whereas, for
n > p, this is more similar to the second one.

3.3 A first screening step based on some coefficient of relevance

As displayed throughout Sections 3.1 and 3.2, the LASSO algorithms suffer from different
drawbacks in practice. Apart from those treated in Section 2.2, it has been seen that the
LASSO tends to select a lot of noisy covariates even under orthonormal design. Furthermore,
this has extra difficulties when there exist dependence structures and/or covariates with
different scales. As a result, a preliminary step would be of interest to reduce the dimension
of the covariates, discarding some irrelevant ones to facilitate the selection procedure a
posteriori. For this purpose, it is very common in the literature to resort to screening
procedures. Hence, in this section, we study if a first screening step would be useful
under dependence frameworks with covariates in different scales. Thus, we try to sort
covariates’ relevance to establish a proper cutoff or threshold to define a first screening
step. For this aim, the performance of the coefficient of determination (R2), the distance
correlation coefficient (DC), and partial least squares (PLS) values are tested as measures
of relevance. First, their performance under independence with different scales (Scenario 1.
c) is analyzed, and then, more difficult frameworks, considering the Toeplitz dependence
structure (Scenario 2. b) and its version with different scales on relevant as well as
unimportant covariates (Scenario 3. b), are studied.

In all cases, it has been only considered the without standardization framework. This
decision is because univariate standardization equals relevance between all covariates. As
a result, the univariate standardization does not allow us to detect what covariates are
the relevant ones. For each of the M = 500 Monte Carlo replicates, we calculate the
associated coefficients of relevance (R2, DC, and PLS) for all terms. Then, their sample
distributions are compared, using boxplots. The averaged value over the M = 500 replicates
is computed for each covariate to determine if recovering important covariates based on
their relevance coefficients is possible. One expects relevant covariates to have the highest
values of relevance and then, to be able to apply a proper threshold.

Making use of the independence framework of Scenario 1.c introduced in Section 3.2.1,
where relevant (s = 1, . . . , 10) as well as some unimportant covariates (s = 11, . . . , 22)
have different scales, we implement a first screening step. For this purpose, we employ
the coefficient of determination (R2), the distance covariance coefficient (DC), and partial
least squares (PLS) values in the without standardization case. The coefficient associated
with each covariate is calculated in all the M = 500 Monte Carlo replicates, and their
resulting boxplots are displayed in Figure B.5 in Section B.3.1 of the Appendix B. A good
performance of the coefficients translates into relevant covariates with higher values than
irrelevant ones. One can appreciate that this is verified for R2 and DC coefficients in this
framework. Nevertheless, PLS tends to select covariates with the highest scales, regardless
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of whether these are relevant or not. Remarkably, we only use the without framework
because PLS performs very poorly in the univariate case, equaling all boxplots and being
unable to discriminate between important covariates and noisy ones. In contrast, similar
results are obtained for R2 and DC in the univariate standardized framework as these
quantities do not depend on the covariates scales.
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Figure 3.21: Ordered mean values of covariates in terms of R2 (•), DC (▲) and PLS (■)
coefficients in Scenario 1.c without standardization.

We calculate the averaged values of the Monte Carlo simulations for each covariate, and
these values are considered in increasing order to achieve a proper threshold for recovering
relevant covariates. Results are shown in Figure 3.21. Given the results, an appropriate
threshold can be defined for the R2 and DC values in case of independence, although
there are covariates with different scales. Nevertheless, one needs to pay the price of noise
addition to verify that the s relevant terms are added to the model for PLS components.
In particular, noisy covariates with the highest scales enter the model. This fact illustrates
the poor behavior of the PLS values, even for the independence case. Thus, this procedure
is avoided for the study henceforth.

Next, the R2 and DC values discriminant performances are analyzed under dependence.
For this purpose, we consider Scenario 2.b. In this case, there are s = 10 relevant covariates
placed every ten locations (j = 3, 6, . . . , 30). We expect a suitable screening procedure
to have correlation values for these variables greater than the rest. Boxplots of resulting
quantities are displayed in Figure B.13 for ρ = 0.5 and in Figure B.14 for ρ = 0.9 collected
in Section B.3.2 of the Appendix B. First, differences in the dependence structures based
on the ρ value are appreciated. When the dependence structure is not too strong, as
in the ρ = 0.5 case, we see as both procedures can discriminate the relevant covariates.
However, unimportant ones pretty related to relevant terms obtain large correlation values,
as expected, although these are smaller than the ones associated with covariates in S.
These allow one to establish a proper cutoff to recover relevant covariates without noise
addition completely. This phenomenon is observed again if we pay attention to the ordered
mean values displayed in Figure 3.22. The s = 10 relevant covariates get higher mean
values than the remaining ones.

In contrast, taking ρ = 0.9, things dramatically change. In view of the boxplots (Figure
B.14 in Section B.3.2 of the Appendix B), one observes that, due to strong dependence,
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Figure 3.22: Ordered mean values of covariates in terms of R2 (•) and DC (▲) coefficients
in Scenario 2.b.

all values of the first 30 variables are quite high. This fact is also asserted if their mean
values are calculated and ordered (Figure 3.22). As a result, we can conclude that a proper
threshold is not allowed without noisy covariates addition in the model. Thus, a second
step employing an additional covariates selection procedure can be desirable for this class of
scenarios. At this point, it is possible to differentiate two approaches to “correctly” select
relevant covariates: i) trying to recover S with the least noise inclusion or ii) searching for
a bunch of covariates between the first thirty able to represent the significant information.
See Section 3.2.3 for examples and discussion.

Eventually, we add more complexity to the previous model of Scenario 2.b. Now,
different values for covariates scales are considered. For this aim, we employ Scenario 3.b.
The variance of relevant as well as unimportant covariates is modified. These last irrelevant
terms are selected as ones related to the s = 10 variables of S. Again, there are considered
“medium” dependence taking ρ = 0.5 and high dependence with ρ = 0.9 scenarios.

Results for boxplots are shown in Figures B.24 and B.25 in Section B.3.3 of the Appendix
B for ρ = 0.5 and ρ = 0.9, respectively. Figure 3.23 displays their averaged and ordered
versions. We appreciate for ρ = 0.5 that it is now impossible to completely recover S
without noise addition, which contrasts with the results for scenario 2.b with ρ = 0.5. It
can be seen in Figure B.24 as the covariates with the highest values correspond to relevant
ones with the greatest scales. These are followed by irrelevant ones quite correlated with
these. In fact, relevant covariates with the lowest scales have relevance values similar to
irrelevant ones. Then, for correct recovery of S, one needs to allow irrelevant covariates
to enter the model even for the ρ = 0.5 case. This requirement is easily appreciated by
paying attention to the ordered values displayed in Figure 3.23. Besides, despite this fact,
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it does not always seem possible to distinguish important covariates with the lowest scales
from noisy ones. It seems that the DC values are capable of remarking a bit better than
the R2 coefficients of the S terms in this last situation.
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Figure 3.23: Ordered mean values of covariates in terms of R2 (•) and DC (▲) coefficients
in Scenario 3.b.

Finally, the dependence relation is strengthened in Scenario 3.b, taking ρ = 0.9. This
scenario is a really tough framework because of dependence and different scales between
covariates. If the strong dependence case is just quite tricky, as was mentioned above for
Scenario 2.b with ρ = 0.9, its complexity increases by adding different scales. This fact
can be seen in Figure B.25 in Section B.3.3 of the Appendix B. Here, these procedures
need to include about 40 variables in the model to guarantee the full recovery of the s = 10
relevant term. Similar to Scenario 2.b with ρ = 0.9, the increase in dependence translates
into difficulties distinguishing between values, finding that relevance coefficients with the
highest values are those in the middle of relevant covariates locations (over the 15th term).
We also appreciate this phenomenon by seeing the ordered values displayed in Figure 3.23.
Hence, one should employ a similar strategy to scenario 2.b. Firstly, apply a screening
procedure to reduce noise. Next, perform some covariates selection techniques to detect
relevant covariates. Again, one has to decide which is the most appropriate algorithm
based on their goals for this second step.

In summary, we have seen that R2, as well as DC coefficients, are good options for
a first screening step which helps to clean the data. Nevertheless, screening techniques
based on these ideas should be followed for a second step, using some covariate selection
algorithm. Particularly, this procedure is necessary when some class of dependence between
covariates exists. Otherwise, so much noise would be added to the model trying to recover
S. As a result, screening procedures also suffer from dependence and scale effects no matter



3.4. Critical analysis of results in some real data sets 109

the employed threshold. Hence, these have similar limitations to penalization techniques
under dependence and/or covariates in different scales. Besides, it is interesting to notice
that the R2 coefficient only applies under linear structures. If we guess other types of
relations, other approaches like the DC coefficient are more suitable. Coefficients that
apply for more global dependence structures are treated in Chapter 4.

3.4 Critical analysis of results in some real data sets

Finally, the covariates selection capability of the considered algorithms in Section 3.1.3
is tested in real data examples. For this aim, LASSO procedures and competitors are
implemented over the four real data sets introduced before in Section 2.5. These data
sets are examples of real problems where different dependence structures and scale effects
arise. We refer the reader to Section 2.5 for more details. Thus, the performance of these
algorithms is compared, analyzing which covariates are selected in each case. Furthermore,
the results of the riboflavin and prostate cancer data sets are compared with those previously
obtained in the existing literature.

3.4.1 Riboflavin

The riboflavin data set contains a total of p = 4088 expression levels of genes. These are
believed to be related to the rate of production of riboflavin (vitamin B2) by the bacterium
Bacillus subtilis. A total of n = 71 samples have been collected to determine which of the
total genes are related to riboflavin production. As a result, this is a high dimensional
example where p > n. It has been displayed in Section 2.5.1 that all covariates have a
similar range of scale values, and there are different types of dependence patterns between
them. Next, considered LASSO versions and competitors are applied to select covariates.

26
13

50
8

4
20

7
35

44
8

7

LASSO.min
LASSO.1se
LASSO.BIC
AdapL.min
AdapL.1se

SCAD
Dant

RelaxL
SqrtL
ScalL

DC.VS

42
31

70
7

4
18

7
42

44
14

7

LASSO.min
LASSO.1se
LASSO.BIC
AdapL.min
AdapL.1se

SCAD
Dant

RelaxL
SqrtL
ScalL

DC.VS

Figure 3.24: Number of selected covariates for the considered procedures for raw data
(left) and univariate standardized data (right) of the riboflavin data set.

This data has been centered to avoid the intercept in the model without loss of generality.
Although it seems reasonable to assume that all covariates are on a similar scale, small
differences have been appreciated in Section 2.5.1. As a result, two different frameworks
are considered: working with the raw data and with its univariate standardized version.

The number of selected covariates for each of the eleven considered algorithms is
displayed in Figure 3.24. There are quite big differences between the number of selected



110 CHAPTER 3. DEPENDENCE AND SCALE EFFECTS ON LASSO

LASSO.min
ABH_at, ACOA_at, AMYC_at, ARGF_at, LACA_at, LYTA_at, NDK_at, PCKA_at, PURC_at,

RPLL_at, XLYA_at, YBGB_at, YCDH_at, YCGN_at, YCGO_at,YCKE_at, YHDS_r_at, YHFH_r_at,
YHZA_at, YRBA_at, YRZI_r_at, YTGB_at, YVAY_at, YWMC_at, YXLE_at, YYDF_i_at

LASSO.1se ARGF_at, GAPB_at, XHLA_at, XLYA_at, YCDH_at, YCGN_at, YCKE_at, YHFH_r_at, YHZA_at,
YRZI_r_at, YTGD_at, YXLD_at, YXLE_at

LASSO.BIC

AADK_at, ABH_at, ACOB_at, ADAB_at, ALD_at, AMYC_at, ARGF_at, ARGH_at, bhlB_at,
BIOB_at, GSIB_at, LACA_at, LYTA_at, NADC_at, PCKA_at, PURC_at, RPLL_at, spo0M_at,

SPOVAA_at, SPOVG_at, XLYA_at, YBGB_at, YCDH_at, YCGN_at, YCGO_at, YCKE_at, YCSE_at,
YCZF_at, YDAG_at, YDBI_at, YDDK_at, YFMH_r_at, YHDS_r_at, YHDX_r_at, YHFH_r_at,

YHZA_at, YLXQ_at, YOAB_at, YORB_i_at, YPTA_at, YPUD_at, YPUF_at, YQCE_at, YRHD_at,
YRZI_r_at, YTGB_at, YWFO_at, YXLE_at, YYBJ_at, YYBN_at

AdapL.min AMYC_at, ARGF_at, PCKA_at, XLYA_at, YCGN_at, YHZA_at, YTGB_at, YXLE_at

AdapL.1se GAPB_at, XLYA_at, YHZA_at, YXLE_at

SCAD AADK_at, ARGC_at, IOLE_at, mrpD_at, PCP_at, SPOVAB_at, sspM_r_at, YFIJ_at, YHDT_at,
YHEH_at, YKCA_at, YMFF_at, YOAC_at, YOSV_r_at, YPZE_at, YRVM_at, YXIC_at, YXLF_at

Dant XHLA_at, XTRA_at, YCGN_at, YCKE_at, YDAR_at, YOAB_at, YXLD_at

RelaxL
ARGF_at, DNAJ_at, GAPB_at, LYSC_at, PKSA_at, PRIA_at, SPOVAA_at, XHLB_at, XTRA_at,
YACN_at, YBFI_at, YCDH_at, YCGO_at, YCKE_at, YCLB_at, YCLF_at, YDDH_at, YDDK_at,

YEBC_at, YEZB_at, YFHE_r_at, YFII_at, YFIO_at, YFIR_at, YHDS_r_at, YKBA_at, YOAB_at,
YQJU_at, YRVJ_at, YTGB_at, YURQ_at, YXLD_at, YXLE_at, YYBG_at, YYDA_at

SqrtL

LYSC_at, METB_at, PHRI_r_at, RPLJ_at, RPLL_at, RPLO_at, RPLP_at, RPLX_at, RPSN_at,
SIGY_at, XHLA_at, XKDS_at, XTRA_at, YBGB_at, YCDH_at, YCDI_at, YCEA_at, YCGM_at,
YCGN_at, YCGO_at, YCGP_at, YCKE_at, YCLF_at, YDAR_at, YDBM_at, YDDK_at, YDDM_at,

YEBC_at, YHFH_r_at, YHZA_at, YOAB_at, YODF_at, YRPE_at, YRVJ_at, YTGA_at, YTGB_at,
YTGD_at, YTIA_at, YXLC_at, YXLD_at, YXLE_at, YXLF_at, YXLG_at, YXLJ_at

ScalL GAPB_at, XHLA_at, XLYA_at, YCDH_at, YCGN_at, YCKE_at, YHZA_at, YXLD_at

DC.VS FLHO_at, RPLX_at, xepA_at, YCKE_at, YQKD_at, YRHC_at, YWRO_at

Table 3.19: Selected genes in the raw riboflavin data for each of the eleven considered
procedures. Genes selected 8 times are highlighted in coral color, the ones selected 7 times
in violet and those corresponding to 6 times in blue.

terms for these procedures. The LASSO.BIC is the one that selects the greatest number
of terms, as it would be expected for the p > n framework based on observed results in
Sections 3.1 and 3.2. This is followed for the SqrtL, RelaxL, LASSO.min, and LASSO.1se.
This applies in both, without and univariate standardization scenarios.

It is expected for these five algorithms to be able to recover a great part of the S
set, which is unknown in practice, but adding quite a noise in the process. In contrast,
AdapL.1se, Dant, DC.VS and AdapL.min are the algorithms that select fewer covariates.
These last are expected to be more conservative, guaranteeing that a high percentage of
the selected covariates are relevant. Nevertheless, as it has been seen along Sections 3.1
and 3.2, when p > n and there exists strong dependence structures and covariates with
different scales, some important terms could be interchanged with irrelevant ones.

The genes selected by the approaches in the without standardization frameworks
are displayed in Table 3.19. Table 3.20 collects those for the univariate standardization
case. Most of the procedures change their selection within the without and univariate
standardization contexts. Only the Dant and the DC.VS algorithms keep their selection.
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The AdapL.1se and AdapL.min always select a large percentage of popular genes, in the
sense of those most selected by the eleven algorithms. However, the Dant and the DC.VS
pick a smaller percentage of these genes.

LASSO.min

ARGF_at, DNAJ_at, GAPB_at, LYSC_at, PRIA_at, SPOIIAA_at, SPOVAA_at, THIA_at, THIK_at,
XHLB_at, XKDP_at, YACN_at, YBFI_at, YCDH_at, YCGO_at, YCKE_at, YCLB_at, YCLF_at,

YDDH_at, YDDK_at, YEBC_at, YFHE_r_at, YFIO_at, YFIR_at, YHDS_r_at, YKBA_at, YKVJ_at,
YLXW_at, YMFE_at, YOAB_at, YPGA_at, YQJT_at, YQJU_at, YRVJ_at, YTGB_at, YUID_at,

YURQ_at, YWRO_at, YXLD_at, YXLE_at, YYBG_at, YYDA_at

LASSO.1se
ARGF_at, DNAJ_at, GAPB_at, LYSC_at, PKSA_at, SPOIISA_at, SPOVAA_at, XHLB_at, XKDS_at,

XTRA_at, YBFI_at, YCDH_at, YCGO_at, YCKE_at, YCLB_at, YCLF_at, YDDH_at, YDDK_at,
YEBC_at, YEZB_at,YFHE_r_at, YFIR_at, YHDS_r_at, YKBA_at, YOAB_at, YQJU_at, YRVJ_at,

YURQ_at, YXLD_at, YXLE_at, YYDA_at

LASSO.BIC

ADHB_at, ALD_at, ARAA_at, ARAM_at, ARAN_at, ARGF_at, ARGH_at, DEGA_at, ECSB_at,
GAPB_at, GUTR_at, LEVF_at, LYSC_at, METK_at, PHOA_at, PYRAA_at, sigM_at, SPOIVA_at,
SPOVAA_at, XHLB_at, XKDB_at, XKDP_at, XLYA_at, YACN_at, YBFI_at, YBXA_at, YCLB_at,

YDAO_at, YDDH_at, YDDK_at, YEBC_at, YESV_at, YETH_at, YFHE_r_at, YFIO_at, YHDS_r_at,
YIST_at, YISU_at, YKBA_at, YKNV_at, YKVJ_at, YLXW_at, YMAH_i_at, YOAB_at, YOSU_at,
YPGA_at, YPUI_at, YQED_at, YQGJ_at, YQJT_at, YQJU_at, YRVJ_at, YTGB_at, YTSA_at,
YUID_at, YULB_at, YULC_at, YURR_at, YUSJ_at, YVFM_at, YVHJ_at, YWBI_at, YWJG_at,

YWRO_at, YXAF_at, YXIB_at, YXLD_at, YXLE_at, YYBI_at, YYCO_at

AdapL.min ARGF_at, SPOVAA_at, XHLB_at, YCLB_at, YEBC_at, YOAB_at, YXLD_at

AdapL.1se ARGF_at, XHLB_at, YOAB_at, YXLD_at

SCAD AADK_at, ARGC_at, IOLE_at, mrpD_at, PCP_at, SPOVAB_at, sspM_r_at, YFIJ_at, YHDT_at,

YHEH_at, YKCA_at, YMFF_at, YOAC_at, YOSV_r_at, YPZE_at, YRVM_at, YXIC_at, YXLF_at

Dant XHLA_at, XTRA_at, YCGN_at, YCKE_at, YDAR_at, YOAB_at, YXLD_at

RelaxL

ARGF_at, CTAA_at, DNAJ_at, GAPB_at, LYSC_at, PRIA_at, SPOIIAA_at, SPOVAA_at, THIA_at,
THIK_at, XHLB_at, XKDB_at, YACN_at, YBFI_at, YCKE_at, YCLB_at, YCLF_at, YDDH_at,

YDDK_at, YEBC_at, YFHE_r_at, YFIO_at, YFIR_at, YHDS_r_at, YKBA_at, YKVJ_at, YLXW_at,
YMFE_at, YOAB_at, YPGA_at, YQJT_at, YQJU_at, YRVJ_at, YTGB_at, YUID_at, YWRO_at,

YXIB_at, YXLD_at, YXLE_at, YYBG_at, YYCO_at, YYDA_at

SqrtL

LYSC_at, METB_at, PHRI_r_at, RPLJ_at, RPLL_at, RPLO_at, RPLP_at, RPLX_at, RPSN_at,
SIGY_at, XHLA_at, XKDS_at, XTRA_at, YBGB_at, YCDH_at, YCDI_at, YCEA_at, YCGM_at,
YCGN_at, YCGO_at, YCGP_at, YCKE_at, YCLF_at, YDAR_at, YDBM_at, YDDK_at, YDDM_at,

YEBC_at, YHFH_r_at, YHZA_at, YOAB_at, YODF_at, YRPE_at, YRVJ_at, YTGA_at, YTGB_at,
YTGD_at, YTIA_at, YXLC_at, YXLD_at, YXLE_at, YXLF_at, YXLG_at, YXLJ_at

ScalL LYSC_at, SPOIISA_at, XHLA_at, XKDS_at, XTRA_at, YCGN_at, YCGO_at, YCKE_at, YDDK_at,

YEBC_at, YHCL_at, YOAB_at, YURQ_at, YXLD_at

DC.VS FLHO_at, RPLX_at, xepA_at, YCKE_at, YQKD_at, YRHC_at, YWRO_at

Table 3.20: Selected genes in the univariate standardized riboflavin data for each of the
eleven considered procedures. Genes selected 9 times are highlighted in coral color, the
ones selected 7 times in violet and those corresponding to 6 times in blue.

Bühlmann et al. (2014) apply stability selection with randomized LASSO over the
riboflavin data and detect three stable genes: LYSC_at, YOAB_at, and YXLD_at. The
most similar selection is the one performed by the adaptive versions, AdapL.min and
AdapL.1se, considering the univariate standardization. These techniques select 7 and 4
genes of the p = 4088 available, respectively, including YOAB_at and YXLD_at. The LASSO
versions, jointly with the RelaxL, the SqrtL, and the ScaL select the LYSC_at gen under



112 CHAPTER 3. DEPENDENCE AND SCALE EFFECTS ON LASSO

the univariate standardization framework. However, only the Relax and the SqrtL choose
this in the selection process using the raw data. As it has been seen for different examples
in Sections 3.1 and 3.2, this gen could be a relevant one, but a greater sample size could
be needed to recover this. Furthermore, other important genes could be avoided in the
Bühlmann et al. (2014) selection because of the same reason. Some possible candidates
would be those repeated a great number of times or the ones selected for procedures that
have displayed a more robust behavior in simulations, such as the AdapL.1se or the Dant.

In conclusion, although a larger sample size would be necessary to ensure adequate
recovery of the relevant terms, the covariates selection algorithms for the context p > n

allow a great dimensionality reduction. From p = 4088 genes, all algorithms select fewer
than n = 71 terms. Besides, one can work with fewer than 10 covariates using the selections
of the AdapL.min, AdapL.1se, Dant, or DC.VS approaches. This transforms the problem
into a tractable one.

3.4.2 Prostate cancer

Here, an additional medical study is analyzed. In this case, eight clinical measures are
employed to explain the level of prostate-specific antigen before surgery in men which
suffer from prostate cancer. These results in p = 8 covariates measured in n = 97 patients.
This example has covariates with similar scale ranges, except for two of them. Besides,
these mainly have medium and strong positive dependence relations between them. More
details and an explanatory analysis can be found in Section 2.5.2. This data is introduced
in Stamey et al. (1989) and has been previously studied in works as Hastie et al. (2009)
(Chapter 3) or Székely and Rizzo (2014) applying covariates selection techniques. In Hastie
et al. (2009) and Székely and Rizzo (2014), a training sample of n = 67 individuals is
employed to select covariates and then, the remaining 30 samples are used to perform
prediction. Next, following their same guidelines, results of the studied covariates selection
procedures introduced in Section 3.1.3 are obtained and compared with theirs.
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Figure 3.25: Number of selected covariates for the considered procedures for raw data
(left) and univariate standardized data (right) of the prostate cancer data set.

An analysis of the data under without and univariate standardizations is performed.
As mentioned above, the training set is employed for selecting which covariates are the
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relevant ones, and then, the test set is used to measure the models’ prediction capability
following Hastie et al. (2009) guidelines. In contrast with Hastie et al. (2009) and Székely
and Rizzo (2014), we do not start standardizing each variable considering all n = 97
samples. Instead, we work with the raw data in the without standardization case, and
we standardize separately, the training and test sets, in the univariate version. In both
scenarios, we work with all variables centered to avoid the intercept in the regression model.
This is done without loss of generality. Again, we distinguish between training and test
sets to center the variables. This is motivated to correctly guarantee that the intercept is
null in the covariates selection as well as prediction steps. We calculate the mean squared
error using the test set to measure the prediction capability of each considered procedure
in terms of their selected covariates. For this purpose, we adjust a classical linear model
considering only the covariates obtained in the first step. This is a common way to proceed
for guaranteeing a better estimation of the parameters vector (see, for example, Belloni
and Chernozhukov (2013)).

In this data set, we appreciate first that the number of selected covariates is the same
as in the without and univariate frameworks for all procedures except for the LASSO.BIC.
This last approach selects 5 covariates in the without standardization version and two when
applying the univariate one. This information is summarized in Figure 3.25. Moreover, as
it is displayed in Table 3.22, all algorithms select the same covariates for without/univariate
standardization but for the LASSO.1se, changing age for svi, the LASSO.BIC, removing
age, lbph and pgg45, and the ScalL switching age by svi. At this point, it is interesting to
note that all covariates are in similar scales except age and gleason, which have higher scale
values (see Section 2.5.2 for more details). Hence, when applying univariate standardization,
it makes sense for an algorithm to discard these if they are not relevant. Furthermore, to
detect relevant covariates, one can start studying which are the ones more times selected
for all algorithms. See these results in Table 3.21. We appreciate that the covariates most
relevant, understanding these as the ones selected equal or greater than 6 times, seem to
be the lcavol and the lweight, followed by lbph, svi, pgg45, and age. In contrast, lcp and
gleason can be assumed as noise.

lcavol lweight age lbph svi lcp gleason pgg45
WITHOUT 11 10 6 7 5 3 1 7

UNIVARIATE 11 10 3 6 7 3 1 6

Table 3.21: Number of times each covariates is selected for the 11 considered procedures.

Assuming that lcavol, as well as lweight, are the relevant covariates, it is appreciated
in Table 3.22 as only LASSO.BIC in the univariate case, AdapL.1se, Dant, and DC.VS
select these without adding noise to the model. This fact properly corresponds with results
for dependence data with different scales. As we saw in Sections 3.1 and 3.2 only these
procedures perform well when there exists dependence between covariates. If these results
are compared with the ones of Hastie et al. (2009) and Székely and Rizzo (2014), it is
observed that this pair of covariates are always selected for all procedures too. In the
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LASSO performance of Hastie et al. (2009) lbph and svi are selected as well and for the
pdCor procedure of Székely and Rizzo (2014) this adds gleason and svi. At this point, it
is important to remark on some things. First, a different selection is done between our
LASSO.1se algorithm and the LASSO implementation of Hastie et al. (2009) (see Table
3.22). This can be explained by two different facts: the way data is processed and the
descent coordinates algorithm employed to obtain the penalization value of λ. This last
gets different results for every run, even for the same data and context, changing the
set of selected variables. Thus, it is not so surprising that one can get different results.
Second, related to pdCor, it is important to take into consideration the differences in the
selection process. Whereas pdCor searches for all types of partial relation in a forward way
between covariates and response, considered penalization techniques assume linearity in
the regression model. As it is argued in Székely and Rizzo (2014), they found that the
relation between lpsa and gleason seems not to be perfectly linear. As a result, it makes
sense for the considered algorithm devoted to linear regression, to not take into account
this last covariate.

Eventually, in terms of prediction, one can compare obtained MSE (see Table 3.22) in
an illustrative and exploratory way. Procedures labeled as optimal ones in terms of adding
only relevant covariates, LASSO.BIC in the univariate case, AdapL.1se, Dant, and DC.VS,
gets the highest MSE values. Nevertheless, if one applies observed results for simulations
with dependence structures and covariates in different scales, it has been seen that the rest
of the procedures tend to overestimate the results. Besides, it is interesting to consider
that a good trade-off between a fewer number of covariates and an increment in MSE is
obtained. The best prediction result is achieved for LASSO.min adding all covariates and
getting a MSE = 0.323. In contrast, the worst result is achieved for the AdapL.1se with a
MSE = 0.479 but this only takes into consideration a covariate. As a result, it seems worth
it to lose some MSE accuracy to get harmony. If the MSE calculation is applied to the
selection made by the LASSO algorithm of Hastie et al. (2009) and the pdCor of Székely
and Rizzo (2014), it is obtained values of MSE = 0.349 and MSE = 0.455, respectively,
for both without and univariate standardizations. Because of these results, it seems that
the inclusion of more covariates does not improve too much the prediction results. For the
LASSO of Hastie et al. (2009) one can see simpler models as the one of the RelaxL obtains
a similar MSE avoiding an extra covariate. In contrast, for the pdCor, models which only
consider lcavol and lweight, as the LASSO.BIC in the univariate case, Dant or DC.VS,
improve the MSE value with two fewer covariates. This last can be explained because of
the nonlinear relation between lpsa and gleason variables.

3.4.3 Body fat

Next, the body fat data set introduced in Section 2.5.3 of Chapter 2 is used for covariates
selection. In this case, it is wanted to detect relevant covariates for the body fat explanation.
In particular, p = 14 covariates are considered. These are body measures taken in n = 252
men. After applying some data transformation to avoid skewness and possible outliers,
the considered sample size is n = 239 individuals. Details of the employed processes are
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SELECTED MODEL MSE

LASSO.min WITHOUT: lpsa ∼ lcavol + lweight + age + lbph + svi + lcp + gleason + pgg45 0.323
UNIVARIATE: lpsa ∼ lcavol + lweight + age + lbph + svi + lcp + gleason + pgg45 0.323

LASSO.1se WITHOUT: psa ∼ lcavol + lweight + age + lbph + pgg45 0.438
UNIVARIATE: lpsa ∼ lcavol + lweight + lbph + svi + pgg45 0.345

LASSO.BIC WITHOUT: lpsa ∼ lcavol + lweight + age + lbph + pgg45 0.438
UNIVARIATE: lpsa ∼ lcavol + lweight 0.471

AdapL.min WITHOUT: lpsa ∼ lcavol + lweight + age + lbph + svi + lcp + pgg45 0.323
UNIVARIATE: lpsa ∼ lcavol + lweight + age + lbph + svi + lcp + pgg45 0.323

AdapL.1se WITHOUT: lpsa ∼ lcavol 0.479
UNIVARIATE: lpsa ∼ lcavol 0.479

SCAD WITHOUT: lpsa ∼ lcavol + lweight + age + lbph + svi + lcp + pgg45 0.323
UNIVARIATE: lpsa ∼ lcavol + lweight + age + lbph + svi + lcp + pgg45 0.323

Dant WITHOUT: lpsa ∼ lcavol + lweight 0.471
UNIVARIATE: lpsa ∼ lcavol + lweight 0.471

RelaxL WITHOUT: lpsa ∼ lcavol + lweight + svi 0.354
UNIVARIATE: lpsa ∼ lcavol + lweight + svi 0.354

SqrtL WITHOUT: lpsa ∼ lcavol + lweight + lbph + svi + pgg45 0.345
UNIVARIATE: lpsa ∼ lcavol + lweight + lbph + svi + pgg45 0.345

ScalL WITHOUT: lpsa ∼ lcavol + lweight + age + lbph + pgg45 0.438
UNIVARIATE: lpsa ∼ lcavol + lweight + lbph + svi + pgg45 0.345

DC.VS WITHOUT: lpsa ∼ lcavol + lweight 0.471
UNIVARIATE: lpsa ∼ lcavol + lweight 0.471

LASSO lpsa ∼ lcavol + lweight + lbph + svi 0.349

pdCor lpsa ∼ lcavol + lweight + gleason + svi 0.455

Table 3.22: Selected covariates for the considered procedures using the prostate data
training set and for the LASSO approach of Hastie et al. (2009) and the pdCor of Székely
and Rizzo (2014). MSE: mean squared error obtained using the test set with the previous
selected covariates.

given in Section 2.5.3. This data set has covariates highly correlated between them as it is
displayed through its correlation matrix values (see Section 2.5.3). Moreover, these are
in different scales as well. Then, covariates selection is performed using the procedures
introduced in Section 3.1.3. Next, the obtained results are analyzed following the criteria
of Sections 3.1 and 3.2.

Again, we work with the data center without loss of generality and consider both:
without and univariate standardizations. The number of covariates selected by each of the
studied algorithms is shown in Figure 3.26. In this example, all procedures tend to select
fewer covariates applying the univariate standardization. Dant and DC.VS algorithms are
the only procedures that keep selecting a covariate in both frameworks. This fact may be
motivated by the notable differences in the scale values of the covariates. In the univariate
standardization case, most algorithms select fewer than 4 covariates. This last may be
because of the existence of strong correlations between covariates. Thus, just a bunch of
covariates may explain all the information. In contrast, for the without standardization
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Figure 3.26: Number of selected covariates for the considered procedures for raw data
(left) and univariate standardized data (right) of the body fat data set.

case, only the AdapL.1se, Dant, SqrtL, and DC.VS select fewer than 4 terms. Given
the results of Sections 3.1 and 3.2, we see that the AdapL.1se, the Dant, and sometimes
the DC.VS approach tend to be more conservative in the sense that these select fewer
covariates but guarantee that these are relevant with a high probability. This contrast
with other procedures that select more features for a proper recovery of the complete S
set, but these add quite a noise in exchange.

Model X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14

LASSO.min ✓✓ ✓✓ ✓ ✓✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
LASSO.1se ✓✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
LASSO.BIC ✓✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
AdapL.min ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
AdapL.1se ✓ ✓ ✓

SCAD ✓✓ ✓✓ ✓✓ ✓✓
Dant ✓✓

RelaxL ✓✓ ✓✓ ✓✓ ✓✓ ✓ ✓✓ ✓✓ ✓ ✓ ✓✓
SqrtL ✓✓ ✓✓ ✓✓
ScalL ✓ ✓✓ ✓ ✓✓ ✓ ✓ ✓ ✓ ✓

DC.VS ✓✓

TOTAL: 8/11 8/5 7/1 8/5 5 4 6 4/1 7/2 3 3 6 1/1 5

Table 3.23: Selected covariates without standardization (✓) and with univariate standard-
ization (✓). Covariates are denoted as X1: Density, X2: Age, X3: Weight, X4: Height,
X5: Neck, X6: Chest, X7: Abdomen, X8: Hip, X9 : Thigh, X10 : Knee, X11 : Ankle,
X12 : Biceps, X13 : Forearm, X14 : Wrist.

Covariates selected for each algorithm, distinguish between without and univariate
frameworks, are collected in Table 3.23. The terms most selected for both types of
standardizations are density, age, and height, followed by thigh and weight. In particular,
in the univariate standardization scenario, several procedures select only the density
covariate. Some of these are the LASSO.BIC, the AdapL.1se, the Dant, and the DC.VS.
This fact makes sense taking into consideration that Siri’s equation (see Siri (1956)) claims
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that the BodyFat can be explained by the Density parameter as

BodyFat = 4.95/Density− 4.50.

Thus, this is an example where consideration of data without standardization when
there are covariates on very different scales can lead to wrong results, selecting irrelevant
terms and avoiding important ones. In addition, due to strong dependence patterns between
covariates (see Section 2.5.3), confusion phenomena arise. This translates into procedures
adding irrelevant terms even in the univariate standardized framework. As a consequence,
this real data example asserts the result previously obtained along Sections 3.1 and 3.2.4.
These claim that the best options for scenarios having covariates with different scales
under dependence are the LASSO.BIC (only for the n > p case), univariate standardized
AdapL.1se, univariate standardized Dant, and DC.VS algorithms.

3.4.4 Portuguese wine

Eventually, covariates selection is applied over a Portuguese red wine data set. This is
introduced jointly with an exploratory analysis in Section 2.5.4 of Chapter 2. In this case,
a total of p = 10 physicochemical parameters are employed to explain the alcohol content.
These are measured for n = 1599 wines. After some transformation of the data to avoid
skewness and outliers (the reader is referred to Section 2.5 for more details), a total of
n = 1519 samples are considered in the study. This is also an example where there exists
some, but not too much, strong correlations between covariates. Besides, there are only
two considered covariates that have quite different ranges of values.
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Figure 3.27: Number of selected covariates for the considered procedures for raw data
(left) and univariate standardized data (right).

After centering the data, we start analyzing results for the considered covariates selection
techniques under both: without and univariate standardization frameworks. In this case,
results about the number of selected covariates do not differ too much between the two
types of standardization as it can be appreciated in Figure 3.27. They vary between four
units at most from one standardization to another in each methodology. Algorithms such
as the LASSO.min, SCAD, Dant, SqrtL, and DC.VS select the same number in both
frameworks. The rest of the procedures select fewer covariates in the univariate version
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in comparison with the without case except for the AdapL.1se as well as the ScalL. It is
shown in Figure 3.27 how all algorithms add at least six covariates except for the without
AdapL.1se and Dant procedures.

Model X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

LASSO.min ✓✓ ✓✓ ✓✓ ✓✓ ✓✓ ✓ ✓✓ ✓ ✓✓ ✓✓
LASSO.1se ✓✓ ✓ ✓✓ ✓✓ ✓ ✓ ✓✓ ✓ ✓✓ ✓✓
LASSO.BIC ✓✓ ✓✓ ✓✓ ✓✓ ✓ ✓ ✓✓ ✓ ✓✓ ✓✓
AdapL.min ✓✓ ✓✓ ✓✓ ✓✓ ✓ ✓ ✓✓ ✓ ✓✓ ✓✓
AdapL.1se ✓ ✓ ✓ ✓ ✓ ✓

SCAD ✓✓ ✓✓ ✓✓ ✓✓ ✓✓ ✓✓ ✓✓ ✓✓
Dant ✓✓

RelaxL ✓✓ ✓✓ ✓✓ ✓✓ ✓ ✓✓ ✓✓ ✓✓ ✓✓
SqrtL ✓✓ ✓✓ ✓✓ ✓✓ ✓✓ ✓✓ ✓✓
ScalL ✓✓ ✓ ✓✓ ✓✓ ✓ ✓✓ ✓ ✓ ✓

DC.VS ✓✓ ✓✓ ✓✓ ✓✓ ✓✓ ✓✓

TOTAL: 9/10 7/5 8/8 9/10 5/1 5 10/9 5/11 8/10 8/10

Table 3.24: Selected covariates without standardization (✓) and with univariate standard-
ization (✓). Covariates are denoted as X1: fixed acidity, X2: volatile acidity, X3: citric
acidity, X4: sugar, X5: chlorides, X6: free sulfur, X7: total sulfur, X8: density, X9: pH,
X10: sulphates.

Next, it is analyzed which covariates are the most selected in each scenario. These
depend on the type of employed standardization as expected. These results are summarized
in Table 9. In terms of all standardized versions, fixed acidity, sugar, total sulfur, pH,
and sulphates are the ones repeated between the five most selected. These are followed
by citric acid and volatile acidity. The covariates most times excluded are the free sulfur
and chlorides. The density feature is in the middle: this is quite relevant using univariate
standardization but not for the without case. One can see that, in global terms, selection
results are quite similar between both standardizations. Nevertheless, the covariates’
importance, in terms of the percentage of times selected, changes from one procedure to
another as normal.

The procedures which select most of the popular terms, without the inclusion of too
many noisy ones, are the univariate AdapL.1se and both DC.VS versions. These two
procedures also choose the density term, which is popular under the univariate selection,
and the univariate AdapL.1se does not select total sulfur. Conversely, without AdapL.1se
only chooses this covariate. The fact that the Dant algorithm only selects the density
covariate in both frameworks is striking, which contrasts with previous results where this
procedure obtained similar results to the AdapL.1se and DC.VS procedures. Considering
these facts and that there are dependence and scale effects, DC.VS or univariate AdapL.1se
covariates selection seems a reasonable option for alcoholic context explanation.



Chapter 4
Novel distance-based dependence measures

for complex data

Until now, we have displayed how to apply covariates selection in the high dimensional
framework when a model structure is assumed, as shown for the linearity assumption in
Chapters 2 and 3. However, it is not always possible to know the structure of the model in
advance, and one has to go one step further. In particular, we focus here on covariates
selection techniques without any assumption in the regressor function. For this purpose,
novel distance-based dependence measures are employed to construct appropriate statistics
and perform significance tests. Specifically, these ideas are used to select covariates in
complex models where estimating a sufficiently flexible regression function is a tough
problem. These novel coefficients are based on modifications of the innovative distance
covariance of Székely et al. (2007). We start motivating the necessity of these new
dependence measures in Section 4.1, reviewing existing coefficients for detecting dependence
patterns and their drawbacks. Next, some of the resulting distance coefficients used to
test different types of dependence are introduced throughout Section 4.2. Eventually, a
discussion on their use and advantages in complex models is carried out in Section 4.3.

4.1 Classical measures of dependence

The first dependence measure for random vectors is the well-known correlation coefficient.
See, for example, Pearson (1920). This can be used to perform covariate selection in
regression models by selecting those covariates with the highest correlation values with
the response. Nevertheless, this is only capable of detecting linear relations. In order to
identify other types of dependence patterns, new measures arose, like the ones based on
ranks. Examples of these are the Spearman’s coefficient (Wissler (1905)) or the Kendall’s
τ (Kendall (1938)). These coefficients are robust to outliers and can detect any type
of monotone dependence structure. Despite these improvements, many non-monotonic
dependence patterns still cannot be detected by these coefficients, being unsuitable for some
regression models. Besides, all these coefficients only measure the grade of dependence of
every covariate separately, ignoring the information provided by the remaining ones in the
process. As a result, their computational cost increases in terms of the p size, having to
apply a total of p comparisons. An example of their performance is displayed in Figure 4.1.

In 2007, Székely et al. (2007) introduced the concept of distance covariance (DC) and
its scale-invariant version, the distance correlation. As its name suggests, this last computes
the existing correlation between sample distances. This coefficient is able to detect all
types of possible dependence relations, solving the previous limitations of the correlation
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Figure 4.1: Value of the correlation coefficient (ρ), Spearman’s coefficient (θ), Kendall’s
one (τ) and distance correlation (DC) for different simulated scenarios.

coefficients. Moreover, no preliminary assumption about the model structure is needed.
This contrasts with the widely employed use of regularization techniques (see Chapters
2 and 3). As a result, it is possible to perform covariates selection using DC procedures
for any regression model. Some examples are the approach of Székely et al. (2007), the
DC-SIS (distance covariance sure independence screening) procedure of Li et al. (2012),
applying the SIS (sure independence screening) algorithm for linear models of Fan and Lv
(2008), or the partial distance correlation methodology of Székely and Rizzo (2014). The
first and third procedures apply tests of independence by constructing a suitable statistic
based on DC ideas. In contrast, the DC-SIS algorithm sorts the covariates using their
associated DC value and then applies a threshold to keep only the most relevant ones in
terms of model explanation. Another procedure iteratively using DC is the one proposed
by Febrero-Bande et al. (2019) for additive formulations of the regression function. See
Section 2.4.10 for more details about this method.

Recently, two new modifications of the DC coefficient were proposed to test different
types of dependence. These are the martingale difference divergence (MDD) of Shao and
Zhang (2014) and the conditional distance covariance (CDC) of Wang et al. (2015). The
MDD coefficient is employed to test the causality of a vector Y ∈ Rq conditioned to a scalar
random variable X ∈ R, whereas the CDC tests the conditional dependence of two random
vectors X ∈ Rp and Y ∈ Rq, given a third one Z ∈ Rr. Both coefficients can be used for
specification testing and to perform covariates selection procedures. Some examples are the
works of Shao and Zhang (2014) as well as Zhang et al. (2018) for the MDD case, and the
procedure proposed in Wang et al. (2015) for the CDC performance. Furthermore, partial
versions of the DC (see Székely and Rizzo (2014)) and the MDD coefficients (see Park
et al. (2015)) have been proposed as well. These last test the corresponding independence
between X and Y once the effect of a covariate Z has been removed. A summary of all
these tests is displayed in Table 4.1 at the end of Section 4.2.
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4.2 Novel distance-based dependence measures

In this section, the DC, MDD, and CDC coefficients are introduced in detail in Sections
4.2.1, 4.2.2, and 4.2.3, respectively. Some of their most notable properties are displayed
and proper estimators are obtained for each coefficient.

4.2.1 Distance covariance (DC)

The DC coefficient introduced in Székely et al. (2007) is a new measure of dependence that
detects all possible types of relations between two random vectors of arbitrary dimension.
Thus, given X ∈ Rp and Y ∈ Rq with p, q ≥ 1, the DC tests if this pair of random vectors
is independent. This test is defined by

H0 : X ⊥ Y vs. H1 : X ̸⊥ Y, (4.1)

where X ⊥ Y denotes independence between X and Y .
In particular, two random vectors are said to be independent when it is verified that

FX,Y = FXFY , where FX and FY are the distribution functions of X and Y , respectively,
and FX,Y their joint distribution. Rewriting this condition in terms of their associated
characteristic functions, the independence test can be formulated as

H0 : φX,Y = φXφY vs. H1 : φX,Y ̸= φXφY (4.2)

where φX,Y is the joint characteristic function and φX , φY the marginal versions of X, Y .
In order to test the null hypothesis of (4.2), a statistic measuring whether the difference

φX,Y − φXφY is significant, is needed. This is the main motivation for the construction of
the DC coefficient (Székely et al. (2007), Szekely and Rizzo (2017)).

Thus, a weighted L2 norm (∥ · ∥2w) defined in the Rp ×Rq space of complex functions is
considered to measure the difference between φX,Y and φXφY . This norm is defined as

∥φX,Y (t, s)− φX(t)φY (s)∥2w =
∫
Rp×Rq

|φX,Y (t, s)− φX(t)φY (s)|2w(t, s) dt ds, (4.3)

where w(·, ·) is a weight function that must be correctly selected to ensure the existence of
the above integral and |f | = ff̄ , being f(·) a complex value function with conjugate f̄(·).

Therefore, once a suitable weight function w(·, ·) is selected, one can consider as
a measure of dependence DC2(X,Y ;w) = ∥φX,Y (t, s) − φX(t)φY (s)∥2w. This quantity
satisfies that DC2(X,Y ;w) = 0 if and only if X and Y are independent. Particularly,
dividing DC2(X,Y ;w) by

√
DC(X;w)DC(Y ;w), where

DC2(X;w) =
∫
R2p
|φX,X(t, s)− φX(t)φX(s)|2w(t, s) dt ds, (4.4)

it is obtained a type of unsigned correlation coefficient, DCorw. This term, DCorw, is an
extension of the correlation coefficient for all types of dependence relations.
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Following these guidelines, Székely et al. (2007) take

w(t, s) = (cpcq∥t∥1+p
p ∥s∥1+q

q )−1dt ds for cp = π(p+1)/2

Γ((p+ 1)/2) and cq = π(q+1)/2

Γ((q + 1)/2) ,

(4.5)
where ∥ · ∥p and ∥ · ∥q are the euclidean norms in Rp and Rq and Γ(·) the gamma function.

Making a little abuse of notation, it is written ∥·∥2 henceforth for short, instead of ∥·∥2ω,
as the L2 norm using the weight function defined above. Thus, to guarantee the finiteness
of ∥φX,Y (t, s)−φX(t)φY (s)∥2, it is sufficient that E[∥X∥p] <∞ and E[∥Y ∥q] <∞. Hence,
the DC between two random vectors X and Y with finite first moments is the nonnegative
number DC(X,Y ) defined by

DC2(X,Y ) = ∥φX,Y (t, s)− φX(t)φY (s)∥2 = 1
cpcq

∫
Rp+q

|φX,Y (t, s)− φX(t)φY (s)|2

∥t∥p+1
p ∥s∥q+1

q

dt ds,

(4.6)
and the distance variance coefficient is given as the square root of

DC2(X) = DC2(X,X) = ∥φX,X(t, s)− φX(t)φX(s)∥2. (4.7)

In a similar way, the distance correlation coefficient between two random vectors X
and Y with finite first moments is the nonnegative number DCor(X,Y ) given by

DCor2(X,Y ) =


DC2(X,Y )√

DC2(X)DC2(Y )
, DC2(X)DC2(Y ) > 0,

0, DC2(X)DC2(Y ) = 0.
(4.8)

This term verifies that 0 ≤ DCor(X,Y ) ≤ 1, and DCor(X,Y ) = 0 if and only if X
and Y are independent.

Alternative expressions for the squared DC coefficient given in (4.6) are

DC2(X,Y ) =E
[
∥X ′ −X ′′∥p∥Y ′ − Y ′′∥q

]
+E

[
∥X ′ −X ′′∥p

]
E
[
∥Y ′ − Y ′′∥q

]
− 2E

[
∥X ′ −X ′′∥p∥Y ′ − Y ′′′∥q

] (4.9)

and

DC2(X,Y ) =EX′Y ′
[
EX′′Y ′′

[
∥X ′ −X ′′∥p∥Y ′ − Y ′′∥q

]]
+EX′X′′

[
∥X ′ −X ′′∥p

]
EY ′Y ′′

[
∥Y ′ − Y ′′∥q

]
−2EX′Y ′

[
EX′′

[
∥X ′ −X ′′∥p

]
EY ′′

[
∥Y ′ − Y ′′∥q

]] (4.10)

where (X ′, Y ′), (X ′′, Y ′′) and (X ′′′, Y ′′′) are iid copies of (X,Y ). The reader is referred to
Székely et al. (2007) for more details.

Next, empirical estimators of all these quantities are introduced to be able to perform
the test (4.1) in practice. Given (Xn,Yn) = {(Xi, Yi), i = 1, . . . , n} an iid sample from the
joint distribution function of (X,Y ) ∈ Rp × Rq, it is defined Ail = ail − āi· − ā·l + ā·· by



4.2. Novel distance-based dependence measures 123

means of quantities

ail = ∥Xi −Xl∥p, āi· = 1
n

n∑
l=1

ail, ā·l = 1
n

n∑
i=1

ail and ā·· = 1
n2

n∑
i,l=1

ail, (4.11)

and similarly Bil = bil − b̄i· − b̄·l + b̄·· with bil = ∥Yi − Yl∥q. Then, the squared empirical
distance covariance DC2

n(Xn,Yn), being the empirical estimator of (4.6), is the nonnegative
number defined by

DC2
n(Xn,Yn) = 1

n2

n∑
i,l=1

AilBil. (4.12)

Respectively, the empirical distance variance DCn(Xn) is the square root of the nonnegative
number given by

DC2
n(Xn) = DC2

n(Xn,Xn) = 1
n2

n∑
i,l=1

A2
il. (4.13)

In summary, the estimator of DC2(X,Y ) given in (4.12) is obtained as the multiplication
of the matrices resulting from centering the sample distances twice.

Moreover, the empirical distance correlation coefficient, DCorn(Xn,Yn), is defined as
the square root of

DCor2
n(Xn,Yn) =


DC2

n(Xn,Yn)√
DC2

n(Xn)DC2
n(Yn)

, DC2
n(Xn)DC2

n(Yn) > 0,

0, DC2
n(Xn)DC2

n(Yn) = 0.
(4.14)

This coefficient verifies that 0 ≤ DCorn(Xn,Yn) ≤ 1, similar to the population version
introduced in (4.8). Besides, if DCorn(Xn,Yn) = 1, then there exist a vector a, a nonzero
real number b and an orthogonal matrix C such that Yn = a+ bXnC. Furthermore, it is
almost surely guaranteed that limn→∞DCor2

n(Xn,Yn) = DCor2(X,Y ). More properties
about DC2

n(Xn,Yn), DCn(Xn) and DCorn(Xn,Yn) are derived in Székely et al. (2007).
In terms of asymptotic distribution, under the null hypothesis of independence,

nDC2
n(Xn,Yn)/S2 converges in distribution to a quadratic form Q

D=∑∞
m=1 cmG

2
m, being S2

a normalizing factor defined in Székely et al. (2007), {Gm}∞m=1 independent standard nor-
mal random variables and {cm}∞m=1 nonnegative constants that depend on the distribution
of (X,Y ). In contrast, if the independence hypothesis is violated, nDC2

n(Xn,Yn)→∞ in
probability as n→∞. As a result, a test that rejects the null hypothesis of independence
for large values of nDC2

n(Xn,Yn) is consistent in an omnibus way against dependence al-
ternatives. In practice, it is possible to approximate the limiting distribution by resampling
techniques, for example using permutation tests or bootstrap algorithms.

It is interesting to note that DC can be used not only for independence tests but also
for Goodness-of-Fit (GoF) ones. An example is the work of Xu and He (2021). In this, a
procedure based on DC is employed to test the null hypothesis H0 : X ⊥ ε and m ∈Mβ

in the regression model Y = m(X) + ε with m ∈ Mβ = {g(x)⊤β : β ∈ Rp} for a given
known function g(·). In this context, the corresponding Yn term is obtained using the
residuals of the fitted model.
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Another interesting extension of the DC coefficient is its use for partial tests. In
particular, Székely and Rizzo (2014) introduced the concept of partial distance covariance
(pDC) and an analogous correlation version. Then, given an extra random vector Z ∈ Rr,
which is known to contribute to the variation of Y , it is measured the dependence between
Y and X after removing their respective dependence on Z. This can be denoted as
H0 : PZ⊥(X) ⊥ PZ⊥(Y ), where PZ⊥(X) as well as PZ⊥(Z) are the orthogonal projections
of the U-centered distance matrix of X, respectively Y , onto Z⊥, being this last the
orthogonal space generated by the U-centered distance matrix of Z. This translates into
testing if pDC can be assumed to be null.

Despite all the good qualities displayed by the empirical versions of the distance covari-
ance and correlation coefficients, these exhibit some disadvantages as well. The squared
empirical distance covariance DC2

n(Xn,Yn), introduced in (4.12), is a biased estimator of
(4.6). In particular, its bias increases with the dimensions of X and Y , i.e. when p, q →∞.
As a result, this translates into the fact that DCn(Xn,Yn) and DCorn(Xn,Yn) are biased
estimators of DC(X,Y ) and DCor(X,Y ), respectively. Furthermore, quoting Székely and
Rizzo (2013), although distance correlation characterizes independence, interpretation of
the size of DCorn(Xn,Yn) without a formal test is difficult in high dimensions. This
is owing to the fact that DCor2

n(Xn,Yn) −→ 1 as p, q → ∞, even though X and Y

are independent. To face these problems, a new unbiased sample estimator for distance
covariance/ variance and a modified distance correlation statistic are proposed by Székely
and Rizzo (2013). This new statistic is based on plug-in the new unbiased versions of DC
in the numerator and denominator of expression (4.14). This statistic verifies that, under
the null hypothesis of independence, this converges to a Student t distribution. As a result,
this new approach also solves the inconsistency problem in high dimensions.

An additional problem is the computational associated with constructing the distance
matrices. Some recent works, such as Huo and Székely (2016) or Chaudhuri and Hu (2019),
have proposed some alternatives to reduce this cost in the case of considering two univariate
random variables. New solutions applying to the vectorial framework are desirable and
need to be considered in the future.

Eventually, it is interesting to remark on the natural relation between DC and the
Hilbert-Schmidt Independence Criterion (HSIC) of Gretton et al. (2005). The HSIC
employs the cross-covariance operator between two random vectors, defined in different
reproducing kernel Hilbert spaces (RKHSs) with the universal kernel, to measure if there
exists some type of dependence between them. The independence is verified when the
HSIC operator takes the null value. The DC coefficient is just a particular case of the HSIC
operator replacing general kernel distances with Euclidean ones. Through the years, a
parallel evolution has been observed for both procedures. Some examples of papers linking
both ideas are the works of Sejdinovic et al. (2013), Hua and Ghosh (2015), Zhu et al.
(2020), or Edelmann and Goeman (2022), among others. As a result, the HSIC measure
can also be employed to perform independence tests, as in the work of Song et al. (2012),
or GoF tests, as it is done in Sen and Sen (2014) for simultaneous GoF and error-predictor
independence tests in linear models.
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4.2.2 Martingale difference divergence (MDD)

The MDD coefficient is another measure of dependence that was introduced by Shao and
Zhang (2014). This coefficient is a natural extension of the DC of Székely et al. (2007),
Szekely and Rizzo (2017) but to measure the departure from conditional mean independence
between a scalar response variable Y ∈ R and a predictor vector X ∈ Rp. The resulting
test problem is now

H0 : E[Y |X ] = E[Y ] vs. H1 : E[Y |X ] ̸= E[Y ]. (4.15)

Its name is inherited from the interpretation of the martingale difference concept in
probability. This means that, if the null hypothesis in (4.15) is verified, then Y − E[Y ] is a
martingale difference concerning the X vector.

Thus, following similar ideas and argumentation of the DC of Székely et al. (2007), the
MDD coefficient is designed to measure the difference between the conditional mean and
the unconditional one to perform (4.15). Then, the MDD of Y , given X, is the nonnegative
number MDD2(Y |X) defined as

MDD2(Y |X) = 1
cp

∫
Rp

|ψY,X(t)− ψY ψX(t)|2

∥t∥p+1
p

dt, (4.16)

where ψY,X(t) = E[Y ei<t,X>], ψY = E[Y ] and ψX(t) = φX(t).
The MDD coefficient defined in (4.16) verifies that MDD2(Y |X) ≥ 0. Besides, this

takes the null value if and only if the H0 hypothesis of (4.15) holds. This is called divergence
instead of distance because MDD2(Y |X) ̸= MDD2(X|Y ) in general.

Similar to the distance correlation coefficient displayed in (4.8), it is possible to define a
scale-invariant coefficient with the MDD ideas. This gives place to the martingale difference
correlation (MDC), being the square root of

MDC2(Y |X) =


MDD2(Y |X)√
var2(Y )V2(X)

, var2(Y )V2(X) > 0,

0, var2(Y )V2(X) = 0.
(4.17)

where V2(X) is the distance variance of X defined in (4.7). The MDC verifies that
0 ≤ MDC2(Y |X) ≤ 1. Similar properties as the ones of DC for MDD2(Y |X) and
MDC2(Y |X) are collected in Shao and Zhang (2014).

Park et al. (2015) proved that, if it is guaranteed that E[|Y |2] <∞, then an alternative
formulation for the MDD coefficient can be given. This is defined as

MDD2(Y |X) = 1
cp

∫
Rp

(1
2∆s|ψY,X(t)− ψY ψX(t)|2

∣∣∣
s=0

) 1
∥t∥p+1

p

dt, (4.18)

where φX,Y is now the joint characteristic function and φX , as well as φY , the marginal
versions of X and Y , respectively. Here, ∆sf denotes the Laplacian operator of a function
f . We refer to Park et al. (2015) for more details.
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Equation (4.18) establishes a close connection between the MDD and the DC coefficients.
In particular, expression (4.18) is directly related to the theoretical definition of the DC
coefficient given in (4.6).

Furthermore, it can be seen in Shao and Zhang (2014) or Park et al. (2015) that, if it
is verified that E[∥X∥3p] + E[|Y |3] <∞ and E[∥X∥2p] + E[|Y |2] <∞, an alternative form to
the definition (4.16) is given by

MDD2(Y |X) =E
[
∥X −X ′∥pL(Y, Y ′)

]
+ E

[
∥X −X ′∥p

]
E
[
L(Y, Y ′)

]
− 2E

[
∥X −X ′∥pL(Y, Y ′′)

]
=− E

[
(Y − E[Y ])

(
Y ′ − E[Y ′]

)
∥X −X ′∥p

] (4.19)

being (X ′, Y ′) and (X ′′, Y ′′) iid copies of (X,Y ) and L(y, y′) = (y − y′)2/2.
In this case, the first formulation of equation (4.19) is similar to the one associated

with the DC coefficient given in (4.9), just changing ∥Y − Y ′∥q by L(Y, Y ′) respectively.
This establishes another link between the MDD and the DC coefficients. The reader is
referred to the paper of Park et al. (2015) for a more in-depth analysis of the connection
between MDD and DC coefficients.

Taking a sample of i = 1, . . . , n iid observations (Xn,Yn) = {(Xi, Yi), i = 1, . . . , n}
from the joint distribution of (X,Y ) ∈ Rp × R, it is defined now Ail as in (4.11) and
Bil = bil − b̄i· − b̄·l + b̄··, where bil = |Yi − Yl|2/2, b̄i· = 1

n

∑n
l=1 bil, b̄·l = 1

n

∑n
i=1 bil and

b̄·· = 1
n2
∑n

i,l=1 bil for i, l = 1, . . . , n. The empirical estimator of MDD2(Y |X), i.e. the
sample martingale difference divergence version, can be defined as the nonnegative number

MDD2
n(Yn|Xn) = 1

n2

n∑
i,l=1

AilBil (4.20)

and its associated sample martingale difference correlation coefficient version is given by

MDC2
n(Yn|Xn) =


MDD2

n(Yn|Xn )√
var2

n(Yn)V2
n(Xn)

, var2
n(Yn)V2

n(Xn) > 0,

0, var2
n(Yn)V2

n(Xn) = 0,
(4.21)

where varn(Yn) = 1
n

∑n
i=1(Yi − Ȳ )2 with Ȳ = 1

n

∑n
i=1 Yi, and V2

n(Xn) is defined in (4.13).
If E

[
∥X∥p + |Y |2

]
< ∞, it is guaranteed that both estimators, MDD2

n(Yn|Xn) and
MDC2

n(Yn|Xn), converge to their population versions displayed in (4.16) and (4.17),
respectively, in an almost sure way. Proof of these results can be found in Shao and Zhang
(2014). Furthermore, under the null hypothesis of independence in mean, it is verified
that nMDD2

n(Yn|Xn) −→ ∥Γ (t)∥2 in distribution when n→∞, where Γ (·) is a Gaussian
process. Additionally, if E[Y 2|X ] = E[Y 2] is also guaranteed, nMDD2

n(Yn|Xn)/Sn −→ Q

in distribution when n→∞, where Q is a nonnegative quadratic form of centered Gaussian
random variable with E[Q] = 1 and Sn = 1

n2
∑

i

∑
l ∥Xi−Xl∥p 1

n

∑
i(Yi−Ȳn)2. In contrast, if

the null hypothesis is not verified, one has that nMDD2
n(Yn|Xn)/Sn −→∞ in probability

when n → ∞. The reader is referred to Shao and Zhang (2014) for more details. Even
though we know the asymptotic distribution for both H0 and H1 hypotheses, resampling
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procedures can be used in practice to calibrate the distribution of the test statistic. This
can be especially useful for small sample sizes.

As a result, using the estimators of the MDD or MDC introduced in (4.20) and (4.21),
respectively, it is possible to perform covariates selection in regression models, specifying
which covariates are the relevant ones. An example of this is the work of Shao and
Zhang (2014). They propose a screening procedure sorting out the covariates’ relevance in
terms of the regressor function explanation, i.e. based on E [Y |X ] explanation, and then
a proper cut-off is established to detect the significative covariates. Authors make use
of the MDC criteria to measure covariates’ relevance and establish an order. A different
approach is introduced in Zhang et al. (2018), performing covariates selection in terms of
causality. A statistic based on the MDD ideas is proposed to test the null hypothesis of
H0 : E

[
Y |Xj

]
= E[Y ] almost surely for all j = 1 . . . , p. A wild bootstrap scheme is also

provided to approximate the statistics distribution.
All these ideas can be transferred to GoF testing as well. An example is the work of Su

and Zheng (2017). These authors test the null hypothesis of H0 : P (E [Y |X ] = g(X,β)) = 1
for some β ∈ B, being B the parameter space and assuming Y = g(X,β) + ε, with g(·)
a known function. The MDD is applied making use of the covariates and the residuals
calculated under the null hypothesis. Calibration of the test is again done using a wild
bootstrap. A similar, but broader approach, is also provided by Teran Hidalgo et al. (2018)
making use of HSIC techniques.

Similar to the DC case, another extension of the MDD use is the implementation of
partial tests. Specifically, Park et al. (2015) proposed the partial martingale difference
divergence (pMDD) coefficient and its correlation analogous. These new coefficients
measure the departure from mean independence of two random vectors X ∈ Rp and
Y ∈ Rq once the effect of a third one, Z ∈ Rr, has been removed. With some abuse
of notation, the resulting mean independence test can be written as the null hypothesis
H0 : E

[
PZ⊥(Y )|P

Z⊥ (X)
]

= E[PZ⊥(Y )]. Thus, this null hypothesis of mean independence
will be accepted when these coefficients take the null value, i.e. pMDD=0.

Finally, it is interesting to mention that the MDD inherits some of the problems of the
DC coefficient. These are related to the high computational cost required and the bias of
the MDD and MDC estimators displayed in (4.20) and (4.21), respectively. As proposed by
Park et al. (2015) or Zhang et al. (2018), the bias can be corrected by applying U -centered
ideas. The resulting new unbiased estimator for the MDD coefficient is introduced later in
Section 5.2. Furthermore, Park et al. (2015) generalize the biased and unbiased versions of
the MDD and MDC coefficients, by allowing Y ∈ Rq where q ≥ 1.

4.2.3 Conditional distance covariance (CDC)

The CDC is a different coefficient of dependence introduced by Wang et al. (2015). This
term measures the dependence of two random vectors X ∈ Rp and Y ∈ Rq conditioned
to a third one, Z ∈ Rr, resulting in a conditional version of the DC coefficient introduced
above in Section 4.2.1. For this aim, conditional characteristic functions are employed, and
ideas of the DC coefficient are adapted to the conditional framework. As a result, this
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problem translates now into testing

H0 : X ⊥|Z Y vs. H1 : X ̸⊥|Z Y (4.22)

where X ⊥|Z Y denotes independence of X and Y conditioned to Z.

Using similar DC arguments, it is possible to rewrite (4.22) in terms of conditional
characteristic functions. This results in the new test given by

H0 : φX,Y |Z = φX|ZφY |Z vs. H1 : φX,Y |Z ̸= φX|ZφY |Z , (4.23)

where φX,Y |Z , φX|Z and φY |Z are the joint and marginal conditional characteristic functions.

Then, the CDC with finite first moments given Z (E[∥X∥p + ∥Y ∥q|Z ] <∞), is defined
as the square root of

CDC2(X,Y |Z) =∥φX,Y |Z (t, s)− φX|Z (t)φY |Z (s)∥2

= 1
cpcq

∫
Rp+q

|φX,Y |Z (t, s)− φX|Z (t)φY |Z (s)|2

∥t∥p+1
p ∥s∥q+1

q

dt ds
(4.24)

being ∥ · ∥ the weighted norm defined in Section 4.2.1 and cp as well as cq the constants
defined in (4.5).

Similarly, the conditional distance variance is the square root of

CDC2(X|Z) = CDC2(X,X|Z) = ∥φX,X|Z (t, s)− φX|Z (t)φX|Z (s)∥2.

The CDC coefficient, defined in (4.24), has analogous properties to the unconditional
version of (4.6). Particularly, it is verified that CDC(X,Y |Z) = 0 if and only if X and Y

are conditionally independent given Z.

Following an argument similar to that of the DC case, the conditional distance correla-
tion (CDCor) can be defined as the square root of

CDCor2(X,Y |Z) =


CDC2(X,Y |Z)√

CDC2(X|Z)CDC2(Y |Z)
, CDC2(X|Z)CDC2(Y |Z) > 0,

0, CDC2(X|Z)CDC2(Y |Z) = 0.
(4.25)

and this verifies that 0 ≤ CDCor(X,Y |Z) ≤ 1 and CDCor(X,Y |Z) = 0 if and only if X
and Y are conditionally independent given Z.

In order to construct an estimator of CDC2(X,Y |Z), the empirical characteristic
functions conditioned to Z can be plugged in (4.24). Note that, for the estimation
of conditional characteristic functions, one needs to resort to some kind of smoothing
techniques like, for example, kernel-type estimators. We refer the reader to Wang et al.
(2015) for more details. Thus, given Wi = (Xi, Yi, Zi), i = 1, . . . , n, an iid sample
from a random vector W = (X,Y, Z) ∈ Rp × Rq × Rr, denote by Xn = {X1, . . . , Xn},
Yn = {Y1, . . . , Yn}, Zn = {Z1, . . . , Zn}, and Wn = (Xn,Yn,Zn). As a result, the sample
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conditional distance covariance CDCn(Xn,Yn|Zn) is the square root of

C̃DC
2
n(Xn,Yn|Zn) = ∥φn

X,Y |Z (t, s)− φn
X|Z (t)φn

Y |Z (s)∥2, (4.26)

where φn
X,Y |Z , φn

X|Z and φn
Y |Z are the corresponding empirical conditional characteristic

functions for (X,Y ), X and Y , respectively.
Following Wang et al. (2015), let dijkl =

(
aX

ij + aX
kl − aX

ik − aX
jl

) (
bY

ij + bY
kl − bY

ik − bY
jl

)
and dS

ijkl = dijkl + dijlk + dilkj for i, j, k, l = 1, . . . , n, where aij and bij are defined as in
(4.11), and Z1, Z2, Z3 and Z4 are iid copies of Z. Then, it is verified that

CDC2(X,Y |Z=z) = 1
12E[dS

1234|Z1=z,Z2=z,Z3=z,Z4=z].

In consequence, the conditional dependence coefficients can be estimated by applying
kernel regression smoothing ideas to the above expectation. This will result in a V-process.
Using these ideas, the resulting sample conditional distance covariance is defined as the
square root of

CDC2
n(Wn|Z) = CDC2

n(Xn,Yn,Zn|Z) = 1
n4

∑
ijkl

Ψn(Wi,Wj ,Wk,Wl;Z) (4.27)

where Ψn is the symmetric random kernel of degree 4 defined in Schick (1997):

Ψn(Wi,Wj ,Wk,Wl;Z) = n4Φi(Z)Φj(Z)Φk(Z)Φl(Z)
12Φ4(Z) dS

ijkl,

where Φi(Z) = KH(Z − Zi) and Φ(Z) = ∑n
i=1 Φi(Z), being K a kernel function and H a

bandwidth matrix r-dimensional.
Besides, letting WXn = (Xn,Xn,Zn) and WYn = (Yn,Yn,Zn), the sample condi-

tional distance correlation can be analogously defined as the square root of

CDCor2
n(Wn|Z) =


CDC2

n(Wn|Z)√
CDC2

n(WXn |Z)CDC2
n(WYn |Z)

, CDC2
n(WXn |Z)CDC2

n(WYn |Z) > 0,

0, CDC2
n(WXn |Z)CDC2

n(WYn |Z) = 0.

It is verified that C̃DC
2
n(Wn|Z) = CDC2

n(Wn|Z) for a given sample Wn = {W1, . . . ,Wn}
from the joint distribution of (X,Y, Z). In addition, if E [∥X∥p + ∥Y ∥q|Z ] <∞ and Φ(Z)/n
is a consistent density function estimator of Z, then CDC2

n(Wn|Z) −→ CDC2(X,Y |Z) in
probability for each value of Z as n → ∞. See Wang et al. (2015) for more details and
properties of CDC2

n(Wn|Z).
Summing up, the CDC coefficient can be employed to perform covariates selection

conditioned to the Z term. Some examples are the works of Wang et al. (2015), Song et al.
(2020), or Lu and Lin (2020), to say a few. Wang et al. (2015) use the CDC to perform
the conditional independence test displayed in (4.22), applying conditioned covariates
selection. In particular, a statistic based on the CDC coefficient is defined, and a test
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is implemented calibrating this utilizing a local bootstrap. Other procedures related to
screening techniques for conditional dependence are the recent works of Song et al. (2020)
as well as Lu and Lin (2020). The first one adapts the ideas of Liu et al. (2014) using the
CDCor to specify significant covariates for general varying-coefficient regression models.
All covariates are sorted out based on their CDCor values, and then a threshold is applied.
In contrast, Lu and Lin (2020) start selecting an initial set of covariates, and measure
the relevance of the remaining terms conditioned to this subset. For this aim, they use
the CDCor, resulting in the CDC-SIS (conditional distance correlation sure independence
screening) algorithm.

Similar to the DC or the MDD coefficients, the CDC term suffers from a high-
computational cost. Moreover, the estimator displayed in (4.27) is biased. Nevertheless, an
unbiased version of the CDC can be defined analogously by applying ideas of U-processes
theory. This last is introduced in Wang et al. (2015) and has similar properties as the ones
exposed for (4.27).

Eventually, it is interesting to note that, as far as we know, there is still no equivalence
of the CDC criteria for the HSIC techniques. Furthermore, partial tests for conditional
independence have not yet been derived using CDC insights.

METHOD H0 :
HSIC

X ⊥ Y X ∈ Rp, Y ∈ Rq

Gretton et al. (2005)

DC
X ⊥ Y X ∈ Rp, Y ∈ Rq

Székely et al. (2007)

pDC PZ⊥(X) ⊥ PZ⊥(Y ) X ∈ Rp, Y ∈ Rq, Z ∈ Rr

Székely and Rizzo (2014)

MDD E[Y |X ] = E[Y ] X ∈ Rp, Y ∈ Rq

Shao and Zhang (2014), Park et al. (2015)

pMDD E
[
PZ⊥(Y )|P

Z⊥ (X)
]

= E[PZ⊥(Y )] X ∈ Rp, Y ∈ Rq, Z ∈ Rr

Park et al. (2015)

CDC
X ⊥|Z Y X ∈ Rp, Y ∈ Rq, Z ∈ Rr

Wang et al. (2015)

Table 4.1: Comparison of the independence tests performed by the Hilbert-Schmidt inde-
pendence criterion (HSIC), distance correlation (DC), partial distance correlation (pDC),
martingale difference divergence (MDD), partial martingale difference divergence (pMDD)
and conditional distance correlation (CDC). Here, ⊥ denotes orthogonality/independence,
⊥|Z independence conditioned to Z and PZ⊥(X) as well as PZ⊥(Z) the orthogonal projec-
tion of the U-centered distance matrix of X, respectively Y , onto Z⊥, being this last the
orthogonal space generated by the U-centered distance matrix of Z.
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4.3 Application in complex models

All of the novel dependence measures mentioned throughout Section 4.2 allow for indepen-
dence tests of a different nature. These apply to random vectors of arbitrary dimensions,
and no requirement of the type n > p is needed. Thus, the resulting coefficients can be
employed to perform different covariates selection techniques for regression models without
previous assumptions about the regressor function. As a result, no preliminary estimation
of the model is required. This last contradicts other approaches designed for the high
dimensional framework. An example is penalization techniques, where some structure
(linear, additive, etc.) needs to be assumed. See Chapters 2 and 3 for a study of their
implementation under the linearity assumption. In addition, these coefficients protect
against the curse of dimensionality. See Section 1.2 for more details.

Furthermore, these coefficients can be adapted to more complex frameworks, such as
metric spaces or situations when the variables are not necessarily vectors. An extension of
the DC results in Euclidean spaces to general metric ones can be found in Lyons (2013).
In particular, these ideas are extended to strong negative type metric spaces, collecting
the case of separable Hilbert spaces. Another related work is the one of Jansen (2021),
which expands the developments of Lyons (2013) to all Hilbert spaces. Regarding this last,
new dependence measures for functional data have been developed for specification testing.
Lee et al. (2020) assume a Hilbert framework and extend the MDD vectorial coefficient to
this functional case to apply significance tests. In contrast, Lai et al. (2020) use the DC
adaptation to semimetric spaces of negative type to perform specification tests under the
linearity assumption. Other recent works, such as the ones of Hu et al. (2020) or Zhao et al.
(2022), adapt the MDD to the functional context for independence testing. Additional and
interesting applications of the distance-based dependence measures are their use in quantile
regression (see Xu and Chen (2020), Zhang et al. (2018)), in time series (see Edelmann
et al. (2019), Davis et al. (2018), Dehling et al. (2020) or Lee and Shao (2018)) or in cure
models from the Survival Analysis (see Zhang and Cui (2021), Chen (2021) and Edelmann
et al. (2022)), to say a few.

Therefore, these novel dependence coefficients result in quite versatile tools that allow
different covariates selection procedures to be performed in complex models. Moreover,
different types of dependence structures are considered in terms of the employed coefficient.
These are related to independence testing, using the DC, conditional mean independence,
employing the MDD, or conditional independence tests resorting to the CDC coefficient.

As was mentioned at the beginning of this chapter, it is desirable to consider more
complex formulations for the regression model structure than the ones presented in Chapter
1. Specifically, the high dimensional problem of covariates selection in the linear case,
especially for the p > n context, is treated along Chapters 2 and 3 using regularization
techniques. A natural extension of the linear model is the varying-coefficient regression
model of Hastie and Tibshirani (1993). Assuming that variables Y ∈ R and X ∈ Rp are
centered without loss of generality, this is given by the expression

Y = β(t)X + ε (4.28)
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being t a variable taking values in a domain D ∈ R.
Furthermore, more complexity can be added to the above formulation (4.28). In

particular, one can consider Y , X, and ε as functional data. A particular case is to assume
that these three terms are functions of the same argument t ∈ D and that their relation is
concurrent or point by point, given place to the model known as the functional concurrent
model (FCM). Besides, not only linearity but other structures can be considered as well.
In general, this results in the functional concurrent model formulation given by

Y (t) = m(t,X(t)) + ε(t), (4.29)

where m(·) is the unknown regressor function. Particular cases of the (4.29) formulation
are the linear structure taking m(t,X(t)) = β(t)X(t), or the additive formulation given by
m(t,X(t)) = ∑p

i=1 Fj(Xj(t)). As a result, the concurrent model of (4.29) also collects the
varying-coefficients model introduced in (4.28) taking Y (t) = Y , X(t) = X and ε(t) = ε for
all t ∈ D. Besides, the model (4.29) is just a functional extension of the model displayed in
equation (1.1) of Chapter 1. The same applies to its linear and additive versions concerning
models studied in Sections 1.1.1 and 1.1.2, respectively.

Next, using the novel dependence coefficients introduced above, we develop new covari-
ates selection approaches for the FCM. Specifically, new significance tests are introduced
for the synchronous FCM in Chapter 5 and its asynchronous version in Chapter 6. For
this purpose, the MDD and the CDC coefficients are employed, respectively.



Chapter 5
New significance tests for the synchronous
functional concurrent model based on the

MDD coefficient

In Chapter 4, novel dependence distances coefficients are proposed to test covariates’
significance in complex models without previous estimation of the regression function. In
this chapter, a novel implementation is proposed to test the significance of the synchronous
version of an additive functional concurrent model (FCM). This new approach is based on
an unbiased version of the MDD coefficient introduced in Section 4.2.2. The synchronous
FCM is introduced in Section 5.1 jointly with a motivation for the need for dimensionality
reduction. Subsequently, the unbiased version of the MDD is introduced in Section 5.2.
Next, in Section 5.3, the new dependence tests are proposed. Theoretical justification of
their good behavior is given and a bootstrap scheme is proposed to calculate its p-values
in practice. A simulation study to test their performance is presented in Section 5.4,
jointly with a comparison involving Ghosal and Maity (2022a) and Kim et al. (2018)
competitors. Next, the proposed tests are applied in three real data sets in Section 5.5.
Eventually, some discussion arises in Section 5.6. The contents of this chapter are collected
in Freijeiro-González et al. (2022b).

5.1 The functional concurrent model (FCM): the need for significance tests

A general concurrent model is a regression model where the response Y = (Y1, . . . , Yq) ∈ Rq,
for q ≥ 1, and p ≥ 1 covariates X = (X1, . . . , Xp) ∈ Rp are all functions of the same
argument t ∈ D, and the influence is concurrent, simultaneous or point-wise in the sense
that X is assumed to only influence Y (t) through its value X(t) = (X1(t), . . . , Xp(t)) ∈ Rp

at time t by the relation
Y (t) = m(t,X(t)) + ε(t), (5.1)

where m(·) is an unknown function collecting the E
[
Y (t)|X(t)

]
information and ε(t) is the

model error. This last is a process which is assumed to have mean zero, independent of X
and with covariance function Ω(s, t) = C [ε(s), ε(t)], being C[·, ·] the covariance operator.

The concurrent model displayed in (5.1) is in the middle of longitudinal and functional
data. This classification depends on the number of observed time instants in the t domain D.
When this number is dense enough, the sample data can be treated as curves, translating
into a functional data framework. Otherwise, if time instants are spaced respective to the
t domain and not dense, a longitudinal framework will be more suitable. Determining the
inflection point between both situations is still an open problem. For a discussion on this
topic, we refer the reader to the work of Wang et al. (2017).

133



134 CHAPTER 5. NEW MDD SIGNIFICANCE TESTS FOR THE FCM

There are plenty of contexts where the (5.1) formulation arises both in functional or
longitudinal framework form. The functional concurrent model can be employed in any
situation where data can be monitored, like in health, environmental or financial issues
among others. Some examples can be seen in works such as the ones of Xue and Zhu
(2007) or Jiang et al. (2011) for the longitudinal data context. They perform epidemiology
studies of AIDS data sets. Other real data examples in medicine can be found in Goldsmith
and Schwartz (2017) or Wang et al. (2017). Goldsmith and Schwartz (2017) perform a
blood pressure study to detect masked hypertension. For their part, authors in Wang
et al. (2017) use the concurrent model in a data study of flu prevalence in the United
States. Furthermore, they model Alzheimer’s disease progression using brain neuroimaging
data. More examples of health and nutrition are displayed in Kim et al. (2018) and
Ghosal and Maity (2022a). They perform studies related to gait deficiency, dietary calcium
absorption, and the relation between child mortality and financial power in different
countries. Examples in the environmental field are collected in works such as Zhang et al.
(2011) or Ospína-Galindez et al. (2019). These studies are based on describing forest
nitrogen cycling and modeling the rainfall ground, respectively. A completely different
example is the work of Ghosal and Maity (2022b), where casual bike rentals in Washington,
D.C., are concurrently explained using meteorological variables. This extensive list of
examples reveals that the concurrent model is a very transversal and wide-employed tool.

An inconvenience of the concurrent model general formulation, displayed in (5.1), is
that the m(·) structure is quite difficult to be estimated in practice. For this reason, it is
common to consider some assumptions about its form. In the literature, it is quite common
to assume linearity, which translates into taking m(t,X(t)) = β(t)X(t) in (5.1), and work
under this premise. However, this assumption can be quite restrictive in practice. Thus,
more general structures are needed to model real examples properly. This last results in a
gain in flexibility but adds complexity to the estimation process. Maity (2017) discusses
the effort made for estimating different concurrent model structures. This paper highlights
that more information is needed to correctly estimate the function m(·). In conclusion, it
is crucial to guarantee that there exists useful information on the covariates X to model
the behavior of Y as a preliminary step. Therefore, covariates selection algorithms for
the concurrent model are of interest to avoid irrelevant covariates entering the model and
simplify the estimation process.

As a result, the first step to assure the veracity of the model structure displayed in
(5.1) is to verify if all p covariates {X1(t), . . . , Xp(t)} contribute to the correct explanation
of Y (t), or some can be excluded from the model formulation.

To the best of our knowledge, there is no literature on significance tests for the additive
concurrent model that avoids previous model estimation or extra tuning parameters. We
refer to Wang et al. (2017) and Ghosal and Maity (2022a) for these in the linear formulation.
They both propose effect tests over the β(t) function making use of the empirical likelihood.
Thus, once the model parameters are estimated in the linear framework, the authors provide
tools to test if all p covariates are relevant or, on the contrary, if some can be excluded from
the model. Nevertheless, a suitable effects estimation involves several tuning parameters
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and the linearity hypothesis. These are necessary to guarantee the adequate performance of
the cited procedures. In terms of the β(t) structure estimation, different approaches arise.
For example, Wang et al. (2017) propose using a local linear estimator, which depends
on a proper bandwidth selection. In contrast, Ghosal and Maity (2022a) employs an
expansion into a finite number of elements of a functional basis. This expansion requires
the number of considered terms selection. In addition, this last procedure needs to estimate
the error model structure. This process translates into an additional functional basis
representation and estimation of extra parameters. All this translates into difficulties in
the estimation process, even if the linear hypothesis can be accepted. Currently, Kim et al.
(2018) developed a new significance test in a more general framework to alleviate the linear
hypothesis assumption: additive effects are considered in (5.1). This work employs F-test
techniques over a functional basis representation of the additive effects to detect relevant
covariates. Again, this technique depends on an adequate preliminary estimation of the
model effects to be able to select relevant covariates by applying significance tests. However,
the correct selection of the number of basis functions for each considered covariate/effect
representation is still an open problem. These quantities play the role of tuning parameters.
Furthermore, a proper error variance estimation is needed to standardize the covariates
as an initial step. As this structure is unknown in practice, Kim et al. (2018) assumes
that this can be decomposed as a sum of two terms. The first one is a zero-mean smooth
stochastic process, and the second term is a zero-mean white noise measurement error
with variance σ2, resulting in the autocovariance function Ω(s, t) = Σ(s, t) + σ2I{s = t}.
Nevertheless, this assumption can be restrictive in practice. In consequence, significance
tests without any assumption in the model structure and no necessity of a preliminary
estimation step are desirable.

Other procedures for covariates selection with a different methodology are the Bayesian
selectors and the penalization techniques used in the concurrent model estimation process.
We can highlight the works of Goldsmith and Schwartz (2017) or Ghosal et al. (2020)
in the linear formulation and the one of Ghosal and Maity (2022b) for general additive
effects. While Goldsmith and Schwartz (2017) uses the spike-and-slab regression covariates
selection procedure, Ghosal et al. (2020) and Goldsmith and Schwartz (2017) implement
penalizations based on LASSO (Tibshirani (1996)), SCAD (Fan and Li (2001)), MCP
(Zhang (2010)) or its grouped versions (Yuan and Lin (2006)), respectively. As a result, the
selection of covariates is implemented together with estimation. Nevertheless, some tuning
parameters are needed in all these methodologies: it is necessary to determine the number
of basis functions to represent the effects in all of them, jointly with prior parameters, in
case of the spike-and-slab regression, or the amount of penalization otherwise. As a result,
the estimation of tuning parameters applies in these approaches as well.

In this chapter, we deal with this concern by bridging a gap for significance tests
without previous model estimation. The new proposal for specification testing can assess
the usefulness of a vector X for modeling the expectation of the Y vector in a pretty
general formulation. Besides, this approach avoids extra tuning parameters estimation, as
well as the need to model the error structure. For this aim, we propose a novel statistic
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for the concurrent model based on the martingale difference divergence ideas of Shao and
Zhang (2014) (see Section 4.2.2) is proposed. As a result, this approach tests the effect
of the covariates in the explanation of Y no matter the underlying form of m(·) while
assuming additive effects in a synchronous FCM. This is a functional extension of the
additive model introduced in Section 1.1.2 of Chapter 1 for the vectorial framework.

5.1.1 The synchronous FCM

As its name suggests, in a synchronous FCM it is assumed that all points of the curves
are observed in the same time instants. However, the preliminary assumption that all
trajectories are completely observed can be quite restrictive in practice. In Section 5.1.2 it
is shown how to adapt this requirement to contexts where some points are missed, adjusting
the procedure to more realistic situations.
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Figure 5.1: Example of a sample of five curves measured at same time instants {tu}Tu=1 ∈ D
considering p = 2 covariates (X1(t) and X2(t)) to explain Y (t). Filled points simulate a
total of nu = 3 observed points at each instant tu.

Thus, a total of {tu}Tu=1 ∈ D time instants are considered and there are nu observed
samples, each of them of the form {Yiu(tu), Xiu(tu)}nu

iu=1. As mentioned before, assuming
all curves observed at the same time instants translates into nu = n for all u = 1, . . . , T .
Then, we have a sample of the form (Yn(t),Xn(t)) = {(Yi(tu), Xi(tu)) , u = 1, . . . , T }ni=1.
A graphic example of our current situation considering q = 1 and p = 2 covariates in a
synchronous FCM is displayed in Figure 5.1.

5.1.2 Some missing points in curves trajectories

As mentioned above, the assumption that we observe the complete trajectories of the
curves can be quite restrictive in practice. In contrast, it is common to find some missing
points. Then, for each time point tu there are 1 ≤ nu ≤ n observed samples of the
form {Yiu(tu), Xiu(tu)}nu

iu=1. A graphic example for the case considering q = 1 and p = 2
covariates is displayed in the first row of Figure 5.2. In this example, we have n = 5 curves
and a different number of observations. For instance, there are n1 = 4 points for t1.

In this context, the method proposed in Section 5.3 can not be applied directly. This is
because it is not verified nu = n for all u = 1, . . . , T . However, we can solve this problem
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Figure 5.2: First row: sample of five curves measured at different time instants {tu}Tu=1 ∈ D
considering p = 2 covariates (X1(t) and X2(t)) to explain Y (t). Second row: same example
adding the recovered points by means of splines interpolation. Filled dots (•) represent the
nu observed points at each instant tu and asterisks (∗) the recovered ones.

by estimating the missing curve values when is possible. This option translates into a
recovering of the whole curve trajectories on the grid {tu}Tu=1 ∈ D, verifying now that
nu = n for all u = 1, . . . , T .

A simple but efficient idea is to recover the complete trajectory of the curves using
some interpolating method with enough flexibility. For example, making use of cubic spline
interpolation ideas for each of the 1, . . . , n curves. Results of this recovery for the example
introduced above in Section 5.1.1 are displayed in the second row of Figure 5.2. In this
case, the spline function of the stats library of the R software (R Core Team (2019))
has been employed.

In addition, other approaches for recovering the missing points are also available. Next,
we propose one based on functional basis representation following the guidelines of Kim
et al. (2018), Ghosal et al. (2020), and Ghosal and Maity (2022b). If it is possible to assume
that the total number of time observations ⋃T

u=1 tu is dense in D, then the eigenvalues
and eigenfunctions corresponding to the original curves can be estimated using functional
principal component analysis (see Yao et al. (2005)). We refer to Yao et al. (2005) for more
details about the procedure. As a result, one can get the estimated trajectory X̂ij(·) of the
true curves Xij(·) for i = 1, . . . , n and j = 1, . . . , p, given by X̂ij(t) = µ̂j(t)+∑Q

q=1 ζ̂iqjΨ̂qj(t).
Here, Q denotes the number of considered eigenfunctions, which can be chosen using a
predetermined percentage of explained variance criterion. Consequently, it is possible to
recover the value of X1(·), . . . , Xp(·) on all grid {tu}Tu=1 ∈ D. In the same way, the values
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of Y1(·), . . . , Yq(·) can also be recovered. Thus, it is possible to work again in the context
of synchronously measured data. This procedure is implemented in the fpca.sc function
belonging to the library refund of R (see Goldsmith et al. (2021)). For our proposed
naive example, we have obtained similar results to the splines interpolation methodology
displayed in Figure 5.2. As a result, these are omitted.

5.2 Unbiased MDD

Next, it is presented an unbiased version of the MDD estimator of Shao and Zhang (2014)
obtained in Section 4.2.2. This has been introduced by Park et al. (2015) in the vectorial
framework considering random vectors X ∈ Rp and Y ∈ Rq with p, q ≥ 1. In particular,
their relation with U-statistics is displayed, providing theoretical properties which will be
of interest to obtain the asymptotic distribution of the MDD-based statistic obtained in
Section 5.3 for the synchronous FCM.

Given a sample of i = 1, . . . , n iid observations (Xn,Yn) = {(Xi, Yi), i = 1, . . . , n}
from the joint distribution of (X,Y ) ∈ Rp ×Rq, define A = (Ail)n

i,l=1 and B = (Bil)n
i,l=1 as

in Section 4.2.2. Then, following the U-centered ideas of Székely and Rizzo (2014), it is
possible to define the U-centered versions of A and B, A and B respectively, given by

Ail = Ail −
1

n− 2

n∑
q=1

Aiq −
1

n− 2

n∑
q=1

Aql + 1
(n− 1)(n− 2)

n∑
q,r=1

Aqr

Bil = Bil −
1

n− 2

n∑
q=1

Biq −
1

n− 2

n∑
q=1

Bql + 1
(n− 1)(n− 2)

n∑
q,r=1

Bqr

where Ail = ∥Xi −Xl∥p and Bil = ∥Yi − Yl∥2q/2.

As a result, an unbiased estimator for MDD is defined as

MDD2
n(Yn|Xn) = (A ·B) = 1

n(n− 3)
∑
i̸=l

AilBil. (5.2)

A proof that MDD2
n(Yn|Xn) is an unbiased estimator for MDD2(Y |X) can be found in

Section 1.1 of the Supplementary Material of Zhang et al. (2018) for the q = 1 case. An
extension for the case considering q ≥ 1 is displayed in the proof of Proposition 3.4 given
in Park et al. (2015).

An important characteristic of the MDD2
n(Yn|Xn) unbiased estimator defined in (5.2)

is that this is a U-statistic of order four. In fact, with some calculation, it can be proved
that

MDD2
n(Yn|Xn) = 1(n

4
) ∑

i<k<l<r

ϕ(Zi, Zk, Zl, Zr) (5.3)



5.3. Significance tests based on MDD 139

with symmetric kernel function

ϕ(Zi, Zk, Zl, Zr) = 1
4!

(i,k,l,r)∑
(s,w,u,v)

(AswBuv +AswBsw − 2AswBsu)

= 1
6

(i,k,l,r)∑
s<w,u<v

(AswBuv +AswBsw)− 1
12

(i,k,l,r)∑
(s,w,u)

AswBsu

where Zi = (Xi, Yi) for i = 1, . . . , n and the summation is over all permutation of the
4-tuples of indices (i, k, l, r). A guideline about this calculation is provided in Section 1.1
of the Supplementary Material of Zhang et al. (2018).

In view of the (5.3) formulation, one can directly notice that MDD2
n(Y |X) is a U-

statistic of order four by proper definition. Then, this statistic can be employed to perform
the independence in mean test displayed in (4.15). Next, significance tests are proposed for
the synchronous FCM to select covariates. An adaptation of the unbiased MDD coefficient
displayed in (5.2) is used to obtain a proper statistic.

5.3 Significance tests based on MDD

In this section, new significance tests are proposed for the synchronous FCM using the
unbiased MDD coefficient of Zhang et al. (2018) introduced above in Section 5.2. Once
a tool to measure conditional mean independence between Y ∈ R and a vector X =
(X1, . . . , Xp)⊤ ∈ Rp has been provided, these ideas are adapted to the concurrent model
case. For this aim, ideas presented in the work of Zhang et al. (2018) in the vectorial
framework are adapted.

Taking D ⊂ {1, . . . , p}, the significance problem in the FCM translates into testing

H0 : E
[
Y (t)|XD(t)

]
= E [Y (t)] almost surely ∀t ∈ D \ N

H1 : P
(
E
[
Y (t)|XD(t)

]
̸= E [Y (t)]

)
> 0 ∀t ∈ P

where XD(t) denotes the subset of X(t) considering only the covariates with index in D,
D \ N is the domain of t minus a null set N ⊂ D and P ⊂ D is a positive measure set.

Quoting Zhang et al. (2018), the above problem is very challenging in practice without
assuming any structure of m(·). This drawback is due to the vast class of alternatives
targeted, related to growing dimension and nonlinear dependence. To solve this inconve-
nience, the authors propose testing the nullity of the main effects first, keeping a type of
hierarchical order. Then, it is tested if additive and separate effects first enter the model
before considering interactive structures. This results in the new test displayed in (5.4).

H0 : E
[
Y (t)|Xj(t)

]
= E [Y (t)] almost surely ∀t ∈ D \ N and ∀j ∈ D

H1 : P
(
E
[
Y (t)|Xj(t)

]
̸= E [Y (t)]

)
> 0 ∀t ∈ P and some j ∈ D

(5.4)
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Then, rejection of the null hypothesis of (5.4) automatically implies the rejection
of the H0 : E

[
Y (t)|XD(t)

]
= E [Y (t)] hypothesis. It is important to highlight that the

reciprocal is not always true. In this way, the model (5.1) only makes sense if it is possible
to reject the H0 hypothesis of (5.4). Otherwise, the covariates do not supply relevant
information to explain Y . It is notorious that formulation (5.4) collects a wide range of
dependence structures between X and Y in terms of additive regression models, where
m (t,X(t)) = F1 (t,X1(t)) + · · ·+ Fp (t,Xp(t)). Moreover, it is no need to know the real
form of m(·) to determine whether the effect of X is significant.

It is important to notice that one can consider D = {1, . . . , p} to perform (5.4), which
translates in testing if all p covariates are relevant, or only a subset D ⊂ {1, . . . , p} with
cardinality 1 ≤ d < p. In this last case, one tests if only a bunch of covariates are
relevant, excluding the rest from the model. A special case is to consider D = {j} for
some j = 1, . . . , p. This approach allows to implement covariates screening with no need to
estimate the regressor function. Thus, it is possible to test the effect of every covariate.
This results in j = 1, . . . , p partial tests of the form

H0j : E
[
Y (t)|Xj(t)

]
= E [Y (t)] almost surely ∀t ∈ D \ N

Haj : P
(
E
[
Y (t)|Xj(t)

]
̸= E [Y (t)]

)
> 0 ∀t ∈ P

(5.5)

Thus, one can test if a small subset of {1, . . . , p} is suitable to fit the model or if all
covariates need to be considered. As a result, it is possible to avoid noisy covariates entering
the model and reduce the problem dimension.

In this way, we want to include all the information provided by the observed time
instants {tu}Tu=1 ∈ D in a new statistic. Besides, as mentioned above, we can be interested
in testing dependence not only considering all covariates but a subset D ⊂ {1, . . . , p}. As
a result, an integrated dependence test is applied over the complete trajectory, considering
the information provided by D. Rewriting (5.4), this gives place to the test

H0 :
∫

D\N
MDD2(Y (t)|Xj(t))dt = 0 almost surely for every j ∈ D

H1 : P
(∫

P
MDD2(Y (t)|Xj(t))dt ̸= 0

)
> 0 for some j ∈ D

(5.6)

To implement the new test introduced in (5.6) a proper estimator of
∫

D MDD2(Y (t)|Xj(t))dt
for every j ∈ D is needed. For this purpose, we propose an integrated statistic based on

TD =

√√√√(n
2

)∑
j∈D M̃DD

2
n(Yn(t)|Xnj(t))̂̃SD

, (5.7)

being M̃DD
2
n(Yn(t)|Xnj(t)) =

∫
D MDD2

n(Yn(t)|Xnj(t))dt and

̂̃S2
D = 2

n(n− 1)cn

∑
1≤k<l≤n

∑
j,j′∈D

∫
D

(
Akl(t)

)
j

(
Akl(t)

)
j′
B

2
kl(t)dt (5.8)
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a suitable variance estimator of ∑j∈D M̃DD
2
n(Yn(t)|Xnj(t)) with cn

cn = (n− 3)4

(n− 1)4 + 2(n− 3)4

(n− 1)4(n− 2)3 + 2(n− 3)
(n− 1)4(n− 2)3 ≈

(n− 3)4

(n− 1)4 . (5.9)

See Section 5.3.1 for in-depth details about ̂̃S2
D calculation.

The integrated version M̃DD
2
n(Yn(t)|Xnj(t)) remains a U-statistic of order four. This

is because, denoting by Zij(t) = (Xij(t), Yi(t)) and (ÃswBuv)j =
∫

D (Asw(t))j (Buv(t))j dt

for all (s, w, u, v), we have that ˜ϕ(Zij(t), Zkj(t), Zlj(t), Zrj(t)) equals to∫
D
ϕ(Zij(t), Zkj(t), Zlj(t), Zrj(t))dt

= 1
4!

(i,k,l,r)∑
(s,w,u,v)

{(
ÃswBuv

)
j

+
(
ÃswBsw

)
j
− 2

(
ÃswBsu

)
j

}

= 1
6

(i,k,l,r)∑
s<w,u<v

{(
ÃswBuv

)
j

+
(
ÃswBsw

)
j

}
− 1

12

(i,k,l,r)∑
(s,w,u)

(
ÃswBsu

)
j

(5.10)

and this remains a measurable and symmetric function. Then, similar to (5.3) argumenta-
tion, it is easy to see that it is possible to write

M̃DD
2
n(Yn(t)|Xnj(t)) = 1(n

4
) ∑

i<k<l<r

˜ϕ(Zij(t), Zkj(t), Zlj(t), Zrj(t))

which keeps the structure of a U -statistic of order 4. It can be proved that M̃DD
2
n(Yn(t)|Xnj(t))

is an unbiased estimator of M̃DD
2
(Y (t)|Xj(t)). See Section C.3.1 of the Appendix C.3.

Theorem 5.1. Under the assumption of H0 and verifying

E
[

˜G(Z(t), Z ′(t))
2]

{
E
[

˜H(Z(t), Z ′(t))
2]}2 −→ 0

E
[

˜H
(
Z(t), Z ′(t)

)4]
/n+ E

[
˜H

(
Z(t), Z ′′(t)

)2 ˜H
(
Z ′(t), Z ′′(t)

)2]

n

{
E
[

˜H(Z(t), Z ′(t))
2]}2 −→ 0

E
[

˜U̇
(
X(t), X ′′(t)

)2 ˜V
(
Y (t), Y ′(t)

)2]
S̃2

D

= o(n)

∑
j,j′∈D

∫
D V

[
Y (t)

]2dcov
(
Xj(t), Xj′(t)

)2
dt

S̃2
D

= o(n2)
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for V[·] the variance operator and dcov(·, ·) the distance covariance, it is guarantee that

TD −→d N(0, 1) when n −→∞ and ̂̃S2
D/S̃2

D −→p 1.

Theorem 5.1 guarantees the asymptotic convergence of the TD statistic displayed in
(5.7) to a normal distribution under some assumptions. Proof of this result is collected
in Section C.3.3 of the Appendix C, which makes use of the Hoeffding decomposition for
U-statistics carried out in Section C.3.2 of the same document.

One drawback is that the asymptotic convergence of the TD statistic can be very slow in
practice. To solve this issue we approximate the p-value using a wild bootstrap scheme. Its
scheme is collected in Algorithm 5.2. The proof of the consistency related to the proposed
wild bootstrap procedure and that of the variance estimator for the concurrent model
case is omitted due to extension. However, the proof results from plugging the integrated
version in that in Section 1.6 of the Supplementary Material of Zhang et al. (2018).

Algorithm 5.2 (Wild bootstrap scheme for global dependence test using MDD).

1. For u = 1 . . . , T :

1.1. Calculate

(Tu)D =

√√√√(n
2

)∑
j∈D

MDD2
n(Y (tu)|Xj(tu)).

1.2. Obtain

(Ŝu)D =
√√√√ 2
n(n− 1)cn

∑
1≤k<l≤n

∑
j,j′∈D

(
Akl(tu)

)
j

(
Akl(tu)

)
j′
B

2
kl(tu),

where
(
Akl(tu)

)
j

and Bkl(tu) are the U-centered versions of (Akl(tu))j =
|Xkj(tu)−Xlj(tu)| and Bkl(tu) = ∥Yk(tu)− Yl(tu)∥2q/2, respectively.

1.3. Generate the sample {ei}ni=1, where ei are i.i.d. N(0,1).

1.4. Define the bootstrap MDD∗2
n (Y (tu)|Xj(tu)) version as

MDD∗2
n (Y (tu)|Xj(tu)) = 1

n(n− 1)
∑
k ̸=l

(
Akl(tu)

)
j
Bkl(tu)ekel

1.5. Obtain the bootstrap statistic numerator

(T ∗
u )D =

√√√√(n
2

)∑
j∈D

MDD∗2
n (Y (tu)|Xj(tu)).
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1.6. Calculate the bootstrap variance estimator

(Ŝ∗
u)D =

√√√√ 1(n
2
) ∑

1≤k<l≤n

∑
j,j′∈D

(
Akl(tu)

)
j

(
Akl(tu)

)
j′
B

2
kl(tu)e2

ke
2
l .

1.7. Repeat steps 1.3-1.6 a numberB of times obtaining the sets {(T ∗
u )(1)

D , . . . , (T ∗
u )(B)

D }
and {(Ŝ∗

u)(1)
D , . . . , (Ŝ∗

u)(B)
D }.

2. Approximate the sample statistic ˜(E)D =
∫

D(Tt)D/(Ŝt)Ddt value by means of numer-
ical techniques using {(T1)D, . . . , (TT )D} and {(Ŝ1)D, . . . , (ŜT )D}.

3. For every b = 1, . . . , B, approximate the bootstrap statistic value given by (Ẽ∗)(b)
D =∫

D(T ∗
t )(b)

D /(Ŝ∗
t )(b)

D dt, by means of numerical techniques using {(T ∗
1 )(b)

D , . . . , (T ∗
T )(b)

D }
and {(Ŝ∗

1 )(b)
D , . . . , (Ŝ∗

T )(b)
D }.

4. Obtain the bootstrap p-value as 1
B

∑B
b=1 I{(Ẽ∗)(b)

D ≥ (Ẽ)D}, where I(·) is the indicator
function.

Moreover, the test is guaranteed to be powerful under local alternatives. A characteri-
zation of local alternatives is given in Section 1.7 of the Supplementary Material of Zhang
et al. (2018). This result can be proved simply by plugging in the corresponding integrated
versions in Theorem 2.4 of Zhang et al. (2018).

In terms of D, a particular case is to consider all covariates, D = {1, . . . , p}. First
of all, one must check if, at least, some covariates supply relevant information to model
Y . Considering D the set of all covariates indices, we can verify this premise performing
(5.6). In case of not having evidence to reject the null hypothesis of conditional mean
independence, it does not make sense to model Y with the available information. Otherwise,
if one discards the conditional mean independence in this initial step, one can be interested
in searching for an efficient subset of covariates to reduce the problem dimension.

Then, for a subset D ⊂ {1, . . . , p} with cardinality d, 1 ≤ d < p, it is possible to test if
these d covariates play a role in terms of the concurrent regression model by means of (5.6).
If not, it is possible to discard them and reduce the problem dimensionality to p− d. In
case we are interested in covariates screening one by one, which corresponds with the case
where D = {j}, we can apply the j = 1, . . . , p tests displayed in (5.5). This results in p

consecutive partial tests for j = 1, . . . , p considering H0j : E
[
Y (t)|Xj(t)

]
= E [Y (t)] almost

surely ∀t ∈ D \ N or equivalently H0j : M̃DD
2 (
Y (t)|Xj(t)

)
= 0 almost surely ∀t ∈ D \ N .

One drawback of carrying out p consecutive tests is that the initial prefixed significance
level is violated if this is not modified considering the total number of tests to be performed.
As a result, the significance level has to be adequately corrected. Some techniques, such as
the classic but conservative Bonferroni’s correction, or the false discovery rate alternative
(see Benjamini and Yekutieli (2001), and Cuesta-Albertos et al. (2019)) can be easily
applied to avoid this inconvenience.
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5.3.1 Derivation of ̂̃S2

In this section, we prove that the estimator of the variance considered in (5.8) for the term
M̃DD

2
n(Yn(t)|Xnj(t)) =

∫
D MDD2

n(Yn(t)|Xnj(t))dt correctly estimates this quantity.

As mentioned above, M̃DD
2
n(Yn(t)|Xnj(t)) is a U-statistic of order four. This result

implies that using the Hoeffding decomposition, this quantity can be expressed as

M̃DD
2
n(Yn(t)|Xnj(t)) = 1(n

2
) ∑

1≤k<l≤n

˜Uj(Xkj(t), Xlj(t)) · ˜V (Yk(t), Yl(t)) + (Rn)j

where ˜Uj(x, x′) is equal to∫
D

{
E
[
J(x,X ′

j(t))
]

+ E
[
J(Xj(t), x′)

]
− J(x, x′)− E

[
J(Xj(t), X ′

j(t))
]}
dt

and ˜V (y, y′) =
∫

D(y − µY )⊤(y′ − µY )dt for µY = E[Y (t)], being (Rn)j a remainder term.

Calculation about Hoeffding decomposition for our framework is collected in Section
C.3.2 of the Appendix C.

If we define the theoretical test statistic

T̆n =

√√√√(n
2

)∑
j∈D M̃DD

2
n(Yn(t)|Xnj(t))
S̃

,

considering S̃ the true integrated version of the variance, we can see that

T̆n =
∑
j∈D

1√(n
2
)
S̃

∑
1≤k<l≤n

˜Uj(Xkj(t), Xlj(t)) · ˜V (Yk(t), Yl(t)) +

√(n
2
)

S̃

∑
j∈D

(Rn)j

= 1
S̃

(Dn,1 +Dn,2)

where Dn,1 =
(n

2
)−1/2∑

1≤k<l≤n

∑
j∈D

˜Uj(Xkj(t), Xlj(t))· ˜V (Yk(t), Yl(t)) is the leading term
and Dn,2 =

(n
2
)1/2∑

j∈D(Rn)j is the remainder one. Under the H0 assumption of (5.4) it
is verified that

V [Dn,1] =
∑

j,j′∈D

E
[

˜V (Y (t), Y ′(t))
2] ˜Uj(Xj(t), X ′

j(t)) · ˜Uj′(Xj′(t), X ′
j′(t))

Since the contribution from the term Dn,2 is asymptotically negligible, we may set
S̃2 = V [Dn,1], and then construct the variance estimator displayed in equation (5.8).
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5.4 Simulation studies

In this section, we consider two simulated concurrent model scenarios to assess the per-
formance in the practice of the new significance tests introduced above. We distinguish
between linear (Scenario A) and nonlinear (Scenario B) formulation of the model (5.1).
For the sake of simplicity, we consider only the case where the data are measured at the
same instants of time. For this aim, a Monte Carlo study with M = 2000 replicas in each
case is performed using the R software (R Core Team (2019)). Besides, we compare the
performance of our test with two competitors. These are the procedure introduced in
Ghosal and Maity (2022a), developed in the linear framework, and the method of Kim
et al. (2018) for the additive formulation. Henceforth, we refer to them by FLCM and
ANFCM, respectively. We refer to Section C.1 of the Appendix C for more details about
competitors’ implementation.

• Scenario A (Linear model): We assume linearity in (5.1), take t ∈ D = [0, 1] and
consider q = 1 and p = 2 covariates entering the model.

As a result, the simulated model is given by the structure

Y (t) = β1(t)X1(t) + β2(t)X2(t) + ε(t)

with

X1(t) = 5 sin
(24πt

12

)
+ ε1(t), X2(t) = −(24t− 20)2

50 − 4 + ε2(t).

Here, β1(t) = −
(

24t−15
10

)2
− 0.8 and β2(t) = 0.01((24t− 12)2 − 122 + 100). The error

terms represented by ε1(t), ε2(t) and ε(t) are simulated as random gaussian processes
with exponential variogram Ω(s, t) = 0.1 exp

(
−24|s−t|

10

)
. We assume that a total

number of T = 25 equispaced instants are observed in D = [0, 1] ({tu}25
u=1) and there

are n = 20, 40, 60, 80, 100 curves available for each of them. An example of these
functions is displayed in Figure 5.3. We remark that we have not included intercept
in our linear formulation because this can be done without loss of generality just
centering both Y (t) and X(t) = (X1(t), X2(t))⊤ ∈ R2 for all t ∈ D.

• Scenario B (nonlinear model): a nonlinear structure of (5.1) is assumed for this
scenario. Again, we take t ∈ D = [0, 1] and consider q = 1 and p = 2 covariates to
explain the model.

Then, this model has the expression

Y (t) = F1(t,X1(t)) + F2(t,X2(t)) + ε(t)

being F1(t,X1(t)) = exp((24t+1)X1(t)/20)−2 and F2(t,X2(t)) = −1.2 log(X2(t)2) sin(2πt),
with X1(t) and X2(t) equally defined as in the linear case (Scenario A) and us-
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Figure 5.3: Left: simulated sample values of the functional variables along the grid [0, 1]
taking n = 20. Middle: real partial effects corresponding to X1(t) (β1(t)) and X2(t) (β2(t)).
Right: simulated regression model components β1(t)X1(t) and β2(t)X2(t).

ing the same observed discretization time points. Now, the errors ε1(t), ε2(t) and
ε(t) are assumed to be random gaussian processes with exponential variogram
Ω(s, t) = 0.02 exp

(
−24|s−t|

10

)
. An example of this scenario is displayed in Figure 5.4.
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Figure 5.4: Left: simulated sample values of the functional variables along the grid [0, 1]
taking n = 20. Right: real Y (t) structure jointly with partial effects corresponding to X1(t)
(F1(t,X1(t))) and X2(t) (F2(t,X2(t))).

In all tests, we make use of the wild bootstrap techniques introduced above in Section
5.3 to approximate the p-values. We have employed B = 1000 resamples on each case.
Besides, as we mentioned before, sample test size and power are obtained by Monte
Carlo techniques. In order to know if the p-values under the null take an adequate value,
the 95% confidence intervals of the significance levels are obtained by making use of
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expression
[
α∓ 1.96

√
α(1−α)

M

]
. Here, α is the expected level and M is the number of

Monte Carlo simulated samples. As a result, we consider that a p-value is acceptable for
levels α = 0.01, 0.05, 0.1 if this is within the values collected in Table 6.1 for the Monte
Carlo replicates. We highlight the values out of these scales in bold for simulation results.

M α = 0.01 α = 0.05 α = 0.1
1000 [0.004, 0.016] [0.036, 0.064] [0.081, 0.119]
2000 [0.006, 0.014] [0.040, 0.060] [0.087, 0.113]

Table 5.1: Confidence intervals at 95% of the Monte Carlo proportions for M replicates.

5.4.1 Results for scenario A (linear model)

We start analyzing the performance of the global mean dependence test in the linear
model formulation, using Scenario A introduced above in Section 5.4. For this purpose, we
consider three different scenarios. In the first one, the null hypothesis of mean independence
is verified by simulating under the assumption that β1(t) = β2(t) = 0. Next, the remaining
two cases are simulated under the alternative hypothesis. This claims that information
provided by X(t) = (X1(t), X2(t))⊤ is useful in some way: only the X2(t) covariate is
relevant (fixing β1(t) = 0) or both covariates X1(t) and X2(t) support relevant information
to correctly explain Y (t).

Model: β1(t) = β2(t) = 0 (H0) β1(t) = 0, β2(t) ̸= 0 (Ha) β1(t) ̸= 0, β2(t) ̸= 0 (Ha)

1% 5% 10% 1% 5% 10% 1% 5% 10%
n = 20 0.010 0.045 0.092 0.574 0.797 0.882 1 1 1
n = 40 0.013 0.050 0.093 0.984 0.998 1 1 1 1
n = 60 0.007 0.052 0.103 1 1 1 1 1 1
n = 80 0.009 0.045 0.094 1 1 1 1 1 1
n = 100 0.012 0.050 0.088 1 1 1 1 1 1

Table 5.2: Empirical sizes and powers of the MDD-based global test for mean independence
testing using wild bootstrap approximation with B = 1000 resamples in Scenario A.

Obtained results are collected in Table 5.2 for n = 20, 40, 60, 80, 100. In view of the
results, it is appreciated as the empirical sizes approximate the significance levels under H0
(H0 : β1(t) = β2(t) = 0) as n increases. Moreover, the empirical distribution of the p-values
seems to be a U [0, 1] as it is appreciated in Figure C.1 of Section C.2 of the Appendix
C. In contrast, simulating under the alternative hypothesis, Ha : β1(t) = 0, β2(t) ̸= 0 and
Ha : β1(t) ̸= 0, β2(t) ̸= 0 scenarios, the test power tends to one as the sample size increases.
As a result, we can claim that the test is well-calibrated and has power.

Once we have rejected the null hypothesis that all covariates are irrelevant in practice,
we can detect which of them play a role in terms of data explanation. For this aim, partial
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tests can be carried out, testing if every covariate is irrelevant, H0j : βj(t) = 0 ∀t ∈ D, or
not, Haj : βj(t) ̸= 0 for some t ∈ V, being j = 1, . . . , p.

Again, we consider different scenarios. First of all, it is assumed that X(t) is not
significant taking β1(t) = β2(t) = 0. Then, we move to the situation where only X2(t) is
relevant. Finally, we consider the model including both X1(t) and X2(t) effects to explain
Y (t). Results of these scenarios are displayed in Table 5.3. Here, we appreciate as the
empirical sizes tend to the significance levels simulating under the null hypothesis that both
covariates have not got a relevant effect on the response, separately. Besides, we see as in
case of having β1(t) = 0 and β2(t) ̸= 0, these tests help us to select relevant information,
X2(t), and discard noisy one, X1(t). Otherwise, when both covariates are relevant, the
partial tests clearly reject the H0j hypothesis of null effect, tending their powers to the
unit as sample size increases.

Model: β1(t) = β2(t) = 0 β1(t) = 0, β2(t) ̸= 0 β1(t) ̸= 0, β2(t) ̸= 0

H01 H02 H01 H02 H01 H02

5%/10% 5%/10% 5%/10% 5%/10% 5%/10% 5%/10%
n = 20 0.040/0.078 0.043/0.101 0.041/0.087 0.919/0.966 1/1 0.330/0.490
n = 60 0.048/0.101 0.049/0.103 0.047/0.098 1/1 1/1 0.935/0.971
n = 100 0.046/0.089 0.047/0.096 0.046/0.086 1/1 1/1 0.998/1

Table 5.3: Empirical sizes and powers of the partial MDD-based global tests for mean
independence testing considering as null hypothesis H01 : E[Y (t)|X1(t)] = E[Y (t)] and
H02 : E[Y (t)|X2(t)] = E[Y (t)], and using wild bootstrap approximation with B = 1000
resamples in Scenario A.

5.4.2 Results for scenario B (nonlinear model)

In this section, we analyze the performance of the MDD global mean independence test in
a more difficult framework: a nonlinear effects formulation. For this purpose, Scenario B
introduced in Section 5.4 is employed. Again, three different situations of dependence are
considered, following the same arguments of Section 5.4.1. As a result, we simulate under the
no effect case (H0 : F1(t,X1(t)) = F2(t,X2(t)) = 0), which corresponds with independence,
and two dependence frameworks: where only one covariate is relevant (Ha : F1(t,X1(t)) =
0, F2(t,X2(t)) ̸= 0) or both of them are (Ha : F1(t,X1(t)) ̸= 0, F2(t,X2(t)) ̸= 0).

Results of the M = 2000 Monte Carlo simulations for the MDD-test taking n =
20, 40, 60, 80, 100 are displayed in Table 5.4. We appreciate simulating under the null
hypothesis H0 that the p-values tend to stabilize around the significance levels. Figure
C.2, collected in Section C.2 of the Appendix C, shows as these seem to follow a uniform
distribution in [0, 1]. So, we can conclude that our test is well calibrated even for nonlinear
approaches. Concerning the power, when the independence assumption is violated, the
p-values tend to 1 as the sample size increases. Two examples of this phenomenon are
displayed in Table 5.4 simulating the different alternative hypotheses. Summing up, our
proposal is also a well-calibrated and powerful test in a nonlinear framework.
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Model: F1(·) = F2(·) = 0 (H0) F1(·) = 0, F2(·) ̸= 0 (Ha) F1(·) ̸= 0, F2(·) ̸= 0 (Ha)

1% 5% 10% 1% 5% 10% 1% 5% 10%
n = 20 0.011 0.049 0.096 0.215 0.426 0.563 0.989 1 1
n = 40 0.013 0.05 0.094 0.564 0.793 0.886 1 1 1
n = 60 0.009 0.053 0.105 0.871 0.956 0.979 1 1 1
n = 80 0.01 0.046 0.096 0.974 0.996 1 1 1 1
n = 100 0.013 0.054 0.093 0.994 1 1 1 1 1

Table 5.4: Empirical sizes and powers of the MDD-based global test for mean independence
testing using wild bootstrap approximation with B = 1000 resamples in Scenario B.

Next, our interest focuses on partial tests to apply covariates selection in this nonlinear
scenario. Again, we consider the three different dependence scenarios introduced above.
However, we test the independence for each covariate separately. This results in applying a
total of j = 1, . . . , p tests. In this way, we expect the test in a situation as F1(t,X1(t)) = 0,
F2(t,X2(t)) ̸= 0 to be capable of detecting relevant covariates (X2(t)), rejecting its
corresponding H0j hypothesis, and excluding noisy ones from the model otherwise (X1(t)).
Results for partial tests are collected in Table 5.5. One can see as these tests allow us to
determine which covariates play a relevant role in each scenario, being those with p-values
higher than the significance levels and tending to 1 as sample size increases. Conversely,
those verifying that its associated p-values are less or equal to significance levels are
assumed irrelevant.

Model: F1(·) = F2(·) = 0 F1(·) = 0, F2(·) ̸= 0 F1(·) ̸= 0, F2(·) ̸= 0

H01 H02 H01 H02 H01 H02

5%/10% 5%/10% 5%/10% 5%/10% 5%/10% 5%/10%
n = 20 0.04/0.078 0.043/0.101 0.04/0.077 0.567/0.692 1/1 0.18/0.299
n = 60 0.048/0.101 0.049/0.103 0.053/0.107 0.987/0.995 1/1 0.621/0.783
n = 100 0.046/0.089 0.047/0.096 0.044/0.09 1/1 1/1 0.915/0.971

Table 5.5: Empirical sizes and powers of the partial MDD-based global tests for mean
independence testing considering H01 : E[Y (t)|X1(t)] = E[Y (t)] and H02 : E[Y (t)|X2(t)] =
E[Y (t)], and using wild bootstrap approximation with B = 1000 resamples in Scenario B.

5.4.3 Comparison with FLCM and ANFCM algorithms

Next, our novel procedure is compared with existing competitors in the literature. For
this aim, we have considered the FLCM algorithm of Ghosal and Maity (2022a) for the
linear framework and the ANFCM procedure of Kim et al. (2018) for a more flexible model,
assuming additive effects. Both have displayed excellent results in practice considering
a proper selection of the tuning parameters. We refer the reader to Section C.1 of the
Appendix C for more details.

In the simulation scenarios introduced in Section 5.4, we consider a dependence structure
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where all instants relate between them. This structure emulates a real functional dataset.
Nevertheless, this does not apply in the simulation scenarios of Ghosal and Maity (2022a)
and Kim et al. (2018). Conversely, they consider independent errors. As a result, to
perform a fair competition, we start analyzing the behavior of our MDD-based tests in
their simulation scenarios. Specifically, we compare the performance of our proposal with
the results of FLCM in Scenario A of Ghosal and Maity (2022a). Next, we implement a
comparison with the ANFCM procedure. For this purpose, we consider Scenario (B) of
Kim et al. (2018), taking the error E3. In this last case, we implement a modification to
perform Algorithm 1. In particular, we only consider the second covariate associated with
the nonlinear effect. In both borrowed scenarios, we simulate under the dense assumption
being {tu}81

u=1 a total of m = 81 equidistant time points in [0, 1]. We keep the authors’
parameters selection and perform a Monte Carlo study with M = 1000 samples in all
cases, obtaining the p-values through B = 200 bootstrap replicates. Besides, following the
author’s recommendation after a preliminary study to determine the optimal number of
basis functions for these examples, we work with 7 components for FLCM and ANFCM
procedures. More details can be found in Ghosal and Maity (2022a) or Kim et al. (2018),
respectively. We remind the structure of the scenarios and explain implementation issues
in Section C.1 of the Appendix C.

Results of the comparison between FLCM and MDD effect tests for scenario A of
Ghosal and Maity (2022a) are collected in Table 5.6. We appreciate that simulating under
the null (d = 0), one value of the FLCM algorithm is out of the 95% confidence interval. In
contrast, the MDD procedure does not suffer from this issue. Moreover, paying attention to
the p-values distributions under the null, which are displayed in Figure C.3 (see Section C.2
of the Appendix C), one can see the FLCM p-values do not follow a uniform distribution.
In contrast, the MDD-based test corrects this phenomenon. As a result, it seems that
our test provides a better calibration than the FLCM approach. Regarding the power,
levels for both algorithms tend to 1 as sample size increases, and their values are higher
for the d = 7 scenario than for the d = 3 one, as would be expected. Now, the FLCM
algorithm outperforms the MDD results in all scenarios. However, our procedure is still
quite competitive even considering that the data is simulated under the linear assumption,
giving an advantage to the FLCM procedure.

Model: H0 (d = 0) Ha (d = 3) Ha (d = 7)

1% 5% 10% 1% 5% 10% 1% 5% 10%

n=60 FLCM 0.007 0.054 0.103 0.776 0.888 0.937 0.999 1 1
MDD 0.014 0.052 0.097 0.341 0.550 0.671 0.992 0.997 1

n=100 FLCM 0.005 0.038 0.077 0.964 0.979 0.992 1 1 1
MDD 0.013 0.049 0.103 0.619 0.796 0.871 1 1 1

Table 5.6: Summary of empirical sizes and powers of the FLCM and MDD effect tests.

Next, we compare the performance of the MDD with the ANFCM approach in an
additive framework. Table 5.7 collects the simulation results for both procedures. We can
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see as both methodologies are well calibrated under the null (d = 0) for all levels, except for
the 1%, where their values are out of the 95% confidence interval for n = 60. Nevertheless,
taking greater values of n, as n = 100, solves this issue. Moreover, simulating under H0,
the p-values follow a uniform distribution. This is illustrated in Figure C.4 displayed in
Section C.2 of the Appendix C. If we simulate under the alternative hypotheses (d = 3 and
d = 7), we see that these quantities tend to 1 as the sample size increases. In addition,
as the covariate effect becomes more noticeable, going from d = 3 to d = 7, the power
of ANFCM and MDD procedures increases. Again, the power of the ANFCM algorithm
is always higher than the MDD one. At this point, we should notice that the ANFCM
algorithm takes advantage of the fact that an additive structure with an intercept function
is assumed. In contrast, our MDD test does not consider any model structure, not even
the inclusion of intercept in the model. As a result, our competitor has to measure all
possible forms of departure from conditional mean independence.

Model: H0 (d = 0) Ha (d = 3) Ha (d = 7)

1% 5% 10% 1% 5% 10% 1% 5% 10%

n=60 ANFCM 0.021 0.063 0.117 1 1 1 1 1 1
MDD 0.019 0.058 0.102 0.410 0.811 0.944 0.747 0.984 1

n=100 ANFCM 0.014 0.056 0.094 1 1 1 1 1 1
MDD 0.008 0.046 0.095 0.929 0.999 1 0.999 1 1

Table 5.7: Summary of empirical sizes and powers of the ANFCM and MDD effect tests.

It is relevant to notice that, in both previous scenarios, covariates are related to the
response employing trigonometric functions when it corresponds. Then, modeling the
effects takes advantage of the B-spline basis representation. In addition, the errors are
assumed to be time-independent between them in the FLCM and ANFCM scenarios. These
considerations are a clear advantage for the FLCM and the ANFCM algorithms compared
to our procedure. Thus, to test the FLCM and ANFCM performance in a functional
context with time-correlated errors and when the model structure does not depend on
only trigonometric functions, we apply these to the simulation scenarios introduced in
Section 5.4. For this purpose, a partial approach is considered, testing the effect of the
covariates separately using the FLCM procedure in Scenario A and the ANFCM one in
Scenario B. To compare our results with theirs, we simulate now M = 2000 Monte Carlo
replications and use B = 1000 bootstraps resamples for ANFCM. Again, we follow the
authors’ recommendation and use Q = 7 basis terms in both procedures 1. We refer to
Section C.1 of the Appendix C for a summary of the simulation parameters selection.

Results of partial FLCM tests in scenario A are displayed in Table 5.8. It can be seen
how, regardless of the size of the sample used, the test is always poorly calibrated. In fact,
all obtained p-values are out of the 95% confidence intervals. These results contrast with

1In this setup, we have T = 25 time instants. Then, for the ANFCM procedure, as the function
fpca.face employs by default a total of 35 knots to carry out FPCA, we have to reduce this. We decided
to take 12 knots to solve this issue.
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the MDD ones displayed in Table 5.3, where the test is well calibrated. This phenomenon
may be because, as mentioned above, it is considered a different dependence structure
more related to a functional nature. In terms of power, there is not a clear winner. Our
test is more powerful in the Ha : β1(t) = 0, β2(t) ̸= 0 scenario in test H02, but FLCM is
a bit more powerful in the last scenario for H02. However, this difference is small, and
considering that the FLCM is not well calibrated, it makes sense to conclude that the
MDD-based procedure outperforms this.

Model: β1(t) = β2(t) = 0 β1(t) = 0, β2(t) ̸= 0 β1(t) ̸= 0, β2(t) ̸= 0

H01 H02 H01 H02 H01 H02

5%/10% 5%/10% 5%/10% 5%/10% 5%/10% 5%/10%
n = 20 0.1/0.174 0/0.002 0.104/0.172 0.622/0.758 1/1 1/1
n = 60 0.09/0.152 0/0.004 0.09/0.158 0.709/0.875 1/1 1/1
n = 100 0.074/0.125 0/0.003 0.1/0.17 0.913/0.983 1/1 1/1

Table 5.8: Empirical sizes and powers of the FLCM effect test considering H01 : β1(t) = 0
and H02 : β2(t) = 0 in Scenario A.

Next, the performance of the ANFCM algorithm is tested by simulating under Scenario
B of Section 5.4. Results are collected in Table 5.9. Again, comparing the ANFCM results
with the ones of the MDD test (Table 5.5), we see that the MDD test is well calibrated
even for small values as n = 20 (except for a couple of cases). This fact contrasts with
the results of the ANFCM procedure. In this last, most of the values are out of the 95%
confidence intervals. Moreover, the MDD test has more power than ANFCM in almost
all cases. As a particularity, the ANFCM algorithm is not able to detect the relevance of
X2(t) in the Ha : F1(·) = 0, F2(·) ̸= 0 scenario. Instead, the percentage of rejections is
around the significance values and does not provide significant evidence to reject the null
hypothesis H02 of independence. Thus, we can conclude that the MDD outperforms the
ANFCM procedure.

Model: F1(·) = F2(·) = 0 F1(·) = 0, F2(·) ̸= 0 F1(·) ̸= 0, F2(·) ̸= 0

H01 H02 H01 H02 H01 H02

5%/10% 5%/10% 5%/10% 5%/10% 5%/10% 5%/10%
n = 20 0.098/0.17 0.102/0.176 0.134/0.203 0.043/0.08 0.662/0.8 0.123/0.191
n = 60 0.068/0.118 0.058/0.113 0.071/0.128 0.013/0.028 1/1 0.117/0.216
n = 100 0.047/0.102 0.055/0.106 0.049/0.1 0.063/0.114 1/1 0.147/0.293

Table 5.9: Empirical sizes and powers of the ANFCM effect test considering
H01 : F1 (t,X1(t)) = 0 and H02 : F2 (t,X2(t)) = 0 and using B = 1000 bootstrap re-
samples in Scenario B.

In summary, we have proved that the MDD algorithm performs pretty well in scenarios
where the FLCM and the ANFCM procedures have an advantage, considering uncorrelated
errors and trigonometric functions. Moreover, our test outperforms these when we move
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on to a more functional context, as in scenarios A and B introduced in Section 5.4. In
these scenarios, we consider related errors and other types of relations different from
trigonometric functions.

5.5 Application in some real data sets

In this section, we test the performance of the proposed algorithms in three real data sets.
Firstly, the well-known gait dataset of Olshen et al. (1989) is considered. This data set is
an example of a linear effects model and has already been studied in the concurrent model
framework in works as the one of Ghosal and Maity (2022a) or Kim et al. (2018). Next, a
google flu database from the USA, borrowed from Wang et al. (2017), is studied. In this
work, Wang et al. (2017) assume a linear formulation to model the data. Eventually, an
example of a model with nonlinear effects and some missing points is studied. For this
purpose, the bike sharing dataset of Fanaee-T and Gama (2014) is analyzed. Obtained
results are compared with the ones of Ghosal and Maity (2022b) in this concurrent model
framework.

5.5.1 Gait data

Here, we analyze the performance of the new dependence test in a well-known dataset
from the functional data context. This data is the gait database (Olshen et al. (1989),
Ramsay and Silverman (2005)), in which the objective is to understand how the joints in
the hip and the knee interact during a gait cycle in children. This problem has already
been studied in the concurrent model context using a different methodology (see Ghosal
and Maity (2022a), or Kim et al. (2018)). As a consequence, we compare our results with
theirs.

The data consist of longitudinal measurements of hip and knee angles taken on 39
children with gait deficiency. These are measured as they walk through a single gait cycle.
This data can be found in the fda library (Ramsay et al. (2020)) of the R software (R Core
Team (2019)). The hip and knee angles are measured at 20 evaluation points {tu}20

u=1 in
[0, 1]. These values correspond to the completed percentage of a single gait cycle. Following
previous studies, we have considered as response Y (t) the knee angle and as explanatory
covariate X(t) the hip angle. Data is displayed in Figure 5.5.

Applying our dependence test, we obtain a p-value close to 0. Thus, we have strong
enough evidence to reject the independence hypothesis to the usual significance levels. This
conclusion translates into a dependency between knee and hip angle in one cycle of gait
data in children with poor gait. This result agrees with the ones of Kim et al. (2018) or
Ghosal and Maity (2022a), among others, in the concurrent model framework. They obtain
p-values less than 0.004 and 0.001, respectively. Summing up, the hip angle measured at a
specific time point in a gait cycle has an effect on the knee angle at the same time point in
children with gait deficiency.
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Figure 5.5: Hip (left) and knee (right) angles measurements of a complete gait cycle.

5.5.2 Google flu data from U.S.A.

Google flu data is used in Wang et al. (2017) to model the relationship between flu activity
and temperature fluctuation in the USA. For this purpose, influenza-like illness (ILI) cases
per 100000 doctor visits are considered in the 2013–2014 flu season (July 2013–June 2014).
This information is got from the Google flu trend Website. Moreover, daily maximum
and minimum temperature averaged over weather stations within each continental state
is obtained by means of the US historical climatology network. The daily temperature
variation (MDTV) is considered the explanatory covariate, being the difference between
the daily maximum and daily minimum. The temperature fluctuation is aggregated to the
same resolution as the flu activity data by taking the MDTV each week. Only 42 states
are considered due to missed records. We refer to Wang et al. (2017) for more details.

The original dates from July 1st, 2013, to June 30th, 2014, were numbered by integers
from 1 to 365. Then, time t is rescaled to the [0, 1] interval by dividing the numbers by
365. Besides, we consider regional effects by dividing the data into four sets in terms of
midwest, northeast, south, or west region to study them separately. Following Wang et al.
(2017), the ILI percentage and MDTV are standardized at each time point t by dividing
the variables by their root mean squares. Data of study is shown in Figure 5.6 separating
this by the considered regions.

Therefore, we want to test if the MDTV has relevant information in the flu tendency
modeling of the four considered regions. For this aim, we can apply a global test for each
one separately. Results of dependence tests are displayed in Table 5.10. In view of all
p-values being higher than 0.1, we can conclude that we do not have enough evidence to
reject the null hypothesis of mean conditional independence for levels as 10%. As a result,
the MDTV does not play a relevant role in the ILI modeling, no matter the US region.
We can argue that perhaps the regional effect is unimportant, and we should consider the
data as a whole. For this purpose, we implement a global test considering all the states,
obtaining a p-value close to 0. This result highlights that there is strong evidence to reject
the conditional mean independence between MDTV and ILI. As a result, MDTV provides
notable information to explain the ILI behavior, but this is equal in the four considered
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Figure 5.6: MDTV (left) and flu activity or ILI (right) data in terms of their corresponding
regions: northeast (•), midwest (■), south (▲) and west (♦).

regions, so a distinction does not make sense.

p-value midwest northeast south west
0.106 0.761 0.623 0.667

Table 5.10: P-values of the MDD-based tests for the different regions.

Our results agree with the ones of Wang et al. (2017). First, they reject the location
effect for the linear model formulation. Secondly, they claim that one can avoid the
MDTV covariate from the linear model for a 10% significance level but not for the 5%
(p-value=0.052). Thus, they have moderately significant evidence that the MDTV plays a
role in the ILI explanation, at least in the linear context. It is important to remark that
differences may be because they assume linearity in their regression model. Furthermore, a
first preprocessing step is applied in their case to remove spatial correlations.

5.5.3 Bike sharing data from Washington, D.C.

Next, a bike-sharing dataset of the Washington, D.C., program is analyzed. This is
introduced in Fanaee-T and Gama (2014). The data is obtained daily by the Capital
bike-share system in Washington, D.C., from 1 January 2011 to 31 December 2012. The aim
is to explain the number of casual rentals in terms of meteorological covariates. As a result,
this dataset contains information on casual bike rentals in the cited period along with other
meteorological variables such as temperature in Celsius (temp), the feels-like temperature
in Celsius (atemp), relative humidity in percentage (humidity), and wind speed in Km/h
(windspeed) on an hourly basis. In particular, only the data corresponding with Saturdays
are considered because of the dynamic changes between working and weekend days. This
selection results in a total of 105 Saturdays barring some exceptions (8 missings). All
covariates are normalized by formula (t− tmin)/(tmax − tmin) in case of temp and atemp,
and these are divided by the maximum for the humidity and windspeed case. In order to
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correct the skewness of the hourly bike rentals distribution (Y (t)), a log transformation is
applied considering as response variable Y (t) = log(Y (t) + 1). These are shown in Figure
5.7.

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
hour

te
m

p

0.00

0.25

0.50

0.75

0.00 0.25 0.50 0.75 1.00
hour

at
em

p
0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
hour

hu
m

id
ity

0.0

0.2

0.4

0.6

0.8

0.00 0.25 0.50 0.75 1.00
hour

w
in

ds
pe

ed

0

2

4

6

0.00 0.25 0.50 0.75 1.00
hour

ca
su

al
 b

ik
e 

re
nt

al
s

Figure 5.7: Daily temperature (temp), feeling temperature (atemp), humidity, wind speed
and casual bike rentals on an hourly basis in Washington D.C. on Saturdays.

First, the missing data is recovered employing splines interpolation as described in
Section 5.1.2. Then, once we have a total of n = 105 data points at each time instant, the
global significance MDD-based test is performed. We obtain a p-value close to 0, which
rejects the null hypothesis of independence for usual significant levels as the 5% or the 1%.

Next, we perform partial tests to detect if any of the four considered covariates (temp,
atemp, humidity, and windspeed) can be excluded from the model. We obtain p-values
of 0, 0, 0.007, and 0.001 for temperature (temp), feels-like temperature (atemp), relative
humidity (humidity), and wind speed (windspeed), respectively. Thus, we can claim that
all of these affect the number of casual rentals at significance levels as the 1%. This last
result agrees with other studies, like the one of Ghosal and Maity (2022b). In this study,
different covariates are selected by the distinct considered penalizations. In an overview of
their results, each covariate is selected at least two times over the five considered procedures.
As a result, all covariates seem to play a relevant role separately.

5.6 Conclusions

We propose novel significance tests for the additive functional concurrent model, which
collects a wide range of different structures between functional covariates and response.
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As a result, the relevance of a subset of covariates to model the response in a regression
setting is tested, including global and partial tests to apply covariates screening. This
approach allows one to detect irrelevant variables and reduce the problem dimensionality,
facilitating the subsequent estimation procedure. For this aim, we construct test statistics
based on MDD insights and taking into consideration all observed time instants. This
process results in general significance tests able to determine the covariates’ relevance over
the complete trajectory. In contrast with existing methodology in literature for significance
tests in the concurrent model, as the FLCM (Ghosal and Maity (2022a)) or the ANFCM
(Kim et al. (2018)) procedures among others, our approach has the novel property that
there is no need of a preliminary estimation of the model structure. Besides, this new
procedure allows multivariate responses Y (t) ∈ Rq for q ≥ 1 and t ∈ D. Furthermore, no
tuning parameters are involved in contrast with previous methodologies. Instead, it is only
needed to compute a U-statistic version of the MDD to be able to apply the tests. Using
the theory of U-statistics, good properties of this estimator are guaranteed in practice, as
its unbiasedness. In addition, its asymptotic distribution is obtained both under the null
and local alternative hypotheses. Eventually, bootstrap procedures are implemented to
obtain its p-values in practice.

The new tests proposed have displayed good performance in linear formulations and
in nonlinear structures. This is appreciated by means of the results of scenarios A and B
considered in the simulation study of Section 5.4. These procedures are well calibrated
under the null hypothesis of no effect, tending to the significance level as the sample size
increases. Moreover, they have power under alternatives, which one can deduce from
observing that p-values tend to the unit as sample size increases when associated covariates
are relevant. Besides, these procedures seem to perform well in real data sets too. We
display an example of this result in Section 5.5, where we analyze three real datasets. Other
authors have already studied these, so we compare our outcomes with existing literature,
obtaining similar results when these are comparable. As a result, the MDD-based test
is a pretty transversal tool to detect additive effects in the concurrent model framework
without the need for previous assumptions or model structure estimation. Moreover, notice
that all these ideas could be extended to conditional quantile dependence testing in the
concurrent model framework. For this purpose, a similar development would be enough,
following the guidelines and adapting the ideas of Section 3 in Zhang et al. (2018).

In terms of performance comparison with existing literature, the MDD-based test
methodology is put together with Ghosal and Maity (2022a) (FLCM) and Kim et al. (2018)
(ANFCM) algorithms in the linear and additive model framework, respectively. Based on
the obtained results, it is possible to claim that the new procedure is quite competitive.
Even when the FLCM and ANFCM procedures have the advantage of being implemented
assuming the correct model structure and an optimal number of the basis components, the
new procedure results are comparable to theirs. These results arise in Section 5.4.3. In
contrast, our procedure outperforms their results by simulating a more functional scenario
and avoiding only trigonometric expressions in the model. Besides, another disadvantage
of the competitors is that m(t,X(t)) is unknown in practice, so a misguided assumption
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of the model structure could lead to poor results. In addition, as discussed in Ghosal
and Maity (2022a) and Kim et al. (2018), a suitable selection of the number of the basis
components is problematic in practice. This issue is still an open problem. This quantity
plays the role of tuning parameter, so an appropriate value is needed to guarantee a proper
adjustment. In contrast, our proposal has the novelty that this does not require previous
estimation or tuning parameters selection. Our approach bridges a gap and solves the
problems mentioned above.

One limitation of the present form of our test is that this only admits the study of
numerical covariates. This restriction is quite common for the concurrent model framework.
Some examples are the works of Ghosal and Maity (2022a) or Kim et al. (2018). If one
wants to be able to include categorical variables, as in other works such as in Wang et al.
(2017), a different metric is needed to correctly define the U-statistic of the MDD test.
Some solutions for this problem have already been proposed for the distance covariance
approach in the presence of noncontinuous variables. Similar ideas could be translated to
the MDD context to solve this issue. An option is to extend the ideas proposed in Lyons
(2013) for general metric spaces to this case. We leave this topic for future research.

A drawback of our methodology is the statistics computational time, being of the order
of O(n(n− 1)(n− 2)(n− 3)T ) operations. Then, this procedure is quite competitive for
“moderate” values of n and T . However, for large values of these quantities, especially
those related to n, the statistic has a high computational cost. Consequently, simplification
techniques in the number of required operations are of interest to make the procedure more
tractable.

Furthermore, it is interesting to remark that, because of the statistics structures, the
tests collect only additive effects. Although this formulation embraces a huge variety of
different structures, this does not consider some complex relations like interactions without
a prespecified definition of new variables collecting these. Nevertheless, it is thought that,
using projections, these ideas can be extended to the general concurrent model formulation,
where all possible relations are considered. This is a complete new line for future research.

Eventually, an important drawback is related to the disposal of the observed time
instants. It is necessary to monitor the same number of curves at each instant of time to
be able to construct our proposed statistic. This restriction translates into synchronous
observations with nt = n points of the observed curves for all t ∈ D. When the number of
missed points is small, we can impute these using interpolation techniques. An example is
given in Section 5.1.2. However, in a sparse context where one observes each curve in a
different number of time points, and these measures may not agree (asynchronous pattern),
it is not possible preprocessing the data to obtain our starting point. In conclusion, a new
methodology is needed for these scenarios based on different dependence measures. We face
this problem next, in Chapter 6. We develop new significance tests for the asynchronous
version of the FCM using the CDC coefficient introduced in Section 4.2.3 of Chapter 4.



Chapter 6
New significance tests for the asynchronous
functional concurrent model based on the

CDC coefficient

The interest in covariates selection techniques in the FCM is motivated by the growth of
functional or high-frequency data studies. In Chapter 5, new covariates selection approaches
were proposed for the FCM. Nevertheless, these only work for synchronous time observations.
This chapter presents other novel ideas to implement covariates selection techniques for the
general version of the FCM in the asynchronous context. These selection procedures are
implemented through conditional independence tests, using the CDC coefficient introduced
in Section 4.2.3. The chapter is organized as follows. The asynchronous FCM is introduced
in Section 6.1. In Section 6.2, new ideas for significance tests are presented, justifying
their good behavior. Next, a simulation study is implemented to test their performance in
Section 6.3. Eventually, some conclusions arise in Section 6.4.

6.1 The asynchronous FCM

The FCM introduced in Section 5.1, and given by expression (5.1), states that given two
functional variables Y (t) = (Y1(t), . . . , Yq(t)) ∈ Rq and X(t) = (X1(t), . . . , Xp(t)) ∈ Rp,
with q, p ≥ 1 and some t ∈ D, their relation is concurrent or point by point. This relation
is given by a function m(t,X(t)), which is unknown.

In practice, a total of n curves of the form {Yi(t),Xi(t)}ni=1 are registred as independent
realizations of {Y (t), X(t)}. Nevertheless, only part of the curve‘s trajectory can be
observed. If, for each of the i = 1, . . . , n curves, there is information in a total of
ui = 1, . . . , Ti different time points, having Ti > 1 instant values for each curve, the data
translates into {Yi(tiui),Xi(tiui)}

Ti
ui=1. Thus, the two possible scenarios can be classified

in the synchronous case, understanding that it is assumed Ti = T and tiu = tku for all
i, k = 1, . . . , n and u = 1, . . . , T ; or in the asynchronous one, when Ti can differ in terms
of i, and it is not always verified that tiui = tkuk

for i ̸= k. The first case also contains
scenarios where some points are missed, but these can be recovered using some interpolation
technique. In a word, in the synchronous class, one is able to obtain all curve values for some
{tu}Tu=1 instants. In contrast, each curve can be observed at different time points in the
asynchronous framework, obtaining asynchronous grids. This last consideration translates
into varied tiui values. Moreover, another different classification can be done based on
the total number N = ∑n

i=1 Ti of observed points, differentiating between functional or
longitudinal nature. Some comments and references about this topic arise in Section 5.1.

In real-world scenarios, the difference between synchronous and asynchronous cases

159
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lies in the data collection procedure. Thus, synchronous observations can be obtained
when a suitable device is provided to monitor functional values or the data is measured
continuously. Examples of this situation are the use of monitoring devices in a hypertension
study (see Goldsmith and Schwartz (2017)), clinical studies where data collection is
completed quickly, such as gait disturbance studies (Kim et al. (2018), Ghosal and Maity
(2022a)), countries data collected over the years (Wang et al. (2017), Ghosal and Maity
(2022a)) or data provided by weather stations (Ospína-Galindez et al. (2019)). In contrast,
asynchronous versions tend to appear in clinical studies where the data collection requires
patient implication. Therefore, these data sets are often the result of information provided
by medical checkups. As the dates of medical checkups differ from one patient to another,
the data is collected at different time points. Additionally, a different number of checks is
possible for each patient in terms of medical necessity or availability of the patient. This
last results in curves with a different number of points between them. In the concurrent
model framework, some examples of the asynchronous version are AIDS studies (Xue and
Zhu (2007), Jiang et al. (2011)) or modeling of Alzheimer’s disease (Wang et al. (2017)),
to say a few. As it is expected that not much information will be provided for a given
instant, it is in asynchronous cases where an extra effort has to be made. As expected, not
much information is provided for each given moment, so an extra effort must be made in
the asynchronous case. In this chapter, we develop new covariates selection procedures
under asynchronous design. For this purpose, we assume that the observed time grid is
dense enough to borrow information from neighbors at a given time point. Under these
assumptions, we employ new nonparametric techniques for specification testing on the
m(·) function of (5.1) for the asynchronous FCM case. In particular, ideas about novel
significance tests are provided to determine which covariates are relevant in the regression
model explanation.

In terms of the general formulation displayed in (5.1), no structure of the regressor
function m(·) is assumed. This flexibility contrasts with the assumptions of most of the
existing literature, where it is usual to consider some formulation, like linearity, and work
under this premise. A discussion about the effort made in concurrent model estimation for
different structures can be seen in Maity (2017). As a result, under no model assumption,
a proper estimator in an asynchronous scenario will depend on a bandwidth parameter h
for both: allow flexibility and use neighbors’ information. Thus, a preliminary screening
step determining if all p explanatory covariates {X1(t), . . . , Xp(t)} are relevant, or we can
exclude some from the model, is desirable for problem dimensionality reduction.

Then, to ensure the veracity of the model, it is necessary to verify if all p covariates
{X1(t),. . . , Xp(t)} are relevant. For this purpose, a global dependence test can be performed
by means of testing

H0 : Y (t) ⊥|t X(t) almost surely ∀t ∈ D \ N

Ha : P
(
Y (t) ̸⊥|t X(t)

)
> 0 ∀t ∈ P

(6.1)

where ⊥|t applies for conditional independence on t, D \N is the domain of t minus a null
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set N ⊂ D and P ⊂ D is a nonnull set.
Here, the conditional independence denoted by ⊥|t is understood in terms of t. This

translates into the condition φY (t),X(t)|t(s, u) = φY (t)|t(s)φX(t)|t(u), where φY (t),X(t)|t(s, u)
is the conditional joint characteristic function of Y (t) and X(t) and φY (t)|t(s) as well as
φX(t)|t(u) the marginal characteristic functions of Y (t) and X(t), respectively.

In this way, model (5.1) considering the p covariates only makes sense if one can reject
the H0 hypothesis of (6.1). Otherwise, the considered covariates do not supply relevant
information to explain Y . It is notorious that formulation (6.1) collects a wide range of
dependence structures between X and Y , conditioned to t. In addition, knowing the real
form of m(·) is not necessary to determine when the effect of X is or is not significant. In
conclusion, this formulation collects all types of conditional dependence patterns.

In this chapter, we focus on the development of new significance tests for the general
concurrent model formulation under asynchronous design. For this purpose, a novel
nonparametric statistic based on the conditional distance covariance coefficient (CDC) of
Wang et al. (2015) is used. We refer the reader to Section 4.2.3 for more details about
the CDC coefficient. This statistic has the novelty that preliminary model estimation is
unnecessary in this framework. As a result, this tests procedure if the covariates have an
effect on the explanation of Y no matter the underlying form of m(·). In contrast, other
procedures, such as the ones of Wang et al. (2017) and Ghosal and Maity (2022a) in the
linear formulation, or the work of Kim et al. (2018) for the additive structure, require the
corresponding m(·) estimation to implement significance tests. Furthermore, the proposed
procedure has the extra novelty that all conditional dependencies can be detected, including
possible interactions. To the best of our knowledge, there is no literature for significance
tests in the concurrent model considering any general formulation or possible interactions.

6.2 Significance tests based on CDC

From now on, we assume an asynchronous context where curves can be measured at
different time points for each sample, having or not repetitive instants between them. Thus,
for each curve i = 1, . . . , n, there are a total of Ti > 1 observed time points. This translates
into samples of the form {(Yi(tiui),Xi(tiui))}

Ti
ui=1 where (Yi(tiui),Xi(tiui)) ∈ Rq × Rp

and i = 1, . . . , n. A graphic example of the current situation considering q = 1 and p = 2
covariates for a FCM with a structure similar to (5.1) is displayed in Figure 6.1. In this
case, there are n = 5 curves and, as an example, for instant t1, a total of 2 points have
been observed, whereas, for tT , a total of 3 applies.

As a result, putting all the data together and considering N = ∑n
i=1 Ti, a new sample

with triplet structure of length N can be obtained. This is given by{{(
Y1(t1u1),X1(t1u1), t1u1

)}T1

u1=1
, . . . ,

{(
Yn(tnun),Xn(tnun), tnun

)}Tn

un=1

}
.

Here (Yi(tiui),Xi(tiui), tiui) ∈ Rq × Rp × R1 for all i = 1, . . . , n and u1 = 1, . . . , Ti.
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Figure 6.1: Example of a sample of five curves measured at different time instants {tu}Tu=1 ∈
D considering p = 2 covariates (X1(t) and X2(t)) to explain Y (t). Filled points simulate
the total observed points for each curve.

This last can also be understood as

curve i = 1 :
(
Y1(t11),X1(t11), t11

)
, . . . ,

(
Y1(t1T1),X1(t1T1), t1T1

)
...

curve i = n :
(
Yn(tn1),Xn(tn1), tn1

)
, . . . ,

(
Yn(tnTn),Xn(tnTn), tnTn

)
Henceforth, for sake of simplicity, notation WN is considered for samples, where

WN = {(Y1,X1, t1), . . . , (YN,XN, tN)} denotes the set of all N triplets.
At this point, it is possible to resort to Wang et al. (2015) techniques over the N -

dimensional sample vector to perform (6.1) using the CDC coefficient introduced in Section
4.2.3. The resulting test is given by

H0 : CDC2(Y (t), X(t)|t) = 0 almost surely ∀t ∈ D \ N

Ha : P
(
CDC2(Y (t), X(t)|t) ̸= 0

)
> 0 ∀t ∈ P

which, considering that CDC2(Y (t), X(t)|t) ≥ 0, is equivalent to

H0 :
∫

D\N
CDC2(Y (t), X(t)|t)ω(t)f(t)dt = 0 almost surely

Ha : P
(∫

P
CDC2(Y (t), X(t)|t)ω(t)f(t)dt ̸= 0

)
> 0

(6.2)

being ω(t) a weighting function and f(t) the density function of t.
A first interpretation of the expression for the statistic displayed in (6.2) is that this

is just a weighted expectation of the form E
[
CDC2(Y (t), X(t)|t)ω(t)

]
. The weighting

function ω(t) represents the relevance of each given t ∈ D value. As a result, this can
be selected as an expression of the density function. Wang et al. (2015) propose to take
ω(t) = 12f4(x) because easy calculation, but another choice is possible. Once a ω(t)
function is established and suitable estimators of CDC2(Y (t), X(t)|t) as well as f(t) are
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achieved, a statistic based on these terms can be employed to implement the conditional
independence test given in (6.2). Without loss of generality, one can always set D = [0, 1]
just rescaling the D domain, which translates into integrating into the [0, 1] interval. In
terms of f(t), there are two options: knowing the real distribution in advance, for example,
that time points follow a uniform distribution in t ∈ [0, 1] (f(t) = 1), or to estimate this
employing non-parametric techniques and plug-in its estimation. On the other hand, a
U-statistic of order 4 can be obtained for CDC2(Y (t), X(t)|t), given a t value, following
calculation displayed in Section 4.2.3. Nevertheless, as in the vectorial case, this estimator
has a pretty high computational cost. Consequently, simpler estimators are useful to lower
the computational burden. The construction of a more tractable version is discussed below
in Section 6.2.1, resulting in the estimator given in equation (6.3). As a result, this last is
employed to implement the test.

Moreover, a kernel function, as well as a bandwidth value, are involved in the CDC
estimation. Then, a suitable selection of the kernel function and the bandwidth parameter
is needed to estimate this coefficient correctly. A discussion about kernel and bandwidth
selection is carried out in Section 6.2.2.

For a proper selection of the bandwidth parameter and density estimator f̂(t), Wang
et al. (2015) develop an estimator for the corresponding E

[
CDC2(Y (t), X(t)|t)12f4(t)

]
quantity in the vectorial framework and proved its asymptotic normality. See Theorem
7 of Wang et al. (2015). In particular, considering the N triplets structure given by
WN, this result also extends to our context. As a result, under some assumptions, the
asymptotic normality of the statistic developed for the asynchronous FCM version is
guaranteed. However, the variance term associated with this distribution is difficult to
obtain in practice. Moreover, the convergence to this normal distribution may be slow in
practice. Therefore, a bootstrap procedure is an appealing alternative to calibrating the
statistic distribution. Following Wang et al. (2015) ideas, the local bootstrap of Paparoditis
and Politis (2000) is adapted to the asynchronous FCM context to obtain the test p-value
in practice. This results in the scheme proposed in Algorithm 6.1.

Algorithm 6.1 (Local bootstrap scheme for significance tests using CDC). Given a kernel
function K(·) and some proper bandwidth parameter h:

1. For i = 1 . . . , N estimate CDC2 (Y (t), X(t)|t=ti) by means of VN (t1), . . . ,VN (tN ) as
defined in expression (6.3).

2. Approximate the sample statistic E =
∫

D\N CDC2(Y (t), X(t)|t)ω(t)f(t)dt by means
of numerical techniques using {VN (t1), . . . ,VN (tN )}.

3. For i = 1 . . . , N , draw Y ∗
i and X∗

i from the Nadaraya-Watson estimators of the
distribution functions given by

F̂Y |t=ti
(y) =

∑N

l=1 Kh(ti−tl)I(−∞,Yl](y)∑N

l=1 Kh(ti−tl)
and F̂X|t=ti

(x) =
∑N

l=1 Kh(ti−tl)I(−∞,Xl](x)∑N

l=1 Kh(ti−tl)
,

respectively, being I(·) the indicator function. Roughly speaking, each observed value
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Yl or Xl, where l = 1, . . . , N , has a probability Kh(ti − tl)/
∑N

l=1Kh(ti − tl) to be
chosen as the i-th bootstrap sample.

4. For i = 1, . . . , N obtain V∗
N (t1), . . . ,V∗

N (tN ) by expression (6.3) using the local
bootstrap sample W∗

N = {(Y∗
1,X∗

1, t1), . . . , (Y∗
N,X∗

N, tN)}.

5. Approximate the bootstrap statistic E∗ =
∫

D\N CDC2∗(Y (t), X(t)|t)ω(t)f(t)dt mak-
ing use of {V∗

N (t1), . . . ,V∗
N (tN )}.

6. Repeat steps 3-5 a number B of times obtaining {(E∗)(1), . . . , (E∗)(B)}.

7. Compute the bootstrap p-value as 1
1+B

(
1 +∑B

b=1 I{(E∗)(b) ≥ E}
)
.

For the asynchronous FCM case, a local bootstrap, resampling in both variables Y
and X, has been proposed. In contrast, Wang et al. (2015) use the local bootstrap of
Paparoditis and Politis (2000) for the vectorial framework, just resampling in one variable.
This modification is motivated by the fact that, in this context, ties may be expected in the
conditioned variable (t), although this is not usual in the vectorial framework. Therefore,
it is likely to have different values for Y (t) and X(t) given some value of t. As a result,
resampling in both variables seems more appropriate for the asynchronous FCM context
than resampling only in one. An illustrative comparison between both procedures and
through a simulation study is carried out in Section 6.3.1. Moreover, other resampling
techniques are available to calibrate the CDC-based test correctly. An alternative for
calibration is the use of permutations. The performance of this option is displayed in
Section D.3 of Appendix D for the simulation scenario studied in Section 6.3.1.

In this procedure (Algorithm 6.1), the same bandwidth parameter, h, is employed for
estimation as well as resampling, similar to Wang et al. (2015) procedure. However, we
propose a different criterion for bandwidth selection from the naive rule-of-thumb that is
intended for density estimation and applied in Wang et al. (2015). Instead, a search of h
considering different values in the D domain is performed. As mentioned above, one can
rescale the domain to the range [0, 1] with no loss of generality and search there. This
new search is motivated since automatic selection rules based on density estimation have
displayed bad behavior for this FCM context. Some examples of this phenomenon are
displayed below in Section 6.3.

6.2.1 Estimation of CDC in practice

Following guidelines introduced in Section 4.2.3, we derive a proper V-statistic (respectively,
U-statistic) of order 4 to implement the conditional independence test displayed in (6.2).
Nevertheless, this statistic requires the order of O(N4) calculations for a given conditional
value. This cost results in O(N5) operations when all t values are considered. As a result,
considering N = 20 it is needed 3.2 · 106 operations and for N = 100, a total of 1010. Since,
in the concurrent model, N denotes the total number of observed points considering all
curves, one expects greater values than N = 100. This complexity can result in intractable
situations. Thus, a low-cost statistic is needed, especially using bootstrap techniques to
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obtain p-values in practice. For this aim, it is possible to resort to a weighted version of
the distance covariance estimator of Székely et al. (2007) to estimate (4.24). This is given
by the expression

VN (t) =
∑N

l=1
∑N

m=1Alm|tBlm|tKh(t− tl)Kh(t− tm)(∑N
l=1Kh(t− tl)

)2 (6.3)

where

Alm|t = alm|t − āl·|t − ā·m|t + ā··|t

Blm|t = blm|t − b̄l·|t − b̄·m|t + b̄··|t

for l,m = 1, . . . , N and where

āl·|t =
∑N

i=1 ali|tKh(t− ti)∑N
i=1Kh(t− ti)

, ā·m|t =
∑N

i=1 ami|tKh(t− ti)∑N
i=1Kh(t− ti)

,

ā··|t =
∑N

i=1Kh(t− ti)
(∑N

j=1 aij|tKh(t− tj)
)

(∑N
i=1Kh(t− ti)

)2

and similar for b̄l·|t , b̄·m|t and b̄··|t , being alm|t =∥Xl(t)−Xm(t)∥p and blm|t = ∥Yl(t)−Ym(t)∥q,
where ∥·∥p and ∥·∥q denote the euclidean norms of Rp and R, respectively.

Then, the estimator VN (t) of (6.3) results in a V-statistic of order 2. This calculation
translates intoO(N3) operations, reducing the computational cost and resulting in a cheaper
alternative. Other authors have already applied this idea in the vectorial framework. For
example, Wang et al. (2015) use this type of estimator to perform their CDIT criterion.

6.2.2 Kernel function and bandwidth selection

For the CDC2(Y (t), X(t)|t) estimation, a kernel function, as well as a proper bandwidth
parameter, are needed. It is remarkable that now, in the FCM case, the conditional
covariate is t ∈ D ⊂ R, then, both kernel and bandwidth are one-dimensional.

In the vectorial framework, Wang et al. (2015) choose the Gaussian kernel to construct
their statistic. This selection is because this criterion is easy to extend to the multidimen-
sional case. For this purpose, they consider a diagonal bandwidth matrix H with the same
h value. Furthermore, using the Gaussian kernel, ω(t)/N results in a consistent density
estimator under some regularity conditions. We refer the reader to Wang et al. (2015) for
more details. In their study, the values of the conditioned variable, Z ∈ Rr, are assumed to
be random. Then, to avoid randomness from their statistic, they consider the expectation
of the conditional distance covariance weighted in terms of the Z values. As a result, a
proper density estimator is required, and this last condition is desirable. Nevertheless,
different situations may arise for the FCM, such as knowing the distribution of t in advance.
An example of this situation is when one knows that the points of the rescaled functional
curves follow some distribution in [0, 1] concerning time, but only some points are recorded
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because of the capability of the monitoring device.
Furthermore, it is possible to consider observed time instants {ti}Ni=1 as deterministic

in the sense that measures of variables Y (·)1, . . . , Y (·)q and X1(·), . . . , Xp(·) are obtained
in fixed time points. An example of this situation may appear in medical checkups
where these are prespecified with a given distance between medical appointments. Some
examples can be found in Xue and Zhu (2007) or Jiang et al. (2011), in AIDS studies,
or in Wang et al. (2017) for Alzheimer’s disease. Thus, one can avoid the expectation
operator interpretation in (6.2) because of the lack of randomness in t. As a result, all
the information can be collected employing an integral approximation for all time points.
Moreover, given a particular instant and due to the FCM nature, it is natural to consider
only neighbors’ information. For this reason, a compact kernel seems to be a better option
than the Gaussian one for the asynchronous FCM. Henceforth, we employ the uniform or
rectangular kernel for our study, which is given by the expression

Kh(x) = 1
h
K

(
x

h

)
= 1

2hI{|x/h| ≤ 1}.

Other options for compact kernels, such as triangular or Epanechnikov kernels, would
also be possible. A representation of these functions is collected in Figure 1.2 of Chapter 1.

Furthermore, as is shown below in Section 6.3, bandwidth selection criteria, based on
density estimation, do not perform well for the FCM framework. In particular, this fact is
illustrated by considering the rule-of-thumb and the unbiased cross-validation approaches
for density estimation. As a result, another criterion is necessary. In practice, we propose
to prove with different values of h ∈ D, respectively in [0, 1], for statistic calculation and
extract conclusions based on these results. Next, this idea is implemented and tested for
the asynchronous FCM model through a simulation study in Section 6.3.

6.3 Simulation studies

In this section, we consider two simulation scenarios for assessing the performance of
the CDC-based tests displayed in (6.2). These are a linear (Scenario A) and a nonlinear
(Scenario B) formulation of the model (5.1) in the asynchronous framework. For this
purpose, a Monte Carlo study with M = 500 replicas is performed using the R software (R
Core Team (2019)).

In particular, Scenarios A and B introduced in Section 5.4 are employed. Now, it is
assumed that, for each curve i = 1, . . . , n, a total of Ti = 4 different time instants are
observed in Dt = [0, 1], taking sample sizes of n = 20, 60, 100. These time points are
randomly generated following a uniform distribution.

Then, in both frameworks, the density function is assumed to be known, following a
U [0, 1]. Thus, as f(t) = 1, it is defined ω(t) = 1 for all t ∈ [0, 1]. If this information is not
available, the density function can be easily estimated using nonparametric techniques.
Nevertheless, it is assumed in simulations that the density distribution is known in advance
just for the sake of simplicity.
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We use the local bootstrap of Algorithm 6.1 to approximate the p-values, employing
B = 500 resamples in each case. The sample size and power of the test are obtained
using Monte Carlo techniques. To ensure that the p-values under the null take on a
suitable value, we calculate the 95% confidence intervals of the significance levels using the
expression

[
α∓ 1.96

√
α(1−α)

M

]
. Here α is the expected level, and M = 500 is the number

of Monte Carlo simulated samples. Thus, we consider that a p-value is acceptable for levels
α = 0.01, 0.05, 0.1 when this is within the values collected in Table 6.1. Then, the resulting
p-values outside these scales for simulation results are highlighted in bold.

M α = 0.01 α = 0.05 α = 0.1
500 [0.001, 0.019] [0.031, 0.069] [0.074, 0.126]

Table 6.1: Confidence intervals of the Monte Carlo proportions at different levels for a
total of M = 500 replicates.

6.3.1 Results for scenario A (linear model)

The behavior of the CDC-based test for asynchronous FCM linear formulation is analyzed
in the first place. For this purpose, Scenario A of Section 5.4 is employed. Three different
simulation frameworks are considered: simulating under the null hypothesis of conditional
independence (β1(t) = β2(t) = 0) and the other two violating this through conditional
dependence on X2 (β1(t) = 0, β2(t) ̸= 0) or in both covariates (β1(t) ̸= 0, β2(t) ̸= 0). The
test is calibrated employing the local bootstrap introduced above in Section 6.2.

As mentioned above in Section 6.2.2, the rectangular kernel is employed, and a proper
bandwidth needs to be picked. This selection translates into a value that guarantees that
the test is well-calibrated under the null hypothesis of conditional independence. To select
this term, we start proving with a wide grid of values along [0, 1], taking h = 0.1, 0.2, . . . , 0.8.
Next, we determine the most optimal value of those considered in the grid and refine the
search using a more refined grid around this quantity. A criterion to select this first value
is to choose an h value whose associated p-values distribution resembles the U [0, 1] under
the null hypothesis. Eventually, the most suitable value in the new denser grid is picked
based on this criterion. These selections can be made formally using some uniformity GoF
test. We perform Kolmogorov-Smirnov tests1 in this study. It is important to remark
that, as expected for the optimal h quantity to vary in terms of the sample size, n, this
procedure is performed for all different considered values of n. Besides, the rule-of-thumb
estimator, hRoT , and the unbiased cross-validation criteria for density estimation, hUCV ,
are also considered to show the malfunction of automatic bandwidths.

For all considered sample sizes (n=20, 60, 100), in the first search, one can realize that
the optimal value seems near h = 0.5. An example of this situation, for n = 100, can
be appreciated in Figure D.2 of Section D.1 in the Appendix D in terms of the obtained

1For this purpose, we have employed the ks.test(·,“punif”) test of the base package stats of R (R
Core Team (2019)).
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p-values histograms. As a result, we narrow down the search between the interval (0.4, 0.6)
taking h = 0.42, 0.44, 0.46, 0.48 and h = 0.52, 0.54, 0.56, 0.58. The percentage of rejections
for significance values α = 0.01, 0.05, 0.1, for the considered h quantities, are displayed in
Figure D.1 in Section D.1 of the Appendix D. There, it is appreciated as optimal calibration
seems to happen when h is near 0.5. In fact, we got that suitable values in the considered
grid are h = 0.48, 0.46, 0.5 for n = 20, 60, 100, respectively. These quantities obtain
associated p-values of 0.103, 0.6728, and 0.3195 in the uniformity Kolmogorov-Smirnov
test. As a result, there is no evidence to reject the null hypothesis of uniformity for low
significance levels for these bandwidth values. Then, these h values can be employed to
perform the CDC-based global test. Results using these tuning parameters are collected
in Table 6.2. It is possible to appreciate as the test is well calibrated, having all values
between the 95% confidence interval.

Model: β1(t) = β2(t) = 0 (H0) β1(t) = 0, β2(t) ̸= 0 (Ha) β1(t) ̸= 0, β2(t) ̸= 0 (Ha)

h n 1% 5% 10% 1% 5% 10% 1% 5% 10%
0.48 20 0.010 0.034 0.080 1 1 1 1 1 1
0.46 60 0.002 0.048 0.112 1 1 1 1 1 1
0.5 100 0.008 0.052 0.118 1 1 1 1 1 1

Table 6.2: Empirical sizes and powers of the CDC-based global test for conditional
dependence testing using a local bootstrap approximation with B = 500 resamples in
Scenario A for fixed bandwidth values (h) and a total of N = n · 4 sample points.

Regarding the rule-of-thumb estimator, hRoT , and the one based on the unbiased
cross-validation criteria, hUCV , one observes a pretty poor performance for both in practice.
For both parameters, the test is always poorly calibrated. An example of this last fact
is shown in Figure D.2 of Section D.1 in the Appendix D for sample size n = 100. The
optimal bandwidth values selected concerning density estimation are quite small, far away
from optimal values for calibration. Besides, it is appreciated as their p-values do not
follow a uniform distribution. In fact, p-values< 2.2 · 10−16 are obtained for both cases in
the Kolmogorov-Smirnov test of uniformity.

Once a bandwidth value is selected, verifying that the test is well-calibrated under H0
in each case, it must be verified if the test has power under the alternative hypothesis.
For this aim, two different conditional dependence scenarios are simulated: having only
dependence on X2 (β1(t) = 0, β2(t) ̸= 0) or in both covariates (β1(t) ̸= 0, β2(t) ̸= 0). It
can be seen in Table 6.2 as the test is very powerful for both scenarios, always getting
a percentage of rejections equal to the unit. As a curiosity, it is interesting to mention
that, for all considered bandwidth values in [0, 1], we always appreciate a really high power
simulating under the alternative hypothesis.

Finally, the local bootstrap approach applied by resampling in both covariates compares
with the one employed by Wang et al. (2015), using the version of Paparoditis and Politis
(2000). Then, the local bootstrap scheme introduced in Algorithm 6.1 is implemented,
resampling only the response variable Y . Calibration results for different bandwidth values
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h = 0.1, 0.2, . . . , 0.8 are displayed in Figures D.6 and D.5 in Section D.2 of the Appendix
D. Given the results, one can appreciate as the optimal value for h seems to change in
this case. In particular, the test is well-calibrated for bandwidth parameter values close
to 0.3. Then, it is possible to conclude that a calibration resampling only on Y is also
adequate. However, because of the FCM nature, it seems more reasonable to resample on
both covariates. Moreover, these results bring out the fact that the bandwidth selection
for density function criterion, like the rule-of-thumb (hRoT ) or unbiased cross-validation
(hUCV ), performs poorly in this context again.

Furthermore, a different point of view on implementing permutations to calibrate the
test is displayed in Section D.3 of the Appendix D.

6.3.2 Results for scenario B (nonlinear model)

Next, we analyze the performance of the CDC-based tests in a nonlinear framework. For
this purpose, the Scenario B of Section 5.4 is implemented. Details about its implementation
in the asynchronous case are given above, in Section 6.3. Following similar guidelines as for
the linear case (Scenario A considered in Section 6.3.1), three different contexts are studied:
simulating under conditional independence (F1(·) = F2(·) = 0), when there is only an
important covariate (F1(·) = 0, F2(·) ̸= 0) and when both are relevant (F1(·) ̸= 0, F2(·) ̸= 0).
As a result, the first option is useful for detecting if the test is well-calibrated, and the
remaining ones are for the power study related to the detection of alternatives.

Again, we consider in first place values of h = 0.1, 0.2, . . . , 0.8, and a posterior narrower
search is done accordingly with the optimal values obtained. It can be seen in Figure D.4,
collected in Section D.1 of the Appendix D, as the optimal values are around h = 0.5.
In fact, for all sample sizes, the value which obtains the best results for the Kolmogorov-
Smirnov test of uniformity is h = 0.5. For sample sizes n = 20, 60, 100, p-values of 0.051,
0.129 and 0.283 were obtained, respectively. An example of how the p-values resemble
a uniform distribution is appreciated for n = 100 in Figure D.3 in Section D.1 of the
Appendix D. Thus, results considering h = 0.5 are summarized in Table 6.3.

Model: F1(·) = F2(·) = 0 (H0) F1(·) = 0, F2(·) ̸= 0 (H1) F1(·) ̸= 0, F2(·) ̸= 0 (H1)

h n 1% 5% 10% 1% 5% 10% 1% 5% 10%
0.5 20 0.012 0.036 0.090 1 1 1 1 1 1
0.5 60 0.008 0.066 0.140 1 1 1 1 1 1
0.5 100 0.008 0.050 0.118 1 1 1 1 1 1

Table 6.3: Empirical sizes and powers of the CDC-based global test for conditional
dependence testing using a local bootstrap approximation with B = 500 resamples in
Scenario B for fixed bandwidth values (h) and a total of N = n · 4 sample points.

In view of the results, one appreciates that simulating under the H0 hypothesis all
values are within the confidence interval, except for n = 60 and α = 0.1. This drawback
solves by increasing the sample size. Besides, it can be seen in Figure D.4 in Section D.1 of
the Appendix D as other selections as h = 0.46 or h = 0.48, arrange this. Again, the test
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is very powerful, obtaining a percentage of rejections equal to one for both alternatives
and all considered settings.

Thus, the CDC-based test performs well no matter the underlying structure of the
FCM model displayed in (5.1).

6.4 Conclusions

We have proposed new ideas to perform significance tests in the asynchronous FCM with the
global formulation. In particular, given p > 1 covariates, it is possible to determine if these
contain relevant information or can be discarded from the model adjustment, conditioned
to the time variable. These global tests adapt the ideas of Wang et al. (2015) developed
for the vectorial framework to the FCM. Specifically, the CDC coefficient introduced in
Section 4.2.3 is used to test for conditional independence considering all available time
points. As a result, given an instant t, this test employs the neighborhood information of
the asynchronous version to calculate the statistic value. To the best of our knowledge, this
is the first time that such a local approach to these characteristics has been proposed for
the synchronous version of FCM. Moreover, this procedure has the novel advantage that no
assumption about the model structure is needed, detecting all possible types of conditional
dependence. In addition, this methodology allows us to consider a multivariate response,
taking Y (t) ∈ Rq for q ≥ 1 and t ∈ D. Besides, under some assumptions, it is guaranteed
that the distribution of the test statistic is asymptotically normal using Theorem 7 of
Wang et al. (2015). Furthermore, some bootstrap schemes are proposed to calibrate this
in practice. Specifically, an adaptation of the local bootstrap of Paparoditis and Politis
(2000) is introduced in Section 6.2, and calibration using permutations is treated in Section
D.3 of the Appendix D as an alternative. Other resampling procedures would be possible
as well. The good behavior of the proposed global test is displayed through a simulation
study in Section 6.3.

A suitable selection of a kernel function and a bandwidth parameter is needed to
correctly estimate the CDC coefficient using the local character of the data. Estimation of
the CDC coefficient and selection of the tuning parameters are discussed in Sections 6.2.1
and 6.2.2. In this case, paying attention to the FCM nature, the choice of a compact kernel
seems the best option to keep the concurrent nature. In consequence, functions as the
uniform kernel can be employed. A different hurdle is the correct choice of the bandwidth
parameter. Wang et al. (2015) propose the use of the rule-of-thumb for density estimation.
This results in an automatic selection of the h value. Nevertheless, this selection does not
perform well for the asynchronous FCM. This drawback is proved through the simulation
results of Section 6.3 employing the rule-of-thumb option and the optimal bandwidth for
density estimation obtained by the unbiased cross-validation criterion. Given the result, a
search in the t domain is proposed in practice to solve this drawback. In Sections 6.3.1 and
6.3.2, it is displayed as a proper value for the bandwidth can guarantee that the test is
well calibrated under the null and. In contrast, this selection is powerful when simulating
different alternatives. A criterion for the selection of the bandwidth value automatically is
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still an open problem that needs further research.
A natural extension of the problem displayed in (6.2) is its adaptation for partial

testing. Thus, one could test if the covariates in a subset D ⊂ {1, . . . , p}, with cardinal
equal or greater than one, can be assumed to be conditional independent or if some of its
components are relevant in the model explanation. In particular, considering D = {j},
for some j = 1, . . . , p, would allow performing covariates selection in the asynchronous
FCM. Although the adaptation of expression (6.2) is straightforward, just considering
XD(t) instead of X(t), some problems concerning the proper bandwidth selection appear.
In particular, we have noticed that selecting a suitable bandwidth for partial tests is a
hard problem in practice. As a result, the extension to partial tests is an interesting open
problem for future research.

An extra inconvenience of this procedure is the computational cost. As commented in
Section 6.2.1, the operations required to estimate the CDC coefficient are of order O(N5)
or O(N3) if the low-cost version is employed. This is still a high computational cost, and
some alternatives to reduce this would be desirable. This drawback is a usual limitation of
the dependence coefficients based on distances, introduced throughout Chapter 4, and as a
result, this is an interesting topic for future research.





Results, conclusions and future work

This thesis project entitled “New covariates selection approaches in high dimensional
or functional regression models” is devoted to studying and developing new covariates
selection techniques in recent and challenging high dimensional or functional data contexts
for regression models. Next, obtained results and conclusions are commented on, along
with possible future work related to open lines of research.

Results and conclusions

The results and conclusions obtained in this thesis have been commented on throughout
the different chapters of the manuscript. Specifically, details are given in the conclusion
or discussion sections, respectively. We refer the reader to Section 1.3 for an overview of
Chapter 1 and Section 2.6 for the resulting discussion of Chapter 2. Conclusions for the
LASSO study under dependence are displayed in Section 3.1.4 and those for covariates with
different scales under dependence scenarios in Section 3.2.4, both in Chapter 3. Related
to Chapter 4, obtained results and conclusions arise in Section 4.3. Eventually, those
concerning the synchronous and asynchronous versions of the FCM are collected in Sections
5.6 and 6.4 of Chapters 5 and 6, respectively. Next, a summary of these results is presented
for each section.

Chapter 1: Problems of regression models in the high dimensional framework:
the need for dimensionality reduction. Here, we develop a brief introduction to
the main topic of the thesis. In particular, some motivation for the need for covariates
selection in regression models, especially for high dimensional or complex frameworks, is
given. For this aim, a review of the problems that appear in high dimensions is carried out,
explaining their reasons and implications. These drawbacks motivate the studies performed
in consecutive chapters.

Chapter 2: The Least Absolute Shrinkage and Selection Operator (LASSO).
The Least Absolute Shrinkage and Selection Operator (LASSO) is the most employed
penalization technique to adjust linear models when p > n. In particular, this penalization
problem simultaneously allows both: to estimate the vector of parameters and perform
covariates selection. Its convex formulation and attractive properties are introduced and
analyzed in this chapter. Moreover, all its limitations as a covariates selector technique are
also collected and studied in detail. We provide an extensive review of adaptations of the
LASSO and alternative procedures designed to correct some of these problems. We analyze
their properties, prominent advantages, and drawbacks from a critical point of view. Next,
we propose some real examples to motivate the need for dimensionality reduction. Finally,
this chapter closes with a discussion considering all the options studied.

173
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This analysis results in a pretty comprehensive review of the LASSO properties, limita-
tions, adaptations, and alternative procedures. This review is part of the content of the
published article Freijeiro-González et al. (2022a).

Chapter 3: LASSO regression as a variable selector. Performance under
dependence structures and different scales on covariates. We test the efficiency
of the LASSO regression as a variable selector from novel points of view. Firstly, we
examine the performance of this algorithm under different dependence structures through
a simulation study. In view of the LASSO problems and limitations, we implement a
comparison with proper adaptations and competitors. Based on the obtained results, some
guidance is given about the best option based on the data nature, paying attention to
its dependence structure. This simulation study results in the second part of the paper
Freijeiro-González et al. (2022a).

Secondly, we add more complexity to the study. Now, there are considered distinct
dependence frameworks and covariates in different scales. Again, we perform an extensive
simulation study, comparing the performance of the LASSO with that of the competitors,
following similar guidelines as those of the dependence study. This analysis finishes with a
discussion about what to expect and which is the best procedure in these situations.

Next, a study to determine if performing a threshold, as in screening techniques, could
be adequate to recover the relevant covariates is also included. Some conclusions arise
based on the observed results.

Finally, we apply the considered competitors to some real datasets where covariates
are correlated and have different scales. We consider the results and conclusions obtained
from previous studies in their analysis.

Chapter 4: Novel distance-based dependence measures for complex data. A
complete review of novel dependence measures based on distances is developed. In par-
ticular, we start exposing the weaknesses of the classical dependence measures and the
necessity of new coefficients to measure dependence is motivated. Next, we carry out a
detailed review of the distance covariance (DC), martingale difference divergence (MDD),
and conditional distance covariance (CDC). Their coefficients expression, jointly with their
properties, corresponding estimators, and possible extensions, are introduced. For this
purpose, an exhaustive bibliographical review of the current literature performs, collect-
ing all existing dependence coefficients based on distances. These coefficients allow one
to apply covariate selection without any assumption about the structure of the model.
As a result, in the last section, some conclusions about their use in complex models are given.

Chapter 5: New significance tests for the synchronous functional concurrent
model based on the martingale difference divergence coefficient. New specification
tests, particularly for significance testing, are developed for the synchronous version of the
functional concurrent model (FCM). Global tests, as well as partial ones, are proposed to
make use of the MDD coefficient. This results in the first procedure for covariates selection
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in the FCM that does not need previous model estimation or tuning parameters. We
obtain the asymptotic distribution of the test statistic and propose a bootstrap procedure
to estimate the p-values in practice. Its good behavior is illustrated through a simulation
study. Besides, their performance is compared to existing competitors, outperforming
their results. Eventually, we test this approach employing three real data sets, and some
conclusions are given based on the observed results. This study translates into the paper
Freijeiro-González et al. (2022b).

Chapter 6: New significance tests for the asynchronous functional concurrent
model based on the conditional distance covariance coefficient. A novel global
significance test for the asynchronous version of the FCM is introduced. This procedure
makes use of the CDC coefficient. We adapt the construction of the statistic to the FCM
context and discuss a proper selection of the required kernel and bandwidth parameters.
In particular, we show how automatic bandwidths that supposedly work well in the vector
framework do not perform for the synchronous FCM. Then, we propose a new bandwidth
selection procedure to solve this drawback. The asymptotic convergence of the statistic to
a Gaussian distribution is guaranteed, and a local bootstrap is adapted to calibrate the
test in practice. Its proper performance is displayed using a simulation study, and some
conclusions arise in view of the results.

Future work

Apart from the obtained results and conclusions, some new topics that require further
research have appeared during the development of this thesis. These are left as future lines
of research. Next, these lines of work are detailed.

Study of penalization techniques and competitors for covariates selection in
more general formulations. Penalization techniques have been studied under the linear-
ity assumption in the structure of the vectorial regression model, given by (1.2), in Chapter
2. In particular, the L1 type penalty has brought special attention in this framework,
giving place to the LASSO regression. Nevertheless, one can extend the use of penalties for
covariates selection to more general models. Thus, it is an interesting future line of research
to study the application of penalization techniques in other regression structures, not only
the linear case: additive effects, general linear model (logistic regression), or generalized
additive model, to say a few. Therefore, a complete review of different covariates selection
techniques for these models, including penalizations and other competitive approaches,
would be interesting. Some comments about existing ideas related to the use of the L1
penalty in these models arise in Section 2.6 of Chapter 2.

Performance of the new penalization techniques for more general formulations
under dependence structures and different scales on covariates. Once we finish the
collection of penalty techniques jointly with other suitable approaches devoted to covariates
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selection in non-linear structures, it is interesting to compare their performance in practice
under different scenarios. This study is motivated because the problems of the LASSO
regression, or the use of the L1 penalty, can also be inherited for more general structures.
Then, similar to the work of Chapter 3, a study and analysis of the performance of these
new proposed procedures under dependence structures and different scales on covariates is
a future line of research.

The use of penalization techniques in the FCM. Another topic for future work is
to apply penalization techniques in both synchronous and asynchronous versions of the
FCM. In particular, a time-varying penalization λ(t) can be assumed to detect if some of
the studied covariates are relevant only in some nonnull time sets. If a linear structure of
the FCM is assumed, the regression problem can be expressed as

min
β(t)

∥Yn(t)−Xn(t)β(t)∥22 + λ(t)∥β(t)∥1,

and making use of the point-by-point nature, for each t ∈ D, a problem of vectorial type has
to be solved. Thus, comparing different penalization techniques’ performance is interesting
to find out how these approaches select covariates and how these perform when some
consistency condition is violated. For example, if a model with only two out of four relevant
covariates is generated by Y (t) = β1(t)X1(t) + β2(t)X2(t) + ε(t), we want to know if some
regularization technique can detect the relevant terms and exclude the noisy ones. A
simulated example is displayed in Figure 6.2.

5 10 15 20 25

−
10

0
10

20

t

Y(t)
X1(t)
X2(t)
X3(t)
X4(t)

0 5 10 15 20

−
3

−
2

−
1

0
1

t

β1(t)
β2(t)

0 5 10 15 20

−
10

−
5

0
5

t

β1(t)X1(t)
β2(t)X2(t)

Figure 6.2: Left: simulated sample values of the functional variables along the grid [0, 24]
taking n = 20 curves. Middle: real partial effects corresponding to X1(t) (β1(t)) and X2(t)
(β2(t)). Right: regression model components β1(t)X1(t) and β2(t)X2(t).

Results applying LASSO, AdapL.1se, and DC.VS techniques (see Chapters 2 and 3 for
more details) are displayed in Figure 6.3 for this example.

Other ways of estimating the β(t) function in the FCM are available. An example is
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Figure 6.3: Percentage of times each covariate is selected over M = 100 simulations, taking
n = 20, 100, by the LASSO (the first row), AdapL (the second row) and DC.VS (the third
row). The vertical lines divide the gray zones where the X2(t) covariate verify the LASSO
beta-min condition. The green curve corresponds with X1(t), the violet one with X2(t),
the red with X3(t) and the cyan curve with X4(t).

the work of Wang et al. (2017), using local linear regression. In this setting, penalizations
different from the L1 type can be applied too. One can do this last by adapting ideas as
the ones of Vidaurre et al. (2012), Lee et al. (2016), Fan (1997) or Yuan and Lin (2006)
methodologies to the FCM.

Furthermore, more general structures of the regression model in the FCM case can
be assumed. For these formulations, some penalties can be adapted to apply covariates
selection as well. We consider this topic an interesting idea for future work.

Adaptation of the MDD-based significance tests of the synchronous FCM for
additive quantile regression. In Chapter 5, new MDD-based tests for significance
testing in the synchronous FCM are proposed. These are based on the MDD coefficient for
conditional mean dependence presented in Chapter 4. In particular, we propose these tests
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for the additive formulation of the FCM regression model Y (t) = ∑p
j=1 Fj(Xj(t)) + ε(t),

where the regressor function collects the information of the conditional expectation, i. e.
E[Y (t)|X(t)] = ∑p

j=1 Fj(Xj(t)). However, information about some quantile Q[Y (t)|X(t)]
could be of interest as well, translating into the quantile regression context. One can adapt
the ideas of Zhang et al. (2018) for quantile regression in the vectorial case for conditional
quantile dependence testing in the FCM, following similar guidelines as the ones treated in
Chapter 5. This proposal is a new and open line for future work.

Extension of the MDD-based significance tests of the synchronous FCM for
the general formulation. The significance tests introduced in Chapter 5, based on the
MDD coefficient studied in Chapter 4, apply to the additive formulation of the synchronous
FCM. This is given by Y (t) = ∑p

j=1 Fj(Xj(t)) + ε(t). Although this model is flexible and
captures several types of relations, an even broader formulation is desirable. Specifically,
significance tests for the general model Y (t) = m(t,X(t)) + ε(t), introduced in (5.1), would
be really useful. An idea to achieve this purpose is to resort to random projections. Thus,
instead of capturing the relevance of the covariates “separately” in an additive way in the
statistic of (5.7), these covariates are randomly projected. The resulting dummy variable
is considered instead of the initial covariates. This approach avoids the sum effect of the
MDD coefficients. If we launch random projections appropriately and repeat this procedure
several times, the new statistic version considers the general FCM formulation. Again,
this test could also calibrate using wild bootstrap, but the derivation of its asymptotic
distribution is a more difficult problem that would need further research.

Development of new GoF tests for the synchronous FCM. Similar to the significance
tests developed for the synchronous FCM in Chapter 5, new GoF tests can be proposed
using the MDD coefficient. These result in testing

H0 : E
[
ε(t)|Xj(t)

]
= E [ε(t)] almost surely ∀t ∈ D \ N and ∀j ∈ D

H1 : P
(
E
[
ε(t)|Xj(t)

]
̸= E [ε(t)]

)
> 0 ∀t ∈ P and some j ∈ D

where XD(t) denotes the subset of X(t) considering only the covariates with index in
D ⊂ {1, . . . , p}, D \ N is the domain of t minus a null set N ⊂ D, P ⊂ D is a positive
measure set and ε(t) is the error of the model.

This formulation is equivalent to the test displayed in (6.1) just changing Y (t) by ε(t).
Here, if the error ε = Y (t)−m(t,X(t)) assumes some structure over the regressor function
m(·), this results in a GoF test. In particular, this test can be rewritten as

H0 :
∫

D\N
MDD2(ε(t)|Xj(t))dt = 0 almost surely for every j ∈ D

H1 : P
(∫

P
MDD2(ε(t)|Xj(t))dt ̸= 0

)
> 0 for some j ∈ D

where MDD2(·) is the MDD coefficient introduced in Chapter 4.
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Here the error term estimation under the GoF assumption is necessary to construct a
suitable statistic. This process implies model estimation. Maity (2017) discuss techniques
to estimate different formulations of the FCM. In particular, if an additive formulation is
assumed, a similar statistic as the one displayed in (5.7) can be constructed considering
ε̂(t). One can also calibrate this procedure using wild bootstrap techniques. Nevertheless,
one can not directly resort now to the ideas of Zhang et al. (2018) to obtain the asymp-
totic distribution of the statistic. Then, it is not possible to guarantee its good behavior
theoretically. Instead, the error structure has to be taken into consideration now. This
development is a new topic for future research.

Construction of partial significance tests for the asynchronous FCM based on
the CDC. In Chapter 6, a new global test based on the CDC coefficient treated in Chapter
4 is proposed to test conditional significance in the asynchronous FCM. This test applies to
the general formulation of the FCM, detecting all types of conditional dependence between
the response Y (t) = (Y1(t), . . . , Yq(t)) and the X(t) = (X1(t), . . . , Xp(t)) covariates, for
q, p ≥ 1. Furthermore, one can extend the employed ideas for global testing to develop
partial tests and perform covariates selection. This extension would result in the problem

H0 : Y (t) ⊥|t Xj(t) almost surely ∀t ∈ D \ N and ∀j ∈ D

Ha : P
(
Y (t) ̸⊥|t Xj(t)

)
> 0 ∀t ∈ P and some j ∈ D

where ⊥|t applies for conditional independence on t, XD(t) denotes the subset of X(t)
considering only the covariates with index in D ⊂ {1, . . . , p}, D \ N is the domain of t
minus a null set N ⊂ D and P ⊂ D is a nonnull set.

The global test corresponds with D = {1, . . . , p} and a special case is to consider
D = {j} for some j = 1, . . . , p. This last approach allows us to implement covariates
selection with no need for model estimation, testing the effect of every covariate separately.
One can rewrite this test using the CDC coefficient, obtaining a similar test to the one
displayed in equation (6.2). This new formulation is given by

H0 :
∫

D\N
CDC2(Y (t), Xj(t)|t)ω(t)f(t)dt = 0 almost surely for every j ∈ D

Ha : P
(∫

P
CDC2(Y (t), Xj(t)|t)ω(t)f(t)dt ̸= 0

)
> 0 for some j ∈ D

Following the guidelines of Wang et al. (2015), the Gaussian distribution for the new
statistics is asymptotically guaranteed. However, some problems arise related to the CDC
coefficient estimation and the statistics calibration in practice. Specifically, it is quite tricky
to obtain a proper bandwidth value for a suitable calibration of the test using the same
arguments of Chapter 6. We have observed that the procedures employed for global tests
do not work well now. Further research on this topic is necessary to provide an optimal
calibration system for partial tests.
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Development of new GoF tests for the asynchronous FCM. Using the ideas
developed in Chapter 6 for the asynchronous FCM, new GoF tests could be proposed using
the CDC coefficient studied in Chapter 4. In particular, the resulting new test would be

H0 : ε(t) ⊥|t X(t) almost surely ∀t ∈ D \ N

Ha : P
(
ε(t) ̸⊥|t X(t)

)
> 0 ∀t ∈ P

where ⊥|t applies for conditional independence on t, D \N is the domain of t minus a null
set N ⊂ D, P ⊂ D is a nonnull set and ε(t) is the error of the model.

It is easy to see that this is similar to the problem (6.1), just changing Y (t) by the
model error. Thus, this formulation can be expressed in terms of the CDC coefficient as

H0 :
∫

D\N
CDC2(ε(t), X(t)|t)ω(t)f(t)dt = 0 almost surely

Ha : P
(∫

P
CDC2(ε(t), X(t)|t)ω(t)f(t)dt ̸= 0

)
> 0,

resulting in a GoF test after assuming a model structure in m(·) and calculating the model
error as ε(t) = Y (t)−m (t,X(t)).

Estimating the m(·) function and the model error is necessary now to construct a
suitable statistic. We obtain an error estimator using the model residuals once the regressor
function is estimated employing the underlying form. Maity (2017) collects some ideas for
FCM estimation under different structures. Next, the estimation of the CDC coefficient
using ε̂(t) and X(t) = (X1(t), . . . , Xp(t)) is needed. Again, proper kernel and bandwidth
values have to be selected. In practice, one can calibrate the test employing resampling
techniques, as the local bootstrap introduced in Chapter 6. In this case, as the error
model is approximated by the residuals ε̂(t), this has to be considered when obtaining the
asymptotic distribution of the statistic. Then, the adaptation of the Wang et al. (2015)
results for the significance tests in the asynchronous FCM needs to be carefully reviewed
and modified. This framework opens another possible line of research.



Appendix A

Extra results for LASSO under dependence

A.1 Calculation of σ

We are interested in the adjusted models being able to recover, at most, 90% of the
explained deviance. So, it is necessary to establish the variance of the error distribution, ε,
using this criterion. Then, once the vector β and the correlation matrix Σ are determined, it
is needed to calculate the value of the σ parameter taking into account all this information.
As a result, a different value for σ is obtained depending in each of the simulated scenarios
introduced in Section 3.1.1.

In particular, these quantities are obtained verifying the condition (A.1) of

%Dev = V(< X, β >)
V(< X, β >) + σ2 ⇒ V(< X, β >) = %Dev · (V(< X, β >) + σ2)

⇒ σ2 = 1−%Dev
%Dev V(< X, β >),

(A.1)

where V(·) is the variance operator. Similarly, the C(·) operator is going to denote the
covariance henceforth.

A.1.1 Scenario 1 (Orthogonal scenario)

The formula for σ in Scenario 1 is

σ =

√√√√1− 0.9
0.9

s∑
j=1

β2
j . (A.2)

Then, for s = 10 it is needed to take σ ≃ 1.317616, in the case of s = 15 its value is
σ ≃ 1.613743, and for s = 20 this quantity results in σ ≃ 1.86339.

This is due to the fact that

σ2 (a)= 1−%Dev
%Dev

p∑
j=1

β2
j

(b)⇒ σ2 = 1−%Dev
%Dev

s∑
j=1

β2
j

where (a) is true because V(< X, β >) = V(X1β1 + · · ·+Xpβp) = β2
1V(X1)+ · · ·+β2

pV(Xp),
and V(Xj) = 1 since Xj i.i.d. X ∈ Nn(0, Ip). Besides, (b) arises because of β structure.
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A.1.2 Scenario 2 (Dependence by blocks)

The value of σ in Scenario 2 is

σ =

√√√√√√√√1− 0.9
0.9

s+ 2ρ


s∑

j=1
βj


s∑

k=j+1
k≡jmod10

βk



. (A.3)

Now, this quantity depends on the ρ value. Then, it is necessary to distinguish between

• ρ = 0.5: in this situation we have that, for s = 10, we get σ ≃ 0.745356, for s = 15,
we obtain σ ≃ 1.178511, and for s = 20, the value σ ≃ 1.490712.

• ρ = 0.9: in this scenario we see that, for s = 10, it is needed to take σ = 1, for s = 15,
we get σ ≃ 1.581139, and for s = 20, the quantity σ = 2.

It is owing to

V(< X, β >) = V(X1β1 + · · ·+Xpβp)
= β2

1V(X1) + V(X2β2 + · · ·+Xpβp) + 2C(X1β1, X2β2 + . . . Xpβp)
= β2

1V(X1) + β2
2V(X2) + V(X3β3 + · · ·+Xpβp) + 2C(X2β2, X3β3 + · · ·+Xpβp)

+ 2C(X1β1, X2β2 + · · ·+Xpβp)
= . . .

(a)=
p∑

j=1
β2

j + 2ρ


p∑

j=1
βj


p∑

k=j+1
k≡jmod10

βk


 = s+ 2ρ


s∑

j=1
βj


s∑

k=j+1
k≡jmod10

βk




where (a) is due to C(Xj , Xk) = ρ for mod10(j) = mod10(k) and βj = 1 for j = 1, . . . , s.

A.1.3 Scenario 3 (Toeplitz covariance)

In the case of Scenario 3, the σ value changes in relation to considering the Scenario 3.a or
the Scenario 3.b.

• Scenario 3.a: only the first s = 15 covariates are important.

σ =

√√√√√√√1− 0.9
0.9

15 · 0.52 + 2(0.52)
15∑

j=1
15≥k>j

ρ|j−k|

 ≃
√√√√√√√1

9

3.75 + 0.5
15∑

j=1
15≥k>j

ρ|j−k|

,
then, taking ρ = 0.5 we get σ ≃ 1.067189 and for ρ = 0.9, σ ≃ 1.951213.
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This is because

V(< X, β >) = V(X1β1 + · · ·+Xpβp)
= . . .

=
p∑

j=1
β2

j + 2
p∑

j=1
k>j

βjρ
|j−k|βk = 15 · 0.52 + 2(0.52)

15∑
j=1

15≥k>j

ρ|j−k|.

• Scenario 3.b: the s = 10 relevant variables are placed every 10 sites.

σ =

√√√√√√√√√√
1− 0.9

0.9

10 · 0.52 + 2(0.52)
99∑

j,k=1
j ̸=k

j,k≡1 mod10

ρ|j−k|

 ≃
√√√√√√√√√√

1
9

2.5 + 0.5
99∑

j,k=1
j ̸=k

j,k≡1 mod10

ρ|j−k|

,

then, for ρ = 0.5 we have that σ ≃ 0.5275097, while for ρ = 0.9, σ ≃ 0.7276863.

Now

V(< X, β >) = V(X1β1 + · · ·+Xpβp)
= . . .

=
99∑

j=1
j≡1 mod10

β2
j + 2

99∑
j,k=1
j ̸=k

j,k≡1 mod10

βjρ
|j−k|βk = 10 · 0.52 + 2(0.52)

99∑
j,k=1
j ̸=k

j,k≡1 mod10

ρ|j−k|.

A.2 Consistency conditions

In order to guarantee consistency for the proper recovery of S, some assumptions about
the parameters values are needed. In Section 2.1.2 and Section 2.1.4 of the document, some
conditions are introduced for this aim. These requirements are collected in Table A.1 for
the p = 100 value used in the simulations.

The |S| log(100) = o(n) condition is only verified for simulations taking values of
n = 100, 200, 400. For n = 50, the consistency is only guaranteed in the case of s = 10. All
the simulation scenarios with n = 25 are inconsistent.

Paying attention to the infj∈S |βj | >
√
s log(100)/n beta-min condition, in the Scenario

1, the algorithm is able for signal recovery for s = 10, 15 with n = 50, 100, 200, 400 and for
s = 20 with n = 100, 200, 400. In the Scenario 2, it is needed a value of n = 50, 100, 200, 400
when s = 10 and take n = 100, 200, 400 samples for s = 15, 20. Eventually, for the Scenario
3.a only important covariates are distinguishes from the zero ones with n = 400 samples
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n
n > log(100)s

s 25 50 100 200 400

s = 10 1.36 0.96 0.68 0.48 0.34 n ≥ 47
s = 15 1.66 1.18 0.83 0.59 0.42 n ≥ 70
s = 20 1.92 1.36 0.96 0.68 0.48 n ≥ 93

σ
√

log(100)/n 0.43σ 0.3σ 0.21σ 0.15σ 0.11σ

Table A.1: Values
√
s log(100)/n to guarantee the beta-min condition. Last column shows

the number of samples needed to guarantee |S| log(100) = o(n). In the last row the oracle
scale of λ (σ

√
log(100)/n) is given.

and with n = 200, 400 for Scenario 3.b.
Finally, a guidance about the oracle scale of λ, σ

√
log(100)/n, is displayed. This

quantity depends on the sample size n as well as the error variance σ. This last changes
in every simulation scenario. In Section A.1, the value of σ for recovering the 90% of
explained deviance is calculated in the simulated scenarios.

A.3 Tuning parameters selection

In this section, the selection of tuning parameters is explained, displaying the considered
grid of values for every methodology. Moreover, a more deep analysis of the suitable
selection of λ for the proper recovery of relevant covariates is carried out. For this purpose,
greater values than the optimal one provided by the 10-fold cross-validation criterion
minimizing the MSE are tested. Besides, the performance of the LASSO selection taking
the penalization value which minimizes the BIC criterion in analyzed.

A.3.1 Grid values of the tuning parameters

The choice of the grid values of tuning parameters will depend on the methodology employed
and the sample data. In this work, a grid of length 100 is consider for every algorithm.
Next, we explain the selection of the grid made by the employed libraries of R (R Core
Team (2019)) for the different procedures:

LASSO: glmnet of Friedman et al. (2010), last update November 27, 2022.

SCAD: ncvreg of Breheny and Huang (2011), last update October 13, 2022.

AdapL: glmnet of Friedman et al. (2010), last update November 27, 2022.

Dant: flare of Li et al. (2019), last update October 13, 2022.

RelaxL: relaxo of Meinshausen (2012), last update May 23, 2022.

SqrtL: flare of Li et al. (2019), last update October 13, 2022.

ScalL: scalreg of Sun (2019), last update October 14, 2022.
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Distance correlation algorithm for variable selection (DC.VS): fda.usc of Febrero-
Bande and Oviedo de la Fuente (2012), last update October 17, 2022.

In the LASSO case, to choose a correct grid for λ, we follow the considerations of
Friedman et al. (2010). They take 100 values on a grid [λmin, λmax] where λmax is the
smallest value for which the entire vector β̂ = 0 and λmin = αλmax, where α = 0.01 if p > n

and α = 0.0001 otherwise. This algorithm is implemented in the glmnet library (Friedman
et al. (2010)) of R (R Core Team (2019)). The λ ∈ [λmin, λmax] minimizing the penalized
maximum likelihood, λmin, is used to adjust the model (LASSO.min). Besides, other larger
values than λmin are tested for the LASSO adjustment (see Section 3.2). Particularly, the
LASSO making use of λ1se (LASSO.1se), which is the largest value of λ such that error is
within one standard error of λmin, is included in the simulation comparison. The selection
of λ1se is already implemented in the glmnet library (Friedman et al. (2010)). Eventually,
we consider the selection of the optimal λ by means of minimizing the BIC criterion (see
Section 3.3). Its search performs in the same grid of λ values as the LASSO one.

The same scheme is following for the AdapL. Here, a first estimator of β is needed.
This is obtained by means of a RIDGE regression, β̂RIDGE . For this purpose, we make use
of the library glmnet (Friedman et al. (2010)). As for the LASSO case, we consider two
different adjustments for the RIDGE and posterior weighted LASSO: using the penalization
parameters which correspond with λmin (AdapL.min) or making use of the λ1se penalties
(AdapL.1se).

For the SCAD procedure, due to the concave nature of the penalization, a linear
approximation of the problem is employed to get the penalty (see Zou and Li (2008)).
Then, the LARS algorithm introduced in Efron et al. (2004) is used. More information is
provided in Breheny and Huang (2011).

The grid values for the Dant is similar to the LASSO ones, just following recommenda-
tions of Li et al. (2019). Now λmin = αλmax with α = 0.5 for Dant algorithm. In case of
SqrtL the authors suggest to take λmax = π

√
log(p)/n and α = 0.3 for λmin = αλmax.

For the RelaxL, we take a sequence of 10 equispaced points in [0.0001, 1] for estimating
the ϕ parameter. In terms of λ, the LARS algorithm (Efron et al. (2004)) is employed.
See Meinshausen (2007) for more details.

Eventually, the ScalL procedure estimates the penalization λ by means of a estimation
of σ and recompute these quantities iteratively. The initial value for the penalization is
λ0 =

√
(2/n) log(p) and the posterior ones are recomputed as λ = σ̂λ0. More information

is given in Sun and Zhang (2013).
Next, the performance of LASSO for greater penalization values than the λ minimizing

the MSE (λmin) is tested.

A.3.2 LASSO performance for greater values of λ

As we can see in the simulation results of Section A.6, the selection of λ by means of
10-fold cross-validation criterion minimizing the MSE adds to much noise. Thus, a greater
value of λ may be needed to properly recover the relevant covariates, S, without adding
irrelevant ones. As a result, we test the performance of the LASSO for greater values of λ.
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For this aim, taking into consideration that the library glmnet provides an estimation
of the mean cross-validated error for every value of the λ grid, this information can be
employed to select a larger λ. In fact, this supplies the λ1se term, which is the largest value
of λ such that this is within 1 standard error of the minimum (λmin).

Then, we test the LASSO performance for the different simulation scenarios in terms
of covariates selection for values of λ = λmin + α · dist taking α = 0.5, 1, 1.5, 2, 2.5, 4, being
dist = λ1se − λmin and considering n = 400.

Results for Scenario 1 are displayed in Figure A.1, for Scenario 2 in Figures A.2 and
A.3, and for Scenario 3 in Figures A.4 and A.5. Complete results for the α = 1 case, taking
λ = λ1se are collected in Section A.6.
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Figure A.1: Number of important covariates (dark area) and noisy ones (soft area) selected
by the LASSO in Scenario 1 for n = 400 and λ = λmin + α · dist, being dist = λ1se − λmin.
The dashed line marks the s value.
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Figure A.2: Number of important covariates (dark area) and noisy ones (soft area) selected
by the LASSO in Scenario 2 with ρ = 0.5 for n = 400 and λ = λmin + α · dist, being
dist = λ1se − λmin. The dashed line marks the s value.
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Figure A.3: Number of important covariates (dark area) and noisy ones (soft area) selected
by the LASSO in Scenario 2 with ρ = 0.9 for n = 400 and λ = λmin + α · dist, being
dist = λ1se − λmin. The dashed line marks the s value.
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Figure A.4: Number of important covariates (dark area) and noisy ones (soft area) selected
by the LASSO in Scenario 3.a for n = 400 and λ = λmin +α · dist, being dist = λ1se−λmin.
The dashed line marks the s value.
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Figure A.5: Number of important covariates (dark area) and noisy ones (soft area) selected
by the LASSO in Scenario 3.b for n = 400 and λ = λmin +α ·dist, being dist = λ1se−λmin.
The dashed line marks the s value

Next, the selection of a proper value of the λ parameter for the LASSO performance
employing the BIC criterion is treated.
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A.3.3 LASSO performance employing BIC criterion

In order to test if the addition of a great amount of noisy covariates by the LASSO is
due to cross-validation (CV), a comparison by means of minimizing the BIC criterion is
carried out. Then, the optimal λ value is selected as the one which minimizes the BIC
criterion. For this purpose, we have made use of the λ grid provided by the LASSO path
of the glmnet function (Friedman et al. (2010)) implemented in R (R Core Team (2019)).
See Section A.3 for more details. As we are working with a multiple linear model, the BIC
value is estimated by BIC = n log(MSE) + k log(n), being MSE the mean square error
and k ≤ p the number of covariates which enters the model. To calculate the MSE, σ has
been estimated employing the residuals of the model.

Next, supplementary figures and tables for the simulated scenarios that result from the
LASSO.BIC adjustment are displayed. Results for Scenario 1 are collected in Figure A.6
and Table A.2. In case of Scenario 2 with ρ = 0.5, they are displayed in Figure A.7 and
Table A.3, and for ρ = 0.9 in Figure A.8 and Table A.4. Eventually, the number of selected
covariates in the Scenario 3.a and 3.b are shown in Figures A.9 and A.10 respectively,
whereas the prediction results are collected in Table A.5.
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Figure A.6: Number of important covariates (dark area) and noisy ones (soft area) selected
by the LASSO.BIC in Scenario 1. The dashed line marks the s value.

s = 10 s = 15 s = 20

MSE (1.736) % Dev MSE (2.604) % Dev MSE (3.472) % Dev
n = 25 0 1 0 1 0 1
n = 50 0.001 1 0.001 1 0.001 1
n = 100 0.014 0.999 0.011 1 0.005 1
n = 200 1.544 0.910 2.272 0.911 2.950 0.913
n = 400 1.646 0.904 2.443 0.905 3.224 0.906

Table A.2: Summary of the LASSO results for Scenario 1 making use of the BIC criterion.
The oracle value for the deviance is 0.9 and those for the MSE are in brackets.
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Figure A.7: Number of important covariates (dark area) and noisy ones (soft area) selected
by the LASSO.BIC in Scenario 2 with ρ = 0.5. The dashed line marks the s value.

s = 10 s = 15 s = 20

MSE (0.556) % Dev MSE (1.389) % Dev MSE (2.222) % Dev
n = 25 5.366 0.450 12.436 0.489 21.466 0.450
n = 50 6.056 0.396 12.826 0.482 24.222 0.396
n = 100 3.375 0.649 6.829 0.721 13.500 0.649
n = 200 0.524 0.950 1.575 0.939 2.097 0.950
n = 400 0.538 0.949 1.346 0.949 2.154 0.949

Table A.3: Summary of the LASSO results for Scenario 2 with ρ = 0.5 making use of
the BIC criterion. The oracle value for the deviance is 0.9 and those for the MSE are in
brackets.
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Figure A.8: Number of important covariates (dark area) and noisy ones (soft area) selected
by the LASSO.BIC in Scenario 2 with ρ = 0.9. The dashed line marks the s value.
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s = 10 s = 15 s = 20

MSE (1) % Dev MSE (2.5) % Dev MSE (4) % Dev
n = 25 5.715 0.431 13.187 0.472 22.858 0.431
n = 50 6.533 0.392 14.055 0.464 26.134 0.392
n = 100 4.864 0.541 9.721 0.633 19.455 0.541
n = 200 1.071 0.899 3.909 0.854 4.285 0.899
n = 400 0.968 0.912 2.455 0.910 3.872 0.912

Table A.4: Summary of the LASSO results for Scenario 2 with ρ = 0.9 making use of
the BIC criterion. The oracle value for the deviance is 0.9 and those for the MSE are in
brackets.
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Figure A.9: Number of important covariates (dark area) and noisy ones (soft area) selected
by the LASSO.BIC in Scenario 3.a. The dashed line marks the s = 15 value.
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Figure A.10: Number of important covariates (dark area) and noisy ones (soft area)
selected by the LASSO.BIC in Scenario 3.b. The dashed line marks the s = 10 value.
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Scenario 3.a Scenario 3.b
ρ = 0.5 ρ = 0.9 ρ = 0.5 ρ = 0.9

MSE % Dev MSE % Dev MSE % Dev MSE % Dev
(1.139) (3.807) (0.278) (0.53)

n = 25 0 1 0.010 1 0 1 0 1
n = 50 0.002 1 0.854 0.978 0 1 0.021 0.996
n = 100 0.012 0.999 0.206 0.995 0.004 0.998 0.007 0.999
n = 200 0.990 0.912 3.721 0.905 0.254 0.908 0.471 0.910
n = 400 1.066 0.906 3.824 0.903 0.267 0.903 0.501 0.905

Table A.5: Summary of the LASSO results for Scenario 3.a and Scenario 3.b making use
of the BIC criterion. The oracle value for the deviance is 0.9 and those for the MSE are in
brackets.

A.4 Computational time

Just to illustrate the computational time of the implemented algorithms, a total of M = 100
replicates of Scenario 1 taking s = 10 (introduced in Section 3.1.1), are carried out. Results
are displayed in Figure A.11 for different sample sizes. We refer the reader to Sections 3.1.3
and A.3 for implementation issues. The displayed time is the “real” elapsed time since
the process was started. As a result, we have measured both, the total user and system
CPU times1. Simulations have been run on a computer HP ZBook Power with a computer
processing unit 11th Gen Intel(R) Core(TM) i7-11800H.

In view of the results of Figure A.11, it is appreciated that the SqrtL is the slowest
procedure. This is followed by the DC.VS and the Dant. Their computational time
proportionally increases in terms of the sample size. In the simplest framework of orthogonal
design, for a sample size of n = 400, the SqrtL reaches the 6000 s and the DC.VS the 3500 s
approximately. This fact contrasts with the time spent by the remaining LASSO procedures,
being in all cases, inferior to 120 s. These are the LASSO.min, LASSO.1se, LASSO.BIC,
AdapL.min, AdapL.1se, RelaxL and ScalL. Furthermore, the SCAD procedure is also quite
competitive in time. The Dant is a bit more expensive, having times between 200-360 s,
although this outperforms the times of the DC.VS and SqrtL algorithms, especially for
great sample sizes. In contrast, the DC.VS procedure is competitive for the n > p case,
but its computational time highly increases for n = 100, n = 200 and n = 400, exceeding
more than 320 s. As we move to more complex scenarios, like Scenarios 2 and 3 of Section
3.1.1, the computational time increases for all algorithms. In practice, we have observed
similar patterns as the ones observed in Figure A.11 and commented above. The SqrtL,
the DC.VS and the Dant are always the approaches that take the longest. In comparison,
the rest of LASSO versions are the fastest options.

1For this purpose, the function system.time of the base package of R Core Team (2019) has been
employed. In particular, the “elapsed” time has been considered.
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Figure A.11: Computational time in seconds of the eleven algorithms considered for
M = 100 replicates of Scenario 1, taking s = 10 and different sample sizes.

A.5 Efficient covariates calculation

It is considered by efficient covariates the subset of important ones required to explain the
data. When all covariates are uncorrelated, these are exactly those in S. An example is
the case of Scenario 1 considered in the simulation study. However, in case of dependence
among covariates, it is not trivial to know the real number of efficient ones. This quantity
changes based on the dependence structure of the data. As a result, the number of efficient
covariates is different for each combination of Scenario 2 and Scenario 3 parameters. An
idea to figure out this quantity is to apply a singular value decomposition of ΣS . Here,
ΣS denotes the submatrix of Σ considering the elements of S. Then, in terms of its
eigenvalues study, one can get to know how many covariates are necessary to explain a
certain percentage of variability previously fixed.

The resulting eigenvalues are collected in Table A.6 for Scenario 2 and in Table A.7 for
Scenarios 3.a and 3.b. In consequence, we can decide how many of those s covariates are
really necessary to explain the data taking into account the percentage of variability one
wants to explain. A summary of this study is displayed in Table A.8 for Scenario 2 and in
Table A.9 for Scenarios 3.a and 3.b.
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s ρ = 0.5 ρ = 0.9

s = 10 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

s = 15 1.5, 1.5, 1.5, 1.5, 1.5, 1, 1, 1, 1, 1, 0.5, 0.5,
0.5, 0.5, 0.5

1.9, 1.9, 1.9, 1.9, 1.9, 1, 1, 1, 1, 1, 0.1, 0.1,
0.1, 0.1, 0.1

s = 20 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5,
0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5

1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9,
0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1

Table A.6: Eigenvalues of ΣS for Scenario 2 in decreasing order.

ρ = 0.5 ρ = 0.9

Scenario 3.a
(s = 15)

2.83, 2.41, 1.92, 1.50, 1.17, 0.93, 0.76,
0.63, 0.54, 0.47, 0.42, 0.39, 0.36, 0.35,

0.34

9.55, 2.69, 1.01, 0.51, 0.30, 0.20, 0.15,
0.12, 0.09, 0.08, 0.07, 0.06, 0.06, 0.05,

0.05
Scenario 3.b

(s = 10)
1, 1, 1, 1, 1, 1, 1, 1, 1, 1 1.96, 1.69, 1.38, 1.11, 0.90, 0.74, 0.64,

0.56, 0.52, 0.49

Table A.7: Eigenvalues of ΣS for Scenario 3 in decreasing order.

ρ = 0.5 ρ = 0.9
s 80% 90% 95% 98% 99% 80% 90% 95% 98% 99%

s = 10 8 9 10 10 10 8 9 10 10 10
s = 15 10 12 14 15 15 8 9 10 12 14
s = 20 12 16 18 20 20 9 10 10 16 18

Table A.8: Required covariates in Scenario 2 to explain a certain percentage of variability.

Scenario 3.a (s = 15) Scenario 3.b (s = 10)
ρ 80% 90% 95% 98% 99% 80% 90% 95% 98% 99%

ρ = 0.5 8 11 13 15 15 8 9 10 10 10
ρ = 0.9 2 4 6 10 13 7 9 9 10 10

Table A.9: Required covariates in Scenario 3 to explain a certain percentage of variability.
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A.6 Simulation results

This section collects the results of the different simulation scenarios of Section 3.1.1. The
average of the results over the M = 500 simulations for every combination of n and s is
shown. The number of covariates correctly selected (|Ŝ ∩ S|) as well as the noisy ones
(|Ŝ \ S|) are displayed. Besides, it is measured the prediction power of the algorithm by
means of the mean squared error (MSE) and the percentage of explained deviance (%Dev).

A.6.1 Scenario 1 (Orthogonal scenario)

LASSO.min LASSO.1se

n
|Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev

(10) (1.736) (0.9) (10) (1.736) (0.9)

n = 25 5.4 15 20.5 1.192 0.916 3.8 8 11.8 4.135 0.727
n = 50 9.9 27.3 37.2 0.169 0.990 9.4 14.7 24.1 0.690 0.956
n = 100 10 24.5 34.5 0.702 0.959 10 11 21 1.037 0.939
n = 200 10 22.2 32.2 1.164 0.932 10 6.8 16.8 1.410 0.918
n = 400 10 21.3 31.3 1.434 0.917 10 4.2 14.2 1.595 0.907

n
|Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev

(15) (2.604) (0.9) (15) (2.604) (0.9)

n = 25 6 13.5 19.5 2.520 0.888 3.9 7.2 11.1 7.388 0.679
n = 50 13.1 26.8 39.9 0.579 0.973 10.6 13.3 24 3.065 0.864
n = 100 15 29.7 44.7 0.841 0.967 15 16.3 31.3 1.261 0.950
n = 200 15 27.1 42.1 1.628 0.936 15 11.1 26.1 1.945 0.924
n = 400 15 26.3 41.3 2.091 0.919 15 7.6 22.6 2.300 0.911

n
|Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev

(20) (3.472) (0.9) (20) (3.472) (0.9)

n = 25 6.6 12.6 19.2 4.155 0.866 4.1 6.7 10.8 10.720 0.664
n = 50 14.7 23.3 38 1.747 0.944 10.5 11.4 21.9 6.865 0.782
n = 100 20 33.5 53.5 0.914 0.973 20 20.3 40.3 1.420 0.958
n = 200 20 30.8 50.8 2.060 0.940 20 14.7 34.7 2.420 0.929
n = 400 20 29.4 49.4 2.736 0.920 20 10.4 30.4 2.977 0.913

Table A.10: Results of LASSO.min and LASSO.1se for Scenario 1. Oracle values are in
brackets.
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AdapL.min AdapL.1se

n
|Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev

(10) (1.736) (0.9) (10) (1.736) (0.9)

n = 25 3.9 6.2 10.1 0.639 0.960 1.7 1.6 3.3 6.109 0.621
n = 50 9.4 4 13.5 0.937 0.945 7.4 0.6 8.1 2.820 0.828
n = 100 10 1.7 11.7 1.364 0.920 10 0 10 1.559 0.908
n = 200 10 12.8 22.8 1.275 0.925 10 0 10 1.633 0.904
n = 400 10 10.8 20.8 1.515 0.912 10 0 10 1.682 0.902

n
|Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev

(15) (2.604) (0.9) (15) (2.604) (0.9)

n = 25 4.1 6.1 10.2 0.901 0.963 1.7 1.6 3.4 9.650 0.607
n = 50 10.9 6.9 17.8 1.393 0.945 6 1.6 7.6 7.230 0.707
n = 100 15 3.2 18.2 1.805 0.929 14.6 0.1 14.7 2.431 0.903
n = 200 15 13.9 28.9 1.824 0.929 15 0 15 2.384 0.907
n = 400 15 11.2 26.2 2.235 0.913 15 0 15 2.491 0.903

n
|Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev

(20) (3.472) (0.9) (20) (3.472) (0.9)

n = 25 4.3 5.9 10.2 1.332 0.958 1.6 1.4 3 14.226 0.567
n = 50 11 7.5 18.4 2.069 0.938 5.3 2.1 7.4 11.330 0.656
n = 100 19.8 4.4 24.1 2.190 0.935 18.1 0.4 18.5 3.843 0.884
n = 200 20 14.2 34.2 2.343 0.931 20 0 20 3.089 0.909
n = 400 20 11.1 31.1 2.942 0.914 20 0 20 3.277 0.905

Table A.11: Results of AdapL.min and AdapL.1se for Scenario 1. Oracle values are in
brackets.

SCAD Dant

n
|Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev

(10) (1.736) (0.9) (10) (1.736) (0.9)

n = 25 2.4 3.2 5.5 5.953 0.619 1.9 1.9 3.8 10.951 0.335
n = 50 9.1 7.6 16.7 1 0.936 5.2 1.7 7.0 9.976 0.419
n = 100 10 4.2 14.2 1.212 0.929 7.9 0.4 8.3 9.584 0.442
n = 200 10 2.3 12.3 1.536 0.910 9.6 0 9.6 8.685 0.494
n = 400 10 2.1 12.1 1.635 0.905 10 0 10 7.693 0.552

n
|Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev

(15) (2.604) (0.9) (15) (2.604) (0.9)

n = 25 2.2 2.9 5.2 9.855 0.591 1.9 1.8 3.7 11.252 0.540
n = 50 7.9 5.7 13.6 4.750 0.802 5.3 2.2 7.5 8.741 0.653
n = 100 15 7.5 22.5 1.464 0.942 9.1 1 10.2 7.516 0.703
n = 200 15 2.9 17.9 2.188 0.914 12.3 0.1 12.4 5.410 0.788
n = 400 15 2 17 2.425 0.906 14.6 0 14.6 2.976 0.885

n
|Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev

(20) (3.472) (0.9) (20) (3.472) (0.9)

n = 25 2.2 2.5 4.7 14.833 0.551 1.8 1.7 3.5 16.072 0.510
n = 50 6.9 4.7 11.6 9.508 0.711 5.1 2.3 7.3 13.238 0.606
n = 100 20 11.2 31.2 1.567 0.954 9.7 1.5 11.2 11.445 0.662
n = 200 20 4.1 24.1 2.746 0.919 14.2 0.2 14.4 9.175 0.731
n = 400 20 1.9 21.9 3.191 0.907 18.2 0 18.3 5.404 0.843

Table A.12: Results of SCAD and Dant for Scenario 1. Oracle values are in brackets.
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RelaxL SqrtL

n
|Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev

(10) (1.736) (0.9) (10) (1.736) (0.9)

n = 25 2.6 4.1 6.7 5.921 0.623 1.8 1.7 3.5 7.396 0.535
n = 50 9 13.5 22.5 1.049 0.933 6.4 2.5 8.9 3.651 0.771
n = 100 10 4.6 14.6 1.302 0.924 10 2.8 12.8 1.396 0.917
n = 200 10 0.7 10.7 1.600 0.906 10 2.8 12.8 1.516 0.911
n = 400 10 0.3 10.3 1.674 0.902 10 2.8 12.8 1.616 0.906

n
|Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev

(15) (2.604) (0.9) (15) (2.604) (0.9)

n = 25 2.4 3.3 5.7 10.372 0.567 1.7 1.6 3.3 11.590 0.528
n = 50 10.5 12.8 23.3 2.860 0.879 5.3 2.1 7.4 8.987 0.636
n = 100 15 12.2 27.2 1.470 0.942 13.2 2.7 15.9 3.398 0.859
n = 200 15 1.8 16.8 2.293 0.910 15 2.6 17.6 2.242 0.912
n = 400 15 0.3 15.3 2.478 0.904 15 2.6 17.6 2.403 0.907

n
|Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev

(20) (3.472) (0.9) (20) (3.472) (0.9)

n = 25 2.5 3.2 5.7 14.284 0.566 1.7 1.5 3.2 16.187 0.508
n = 50 10.2 10.3 20.6 6.215 0.803 4.8 2 6.8 13.985 0.579
n = 100 19.9 19.7 39.6 1.490 0.956 12.9 2.5 15.4 7.801 0.762
n = 200 20 4 24 2.861 0.916 20 2.4 22.4 2.957 0.913
n = 400 20 0.5 20.5 3.254 0.905 20 2.4 22.4 3.176 0.907

Table A.13: Results of RelaxL and SqrtL for Scenario 1. Oracle values are in brackets.

ScalL DC.VS

n
|Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev

(10) (1.736) (0.9) (10) (1.736) (0.9)

n = 25 3.2 4.0 7.2 2.969 0.809 1 1 2 8.472 0.489
n = 50 7.5 3.9 11.4 2.432 0.848 3.5 1.5 5 6.339 0.628
n = 100 10 6.5 16.5 1.282 0.924 9.9 1 11 1.508 0.911
n = 200 10 4.1 14.1 1.475 0.914 10 6.8 16.8 1.418 0.917
n = 400 10 4.0 14.1 1.594 0.907 10 1.9 11.9 1.633 0.905

n
|Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev

(15) (2.604) (0.9) (15) (2.604) (0.9)

n = 25 3.2 3.8 7 4.869 0.797 0.9 1.1 2 13.025 0.480
n = 50 7.2 3.8 11 5.435 0.780 3.1 1.8 5 10.998 0.572
n = 100 14.2 5.1 19.3 2.492 0.898 9.6 1.4 11 6.470 0.743
n = 200 15 3.8 18.8 2.188 0.914 15 5.4 20.4 2.119 0.917
n = 400 15 3.9 18.9 2.371 0.908 15 1.8 16.8 2.421 0.906

n
|Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev

(20) (3.472) (0.9) (20) (3.472) (0.9)

n = 25 3.2 3.5 6.7 6.921 0.785 1 1 2 17.386 0.475
n = 50 7 3.5 10.5 8.648 0.740 3.1 1.8 5 15.423 0.549
n = 100 15.1 3.9 19 5.867 0.821 9 2 11 11.279 0.666
n = 200 20 3.5 23.5 2.879 0.915 20 2 21.9 2.941 0.914
n = 400 20 3.5 23.5 3.137 0.909 20 1.7 21.7 3.194 0.907

Table A.14: Results of ScalL and DC.VS for Scenario 1. Oracle values are in brackets.
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A.6.2 Scenario 2 (Dependence by blocks)

LASSO.min LASSO.1se

n
|Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev

(10) (0.556) (0.9) (10) (0.556) (0.9)

n = 25 9.9 57 66.9 0.307 0.967 9.8 52 61.8 0.310 0.967
n = 50 10 53.1 63.1 0.438 0.956 10 50.1 60.1 0.438 0.956
n = 100 10 47.3 57.3 0.495 0.951 10 45 55 0.495 0.951
n = 200 10 40.2 50.2 0.523 0.950 10 38.4 48.4 0.523 0.950
n = 400 10 35.9 45.9 0.538 0.949 10 35.7 45.7 0.538 0.949

n
|Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev

(15) (1.389) (0.9) (15) (1.389) (0.9)

n = 25 13.6 52 65.6 0.768 0.967 13.2 46.3 59.5 0.793 0.966
n = 50 13.8 48.7 62.5 1.095 0.956 13.7 45.8 59.5 1.095 0.956
n = 100 13.9 42.5 56.4 1.238 0.951 13.7 41.2 54.9 1.238 0.951
n = 200 13.9 36 50 1.307 0.950 13.7 34.6 48.4 1.307 0.950
n = 400 14 31.6 45.6 1.346 0.949 13.8 32.1 45.9 1.346 0.949

n
|Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev

(20) (2.222) (0.9) (20) (2.222) (0.9)

n = 25 17.7 49.1 66.9 1.228 0.967 17.3 44.6 61.8 1.241 0.967
n = 50 18 45.1 63.1 1.752 0.956 17.7 42.4 60.1 1.752 0.956
n = 100 18 39.3 57.3 1.981 0.951 17.7 37.2 55 1.981 0.951
n = 200 18 32.2 50.2 2.091 0.950 17.6 30.8 48.4 2.091 0.950
n = 400 18.1 27.8 45.9 2.154 0.949 17.8 27.9 45.7 2.154 0.949

Table A.15: Results of LASSO.min and LASSO.1se for Scenario 2 with ρ = 0.5. Oracle
values are in brackets.

AdapL.min AdapL.1se

n
|Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev

(10) (0.556) (0.9) (10) (0.556) (0.9)

n = 25 8.8 0.9 9.8 0.338 0.964 6.6 0.6 7.2 1.338 0.864
n = 50 9.5 0.5 10 0.438 0.956 9.5 0.5 10 0.440 0.955
n = 100 9.8 0.2 10 0.495 0.951 9.8 0.2 10 0.495 0.951
n = 200 10 0 10 0.523 0.950 9.9 0.1 10 0.523 0.950
n = 400 10 0 10 0.538 0.949 10 0 10 0.538 0.949

n
|Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev

(15) (1.389) (0.9) (15) (1.389) (0.9)

n = 25 8.6 0.2 8.8 1.049 0.955 5.7 0.1 5.7 3.816 0.845
n = 50 9.8 0.1 9.9 1.117 0.955 9 0.1 9.1 1.515 0.939
n = 100 10 0 10 1.238 0.951 9.9 0 10 1.244 0.951
n = 200 10 0 10 1.307 0.950 9.9 0.1 10 1.307 0.950
n = 400 10 0 10 1.346 0.949 10 0 10 1.346 0.949

n
|Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev

(20) (2.222) (0.9) (20) (2.222) (0.9)

n = 25 9.7 0 9.8 1.350 0.964 7.2 0 7.2 5.385 0.863
n = 50 10 0 10 1.752 0.956 10 0 10 1.762 0.955
n = 100 10 0 10 1.981 0.951 10 0 10 1.981 0.951
n = 200 10 0 10 2.091 0.950 10 0 10 2.091 0.950
n = 400 10 0 10 2.154 0.949 10 0 10 2.154 0.949

Table A.16: Results of AdapL.min and AdapL.1se for Scenario 2 with ρ = 0.5. Oracle
values are in brackets.
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SCAD Dant

n
|Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev

(10) (0.556) (0.9) (10) (0.556) (0.9)

n = 25 9.1 3.1 12.2 0.309 0.967 4.1 37.1 41.2 3.046 0.679
n = 50 9.6 1.7 11.2 0.438 0.956 6.3 56.7 63 2.546 0.743
n = 100 9.8 0.4 10.2 0.495 0.951 8.2 74.2 82.4 1.706 0.832
n = 200 10 0.2 10.1 0.523 0.950 9.7 87.5 97.2 0.753 0.928
n = 400 10 0 10 0.538 0.949 10 89.9 99.9 0.548 0.948

n
|Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev

(15) (1.389) (0.9) (15) (1.389) (0.9)

n = 25 10.4 1.3 11.7 0.796 0.966 7.2 33.3 40.5 6.525 0.724
n = 50 10.8 0.3 11.1 1.095 0.956 9.4 43 52.4 5.832 0.767
n = 100 10.4 0 10.4 1.238 0.951 10.8 48.7 59.5 4.891 0.808
n = 200 10.3 0 10.3 1.307 0.950 11.2 51.2 62.4 4.743 0.820
n = 400 10 0 10 1.346 0.949 11.2 50.4 61.6 4.968 0.811

n
|Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev

(20) (2.222) (0.9) (20) (2.222) (0.9)

n = 25 11.8 0.3 12.2 1.238 0.967 8.2 32.9 41.1 12.183 0.679
n = 50 11.2 0 11.2 1.752 0.956 12.6 50.4 63 10.179 0.743
n = 100 10.1 0 10.1 1.981 0.951 16.4 65.9 82.4 6.826 0.832
n = 200 10.1 0 10.1 2.091 0.950 19.4 77.7 97.2 3.006 0.929
n = 400 10 0 10 2.154 0.949 20 79.9 99.9 2.194 0.948

Table A.17: Results of SCAD and Dant for Scenario 2 with ρ = 0.5. Oracle values are in
brackets.

RelaxL SqrtL

n
|Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev

(10) (0.556) (0.9) (10) (0.556) (0.9)

n = 25 2.4 8.7 11.1 0.312 0.967 2.3 21 23.3 6.995 0.297
n = 50 2.5 9 11.5 0.440 0.955 7 63 70 3.040 0.701
n = 100 2.5 9 11.5 0.500 0.951 10 89.9 99.9 0.497 0.951
n = 200 2.3 9.1 11.4 0.529 0.950 10 89.9 99.9 0.523 0.950
n = 400 2.4 8.9 11.3 0.542 0.948 10 90 100 0.538 0.949

n
|Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev

(15) (1.389) (0.9) (15) (1.389) (0.9)

n = 25 3.7 7.4 11.1 0.787 0.966 4.8 22.1 26.9 14.422 0.412
n = 50 4.1 7.9 12 1.100 0.956 11.6 57.6 69.3 4.435 0.823
n = 100 4 7.8 11.7 1.242 0.951 14.9 84.5 99.5 1.269 0.950
n = 200 3.8 7.9 11.7 1.321 0.950 15 84.9 99.9 1.307 0.950
n = 400 3.7 7.9 11.7 1.377 0.947 15 85 100 1.346 0.949

n
|Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev

(20) (2.222) (0.9) (20) (2.222) (0.9)

n = 25 5.1 6 11.1 1.248 0.967 4.7 18.6 23.3 27.783 0.303
n = 50 5.4 6.1 11.5 1.761 0.955 14 56 70 12.172 0.700
n = 100 5.3 6.2 11.5 2.000 0.951 20 79.9 99.9 1.988 0.951
n = 200 5.1 6.3 11.5 2.116 0.950 20 80 99.9 2.091 0.950
n = 400 5.2 6.2 11.3 2.161 0.948 20 80 100 2.154 0.949

Table A.18: Results of RelaxL and SqrtL for Scenario 2 with ρ = 0.5. Oracle values are in
brackets.
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ScalL DC.VS

n
|Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev

(10) (0.556) (0.9) (10) (0.556) (0.9)

n = 25 0.9 3.2 4.1 3.453 0.627 0.4 1.5 1.9 5.273 0.464
n = 50 1.8 6.5 8.3 1.659 0.820 1.1 3.8 5 3.404 0.662
n = 100 2.2 8.1 10.3 0.659 0.935 2.2 7.8 10 0.495 0.951
n = 200 2.1 7.9 10.1 0.782 0.926 2.3 7.7 10 0.523 0.950
n = 400 2.2 7.9 10.1 0.706 0.932 2.3 7.7 10 0.538 0.949

n
|Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev

(15) (1.389) (0.9) (15) (1.389) (0.9)

n = 25 1.6 2.7 4.3 7.113 0.685 0.8 1.2 2 11.949 0.512
n = 50 3 5.2 8.2 2.665 0.887 2.2 2.8 5 6.114 0.756
n = 100 3.5 6.8 10.2 1.391 0.945 3.4 6.6 10 1.238 0.951
n = 200 3.4 6.8 10.2 1.320 0.950 3.5 6.5 10 1.307 0.950
n = 400 3.4 7.1 10.4 1.374 0.947 3.4 6.6 10 1.346 0.949

n
|Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev

(20) (2.222) (0.9) (20) (2.222) (0.9)

n = 25 1.8 2 3.8 13.803 0.627 0.9 1 1.9 21.090 0.464
n = 50 3.9 4.4 8.3 5.963 0.836 2.4 2.6 5 13.616 0.662
n = 100 4.8 5.4 10.2 2.703 0.934 4.7 5.3 10 1.981 0.951
n = 200 4.8 5.5 10.2 2.261 0.946 4.9 5.1 10 2.091 0.950
n = 400 4.7 5.7 10.4 2.202 0.947 4.9 5.1 10 2.154 0.949

Table A.19: Results of ScalL and DC.VS for Scenario 2 with ρ = 0.5. Oracle values are in
brackets.

LASSO.min LASSO.1se

n
|Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev

(10) (1) (0.9) (10) (1) (0.9)

n = 25 9.8 56.8 66.7 0.548 0.943 9.6 52 62 0.561 0.941
n = 50 10 51.7 61.7 0.784 0.926 10 48 58 0.784 0.926
n = 100 10 45.8 55.8 0.888 0.918 10 44.2 54.2 0.888 0.918
n = 200 10 41.6 51.6 0.939 0.913 10 40 50 0.939 0.913
n = 400 10 36.1 46.1 0.968 0.912 10 35.5 45.5 0.968 0.912

n
|Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev

(15) (2.5) (0.9) (15) (2.5) (0.9)

n = 25 13.5 52.1 65.6 1.377 0.943 12.9 45.8 58.6 1.441 0.940
n = 50 13.8 47.4 61.2 1.960 0.925 13.5 44.1 57.7 1.962 0.925
n = 100 13.8 41.9 55.7 2.220 0.918 13.7 40.7 54.4 2.220 0.918
n = 200 13.9 37.2 51.1 2.347 0.913 13.8 36.7 50.5 2.348 0.913
n = 400 14 31.7 45.7 2.420 0.912 13.7 31.6 45.2 2.420 0.912

n
|Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev

(20) (4) (0.9) (20) (4) (0.9)

n = 25 17.7 49 66.7 2.191 0.943 17.1 44.5 61.6 2.244 0.941
n = 50 17.8 43.9 61.7 3.137 0.926 17.4 40.5 58 3.136 0.926
n = 100 17.9 37.8 55.8 3.551 0.918 17.6 36.7 54.2 3.550 0.918
n = 200 18.1 33.5 51.6 3.755 0.913 17.7 32.3 50 3.756 0.913
n = 400 18.1 27.9 46.1 3.872 0.912 17.5 28 45.5 3.872 0.912

Table A.20: Results of LASSO.min and LASSO.1se for Scenario 2 with ρ = 0.9. Oracle
values are in brackets.
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AdapL.min AdapL.1se

n
|Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev

(10) (1) (0.9) (10) (1) (0.9)

n = 25 8.44 1 9.44 0.621 0.935 5 0.5 5.5 2.392 0.759
n = 50 9.46 0.54 10 0.789 0.926 9.3 0.6 9.9 0.837 0.922
n = 100 9.85 0.15 10 0.891 0.918 9.8 0.2 10 0.891 0.918
n = 200 9.98 0.04 10.02 0.941 0.913 9.7 0.3 10 0.941 0.913
n = 400 10 0 10 0.969 0.911 10 0 10 0.969 0.911

n
|Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev

(15) (2.5) (0.9) (15) (2.5) (0.9)

n = 25 8.08 0.21 8.29 1.750 0.928 4.8 0.1 4.9 5.530 0.780
n = 50 9.67 0.14 9.82 2.010 0.924 7.6 0.1 7.7 3.274 0.876
n = 100 9.97 0.03 10 2.229 0.917 9.5 0 9.5 2.453 0.909
n = 200 10 0 10 2.353 0.913 9.4 0.6 10 2.353 0.913
n = 400 10 0 10 2.423 0.912 9.9 0.1 10 2.423 0.912

n
|Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev

(20) (4) (0.9) (20) (4) (0.9)

n = 25 9.42 0.02 9.44 2.485 0.935 5.5 0 5.5 9.633 0.758
n = 50 10 0 10 3.155 0.926 9.8 0 9.9 3.350 0.922
n = 100 10 0 10 3.566 0.918 10 0 10 3.566 0.918
n = 200 10.02 0 10.02 3.764 0.913 9.9 0.1 10 3.764 0.913
n = 400 10 0 10 3.876 0.911 10 0 10 3.876 0.911

Table A.21: Results of AdapL.min and AdapL.1se for Scenario 2 with ρ = 0.9. Oracle
values are in brackets.

SCAD Dant

n
|Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev

(10) (1) (0.9) (10) (1) (0.9)

n = 25 8.9 3.4 12.3 0.562 0.942 4.1 36.7 40.8 3.224 0.671
n = 50 9.6 1.8 11.4 0.788 0.926 6 54.3 60.3 2.980 0.721
n = 100 9.8 0.4 10.2 0.891 0.918 8.2 73.6 81.8 2.090 0.806
n = 200 10 0.2 10.1 0.941 0.913 9.7 86.9 96.6 1.197 0.889
n = 400 10 0 10 0.969 0.911 10 89.8 99.8 0.984 0.910

n
|Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev

(15) (2.5) (0.9) (15) (2.5) (0.9)

n = 25 10 1.6 11.6 1.430 0.941 6.9 32.1 39 7.290 0.700
n = 50 10.9 0.4 11.3 1.972 0.925 9.4 43.3 52.7 6.630 0.750
n = 100 10.5 0 10.5 2.229 0.918 10.8 48.8 59.5 5.922 0.781
n = 200 10.4 0 10.4 2.353 0.913 11.2 50.4 61.6 5.829 0.784
n = 400 10.1 0 10.1 2.423 0.912 11.1 50.2 61.3 6.013 0.781

n
|Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev

(20) (4) (0.9) (20) (4) (0.9)

n = 25 11.8 0.5 12.3 2.248 0.942 8.2 32.7 40.9 12.883 0.671
n = 50 11.4 0 11.4 3.154 0.926 12 48.3 60.3 11.916 0.721
n = 100 10.2 0 10.2 3.566 0.918 16.3 65.5 81.8 8.359 0.806
n = 200 10.2 0 10.2 3.764 0.913 19.3 77.3 96.6 4.781 0.889
n = 400 10 0 10 3.876 0.911 20 79.8 99.8 3.936 0.910

Table A.22: Results of SCAD and Dant for Scenario 2 with ρ = 0.9. Oracle values are in
brackets.
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RelaxL SqrtL

n
|Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev

(10) (1) (0.9) (10) (1) (0.9)

n = 25 2.8 8.4 11.2 0.574 0.941 2.2 19.7 21.9 7.428 0.265
n = 50 3 8.8 11.8 0.794 0.925 6.5 58.1 64.6 3.858 0.637
n = 100 2.8 8.9 11.7 0.904 0.916 10 89.7 99.7 0.907 0.916
n = 200 2.9 8.7 11.7 0.959 0.911 10 89.9 99.8 0.939 0.913
n = 400 2.9 8.7 11.6 0.987 0.910 10 89.8 99.8 0.968 0.912

n
|Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev

(15) (2.5) (0.9) (15) (2.5) (0.9)

n = 25 4.3 6.6 10.9 1.470 0.939 4.5 20.5 25 15.906 0.372
n = 50 4.6 7.4 11.9 1.979 0.925 11 53.5 64.5 6.375 0.759
n = 100 4.6 7.4 12 2.235 0.917 14.8 82.9 97.6 2.399 0.911
n = 200 4.4 7.4 11.8 2.370 0.912 15 84.9 99.9 2.347 0.913
n = 400 4.5 7.2 11.7 2.438 0.911 15 84.9 99.9 2.420 0.912

n
|Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev

(20) (4) (0.9) (20) (4) (0.9)

n = 25 6.1 5.2 11.2 2.296 0.941 4.4 17.5 21.9 29.766 0.264
n = 50 6.3 5.6 11.9 3.176 0.925 12.9 51.7 64.6 15.434 0.637
n = 100 6.2 5.6 11.7 3.618 0.916 19.9 79.8 99.7 3.627 0.916
n = 200 6.2 5.5 11.7 3.836 0.911 20 79.9 99.8 3.755 0.913
n = 400 6.1 5.5 11.6 3.919 0.910 20 79.9 99.8 3.871 0.912

Table A.23: Results of RelaxL and SqrtL for Scenario 2 with ρ = 0.9. Oracle values are in
brackets.

ScalL DC.VS

n
|Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev

(10) (1) (0.9) (10) (1) (0.9)

n = 25 1 2.9 3.9 3.848 0.603 0.5 1.4 1.9 5.415 0.463
n = 50 1.9 6 7.9 2.072 0.795 1.2 3.7 4.9 3.682 0.656
n = 100 2.5 7.8 10.2 1.034 0.905 2.4 7.6 10 0.895 0.917
n = 200 2.4 7.6 10 1.094 0.898 2.3 7.7 10 0.941 0.913
n = 400 2.5 7.8 10.4 1.111 0.899 2.4 7.6 10 0.969 0.911

n
|Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev

(15) (2.5) (0.9) (15) (2.5) (0.9)

n = 25 1.7 2.2 3.9 8.185 0.654 0.9 1.1 1.9 12.770 0.495
n = 50 3.1 4.7 7.8 3.915 0.844 2.3 2.7 5 7.034 0.734
n = 100 3.8 6.4 10.2 2.449 0.910 3.7 6.3 10 2.231 0.917
n = 200 3.9 6.4 10.3 2.380 0.912 3.7 6.3 10 2.353 0.913
n = 400 4 6.5 10.5 2.567 0.906 3.8 6.2 10 2.423 0.912

n
|Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev

(20) (4) (0.9) (20) (4) (0.9)

n = 25 2 1.7 3.7 15.213 0.606 1 0.9 1.9 21.661 0.463
n = 50 4.2 3.7 7.8 8.220 0.796 2.6 2.3 4.9 14.728 0.656
n = 100 5.4 4.8 10.2 4.143 0.904 5.4 4.6 10 3.579 0.917
n = 200 5.4 4.6 10.1 4.068 0.906 5.3 4.7 10 3.764 0.913
n = 400 5.6 5 10.5 4.009 0.908 5.4 4.6 10 3.876 0.911

Table A.24: Results of ScalL and DC.VS for Scenario 2 with ρ = 0.9. Oracle values are in
brackets.
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A.6.3 Scenario 3 (Toeplitz covariance)

Scenario 3.a

LASSO.min LASSO.1se

ρ = 0.5

n
|Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev

(15) (1.139) (0.9) (15) (1.139) (0.9)

n = 25 9.4 12.1 21.5 0.124 0.984 7.2 4.4 11.5 0.965 0.896
n = 50 13.5 18.2 31.7 0.190 0.983 12.9 7 19.9 0.488 0.955
n = 100 14.9 16.3 31.3 0.545 0.951 14.9 5.1 20 0.766 0.932
n = 200 15 14.5 29.5 0.825 0.927 15 2.9 17.9 0.971 0.914
n = 400 15 14.4 29.4 0.971 0.914 15 1.5 16.5 1.063 0.906

ρ = 0.9

n
|Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev

(15) (3.807) (0.9) (15) (3.807) (0.9)

n = 25 7.4 7.8 15.2 0.676 0.982 6.9 1.8 8.7 1.639 0.956
n = 50 9 7.1 16.2 1.894 0.950 8.7 1.6 10.3 2.630 0.931
n = 100 11.2 6 17.2 2.814 0.928 10.7 0.9 11.6 3.267 0.916
n = 200 12.8 6.5 19.2 3.302 0.916 12.4 0.6 13 3.587 0.908
n = 400 14.1 5.8 19.9 3.620 0.908 13.9 0.4 14.3 3.762 0.905

Table A.25: Results of LASSO.min and LASSO.1se for Scenario 3.a. Oracle values are in
brackets.

AdapL.min AdapL.1se

ρ = 0.5

n
|Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev

(15) (1.139) (0.9) (15) (1.139) (0.9)

n = 25 5.7 3.2 8.9 0.333 0.968 2.9 0.7 3.6 2.230 0.783
n = 50 9.8 2.6 12.4 0.643 0.942 5.2 0.3 5.5 1.992 0.818
n = 100 13.8 1.9 15.7 0.867 0.923 6.8 0 6.8 1.932 0.827
n = 200 15 11.5 26.5 0.834 0.926 9.7 0 9.7 1.568 0.861
n = 400 15 9 24 0.995 0.912 13.7 0 13.7 1.195 0.894

ρ = 0.9

n
|Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev

(15) (3.807) (0.9) (15) (3.807) (0.9)

n = 25 3.3 0.8 4.1 2.056 0.945 2 0 2 4.433 0.880
n = 50 3.9 0.4 4.3 3.144 0.917 2.4 0 2.4 4.708 0.876
n = 100 4.5 0.2 4.7 3.669 0.906 2.6 0 2.7 4.963 0.872
n = 200 8.8 4.7 13.5 3.311 0.916 3.5 0 3.6 4.526 0.885
n = 400 11 5.3 16.3 3.593 0.909 4 0 4 4.543 0.885

Table A.26: Results of AdapL.min and AdapL.1se for Scenario 3.a. Oracle values are in
brackets.
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SCAD Dant

ρ = 0.5

n
|Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev

(15) (1.139) (0.9) (15) (1.139) (0.9)

n = 25 5 3.4 8.4 1.157 0.880 4.3 1.1 5.3 2.313 0.769
n = 50 8.6 6.4 15 0.679 0.937 6.7 0.3 7 2.158 0.802
n = 100 12.7 11.6 24.3 0.660 0.941 9 0 9.1 1.865 0.833
n = 200 15 13.3 28.3 0.824 0.927 11.1 0 11.1 1.649 0.854
n = 400 15 6.1 21.1 1.015 0.910 12.8 0 12.8 1.443 0.873

ρ = 0.9

n
|Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev

(15) (3.807) (0.9) (15) (3.807) (0.9)

n = 25 3.1 3 6.1 2.086 0.944 3.6 0 3.7 4.237 0.885
n = 50 3.8 4.1 7.8 2.716 0.929 4.1 0 4.2 4.892 0.871
n = 100 4.5 3.6 8.1 3.443 0.911 4.9 0 4.9 5.013 0.871
n = 200 6.7 6.2 12.8 3.476 0.911 5.6 0 5.6 4.969 0.873
n = 400 9 7 16 3.658 0.907 6.6 0 6.6 4.920 0.875

Table A.27: Results of SCAD and Dant for Scenario 3.a. Oracle values are in brackets.

RelaxL SqrtL

ρ = 0.5

n
|Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev

(15) (1.139) (0.9) (15) (1.139) (0.9)

n = 25 6.7 4.3 11 1.145 0.876 25.9 2 7.9 1.518 0.836
n = 50 12.2 6.8 19 0.615 0.944 11.8 2.4 14.2 0.832 0.922
n = 100 14.5 2.9 17.4 0.870 0.922 14.8 2.5 17.3 0.865 0.923
n = 200 15 0.9 15.9 1.025 0.909 15 2.5 17.5 0.982 0.913
n = 400 15 0.6 15.6 1.078 0.905 15 2.4 17.4 1.053 0.907

ρ = 0.9

n
|Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev

(15) (3.807) (0.9) (15) (3.807) (0.9)

n = 25 6.3 2.3 8.6 1.914 0.948 7.1 1.3 8.4 3.101 0.916
n = 50 7.9 2.3 10.2 2.743 0.928 9 1.5 10.5 3.381 0.911
n = 100 10 1.7 11.7 3.259 0.916 11 2 13 3.207 0.917
n = 200 11.9 2 13.9 3.539 0.910 11 1 12 3.524 0.910
n = 400 13.6 1.6 15.2 3.729 0.905 14 1.8 15.9 3.717 0.906

Table A.28: Results of RelaxL and SqrtL for Scenario 3.a. Oracle values are in brackets.
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ScalL DC.VS

ρ = 0.5

n
|Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev

(15) (1.139) (0.9) (15) (1.139) (0.9)

n = 25 6.9 3.3 10.2 0.692 0.926 1.6 0.4 2 4.249 0.598
n = 50 12.4 3.5 15.9 0.657 0.938 4.2 0.8 5 2.516 0.769
n = 100 14.9 5.3 20.1 0.795 0.929 8.6 2.4 11 1.439 0.871
n = 200 15 3.5 18.5 0.956 0.915 14.1 5.5 19.6 0.988 0.912
n = 400 15 3.4 18.4 1.039 0.908 15 1.6 16.6 1.060 0.906

ρ = 0.9

n
|Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev

(15) (3.807) (0.9) (15) (3.807) (0.9)

n = 25 7.1 1.7 8.9 1.606 0.957 1.6 0.4 2 5.683 0.847
n = 50 9 1.9 10.9 2.530 0.933 2.7 1.7 4.5 4.010 0.894
n = 100 11.1 5.8 16.9 3.219 0.918 3.7 2.2 5.8 4.031 0.896
n = 200 12.7 2 14.7 3.488 0.911 4.5 1.9 6.4 4.101 0.895
n = 400 14.1 2 16.1 3.701 0.906 4.8 0.7 5.6 4.285 0.891

Table A.29: Results of ScalL and DC.VS for Scenario 3.a. Oracle values are in brackets.

Scenario 3.b

LASSO.min LASSO.1se

ρ = 0.5

n
|Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev

(10) (0.278) (0.9) (10) (0.278) (0.9)

n = 25 5.3 14.2 19.5 0.155 0.929 2.9 5.2 8.1 0.843 0.659
n = 50 9.8 26.5 36.3 0.034 0.986 9.3 14.3 23.6 0.117 0.952
n = 100 10 23.6 33.6 0.123 0.955 10 11.9 21.9 0.170 0.938
n = 200 10 21.8 31.8 0.195 0.929 10 8 18 0.228 0.917
n = 400 10 21.8 31.8 0.234 0.915 10 5.7 15.7 0.255 0.907

ρ = 0.9

n
|Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev

(10) (0.53) (0.9) (10) (0.53) (0.9)

n = 25 4.4 16.7 21.1 0.028 0.994 3.3 11 14.3 0.144 0.968
n = 50 7.3 21 28.3 0.147 0.971 6.8 15.7 22.5 0.229 0.955
n = 100 9.4 21.6 31.1 0.309 0.940 9.3 16.4 25.7 0.366 0.929
n = 200 10 20.8 30.8 0.417 0.920 10 15.2 25.2 0.449 0.914
n = 400 10 20.8 30.8 0.471 0.911 10 14.6 24.6 0.488 0.908

Table A.30: Results of LASSO.min and LASSO.1se for Scenario 3.b. Oracle values are in
brackets.
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AdapL.min AdapL.1se

ρ = 0.5

n
|Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev

(10) (0.278) (0.9) (10) (0.278) (0.9)

n = 25 3.6 6.2 9.9 0.104 0.959 1.4 1.7 3.1 0.997 0.615
n = 50 9.1 4.4 13.6 0.149 0.943 7.7 0.9 8.6 0.397 0.841
n = 100 10 1.6 11.6 0.221 0.919 10 0 10 0.248 0.909
n = 200 10 11.3 21.3 0.211 0.923 10 0 10 0.262 0.905
n = 400 10 9.5 19.5 0.246 0.911 10 0 10 0.270 0.902

ρ = 0.9

n
|Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev

(10) (0.53) (0.9) (10) (0.53) (0.9)

n = 25 2.3 5.4 7.7 0.153 0.967 1.1 2.7 3.8 0.741 0.839
n = 50 4.7 5.5 10.2 0.308 0.939 2.8 3 5.8 0.715 0.858
n = 100 7.9 3.4 11.4 0.418 0.919 6.2 2.1 8.3 0.618 0.880
n = 200 9.8 8.3 18.1 0.426 0.918 9.4 0.6 10 0.499 0.904
n = 400 10 7.2 17.2 0.479 0.909 9.9 0.1 10 0.513 0.903

Table A.31: Results of AdapL.min and AdapL.1se for Scenario 3.b. Oracle values are in
brackets.

SCAD Dant

ρ = 0.5

n
|Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev

(10) (0.278) (0.9) (10) (0.278) (0.9)

n = 25 2.1 3.6 5.7 0.854 0.656 1.8 2 3.8 1.131 0.556
n = 50 8 8.7 16.7 0.187 0.921 4.7 2.8 7.6 0.798 0.693
n = 100 10 3.3 13.3 0.204 0.925 7.7 1.4 9.1 0.608 0.777
n = 200 10 2 12 0.248 0.910 9.5 0.2 9.8 0.348 0.874
n = 400 10 1.8 11.8 0.263 0.904 10 0 10 0.273 0.901

ρ = 0.9

n
|Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev

(10) (0.53) (0.9) (10) (0.53) (0.9)

n = 25 2 7.2 9.3 0.282 0.936 1.1 4.8 5.8 1.018 0.778
n = 50 4.4 8.9 13.3 0.281 0.945 1.8 6.1 7.9 1.091 0.786
n = 100 6.9 7.6 14.4 0.402 0.922 2.9 7.4 10.3 1.030 0.799
n = 200 8.4 4.8 13.2 0.490 0.906 4.7 7.7 12.4 0.907 0.827
n = 400 9 2.6 11.6 0.530 0.900 7.1 6.1 13.2 0.717 0.864

Table A.32: Results of SCAD and Dant for Scenario 3.a. Oracle values are in brackets.
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RelaxL SqrtL

ρ = 0.5

n
|Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev

(10) (0.278) (0.9) (10) (0.278) (0.9)

n = 25 2.8 4.8 7.6 0.783 0.680 1.9 2.1 4 1.073 0.569
n = 50 9.3 15.8 25.1 0.117 0.952 5.8 3.7 9.6 0.612 0.752
n = 100 10 6.7 16.7 0.203 0.925 10 4.4 14.4 0.221 0.918
n = 200 10 1.8 11.8 0.253 0.908 10 4.2 14.2 0.244 0.912
n = 400 10 0.7 10.7 0.268 0.903 10 4.5 14.5 0.259 0.906

ρ = 0.9

n
|Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev

(10) (0.53) (0.9) (10) (0.53) (0.9)

n = 25 3.4 11.6 15 0.160 0.964 2.1 8 10.1 1.897 0.949
n = 50 6.7 17.1 23.8 0.216 0.957 5.5 13.3 18.9 2.681 0.93
n = 100 9.1 17.2 26.2 0.355 0.931 9.1 16.5 25.6 3.207 0.917
n = 200 9.9 14.4 24.2 0.446 0.915 10 18.2 28.1 3.524 0.910
n = 400 10 11.1 21.1 0.490 0.907 10 20 30 3.717 0.906

Table A.33: Results of RelaxL and SqrtL for Scenario 3.b. Oracle values are in brackets.

ScalL DC.VS

ρ = 0.5

n
|Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev

(10) (0.278) (0.9) (10) (0.278) (0.9)

n = 25 3 4.2 7.2 0.461 0.813 0.9 1.1 2 1.321 0.500
n = 50 7.1 5.1 12.2 0.385 0.844 3.1 1.9 5 0.986 0.626
n = 100 10 6.6 16.6 0.210 0.923 9.7 1.3 11 0.270 0.900
n = 200 10 5.5 15.5 0.237 0.914 10 5 15 0.235 0.915
n = 400 10 5.5 15.6 0.256 0.907 10 1.5 11.5 0.263 0.904

ρ = 0.9

n
|Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev

(10) (0.53) (0.9) (10) (0.53) (0.9)

n = 25 2.5 8.9 11.4 0.265 0.937 0.4 1.6 2 1.712 0.639
n = 50 5.9 13.3 19.2 0.292 0.941 1.3 3.7 5 1.081 0.787
n = 100 9.1 17.8 26.8 0.382 0.925 4.3 6.1 10.3 0.636 0.876
n = 200 10 15 25 0.449 0.914 7.5 4.5 12 0.542 0.896
n = 400 10 15.2 25.2 0.487 0.908 8.9 2.1 11 0.537 0.898

Table A.34: Results of ScalL and DC.VS for Scenario 3.b. Oracle values are in brackets.
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A.7 Tables and figures

A.7.1 Scenario 2: dependence by blocks

s = 15

prob: (0.6, 0.8] (0.8, 0.9] (0.9, 1]

n = 50 27, 29, 26, 50, 14, 11, 13, 15, 40, 18 17, 19, 16, 30 20, 9, 7, 10, 8, 6, 5, 4, 3, 2, 1
n = 100 39, 28, 13, 29, 14, 40, 11, 12, 16 17, 15, 18, 30, 19 20, 10, 9, 8, 7, 6, 5, 4, 3, 2,1
n = 200 27, 28, 40, 29, 11, 16, 15, 14, 12 17, 30, 19, 13, 18 20, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1

s = 20

prob: (0.6, 0.8] (0.8, 0.9] (0.9, 1]

n = 50 12, 60, 14, 13, 17, 15, 29, 50, 11, 18 16, 40, 19, 30 20, 3, 2, 10, 9, 8, 7, 6, 5, 4, 1
n = 100 50, 28, 29, 12, 18, 16, 15, 14,

13, 40, 17, 11
19, 30 20, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1

n = 200 27, 40, 28, 29, 16, 15, 14, 11, 19, 12 18, 17, 30, 13 20, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1

Table A.35: The first 25 covariates with highest selection probability for the LASSO.min
in Scenario 2 with ρ = 0.5, in ascending order. The important covariates of the model are
in bold.

s = 15

prob: (0.6, 0.8] (0.8, 0.9] (0.9, 1]

n = 50 27, 26, 11, 40, 29, 12, 13, 14,
18, 16

15, 17, 19, 30 20, 10, 8, 7, 6, 9, 5, 4, 3, 2, 1

n = 100 39, 28, 13, 40, 12, 11, 29, 15,
14, 16, 17

18, 19, 30 20, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1

n = 200 24, 40, 28, 29, 12, 13, 11, 14 16, 15, 18, 19, 17, 30 20, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1

s = 20

prob: (0.6, 0.8] (0.8, 0.9] (0.9, 1]

n = 50 27, 14, 50, 13, 18, 12, 29,
11, 15, 16, 40, 17

19, 30 20, 6, 3, 1, 10, 9, 8, 7, 5, 4, 2

n = 100 50, 28, 13, 40, 29, 16, 17, 15,
14, 18, 12, 11

19, 30 20, 2, 10, 9, 8, 7, 6, 5, 4, 3, 1

n = 200 23, 40, 29, 28, 12, 15, 14, 13,
16, 17

18, 11, 19, 30 20, 2, 10, 9, 8, 7, 6, 5, 4, 3, 1

Table A.36: The first 25 covariates with highest selection probability for the LASSO.min
in Scenario 2 with ρ = 0.9, in ascending order. The important covariates of the model are
in bold.
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Figure A.12: The 12 covariates with highest selection probability for the RelaxL in Scenario
2 with ρ = 0.5 (the first row) and Scenario 2 with ρ = 0.9 (the second row) taking n = 400.
The important covariates of the model are in dark color while the noisy ones in soft color.
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Figure A.13: The 11 covariates with highest selection probability for the ScalL in Scenario
2 with ρ = 0.5 (the first row) and Scenario 2 with ρ = 0.9 (the second row) taking n = 400.
The important covariates of the model are in dark color while the noisy ones in soft color.
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Figure A.14: The 10 covariates with highest selection probability for the DC.VS in Scenario
2 with ρ = 0.5 (the first row) and Scenario 2 with ρ = 0.9 (the second row) taking n = 400.
The important covariates of the model are in dark color while the noisy ones in soft color.
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Figure A.15: Percentage of times a representative of the 10 first covariates enters the
model in Scenario 2 with ρ = 0.5 for the LASSO.min.
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Figure A.16: Percentage of times a representative of the 10 first covariates enters the
model in Scenario 2 with ρ = 0.9 for the LASSO.min.
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Figure A.17: Percentage of times a representative of the 10 first covariates enters the
model in Scenario 2 for the RelaxL.
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Figure A.18: Percentage of times a representative of the 10 first covariates enters the
model in Scenario 2 for the ScalL.
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Figure A.19: Percentage of times a representative of the 10 first covariates enters the
model in Scenario 2 for the DC.VS.
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A.7.2 Scenario 3: Toeplitz covariance

Scenario 3.a
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Figure A.20: Percentage of times each of the 20 first covariates enters the model in Scenario
3.a for the LASSO.BIC.
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Figure A.21: Percentage of times each of the 20 first covariates enters the model in Scenario
3.a for the AdapL.1se.
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Figure A.22: Percentage of times each of the 20 first covariates enters the model in Scenario
3.a for the Dant.
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Figure A.23: Percentage of times each of the 20 first covariates enters the model in Scenario
3.a for the DC.VS.

Scenario 3.b
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Figure A.24: Percentage of times a representative of the 10 relevant covariates enters the
model in Scenario 3.b for the LASSO.BIC.
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Figure A.25: Percentage of times a representative of the 10 relevant covariates enters the
model in Scenario 3.b for the SCAD.
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Figure A.26: Percentage of times a representative of the 10 relevant covariates enters the
model in Scenario 3.b for the Dant.

1 11 21 31 41 51 61 71 81 91

ρ = 0.5 , n=400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 11 21 31 41 51 61 71 81 91

ρ = 0.9 , n=400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure A.27: Percentage of times a representative of the 10 relevant covariates enters the
model in Scenario 3.b for the DC.VS.
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Appendix B

Extra results for LASSO facing scale effects
under dependence

B.1 Calculation of σ

Similar to Section A.1 of the Appendix A, the variance of the model error term, σ2, is
calculated for all scenarios considered in Section 3.2.1. Again, these quantities are computed
allowing the model to explain, at most, the 90% of the deviance. For this aim, the variance
is obtained verifying the condition displayed in equation (A.1).

B.1.1 Scenario 1 (Independence)

In the case of Scenario 1.a, the value of σ ≃ 1.317616. Similar arguments as the ones of
Section A.1.1 of Appendix A for the s = 10 case are employed.

Otherwise, the formula of σ agrees for Scenario 1.b and 1.c. This is given by

σ =

√√√√1− 0.9
0.9 1.252

s∑
j=1

V(Xj). (B.1)

Then, for s = 10 and having that V(X1) = V(X2) = 0.5, V(X3) = V(X4) = 1, V(X5) =
V(X6) = 3, V(X7) = V(X8) = 10, V(X9) = V(X10) = 25, it is verified that ∑s

j=1 V(Xj) =
79 and then we need to take σ ≃ 3.703414.

This is due to the fact that

σ2 (a)= 1−%Dev
%Dev

p∑
j=1

β2
jV(Xj) (b)⇒ σ2 = 1−%Dev

%Dev 1.252
s∑

j=1
V(Xj)

where (a) is true because V(< X, β >) = V(X1β1 + · · ·+Xpβp) = β2
1V(X1)+ · · ·+β2

pV(Xp)
and (b) because of β structure with β1 = · · · = βs = 1.25 and βj = 0 for j = s+ 1, . . . , p.

B.1.2 Scenario 2 (Toeplitz covariance with unit scales)

In the case of Scenario 2, the value of σ changes depending on the structure of the scenario.

• Scenario 2.a: only the first s = 15 covariates are important. Then, taking ρ = 0.5 we
get that σ ≃ 1.067189 and for ρ = 0.9, σ ≃ 1.951213. We refer to Section A.1.3 of
Appendix A for calculation guidelines.
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• Scenario 2.b: there are s = 10 relevant variables placed every 3 sites in 3-30 locations.

σ =

√√√√√√√√√√
1− 0.9

0.9

10 · 0.52 + 2(0.52)
30∑

j,k=3
j<k

j,k≡1 mod3

ρ|j−k|

 ≃
√√√√√√√√√√

1
9

2.5 + 0.5
30∑

j,k=3
j<k

j,k≡1 mod3

ρ|j−k|

,

then, for ρ = 0.5 this results in σ ≃ 0.5899767, while for ρ = 0.9, σ ≃ 1.115418.

The explanation is that

V(< X, β >) = V(X1β1 + · · ·+Xpβp)
= . . .

=
p∑

j=1
β2

j + 2
30∑

j,k=3
j<k

j,k≡1 mod3

βjρ
|j−k|βk = 10 · 0.52 + 2(0.52)

30∑
j,k=3
j<k

j,k≡1 mod3

ρ|j−k|.

B.1.3 Scenario 3 (Toeplitz covariance with different scales)

For Toeplitz covariance structure with different scales (Scenario 3), ideas of Scenario 2.b
taking ρ = 0.5 for variance error term calculation (Section B.1.2) have been adapted. Two
cases are considered: only relevant covariates have different scales from the unit (Scenario
3.a) and unimportant ones with different scales are added as well (Scenario 3.b). Here, we
have that the model variance is given by

V(< X, β >) = V(X1β1 + · · ·+Xpβp)
= β2

1V(X1) + V(X2β2 + · · ·+Xpβp) + 2C(X1β1, X2β2 + . . . Xpβp)
= β2

1V(X1) + β2
2V(X2) + V(X3β3 + · · ·+Xpβp) + 2C(X2β2, X3β3 + · · ·+Xpβp)

+ 2C(X1β1, X2β2 + · · ·+Xpβp)
= . . .

(a)=
30∑

j=3
j≡1mod3

β2
j σ

2
j + 2


30∑

j=3
j≡1mod3

βjσj


30∑

k>j=3
k≡1mod3

βkσkρ
|j−k|




= (0.5)2
30∑

j=3
j≡1mod3

σ2
j + 2(0.5)2

30∑
k>j=3

k≡1mod3

σjσkρ
|j−k|

where (a) is due to βj ̸= 0 for mod3(j) = 1, and it is verified that C(Xj , Xk) = σjσkρ
|j−k|

for mod3(j) = mod3(k).

216



Then, the variance of the error is given by

σ =

√√√√√√√√1− 0.9
0.9

(0.5)2
30∑

j=3
j≡1mod3

σ2
j + 2(0.5)2

30∑
k>j=3

k≡1mod3

σjσkρ|j−k|



≃

√√√√√√√√1
9

19.75 + 0.5
30∑

k>j=3
k≡1mod3

σjσkρ|j−k|

,

and, for ρ = 0.5 we have that σ ≃ 1.636796 and for ρ = 0.9 we get σ ≃ 2.796096.

B.2 Calculation eigenvalues of covariance matrices

Scenario 1.b Scenario 1.c
70% 80% 90% 95% 98% 99% 70% 80% 90% 95% 98% 99%

49 66 83 91 96 98 10 31 65 82 92 95

Table B.1: Required covariates in Scenarios 1.b and 1.c to explain a certain percentage of
variability.

Scenario 2.a (s = 15) Scenario 2.b (s = 10)
ρ 80% 90% 95% 98% 99% 80% 90% 95% 98% 99%

ρ = 0.5 8 11 13 15 15 8 9 10 10 10
ρ = 0.9 2 4 6 10 13 7 9 9 10 10

Table B.2: Required covariates in Scenarios 2.a and 2.b to explain a certain percentage of
variability.

Scenario 3.a Scenario 3.b
ρ 70% 80% 90% 95% 98% 99% 70% 80% 90% 95% 98% 99%

ρ = 0.5 22 35 57 76 90 95 9 18 37 59 80 90
ρ = 0.9 6 8 15 26 51 71 4 6 12 19 35 53

Table B.3: Required covariates in Scenarios 3.a and 3.b to explain a certain percentage of
variability.

B.3 Simulation results

Similar to Section A.6 of Appendix A, extra tables and figures of simulation results of
Section 3.2.1 are collected.
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B.3.1 Scenarios 1.a, 1.b and 1.c
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Figure B.1: Percentage of times each of the s = 10 relevant covariates enters the model
for without/univariate standardization (pink/blue area) for n = 300 in Scenario 1.b.
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Figure B.2: Percentage of times each of the s = 10 relevant covariates enters the model for
without/univariate standardization (pink/blue area) for n = 300 in Scenario 1.c.
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Figure B.3: Percentage of times each of the first 22 covariates enters the model for
without/univariate standardization (pink/blue area) for n = 50 in Scenario 1.b (the first
row) and Scenario 1.c (the second row).
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Figure B.4: Percentage of times each of the s = 10 relevant covariates enters the model
for without/univariate standardization (pink/blue area) for n = 300 in Scenario 1.b (the
first row) and Scenario 1.c (the second row).

0.0

0.1

0.2

0.3

0.4

X1 X10 X20 X30 X40 X50 X60 X70 X80 X90 X100

R2

0.2

0.4

0.6

X1 X10 X20 X30 X40 X50 X60 X70 X80 X90 X100

DC

1.00

1.25

1.50

X1 X10 X20 X30 X40 X50 X60 X70 X80 X90 X100

PLS

Figure B.5: Boxplots of the covariates loadings in terms of R2, DC and PLS for n = 300
in Scenario 1.c with without standardization.
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|Ŝ
\

S
|

|Ŝ
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Table B.4: Results of LASSO.min, LASSO.1se, LASSO.BIC for p = 100 without using
standardization in Scenarios 1.a, 1.b and 1.c. Oracle values are in brackets.
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|Ŝ
∩

S
|

|Ŝ
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Table B.5: Results of LASSO.min, LASSO.1se, LASSO.BIC for p = 100 using univariate
standardization in Scenarios 1.a, 1.b and 1.c. Oracle values are in brackets.
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B.3.2 Scenarios 2.a and 2.b

ρ = 0.5

Scenario 2.a Scenario 2.b

n |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev
(15) (1.139) (0.9) (10) (0.348) (0.9)

LA
SS

O
.m

in

25 9.02 13.14 22.16 0.110 0.988 5.81 16.11 21.91 0.066 0.973
50 13.31 18.56 31.87 0.193 0.982 9.65 25.19 34.84 0.049 0.985
100 14.93 16.77 31.70 0.540 0.952 10 22.53 32.53 0.161 0.953
150 15 15.10 30.10 0.722 0.936 10 21.90 31.90 0.215 0.937
300 15 14.70 29.70 0.921 0.919 10 20.27 30.27 0.280 0.919

LA
SS

O
.1

se

25 7.77 7.86 15.63 0.601 0.933 4.54 9.81 14.35 0.389 0.857
50 12.51 8.06 20.57 0.485 0.955 9.21 14.34 23.54 0.144 0.954
100 14.81 5.42 20.23 0.765 0.931 10 10.89 20.89 0.222 0.935
150 15 3.80 18.80 0.895 0.920 10 8.93 18.93 0.267 0.922
300 15 2 17 1.035 0.908 10 6.32 16.32 0.312 0.910

LA
SS

O
.B

IC

25 9.31 14.45 23.76 0 1 6.12 17.87 23.98 0 1
50 13.40 31.66 45.06 0.004 1 9.69 36.66 46.35 0.001 1
100 14.92 82.77 97.69 0.011 0.999 9.99 87.71 97.70 0.003 0.999
150 14.90 2.10 17 0.929 0.917 10 2.12 12.12 0.306 0.910
300 15 1.30 16.30 1.042 0.908 10 0.71 10.71 0.331 0.905

ρ = 0.9

Scenario 2.a Scenario 2.b

n |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev
(15) (3.807) (0.9) (10) (1.244) (0.9)

LA
SS

O
.m

in

25 7.02 8.24 15.25 0.686 0.981 4.23 13.44 17.67 0.144 0.987
50 8.89 7.07 15.96 1.914 0.948 6.10 13.74 19.84 0.514 0.955
100 11.06 6.19 17.25 2.804 0.927 8.11 14.35 22.46 0.822 0.932
150 12 6.40 18.50 3.138 0.919 9.11 14.60 23.71 0.951 0.922
300 13.60 6 19.60 3.525 0.910 9.87 14.23 24.09 1.096 0.911

LA
SS

O
.1

se

25 6.62 3.40 10.02 1.468 0.959 3.88 8.78 12.66 0.344 0.969
50 8.34 1.81 10.15 2.643 0.928 5.62 8.35 13.97 0.728 0.937
100 10.37 0.95 11.32 3.271 0.915 7.69 8.66 16.35 0.958 0.921
150 11.50 0.80 12.30 3.499 0.910 8.87 8.23 17.10 1.059 0.913
300 13.20 0.40 13.70 3.715 0.905 9.81 8.10 17.91 1.154 0.906

LA
SS

O
.B

IC

25 7.21 14.26 21.48 0.022 1 4.38 17.80 22.18 0.005 1
50 8.14 17.61 25.75 0.956 0.976 5.82 23.71 29.53 0.224 0.982
100 14.45 79.21 93.66 0.187 0.995 9.73 85.86 95.59 0.038 0.997
150 8.40 0.20 8.60 3.715 0.904 6.87 5.64 12.51 1.146 0.906
300 10.40 0.10 10.50 3.822 0.902 8.79 5.79 14.57 1.183 0.904

Table B.6: Results of LASSO.min, LASSO.1se, LASSO.BIC for p = 100 without using
standardization in Scenarios 2.a and 2.b. Oracle values are in brackets.
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ρ = 0.5

Scenario 2.a Scenario 2.b

n |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev
(15) (1.139) (0.9) (10) (0.348) (0.9)

LA
SS

O
.m

in

25 9.49 12.96 22.45 0.068 0.992 5.92 16.01 21.93 0.091 0.965
50 13.50 18.59 32.08 0.185 0.983 9.70 25.12 34.82 0.049 0.985
100 14.94 16.27 31.21 0.546 0.951 10 22.18 32.18 0.162 0.952
150 15 15 30 0.722 0.936 10 21.76 31.76 0.215 0.937
300 15 14.50 29.50 0.922 0.918 10 20.15 30.15 0.280 0.919

LA
SS

O
.1

se

25 8.21 7.80 16.01 0.486 0.945 4.57 9.66 14.23 0.402 0.855
50 12.87 8.10 20.97 0.463 0.957 9.38 14.03 23.41 0.138 0.956
100 14.86 5.12 19.98 0.768 0.931 10 10.46 20.46 0.225 0.934
150 15 3.60 18.60 0.898 0.920 10 8.73 18.73 0.267 0.922
300 15 2 17 1.035 0.908 10 6.26 16.26 0.312 0.910

LA
SS

O
.B

IC

25 9.66 14.12 23.78 0 1 6.27 17.70 23.97 0 1
50 13.53 32.16 45.69 0.003 1 9.72 36.98 46.70 0.001 1
100 14.91 83.12 98.03 0.007 0.999 9.99 88.15 98.14 0.002 1
150 14.90 1.90 16.90 0.933 0.917 10 2.03 12.03 0.305 0.910
300 15 1.40 16.40 1.040 0.908 10 0.66 10.66 0.331 0.905

ρ = 0.9

Scenario 2.a Scenario 2.b

n |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev
(15) (3.807) (0.9) (10) (1.244) (0.9)

LA
SS

O
.m

in

25 7.29 8.18 15.47 0.675 0.981 4.43 13.82 18.25 0.129 0.988
50 9 7.11 16.11 1.898 0.948 6.25 13.99 20.24 0.513 0.955
100 11.10 6.02 17.13 2.813 0.927 8.14 14.27 22.41 0.824 0.932
150 12.10 6.30 18.30 3.150 0.919 9.16 14.53 23.69 0.952 0.922
300 13.60 5.90 19.50 3.526 0.910 9.87 14.12 23.99 1.098 0.911

LA
SS

O
.1

se

25 6.91 3.54 10.45 1.353 0.962 4.22 9.13 13.35 0.299 0.973
50 8.67 1.74 10.40 2.613 0.929 5.97 8.46 14.43 0.713 0.938
100 10.66 0.86 11.52 3.268 0.915 7.85 8.60 16.46 0.955 0.921
150 11.70 0.70 12.40 3.497 0.910 9 8.25 17.26 1.059 0.913
300 13.40 0.40 13.70 3.715 0.905 9.83 8.06 17.89 1.154 0.906

LA
SS

O
.B

IC

25 7.33 14.80 22.13 0.011 1 4.54 18.11 22.65 0.002 1
50 8.29 18.93 27.22 0.847 0.979 5.84 25.32 31.15 0.188 0.985
100 14.50 79.46 93.96 0.180 0.996 9.69 85.49 95.18 0.043 0.997
150 8.90 0.30 9.20 3.669 0.906 7.08 5.47 12.55 1.143 0.906
300 11 0.20 11.10 3.800 0.903 9.03 5.69 14.72 1.180 0.904

Table B.7: Results of LASSO.min, LASSO.1se, LASSO.BIC for p = 100 using univariate
standardization in Scenarios 2.a and 2.b. Oracle values are in brackets.
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Figure B.6: Number of important covariates (dark pink/blue area) and noisy ones (soft
pink/blue area) for p = 100 and ρ = 0.5 selected in terms of the without/univariate
standardization in Scenarios 2.a (the first row) and 2.b (the second row). The dashed line
marks the s = 15 and s = 10 value for the first and the second row, respectively.
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Figure B.7: Number of important covariates (dark pink/blue area) and noisy ones (soft
pink/blue area) for proposed algorithms taking p = 100 and selected in terms of the
without/univariate standardization in Scenarios 2.a (the first row) and 2.b (the second
row) for ρ = 0.5 and n = 50. The dashed lines mark the s = 15 and s = 10 value for the
first and the second row, respectively.
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Scenario 2.a

WITHOUT UNIVARIATE

METHOD |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev
(15) (1.139) (0.9) (15) (1.139) (0.9)

LASSO.min 13.31 18.56 31.87 0.193 0.982 13.50 18.59 32.08 0.185 0.983
LASSO.1se 12.51 8.06 20.57 0.485 0.955 12.87 8.10 20.97 0.463 0.957
LASSO.BIC 13.40 31.66 45.06 0.004 1 13.53 32.16 45.69 0.003 1
AdapL.min 9.58 2.55 12.12 0.668 0.939 9.57 2.53 12.10 0.662 0.940
AdapL.1se 5.11 0.27 5.38 2.009 0.816 5.23 0.29 5.52 1.937 0.823

SCAD 8.61 6.45 15.06 0.668 0.938 8.61 6.45 15.06 0.668 0.938
Dant 6.65 0.23 6.88 2.030 0.811 6.65 0.23 6.88 2.030 0.811

RelaxL 12.16 6.84 19 0.605 0.945 12.09 6.73 18.81 0.621 0.943
SqrtL 11.68 2.38 14.07 0.792 0.924 11.68 2.38 14.07 0.792 0.924
ScalL 11.87 3.50 15.37 0.693 0.934 12.32 3.48 15.79 0.656 0.938

DC.VS 4.19 0.81 5.00 2.475 0.771 4.19 0.81 5.00 2.475 0.771

Scenario 2.b

WITHOUT UNIVARIATE

METHOD |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev
(10) (0.348) (0.9) (10) (0.348) (0.9)

LASSO.min 9.65 25.19 34.84 0.049 0.985 9.70 25.12 34.82 0.049 0.985
LASSO.1se 9.21 14.34 23.54 0.144 0.954 9.38 14.03 23.41 0.138 0.956
LASSO.BIC 9.69 36.66 46.35 0.001 1 9.72 36.98 46.70 0.001 1
AdapL.min 8.95 4.15 13.10 0.189 0.943 9.08 4.14 13.22 0.183 0.945
AdapL.1se 7.05 0.95 8.01 0.488 0.849 7.33 0.86 8.19 0.458 0.857

SCAD 8.44 8.45 16.89 0.183 0.941 8.44 8.45 16.89 0.183 0.941
Dant 4.92 2.87 7.79 0.789 0.760 4.92 2.87 7.79 0.789 0.760

RelaxL 9.14 13.49 22.63 0.166 0.948 9.15 13.58 22.74 0.162 0.950
SqrtL 7.29 4.95 12.24 0.418 0.865 7.29 4.94 12.24 0.419 0.865
ScalL 7.70 6.21 13.92 0.333 0.893 8.05 6.29 14.34 0.309 0.9

DC.VS 3.16 1.84 5.00 1.084 0.674 3.16 1.84 5.00 1.084 0.674

Table B.8: Comparison of all proposed algorithms for p = 100, n = 50 and ρ = 0.5 using
different standardization techniques in Scenario 2. Oracle values are in brackets.
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Figure B.8: Percentage of times each of the first 20 covariates enters the model for
without/univariate standardization (pink/blue area) for n = 50 in Scenario 2.a taking
ρ = 0.5 (the first row) and ρ = 0.9 (the second row).
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Figure B.9: Percentage of times each of the first 38 covariates enters the model for
without/univariate standardization (pink/blue area) for n = 50 in Scenario 2.b taking
ρ = 0.5 (the first row) and ρ = 0.9 (the second row).
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Figure B.10: Number of important covariates (dark pink/blue area) and noisy ones (soft
pink/blue area) for proposed algorithms taking p = 100 and selected in terms of the
without/univariate standardization in Scenarios 2.a (the first row) and 2.b (the second
row) for ρ = 0.5 and n = 300. The dashed lines mark the s = 15 and s = 10 value for the
first and the second row, respectively.
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Figure B.11: Percentage of times each of the first 20 covariates enters the model for
without/univariate standardization (pink/blue area) for n = 300 in Scenario 2.a taking
ρ = 0.5 (the first row) and ρ = 0.9 (the second row).
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Scenario 2.a

WITHOUT UNIVARIATE

METHOD |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev
(15) (1.139) (0.9) (15) (1.139) (0.9)

LASSO.min 15 14.70 29.70 0.921 0.919 15 14.50 29.50 0.922 0.918
LASSO.1se 15 2 17 1.035 0.908 15 2 17 1.035 0.908
LASSO.BIC 15 1.30 16.30 1.042 0.908 15 1.40 16.40 1.040 0.908
AdapL.min 15 10.10 25.10 0.942 0.917 15 10.18 25.18 0.941 0.917
AdapL.1se 11.97 0 11.97 1.356 0.880 11.91 0 11.91 1.361 0.879

SCAD 15 9.22 24.22 0.951 0.916 15 9.22 24.22 0.951 0.916
Dant 12.14 0 12.14 1.519 0.866 12.14 0 12.14 1.519 0.866

RelaxL 15 0.77 15.77 1.064 0.906 15 0.76 15.76 1.064 0.906
SqrtL 15 2.55 17.55 1.025 0.910 15 2.55 17.55 1.025 0.910
ScalL 15 3.60 18.60 1.011 0.911 15 3.63 18.63 1.010 0.911

DC.VS 14.93 3.27 18.20 1.022 0.910 14.93 3.27 18.20 1.022 0.910

Scenario 2.b

WITHOUT UNIVARIATE

METHOD |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev
(10) (0.348) (0.9) (10) (0.348) (0.9)

LASSO.min 4.97 25.30 30.27 0.280 0.919 4.95 25.20 30.15 0.280 0.919
LASSO.1se 4.08 12.24 16.32 0.312 0.910 4.06 12.20 16.26 0.312 0.910
LASSO.BIC 3.13 7.58 10.71 0.331 0.905 3.12 7.55 10.66 0.331 0.905
AdapL.min 10 10.05 20.05 0.294 0.915 10 10.08 20.08 0.294 0.915
AdapL.1se 10 0 10 0.335 0.903 10 0 10 0.335 0.903

SCAD 10 1.73 11.73 0.325 0.906 10 1.73 11.73 0.325 0.906
Dant 9.78 0.28 10.06 0.375 0.892 9.78 0.28 10.06 0.375 0.892

RelaxL 10 1.45 11.45 0.329 0.905 10 1.39 11.39 0.330 0.905
SqrtL 10 5.54 15.54 0.315 0.909 10 5.54 15.54 0.315 0.909
ScalL 10 6.64 16.64 0.311 0.910 10 6.66 16.66 0.311 0.910
DC.VS 10 3.04 13.04 0.318 0.908 10 3.04 13.04 0.318 0.908

Table B.9: Comparison of all proposed algorithms for p = 100, n = 300 and ρ = 0.5 using
different standardization techniques in Scenario 2. Oracle values are in brackets.
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Figure B.12: Percentage of times each of the first 38 covariates enters the model for
without/univariate standardization (pink/blue area) for n = 300 in Scenario 2.b taking
ρ = 0.5 (the first row) and ρ = 0.9 (the second row).
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Figure B.13: Boxplots of the covariates loadings in terms of R2 and DC for n = 300 in
Scenario 2.b taking ρ = 0.5.
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Figure B.14: Boxplots of the covariates loadings in terms of R2 and DC for n = 300 in
Scenario 2.b taking ρ = 0.9 .
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B.3.3 Scenarios 3.a y 3.b

ρ = 0.5

Scenario 3.a Scenario 3.b

n |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev
(10) (2.679) (0.9) (10) (2.679) (0.9)

LA
SS

O
.m

in

25 6.11 7.39 13.50 0.687 0.971 5.48 9.15 14.63 0.706 0.970
50 7.13 8.23 15.35 1.355 0.946 6.79 11.36 18.15 1.243 0.951
100 8.32 11.14 19.46 1.685 0.935 8.23 14.07 22.30 1.670 0.936
150 9.00 13.86 22.86 1.870 0.929 9.08 18.16 27.24 1.799 0.932
300 9.77 15.29 25.07 2.221 0.916 9.81 18.80 28.61 2.193 0.917

LA
SS

O
.1

se

25 5.33 2.41 7.73 1.843 0.922 4.76 4.75 9.51 1.785 0.923
50 6.10 1.79 7.89 2.483 0.901 5.87 4.82 10.68 2.267 0.911
100 7.20 1.96 9.15 2.498 0.903 6.98 5.49 12.47 2.447 0.906
150 7.87 2.38 10.25 2.497 0.905 7.77 6.08 13.85 2.456 0.907
300 8.90 2.87 11.77 2.551 0.904 8.99 6.48 15.47 2.513 0.905

LA
SS

O
.B

IC

25 6.43 11.82 18.25 0.070 0.997 5.87 13.26 19.13 0.062 0.998
50 7.50 14.14 21.64 0.696 0.973 7.24 17.07 24.30 0.600 0.978
100 9.52 73.98 83.50 0.328 0.988 9.57 76.97 86.55 0.269 0.990
150 8.23 2.93 11.16 2.345 0.911 8.11 6.02 14.14 2.347 0.911
300 9.08 2.28 11.36 2.539 0.904 9.02 5.16 14.18 2.529 0.905

ρ = 0.9

Scenario 3.a Scenario 3.b

n |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev
(10) (7.818) (0.9) (10) (7.818) (0.9)

LA
SS

O
.m

in

25 5.26 3.93 9.18 3.324 0.952 3.75 7.12 10.88 2.792 0.961
50 6 4.42 10.41 5.060 0.932 4.88 7.77 12.66 4.828 0.935
100 6.67 5.06 11.73 6.206 0.918 5.86 8.80 14.66 6.070 0.921
150 6.96 7.59 14.55 6.450 0.915 6.41 11.82 18.23 6.278 0.918
300 7.59 8.09 15.68 7.100 0.908 7.22 12.41 19.63 7.022 0.909

LA
SS

O
.1

se

25 4.64 0.95 5.58 5.684 0.917 3.08 4.11 7.19 5.148 0.926
50 5.40 0.81 6.21 6.927 0.907 4.07 4.62 8.69 6.500 0.913
100 6.02 1.09 7.11 7.284 0.904 4.97 5.35 10.32 7.106 0.907
150 6.34 1.57 7.91 7.351 0.904 5.39 6.12 11.51 7.230 0.906
300 6.84 2.10 8.94 7.561 0.902 5.87 6.75 12.62 7.563 0.902

LA
SS

O
.B

IC

25 5.40 6.65 12.05 1.544 0.980 3.90 9.05 12.95 1.485 0.981
50 5.66 2.96 8.62 5.258 0.929 4.25 6.05 10.30 5.265 0.930
100 7.04 25.88 32.92 4.830 0.937 6.43 31.75 38.18 4.452 0.942
150 6.13 1.33 7.46 7.273 0.905 5.25 5.78 11.03 7.151 0.907
300 6.42 1.25 7.67 7.643 0.901 5.74 6.30 12.04 7.546 0.903

Table B.10: Results of LASSO.min, LASSO.1se, LASSO.BIC for p = 100 without using
standardization in Scenarios 3.a and 3.b. Oracle values are in brackets.
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ρ = 0.5

Scenario 3.a Scenario 3.b

n |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev
(10) (2.679) (0.9) (10) (2.679) (0.9)

LA
SS

O
.m

in

25 5.45 16.27 21.72 0.210 0.989 5.47 16.34 21.81 0.280 0.984
50 7.73 19.99 27.73 0.626 0.975 7.77 20.94 28.70 0.562 0.978
100 9.10 20.79 29.89 1.292 0.950 9.09 19.98 29.07 1.346 0.948
150 9.57 20.79 30.37 1.676 0.936 9.65 21.40 31.05 1.659 0.937
300 9.96 20.20 30.17 2.159 0.919 9.96 19.56 29.52 2.165 0.919

LA
SS

O
.1

se

25 4.62 10.11 14.74 1.357 0.933 4.69 10.49 15.18 1.251 0.937
50 6.87 10.08 16.95 1.362 0.945 6.86 10.50 17.36 1.310 0.949
100 8.44 8.77 17.21 1.858 0.928 8.43 8.46 16.90 1.896 0.927
150 9.08 7.66 16.74 2.114 0.920 9.18 8.24 17.42 2.096 0.921
300 9.82 6.37 16.19 2.404 0.909 9.84 5.94 15.78 2.409 0.909

LA
SS

O
.B

IC

25 5.68 18.10 23.78 0 1 5.66 18.09 23.75 0 1
50 8.22 36.73 44.95 0.009 1 8.25 36.65 44.90 0.010 1
100 9.94 88.24 98.18 0.013 1 9.94 88.17 98.11 0.018 0.999
150 8.45 3.14 11.59 2.371 0.910 8.48 3.34 11.81 2.378 0.910
300 9.39 1.77 11.16 2.547 0.904 9.46 1.83 11.29 2.536 0.905

ρ = 0.9

Scenario 3.a Scenario 3.b

n |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev
(10) (7.818) (0.9) (10) (7.818) (0.9)

LA
SS

O
.m

in

25 4.09 12.84 16.93 1.172 0.983 4.02 12.89 16.91 1.067 0.984
50 5.30 12.43 17.73 3.577 0.952 5.36 12.62 17.98 3.570 0.952
100 6.77 12.78 19.55 5.391 0.929 6.80 12.54 19.34 5.408 0.929
150 7.34 13.53 20.87 6.065 0.920 7.43 13.25 20.68 6.112 0.920
300 8.36 13.66 22.02 6.920 0.910 8.40 13.53 21.93 6.926 0.911

LA
SS

O
.1

se

25 3.81 8.04 11.85 2.482 0.963 3.79 7.96 11.75 2.407 0.964
50 4.92 7.21 12.13 4.871 0.934 4.96 7.27 12.23 4.856 0.935
100 6.38 7.09 13.47 6.275 0.917 6.33 6.87 13.20 6.316 0.917
150 6.93 7.05 13.98 6.769 0.911 7.03 7.04 14.07 6.770 0.912
300 7.92 7.20 15.12 7.302 0.906 8.08 7.10 15.19 7.302 0.906

LA
SS

O
.B

IC

25 4.25 18.14 22.38 0.019 1 4.19 18.09 22.28 0.022 1
50 5.17 22.73 27.90 1.596 0.980 5.22 23.00 28.22 1.505 0.981
100 9.71 85.83 95.55 0.241 0.997 9.68 85.06 94.74 0.298 0.996
150 5.70 4.56 10.26 7.170 0.906 5.80 4.39 10.19 7.198 0.906
300 6.76 4.77 11.53 7.527 0.903 6.81 4.59 11.40 7.526 0.903

Table B.11: Results of LASSO.min, LASSO.1se, LASSO.BIC for p = 100 using univariate
standardization in Scenarios 3.a and 3.b. Oracle values are in brackets.
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Figure B.15: Number of important covariates (dark pink/blue area) and noisy ones (soft
pink/blue area) for p = 100 and ρ = 0.5 selected in terms of the without/univariate
standardization in Scenarios 3.a (the first row) and 3.b (the second row). The dashed line
marks the s = 10 value.
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Figure B.16: Percentage of times each of the s = 10 relevant covariates enters the model
for without/univariate standardization (pink/blue area) for n = 300 in Scenario 3.a taking
ρ = 0.5 (the first row) and ρ = 0.9 (the second row).
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Figure B.17: Percentage of times each of the first 38 covariates enters the model for
without/univariate standardization (pink/blue area) for n = 300 in Scenario 3.b taking
ρ = 0.5 (the first row) and ρ = 0.9 (the second row).
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Figure B.18: Number of important covariates (dark pink/blue area) and noisy ones (soft
pink/blue area) for proposed algorithms taking p = 100 and selected in terms of the
without/univariate standardization in Scenarios 3.a (the first row) and 3.b (the second
row) for ρ = 0.5 and n = 50. The dashed line marks the s = 10 value.
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Figure B.19: Percentage of times each of the 10 relevant covariates enters the model for
without/univariate standardization (pink/blue area) for n = 50 taking ρ = 0.5 in Scenario
3.a (the first row) and Scenario 3.b (the second row).
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Figure B.20: Percentage of times each of the first 38 covariates enters the model for
without/univariate standardization (pink/blue area) for n = 50 taking ρ = 0.9 in Scenario
3.a (the first row) and Scenario 3.b (the second row).
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Scenario 3.a

WITHOUT UNIVARIATE

METHOD |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev
(10) (2.679) (0.9) (10) (2.679) (0.9)

LASSO.min 7.13 8.23 15.35 1.355 0.946 7.73 19.99 27.73 0.626 0.975
LASSO.1se 6.10 1.79 7.89 2.483 0.901 6.87 10.08 16.95 1.362 0.945
LASSO.BIC 7.50 14.14 21.64 0.696 0.973 8.22 36.73 44.95 0.009 1
AdapL.min 5.22 0.12 5.34 3.339 0.869 5.67 2.07 7.74 2.194 0.914
AdapL.1se 4.02 0.01 4.02 4.631 0.817 4.20 0.21 4.41 4.187 0.835

SCAD 6.94 6.77 13.71 1.301 0.948 6.94 6.77 13.71 1.301 0.948
Dant 3.45 0.85 4.31 5.512 0.784 3.45 0.85 4.31 5.512 0.784

RelaxL 6.61 9.35 15.96 1.621 0.935 6.49 8.77 15.26 1.740 0.931
SqrtL 5.97 4.38 10.35 2.177 0.912 5.97 4.38 10.35 2.177 0.912
ScalL 6.91 4.21 11.12 1.653 0.934 6.28 5.44 11.72 1.881 0.924

DC.VS 4 1 5 4.198 0.834 4 1 5 4.198 0.834

Scenario 3.b

WITHOUT UNIVARIATE

METHOD |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev
(10) (2.679) (0.9) (10) (2.679) (0.9)

LASSO.min 6.79 11.36 18.15 1.243 0.951 7.77 20.94 28.70 0.562 0.978
LASSO.1se 5.87 4.82 10.68 2.267 0.911 6.86 10.50 17.36 1.310 0.949
LASSO.BIC 7.24 17.07 24.30 0.600 0.978 8.25 36.65 44.90 0.010 1
AdapL.min 5.05 0.56 5.62 3.186 0.877 5.62 1.99 7.62 2.210 0.915
AdapL.1se 3.91 0.06 3.97 4.708 0.816 4.24 0.22 4.46 4.073 0.840

SCAD 6.87 6.94 13.81 1.278 0.950 6.87 6.94 13.81 1.278 0.950
Dant 3.35 0.88 4.23 5.616 0.783 3.35 0.88 4.23 5.616 0.783

RelaxL 6.52 8.98 15.50 1.621 0.936 6.40 8.44 14.83 1.730 0.932
SqrtL 5.90 4.32 10.22 2.154 0.914 5.90 4.32 10.22 2.154 0.914
ScalL 6.68 8.32 14.99 1.405 0.945 6.27 5.58 11.85 1.845 0.926

DC.VS 4 1 5 4.137 0.837 4 1 5 4.137 0.837

Table B.12: Comparison of all proposed algorithms for p = 100, n = 50 and ρ = 0.5 using
different standardization techniques in Scenario 3. Oracle values are in brackets.
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Figure B.21: Number of important covariates (dark pink/blue area) and noisy ones (soft
pink/blue area) for proposed algorithms taking p = 100 and selected in terms of the
without/univariate standardization in Scenarios 3.a (the first row) and 3.b (the second
row) for ρ = 0.5 and n = 300. The dashed line marks the s = 10 value.
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Figure B.22: Percentage of times each of the 10 relevant covariates enters the model for
without/univariate standardization (pink/blue area) for n = 300 taking ρ = 0.5 in Scenario
3.a (the first row) and Scenario 3.b (the second row).
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Figure B.23: Percentage of times each of the first 38 covariates enters the model for
without/univariate standardization (pink/blue area) for n = 300 taking ρ = 0.9 in Scenario
3.a (the first row) and Scenario 3.b (the second row).
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Scenario 3.a

WITHOUT UNIVARIATE

METHOD |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev
(10) (2.679) (0.9) (10) (2.679) (0.9)

LASSO.min 9.77 15.29 25.07 2.221 0.916 9.96 20.20 30.17 2.159 0.919
LASSO.1se 8.90 2.87 11.77 2.551 0.904 9.82 6.37 16.19 2.404 0.909
LASSO.BIC 9.08 2.28 11.36 2.539 0.904 9.39 1.77 11.16 2.547 0.904
AdapL.min 9.79 11.72 21.51 2.227 0.916 9.85 12.97 22.81 2.200 0.917
AdapL.1se 6.96 0.02 6.98 3.072 0.884 7.44 0.03 7.47 2.941 0.889

SCAD 9.93 8.54 18.47 2.301 0.913 9.93 8.54 18.47 2.301 0.913
Dant 3.94 0.01 3.95 5.444 0.795 3.94 0.01 3.95 5.444 0.795

RelaxL 9.63 5.51 15.14 2.449 0.908 9.53 4.67 14.19 2.480 0.906
SqrtL 9.83 5.40 15.23 2.427 0.908 9.83 5.40 15.23 2.427 0.908
ScalL 9.46 5.55 15.01 2.417 0.909 9.86 6.85 16.71 2.389 0.910

DC.VS 9.53 3.27 12.80 2.455 0.907 9.53 3.27 12.80 2.455 0.907

Scenario 3.b

WITHOUT UNIVARIATE

METHOD |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev |Ŝ ∩ S| |Ŝ \ S| |Ŝ| MSE % Dev
(10) (2.679) (0.9) (10) (2.679) (0.9)

LASSO.min 9.81 18.80 28.61 2.193 0.917 9.96 19.56 29.52 2.165 0.919
LASSO.1se 8.99 6.48 15.47 2.513 0.905 9.84 5.94 15.78 2.409 0.909
LASSO.BIC 9.02 5.16 14.18 2.529 0.905 9.46 1.83 11.29 2.536 0.905
AdapL.min 9.80 12.00 21.80 2.222 0.916 9.84 12.66 22.50 2.204 0.917
AdapL.1se 6.98 0.01 6.98 3.067 0.885 7.50 0.01 7.51 2.928 0.890

SCAD 9.90 8.89 18.79 2.292 0.914 9.90 8.89 18.79 2.292 0.914
Dant 3.94 0.00 3.94 5.439 0.796 3.94 0.00 3.94 5.439 0.796

RelaxL 9.64 5.08 14.72 2.454 0.908 9.56 4.59 14.14 2.475 0.907
SqrtL 9.85 5.26 15.11 2.427 0.909 9.85 5.26 15.11 2.427 0.909
ScalL 9.54 9.32 18.86 2.384 0.910 9.87 6.43 16.30 2.396 0.910

DC.VS 9.59 3.12 12.71 2.458 0.907 9.59 3.12 12.71 2.458 0.907

Table B.13: Comparison of all proposed algorithms for p = 100, n = 300 and ρ = 0.5 using
different standardization techniques in Scenario 3. Oracle values are in brackets.
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Figure B.24: Boxplots of the covariates loadings in terms of R2 and DC for n = 300 in
Scenario 3.b taking ρ = 0.5.
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Figure B.25: Boxplots of the covariates loadings in terms of R2 and DC for n = 300 in
Scenario 3.b taking ρ = 0.9.
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Appendix C

Extra results for MDD significant tests

C.1 Simulation details for considered competitors

In this section, we remind the scenario A structure of the FLCM algorithm implemented in
Ghosal and Maity (2022a) as well as the form of scenario (B) for the ANFCM testing per-
formance in Kim et al. (2018). Moreover, we explain how these algorithms are implemented
to replicate their results.

C.1.1 Implementation details for FLCM algorithm

Under the linear assumption, data for i = 1, . . . , n is generated as

Yi(t) = β0(t) +Xi(t)β1(t) + εi(t)

where β0(t) = 1 + 2t+ t2 and β1(t) = d · t/8, for d ≥ 0. The original covariate samples Xi(·)
are i.i.d. copies of X(·), where X(t) = a + b

√
2 sin(πt) + c

√
2 cos(πt), with a ∼ N(0, 1),

b ∼ N(0, 0.852) and c ∼ N(0, 0.702) independent. It is assumed that the covariate Xi(t) is
observed with error, i.e. Wi(t) = Xi(t) + δit is getting instead, where δit ∼ N(0, 0.62) and
changes with every i and t. The error process is considered as

εi(t) = ξi1
√

2 cos(πt) + ξi2
√

2 sin(πt) + ξi3t

where ξi1
iid∼ N(0, 2), ξi2

iid∼ N(0, 0.752) and ξi3t
iid∼ NT (0, 0.92IT ), with ξi3t being generated

as a multivariate normal of dimension T and these values change with i and t.

We consider the dense design, taking a total of T = 81 equidistant time points in [0, 1],
being t1 = 0 and t81 = 1. A Monte Carlo study is carried out using M = 1000 replicates
to measure calibration and power, and p-values are calculated using B = 100000 samples
generated under the null hypothesis of no effect (H0 : β1(t) = 0 for all t). Following the
authors’ guidelines, the number of basis components considered is Q = 7. To measure
calibration and power we consider d = 0 and d = 3, 7, respectively. Besides, we take n =
60, 100 to compare their results with the MDD-based test ones. To implement this algorithm
we have used the public code which can be found in 10.1016/j.ecosta.2021.05.003. In
particular, we generate the data and use the FLCM.test1 function of the test.R script to
implement the test.
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C.1.2 Implementation details for ANFCM algorithm

In the case of the ANFCM approach, we perform Algorithm 1 of Kim et al. (2018) in
hypothesis testing, which translates into testing the nullity of the second additive effect by

H0 : E
[
Y (t)|X1(t)=x1

]
= F0(t).

In this scenario, samples are generated verifying the additive assumption of

Yi(t) = F0(t) + F1(X1i(t), t) for i = 1, . . . , n

where F0(t) = 2t + t2 and F1(X1i(t), t) = d{2 cos(X1(t)t)} for d ≥ 0. The covariate
X1(t) is given by X1(t) = a0 + a1

√
2 sin(πt) + a2

√
2 cos(πt), where a0 ∼ N

(
0, {2−0.5}2

)
,

aj1 ∼ N
(
0, {0.85× 2−0.5}2

)
and a2 ∼ N

(
0, {0.7× 2−0.5}2

)
. However, it is assumed that

this covariate is observed with error. In particular, we get W1i = X1i(t) + δit where
δit ∼ N(0, 0.62) varies with respect to i and t. The considered error process is

εi(t) = ξi1
√

2 cos(πt) + ξi2
√

2 sin(πt) + ξi3t

where ξi1
iid∼ N(0, 2), ξi2

iid∼ N(0, 0.752) and ξi3t
iid∼ NT (0, 0.92IT ), being ξi3t generated as a

multivariate normal of dimension T . All these values are simulated changing with i and t.

Here, the dense design scenario is considered with T = 81 equidistant time points in
[0, 1], being t1 = 0 and t81 = 1. To study its calibration and power behavior a Monte Carlo
study is carried out. We employ a total of M = 1000 replicates to study both. In this
case, p-values are calculated by means of B = 200 bootstrap samples in all cases. Besides,
following Kim et al. (2018) parameters selection, the number of the basis components taken
is Q = 7. In order to measure calibration and power we test with d = 0 and d = 3, 7, we
simulate under null and alternative hypotheses, respectively. Besides, we take n = 60, 100
to compare their results with the MDD-based test ones. We have found the code available in
https://www4.stat.ncsu.edu/~maity/software.html and we borrowed it to reproduce
the ANFCM simulations. Specifically, we make use of the anova.datagen function of the
datagenALL.R1 script to generate the data and apply test.anova function of the test.R
script to implement the algorithm, using now list(null.data.dn$Weval[[2]]).

1We have adapted the code to correctly generate X1(t) and Y (t). In particular, in the X function, we
have changed X.list[[q]] =2^(1-q)*(a0%*%t(ones)+a1%*%t(phi1)+a2%*%t(phi2)) for the expression
X.list[[q]] = (a0%*%t(ones)+a1%*%t(phi1)+a2%*%t(phi2))/sqrt(2^(q-1)) to correct a typo. Besides,
it is needed to change F.anova2 = function(x1,x2,t,d)2*t+t^2+x1*sin(pi*t)/4+d*2*cos(x2*t)
by F.anova2 = function(x2,t,d)2*t+t^2+d*2*cos(x2*t) as well as Fanova =
F(Xeval[[1]],Xeval[[2]],trep,d) by Fanova = F(Xeval[[2]],trep,d) in function anova.datagen to
correctly define the modified version.
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Figure C.1: Histograms of the p-values of the test statistics under H0 using the wild
bootstrap critical value for some values of n in Scenario A.
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Figure C.2: Histograms of the p-values of the test statistics under H0 using the wild
bootstrap critical value for some values of n in Scenario B.
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Figure C.3: Histograms of the test statistics p-values under H0 for the FLCM (left column)
and MDD (right column) methods in scenario A of Ghosal and Maity (2022a).
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Figure C.4: Histograms of the test statistics p-values under H0 for the ANFCM (left
column) and MDD (right column) methods in modified scenario B of Kim et al. (2018).

244



C.3 Proofs of results for MDD significant tests

This document collects the proofs of the main results. In Section C.3.1 the unbiasedness of
M̃DD

2
n(Yn(t)|Xnj(t)) is proved. Section C.3.2 displays the Hoeffding decomposition results

and their implications under the null as well as local alternative hypothesis. Eventually, in
Section C.3.3 asymptotic distribution for the statistic is obtained under the null and local
alternatives.

We remind that operators E[·], V[·], C[·, ·] and tr[·] apply for the expectation, variance,
covariance, and matrix trace, respectively. Terms denoted as Ã represents an integrated
version in the D domain, i.e. Ã =

∫
D A(t)dt. Symbols A and A are the simple and double

U -centering versions introduced in Section 2 of the main document. When both situations
arise together, for example, B̃, this means the integrated version of the double centered (in
this example) term. We keep notation U̇(X(t), X ′(t)) to say that this term changes now
with the sample size n and with d, which is the dimension of the considered covariates in
D ⊂ {1, . . . , p}, #D = d ≤ p.

C.3.1 Unbiasedness of M̃DD
2
n(Yn(t)|Xnj(t))

First of all, making use of expression (6) of the article, we remind that

M̃DD
2
(Y (t)|Xj(t)) =E

[
˜

J
(
Xj(t), X ′

j(t)
)
L(Y (t), Y ′(t))

]
+ E

[
˜

J
(
Xj(t), X ′

j(t)
)]

E
[

˜L(Y (t), Y ′(t))
]

− 2E
[

˜
J
(
Xj(t), X ′

j(t)
)
L(Y (t), Y ′′(t))

]

with ˜
J
(
Xj(t), X ′

j(t)
)

=
∫

D |Xj(t)−X ′
j(t)|dt and ˜L(Y (t), Y ′(t)) = 1/2

∫
D∥Y (t)−Y ′(t)∥2qdt.

Now, applying U-centering properties, it is verified that
∑
i̸=l

∫
D

(Ail(t))j Bil(t)dt

=
∑
i̸=l

∫
D

(Ail(t))j

Bil(t)−
1

n− 2

n∑
q=1

Biq(t)− 1
n− 2

n∑
r=1

Brl(t) + 1
(n− 1)(n− 2)

n∑
q,r=1

Bqr(t)

 dt
=
∑
i̸=l

∫
D

(Ail(t))j Bil(t)dt−
1

n− 2
∑
i̸=l

n∑
q=1

∫
D

(Ail(t))j Biq(t)dt

− 1
n− 2

∑
i̸=l

n∑
r=1

∫
D

(Ail(t))j Brl(t)dt+ 1
(n− 1)(n− 2)

n∑
i,l=1

n∑
q,r=1

∫
D

(Ail(t))j Bqr(t)dt

= tr
[(
ÃB

)
j

]
+

1⊤
n

(
Ã
)

j
1n1⊤

n B̃1n

(n− 1)(n− 2) −
21⊤

n

(
ÃB

)
j

1n

(n− 2)

where 1n ∈ Rn is a vector of ones and ˜(A)j =
∫

D (A(t))j dt.
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Using Lemma 1 of Park et al. (2015), n(n−3)
(
(A)j ·B

)
= ∑

i̸=l(Ail)jBil = ∑
i̸=l(Ail)jB̃il.

Then, using the fact that B̃ii = 0 it is verified that B̃il = B̃il and we have

M̃DD
2
n(Yn(t)|Xnj(t)) = 1

n(n− 3)

tr
[(
ÃB

)
j

]
+

1⊤
n

(
Ã
)

j
1n1⊤

nB1n

(n− 1)(n− 2) −
21⊤

n

(
ÃB

)
j

1n

(n− 2)


Denote by (n)k = n!/(n− k)! and In

k the k-tuples of indices {1, . . . , n} without replace-
ment. Then, it can be seen that

(n)−1
2 E

 ∑
(i,l)∈In

2

∫
D

(Ail(t))j Bil(t)dt

 = (n)−1
2 E

[
tr
[(
ÃB

)
j

]]
= E

[
˜

J
(
Xj(t), X ′

j(t)
)
L(Y (t), Y ′(t))

]

(n)−1
4 E

 ∑
(i,l,q,r)∈In

4

∫
D

(Ail(t))j Bqr(t)dt

 = (n)−1
4 E

[
1⊤

n

(
Ã
)

j
1n1⊤

nB1n − 41⊤
n

(
ÃB

)
j

1n

+2tr
[(
ÃB

)
j

]]
= E

[
˜

J
(
Xj(t), X ′

j(t)
)]

E
[

˜L(Y (t), Y ′(t))
]

(n)−1
3 E

 ∑
(i,l,q)∈In

3

∫
D

(Ail(t))j Biq(t)dt

 = (n)−1
3 E

[
1⊤

n

(
ÃB

)
j

1n − tr
[(
ÃB

)
j

]]

= E
[

˜
J
(
Xj(t), X ′

j(t)
)
L(Y (t), Y ′′(t))

]

As a consequence, seeing that

M̃DD
2
n(Yn(t)|Xnj(t)) =(n)−1

2
∑

(i,l)∈In
2

∫
D

(Ail(t))j Bil(t)dt+ (n)−1
4

∑
(i,l,q,r)∈In

4

∫
D

(Ail(t))j Bqr(t)dt

− 2(n)−1
3

∑
(i,l,q)∈In

3

∫
D

(Ail(t))j Biq(t)dt

this is clearly an unbiased estimator of M̃DD
2
(Y (t)|Xj(t)).

C.3.2 Hoeffding decomposition

Let ˜Ψc(w1, . . . , wc) = E [
∫

D Ψ(w1, . . . , wc, Zc+1(t), . . . , Z4(t))dt] for values of c = 1, 2, 3, 4
and Zi(t) = (Xi(t), Yi(t))

d= (X(t), Y (t)), where Ψ(·) is defined in Section 2 of the main
manuscript and d= means equal in distribution. Let w = (x, y), w′ = (x′, y′), w′′ = (x′′, y′′)
and w′′′ = (x′′′, y′′′), where x, x′, x′′, x′′′ ∈ Rp and y, y′, y′′, y′′′ ∈ R. Besides let Z ′(t) =
(X ′(t), Y ′(t)), Z ′′(t) = (X ′′(t), Y ′′(t)) and Z ′′′(t) = (X ′′′(t), Y ′′′(t)) independent copies
of Z(t) = (X(t), Y (t)). We define Ũ(x, x′) =

∫
D E[J(x,X ′(t))]dt +

∫
D E[J(X(t), x′)]dt

−
∫

D J(x, x′)dt −
∫

D E[J(X(t), X ′(t))]dt and ˜V (y, y′) =
∫

D(y − µY )(y′ − µY )dt taking
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µY = E[Y (t)]. Then, we obtain that

Ψ̃1(w) = 1
2

{
E
[

˜U(x,X(t)) ˜V (y, Y (t))
]

+ M̃DD
2 (
Y (t)|X(t)

)}
and

˜Ψ2(w,w′)

= 1
6

{
Ũ(x, x′) ˜V (y, y′) + M̃DD

2
(Y (t)|X(t)) + E

[
˜U(x,X(t)) ˜V (y, Y (t))

]
+ E

[
˜U(x′, X(t)) ˜V (y′, Y (t))

]
+ E

[(
˜U(x,X(t))− ˜U(x′, X(t))

)(
˜V (y, Y (t))− ˜V (y′, Y (t))

)]}

Besides, we have

˜Ψ3(w,w′, w′′) = 1
12

{(
2Ũ(x, x′)− ˜U(x′, x′′)− ˜U(x, x′′)

)
˜V (y, y′)

+
(

2 ˜U(x, x′′)− Ũ(x, x′)− ˜U(x′, x′′)
)

˜V (y, y′′)

+
(

2 ˜U(x′, x′′)− Ũ(x, x′)− ˜U(x, x′′)
)

˜V (y′, y′′)

+ E
[(

2 ˜U(x,X(t))− ˜U(x′, X(t))− ˜U(x′′, X(t))
)

˜V (y, Y (t))
]

+ E
[(

2 ˜U(x′, X(t))− ˜U(x,X(t))− ˜U(x′′, X(t))
)

˜V (y′, Y (t))
]

+ E
[(

2 ˜U(x′′, X(t))− ˜U(x,X(t))− ˜U(x′, X(t))
)

˜V (y′′, Y (t))
]}

and

˜Ψ4(w,w′, w′′, w′′′)

= 1
12

{(
2Ũ(x, x′) + 2 ˜U(x′′, x′′′)− ˜U(x, x′′)− ˜U(x, x′′′)− ˜U(x′, x′′)− ˜U(x′, x′′′)

)(
˜V (y, y′) + ˜V (y′′, y′′′)

)
+
(

2 ˜U(x, x′′) + 2 ˜U(x′, x′′′)− Ũ(x, x′)− ˜U(x, x′′′)− ˜U(x′′, x′)− ˜U(x′′, x′′′)
)(

˜V (y, y′′) + ˜V (y′, y′′′)
)

+
(

2 ˜U(x, x′′′) + 2 ˜U(x′′, x′)− ˜U(x, x′′)− Ũ(x, x′)− ˜U(x′′′, x′′)− ˜U(x′′′, x′)
)(

˜V (y, y′′′) + ˜V (y′, y′′)
)}

Analysis under the null hypothesis

Under the null hypothesis we have that E
[
Y (t)|Xj(t)

]
= E [Y (t)] almost surely ∀t ∈ D and

every j = 1, . . . , p, which also translates into M̃DD
2
(Y (t)|X(t)) = 0. Then, it is verified
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that Ψ̃1(w) = 0, ˜Ψ2(w,w′) = Ũ(x, x′) ˜V (y, y′)/6 and

˜Ψ3(w,w′, w′′) = 1
12

{(
2Ũ(x, x′)− ˜U(x′, x′′)− ˜U(x, x′′)

)
˜V (y, y′)

+
(

2 ˜U(x, x′′)− Ũ(x, x′)− ˜U(x′, x′′)
)

˜V (y, y′′)

+
(

2 ˜U(x′, x′′)− Ũ(x, x′)− ˜U(x, x′′)
)

˜V (y′, y′′)
}

Furthermore, under the null, we can verify that

V[ ˜Ψ2(Z(t), Z ′(t))] = 1
36E

[
˜U(X(t), X ′(t))

2 ˜V (Y (t), Y ′(t))
2]

= 1
36 ξ̃

2

and

V[ ˜Ψ3(Z(t), Z ′(t), Z ′′(t))]

= 3
144Var

[(
2 ˜U(X(t), X ′(t))− ˜U(X ′(t), X ′′(t))− ˜U(X(t), X ′′(t))

)
˜V (Y (t), Y ′(t))

]
= 3

144

{
4ξ̃2 + 2E

[
˜U(X(t), X ′′(t))

2 ˜V (Y (t), Y ′(t))
2]

+2E
[

˜U(X(t), X ′′(t)) ˜U(X ′(t), X ′′(t)) ˜V (Y (t), Y ′(t))
2]}

.

Moreover,

V[ ˜Ψ4(Z(t), Z ′(t), Z ′′(t), Z ′′′(t))]

= 6
144E

[
˜V (Y (t), Y ′(t))

2 ( ˜U(X(t), X ′′(t)) + ˜U(X ′(t), X ′′′(t)) + ˜U(X ′(t), X ′′(t))

+ ˜U(X(t), X ′′′(t))− 2 ˜U(X(t), X ′(t))− 2 ˜U(X ′′(t), X ′′′(t))
)2
]

= 1
6

{
E
[

˜V (Y (t), Y ′(t))
2 ˜U(X(t), X ′′(t)) ˜U(X ′(t), X ′′(t))

]
+ ξ̃2

+ E
[

˜V (Y (t), Y ′(t))
2 ˜U(X(t), X ′′(t))

2]
+ E

[
˜V (Y (t), Y ′(t))

2]
E
[

˜U(X(t), X ′′(t))
2]}

Using the Cauchy-Schwarz inequality we can obtain that

E
[

˜U(X(t), X ′′(t)) ˜U(X ′(t), X ′′(t)) ˜V (Y (t), Y ′(t))
2]

≤
{
E
[

˜U(X(t), X ′′(t))
2 ˜V (Y (t), Y ′(t))

2]}1/2 {
E
[

˜U(X ′(t), X ′′(t))
2 ˜V (Y (t), Y ′(t))

2]}1/2

= E
[

˜U(X(t), X ′′(t))
2 ˜V (Y (t), Y ′(t))

2]
.
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Besides, under the assumption that

E
[

˜U(X(t), X ′′(t))
2 ˜V (Y (t), Y ′(t))

2]
ξ̃2 = o(n),

E
[

˜V (Y (t), Y ′(t))
2]

E
[

˜U(X(t), X ′(t))
2]

ξ̃2 = o(n2),

we have

M̃DD
2
n(Yn(t)|Xn(t)) = 1(n

2
) ∑

1≤i<l≤n

˜U(Xi(t), Xl(t)) ˜V (Yi(t), Yl(t)) +Rn,

where Rn is the remainder term which is asymptotically negligible (see Serfling (1980)).

Analysis under local alternatives

We consider the case where M̃DD
2
(Y (t)|X(t)) is nonzero, i.e., the conditional mean of

Y (t) may depend on X(t). Recall that L̃(x, y) = E
[

˜U(x,X(t)) ˜V (y, Y (t))
]
. Under the

assumption that

V
[

˜L(X(t), Y (t))
]

= o(n−1ξ̃2), V
[

˜L(X(t), Y ′(t))
]

= o(ξ̃2), (C.1)

we get

V
[
Ψ̃1
]

= o(n−1ξ̃2), V
[
Ψ̃2
]

= ξ̃2

36(1 + o(1))

which means that V
[
Ψ̃1
]

tends to zero as n increases and V
[
Ψ̃2
]

is always positive and
nonnull.

Moreover,

V
[

˜Ψ3(Z(t), Z ′(t), Z ′′(t))
]
≤ C

{
ξ̃2 + E

[
˜U(X(t), X ′′(t))

2 ˜V (Y (t), Y ′(t))
2]}

and

V
[

˜Ψ4(Z(t), Z ′(t), Z ′′(t), Z ′′′(t))
]

≤ C ′
{
E
[

˜V (Y (t), Y ′(t))
2 ˜U(X(t), X ′′(t))

2]
+ E

[
˜V (Y (t), Y ′(t))

2]
E
[

˜U(X(t), X ′(t))
2]

+ ξ̃2
}

for some constants C,C ′ ≥ 0.
Then, under assumption (C.1),

M̃DD
2
n(Yn(t)|Xn(t))−M̃DD

2
(Y (t)|X(t)) = 1(n

2
) ∑

1≤i<l≤n

˜U(Xi(t), Xl(t)) ˜V (Yi(t), Yl(t))+Rn.
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Applying the above arguments to ∑j∈D M̃DD
2
n(Yn(t)|Xnj(t)), it can be seen that

∑
j∈D

{
M̃DD

2
n(Yn(t)|Xnj(t))− M̃DD

2
(Y (t)|Xj(t))

}

= 1(n
2
) ∑

1≤i<l≤n

˜U̇(Xi(t), Xl(t)) ˜V (Yi(t), Yl(t)) +
∑
j∈D

(Rn)j .

where the kernel ˜U̇(X(t), X ′(t)) = ∑
j∈D

˜Uj(xj(t), x′
j(t)) is changing now with (n, d). Next,

to provide that the remainder term ∑
j∈D(Rn)j is asymptotically negligible we assume

that

E
[

˜U̇(X(t), X ′′(t))
2

˜V (Y (t), Y ′(t))
2
]

S̃2 = o(n),

E
[

˜U̇(X(t), X ′(t))
2
]
E
[

˜V (Y (t), Y ′(t))
2]

S̃2 = o(n2),

Var
[

˜L̇(X(t), Y (t))
]

= o(n−1S̃2), Var
[

˜L̇(X(t), Y ′(t))
]

= o(S̃2)

with ˙̃L(x, y) = E
[

˜U̇(x,X(t)) ˜V (y, Y (t))
]
.

C.3.3 Asymptotic normality under the null and alternatives

Here, we prove the asymptotic normality of TD making use of the Central Limit Theorem
for martingale difference sequences. For this purpose, we pay attention to the results of the
Hoeffding decomposition of the above section under both, the null hypothesis and local
alternatives to define an adequate mean-zero martingale sequence. In particular, results of
Corollary 3.1 of Hall and Heyde (1980) are employed over this process.

Analysis under H0

Define

Sr :=
r∑

l=2

r−1∑
i=1

˜U̇(Xi(t), Xl(t)) ˜V (Yi(t), Yl(t)) =
r∑

l=2

r−1∑
i=1

˜H(Zi(t), Zl(t))

and the filtration Fr = σ{Z1(t), Z2(t), . . . , Zr(t)} with Zi(t) = (Xi(t), Yi(t)). Then, Sr

is adaptive to Fr and is a mean-zero martingale sequence verifying E[Sr] = 0 and

E[Sr′ |Fr ] = Sr +
r′∑

l=r+1

l−1∑
i=1

E
[
E
[

˜U̇(Xi(t), Xl(t)) ˜V (Yi(t), Yl(t))|Fr,Xi(t),Xl(t)

]
|Fr

]
= Sr

for r′ ≥ r. Thus, by Corollary 3.1 of Hall and Heyde (1980) we can guarantee the
asymptotic normality of TD if the conditions (C.2) and (C.3) are verified. Specifically,
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defining Wl = ∑l−1
i=1

˜H(Zi(t), Zl(t)), it is sufficient to see that

n∑
l=1

B−2E
[
W2

l I(|Wl| > εB)|Fl−1

]
p−→ 0 (C.2)

for B such that
n∑

l=1
E
[
W2

l |Fl−1

]
/B2 p−→ C > 0. (C.3)

We start proving that (C.3) is verified taking B2 = n(n − 1)S̃2/2 and C = 1. This
translates into proving that

2
n(n− 1)S̃2

n∑
l=1

E
[
W2

l |Fl−1

]
p−→ 1. (C.4)

For this purpose, note that

E[W2
l |Fl−1 ] = E

 l−1∑
i,k=1

˜H(Zi(t), Zl(t)) ˜H(Zk(t), Zl(t))|Fl−1

 =
l−1∑

i,k=1

˜G(Zi(t), Zk(t)),

and

2
n(n− 1)

n∑
l=2

E[W2
l ]

= 2
n(n− 1)

n∑
l=2

E

 l−1∑
i,k=1

∫
D

(Yi(t)− µ(t))(Yk(t)− µ(t))(Yl(t)− µ(t))2U̇(Xi(t), Xl(t))U̇(Xk(t), Xl(t))dt


= 2
n(n− 1)

n∑
l=2

E

 l−1∑
i,k=1

∫
D

(Yi(t)− µ(t))2(Yl(t)− µ(t))2U̇(Xi(t), Xl(t))2dt


= E

[
˜V (Y (t), Y ′(t))

2 ˜U̇(X(t), X ′(t))
2
]

= E
[

˜H(Z(t), Z ′(t))
2]

= S̃2.

(C.5)

Then, defining

D1 = E
[

˜H(Z(t), Z ′′(t))
2 ˜H(Z ′(t), Z ′′(t))

2]
−
(
E
[

˜H(Z(t), Z ′(t))
2])2

= V
[

˜G(Z(t), Z(t))
]

D2 = E
[

˜H(Z(t), Z ′(t) ˜H(Z ′(t), Z ′′(t) ˜H(Z ′′(t), Z ′′′(t) ˜H(Z ′′′(t), Z(t)
]

= E
[

˜G(Z(t), Z ′(t))
2]

we have for l ≥ l′ that

C
[
E
[
W2

l |Fl−1

]
,E
[
W2

l′ |Fl′−1

]]
=

l−1∑
i,k=1

l′−1∑
i′,k′=1

C
[

˜G(Zi(t), Zk(t)), ˜G(Zi′(t), Zk′(t))
]

= (l′ − 1)D1 + 2(l′ − 1)(l′ − 2)D2.
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As a result, under the assumption that

E
[

˜G(Z(t), Z ′(t))
2]

{
E
[

˜H(Z(t), Z ′(t))
2]}2 −→ 0,

E
[

˜H(Z(t), Z ′′(t))
2 ˜H(Z ′(t), Z ′′(t))

2]
n

{
E
[

˜H(Z(t), Z ′(t))
2]}2 −→ 0

we have

4
n2(n− 1)2

n∑
l,l′=2

C
[
E[W2

l |Fl−1 ],E[W2
l′ |Fl′−1 ]

]
= O(D1/n+D2) = o(S4). (C.6)

Next, we make use of result (C.6) to prove (C.4). We notice that convergence in r-mean
for r ≥ 1 implies convergence in probability. Then, proving

lim
n→∞

E
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implies that condition (C.4) is verified.

Given that
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l ] and (C.5). Thus, it is enough to see that
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− 1 −→ 0. (C.7)
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Seeing that

4
n2(n− 1)2S̃4E

( n∑
l=2

E
[
W2

l |Fl−1

])2


= 4
n2(n− 1)2S̃4E

 n∑
l=2

(
E
[
W2

l |Fl−1

])2
+ 2

n−1∑
l=2

E
[
W2

l |Fl−1

] n∑
k=l+1

E
[
W2

k |Fk−1

]
= 4
n2(n− 1)2S̃4E

 n∑
l,k=2

E
[
W2

l |Fl−1

]
E
[
W2

k |Fk−1

]
= 4
n2(n− 1)2S̃4

n∑
l,k=2

E
[
E
[
W2

l |Fl−1

]
E
[
W2

k |Fk−1

]]

and

4
n2(n− 1)2

n∑
l,k=2

C
[
E
[
W2

l |Fl−1

]
,E
[
W2

k |Fk−1

]]

= 4
n2(n− 1)2

n∑
l,k=2

E
[
E
[
W2

l |Fl−1

]
· E
[
W2

k |Fk−1

]]
− 4
n2(n− 1)2

n∑
l,k=2

E
[
E
[
W2

l |Fl−1

]]
E
[
E
[
W2

k |Fk−1

]]

= 4
n2(n− 1)2

n∑
l,k=2

E
[
E
[
W2

l |Fl−1

]
· E
[
W2

k |Fk−1

]]
− 4
n2(n− 1)2

n∑
l=2

(
E[W2

l ]
)2

(a)= 4
n2(n− 1)2

n∑
l,k=2

E
[
E
[
W2

l |Fl−1

]
· E
[
W2

k |Fk−1

]]
− S̃4

(b)= o(S̃4)

where we apply (C.5) in (a) and (C.6) in (b), we have guaranteed that
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S̃4 −→ 0,

which implies (C.7). Then, the convergence in r-mean is verified taking r = 2. This proves
condition (C.4) which ensures condition (C.3) for B2 = n(n− 1)S̃2/2 and C = 1.

Next, we prove the remainder condition (C.2) for this value of B. For this aim, we
notice that
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with B2 = n(n− 1)S̃2/2. It this case it is sufficient to show that
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−→ 0.
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(C.2).

Analysis under local alternatives

Now, we extend the asymptotic normality results to local alternatives. We refer to Section
1.7 of the supplementary material of Zhang et al. (2018) for some discussion about the
local alternative model. Its arguments can be easily extended to our context considering
the corresponding integrated versions.

Thus, under the assumption that V
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Using similar arguments by replacing H with H∗, we can show that
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which implies that, using Slutsky theorem,
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Appendix D

Extra results for CDC significant tests

D.1 Graphic results for local bootstrap
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Figure D.1: Percentage of rejections under the null hypothesis (y axis) using the local
bootstrap for different bandwidth parameters (x axis) taking levels α = 0.01, 0.05, 0.1 and
n = 20 (–•–), n = 60 (–•–) and n = 100 (–•–) in Scenario A. The bands mark the α
confidence intervals at 95%.
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Figure D.2: Histograms of the obtained p-values using the local bootstrap in Scenario A for
different bandwidth values taking n = 100 and simulating under the null hypothesis H0.
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Figure D.3: Histograms of the obtained p-values using the local bootstrap in Scenario B for
different bandwidth values taking n = 100 and simulating under the null hypothesis H0.
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Figure D.4: Percentage of rejections under the null hypothesis (y axis) using the local
bootstrap for different bandwidth parameters (x axis) taking levels α = 0.01, 0.05, 0.1 and
n = 20 (–•–), n = 60 (–•–) and n = 100 (–•–) in Scenario B. The bands mark the α
confidence intervals at 95%.
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D.2 Graphic results for local bootstrap only on Y
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Figure D.5: Percentage of rejections under the null hypothesis (y axis) using the local
bootstrap only resampling on Y for different bandwidth parameters (x axis) taking levels
α = 0.01, 0.05, 0.1 and n = 20 (–•–), n = 60 (–•–) and n = 100 (–•–) in Scenario A. The
bands mark the α confidence intervals at 95%.
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Figure D.6: Histograms of the obtained p-values using the local bootstrap only resampling
on Y in Scenario A for different bandwidth values taking n = 100 and simulating under
the null hypothesis H0.

D.3 Calibration using permutations

Instead of the local bootstrap proposed in Section 6.2 and implemented in Algorithm 6.1,
the test can be calibrated using permutations. This results in the scheme displayed in
Algorithm D.1.

Algorithm D.1 (Calibration by means of permutations for significance tests using CDC).
Given a kernel function K(·) and some proper bandwidth parameter h:

1. For i = 1 . . . , N estimate CDC2 (Y (t), X(t)|t=ti) by means of VN (t1), . . . ,VN (tN ) as
defined in expression (6.3).

2. Approximate the sample statistic E =
∫

D\N CDC2(Y (t), X(t)|t)ω(t)f(t)dt by means
of numerical techniques using {VN (t1), . . . ,VN (tN )}.

3. For i = 1 . . . , N , draw Y ∗
i and X∗

i from the estimators of the distribution functions
given by

F̂Y |t=ti
(y) = I{ty ∈ [ti − h, ti + h]}∑N

l=1 I{tl ∈ [ti − h, ti + h]}
and F̂X|t=ti

(x) = I{tx ∈ [ti − h, ti + h]}∑N
l=1 I{tl ∈ [ti − h, ti + h]}

,

respectively, where I{·} is the indicator function and ty, as well as tx, denote the
time points associated with y and x values. Roughly speaking, each observed value
Yl or Xl, with l = 1, . . . , N , has a probability 1/#{tl ∈ [ti − h, ti + h]} to be chosen
as the i-th bootstrap sample if |tl − ti| ≤ h and zero otherwise.
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4. For i = 1, . . . , N obtain V∗
N (t1), . . . ,V∗

N (tN ) by expression (6.3) using the resamples
W∗

N = {(Y∗
1,X∗

1, t1), . . . , (Y∗
N,X∗

N, tN)}.

5. Approximate the permutated statistic E∗ =
∫

D\N CDC2∗(Y (t), X(t)|t)ω(t)f(t)dt
making use of {V∗

N (t1), . . . ,V∗
N (tN )}.

6. Repeat steps 3-5 a number B of times obtaining {(E∗)(1), . . . , (E∗)(B)}.

7. Compute the resampling p-value as 1
1+B

(
1 +∑B

b=1 I{(E∗)(b) ≥ E}
)
.

In this case, the same bandwidth value keeps been employed for both, statistic estimation
and permutations algorithm as for the local bootstrap case.

Next, the good behavior of this implementation is proved. For this purpose, following
guidelines of Section 6.3, Scenario A is employed. We refer the reader to Section 6.3.1
for more details about implementation and the employed bandwidth selection procedure.
Then, an optimal bandwidth h is searched between some quantities in the [0, 1] domain,
considering a wide grid of values in this interval.

Figure D.8 collects the percentage of rejections, simulating under the null hypothesis
when the test is calibrated using permutations for some h values. It seems that optimal
options for the bandwidth parameter are around the h = 0.46 value. In this area, all
percentages of rejections are between the confidence intervals. As a result, some bandwidth
values guarantee that the test is well-calibrated. As expected, the optimal value for h can
change relative to the sample size n, as for the local bootstrap. So, some optimal values for
a given n may not be optimal for another. An example of the distribution of the p-values
for n = 100 is displayed in Figure D.7. This illustration also proves that optimal values are
close to h = 0.5.
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Figure D.7: Histograms of the obtained p-values using permutations in Scenario A for
different bandwidth values taking n = 100 and simulating under the null hypothesis H0.
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Besides, given the results displayed in Figures D.7 and D.8, the rule-of-thumb (hRoT )
and the unbiased cross-validation criterion for density estimation (hUCV ) perform poorly
for permutations calibration as well. Again, these automatic criteria select very small
values, even fewer than 0.1, and obtain a percentage of rejections out of the confidence
intervals. Hence, another approach is needed for proper calibration.
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Figure D.8: Percentage of rejections under the null hypothesis (y axis) using permutations
for different bandwidth parameters (x axis) taking levels α = 0.01, 0.05, 0.1 and n = 20
(–•–), n = 60 (–•–) and n = 100 (–•–) in Scenario A. The bands mark the α confidence
intervals at 95%.

Summing up, permutations can be employed to calibrate the CDC-based test introduced
in (6.2). This is an alternative totally valid. Nevertheless, this option faces the same
problems as the ones commented on for the local bootstrap in Section 6.2. A proper
selection of the bandwidth value is tricky in practice, and the “automatic” procedures
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as hRoT (employed in Wang et al. (2015)) or hUCV for density estimation have displayed
misbehavior. In conclusion, a search through a grid of values in the domain of t is also
necessary for this procedure.
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Resumo en galego

Nun contexto de alta dimensión, o número de covariables empregadas para explicar unha
variable de interese, p, é moi probable que sexa grande, incluso maior co número de
mostras dispoñibles (p > n). É nesta situación onde os procedementos ordinarios para
axustar os modelos de regresión comezan a funcionar mal. Polo tanto, novas alternativas
son necesarias. En particular, un primeiro paso de selección de covariables é de interese
para considerar unicamente aqueles termos relevantes e reducir a dimensión do problema.
Para este fin existen dúas posibilidades. A primeira baséase na consideración dunha certa
estrutura no modelo. Baixo esta suposición, as técnicas de penalización son unha alternativa
amplamente empregada para estimar o modelo e seleccionar covariables, simultaneamente.
Pola contra, se non se quere asumir unha estrutura no modelo, as medidas de dependencia
de última xeración baseadas en distancias son unha opción atractiva para a selección de
covariables. Estas técnicas son capaces de detectar os termos importantes para calquera
estrutura subxacente, pero, pola contra, non se obtén unha estimación do modelo.

O obxectivo desta tese é o estudo e desenrolo de técnicas de selección de covariables
para modelos de regresión en contextos actuais de alta dimensión ou de datos funcionais
de interese. Para este fin, téñense en conta as dúas vertentes comentadas anteriormente.
Comézase motivando a necesidade da utilización de procedementos para a selección de
covariables no caso da alta dimensión no Capítulo 1. Neste, expóñense os problemas que
teñen que afrontar os modelos de regresión neste contexto. A continuación, no Capítulo
2, realízase unha revisión extensa e crítica das técnicas de penalización para a selección
de covariables. Esta desenvólvese para o modelo lineal de alta dimensión no marco
vectorial e está centrada no método LASSO. No Capítulo 3 estúdase o funcionamento
da regresión LASSO como selector de covariables baixo o suposto de linealidade. En
particular, distínguese entre un estudo baixo distintas estruturas de dependencia e un
segundo que, ademais, considera covariables en distintas escalas. Os seus resultados son
comparados con modificacións e alternativas do mesmo mediante estudos de simulación.
Finalmente, extráense conclusións baseadas nos resultados obtidos para cada caso. Así
mesmo, a comparativa esténdese a catro bases de datos reais. Seguidamente, preséntanse
os coeficientes de correlación baseados en distancias no Capítulo 4. Estes permiten a
selección de covariables sen ningunha suposición previa sobre a estrutura do modelo.
Isto tradúcese en ferramentas útiles que permiten a selección de covariables en modelos
complexos. Particularmente, faise uso da “martingale difference divergence” (MDD) e
da “conditional distance covariance” (CDC) no modelo funcional concorrente (MFC). No
Capítulo 5, novos tests de especificación baseados na MDD son propostos para a versión
síncrona do MFC co fin de seleccionar covariables baixo o suposto de aditividade. Próbase
o bo funcionamento do test mediante un estudo de simulación e unha comparativa con
competidores existentes na literatura. Ademais, aplícase este procedemento a tres bases de
datos reais. Para rematar, trátase a versión asíncrona do MFC no Capítulo 6. Neste caso,
proponse un novo test de especificación empregando a CDC. Coméntanse os problemas
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que xorden neste novo contexto e como solucionalos. O documento de tese remata cunha
sección de resultados, conclusións e traballo futuro comentando os resultado obtidos e
posibles liñas de investigación a tratar no posterior.

A continuación, danse máis detalles dos contidos de cada capítulo.

Capítulo 1. Os problemas dos modelos de regresión no contexto da alta
dimensión: a necesidade da redución da dimensión

Nun modelo de regresión búscase explicar unha variable de interese ou resposta, Y , mediante
o uso de p ≥ 1 covariables explicativas X = (X1, . . . , Xp)⊤. Con esa finalidade, asúmese que
Y e X veñen relacionadas por unha función regresora m(·), a cal é tipicamente descoñecida.
Isto resulta no modelo de regresión dado por

Y = m(X) + ε,

onde ε é o erro do modelo, o cal non é directamente observado na práctica. Este erro
téndese a asumir que é condicionalmente independente de X en termos de m(·).

Neste capítulo introdúcense os problemas que teñen que enfrontar os modelos de
regresión nun contexto de alta dimensión. Estes motivan o contido dos seguintes capítulos
do documento da tese.

Primeiro, na Sección 1.1, introdúcense algúns conceptos sobre diferentes estruturas de
modelos de regresión que serán empregadas no resto do manuscrito. O modelo de regresión
lineal, onde m(X) = X⊤β e empregado nos Capítulos 2 e 3, introdúcese na Sección 1.1.1.
Posteriormente, a formulación aditiva, dada por m(X) = ∑p

j=1 fj(Xj) e que se estudará
no Capítulo 5, preséntase na Sección 1.1.2. Finalmente, a regresión local analízase na
Sección 1.1.3. Esta asume unha estrutura totalmente xeral para m(X) e emprega técnicas
de carácter non paramétrico para a súa estimación. Dita regresión conecta coa formulación
xeral coa que se traballa no Capítulo 6. En todos os casos, expóñense os procedementos
usuais para a súa estimación. Ademais, en todos estes modelos, arguméntanse os problemas
que aparecen no contexto da alta dimensión, centrándonos no caso onde se considera un
gran número de covariables, p, ou incluso que p > n.

A continuación, todos os problemas comentados anteriormente recóllense na Sección
1.2, onde se explican máis detalladamente as súas consecuencias e implicacións. Podemos
clasificalos en tres grupos: a maldición da dimensionalidade (Sección 1.2.1), inconsistencias
na estimación do modelo (Sección 1.2.2) e efectos de colinealidade ou concurvidade (Sección
1.2.3). A maldición da dimensionalidade aparece ante valores elevados de p e implica a perda
do carácter local e da interpretabilidade dos resultados. Afecta, principalmente, a técnicas
non paramétricas como é a regresión local. En termos de aparición de inconsistencias na
estimación dos modelos, na Sección 1.2.2 explícase como non é posible estimar os modelos
polos procedementos usuais cando p > n. Proporciónase unha explicación para cada unha
das formulacións propostas. No relativo aos efectos de colinealidade ou concurvidade, estes
tradúcense na aparición de malos condicionamentos nas matrices que recollen a información
das covariables. Como se explica na Sección 1.2.3, conforme aumenta a dimensión p, tamén
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o fan as probabilidades de que se dea algún destes fenómenos. Estes problemas motivan a
necesidade de redución da dimensión.

Finalmente, na Sección 1.3, a través dunha análise dos problemas observados, motívase
a necesidade de empregar técnicas que permitan reducir a dimensionalidade. Esta discusión
da pé ao uso de técnicas de selección de covariables no marco da alta dimensión, motivando
o estudo que se desenvolve nos seguintes capítulos do documento. En particular, hai dúas
posibles vías: seleccionar covariables tras asumir unha estrutura no modelo, como pode ser
o uso de técnicas de penalización, estimando dito modelo ao mesmo tempo, ou seleccionar
termos sen supoñer ningunha estrutura, empregando novos coeficientes de dependencia. O
primeiro caso, usando técnicas de penalización, trátase nos Capítulos 2 e 3. En relación a
segunda opción, no Capítulo 4 analízanse novos coeficientes de dependencia baseados en
distancias que serán empregados posteriormente nos Capítulos 5 e 6.

Capítulo 2. O “least absolute shrinkage and selection operator” (LASSO)

Unha vez motivada a necesidade de reducir o número de covariables en alta dimensión no
Capítulo 1, e con especial interese no caso de p > n, propóñense técnicas de selección de
covariables. Neste capítulo, comezamos dando solucións para o caso máis sinxelo: asumindo
linealidade nun modelo de regresión vectorial. Isto dá como resultado a formulación vista en
(1.2). Neste contexto, na literatura, fíxose un gran esforzo mediante o estudo e implantación
de técnicas de regularización. O enfoque máis coñecido e aínda máis empregado é o “least
absolute shrinkage and selection operator” ou LASSO, proposto por Tibshirani (1996). Dito
procedemento propón a inclusión dunha penalización de tipo L1 no proceso de estimación,
regulada por un parámetro λ > 0. Este resulta no estimador

β̂LASSO = arg min
β


n∑

i=1

yi −
p∑

j=1
xijβj

2

+ λ
p∑

j=1
|βj |

 ,
Este procedemento introdúcese en detalle na Sección 2.1.

Porén, a regresión LASSO presenta varios requisitos e inconvenientes como selector de
variables na práctica. Na Sección 2.2 recóllese unha análise destas características. Estas
están relacionadas co nesgo do estimador LASSO (Sección 2.2.1), co feito de que o LASSO
require da verificación de fortes condicións teóricas para garantir a súa consistencia (Sección
2.2.2), con que aparecen moitos falsos positivos na súa selección de variables (Sección
2.2.3) e con que é moi complicado facer unha selección óptima do valor da penalización λ

na práctica (Sección 2.2.4). En relación o nesgo, o estimador LASSO é sempre nesgado.
Este é o prezo a pagar como compensación por poder estimar o modelo cando p > n.
No caso da consistencia, precísanse que se verifiquen certas condición sobre a matriz de
covariables, o vector β e o tamaño mostral. A maioría destas condicións non se poden
comprobar na práctica sen coñecer o conxunto real de covariables importantes, o cal
dificulta o poder garantir o seu bo comportamento na práctica. Ademais, o LASSO non
pode, simultaneamente, reducir o número de falsos positivos e aumentar o de verdadeiros
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positivos. Isto tradúcese en que é necesario permitir o LASSO engadir ruído no modelo
para garantir que se recupera a maior parte das covariables relevantes. Por último, unha
selección adecuado de parámetro λ precisa coñecer a varianza do erro do modelo, o cal
tampouco é posible na práctica. Para solucionar este problema, o que se adoita facer é
empregar técnicas de validación cruzada para a súa estimación.

Para dar solucións aos problemas que ten que facer fronte o LASSO, na literatura
propóñense novas modificacións deste procedemento. Un estudo das mesmas lévase a
cabo na Sección 2.3. Unha clasificación modesta destas modificacións, segundo a súa
natureza, podería facerse en catro categorías: versións ponderadas (Sección 2.3.1), o LASSO
mesturado con remuestreo (Sección 2.3.2), versións empregando “thresholds” (Sección 2.3.3)
ou outras alternativas distintas ao enfoque LASSO (Sección 2.4). Ademais, o LASSO
tamén presenta versións deseñadas para certas estruturas especiais, como cando se pode
establecer un certo orden entre as covariables ou cando o carácter “sparsity” búscase en
termos de grupos de covariables. Estas formulacións preséntanse na Sección 2.3.4. Aínda
que difiren na súa estrutura, metodoloxía e características, todas as opcións propostas nas
seccións citadas perseguen o mesmo obxectivo: a selección de covariables.

A continuación, na Sección 2.5, motívase o estudo de técnicas de selección de covariables
cando p é grande con catro bases de datos reais onde este fenómeno acontece. A primeira
base de datos é un estudo xénico que busca explicar a produción de riboflavina (Sección
2.5.1). A segunda fai referencia a un estudo de pacientes con cancro de próstata (Sección
2.5.2) e na terceira trátase de modelar a graxa corporal usando distintas medidas fisiolóxicas
(Sección 2.5.3). No último caso, estúdase unha base de datos referente o vinho verde de
Portugal (Sección 2.5.4). Todas elas son exemplos de bases de datos cun número grande de
covariables, onde se observan distintas estruturas de dependencia entre as covariables e
que estas están en distintas escalas. Motivando así o estudo que se realiza no Capítulo 3.

Finalmente, realízase unha análise sobre as características, beneficios, desvantaxes e
evolución da regresión LASSO, así como do seu impacto, na Sección 2.6. Ademais, tamén
se comenta a súa posible extensión a outro tipo de modelos de regresión.

Parte do contido deste capítulo recóllese no traballo Freijeiro-González et al. (2022a).

Capítulo 3. A regresión LASSO como selector de covariables. Comportamento
baixo estruturas de dependencia e covariables en diferentes escalas

Como vimos no capítulo anterior a través de catro exemplos, na práctica, é moi común
atopar que os datos reais teñen distintas estruturas de dependencia entre as súas covariables
e que estas están en distintas escalas. Este feito motiva o estudo levado a cabo nesta parte do
documento. Neste Capítulo 3 analízase o funcionamento da regresión LASSO como selector
de covariables mediante estudos intensivos de simulación, asumindo distintas estruturas de
dependencia e configuracións de escalas para as covariables. Ademais, compárase o seu
funcionamento con modificacións e alternativas da mesma.

Na Sección 3.1 comezamos analizando como é o comportamento do LASSO baixo
distintos marcos de dependencia onde todas as covariables están en escala unitaria. Para
este fin, realízase un amplo estudo de simulación considerando os escenarios presentados na
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Sección 3.1.1. En vista dos malos resultados da regresión LASSO (Sección 3.1.2), incluso
baixo o caso de independencia, o seu comportamento compárase co de algúns derivados
e competidores axeitadamente escollidos (Sección 3.1.3). Como resultado deste estudo,
observamos que unha elección adecuada do procedemento a empregar depende do tipo
de escenario de dependencia que se estea considerando. Na Sección 3.1.4 analízanse os
resultados obtidos e dáse unha orientación facendo uso das mesmas. Toda a Sección 3.1
está recollida en Freijeiro-González et al. (2022a).

A continuación, na Sección 3.2, considéranse, aparte de diferentes estruturas de depen-
dencia, covariables en distintas escalas. Neste caso, compróbase como o LASSO e os seus
competidores se comportan nestes contextos. Ademais, desenvólvese unha comparativa
entre o caso sen estandarización ou empregando unha estandarización univariante para
todos os escenarios considerados. Aquí, empregaremos os escenarios de simulación presen-
tados na Sección 3.2.1. De novo, analízase o comportamento do LASSO (Sección 3.2.2),
compárase co dos competidores propostos (Sección 3.2.3) e extráense conclusións en base
os resultados observados na Sección 3.2.4. Igual que no caso do estudo de dependencia,
non todos os procedemento serán axeitados, senón que dependerá da natureza dos datos.

Posteriormente, na Sección 3.3, analízase o efecto de aplicar un primeiro paso tipo
“screening” para reducir a dimensionalidade, considerando distintos coeficientes de depen-
dencia. Este enfoque é tamén un dos máis empregados para a selección de covariables. En
particular, testarase o funcionamento do coeficiente de determinación (R2), da “distance
covariance” (DC) e dos “partial least squares” (PLS).

Finalmente, os catro conxuntos de datos reais introducidos na Sección 2.5 do Capítulo
2 que motivan este estudo son analizados tendo en conta as directrices observadas nas
anteriores seccións. Esta análise ponse en práctica na Sección 3.4.

Capítulo 4. Novas medidas de dependencia baseadas en distancias para datos
complexos

Ata o de agora, mostrouse como realizar selección de covariables nun marco de alta
dimensión cando se asume unha estrutura no modelo, como se amosa para a suposición
de linealidade nos capítulos 2 e 3. Non obstante, a estrutura do modelo non sempre se
pode coñecer de antemán. Polo tanto, teñen especial interese as técnicas de selección de
covariables que non precisen de supostos na función regresora. Para este fin, empréganse
novas medidas de dependencia baseadas en distancias para construír estatísticos adecuados
que permitan realizar tests de significación. En concreto, estas ideas serán empregadas
para seleccionar covariables en modelos complexos, onde estimar unha función de regresión
o suficientemente flexible é un problema difícil. Estas medidas son modificacións da
innovadora “distance covariance” ou DC introducida en Székely et al. (2007). O coeficiente
DC permite testar a independencia entre dous vectores aleatorios X ∈ Rp e Y ∈ Rq

formulada como
H0 : X ⊥ Y vs. H1 : X ̸⊥ Y,
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e vén dado pola expresión

DC2(X,Y ) = ∥φX,Y (t, s)− φX(t)φY (s)∥2 = 1
cpcq

∫
Rp+q

|φX,Y (t, s)− φX(t)φY (s)|2

∥t∥p+1
p ∥s∥q+1

q

dt ds,

onde φX,Y é a función característica conxunta e φX , máis φY , son as versións marxinais
de X e Y , respectivamente.

A necesidade destas novas métricas de dependencia está motivada na Sección 4.1,
revisando os coeficientes existentes para detectar patróns de dependencia e os seus inconve-
nientes. En particular, as medidas usuais só son capaces de recoller relacións lineais ou
monótonas. Este problema soluciónase co uso da DC e derivados, os cales recollen todo tipo
de estruturas de dependencia entre dous vectores aleatorios. Ademais, estas novas medidas
de dependencia seguen funcionando adecuadamente no caso de ter máis covariables co
número de mostras dispoñibles, p > n, o cal non acontece cos procedementos clásicos.

Algúns dos coeficientes de distancia resultantes, os cales proban diferentes tipos de
dependencia, introdúcense ao longo da Sección 4.2. Estes son a DC (Sección 4.2.1),
a “martingale difference divergence” ou MDD (Sección 4.2.2) e a “conditional distance
covariance” ou CDC (Sección 4.2.3). Para todos eles revísase a súa formulación, as súas boas
propiedades teóricas e a construción de estimadores axeitados para cada caso. Ademais,
coméntase o seu uso como selector de covariables, así como a súa adaptación a outros
contextos, como é a súa utilización nos contrastes de bondade de axuste.

Finalmente, na Sección 4.3, lévase a cabo unha discusión sobre a súa aplicación e as
súas vantaxes en modelos complexos. En particular, coméntase a súa posible extensión a
outros contextos como a espazos métricos, ao marco funcional, a regresión cuantil, series de
tempo ou modelos de curación, como algúns exemplos. Como comentabamos ao principio,
a utilización destes coeficientes permite non asumir ningunha estrutura no modelo de
regresión e realizar selección de covariables mediante a aplicación de tests de independencia.
Facendo uso destas ideas, estendemos a estrutura lineal considerada nos Capítulos 2 e 3
a modelos máis complexos. En particular, centrámonos no modelo funcional concorrente
(MFC) que será estudado nos seguintes capítulos do documentos. No Capítulo 5 proponse
un novo procedemento de selección de covariables para a súa versión síncrona, mentres que
no Capítulo 6 trabállase co caso asíncrono.

Capítulo 5. Novos tests de significación baseados no coeficiente MDD para a
versión síncrona do modelo funcional concorrente

No Capítulo 4 propóñense novos coeficientes de dependencia baseados en distancias para
probar a significación das covariables en modelos complexos, sen necesidade de estimación
previa da función regresora. Neste capítulo, propoñemos un novo procedemento para
deseñar tests de significación para a versión síncrona dun modelo funcional concorrente
(MFC) aditivo, facendo uso da MDD introducida no Capítulo 4.

O MFC é un modelo de regresión onde a resposta Y = (Y1, . . . , Yq) ∈ Rq e as covariables
X = (X1, . . . , Xp) ∈ Rp, con q, p ≥ 1, son todas funcións dun mesmo argumento t ∈ D, e a
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relación é concorrente, simultánea ou punto a punto. Este modelo resulta en

Y (t) = m(t,X(t)) + ε(t),

onde m(·) é a función regresora e ε(t) é o erro do modelo. Agora, o erro é un proceso que se
asume de media nula, independente de X e con función de covarianza Ω(s, t) = C [ε(s), ε(t)],
onde C[·, ·] é o operador de covarianza.

A versión síncrona do MFC asume que todas as curvas son observadas nos mesmos
instantes temporais. Mais información sobre dito modelo atópase na Sección 5.1, xunto
cunha motivación da necesidade dun primeiro paso de selección de variables para reducir a
dimensión do problema.

O noso novo procedemento propón unha forma innovadora de seleccionar covariables
na versión síncrona dun MFC aditivo. Este baséase no uso dunha versión innesgada do
coeficiente MDD, que se presenta na Sección 5.2. En particular, a selección de covariables
faise mediante tests de significación que son reescritas como tests de independencia usando
a MDD. Desta forma, na Sección 5.3, propóñense os novos tests de dependencia. Dáse
unha xustificación teórica do seu bo funcionamento e tamén se propón un esquema de
remuestreo para calcular os p-valores na práctica. Este procedemento conta coas vantaxes
de que non é necesario estimar a función regresora para seleccionar os termos importantes e
non é preciso empregar ningún tipo de “tuning parameter”. Estas características contrastan
cos métodos que existen na literatura actual.

Un estudo de simulación lévase a cabo na Sección 5.4 para verificar o seu bo funciona-
mento, xunto cunha comparativa con dous competidores, propostos e estudados por Ghosal
and Maity (2022a) e Kim et al. (2018). Demostrando así, que o noso procedemento é moi
competitivo. Logo, os novos tests propostos aplícanse a tres conxuntos de datos reais na
Sección 5.5. Estes datos relaciónanse cun estudo da marcha en nenos con problemas loco-
motores (Sección 5.5.1), o avance da gripe en Estados Unidos (Sección 5.5.2) e o modelaxe
do alugueiro casual de bicicletas na cidade de Washington D.C. explicado mediante as
condicións climatolóxicas (Sección 5.5.3). Para rematar, desenvólvese unha discusión dos
resultados na Sección 5.6.

Os contidos deste capítulo están recollidos en Freijeiro-González et al. (2022b).

Capítulo 6. Novos tests de significación baseados no coeficiente CDC para a
versión asíncrona do modelo funcional concorrente

No capítulo 5 propuxéronse novos test de significación para a versión síncrona do MFC
aditivo. Non obstante, estes só funcionan no caso de considerar observacións temporais
síncronas. Neste capítulo propoñemos novas ideas de técnicas de selección de covariables
para a versión xeral asíncrona do MFC. É dicir, agora permítese que as curvas sexan
observadas en distintos instantes temporais e que, ademais, o número de observacións varíe
ducha curva a outra. Unha introdución do modelo MFC dáse na Sección 6.1. Tamén
flexibilizamos os supostos sobre a función regresora, permitindo que teña calquera estrutura
e non nos restrinximos ao caso dos efectos aditivos. Estas ideas para aplicar selección de
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variables lévanse a cabo mediante tests de independencia condicionada, facendo uso do
coeficiente CDC, introducido anteriormente na Sección 4.2.3.

Na Sección 6.2, introdúcense as novas ideas para os tests de significación. Similar
ao Capítulo 5, estes tests de significación son reescritos como tests de independencia
condicional empregando o coeficiente da CDC. Agora, é necesario recorrer a técnicas de
carácter non paramétrico para empregar a información local proporcionada polos datos
achegados, xa que é de esperar que non se dispoña de moitas observacións para un instante
dado. Desta forma, a estimación da CDC require dunha elección adecuada dun parámetro
de suavizado e dunha función núcleo. Isto discútese nas Seccións 6.2.1 e 6.2.2. Unha
vez formulado o test, xustifícase o seu bo comportamento teórico e tamén se propón un
esquema de remuestreo local para calibralo na práctica. Posteriormente, desenvólvese un
estudo de simulación na Sección 6.3 para comprobar o seu bo funcionamento. Finalmente,
as conclusións obtidas coméntase na Sección 6.4.

Apéndices A, B, C e D

Os apéndices A, B, C e D conteñen resultados suplementarios e demostracións en relación
ao contido da Sección 3.1 do capítulo 3, da Sección 3.2 do Capítulo 3, do Capítulo 5 e do
Capítulo 6, respectivamente.
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Further information

Objectives

The main objective of this thesis project is the study and development of covariates selection
techniques for regression models in recent high dimensional or functional data contexts.
This project is carried out in several statements essential, in consideration of the proposed
objectives:

a) Review of covariates selection techniques for linear models in the high dimensional
vectorial framework. Here, it is assumed that the number of covariates can be equal
or greater than the available sample size. Intensive analysis of usual techniques as the
L1 or LASSO penalization (Tibshirani (1996)), the SCAD penalty (Fan (1997)), the
Dantzig selector (Candes and Tao (2007)) and more innovative alternatives, like the
adaptive LASSO (Zou (2006), Huang et al. (2008)) or the use of distance covariance
or DC coefficient (Székely et al. (2007)) for variable selection (Febrero-Bande et al.
(2019)), among others. Study of their behavior under different dependence structures
and standardization techniques. Guidelines about what can be expected from every
algorithm and what is the best option for each considered scenario, paying attention
to the data nature. Application to some real data sets.

b) Analysis of existing covariates selection procedures in functional concurrent models.
Development of new significance tests focused on the selection of covariates using
derivations of the DC coefficient. For this aim, state-of-the-art dependence measures,
such as the martingale difference divergence or MDD (Shao and Zhang (2014)) for
synchronous observations or the conditional distance covariance or CDC (Wang et al.
(2015)) for asynchronous design, are employed. In the first context, an additive
structure is assumed for the regression model, which provides quite a flexibility.
Conversely, in the asynchronous case, a totally general formulation is taken into
consideration. In both contexts, it is not necessary to know in advance or estimate
the actual form of the regressor function. This fact is a new advantage compared to
the existing literature. Besides, smoothing parameters are avoided in the synchronous
context employing the MDD techniques. A novel and specific alternative using the
CDC coefficient is proposed concerning the asynchronous framework. Validation
of the proposed new tests through simulation studies, respectively. In addition,
comparison with existing competitors and application to some real data sets for the
synchronous case.

c) Collection of algorithms studied and programmed in a public repository, jointly with
the real data sets analyzed.

Block a) is carried out along Chapters 2 and 3. The review and dependence study
portion has resulted in the published article Freijeiro-González et al. (2022a). Chapter 4 is
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devoted to a preliminary review of distance-based correlation coefficients for implementing
specification tests on functional concurrent models. This study leads to block b). Some
of this information, jointly with the novel significance test for the synchronous functional
concurrent model carried out in Chapter 5, resulted in a new paper. This work is submitted
to the TEST journal and has passed the first review. A preliminary version is Freijeiro-
González et al. (2022b). Eventually, Chapter 4, along with Chapter 6, will complete block
b) with the development of new significance tests for the asynchronous version of the
functional concurrent model. Eventually, block c) is covered by the development of a public
repository in GitHub. We refer below for more details about articles and journals, jointly
with the simulations code.

Methodology

This thesis follows the classical research methodology in the field of statistics. In the first
place, an in-depth study of the topic of interest is performed, carrying out an extensive
review of the existing literature. Next, new points of view or the implementation of
novel covariates selection techniques are proposed. A theoretical and practical analysis
is performed, analyzing the advantages and drawbacks of all procedures in each case.
Eventually, some conclusions arise based on their study.

The R software (R Core Team (2019)), jointly with C++ code, has been employed for
all simulations and novel procedures implementation.

Some details on the methodology are given below in terms of the chapters. Chapter 1
is introductory, so this is excluded.

Chapter 2: The least absolute shrinkage and selection operator (LASSO).

• An exhaustive bibliographical review of the LASSO algorithm as a variable selector
for linear regression models.

• Introduction of the LASSO requirements and inconveniences as a variable selector
from a theoretical point of view. Analysis of the required conditions and drawbacks
implications in practice.

• Review of the existing LASSO derivatives. Comparison with widely employed or
innovative competitive procedures. Analysis of their advantages and drawbacks.

• Introduction of some examples of real data sets that motivate the use of LASSO.

Chapter 3: LASSO regression as a variable selector. Performance under
dependence structures and different scales on covariates.

• Motivation of the LASSO problems under dependence structures. Intensive simulation
study to compare LASSO and competitors’ performance. Some guidance about the
best options under dependence.
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• Problems of the LASSO regression facing covariates with different scales. Analysis
under different dependence frameworks by means of an extensive simulation study.
Conclusions about a proper recovery for these contexts.

• Study of the effect of a first screening step to reduce the problem dimensionality. Ap-
plication to dependence contexts with covariates having different scales. Advantages
and limitations observed in simulation analysis.

• Application to real data. Analysis of covariates selection techniques applied over
some real data sets with dependence structures and covariates with different scales.

Chapter 4: Novel distance-based dependence measures for complex data.

• Analysis of the problems of the classical correlation coefficients and motivation of
the advantages of the new distance-based ones.

• An exhaustive bibliographical review of novel distance-based measures. Examples of
their use in covariates selection procedures.

• Application of these different dependence measures in complex data. Advantages of
this approach over other covariates selection procedures.

Chapter 5: New significance tests for the synchronous functional concurrent
model based on the martingale difference divergence coefficient.

• Introduction of the synchronous functional concurrent model (FCM) and the impor-
tance of covariates selection.

• Development of new significance tests for the synchronous FCM based on the mar-
tingale difference divergence coefficient. Study of their performance by means of a
simulation study.

• Comparison of the new approach with existing competitors in literature. Display of
its advantages.

• Application in real data sets.

Chapter 6: New significance tests for the asynchronous functional concurrent
model based on the conditional distance covariance coefficient.

• Introduction to the asynchronous version of the FCM.

• Development of new global significance tests for the asynchronous FCM using the
conditional distance covariance coefficient. Study of their performance by means of a
simulation study.

Simulations code

All simulation code developed in this document has been collected in the public GitHub
repository https://github.com/LauraFreiG/Covariates_selection.git along with the
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real data sets examples. Thus, all the results are reproducible. Then, the code can be
employed or modified in case of interest.

In particular, code related to Sections 3.1, 3.2 and real data sets examples introduced
in Section 2.5, and studied later in Section 3.4, are collected in the “Linear Regression”
folder. This covers Chapter 3 and contains the code for Freijeiro-González et al. (2022a).

Results for the concurrent model formulation are collected in the folder “Functional
Concurrent Model”. Inside this, the code of Chapter 5 is summarized in the folder
“Synchronous FCM”. This code is the one employed in Freijeiro-González et al. (2022b).
Simulations corresponding with Chapter 6 will be added once a preprint will be available.

Articles and journals

A Critical Review of LASSO and Its Derivatives for Variable Selection Under
Dependence Among Covariates (Freijeiro-González et al. (2022a))

TITLE: A Critical Review of LASSO and Its Derivatives for Variable Selection Under
Dependence Among Covariates.

AUTHORS: L. Freijeiro-González1, M. Febrero-Bande1 and W. González-Manteiga1.

YEAR: 2022.

AFFILIATIONS: 1Departamento de Estatística, Análise Matemática e Optimización,
Universidade de Santiago de Compostela.

JOURNAL: International Statistical Review.

STATUS: Published.

ISSN: 0306-7734.

PUBLISHER: John Wiley & Sons, Ltd.

LINK: https://onlinelibrary.wiley.com/doi/full/10.1111/insr.12469.
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COPYRIGHT AND USE: Related to permission, the Wiley publishing company claims
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you do not need to request permission from Wiley for this use”. This exempts the author
to ask for permission. This information can be found in Wiley.com.
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Novel specification tests for additive concurrent model formulation based on
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COPYRIGHT AND USE: This repository claims that “If you are the copyright holder
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In a Big Data context, the number of covariates used to explain 
a variable of interest, p, is likely to be high, sometimes 
even higher than the available sample size (p > n). Ordinary 
procedures for fitting regression models start to perform 
wrongly in this situation. As a result, other approaches are 
needed. A first covariates selection step is of interest to take 
into consideration only the relevant terms and to reduce the 
problem dimensionality. The purpose of this thesis is the study 
and development of covariates selection techniques for 
regression models in complex settings. In particular, we focus 
on recent high dimensional or functional data contexts of 
interest. We resort to regularization techniques when some 
model structure can be assumed or to novel dependence 
coefficients based on distances when not.
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