
ESCOLA DE DOUTORAMENTO
INTERNACIONAL DA USC

Víctor José
Gallego Fontenla

Tese de doutoramento

Conformance Checking-based
Concept Drift Detection in
Process Mining

Santiago de Compostela, 2023

Programa de Doutoramento en Investigación en Tecnoloxías da Información





TESE DE DOUTORAMENTO

CONFORMANCE CHECKING-BASED
CONCEPT DRIFT DETECTION IN PROCESS

MINING

Víctor José Gallego Fontenla

ESCOLA DE DOUTORAMENTO INTERNACIONAL DA UNIVERSIDADE DE SANTIAGO
DE COMPOSTELA

PROGRAMA DE DOUTORAMENTO EN INVESTIGACIÓN EN TECNOLOXÍAS DA
INFORMACIÓN

SANTIAGO DE COMPOSTELA
2023





Declaración do autor/a da tese

D./Dna. Víctor José Gallego Fontenla
Título da tese: Conformance Checking-based Concept Drift Detection in Process Mining

Presento a miña tese, seguindo o procedemento axeitado ao Regulamento, e declaro que:

1. A tese abarca os resultados da elaboración do meu traballo.

2. De ser o caso, na tese faise referencia ás colaboracións que tivo este traballo.

3. Confirmo que a tese non incorre en ningún tipo de plaxio doutros autores nin de traballos
presentados por min para a obtención doutros títulos.

4. A tese é a versión definitiva presentada para a súa defensa e coincide a versión impresa
coa presentada en formato electrónico.

E comprométome a presentar o Compromiso Documental de Supervisión no caso de que o
orixinal non estea na Escola.

En Santiago de Compostela, Maio de 2023

Asdo. Víctor José Gallego Fontenla





Autorización do director/titor da tese
Conformance Checking-based Concept Drift Detection in Process Mining

Dr. Manuel Lama Penín

Dr. Juan Carlos Vidal Aguiar

INFORMAN:

Que a presente tese correspóndese co traballo realizado por D/Dna. Víctor José Gallego
Fontenla, baixo a nosa dirección/titorización, e autorizamos a súa presentación, considerando
que reúne os requisitos esixidos no Regulamento de Estudos de Doutoramento da USC, e que
como directores desta non incorre nas causas de abstención establecidas na Lei 40/2015.

De acordo co indicado no Regulamento de Estudos de Doutoramento, declaramos tamén
que a presente tese de doutoramento é idónea para ser defendida en base á modalidade de
Monográfica con reproducción de publicacións, nos que a participación do/a doutorando/a foi
decisiva para a súa elaboración e as publicacións se axustan ao Plan de Investigación.

En Santiago de Compostela, Maio de 2023

Asdo. Manuel Lama Penín
Director/a tese

Asdo. Juan Carlos Vidal Aguiar
Director/a tese





Á miña familia
Cos que comparto sangue, e cos que non





. . . como no estás experimentado en las cosas
del mundo, todas las cosas que tienen algo de
dificultad te parecen imposibles; pero andará el
tiempo, como otra vez he dicho, y yo te contaré
algunas de las que allá abajo he visto, que
te harán creer las que aquí he contado, cuya
verdad ni admite réplica ni disputa.

— Miguel de Cervantes, Segunda
parte del ingenioso caballero don
Quĳote de la Mancha





Agradecementos

Polos que foron, polos que sodes, son.

Alguén dixo algunha vez que somos o promedio das cinco persoas coas que pasamos máis
tempo. Aplicado a esta tese, quedarme só con cinco persoas resultame imposible. O que si que
podo afirmar con total seguridade é que, sen o apoio de todas as persoas que me rodean e me
acompañaron durante estes anos, este traballo non tería sido o mesmo.

Grazas aos meus directores, Manuel Lama e Juan Carlos Vidal, pola confianza depositada
en min durante estes 5 anos. A liberdade que me destes á hora de propoñer e explorar ideas coas
que afrontar os problemas desta investigación permitiume medrar no academico e no personal,
e fixo o traballo moito máis sinxelo. Creo que a relación doutorando-director non sempre é
sinxela, pero entre os tres conseguimos chegar a un nivel de entendemento e confianza que
fixo que este traballo chegara a bo porto. Quixera facer extensivo tamén este agradecemento
ao Departamento de Electronica e Computación e ao Centro de Investigación en Tecnoloxías
Intelixentes (CiTIUS) da Universidade de Santiago de Compostela, pola contorna de traballo
e os medios proporcionados para poder acadar os obxectivos desta tese satisfactoriamente.
Quixera agradecer especialmente aos membros do personal de apoio do CiTIUS, que co seu
traballo, o cal moitas veces pasa desapercibido, facilitaron enormemente todas as xestións
relacionadas co desenvolvemento da tese.

Por outra banda, gustaríame agradecer ao Profesor Marlon Dumas, da Universidade de
Tartu, e a todos os compañeiros do Software Engineering & Information Systems Group, que



Víctor José Gallego Fontenla

me acolleron durante a miña estancia en Estonia e fixeron deses 3 meses unha experiencia
enriquecedora e inesquecible.

Gustaríame agradecer tamén a todas as entidades que, dunha forma ou outra, financiaron
esta investigacion, permitindome desenvolver este traballo en todo momento cun contrato
laboral, o que, por desgraza, aínda non é a norma para todos os estudantes predoutorais. Ao
programa de Formacion de Profesorado Universitario do Ministerio de Educación, Cultura y
Deporte (FPU17/05138), á Consellería de Educación, Universidade e Formación Profesional
(ED431G-2019/04) e ao Fondo Europeo de Desenvolvemento Rexional (ERDF/FEDER).
Tamén ao Ministerio de Ciencia e Innovación por financiar proxectos directamente relacionados
coa investigación desta tese que permitiron probar os resultados en contornas reais (PID2020-
112623GB-I00, PDC2021-121072-C21).

No personal, quixera agradecer a todos os compañeiros do defunto laboratorio LS02, aos
que estaban cando eu cheguei, que me acolleron como a un máis, e aos que viñeron despois,
que se integraron no grupo e aportaron ao bo ambiente que tiñamos. Sen vos, non tería sido o
mesmo. Aos compañeiros da carreira, ese grupiño de 8 persoas, cada un de seu pai e da súa
nai, que acabamos xuntándonos aínda ninguen sabe como, e que aínda hoxe nos seguimos
apoiando. Quixera ter unhas palabras aquí para Andrea e David, dous piares que se volveron
indispensables e que son para min máis que amigos. Grazas por estar aí nos bos e nos malos
momentos. Grazas tamén a María, que chegou relativamente tarde, e en pouco tempo volveuse
tamén indispensable. Grazas por ser, e por estar. E tamén aos meus compañeiros dos Ingleses
R.C. de Vilagarcía, irmáns dentro e fóra do campo. Porque non sodes conscientes de que ben
senta ter con quen desconectar deste mundo nalgúns momentos.

E para rematar, quixera agradecer á miña familia, á de sangue e á escollida, porque o voso
apoio foi esencial para min. Quixera ter unhas palabras para a miña nai e a miña irmá, sen as
cales eu non estaría aquí. E para meu pai, que se foi antes de tempo un luns de febreiro. Mira a
onde chegamos papá!

Maio de 2023

xii







Resumo

Se tivera tido máis tempo, tería escrito unha
carta máis curta

— Blaise Pascal

Todos os días empregamos procesos, moitas veces sen sequera decatarnos. Campos tan
variados como os sistemas de xestión da información [1], o seguimento do rendemento de
atletas de alto nivel [2, 3], a saúde [4, 5, 6, 7] ou as metodoloxías de enxeñaría [8, 9, 10] usan
procesos para estruturar as súas actividades. Nun entorno cada vez máis globalizado, onde
os mercados se abren a todo o mundo e onde tomar decisións no momento preciso é crucial,
é fundamental ser consciente de que a natureza dos procesos é dinámica e, por tanto, deben
evolucionar para adaptarse ao seu entorno e alcanzar os seus obxectivos satisfactoriamente.
A ampla variedade de aplicacións e a gran cantidade de datos xerados pola execución dos
procesos fai esencial que tal adaptación se faga de forma automática, para así poder dispor de
información precisa, fiable e veraz en todo momento.

En resposta á necesidade de analizar toda esta información, aparecen diferentes técnicas
que permiten modelar, interpretar e mellorar o rendemento dos procesos. Todas estas técnicas
reúnense baixo o paraugas da Xestión de Procesos de Negocio (Business Process Management,
BPM, en inglés). O BPM consta de varias fases que se desenvolven de forma cíclica. Comeza
coa identificación do proceso, da súa arquitectura e do seu rendemento, para continuar co
descubrimento do proceso e a súa documentación, seguido dunha etapa de análise na que se
extraen debilidades e problemas que poidan afectar ao rendemento do proceso en xeral. Tras esta
etapa de análise, e tendo en conta a información obtida acerca do rendemento, procédese a un
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redeseño do proceso que tentará mellorar algunha perspectiva no seu rendemento. Este proceso
redeseñado é posteriormente implementado nun entorno supervisado e as súas execucións son
monitorizadas para extraer información acerca de como o proceso se está a desenvolver e poder
melloralo ciclicamente, repetindo cada unha das etapas indicadas.

Un dos principais desafíos á hora de aplicar as técnicas de BPM no mundo real é que
a maioría das tarefas deben ser realizadas manualmente por un experto ou requiren un alto
nivel de interacción do usuario. Para reducir esta intervención, xurde unha nova disciplina
denominada Minaría de Procesos (Process Mining, PM, en inglés), situada a medio camiño
entre a Xestión de Procesos de Negocio e a Intelixencia Empresarial, por unha banda, e a
Minaría de Datos e a Aprendizaxe Automática, por outra banda, que tenta automatizar moitas
desas tarefas co fin de reducir a intervención humana ao mínimo. A través da extracción
automatizada de información dos rexistros de execución dos procesos, a PM permite interpretar
o que está realmente a acontecer nun proceso, en lugar do que se pensa que está a acontecer,
permitindo tomar decisións en consecuencia. A maioría das técnicas de PM basean o seu
funcionamento na análise de rexistros de eventos: conxuntos de trazas de execución compostas
de eventos que rexistran a realización de certas tarefas, cos seus tempos de inicio e fin, e outros
atributos adicionais, como poden ser os recursos empregados ou o seu custo, entre outros.

As técnicas de PM poden ser clasificadas en tres grandes grupos. Por unha banda, temos os
métodos de descubrimento, nos que a partir dun destes rexistros de eventos buscan as relacións
de precedencia entre as actividades que compoñen o proceso, para extraer algunha clase de
modelo que defina a súa estrutura. Estes modelos de proceso poden ser clasificados en dúas
grandes familias: os modelos imperativos, que recollen todas as restricións entre actividades
para definir o fluxo do proceso, e os modelos declarativos, que se basean en definir regras
declarativas que restrinxen a precedencia entre algunhas actividades. Algúns exemplos de
algoritmos de descubrimento do estado da arte son Inductive Miner, Heuristics Miner, Split
Miner ou ProDiGen. Por outra banda, temos as técnicas de comprobación da conformidade,
que se encargan de comparar modelos de proceso fronte aos rexistros de eventos para avaliar
canto do comportamento soporta o primeiro con respecto ao segundo. Deste xeito, cuantifican
as discrepancias e desaliñamentos entre os modelos de proceso e as súas execucións, permitindo
avaliar en certa medida a calidade dos modelos á hora de representar o comportamento real dos
procesos. Estas técnicas divídense en tres grandes familias: as métricas de axuste ou fitness,
que miden canto comportamento presente no rexistro de eventos está soportado polo modelo,
avaliando canto se desvían as execucións reais do comportamento esperado; as métricas de

xvi



precisión/xeneralización, que avalían a cantidade de comportamento que o modelo soporta
fronte ao observado nas execucións reais; e as métricas de complexidade/simplicidade, que
avalían como de estruturalmente complexo é o modelo. En terceiro e último lugar temos as
tarefas de mellora do proceso, que teñen como obxectivo realizar unha análise do funcionamento
do proceso e a extensión do modelo ou o seu refinamento para mellorar algunha das perspectivas
deste. Dentro desta familia de técnicas podemos atopar algoritmos orientados a reparar o
modelo para que se adapte mellor ao comportamento observado nas execucións e algoritmos
orientados a estender o coñecemento do proceso coa fin de optimizar tempos de execución,
predicir camiños ou patróns críticos ou detectar e corrixir comportamentos anómalos.

Alén diso, as técnicas de PM poden ser clasificadas segundo a perspectiva do proceso
analizado. Así, existen técnicas que analizan o proceso desde o punto de vista do fluxo de
control, centrándose na estrutura das actividades e nas restricións entre elas. Estas técnicas son
utilizadas para descubrir modelos ou verificar que as actividades se realicen na orde correcta.
Tamén temos técnicas centradas na perspectiva organizacional, que analizan a asignación de
recursos e optimizan a súa utilización, para, por exemplo replanificar calendarios de traballo.
Outras técnicas abordan a perspectiva dos casos, analizando os atributos específicos para
extraer características comúns a un subconxunto de casos que cumpran certos requisitos como,
por exemplo, aqueles que aporten maiores beneficios. Por último, temos técnicas centradas na
perspectiva temporal, que analizan os tempos de execución e espera para buscar retrasos na
execución de certas tarefas ou motivos para execucións de larga duración. Estas perspectivas
non son exclusivas, senón que poden combinarse para proporcionar unha visión máis ampla do
proceso.

Como se mencionou anteriormente, os procesos están cada vez máis presentes na nosa
vida cotiá. Isto, xunto cun mundo cada vez máis competitivo, fai necesario que os procesos
se adapten á realidade dos usuarios de forma flexible e áxil, para o cal os procesos deben ser
suficientemente flexibles como para permitir cambios no fluxo das actividades. Estes cambios
poden ser levados a cabo de forma consciente polos xestores do proceso, pero tamén derivados
de circunstancias externas sobre as que non se ten control. É importante que estes cambios non
pasen desapercibidos para os xestores, posto que poden levar a aumentos de custos ou reducións
no rendemento do proceso. Por isto, é fundamental contar con información actualizada en todo
momento que permita adaptarse ao proceso en tempo e forma tomando decisións da maneira
máis inmediata posible para minimizar o seu impacto. Recentemente, propuxéronse diversas
técnicas que permiten, dun xeito máis ou menos automatizado, xestionar estes cambios nos
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procesos analizando a evolución dos casos de execución.

Esta necesidade de xestionar os cambios non é nova. Orixinalmente, as técnicas de xestión
de cambios nacen nos campos da aprendizaxe máquina e da monitorización predictiva, co
obxectivo de detectar cando as variables empregadas para realizar unha predición cambian,
invalidando os resultados. Este tipo de técnicas non foron adoptadas pola minaría de procesos
ata fai uns anos; pola contra, a maioría das aproximacións de minaría de procesos aínda hoxe
en día consideran os procesos como entidades estáticas que non evolucionan. A xestión dos
cambios componse de tres etapas ben diferenciadas: por unha banda, a detección, encargada
de indicar se un cambio existe ou non; por outra banda, a localización e caracterización,
encargadas de analizar o cando, o onde e o como do cambio; e, por último, a análise, encargada
de explicar o por que do cambio. Nesta tese limitarémonos a propostas que resolven a fase de
detección e de localización temporal.

Existen diversas formas de clasificar os algoritmos de xestión de cambios. Dependendo
do uso que fagan dos datos, podemos atopar uns algoritmos que empregan un único dato
en cada instante e outros que fan uso dunha mostra de valores, coñecida como ventá. Os
primeiros teñen a desvantaxe de levar máis tempo para detectar un cambio, mentres que os
segundos dependen en gran medida da selección dun tamaño de ventá adecuado para capturar
todo o comportamento. Á súa vez, estas ventás poden ter un tamaño fixo ou variable que se
axusta automaticamente ao problema en tempo de execución, reducindo así a complexidade
do problema de seleccionar un tamaño óptimo. Doutra banda, en función do mecanismo
empregado para ponderar o valor da información segundo a súa antigüidade, atoparemos
algoritmos con mecanismos de esquecemento gradual ou abrupto. Os primeiros utilizan máis
datos para a avaliación dos cambios, dando maior importancia aos máis recentes pero sen
descartar os antigos, o que pode retrasar a detección dos cambios. Os segundos, en cambio,
empregan só un subconxunto dos valores históricos para realizar a detección. Estes últimos
poden dividirse, a súa vez, en algoritmos baseados en mostras probabilísticas e algoritmos
baseados nunha ventá temporal , que soamente consideran os valores máis recentes, dun xeito
similar ao dunha cola de tamaño limitado. Todos os algoritmos presentados nesta tese se basean
no uso dunha ventá temporal de tamaño fixo ou adaptable.

Finalmente, os cambios poden ser clasificados tamén segundo a súa distribución temporal.
Teremos cambios instantáneos cando un modelo substitúa ao outro abruptamente, sen pasos
intermedios. Por outra banda, teremos cambios graduais cando os dous modelos, o previo ao
cambio e o posterior, conviven durante un período de tempo, podendo atopar execucións de

xviii



ambos durante dito período. Amais, os cambios son incrementábeis cando podemos identificar
modelos intermedios ata que o novo proceso se estabiliza; e recorrentes cando se repiten con
certa periodicidade. Esta clasificación non é excluinte máis que para os dous primeiros tipos:
un cambio deberá ser sempre instantáneo ou gradual, pero pode, á súa vez, formar parte dun
cambio incrementábel se se dá nun contexto no que o modelo final non se chega a estabilizar.
Ademais, todos os cambios (instantáneos, graduais ou incrementábeis) poden constituír un
cambio recorrente se o comportamento se vai alternando ciclicamente con certa periodicidade.
Por último, pero non menos importante, debemos diferenciar un cambio dunha execución
anómala, que se debe a unha alteración espuria do proceso que non pervive no tempo.

Nos últimos tempos, diversos autores propuxeron métodos para a detección de cambios
nos procesos, seguindo diferentes aproximacións, todas coas súas vantaxes e inconvenientes.
Así, podemos atopar propostas que basean o seu funcionamento en aliñar un modelo de
proceso coas execucións reais [11, 12, 13]. Doutra banda, temos propostas baseadas en grafos,
como as presentadas en [14, 15], que representan o proceso como un grafo e analizan a súa
evolución ao longo do tempo. Tamén podemos atopar propostas baseadas no uso de técnicas de
agrupamento e no estudo da evolución de ditos grupos ao longo do tempo, como as presentadas
en [16, 17, 18, 19]. Non obstante, ningunha destas propostas consegue detectar todos os
posibles patróns de cambio cunha alta fiabilidade e mantendo uns retardos pequenos.

Agora ben, se se analiza o que ocorre nas métricas de conformidade cando ten lugar un
cambio no estrutura dun proceso, pódese comprobar que cando unha actividade desaparece
do modelo, a cantidade de comportamento que soporta o modelo vese reducida; sen embargo,
cando unha nova actividade ou relación entre actividades aparece no modelo, o comportamento
soportado polo modelo é superior ao que se observa nas trazas. Do mesmo xeito, pode
comprobarse que cando aparecen ou se eliminan actividades nas trazas, o comportamento que
pode explicar o modelo tipicamente cambia. Con estas consideracións, podemos formular a
hipótese sobre a que se desenvolve esta tese: avaliar a evolución das métricas de conformidade
ao longo da vida dun proceso pode permitirnos detectar cambios instantáneos e graduais
de maneira fiable e rápida. En base a esta hipótese, propoñemos tres métodos para a detección
de cambios instantáneos, graduais e en contornas con ruído.

En primeiro lugar, preséntase C2D2, un algoritmo centrado na detección de cambios
instantáneos con alta fiabilidade e baixos retrasos. Para isto, o algoritmo define unha ventá
temporal de referencia e descobre un modelo de proceso a partir dos eventos contidos nela,
para, a continuación, pasar a vixiar a evolución dos valores das métricas de axuste e precisión
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das sucesivas ventás mediante unha regresión linear simple. A idea tras deste algoritmo é
que, en caso de non presentarse cambios, os valores das métricas deberían manterse estables
arredor dun valor, ou o que é o mesmo, a pendente da regresión calculada sobre os valores
históricos das métricas deberá ser cero, sen importar realmente o valor concreto que adquiran
ditas métricas. Para fortalecer esta idea, demostramos que a combinación de métricas de axuste
e precisión habilita a detección de cambios na estrutura dos procesos. Tamén demostramos que,
por contra, empregar unicamente un tipo de métrica limita os patróns de cambio detectables.
Amais, propoñemos un método para calcular o tamaño óptimo da ventá de detección de forma
automática que está baseado nun proceso iterativo no que se descobren tres modelos de proceso
a partir de tres ventás consecutivas dun tamaño determinado e se comparan os comportamentos
capturados por eles. No caso de que sexan iguais, increméntase o tamaño da ventá ata que
alomenos un dos tres modelos presente un comportamento diferente aos outros dous.

Un dos problemas do método ven dado pola elevada complexidade de cómputo das métricas
de conformidade, que se deben calcular múltiples veces, unha para cada ventá procesada. Para
remediar este problema, propoñemos dúas estimacións do cambio nas métricas que, se ben
non deberan ser empregadas para medir valores absolutos per se, son útiles para avaliar como
estas evolucionan co tempo. Estas estimacións do cambio presentan un custo de cómputo moi
inferior ao das métricas propostas no estado do arte, proporcionando mellores resultados á hora
de detectar os cambios. As estimacións propostas son: (i) para o axuste, a porcentaxe de trazas
que se poden volver a executar satisfactoriamente de principio a fin no modelo; e (ii) para a
precisión, unha métrica dos pares de actividades relacionadas entre si no modelo fronte aos
pares de actividades sucesivas observadas nas trazas, o que nos da unha idea da porcentaxe de
camiños presentes no modelo que se observan alomenos unha vez nas execucións reais.

C2D2 foi validado empregando 204 rexistros de eventos sintéticos xerados a partir de 3
modelos de proceso reais extraídos da literatura. Os resultados da detección foron comparados
cos obtidos polos tres mellores algoritmos do estado do arte, empregando métricas habituais
para este tipo de problemas, especificamente a fiabilidade, que avalía o numero de deteccións
correctas e incorrectas, e o retardo, que mide canto tarda o algoritmo en detectar o cambio unha
vez que este acontece. O resultado desta validación amosa que C2D2 obtén mellores resultados
en termos de fiabilidade, mentres que mantén uns valores de retardo na detección moi baixos.
Estes resultados tamén foron avaliados empregando tests estatísticos, validando as conclusións
anteriores en tódolos casos.

En segundo lugar, presentamos CRIER, que parte das premisas empregadas como base na
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definición de C2D2, é dicir, o uso de métricas de axuste e precisión e a súa monitorización
mediante regresións lineais para a detección de cambios, pero estende a aproximación para
habilitar a detección de cambios graduais en lugar de limitarse aos cambios instantáneos.
O principio fundamental do funcionamento de CRIER é que todo cambio gradual vai estar
delimitado por dúas deteccións teñen como particularidade que o comportamento que entre
eses dous puntos pode ser definido como unha combinación dos comportamentos amosados
antes e despois de dito cambio. Para fundamentar o desenvolvemento do algoritmo probamos
formalmente que esta idea é correcta e que, ademais, o primeiro dos cambios vai ser debido
a unha caída no axuste do modelo, debido á inclusión de novo comportamento que non fora
observado antes e que, polo tanto, non formaba parte do comportamento capturado polo modelo
descuberto a partir da ventá de referencia, mentres que o segundo será debido a unha caída na
precisión, ao desaparecer o comportamento orixinal do proceso a partir dun instante concreto.

Así, para comprobar que este comportamento intermedio sexa unha combinación dos outros
dous, propoñemos un método que comproba a existencia de comportamento provinte dos
modelos previo e posterior ao cambio, e que todas as execucións durante o intervalo de cambio
pertenzan a un deles. Esta aproximación fai que non sexa necesario realizar ningún axuste a
unha serie de distribucións de probabilidade determinadas, o que aporta maior flexibilidade
ao algoritmo ao non impoñer ningunha restrición ao tipo de combinación presente durante o
cambio gradual.

CRIER foi avaliado empregando 120 rexistros de eventos sintéticos xerados a partir dun
proceso real extraído do estado do arte e 12 distribucións de probabilidade diferentes para os
segmentos de cambio. Os resultados obtidos foron comparados cos das principais propostas
do estado do arte empregando as mesmas métricas de fiabilidade e retardo que foron usadas
para avaliar C2D2. Ademais, proponse unha nova métrica para avaliar este tipo de algoritmos,
á que denominamos cobertura do cambio, que cuantifica a porcentaxe do segmento de
cambio detectado como tal por parte do algoritmo. Novamente, os resultados foron avaliados
empregando tests estatísticos, amosando claramente que CRIER obtén os mellores resultados
nas tres métricas.

Finalmente, tomamos tódalas leccións aprendidas no o desenvolvemento de C2D2 e CRIER
e propoñemos un novo algoritmo, R-CRIER, que habilita a detección de cambios instantáneos e
graduais en contornas que presenten execucións anómalas que poden dar lugar a falsos positivos
(tamén denominadas ruído). A maior dificultade de detectar cambios en procesos susceptibles
de amosar ruído dáse á hora de diferenciar entre un cambio real e unha execución anómala
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cuxo comportamento non perdura no tempo. Para levar a cabo esta detección seguimos coas
premisas recollidas previamente (a avaliación das métricas de axuste e precisión) pero, neste
caso, modificamos a etapa de monitorización. Se ben seguimos a empregar regresións lineais
simples, demostramos formalmente que, no caso das anomalías, a pendente unicamente caerá
durante un número determinado de medicións consecutivas, mentres que no caso dun cambio
real o incremento na caída da pendente prolóngase durante moito máis tempo. Unha vez
probada esta afirmación, propoñemos unha implementación que habilita a detección robusta de
cambios, tanto instantáneos como graduais, en contornas susceptibles de presentar ruído.

Un dos principais retos á hora de detectar os cambios neste tipo de contornas pasa por
identificar a cantidade de anomalías presentes nas execucións. Para resolver este problema
habitualmente recórrese ao coñecemento dun experto no domino, que indica a probabilidade
de anomalías de xeito manual tras realizar algún tipo de análise do proceso. Neste caso,
propoñemos un método automático de aproximación á estimación da porcentaxe ruído que
habilita a súa detección en contornas onde non sexa posible contar coa colaboración de expertos.
Para esta estimación baseámonos en métodos ben coñecidos na aprendizaxe automática, que
ponderan en certa medida o beneficio de engadir máis información a un modelo fronte ao
custo que isto ten asociado; tendo en conta que o comportamento anómalo debera ser pouco
frecuente, mentres que o comportamento esperado do proceso debera estar moito máis presente
no rexistro. Especificamente, o método avalía a porcentaxe de comportamento observado no
rexistro de execución que é capturado polo modelo a medida que este se vai estendendo, de
forma que o que se busca é o punto óptimo a partir do cal engadir máis comportamento ao
modelo non fai que se soporten moitas máis trazas.

R-CRIER foi avaliado empregando un total de 528 rexistros sintéticos xerados a partir dun
modelo de proceso real extraído da literatura, con porcentaxes de ruído entre 0% e 25%, e con
cambios tanto instantáneos como graduais. Os resultados obtidos foron comparados cos das
principais aproximacións do estado do arte empregando as mesmas métricas que para C2D2 e
CRIER. Neste caso, R-CRIER presenta os mellores resultados en termos de fiabilidade, á vez
que mantén uns valores de retardo bastante baixos. Pola contra, a aproximación que obtén
mellores valores de retardo faino a costa de sacrificar en gran medida a fiabilidade, polo que se
volve inoperante para contornas reais.

Co desenvolvemento destas tres aproximacións podemos dar por satisfeitos os obxectivos
da tese de doutoramento, proporcionado como resultado final tres aproximacións que melloran
as propostas do estado do arte na detección de cambios instantáneos e graduais no fluxo de
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control dos procesos, e alicerzados por demostracións formais que validan as hipóteses de
partida.
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Summary

If I had had more time, I would have written a
shorter letter.

— Blaise Pascal

On a daily basis we use processes, often without even realizing it. Various fields such as IT
management systems [1], monitoring high-performance athletes [2, 3], healthcare [4, 5, 6, 7]
or engineering methodologies [8, 9, 10] utilize processes to structure their activities. In an
increasingly globalized environment, where markets are open worldwide and making timely
decisions is crucial, it is essential to be aware that the nature of processes is dynamic. Therefore,
processes must evolve to adapt to their environment and successfully achieve their objectives.
The wide variety of applications and the significant amount of data generated during process
execution make it essential for such adaptation to occur automatically. This ensures we have
precise, reliable, and accurate information available at all times.

In response to the need for analyzing all this information, different techniques have emerged
that allow modeling, interpreting, and improving process performance. These techniques
fall under the umbrella of Business Process Management (BPM). BPM consists of several
cyclically developed phases. It begins with the identification of the process, its architecture,
and its performance. This is followed by the process discovery and documentation phase.
Subsequently, an analysis stage takes place to identify weaknesses and issues that may affect
the overall process performance. After the analysis stage, taking into account the obtained
insights, a redesign of the process is carried out, aiming to improve its performance from
various perspectives. This redesigned process is then implemented in a supervised environment,
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and its executions are monitored to gather information about its development and enable cyclic
improvement.

One of the main challenges in applying BPM techniques in the real world is that the majority
of tasks must be performed manually by an expert or require a high level of user interaction. To
reduce this intervention, a new discipline called Process Mining (PM) has emerged, bridging
the gap between Business Process Management and Business Intelligence on one side, and
Data Mining and Machine Learning on the other side. PM aims to automate many of these
tasks in order to minimize human intervention. By automatically extracting information from
process execution logs, PM allows us to interpret what is actually happening in a process,
rather than relying on assumptions, enabling informed decision-making. Most PM techniques
operate based on the analysis of event logs, which are sets of execution traces consisting of
events that record the completion of specific tasks, along with their start and end times, and
other additional attributes such as the resources used or their cost, among others.

PM techniques can be classified into three main groups. Firstly, we have the discovery
methods, where based on the content from the event logs, the relationships of precedence
between the activities that compose the process are sought in order to extract some kind of
model that defines the structure of the process. These process models can be classified into two
major families: imperative models, which capture all the constraints between activities to define
the process flow, and declarative models, which are based on defining declarative rules that
restrict the precedence between certain activities. Some examples of state of the art discovery
algorithms include Inductive Miner, Heuristics Miner, Split Miner, and ProDiGen. Secondly,
we have conformance checking techniques, which compare process models against event logs
to assess how much of the behavior the former supports compared to the latter. These metrics
quantify the discrepancies and misalignments between the process models and their executions,
allowing for an evaluation of the quality of the models in representing the actual behavior of
the processes. These techniques can be divided into three main families: fitness metrics, which
measure how much behavior in the event log is supported by the model, evaluating the extent
to which the actual executions deviate from the expected behavior; precision/generalization
metrics, which assess the amount of behavior that the model supports compared to what is
observed in real executions; and complexity/simplicity metrics, which evaluate the structural
complexity of the model. Thirdly, we have the process enhancement tasks, which aim to
analyze the functioning of the process and extend or refine the model to improve various
perspectives. Within this family of techniques, we can find algorithms focused on repairing
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the model to better fit the observed behavior in the executions, as well as algorithms aimed
at extending process knowledge to optimize execution times, find bottlenecks, predict critical
paths or patterns, or detect and correct anomalous behaviors.

Furthermore, PM techniques can be classified according to the perspective of the process
they analyze. Thus, there are techniques that analyze the process from the control flow
perspective, focusing on the structure of the activities and the constraints between them. These
techniques are used to discover models or verify that activities are performed in the correct
order. There are also techniques centered on the organizational perspective, which analyze
resource allocation and optimize their utilization. For example, they may be used to replan
work schedules. Other techniques address the case perspective, analyzing specific attributes to
extract common features from a subset of cases that meet certain requirements, such as those
that provide greater benefits. Lastly, there are techniques focused on the temporal perspective,
which analyze execution and waiting times to identify delays in the execution of certain tasks or
reasons for long-duration executions. These perspectives are not exclusive but can be combined
to provide a broader view of the process.

As mentioned earlier, processes are increasingly present in our day to day. In a highly
competitive world, it is necessary for processes to adapt to the reality of users in a flexible and
agile manner. Therefore, processes must be flexible enough to allow changes in the control
flow. These changes can be consciously made by process managers, but they can also be
driven by external circumstances beyond their control. It is important that these changes are
not overlooked by process managers, as they can lead to increased costs or reduced process
performance. Therefore, having up-to-date information at all times is crucial in order to adapt
the process promptly and make decisions as quickly as possible to optimize their impact.
Recently, various techniques have been proposed to manage these process changes by analyzing
the evolution of execution cases in a more or less automated way. These techniques aim to
provide insights into the changes occurring in the process, identify patterns or anomalies,
and facilitate decision-making regarding process adaptations. By monitoring the execution
cases and analyzing their behavior over time, these techniques enable process managers to stay
informed about process dynamics, detect potential issues or opportunities, and take appropriate
actions to ensure the process continues to meet its objectives effectively.

The need to manage changes is not new. Originally, drift management techniques emerged
in the fields of machine learning and predictive monitoring with the goal of detecting when
the variables used for making predictions change, thereby invalidating the results. However,
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these techniques were not widely adopted in process mining until recent years. In contrast,
most process mining approaches still consider processes as static entities that do not evolve.
Managing changes in processes involves three distinct stages: detection, localization, and
characterization. The detection stage determines whether a change exists or not. The
localization and characterization stages analyze the timing, location, and nature of the change.
Finally, the analysis stage aims to explain the reasons behind the change. In this disertation, we
will focus on proposals that address the detection and temporal localization phases of change
management. These proposals aim to identify and locate changes in processes over time,
enabling process managers to understand when and where the changes occur. By effectively
detecting and localizing changes, organizations can respond promptly and appropriately,
ensuring the smooth and efficient functioning of their processes.

There are multiple ways to classify drift management algorithms. Depending on how they
use the data, we can find algorithms that use a single data point at each instant and others
that use a sample of values, known as a window. The former have the disadvantage of taking
more time to detect a change, while the latter heavily rely on selecting an appropriate window
size to capture all the behavior. Furthermore, these windows can have a fixed or variable size
that adjusts automatically at runtime, thereby reducing the complexity of selecting an optimal
size. On the other hand, depending on the mechanism used to weigh the value of information
based on its age, we can find algorithms with gradual or abrupt forgetting mechanisms. The
former use more data for change evaluation, giving more importance to recent data while not
disregarding older ones, which can delay change detection. The latter, on the other hand, only
use a subset of historical values for detection. These latter algorithms can be further divided
into those based on probabilistic sampling and those based on a temporal window, which only
consider the most recent values, similar to a limited-sized queue. All the algorithms presented
in this thesis are based on the use of a temporal window of fixed or adaptable size.

Finally, changes can also be classified according to their temporal distribution. We will
have sudden changes when one model abruptly replaces another, without intermediate steps.
On the other hand, we will have gradual changes when both the pre-change and post-change
models coexist for a period of time, and executions of both can be found during that period.
Furthermore, changes can be incremental when we can identify intermediate models until the
new process stabilizes, and recurrent when they occur periodically. This classification is not
mutually exclusive except for the first two types: a change will always be either sudden or
gradual but can, in turn, be part of an incremental change if it occurs in a context where the
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final model does not stabilize. Moreover, all changes (sudden, gradual, or incremental) can
constitute a recurrent change if the behavior alternates cyclically with a certain periodicity.
Lastly, but not less important, we must differentiate a change from an anomalous execution,
which is due to a spurious alteration of the process that does not persist over time.

Recently, several authors have proposed methods for change detection in processes, following
different approaches, each with its advantages and disadvantages. For instance, we can find
proposals that align a process model with the real executions [11, 12, 13]. On the other hand,
there are proposals based on using graphs, such as those presented in [14, 15], which represent
the process as a graph and analyze its evolution over time. We can also find proposals based on
the use of clustering techniques and the study of the evolution of these clusters over time, as
presented in [16, 17, 18, 19]. However, none of these proposals manages to detect all possible
change patterns with high reliability while maintaining low latency.

Now, if we analyze what happens to compliance metrics when a change occurs in the
structure of a process, we can observe that when an activity disappears from the model, the
amount of behavior supported by the model is reduced. However, when a new activity or
relationship between activities appears in the model, the behavior supported by the model
exceeds what is observed in the traces. Similarly, it can be observed that when activities appear
or are removed from the traces, the amount of behavior that the model can explain typically
changes. Based on these considerations, we can formulate the hypothesis upon which this thesis
is developed: evaluating the evolution of conformance metrics throughout the life of a
process can allow us to reliably and quickly detect sudden and gradual changes. Based on
this hypothesis, we propose three methods for robustly detecting sudden and gradual changes.

First of all, we introduce C2D2, an algorithm focused on the reliable detection of sudden
drifts with low delays. To achieve this, the algorithm defines a reference time window and
discovers a process model based on the events contained within it. It then monitors the evolution
of the fitness and precision metric for successive windows using simple linear regressions. The
idea behind this algorithm is that, in the absence of changes, the metrics values should remain
stable around a certain value. In other words, the slope of the regression calculated on the
historical metrics values should be close to zero, regardless of the specific value of the metrics
themselves. To reinforce this idea, we demonstrate that the combination of fitness and precision
enables the detection of changes in the process control flow. We also show that using only one
of these metrics limits the detectable change patterns. Additionally, we propose a method for
automatically calculating the optimal size of the detection window. This method is based on an
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iterative process in which three process models are discovered from three consecutive windows
of a given size, and the behavior captured by these models is compared. If the three models
capture the same behaviour, the window size is increased, until at least one of the three models
exhibits different behavior from the other two.

One of the main issues with C2D2 is the high computational complexity derived from the
conformance metrics, which need to be calculated multiple times for each processed window.
To address this problem, we propose two estimations of the change in metrics. Although
these estimations should not be used to measure absolute values per se, they are useful for
evaluating how the metrics evolve over time. These change estimations have a much lower
computational cost compared to the metrics proposed in the state of the art, resulting in better
results when detecting changes. The proposed estimations are as follows: (i) For fitness, the
percentage of traces that can be successfully replayed from start to finish in the model. (ii) For
precision, a metric that compares the set of pairs of reachable activities from the model to pairs
of successive activities observed in the traces. This gives us an idea of the percentage of paths
present in the model that are observed at least once in the actual executions.

C2D2 has been validated using 204 synthetic event logs generated from 3 real process
models extracted from the literature. The detection results have been compared with the
results obtained by the top 3 state of the art algorithms using common metrics for this type of
problem. Specifically, accuracy, which evaluates the number of correct and incorrect detections,
and delay, which measures how long the algorithm takes to detect the change once it occurs.
The validation results show that C2D2 achieves better results in terms of reliability while
maintaining very low detection delay values. These results were also evaluated using statistical
tests, which validate the previous conclusions in all cases.

In the second place, we present CRIER, which builds upon the premises used as the basis
for defining C2D2, namely the use of fitness and precision metrics and their monitoring through
linear regressions for change detection, but extends the approach to enable the detection of
gradual changes instead of being limited to sudden drifts. The fundamental principle behind
CRIER operation is that every gradual change will be delimited by two detections that have
the particularity that the behavior between these two points can be defined as a combination
of the behaviors exhibited before and after that change. To substantiate the development of
the algorithm, we formally prove that this idea is correct and that, furthermore, the first of the
changes will be due to a drop in model fitness, resulting from the inclusion of new behavior
that has not been observed before and therefore was not part of the behavior captured by the
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model discovered from the reference window, while the second change will be due to a drop in
precision, as the original behavior of the process disappears from a specific moment onwards.

Thus, to verify that this intermediate behavior is a combination of the other two, we propose
a method that checks for the existence of behavior originating from the models before and after
the change and ensures that all executions during the interval of change belong to one of them.
This approach eliminates the need to perform any fitting to specific probability distributions,
which provides greater flexibility to the algorithm by not imposing any restrictions on the type
of combination present during the gradual change.

In addition, CRIER has been evaluated using 120 synthetic event logs generated from a
real process extracted from the state of the art, as well as 12 different probability distributions
for the change segments. The obtained results were compared with those of the main state
of the art approaches using the same accuracy and delay metrics that were used to evaluate
C2D2. Furthermore, a new metric called change coverage is proposed to evaluate this type
of algorithm, which quantifies the percentage of the change segment detected as such by the
algorithm. Once again, the results were evaluated using statistical tests, clearly demonstrating
that CRIER achieves the best results in all three metrics.

The last algorithm we propose is called R-CRIER, and enables the detection of both sudden
and gradual changes in environments that may contain anomalous executions leading to false
positives (also known as noise). The main challenge in detecting changes in processes prone to
noise is distinguishing between a real change and an anomalous execution or outlier whose
behavior does not persist over time. To address this detection challenge, we build upon the
premises established earlier (namely, the evaluation of fitness and precision metrics) but modify
the monitoring stage. While we continue to employ simple linear regressions, we formally
demonstrate that in the case of anomalies, the slope will only decline for a certain number of
consecutive measurements, whereas in the case of a real change, the slope’s decline will persist
for a much longer period. Having validated this claim, we propose an implementation that
enables robust detection of both sudden and gradual changes in environments prone to noise.

Indeed, one of the main challenges in detecting changes in such environments lies
in identifying the level of anomalies present in the executions. Typically, this challenge is
addressed by leveraging the knowledge of a domain expert who manually assesses the likelihood
of anomalies after analyzing the process. However, in this case, we propose an automatic
method for estimating the percentage of noise, enabling its detection in environments where
expert collaboration is not possible. To estimate the noise percentage, we rely on well-known
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methods in machine learning that weigh the benefit of adding more information to a model
against the associated cost Given that anomalous behavior should be infrequent while the
expected behavior of the process should be prevalent in the execution log, the method evaluates
the percentage of observed behavior captured by the model as it is extended. The goal is to find
the optimal point at which adding more behavior to the model does not significantly increase
the number of supported traces.

R-CRIER was evaluated using a total of 528 synthetic records generated from a real process
model extracted from the literature. The logs had noise percentages ranging from 0% to 25%
and included both instant and gradual changes. The results were compared with those of leading
state of the art approaches using the same evaluation metrics as C2D2 and CRIER. In this case,
R-CRIER achieved the best results in terms of accuracy while maintaining relatively low delay
values. On the other hand, the approach that achieved better delay values did so at the expense
of significantly sacrificing reliability, rendering it ineffective for real-world environments.

With the development of these three approaches, we can consider the objectives of the Ph.D.
dissertation fulfilled, resulting in three approaches that improve the state of the art proposals in
the detection of sudden and gradual changes in the process control flow. These approaches are
supported by formal demonstrations that validate the initial hypotheses.

xxxii





Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Hypothesis and objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4 Other Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.5 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.6 Document structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 Related work 23
2.1 Sudden drift detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2 Gradual drift detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Sudden drift detection 35
3.1 Sudden drift detection using conformance metrics . . . . . . . . . . . . . . . 37
3.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3 Experimentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4 Gradual drift detection 57
4.1 Gradual drift detection using conformance metrics . . . . . . . . . . . . . . 58
4.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3 Experimentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75



Contents

5 Robust drift detection 77
5.1 Robust drift detection using conformance metrics . . . . . . . . . . . . . . . 78
5.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.3 Experimentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6 Conclusions 95

Appendix A Sudden drift detection: supplementary experiments 101
A.1 Central venous catheter process . . . . . . . . . . . . . . . . . . . . . . . . . 101
A.2 Hospital emergency ward process . . . . . . . . . . . . . . . . . . . . . . . 104

Appendix B Gradual drift detection: supplementary experiments 109
B.1 Linear logs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
B.2 Gaussian logs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
B.3 Exponential logs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
B.4 Constant logs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Appendix C Robust drift detection: supplementary experiments 117
C.1 Sudden changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
C.2 Gradual changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

List of publications included in this Ph.D. dissertation 143

Bibliography 145

List of Figures 155

List of Tables 157

xxxv





CHAPTER 1

INTRODUCTION

He that climbs a ladder must begin at the first
round

— Walter Scott

1.1 Motivation

Processes are present all around us. From IT service management [1] to performance in
high-level athletes [2, 3], healthcare [4, 5, 6, 7] or software engineering [8, 9, 10], organizations
all around the globe use processes to shape their operations. With such a broad array of
scenarios, it has become critical to be aware that the nature of processes is dynamic, so they
must evolve and adapt to the environment quickly to properly serve their intended purpose.
The wide variety of applications for processes and the large amount of data generated by their
execution makes it essential that such adaptation is automatically done as much as possible, so
that any process owner has accurate, reliable and truthful information when making decisions
about the way the organisation operates.

In response to the need for analysing all this information, over the last decades, different tools,
techniques and mechanisms have emerged to support organisations in modelling, interpreting,
and improving their processes. All these techniques are brought together under the umbrella of
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Figure 1.1: Business Process Management framework lifecycle (adapted from [20]).

the Business Process Management (BPM) paradigm, which seeks to consolidate and integrate
all these proposals with the aim of being interoperable. To address the goal of providing hints
on how to improve processes, BPM defines a framework, depicted in Figure 1.1, in which
processes go through several phases: identification of the process, discovery of a model as
close as possible to how it is executed, analysis of weaknesses and potential optimisations,
redesign of the process, implementation and deployment on its production environment, and
monitoring and verification of its conformance with the respect to the designed one [20].

The most challenging factor when applying BPM techniques in the real world is that
the majority of the tasks have to be performed manually, or require a high level of user
interaction — for example, when designing a process model or when identifying opportunities
for improvement—, which makes it difficult to deal with processes involving a large number of
executions. In an attempt to address these issues, a new research discipline —called Process
Mining (PM) [21]— has emerged with the aim of automating and improving many of the above
problems through the use of techniques that reduce the intervention required by the process
owners. PM stands in between BPM and Business Intelligence, on the one hand, and Data
Mining and Machine Learning, on the other one, acting as a bridge between these two worlds.
The process mining framework, depicted in Figure 1.2, relies on the extraction of valuable
information from event logs, recording the execution of the activities that are part of a process
in the form of events and traces. From the analysis of these logs, PM techniques allow us
to interpret what is actually happening in a process, rather than what we think is happening,
enabling us to take decisions accordingly [21].
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Definition 1: Event

Given the set of activities A that conform a process, an event 𝜀 can be defined as the
execution of an activity 𝛼 ∈ A at a given instant 𝑡 in the context of a process instance
𝑐. The activity name 𝜀.𝑎, the timestamp 𝜀.𝑡 and the process instance identifier —often
referred to as case— 𝜀.𝑐 are the only mandatory attributes of an event, which can
also have other generic attributes, such as the resources that perform the activities, or
domain-specific attributes, understood as variables whose values are modified in the
activity execution.

Definition 2: Trace

Given the full set of events E recorded from the execution of a process, a trace 𝜏 can be
defined as the ordered sequence of the events belonging to the same process instance 𝜏.𝑐,
where the order is defined by the events timestamp.
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𝜏 = ⟨𝜀0, . . . , 𝜀𝑛⟩ : ∀𝑖, 𝑗 ∈ N, (𝜀𝑖 , 𝜀 𝑗 ∈ E), (𝑖 < 𝑗) → (𝜀𝑖 .𝑐 = 𝜀 𝑗 .𝑐) ∧ (𝜀𝑖 .𝑡 < 𝜀 𝑗 .𝑡).

We denote as 𝐵𝜏 the behaviour observed in a trace 𝜏, represented as an ordered sequence
of activities:

𝐵𝜏 = ⟨𝛼0, . . . , 𝛼𝑛⟩ : ∀𝜖𝑖 ∈ 𝜏 → 𝛼𝑖 = 𝜖𝑖 .𝑎

Definition 3: Log

A log can be defined as an sequence of traces 𝐿 = ⟨𝜏0, . . . , 𝜏𝑛⟩ where each trace represents
a different process instance, that is, �𝜏𝑖 , 𝜏𝑗 ∈ 𝐿 : 𝜏𝑖 .𝑐 = 𝜏𝑗 .𝑐, and the order is given by
the timestamp of the last event in each trace. We denote as 𝐵𝐿 = {𝐵𝜏0 , . . . , 𝐵𝜏𝑛 } the set
containing the behaviour observed in the log 𝐿. This behaviour is composed by the set
of distinct behaviours captured in the traces of the log. The size of 𝐵𝐿 will always be
smaller than or, at most, equal to the size of the log |𝐵𝐿 | ⩽ |𝐿 |.

Table 1.1 shows an example of an event log with 3 different traces, 15 events, 5 activities, and 6
resources. In this example, the behaviour observed in the log 𝐿 is:

𝐵𝐿 =


⟨Lock feature, Check restrictions, Build part, Integration test, Quality test⟩

⟨Lock feature, Interview customer, Build part, Quality test, Integration test⟩


where the upper sequence contains the behaviour observed in cases #aaa and #aab, while the
lower sequence contains the behaviour for the case #aac.

As Figure 1.2 shows, typically, process mining is divided into three large and well-
differentiated areas [21]. On the one hand, proceess discovery techniques, which extract the
relations and constraints between the process activities to construct a model that describes
the structure of the process based on the behaviour observed in a log. Examples of discovery
algorithms available in the state of the art include the 𝛼-algorithm [22], Inductive Miner [23],
Heuristics Miner [24], Split Miner [25] or ProDiGen [26], among other. The output of
these techniques is a process model, and, while there is no standard representation for it,
most approaches generate Petri nets, mainly because they are a mathematical formalism with
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Table 1.1: Example of a log with 15 events belonging to 3 diferent traces. It records the execution
of 5 different activities by 6 resources.

Case Timestamp Activity Resource Cost (C)

#aaa 01/10/2021 08:01 Lock feature Phoebe 1.24
#aaa 01/10/2021 08:53 Check restrictions Phoebe 3.12
#aab 01/10/2021 11:40 Lock feature Rachel 2.74
#aac 01/10/2021 09:12 Lock feature Ross 1.56
#aac 01/10/2021 09:33 Interview customer Ross 7.32
#aac 01/10/2021 11:48 Build part Ross 3.24
#aab 01/10/2021 11:49 Check restrictions Rachel 1.97
#aaa 01/10/2021 08:57 Build part Phoebe 6.43
#aab 01/10/2021 16:18 Build part Rachel 5.22
#aac 01/10/2021 12:16 Quality test Monica 1.11
#aaa 01/10/2021 13:45 Integration test Chandler 2.76
#aab 01/10/2021 17:23 Integration test Joey 1.85
#aaa 01/10/2021 13:37 Quality test Monica 3.92
#aac 01/10/2021 16:22 Integration test Joey 1.69
#aab 01/10/2021 17:35 Quality test Monica 2.99

a graphical interpretation, facilitating users model comprehension. Other approaches use
representations that can be converted into a Petri net without loosing information, such as
process trees [23] or causal nets [27]. Consequently, in this Ph.D. dissertation, we use Petri
nets to represent our process models.

Definition 4: Petri net, Workflow net

A Petri net is a bipartite graph that can be defined by a tuple 𝑁 = (𝑃,𝑇, 𝐹), where:

• 𝑃 is a finite set of places;

• 𝑇 is a finite set of transitions;

• 𝑃 ∩ 𝑇 = ∅;

• 𝐹 ⊆ (𝑃 × 𝑇) ∪ (𝑇 × 𝑃) is a set of directed arcs.

Let 𝑥 ∈ 𝑇 ∪ 𝑃 be a node from the Petri net. We denote •𝑥 = {𝑦 | (𝑦, 𝑥) ∈ 𝐹} as the set of
input nodes of 𝑥, and 𝑥• = {𝑦 | (𝑥, 𝑦) ∈ 𝐹} as the set of output nodes of 𝑥. A Petri net is
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Figure 1.3: Petri net capturing the behaviour observed in the log from Table 1.1.

a workflow net [28] if and only if:

• ∃!𝑖𝑛 ∈ 𝑃 : •𝑖𝑛 = ∅, i.e., there exists a unique place in the net with no inputs;

• ∃!𝑜𝑢𝑡 ∈ 𝑃 : 𝑜𝑢𝑡• = ∅, i.e., there exists a unique place in the net with no outputs;

• Adding a transition 𝑡∗ to the net such that •𝑡∗ = 𝑜𝑢𝑡 and 𝑡∗• = 𝑖𝑛 results in a strongly
connected graph, i.e., all 𝑡 ∈ 𝑇 are in a path from 𝑖𝑛 to 𝑜𝑢𝑡;

The state of a Petri net, namely a marking, is a function 𝑚 : 𝑃 → N that indicates the
number of tokens contained in the place 𝑝 ∈ 𝑃. In the initial marking of a workflow
net, denoted as 𝑚0, only the place 𝑖𝑛 contains a token. Let 𝑡 ∈ 𝑇 be a transition from
the Petri net. We say 𝑡 is enabled when ∀𝑝 ∈ •𝑡 → 𝑚(𝑝) > 0, i.e., when all its input
places have at least one token. When an enabled transition is fired, it consumes a token
from each input place and produces a new token in each output place. We call a firing
sequence to a sequence of transitions fired to reach 𝑚𝑛 from 𝑚0, where 𝑚𝑛 (𝑜𝑢𝑡) = 1 and
∀𝑝 ∈ 𝑃 : 𝑝 ≠ 𝑜𝑢𝑡 → 𝑚𝑛 (𝑝) = 0.

In the rest of this dissertation, when referring to Petri nets, we assume we are talking about
workflow nets. Figure 1.3 shows an example Petri net, where circles represent places, rectangles
represent transitions and a black dot represents a token. We call 𝐵𝑁 to the set containing the
behaviour supported by the net 𝑁 —i.e., all the unique firing sequences of the net. Following
with the example net from Figure 1.3, the behavior of the model is:

𝐵𝑁 =



⟨Lock feature, Check restrictions, Build part, Quality test, Integration test⟩

⟨Lock feature, Check restrictions, Build part, Integration test, Quality test⟩

⟨Lock feature, Interview customer, Build part, Quality test, Integration test⟩

⟨Lock feature, Interview customer, Build part, Integration test, Quality test⟩


The second group of techniques, namelly conformance checking techniques, compare the

behaviour observed in a log with the one captured by a model in order to assess whether they
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fit each other properly. Their objective is to quantify the discrepancies between the actual and
the expected behaviour, so that misalignments can be identified and addressed. Within these
techniques we can find further subgroups depending on whether the purpose is to quantify how
much of the observed behaviour deviates from the expected, how much unobserved behaviour is
supported by the model, or the complexity of the model. Specifically, in this Ph.D. dissertation
we use two families of conformance checking metrics, namely fitness and precision, in order to
detect changes in the control-flow of a process.

Definition 5: Fitness metric

Fitness measures the fraction of behaviour observed in the log that is captured by the
model [29].

𝛾(𝐿, 𝑁) = |𝐵𝐿 ∩ 𝐵𝑁 |
|𝐵𝐿 |

Many techniques have been proposed for fitness computation [30], that vary on how the
compliance degree of the model with respect to the log traces is calculated [31, 32, 33].

Definition 6: Precision metric

Precision measures the fraction of allowed behaviour that is observed in the log [29].

𝜌(𝐿, 𝑁) = |𝐵𝐿 ∩ 𝐵𝑁 |
|𝐵𝑁 |

Again, many implementations have been also proposed in the state of the art [31, 33, 34, 35],
varying the way of measuring the amount of additional behavior supported by the model.

The last group of process mining techniques is known as enhancement techniques. Their
the objective is the analysis of a process and its extension or refinement using knowledge
extracted from previous executions. Some examples of the enhancement techniques are process
repair techniques, in which the constraints of the model are updated to better support the
real behaviour [36, 37]; or extension techniques, where the model is augmented to optimize
execution times [38], predict bottlenecks[39, 40], or detect anomalous behaviour [41, 42].

Finally, logs can be analysed from different but complementary perspectives [21]:

• The control-flow perspective, which focuses on the structure of the activities in the process
and the constraints and dependencies between them. Thus, the aim is to analyse the order
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in which the different activities have been or should be executed. This perspective is the
most commonly and widely explored, and is often the entry point for process mining
analytics.

• The organisational perspective is focused on analysing the resources involved in the
execution of the sequence of activities within the process, either human resources,
automated systems or physical locations of the organisation. The main objective of these
approaches is typically to organise and optimise the use of these resources or to explore
how they interrelate to each other.

• The case perspective, that focus on analysing attributes that are characteristic of process
instances. For example, when we have multiple executions that do not conform to the
expected behavior, we can analyze the context of those instances and retrieve what they
have in common to anticipate when new instances will deviate from the model.

• The time perspective refers to the analysis of time spent in the execution of the different
activities, the waiting times between activities, the inactivity periods in a specific
execution or the frequency of the different activities, among others. When timestamps
are available in the log, in addition, we can detect critical paths, bottlenecks or predict
the remaining time, among others.

Yet, these perspectives are not exhaustive, but they provide a good starting point to
characterise most of the analytics of a process. Moreover, process mining techniques do not
have to focus exclusively on a single perspective, but can address several ones at the same
time —e.g., the organisation’s resource performance and its optimisation can be analyzed
simultaneously from the resource and the time perspectives—. In this Ph.D. dissertation, we
have focused only on the control-flow perspective, but the designed alorithms could be adapted
to take into account also other perspectives with a reasonably low effort.

1.1.1 Concept drift

Business processes are dynamic by nature. On the one hand, process changes originating
internally in organisations —e.g., schedule changes or staff rotations— often have an intentional
origin, and need to be taken into account when modelling the relationships and constraints
between different activities. On the other hand, changes resulting from external factors —e.g.,
legislative changes or changes in user consumption patterns— are often beyond the control
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of the process owners, and therefore may go unnoticed until they have a real impact on the
execution of processes. To reduce the potential impact of these unexpected and unintended
changes, the task of designing algorithms to detect them automatically with a minimal human
intervention is very relevant.

The notion of concept drift [43, 44] arises in the fields of machine learning and predictive
analytics. It and refers to the modifications of the statistical properties of the variable to be
predicted, which cause the reliability of the models to decrease over time. While concept drift
has been explored quite extensively in both machine learning and business process management,
it has received much less attention in process mining. Instead, most approaches consider
processes as static entities that do not evolve over time, thus underperforming in changing
environments. Handling concept drift in process mining should encompass three distinct
tasks [45]:

1. Change detection, which answers the question is there a change in the process? This
task is responsible for determining whether a change has or has not taken place.

2. Localization and characterisation of the change, which answers the questions where is
the change? and how have the data changed? Thus, this task analyses since when and
how the change has affected the performance of the process.

3. Analysis of the change, which answers the question why have the data changed? This
task tries to explain the changes causes and to identify the factors that may have led to
the process shift.

There are two main factors that must be taken into account when designing a concept drift
algorithm [46]. On the one hand, the model must be periodically updated with new incoming
data, which represent the latest version of the concept. On the other hand, old data, which
may represent outdated concepts, must be somehow identified, so that the old behavior is not
mistaken for current behavior. Accordingly, concept drift algorithms can be classified in the
following taxonomy:

1. Depending on how data are managed (Figure 1.4), algorithms can use either a single
example at each instant and perform an error-driven model update, taking longer to detect
changes; or a set of the most recent data, namely a window, which is updated when
new data are received. The window size plays a critical role in the performance of the
algorithms that implement this strategy. Thus, a window size too small will improve
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Figure 1.4: Taxonomy of concept drift algorithms based on their memory management: data
management-driven classification (adapted from [46]).
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Figure 1.5: Taxonomy of concept drift algorithms based on their memory management: forgetting
mechanism-driven classification (adapted from [46]).

the time performance of change detection, but will worsen the performance in periods
without changes; while a window size too large will take longer to detect changes but
have better performance in periods without changes. To solve this problem, windows can
have a fixed size or a variable size that is automatically adapted during the execution.

2. According to the forgetting mechanism employed (Figure 1.5), algorithms can be classified
into gradual forgetting and abrupt forgetting. The former considers all of the examples
and assigns to each one a weight, giving a greater weight to the most recent data and
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𝜏0 𝜏1 𝜏2 𝜏3 𝜏4 𝜏5 𝜏6 𝜏7
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Figure 1.6: Example of the sliding window behaviour.

reducing the weight as the data becomes older. The latter consider a window of a
restricted size and, as newer observations are received, forgets the older examples. These
approaches can also be classified into two subtypes: those based on a sampling approach,
in which each time a new observation is received a probability of belonging to the sample
is assigned to it; and those that follow a first-in-first-out (FIFO) strategy, forgetting the
oldest observations each time a new observation is received. The later are called sliding
windows, and their size can be defined on the basis of a constant number of observations
or on the basis of a temporal duration, which will cause the window size to change
according to the new observations rate.

All the methods presented in this Ph.D. dissertation use a window with an abrupt forgetting
mechanism (sliding window).

Definition 7: Sliding window

The sliding window of size 𝑛 over a log 𝐿 is defined as 𝜔𝑖 (𝐿, 𝑛) = ⟨𝜏𝑖−𝑛+1, . . . , 𝜏𝑖⟩, where
its content is conformed by the most recent 𝑛 traces present in the log at instant 𝑖. When
a new trace is read from the log, the window slides one position, so the oldest trace is
forgotten and the new trace is incorporated. This way, the algorithm only takes into
account the most recent information for detecting changes.

Figure 1.6 shows an example log and the behaviour of a six-sized sliding window over it. At
instant 𝑡5, the sliding window 𝜔5 contains traces 𝜏0 to 𝜏5. At instant 𝑡6 a new trace is read from
the log, so the oldest trace in the window (𝜏0) is forgotten and the new trace (𝜏6) is added to the
window. This behaviour continues until the full log has been read.

In addition to this classification, concept drift algorithms can also be grouped according
to how datasets are processed: (i) offline algorithms, which perform the analysis once all the
data are available, allowing a post-mortem analysis of the evolution of the observations; and
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Figure 1.7: Types of concept drift based on their occurrence over time.

(ii) online algorithms, which perform the analysis on-the-fly, as new data are generated, and are
usually oriented towards real-time decision making. In this Ph.D. dissertation we focus only on
the development of offline algorithms.

It should be mentioned that changes can occur in multiple forms, according to their temporal
distribution [46], as depicted in Figure 1.7:

1. Sudden changes, in which the new data distribution replaces the previous one immediately,
so that the change occurs at a specific instant of time.

2. Gradual changes, in which both distributions, the old and the new, coexist for a period of
time, alternating their appearance and fading away/becoming more present as the change
takes place. These changes are characterized by the fact that they do not occur at an
instant in time, but in a change region.

3. Incremental changes, in which a series of small successive changes occur due to
intermediate distributions in the data between the original and the final distribution. As
in the case of gradual changes, these changes are characterized by a region during which
the different models succeed each other.

4. Recurrent changes, which are repeated periodically over time with a certain frequency.
These changes are characterized more by the frequency with which they are repeated
than by the point or region in which they occur.

It should be highlighted that the first two change types are mutually exclusive. Thus, a
change will be either sudden or gradual, but can also be incremental and/or recurrent. In
addition, note that in business process management both incremental and recurrent changes can
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be approached as a sucession of sudden or gradual changes in the corresponding process model:
for incremental changes every model is different, while for recurrent changes, the different
models are repeated over time. For this reason, this Ph.D. dissertation has focused on both
sudden and gradual changes only.

Definition 8: Gradual drift, Sudden drift

A gradual drift is defined as a change where the behaviour before the change does not
disappear suddenly, but coexists with the one after the change for a period of time, while
vanishing until it is no longer observed. Given two time instants 𝑡1 and 𝑡2 that bound the
change, two models can be discovered, 𝑁<𝑡1 and 𝑁>𝑡2 , that capture the behaviour before
and after those instants. For a change to be considered as gradual, four conditions must
be satisfied:

1. The behaviours captured by the models discovered before 𝑡1 and after 𝑡2 are different:
𝐵𝑁<𝑡1

≠ 𝐵𝑁>𝑡2
.

2. Some of the behaviour observed between 𝑡1 and 𝑡2 is captured by the model
discovered before 𝑡1: 𝐵𝐿[𝑡1 ,𝑡2 ]

∩ 𝐵𝑁<𝑡1
≠ ∅.

3. Some of the behaviour observed between 𝑡1 and 𝑡2 is captured by the model
discovered after 𝑡2: 𝐵𝐿[𝑡1 ,𝑡2 ]

∩ 𝐵𝑁>𝑡2
≠ ∅.

4. All of the behaviour observed between 𝑡1 and 𝑡2 is captured either by the model
discovered before 𝑡1, by the model discovered after 𝑡2 or by both: 𝐵𝐿[𝑡1 ,𝑡2 ]

⊆
(𝐵𝑁<𝑡1

∪ 𝐵𝑁>𝑡2
).

If any of these conditions are not met, the change is considered a sudden change, where
the old behaviour is replaced instantly by a new one.

One of the biggest challenges in detecting conceptual drifts is to distinguish between real drifts
and outliers [47], i.e., anomalous observations that do not reflect a real change in the models,
but rather spurious executions that are not common and do not imply changes in the structure of
processes. To avoid confusing these two concepts, we introduce the term of a drift candidate, a
point with the potential to represent a change in the model but which must be confirmed later
to reject that it is an effect of the presence of noise in the data.
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Definition 9: Drift candidate

A drift candidate can be defined as a potential change in the structure of the process that
has to be confirmed later. Given two consecutive windows 𝜔𝑖 and 𝜔𝑖+1, and two process
models 𝑁𝑖 = (𝑃𝑁𝑖

, 𝑇𝑁𝑖
, 𝐹𝑁𝑖

, 𝜆𝑁𝑖
) and 𝑁𝑖+1 = (𝑃𝑁𝑖+1 , 𝑇𝑁𝑖+1 , 𝐹𝑁𝑖+1 , 𝜆𝑁𝑖+1) discovered from

each of these windows using the same discovery algorithm, we say that the window 𝜔𝑖

is a drift candidate when 𝑇𝑁𝑖
≠ 𝑇𝑁𝑖+1 ∨ 𝐹𝑁𝑖

≠ 𝐹𝑁𝑖+1 . A drift is confirmed only after
several successive windows are marked as drift candidates and, in that moment, the
change is pinpointed to the specific trace that triggered the change —the first trace of the
first candidate in the case of fitness, or the last trace of the first window in the case of
precision—.

1.2 Hypothesis and objectives

In process mining, a change in a model implies an immediate change in the conformance
measures. When a path from the model stops appearing in traces, it leads to reduced precision.
Conversely, if a new path that is not included in the model starts appearing in the traces, it
causes a reduction in fitness. These two situations suggest that there might be a connection
between process mining conformance metrics and concept drift detection. Therefore, the
hypothesis of the Ph.D. thesis can be formulated as follows:

Drift detection and classification can be addressed by analyzing how the fitness and
precision evolve along de process.

Considering this hypothesis, the main objective of this Ph.D. dissertation is to detect
automatically sudden and gradual changes in the structure of processes, based on the evolution
of the conformance metrics. The solution should reach a high accuracy, detecting all the
possible change patterns; maintain a low delay, allowing organizations to localize precisely
the instant when the change took place; and be robust to the presence of noise, to distinguish
between anomalous or infrequent behavior and real process changes. This main objective can
be split in three sub-objectives:

O1. The detection and localization of sudden drifts.
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The first objective is to design and develop an algorithm that can detect sudden control-
flow drifts in a process from an event log. As a reference, all the common change patterns
identified in process mining [48] should be supported by the algorithm.

O2. The detection and localization of gradual drifts.

The second objective is to detect gradual changes but, also, to differentiate when the
change is sudden and gradual. This is specially interesting because, in a real environment,
different type of changes can coexist, so being able to classify them is a requirement.

O3. The adaptation of the former solutions to noisy environments.

Finally, as a third objective, all the previous algorithms should be adapted to deal with
noisy and complex event logs, where the structure of the underlying processes can be
more complex, which can hinder the computation of conformance measures.

1.3 Research Contributions

The research developed in this Ph.D. dissertation led to the following contributions:

1. A formal, mathematical demonstration that conformance metrics can be used to
detect both sudden and gradual changes in the control-flow of a process.

We have proven, combining set theory and definitions of fitness and precision, that
monitoring these compliance metrics over time allows us to detect both sudden and
gradual drifts in the control-flow of a process.

2. C2D2: An algorithm for Conformance Checking-based Drift Detection.

We have proposed and successfully developed an algorithm (C2D2) for the detection and
localization of sudden changes in a process control-flow. C2D2 monitors the conformance
metrics along time using a a sliding window and a simple linear regression, being able to
detect all the change patterns with a high accuracy while maintaining a small delay. The
main contributions of C2D2 are as follows: (i) A method for detecting and identifying
the points where the control-flow of the process changes suddenly. (ii) A novel and
efficient estimator of the change in the precision of a model with respect to a set of traces.
(iii) The use of regression techniques to monitor sudden changes in the control-flow of a
process.
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3. CRIER: An algorithm for Conformance-based Gradual drift detection.

We have successfully developed an algorithm (CRIER) for the detection and localization
of gradual changes in the control-flow of a process. CRIER builds up on the same idea
that monitoring conformance metrics along time can serve to detect changes —as in
the case of the sudden drifts—, and extends it to deal with gradual changes. The main
contributions of CRIER are as follows: (i) A formal proof that a gradual control-flow
change will always imply some new and observable behaviour. (ii) A method for detecting
and determining the intervals where the control-flow of a process gradually changes.
(iii) A method for the classification of changes in sudden and gradual drifts.

4. R-CRIER: An algorithm for Robust drift detection in noisy environments.

We have designed and implemented a functional solution (R-CRIER) for robust drift
detection on noisy environments. R-CRIER starts with the lessons learned in the
development of both C2D2 and CRIER and, from there, adapts the monitoring of
conformance metrics to deal with noisy environments where anomalous executions can
lead to wrong detections. The main contributions of R-CRIER are as follows: (i) A formal
demonstration that monitoring the slope of a regression computed over conformance
metrics values during some time can allow drift detection in noisy environments reducing
the number of false positive detections. (ii) A method for detecting an localizing sudden
and gradual drifts with a high accuracy even on high-noise environments.
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All the contributions shown in this dissertation are included in the following publications:
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• Víctor Gallego-Fontenla, Juan Vidal and Manuel Lama, A Conformance Checking-
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Journal Impact Factor (JCR 2021): 11.019
5/164 (Q1) COMPUTER SCIENCE, INFORMATION SYSTEMS
2/110 (Q1) COMPUTER SCIENCE, SOFTWARE ENGINEERING
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• Víctor Gallego-Fontenla, Juan Vidal and Manuel Lama, Gradual Drift Detection
in Process Models Using Conformance Metrics, Business & Information Systems
Engineering, Submitted. ISSN: 2363-7005. doi: 10.48550/arXiv.2207.11007.

Journal Impact Factor (JCR 2021): 5.675
33/164 (Q1) COMPUTER SCIENCE, INFORMATION SYSTEMS

National Conferences

• Víctor Gallego-Fontenla, Juan Vidal and Manuel Lama, Detección de concept drift
en minería de procesos basado en agrupamiento de trazas, Jornadas de Ciencia e
Ingenieria de Servicios (JCIS), 2018. hdl: 11705/JCIS/2018/005.

• Manuel Lama, Juan Vidal, Víctor Gallego-Fontenla and Álvaro Porto Ares, Recomen-
dación de actividades gamificadas basada en minería de procesos, Jornadas de
Ciencia e Ingenieria de Servicios (JCIS), 2019. hdl: 11705/JCIS/2019/018.

• Víctor Gallego-Fontenla, Juan Vidal and Manuel Lama, A Conformance Checking-
based Approach for Sudden Drift Detection in Business Processes (Summary),
Jornadas de Ciencia e Ingenieria de Servicios (JCIS), 2022. hdl: 11705/JCIS/2022/007.

1.3.2 Participation in R&D projects, contracts and networks

Aside from the publications mentioned above, the development of this Ph.D. thesis has lead to
collaborations in the following projects:

• CAREBOT - Intelligent Robotic Units for Ambulatory Healthcare Activities. This
project pursued the development of robotic assistants to help patients to fullfill their
routines and prescriptions at their home.

As a result of this project, two products have been developed. On the one side, an event
capturing and preprocessing cloud system have been designed, developed and deployed.
On the other side, a trace clustering algorithm has been developed and validated in a Big
Data environment. Both developments will later be used for fullfilling the objective O3.
The adaptation of the former solutions to noisy logs and real processes by providing real
logs for complex, loosely structured processes and a method for splitting them in simpler
subprocesses, respectively.
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• BIGBISC - Fueling Intelligence to Business Processes with Soft Computing in Big
Data Scenarios. In this project, the algorithms presented in this Ph.D. dissertation have
been adapted to look for changes in frequent patterns executed by users, rather than on
complete process models. In addition, trace clustering techniques have been applied to
simplify the problem by applying a divide-and-conquer strategy whereby for each data
cluster only a subset of traces that are similar to each other are processed, so that the
complexity of the extracted patterns is greatly reduced.

As a result of this project, the algorithms have been tested on real logs generated by the
management process of patients with valvular heart diseases in the cardiology service of
the University Hospital Complex of Santiago de Compostela (CHUS) over the course of
a year.

• RAI4P - Responsible AI for Process Mining 2.0. The objective of this project is the
development of predictive monitoring techniques for process mining that allow to forecast
different features of the executions, such as the next activities or the remaining time.

Specifically, the algorithms presented in this dissertation have been integrated in several
prediction algorithms, so that the prediction takes into account possible changes in the
processes before producing an output.

• INCEPTION - Intelligent Handling of Concept Drift in Process Mining Supported
by Cloud Computing. This activity is a proof-of-concept project in which the concept
drift detection algorithms developed in the context of the BIGBISC project are deployed
to a distributed infraestructure in the cloud. The solution is accesible through a set of
REST APIs, which makes it independent and easily integrated into any existing platform.

As part of this project, the algorithms developed during this Ph.D. dissertation have been
adapted to support large amounts of data from complex and weakly structured processes,
and the implementations have been optimized in order to obtain results in these contexts
in a reasonable time. Specifically, the algorithms have been modified in two perspectives:
on the one hand, integrating clustering algorithms to split complex processes in smaller
and simpler subprocesses; and, on the other hand, modifying the regression methods used
to detect changes in order to make them robust to noisy executions in weakly structured
processes.

• INSIDE - Emotion-aware Process Mining for Improving the Adherence in Cardiac
Rehabilitation. The objective of this research project is to provide insights about the
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adherence of patients to Cardiac Rehabilitation processes by combining process mining
techniques with patients mood recognition based on the use of wearable devices.

Specifically, the algorithms presented in this Ph.D. dissertation are used to evaluate how
the changes in the structure of the cardiac rehabilitation process affect the the causality
of patients dropouts.

• RCIS - Service Science and Engineering Network. During the development of this
Ph.D. dissertation I have actively participated in the Service Science and Engineering
National Network (TIN2014-53986-REDT), which brings together the leading experts
in servitization and process mining in Spain. As a result of this collaboration several
algorithms developed in the framework of this Ph.D. dissertation were published through
publically accesible REST APIs.

1.4 Other Contributions

The development of this Ph.D. dissertation has also led to the following, more technical,
contributions:

1. Sudden drift logs - A dataset for validating sudden drift detection algorithms.

As a part of the development of C2D2, three datasets composed by multiple log files have
been generated. Specifically, three models from the state of the art in process mining
—a loan application process [20], a hospital emergency ward process [49] and a central
venous catheter process [50]— have been used, generating, for each applicable change
pattern [48], 4 logs with 4 different sizes —2,500, 5,000, 7,500 and 10,000 traces—.
Specifically, 204 log files have been generated. This dataset, available online1, has
been designed to be used as a benchmark for testing control-flow sudden drift detection
algorithms.

2. Gradual drift logs - A dataset for validating gradual drift detection algorithms.

As a part of the development of CRIER, one dataset composed of multiple event logs
has been generated, using the same loan application process and change patterns from
the sudden drift logs. In total, 120 event logs have been generated, with 12 different
probability distributions for transitioning between the models. This dataset, available

1https://gitlab.citius.usc.es/ProcessMining/logs/-/tree/master/drift/sudden
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online2, has been designed to be used as a benchmark for testing control-flow gradual
drift detection algorithms.

3. Noisy drift logs - A dataset for validating drift detection algorithms in noisy
environments.

As a part of the development of R-CRIER, one dataset composed of 528 event logs have
been generated, using the loan application process from the sudden drift experiments as
a base and applying the said change patterns. This dataset, available online3, has been
designed to be used as a benchmark for testing control-flow drift detection algorithms in
noisy environments.

4. Concept Drift Detection REST API4.

In an effort to make the algorithms that have been developed during this PhD thesis
available to the scientific community, a REST API has been implemented. This API
allows users to upload their own datasets and to configure multiple parameters of the
algorithms —the window size, the conformance metrics and the discovery algorithm,
among others—, creating experiments that will be queued and executed asyncronously,
notifying the user when the results are available.

1.5 Methodology

The research presentend in this dissertation was developed using the scientific method. From
the objectives defined in Section 1.2, the solutions available in the state of the art were analyzed.
Later, a solution is developed and validated, and, based on the results of this validation, the
proposed algorithms are modified iteratively. It should be highlighted that this process is
flexible, so that the aforementioned activities are not always executed sequentially, but some
of them may start before the previous one is completed, and backwards leaps are allowed to
improve the results —e.g., one can start developing the theoretical framework of the solution
before completing the state of the art analysis—. Specifically, the steps listed above are applied
as follows:

2https://gitlab.citius.usc.es/ProcessMining/logs/-/tree/master/drift/gradual
3https://gitlab.citius.usc.es/ProcessMining/logs/-/tree/master/drift/noise
4https://tec.citius.usc.es/concept-drift-api/swagger-ui.html
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• Definition of an objective. As a first step, an objective must be specified. This specification,
reflected in Chapter 1, includes a description of the problem, the requeriments for the
validation and the limitations of the solution that will be developed.

• Analysis of the state of the art. After defining the objective, an analysis of the available
solutions has been made. This analysis, which is included in Chapter 2 focuses on
the weaknesses and strengths of the available solutions. Moreover, a deep analysis
of the validation of each proposal is carried out in order to identify the datasets used
to benchmark the algorithms, and the available executables are collected in order to
replicate the experiments.

• Development of the solution. Once the objectives are defined and the avaliable solutions
identified, the solution is developed. This development includes both the formal
demonstrations and the software implementation. For the software development an
incremental approach is followed, iterating between the implementation of a feature and
its testing. Chapters 3 to 5 include the details of the development of each of the solutions.

• Validation of the solution. When the complete solution is developed, a validation step is
performed. This validation consists on evaluating the developed algorithm using multiple
datasets and comparing the obtained results with the ones from the available state of the
art algorithms. In the case the results of the validation do not meet the expectations,
the process goes back to previous steps to perform the needed modifications. More
details about the validation is available in Chapters 3 to 5, and supplementary results are
presented in Appendices A to C.

1.6 Document structure

This Ph.D dissertation is structured as follows:

• Chapter 2 presents an analysis of the state of the art approaches. First, sudden drift
detection approaches are presented and analyzed thoroughly, looking for their pros and
cons. Then, a similar analysis is performed but for the gradual dirft detection algorithms.

• Chapter 3 presents C2D2, an algorithm for control-flow sudden drift detection in
processes. The algorithm uses a sliding window and a simple linear regression to monitor
the evolution of conformance metrics and detect changes. The chapter also includes a
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formal demonstration that proves that conformance metrics can be used to detect changes
in the process control-flow. In addition, two change estimators for both fitness and
precision are proposed. The last part of this chapter includes the validation of C2D2
using 68 synthetic logs generated from a real process model from the literature —namely,
the loan application process—, applying 17 change patterns and 4 different sizes.

• Chapter 4 focuses on gradual drift detection, wherein the CRIER algorithm is introduced
for detecting gradual control-flow concept drift. This algorithm leverages conformance
metrics to identify gradual changes in process structure. The chapter further encompasses
the validation of CRIER, which involved testing it against 120 synthetic logs from a real
process model and 12 trace distributions that showcased the changes.

• Chapter 5 introduces the R-CRIER algorithm, which is designed to work on noisy
environments and enables robust drift detection. The algorithm takes the results of C2D2
and CRIER as an starting point, and modifies those approaches to reduce the number of
false positive detections. The chapter includes a validation with 528 synthetic event logs
from a real process and multiple noise levels and change types, both sudden and gradual.

• Chapter 6 presents the final remarks of this dissertation, and outlines some future research
lines that could be explored to extend the approaches described in this dissertation.

• Appendices A to C present additional validation results for Chapters 3 to 5, respectively,
that have not been included in the main body of this dissertation in order to enhance its
readability.
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CHAPTER 2

RELATED WORK

To know that we know what we know, and to
know that we do not know what we do not know,
that is true knowledge.

— Nicolaus Copernicus

As we have explained in Chapter 1, the occurrence of unexpected changes in the execution
of business processes can have fatal consequences for organizations, leading them to take wrong
decisions by using outdated knowledge. This is why the detection of changes is of paramount
importance within process mining, having been identified as one of the main challenges that
needs to be addressed in the Process Mining Manifesto [51]. However, although concept drift
detection is a problem that has been widely analyzed in machine learning [46, 52, 53, 54, 55],
its attention in process mining environments is still scarce [56, 57].

The algorithms for concept drift detection in process mining can be broadly categorized
into four groups based on the approach they use to perform the detection, as outlined in [56]:

1. Model-to-log alignment-based approaches. These approaches rely on matching the
behavior observed in the log with those captured in a particular process model, typically
using conformance checking techniques. The approaches [11, 13] and [12], in addition
to C2D2, CRIER and R-CRIER, are part of this group.
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2. Graph analysis-based approaches. These approaches assess the evolution of a graph
over time to check whether the observed behaviour has changed or not. The graph is used
to capture the representation of the process at some point of time. The proposals [14]
and [15] belong to this group.

3. Clustering-based approaches. The basic idea behind these approaches is to generate
clusters, each of which represents a version of the process. The proposals [16, 17, 18]
and [19] are part of this group.

4. Windowing and statistical analysis-based approaches. These approaches rely on
partitioning the log using one or more windows and comparing them using statistical
methods to look for changes. The approaches [45, 58, 59, 60, 61, 62, 63, 64] and [65, 66]
belong to this group.

Based on this classification, in the following sections we will detail the most relevant
approaches of the state of the art for both sudden and gradual change detection, focusing on
three distinct perspectives: (i) the accuracy of the detection, which refers to the ability of the
algorithm to automatically detect any type of change pattern; (ii) the detection delay, which
is the amount of time elapsed before a change is detected after it has occurred; and (iii) the
detection robustness, which refers to the ability of the algorithm to detect changes in situations
where anomalous executions that do not constitute a change are mixed with expected behavior
from the process. Based on these three perspectives, we define three levels of performance:
(i) poor (−), when the approach performs badly or it is higly dependent on the parameters used
for running the method; (ii) acceptable (±), when the method performs well in some conditions,
but the results are not as good in other situations; and (iii) good (+), when the method shows
good results under any type of conditions..

2.1 Sudden drift detection

Most of the state of the art approaches have been only designed for detecting sudden changes.
This is due to two circumstances: (i) any change in the structure of a process must be
instantaneous or gradual, so it is logical to prioritize its detection before that of incremental or
recurrent changes; and (ii) following Definition 8, a gradual drift can be understood as a pair of
sudden changes between which there is a certain behavior composed of the behavior before
and after the change, so it is logical to try to detect sudden changes first and then move on to

24



Chapter 2. Related work

the gradual ones. Also, as a side note, some of the available algorithms also do not bother to
distinguish the different types of change, but simply mark all changes as sudden.

Model-to-log alignment-based approaches

In [11], authors perform the drift discovery over an event stream using a sliding window and
process histories. A process history is a collection of every process model used to represent
the behaviour in the event stream along time. For detecting changes they compute the fitness
between the last known model from the process history and the trace for the current event,
considering that a trace fits a model if the computed fitness is over a threshold. If the trace that
is being processed does not fit the last known model, they discover a new one by using only the
unfitting traces from the window. To avoid false positives due to anomalous executions, they
also assign a score to the model, and these positives are considered viable only if the computed
score is over a threshold, which makes the algorithm somewhat robust to noisy executions.
Finally, detected changes are classified based on the models present in the process history, using
two thresholds. The drawbacks of this approach are that it requires the end-user to provide
multiple parameters —the window size and 4 different thresholds—, and that it can not detect
all change patterns —for instance, when an optional parallel path of the model change into an
exclusive choice—, penalizing its accuracy. In terms of delay, the results are limited by the fact
that the algorithm has to wait until the model score, which depends on the number of traces
that fit the model, surpasses the threshold.

Graph analysis-based approaches

In [14], the authors compare the eigenvectors and the eigenvalues of undirected weighted graphs
representing the log at different instants. In this graph, each vertex represents a trace. The edges
weight is the similarity between the vertex (traces) it connects. However, this method needs
a huge amount of traces, being unable to detect changes in logs with less than 2,000 traces.
Also, the method is very susceptible to anomalous executions, penalizing its robustness. Thus
accuracy and robustness values are highly tied to the ability of the eigenvectors and eigenvalues
to distinguish between small variations in the traces and real changes. Also, in terms of delay,
the results are highly dependant on the size choosen for splitting the log in the chunks that will
be later transformed to graphs.

In [15], the authors compare models over time using graph features, such as the node
degree, the graph density or the occurrence of nodes and edges. However, this approach does
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not perform well in processes with loops, which affects the accuracy results. Also, as in the
previous approach, the delay results are very dependant on the size used for splitting the log.
Finally, the graph features considered for comparing models do not take into account small
differences in the graphs, so the method will perform poorly in noisy environments.

Clustering-based approaches

In [16], the authors propose an online approach based on the extraction of histograms from
traces and then use a clustering algorithm to generate groups of similar traces. A change is
triggered when a new cluster appears. An important drawback of this approach is that it does
not take into account the order of events. Thus, it can only detect the addition or removal of new
activities, but not the changes in the precedence relations between them, so accuracy results are
poor for some change patterns. In [18], the authors cluster traces using the distance between
pairs of activities. However, this approach does not support models with loops. Moreover, the
distance can ignore certain change patterns depending on how many activities are affected by
the change, having an impact on the accuracy values. In terms of delay, both approaches should
perform well, as the cluster count is not specified a priori, so the log should be split right at the
point where the drift happens. Also, both algorithms should be acceptably robust, as long as
the clustering does not create a new group when anomalous executions appear.

In [17], the authors extend a trace clustering algorithm [67] adding a time dimension to
force clusters to include only consecutive traces, and thus be able to detect changes. The
advantage of this approach is that the delay results should be good, as the log is ideally split just
where the change happens. However, the approach highly depends on the number of clusters,
fixed by the user, and only obtains good results when the number of clusters is equal to the
number of changes, thus impacting both accuracy —if the number of clusters is different from
the number of changes, false positives and negatives will appear— and robustness —high
number of clusters can lead to noisy executions creating a wrong cluster—.

In [19], the authors use a Markov clustering algorithm over different time windows to detect
changes, but the approach does not focus on the control-flow perspective. Instead, multiple
viewpoints of the process are taken into account simultaneously, mixing control-flow changes
with behavioral and resource changes. Also, the accuracy for the detection is highly dependent
on the features used to represent the traces, which can ignore certain change patterns. In terms
of delay, results depends on the choosen window size used for computing traces features, getting
acceptable results if the window size is small enough, but worsening if the window size is too
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big. Finally, the approach should be quite robust as long as the clustering approach should not
create new clusters if the noise is evenly distributed along the log.

Windowing and statistical analysis-based approaches

In [58], the authors propose a method for online concept drift detection using a polyhedron-based
log representation. Then, they monitor the probability that a trace falls into that polyhedron
using the ADWIN algorithm [68]. The main drawbacks of this approach is that it cannot detect
all change patterns, penalizing accuracy. Also, the method is not robust as it does not consider
the presence of noise in the executions, taking all behaviour as expected. Online detection is
also addressed in [59], where the authors discover a probabilistic process model that, given an
activity, assigns a probability to every possible successor, and checks how these probabilities
evolve throughout the complete log using statistical hypothesis tests. Although the method
identifies drifts in most cases, small changes in less likely activities generate changes in the
probabilities that can still remain undetected, penalizing accuracy. However, this also makes the
approach somewhat noise robust, as low frequency behaviour should not affect its performance.
With respect to delay, both algorithms are expected to perform well, as they run online, so the
drift can be detected just when it happens.

In [45], the authors use a fixed-size window over some features extracted from the
follows/precedes relations present in traces, and statistical hypothesis tests to evaluate whether
these features have changed significantly. The weak point of this method is that it requires a
lot of interaction from the user, including previous knowledge of the process model and the
areas where the changes can be located. An extension of this work has been proposed in [60],
where the authors implement a recursive bisectioning approach. Specifically, they take the
traces that are involved in a drift detection and recursively split them into halves, intending to
automatically localize the change. A drawback of this approach is that it still requires the user
to know the possible changes to obtain good results. The accuracy of these two approaches
is highly tied to the features choosen to evaluate changes, penalizing accuracy if the choosen
feature is not able to capture some change patterns. In terms of delay, the first one is highly
dependent on the choosen window size. The second one reduces the delay, as it adjusts the
window size automatically to better localize the drift. A similar solution is presented in [61],
where the authors propose the usage of event class correlation as a feature, and apply statistical
hypothesis tests to detect changes. This approach fails in detecting some change patterns such as
the changes in the execution order of activities, penalizing again the accuracy. Also, it inherits
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the drawbacks from [45] related to the behavior of the delay. Among these three proposals,
just [60] takes into account the concept drift detection in noisy environments, providing some
support for detection in these contexts.

Another interesting approach, called ProcessDrift, was proposed in [63], where the authors
transform traces into partial-ordered-runs and then apply a statistical hypothesis test over two
windows (one for reference and one for detection) to detect changes. The main drawback of
this approach lies in its sensitivity to changes in the frequencies of certain relations present in
the log, which may lead to false positives in the detection, which impacts accuracy. A related
method is presented in [64], where the authors focus on detecting the change at the event
level instead of at trace level. Specifically, they extract the 𝛼+ relations from two consecutive
adaptive windows of events and, then, applying a statistical test, namely the G-test, compare the
relations distribution of these two windows. This allows to detect changes even with unfinished
executions, and reduce the detection delay. The drawback of this approach is that it requires
high amounts of traces to be able to detect changes. Furthermore, changes that are close to
each other may be ignored, which again has an impact on the accuracy. In terms of delay, both
approaches should obtain good results, as they use overlapping sliding windows, so the change
can be precisely pinpoint when it happens. Only the second one of the approaches consider the
presence of noise in the log, improving the results of the first one, but it still restricts itself to
linear combinations of behaviour, limiting its applicability to noisy environments.

In [65], the authors present TPCDD, a method that transforms the event log into a relation
matrix using direct succession and weak order relations, where each column represents a trace
and each row a relation. Then, based on the trend of these relations, it generates candidate
drift points. These points are clustered using DBSCAN, to group candidates that belong to the
same drift point. This approach relies heavily on a correct radius for the DBSCAN algorithm,
detecting all change patterns but potentially getting a high number of false positives when it is
too low and a high number of false negatives when it is too high. Also, the algorithm shows
good results in terms of delay, but it does not deal with noisy traces, leading it to poor results in
noisy environments.

In [66], the authors propose an algorithm for detecting sudden drifts in event streams using
relation frequency maps and an adaptive window. They propose the use of an ADWIN with
different distances between these frequency matrices, so a change would be detected if two
consecutive frequency maps are different enough. The main drawback with this approach
lies in choosing a good distance metric to detect all change patterns in any context, having an
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Table 2.1: Approaches for sudden drift detection from the state of the art and their performance
for accuracy, delay and robustness perspectives.

Approach Accuracy Delay Robustness

Stertz and Rinderle-Ma [11] Model-to-log alignment − ± ±

Lakshmanan et al. [14] Graph analysis − − −

Seeliger et al. [15] Graph analysis − − −

Junior et al. [16] Clustering − + ±

Accorsi and Stocker [18] Clustering − + ±

Luengo and Sepúlveda [17] Clustering − + −

Hompes et al. [19] Clustering − ± ±

Carmona and Gavaldà [58] Windowing plus statistical analysis − + −

Weber et al. [59] Windowing plus statistical analysis − + +

Bose et al. [45] Windowing plus statistical analysis − − −

Martjushev et al. [60] Windowing plus statistical analysis − + ±

Kumar et al. [61] Windowing plus statistical analysis − − −

Maaradji et al. [63] Windowing plus statistical analysis ± ± −

Ostovar et al. [64] Windowing plus statistical analysis ± + ±

Zheng et al. [65] Windowing plus statistical analysis ± + −

Hassani [66] Windowing plus statistical analysis − − −

impact on accuracy, delay and robustness.
Table 2.1 provides a summary of the performance of the state of the art approaches. It is

worth noting that only the approaches presented in [64] and [65] exhibit a good accuracy in
detecting changes, regardless of the type of change patterns, while still maintaining a low delay.

2.2 Gradual drift detection

The number of proposals present in the state of the art is fairly reduced for gradual drift
detection. This may be due to the lack of base solutions that provide sufficiently good results
that can be adapted to the detection of gradual changes in the process control-flow.
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Model-to-log alignment-based approaches

In [13], the log is transformed into a time series using a feature called r-measure that compares
the relation matrices between two consecutive windows. Then, the algorithm looks for outliers
in these time series, and determines that a change exists when one is detected. The main
drawback of this approach is that it does not distinguish sudden and gradual drifts and it is prone
to mix up changes with outliers, impacting accuracy and robustness. Moreover, it is also not
extensively tested, being evaluated against 4 synthetic logs, where they obtain highly variable
results for accuracy, with values between 0.6 and 0.95 depending on the used parameters. On
the good side, the algorithm is expected to perform well in terms of delay, as nothing prevents
it from detecting the drift just when it happens.

In [11], the authors propose an algorithm that deals with a stream of events, allowing the
detection of changes in incomplete traces. Using a window of a given size, different versions of
the process model are discovered —the process history— and the fitness is computed against
the last mined model. In this approach, a change is present when the fitness of a trace is below
a threshold. Then, detected changes are classified in sudden, gradual, incremental or recurring
based on the number of process histories available, their fitness values and the presence of
unfinished traces in the moment the process changes. Thus, when a trace does not fit the last
discovered model, a new one is mined using only the unfitting traces. To prevent false positives,
each model also receives an score, and a model is considered to change only when that score is
over a threshold, making the algorithm robust to noisy executions if the threshold is choosen
correctly. As a disadvantage, increasing the threshold will penalize delay, as the algorithm
has to wait more until confirming a drift. Finally, changes are classified in sudden, gradual,
recurring and incremental using both two new thresholds and the process history. The main
drawback of this approach is that it requires the user to have a deep knowledge of the problem
in order to tune the hyperparameters used in the detection —the window size and 4 different
thresholds—. Furthermore, the algorithm can not detect all structural change patterns, e.g.,
the transformation of an optional parallel structure into an exclusive choice where the order of
some activities is enforced, having a negative impact in accuracy. Also, the approach has not
been extensively tested and no quantitative measures are provided about the goodness of the
results.

In [12], the authors propose a method that is also based on the idea of using the process
model for detecting changes. This approach splits the log in 𝑛 windows of size 𝑚. Then, a
set of declarative rules is extracted from the complete log and their confidence is computed
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with respect to each window, obtaining a multivalued time series. Finally, a traditional concept
drift detection algorithm —namely, the PELT algorithm— in combination with a hierarchical
clustering technique is used to detect changes in the resulting time series. The main drawback
with this approach is that the classification of changes in sudden or gradual is not automatic,
but it must be performed visually by the user. Also, results are highly dependent on the size of
the window, penalizing accuracy and delay if the window size is not choosen properly. As a
positive thing, the extraction of rules over a large enough window gives the method some noise
robustness. Regarding the validation, the algorithm shows promising results for the detection,
but it is only tested with 4 synthetic and 2 real logs.

Clustering-based approaches

In [17], the authors propose the use of an agglomerative hierarchical clustering over the traces
to detect changes. For the clustering, traces are transformed to feature vectors that abstract
the trace behaviour. Specifically, the maximal repeat [67] and the starting timestamp of the
trace are used as features. Once the clusters are generated, they define a change as the point in
time where one cluster ends and a new one starts. However, this method is very dependent on
the number of clusters, which should be fixed by the user and equal to the number of changes
present in the log. Choosing the right number of clusters should lead to low delay values, since
the log will be split just in the point where the change happens. On the other hand, choosing a
wrong cluster count will higly impact on accuracy and robustness, with poor results due to
false detections. Regarding the experimentation, the approach is only validated using 3 logs,
with an accuracy —calculated as the sum of true positives and true negatives, and divided by
the total number of traces— between 57% and 100%.

In [69], authors propose an online approach where they use a clustering approach over
graph distances. The approach takes as input an event stream, and updates the corresponding
trace graph every time a new event is received. When they have enough traces, a process
model is discovered by generating two weighted graphs: in one of them, the weight of the
arcs represents the frequency of the transitions between activities; and in the other one, the
average time between activities is the arc weight. Then, a distance between the trace graph
and these two weighted graphs is computed, and these distances are grouped using a online
density-based clustering algorithm —namely, DenStream—, which provides some robustness
to noise. Due to this computation being performed per trace, the delay values are expected to
be very low. Regarding the validation, the approach is tested using 18 synthetic logs, but the
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only metric provided is the number of changes detected. The main drawback of this method is
that it mixes control-flow and behavioral changes, penalizing its accuracy. Also, it requires a
lot of hyperparameters to be tuned by the user in order to obtain good results. Finally, as many
of the presented proposals, it supports the detection over logs with gradual changes, but does
not distinguish between sudden and gradual changes.

Windowing and statistical analysis-based approaches

In [45], authors present an approach that computes features from follow/precede relations
and use a statistical hypothesis test to check if there are changes in the features over time,
specifically over two consecutive fixed size windows. Examples of these features are: for each
activity of the log, the number of activities that always, sometimes and never follow/precede a
given activity; for each pair of activities 𝛼1 and 𝛼2 of the log and for each trace, the number of
sequences of size 𝑛 that start with 𝛼1 and contain 𝛼2; for each pair of activities 𝛼1 and 𝛼2 of the
log and for each trace, the significance of 𝛼1 following/preceding 𝛼2 with a maximum distance
of 𝑛; etc. The main drawback of this approach is that it does not distinguish between sudden
and gradual changes and it deals only with linear distributions for gradual changes, which limits
its accuracy and robustness to some types of drifts, and that it is very dependant on choosing
the right window size, affecting delay. Additionally, it requires the user to have an advanced
knowledge of the process, including which features to select, the activities that can change
or the statistical test to be used in order to process the log. Furthermore, the approach is not
extensively tested, being validated only with two synthetic logs and a real one, without providing
any quantitative assessment of the results, although they seem to be promising. An extension
to this approach is presented in [60], where the authors propose the use of non-consecutive
windows, leaving a gap between them, in order to increase the difference between features in
gradual environments in order to reduce the false negatives. In this extension, the restriction of
gradual drifts distribution is removed, so the algorithm can detect also changes that are not
linear, improving its robustness. Yet, the approach fails to provide a solution able to identify all
drift patterns distinguishing if a change is sudden or gradual, requires even more knowledge
from the user to set other parameters —as the size of the gap between the windows—, and still
does not provide quantitative metrics in the validation, which is performed only over 2 logs.

Another very interesting proposal, halfway between the extraction of features and the use of
a process model, is the one presented in [62, 63]. In this approach, the behavior of the traces is
abstracted using partial-ordered-runs —i.e., a graph representation of the traces—. Once the
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Table 2.2: Approaches for gradual drift detection from the state of the art and their performance
for accuracy, delay and robustness perspectives.

Approach Accuracy Delay Robustness

Li et al. [13] Model-to-log alignment − + −

Stertz and Rinderle-Ma [11] Model-to-log alignment − ± ±

Yeshchenko et al. [12] Model-to-log alignment − − ±

Luengo and Sepúlveda [17] Clustering − + −

Tavares et al. [69] Clustering − + +

Bose et al. [45] Windowing plus statistical analysis − − −

Martjushev et al. [60] Windowing plus statistical analysis − + ±

Maaradji et al. [63] Windowing plus statistical analysis ± ± −

behavior is abstracted, two consecutive sliding windows are used and, by means of a statistical
test, it is checked if the content of these windows is significantly different. The fact that it
uses two consecutive sliding windows allows the algorithm to detect changes with a low delay.
Once the changes are detected, a classification is performed to guess if they represent a sudden
or a gradual drift. In this classification, a statistical test checks if the combination of traces
between two consecutive changes represents a linear combination of the traces before and
after the first and second changes, respectively. This is one of the most thoroughly validated
proposals, tested with multiple logs. The main drawback of this approach is that it can be very
sensitive to changes in the frequencies of the relations, which may lead to the detection of false
positives, penalizing accuracy. Also, the algorithm can only detect gradual changes that are
due to a linear distribution of the traces between two models, which may not be the case in real
logs, affecting negatively its robustness.

Table 2.2 provides a summary of the performance of the main state of the art approaches,
showing that no approach provides good results in terms of accuracy, being [63] and [60] the
best positioned ones. However, there are approaches that achieve good or acceptable results in
terms of delay —[13, 17, 60, 69]— and robustness —[11, 12, 60, 63]—.
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2.3 Conclusions

As a summary, there is no approach that provides a fully automated solution for detecting
sudden and gradual changes, supporting all types of change patterns and trace distributions,
and having an exhaustive validaton that detect changes with high accuracy and low delay.

With C2D2 and CRIER we address the aforementioned issues, improving the results of
the process drift detection. Proposed methods remove any user interaction in drift detection,
requiring only a minimum window size to be specified. Moreover, both methods can detect all
change patterns independently of the process structure. Finally, with R-CRIER we try to tackle
the problem of applying this kind of methods to environments where the presence of noise can
make it difficult do distinguish a real change from noisy anomalous executions. Furthermore,
the three proposed methods are designed to identify drifts with low delay and a high accuracy,
minimizing the detection of false negatives and positives. They have been deeply validated
using a variety of synthetic logs from models from the state of the art, showing better results
than the ones obtained by the main state of the art approaches.
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CHAPTER 3

SUDDEN DRIFT DETECTION

Change is the only thing that is immutable.

— Arthur Schopenhauer

In this chapter, we present C2D2 (Conformance Checking-based Drift Detection), an
algorithm for offline sudden control-flow drift detection in process mining. C2D2 relies on the
hypothesis that changes in the model structure (drifts) can be detected by changes in its fitness
and/or precision. Therefore, by continuously monitoring the conformance metrics of a process,
these drifts may be detected.

To illustrate this idea, let’s take the example in Figure 3.1. Let us suppose the models 𝑁1

and 𝑁2 depicted in Figures 3.1a and 3.1b. The difference between both models is that activities
𝐵 and 𝐶 are in parallel in 𝑁1, but in sequence in 𝑁2. Let us also suppose that the process 𝑁1

changes to 𝑁2 at instant 𝑖 = 8, which log is represented in Figure 3.1c, henceforth denoted as
𝐿1. Traces 𝜏1 to 𝜏8 correspond to the execution of 𝑁1 and traces 𝜏9 to 𝜏16 correspond to 𝑁2. In
𝐿1, the concurrent execution of activities 𝐵 and 𝐶 becomes a sequence from 𝜏9 onwards. After
this change, traces are still replayable, so the fitness remains unaltered. However, no trace in
the window contains the path 𝐴→ 𝐶 → 𝐷 from 𝜏9 onwards, so the precision falls. This can
be seen in Figure 3.1e, where precision falls because the model allows more behaviour than is
present in the traces, but fitness remains unaltered.
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(a) Model 𝑁1.

A B C D
E

F
G

(b) Model 𝑁2.

ID Trace

𝜏1 A B C D E G

𝜏2 A C B D E G

𝜏3 A B C D F G

𝜏4 A C B D F G

𝜏5 A B C D E G

𝜏6 A C B D E G

𝜏7 A B C D F G

𝜏8 A C B D F G

𝜏9 A B C D E G

𝜏10 A B C D F G

𝜏11 A B C D E G

𝜏12 A B C D F G

𝜏13 A B C D E G

𝜏14 A B C D F G

𝜏15 A B C D E G

𝜏16 A B C D F G

(c) Log generated us-
ing 𝑁1 as the initial
process and 𝑁2 as
the modified one.

ID Trace

𝜏1 A B C D E G

𝜏2 A B C D F G

𝜏3 A B C D E G

𝜏4 A B C D F G

𝜏5 A B C D E G

𝜏6 A B C D F G

𝜏7 A B C D E G

𝜏8 A B C D F G

𝜏9 A B C D E G

𝜏10 A C B D E G

𝜏11 A B C D F G

𝜏12 A C B D F G

𝜏13 A B C D E G

𝜏14 A C B D E G

𝜏15 A B C D F G

𝜏16 A C B D F G

(d) Log generated us-
ing 𝑁2 as the initial
process and 𝑁1 as
the modified one.
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(e) Fitness and precision evolution when using a win-
dow of size 4, log from Figure 3.1c and reference
model 𝑁1.
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(f) Fitness and precision evolution when using a win-
dow of size 4, log from Figure 3.1d and reference
model 𝑁2.

Figure 3.1: Measurements evolution for two logs with different changes.

Let us now suppose a different change, from model 𝑁2 to 𝑁1, at the same time instant,
which log is represented in Figure 3.1d, henceforth denoted as 𝐿2. Traces 𝜏1 to 𝜏8 are generated
by 𝑁2 while traces 𝜏9 to 𝜏16 by 𝑁1. In 𝐿2, 𝐵 and 𝐶, originally in sequence, are in parallel from
𝜏9 onwards. This change can not be detected using precision (the model does not generate more
behavior than the present in the log), but it can be detected though fitness, since 𝜏10, 𝜏12, 𝜏14

and 𝜏16 can not be replayed by 𝑁2. This situation is represented in Figure 3.1f, where precision
remains unchanged, but fitness falls in the 7th iteration of the algorithm.

C2D2 is based on discovering a process model and monitoring the evolution of the respective
conformance metrics throughout the entire process lifespan. For monitoring the metrics, a
simple linear regression is used. A regression slope different from 0 can be considered as a
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symptom of drift, so the expected and the observed behaviour may have changed. The main
contribution of this proposal is the use of conformance metrics to detect control-flow drifts,
which is a novel approach unexplored until now.

3.1 Sudden drift detection using conformance metrics

Before describing the C2D2 algorithm, we will present a mathematical proof that supports the
hypothesis that changes in the model structure can be detected through changes in conformance
measures.

Theorem 3.1: Fitness detects changes related to unsupported behaviour that is
being observed, but it can not detect fitting behaviour that is disappearing from
the log.

Proof: Let us suppose a log 𝐿 and a model 𝑁 . Taking the formulas from Definitions 5
and 6:

𝛾(𝐿, 𝑁) = |𝐵𝐿 ∩ 𝐵𝑁 |
|𝐵𝐿 |

𝜌(𝐿, 𝑁) = |𝐵𝐿 ∩ 𝐵𝑁 |
|𝐵𝑁 |

Now, let us suppose we observe a new trace 𝜏∗ that is neither part of the behavior observed
in the log nor of that supported by the model, that is, 𝐵𝜏∗ ∉ 𝐵𝐿 and 𝐵𝜏∗ ∉ 𝐵𝑁 . If we add
𝜏∗ to 𝐿, the formulas from Definitions 5 and 6 can be written as:

𝛾(𝐿 ∪ 𝜏∗, 𝑁) = | (𝐵𝐿 ∪ 𝐵𝜏∗ ) ∩ 𝐵𝑁 |
|𝐵𝐿 ∪ 𝐵𝜏∗ |

=
| (𝐵𝐿 ∩ 𝐵𝑁 ) ∪ (𝐵𝜏∗ ∩ 𝐵𝑁 ) |

|𝐵𝐿 ∪ 𝐵𝜏∗ |

𝜌(𝐿 ∪ 𝜏∗, 𝑁) = | (𝐵𝐿 ∪ 𝐵𝜏∗ ) ∩ 𝐵𝑁 |
|𝐵𝑁 |

=
| (𝐵𝐿 ∩ 𝐵𝑁 ) ∪ (𝐵𝜏∗ ∩ 𝐵𝑁 ) |

|𝐵𝑁 |
If we simplify, considering the assumptions that 𝐵𝜏∗ ∉ 𝐵𝐿 and 𝐵𝜏∗ ∉ 𝐵𝑁 , then:

𝛾(𝐿 ∪ 𝜏∗, 𝑁) = |𝐵𝐿 ∩ 𝐵𝑁 |
|𝐵𝐿 | + |𝐵𝜏∗ |

+ |𝐵𝜏∗ ∩ 𝐵𝑁 |
|𝐵𝐿 | + |𝐵𝜏∗ |

=
|𝐵𝐿 ∩ 𝐵𝑁 |
|𝐵𝐿 | + 1

𝜌(𝐿 ∪ 𝜏∗, 𝑁) = |𝐵𝐿 ∩ 𝐵𝑁 |
|𝐵𝑁 |

+ |𝐵𝜏∗ ∩ 𝐵𝑁 |
|𝐵𝑁 |

=
|𝐵𝐿 ∩ 𝐵𝑁 |
|𝐵𝑁 |

Thus, 𝛾(𝐿, 𝑁) > 𝛾(𝐿 ∪ 𝜏∗, 𝑁) and 𝜌(𝐿, 𝑁) = 𝜌(𝐿 ∪ 𝜏∗, 𝑁), i.e., when some new
behaviour arises in the log, fitness can detect the change but precision can not. □
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Theorem 3.2: Precision detects changes related to the fitting behaviour that is
disappearing from the log, but it can not detect new unsupported behaviour that
is being observed.

Proof: Let us suppose now a trace 𝜏∗ ∈ 𝐿, which behaviour is unique and supported by
the model —i.e., 𝐵𝜏∗ ∈ 𝐵𝑁—, disappears from the log. In this situation, formulas from
Definitions 5 and 6 are equivalent to:

𝛾(𝐿 \ 𝜏∗, 𝑁) = | (𝐵𝐿 \ 𝐵𝜏∗ ) ∩ 𝐵𝑁 |
|𝐵𝐿 \ 𝐵𝜏∗ |

=
| (𝐵𝐿 ∩ 𝐵𝑁 ) \ (𝐵𝜏∗ ∩ 𝐵𝑁 ) |

|𝐵𝐿 \ 𝐵𝜏∗ |

𝜌(𝐿 \ 𝜏∗, 𝑁) = | (𝐵𝐿 \ 𝐵𝜏∗ ) ∩ 𝐵𝑁 |
|𝐵𝑁 |

=
| (𝐵𝐿 ∩ 𝐵𝑁 ) \ (𝐵𝜏∗ ∩ 𝐵𝑁 ) |

|𝐵𝑁 |
Which, considering that 𝐵𝜏∗ ∈ 𝐵𝑁 , can be rewritten as:

𝛾(𝐿 \ 𝜏∗, 𝑁) = | (𝐵𝐿 ∩ 𝐵𝑁 ) | − 1
|𝐵𝐿 | − 1

𝜌(𝐿 \ 𝜏∗, 𝑁) = | (𝐵𝐿 ∩ 𝐵𝑁 ) | − 1
|𝐵𝑁 |

Therefore, if 𝐵𝐿 ⊂ 𝐵𝑁 , then 𝛾(L,N) = 𝛾(L \ 𝜏∗,N) and 𝜌(L,N) > 𝜌(L \ 𝜏∗,N),
i.e., when some behaviour disappears from the log the fitness can not detect changes but
precision can. □

Corollary: Fitness and precision separately can not detect all possible changes in
the process structure, but a combination of both can.

3.2 Algorithm

In this section, we will detail how changes in the structure of a process can be identified when
significant variations in the conformance are detected when comparing incoming traces and the
process model.

Algorithm 3.1 (C2D2) performs drift detection based on a sliding window (Definition 7)
whose optimal size is automatically adjusted at the beggining and after a drift is confirmed
(line 9). Thus, the only input of the algorithm is a minimum window size, aside from the event
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log. The algorithm starts by initializing a list 𝐷 of traces that are confirmed drifts (line 2), and
the initial window index 𝑖 = 0 (line 3).

Lines 4 to 22 show the main loop that will identify and confirm the drifts of the process. In
this loop, the list Γ will store the fitness of a model 𝑁 that is discovered from the traces of a
window. For instance, Γ𝑖 will contain the fitness of the model 𝑁 with respect to the traces of the
window 𝜔𝑖 (𝐿, 𝑛). Similarly, the list 𝑃 will store the precision measurements. In addition, the
lists 𝐷Γ and 𝐷𝑃 store, at index 𝑖, a boolean that indicates whether the last trace from window
𝜔𝑖 (𝐿, 𝑛) has been marked as a drift candidate or not for fitness and precision, respectively.
For instance, 𝐷Γ

𝑖
is set to true when the trace 𝜏𝑖 has been marked as a drift candidate. In

line 9, the optimal sliding window size is calculated from the remaining traces that have not
been processed (more details in Section 3.2.2), and then the sliding window 𝜔𝑖 , the window
is positioned (line 10) and the model that describes the behavior observed in this window
is obtained (line 11). These four lists, the window size 𝑛 and the model 𝑁 are reinitialized
whenever a drift has been confirmed.

The inner loop (lines 12 to 21) performs the detection of drifts based on conformance
measurements. This loop iterates from the index 𝑖, corresponding to the window 𝜔𝑖 (𝐿, 𝑛),
until the end of the log as long as no drift has been confirmed (line 12). In each iteration 𝑖, the
fitness and precision of the model 𝑁 are computed with respect to the sliding window 𝜔𝑖 (𝐿, 𝑛)
(lines 13 and 14). Traces are identified as a drift candidate (lines 15 and 16) by computing in
function IdentifyDriftCandidate a linear regression over the values of the lists 𝐷Γ and 𝐷𝑃

(lines 25 to 31) and then by checking if the slope of the fitted function is statistically different
from zero (more details in Section 3.2.1).

If the trace 𝜏𝑖 is identified as a drift candidate, the function ConfirmDrift checks if this
drift persist over time (line 17). This function checks that the last 𝑛 traces have been classified
as drift candidates either for fitness (line 33) or precision (line 34). This allows the method to
prevent false positives due to the existence of temporal falls in the metrics caused by outlier
traces. Once the candidate is confirmed as a real drift, trace 𝜏𝑖 is added to the list of confirmed
drifts 𝐷 (line 18), the window slides one position, reading a new trace from the log (line 20),
and the algorithm loops back to the initialization phase.

3.2.1 Drift detection

The detection mechanism is listed in lines 25 to 31 of Algorithm 3.1 (function IdentifyDrift-
Candidate). As a first step, a simple linear regression [70] is computed over the last 𝑛/2
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Algorithm 3.1 Conformance Checking-based Drift Detection

Inputs: an event log 𝐿 and a minimum window size 𝑚𝑖𝑛_𝑤𝑠 < |𝐿 |
Outputs: a list of trace causing drift D

1: procedure ConceptDriftDetection(𝐿, 𝑚𝑖𝑛_𝑤𝑠)
2: D← [ ]//confirmed drift traces
3: 𝑖 ← 0
4: while 𝑖 < |𝐿 | do
5: Γ ← [ ] //fitness measures (Definition 5)
6: P ← [ ] //precision measures (Definition 6)
7: DΓ ← [ ] //drift candidates (fitness)
8: DP ← [ ] //drift candidates (precision)
9: n ← AdjustWindow(𝑚𝑖𝑛_𝑤𝑠, 𝑡𝑎𝑖𝑙 (𝐿, |𝐿 | − 𝑖))

10: 𝑖 ← 𝑖 + n //position the window
11: N ← 𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟 (𝜔𝑖 (𝐿, 𝑛) )
12: while (𝑖 < |𝐿 | ) ∧ (𝜏𝑖−1 ∉ D) do
13: Γ ← Γ :: 𝛾 (𝜔𝑖 (𝐿, 𝑛) , 𝑁 )//append current fitness
14: P ← P :: 𝜌(𝜔𝑖 (𝐿, 𝑛) , 𝑁 )//append current precision
15: DΓ ← DΓ :: IdentifyDriftCandidate(n, Γ, DΓ)
16: DP ← DP :: IdentifyDriftCandidate(n, P, DP)
17: if ConfirmDrift(n, DΓ , DP) then
18: D← D :: 𝜏𝑖
19: end if
20: 𝑖 ← 𝑖 + 1
21: end while
22: end while
23: return D
24: end procedure

25: function IdentifyDriftCandidate(n, 𝑑𝑎𝑡𝑎, D∗)
26: Υ ← 𝑟𝑒𝑔𝑟𝑒𝑠𝑠 (𝑡𝑎𝑖𝑙 (𝑑𝑎𝑡𝑎, 𝑛/2) )
27: 𝑚< ← Υ.slope < 0 ∧ Υ.confidence < 0.05
28: 𝑚> ← Υ.slope > 0 ∧ Υ.confidence < 0.05
29: 𝑚= ← (¬𝑚< ) ∧ (¬𝑚> )
30: return ( |𝑑𝑎𝑡𝑎 | > n/2) ∧ (𝑚< ∨𝑚> ∨ (𝑚= ∧ (D∗|D∗ | = 𝑡𝑟𝑢𝑒) ) )
31: end function

32: function ConfirmDrift(n, DΓ , DP)
33: 𝑑Γ ← ∀𝑑 ∈ 𝑡𝑎𝑖𝑙 (DΓ , n) : 𝑑 = 𝑡𝑟𝑢𝑒

34: 𝑑P ← ∀𝑑 ∈ 𝑡𝑎𝑖𝑙 (D𝑃 , n) : 𝑑 = 𝑡𝑟𝑢𝑒

35: return ( |DΓ | ⩾ n ∧ 𝑑Γ ) ∨ ( |DP | ⩾ n ∧ 𝑑P )
36: end function
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(a) Log 1 (pl). Precision falls every time a change happens but fitness remain unaltered.
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(b) Log 2 (cb). Fitness falls but precision remains unaltered in every change.

Figure 3.2: Evolution of fitness and precision metrics when computed over a sliding window of 100
traces on logs pl and cb.

measurements for both fitness and precision (line 26). To calculate this regression, the ordinary
least squares method has been used, which minimizes the sum of squares of the difference
between the real and the predicted values of the dependent variable —i.e., the fitness/precision
value—. Also, a statistical test over the regression slope has been performed. Namely a
t-test with (𝑛/2) − 2 degrees of freedom. The null hypothesis (𝐻0) states that the slope of the
regression is equal to zero. The minimum significance level has been set at 0.05. When 𝐻0 is
rejected (i.e. Υ.confidence < 0.05) we asume that enough evidences exist to accept the slope
value Υ.slope. Otherwise, we can not assume that the slope value is different from 0. There
are three possible situations:

1. The regression slope is negative (line 27): metrics get lower values, so more traces are
not replayable for fitness or, conversely, more paths of the model are not contained in
traces for precision. Thus the window is marked as a drift candidate.

2. The regression slope is positive (line 28): metrics get higher values, since more traces
are replayable for fitness or, conversely, more paths of the model are contained in traces
for precision. Thus the window is marked as a drift candidate.

3. The regression slope is zero (line 29): no change in conformance metrics, i.e., the
window does not present any drift. In this case, a drift can also be detected, but only if
the previous window was marked as a drift candidate.

An example of this behaviour is depicted in Figure 3.2. This example shows the drift
detection using the logs pl and cb, that will be described in Section 3.3.1, which contain a
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Algorithm 3.2 Automatic window size optimizer

Inputs: an event log 𝐿 and a minimum window size 𝑛 < |𝐿 |
Outputs: the optimal window size for processing 𝐿

1: function AdjustWindow(𝑛, 𝐿)
2: 𝑁1, 𝑁2, 𝑁3 ← ∅
3: 𝑛′ ← 𝑛

4: while 𝑁1 = 𝑁2 = 𝑁3 do
5: 𝑁1 ← 𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟 (⟨𝜏0, . . . , 𝜏𝑛′ ⟩)
6: 𝑁2 ← 𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟 (⟨𝜏𝑛′ , . . . , 𝜏2𝑛′ ⟩)
7: 𝑁3 ← 𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟 (⟨𝜏2𝑛′ , . . . , 𝜏3𝑛′ ⟩)
8: if 𝑁1 = 𝑁2 = 𝑁3 then
9: 𝑛′ ← 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 (𝑛′ )

10: end if
11: end while
12: return n’
13: end function

change every 250 traces. In the case of pl (Figure 3.2a), two fragments that are originally
executed in a concurrent form are transformed into a sequential execution, which should imply
a reduction in precision but not in fitness. In the case of cb (Figure 3.2b), a fragment is
transformed from mandatory to skippable, which should imply a reduction in fitness but not in
precision.

3.2.2 Adjusting the Window Size

When some behaviour appears in some traces but not in the model, they can be initially
considered as outliers. But when this behaviour persists for a long time, it can be flagged as
a change, having the organization an opportunity to enhance its process. Something similar
happens when some behaviour is no longer observed in the log. A path of the process that
is not present during a short period of time can be seen as a temporary exception. But if this
behaviour is absent for a long time, some optimizations can be made to improve the process
performance. Hence, small windows will detect less durable changes, while larger window
sizes will detect changes that persist.

Adjusting the window size for processing the log is not a trivial task. A small window
would led to multiple false detections, due to the window not containing enough information
to describe the process executed at a given instant. On the other hand, a big window would
not detect some changes, because the reference window will contain traces from before and
after the change. Thus, a good balance between the two options is essential. To adjust the
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𝜏1 𝜏2 𝜏3 𝜏4 𝜏5 𝜏6 𝜏7 𝜏8 𝜏9 𝜏10 𝜏11 𝜏12 𝜏13 𝜏14 𝜏15 𝜏16

Change

𝜔6 𝜔12

𝜔5 𝜔10 𝜔15

Added Behaviour
Removed Behaviour

Added Behaviour
Removed Behaviour

𝑁2 ≠ 𝑁1
𝑁1 = 𝑁1

𝑁2 ≠ 𝑁1 = 𝑁1
𝑁1 = 𝑁1 ≠ 𝑁2

Figure 3.3: Behaviour of the adaptive window in the example from Figure 3.1. Log correspond with
the one in Figure 3.1c and Figure 3.1d for removing and adding behaviour, respectively.
𝑁1 and 𝑁2 refer respectively to the models in Figure 3.1a and Figure 3.1b.

window size, C2D2 uses an approach based on the comparison of models from consecutive
sublogs (Algorithm 3.2). We start with three empty models (line 2) and a window size 𝑛′,
that is initialized to the minimum window size 𝑛 (line 3). Then, three new models for three
consecutive sublogs are discovered with the same discovery algorithm used for the detection
(lines 5 to 7). If these three discovered models are equal, we increment the window size and try
again (lines 8 to 10). Else, if any of the discovered models differ from the rest, the procedure
finishes and the last 𝑛′ is used as the window size. By default, we use a minimum window size
of 1% and an increment of 0.1% of the log size.

Figure 3.3 shows why three consecutive models are required. Let us consider the log in
Figure 3.1d, that presents a change between traces 𝜏8 and 𝜏9. The change consist in some
behaviour being added to the process (the execution of 𝐵 before 𝐶 is replaced by a concurrent
execution of these two activities). In this case, using two windows, one that contains behaviour
from before the change and one that contains behaviour from both before and after the change,
is enough because the models will be different. Consider now the log in Figure 3.1c, that also
contains a change between traces 𝜏8 and 𝜏9. This time, the change consists in some behaviour
being removed from the process (the execution of 𝐶 before 𝐵 disappears from the log). In
this case, when using just two windows, the model discovered with traces from both pre- and
post-drift traces reflects no changes, because the missing path is present in the pre-drift traces
used for discovery. In this scenario three windows, with their respective models, are required:
one to depict the behaviour of the process before the change, one to detect both pre- and
post-drift behaviour, which will be the same as in the pre-drift case, and one to represent the
behaviour after the change.

43



Víctor José Gallego Fontenla

3.2.3 Conformance metrics change estimators

Traditional fitness and precision metrics are designed to assess the global quality of a model.
These metrics use different approaches to compute fitness and precision in a reliable way,
giving each trace a score in a continuous scale depending on how well they conform to the
model, rather than following a discrete approach where traces can only get a binary rating
for conformance. C2D2 use these metrics to detect structural changes during the execution
of a process. Moreover, we propose two simpler fitness and precision metrics aside from the
well-established metrics from the state of the art. These two approaches have much lower
computational complexity and were designed to detect changes in simple and noise-free logs.

In the case of fitness, we use the percentage of replayable traces. This approach is not
particularly useful for measuring the quality of a model, since it equally penalizes traces that do
not fit the model and those that deviate slightly from it. Despite this, it can be used to estimate
changes in fitness, since a change in the percentage of traces that can be replayed in the model
always leads to a change in the metric value. For precision, the following approach is used:

PC = 1 − |OLP \ DFR|
|OLP| (3.1)

where:

• A set of one-length paths (OLP) is extracted from the model. An OLP is a pair of
activities that are directly connected in the process model, without any other activity in
between.

• A set of directly-follows relations (DFR) is extracted from the log. A DFR is a pair os
activities that appear one after the other in the log, without any activity in between.

• Operator \ is the difference between two sets.

Equation (3.1) does not measure the precision per se, but the change in the precision.
The moment a OLP stops appearing in the log is indicative that some path of the model has
disappeared. The proposed approach returns 1 when all the supported behavior of the model
appears at least once in the log, and 0 otherwise, i.e., when none of the behavior supported by
the model appears in the log. The computation of this metric is illustrated with an example in
Figure 3.4.

44



Chapter 3. Sudden drift detection

A
B

C
D

E

F
G

OLP = ⟨(A→ B) (A→ C) (B→ D) (C→ D) (D→ E) (D→ F) (E→ G) (F→ G)⟩

DFR = ⟨(A→ B) (A→ C) (B→ C) (B→ D) (C→ B) (C→ D) (D→ E) (E→ G)⟩

PC = 1 − |⟨(D→ F) (F→ G)⟩|
8

= 0.75

Log

A B C D E G

A C B D E G

A B C D E G

A C B D E G

A C B D E G

A B C D E G

A B C D E G

A C B D E G

A B C D E G

Figure 3.4: PC computation example. Colored in green are the arcs that appear in the log.
Colored in grey those that do not appear.

3.3 Experimentation

Concept drift algorithms are assessed based on two quality measures: On the one hand, 𝐹𝑠𝑐𝑜𝑟𝑒

(Equation (3.2a)), which is an accuracy metric computed as the harmonic mean between
precision (Equation (3.2b)) and recall (Equation (3.2c)):

𝐹𝑠𝑐𝑜𝑟𝑒 =
2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙 (3.2a)

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 (3.2b)

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 (3.2c)

On the other hand, delay (henceforth Δ), which is the distance between the point when the
change really happened and when it is detected:

Δ(𝑑𝑅, 𝑑𝐷) = |𝑑𝑅 − 𝑑𝐷 | (3.3)

To classify the detected changes as true positives (TP), false positives (FP) or false negatives
(FN), we use a threshold 𝜀, that represents the error tolerance of the quality measures, and
a neighborhood 𝛿𝜀

𝑖
, defined as the interval between 𝑖 − 𝜀 and 𝑖 + 𝜀. Let a change happen at

instant 𝑖. This change is classified as a TP only when it is detected in 𝛿𝜀
𝑖
. When no change

is detected in 𝛿𝜀
𝑖

it is classified as FN. Finally, all changes detected in 𝛿𝜀
𝑖

where a previous
change has been already detected are classified as a FP, as well as the ones detected outside any
𝛿𝜀 . Figure 3.5 shows an example with two real changes (𝑑5, at instant 5, and 𝑑20, at instant 20),
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0 5 10 15 20 25

𝛿5
5 𝛿5

20

TP FP FP FN

Figure 3.5: Change results classification in TP, FP and FN. A dot represents a real change. A cross
represents a detection. Shadowed are the neighborhoods for 𝜀 = 5.

and three detections, at instants 4 (𝑐4), 7 (𝑐7) and 12 (𝑐12), using a 𝜀 = 5. In this example, 𝑐4 is
classified as a TP, because it lies in the neighborhood of 𝑑5; 𝑐7 is classified as a FP, because,
despite being in the neighborhood of 𝑑5, another change has been detected previously; 𝑐12 is
classified too as a FP, in this case for being detected outside any neighborhood 𝛿5; and finally,
𝑑20 is classified as a FN since no change is detected in its neighborhood.

The algorithm implementation is published online and available as a REST API1.

3.3.1 Validation data

Our proposal has been tested with three models extracted from the literature [20, 49, 50], which
describe a loan application process, a hospital emergency ward process, and a central venous
catheter process, respectively. These models are usually part of benchmarks for concept drift
detection, process discovery and conformance ckecking. A set of sythetic logs for each one of
the process models have been generated using the methodology and change patterns described
in [63]. This is the most extended methodology [12, 15, 65] for generating datasets when
validating sudden concept drift detection algorithms in process mining. For each process, we
generated a dataset composed of 68 logs: 17 with 2,500 traces, 17 with 5,000, 17 with 7,500
and 17 with 10,000. The original dataset from [63] contains 4 more logs, one for each of
the sizes, but they have been discarded because its drift pattern —changing the frequency of
the branches in a choice construct— does not affect the control-flow of the process, but the
behaviour of the users. Only the results of the experiments with one of the models —namelly
the loan application process— are shown in this chapter. Detailed results for the other two
models can be found in Appendix A.

The Petri net corresponding to the loan application process is depicted in Figure 3.6. To
generate the 17 modified models, 11 simple change patterns from [48] are applied to the original
process. These patterns can be classified into three categories (Table 3.1): (i) changes involving
the insertion of new behavior —marked with 𝐼—; (ii) changes involving the optionalization

1https://tec.citius.usc.es/concept-drift-api/swagger-ui.html
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Figure 3.6: Petri net for the original loan application process model [63] used to generate logs.
Activity names are shortened for better understandability.

Table 3.1: Change patterns applied to the original model from Figure 3.6 and resulting models.

(a) Change patterns.

Code Change pattern Class

cm Move fragment into/out of
conditional branch

I

cp Duplicate fragment I

pm Move fragment into/out of
parallel branch

I

re Add/remove fragment I

rp Substitute fragment I

sw Swap two fragments I

cb Make fragment
skippable/non-skippable

O

lp Make fragments
loopable/non-loopable

O

cd Synchronize two fragments R

cf Make two fragments
conditional/sequential

R

pl Make two fragments
parallel/sequential

R

(b) Derived models.

Model code Change patterns

cm cm

cp cp

pm pm

re re

rp rp

sw sw

cb cb

lp lp

cd cd

cf cf

pl pl

OIR lp + re + cd

ORI lp + pl + re

RIO cf + cp + cb

ROI pl + lp + rp

of a part of the model —marked with 𝑂—; and (iii) changes involving the restructuring and
rearrangement of some parts of the model —marked with 𝑅—. In addition, another 6 models
are generated by applying a combination of simple change patterns —one pattern from each of
the previously named categories— to build a complex change pattern.

Once all the models are available, the logs are generated simulating executions of those
processes. The original log is then combined with the modified ones to generate logs with
drifts. The final log is composed joining alternatively sublogs from both the original model
and the modified ones. Each drifting log presents a change every 10% of its final size. A log
generation example is represented in Figure 3.7. Two logs (𝐿1 and 𝐿2) with different models
are split in 5 sublogs with equal sizes (𝐿1

1 to 𝐿5
1 and 𝐿1

2 to 𝐿5
2). This sublogs are combined

alternatively into a log 𝐿, with size |𝐿1 | + |𝐿2 |.
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Figure 3.7: Log generation example.

3.3.2 Conformance checking metrics and discovery algorithm impact

In order to check the impact of the discovery algorithm and the conformance metrics in
C2D2 performance, different configurations have been tested:

1. Discovery algorithms: Inductive Miner (IM) [23] and Heuristics Miner (HM) [71], which
are two of the most used methods for discovering models from event logs. No algorithm
based on evolutionary computation has been selected because it would increase the
computational complexity significantly.

2. Fitness metrics: Alignment Based Fitness (AF) [72], Negative Event Recall (NR) [34]
and the percentage of completely Replayable Traces (RT) from Section 3.2.3.

3. Precision metrics: Advanced Behavioural Appropriateness (ABA) [35], Negative Event
Precision (NP) [34] and Precision Change assessment (PC) from Section 3.2.3.

The key when choosing a discovery algorithm and a pair of fitness and precision metrics is
to obtain a combination that allows the results of the regression to stabilize around a value, so
the slope is zero while there are no changes. If we focus on fitness, reaching a constant value in
absence of changes is easier if we use a discovery algorithm that ensures traces replayability,
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Table 3.2: Mean Δ and 𝐹𝑠𝑐𝑜𝑟𝑒 for every tested configuration over the 2,500 traces logs for the
loan application process. Window size has been fixed to 100 traces. Best results are
shadowed in a darker grey and runners-up in a lighter one. Error tolerance has been set
to a 5% of the log size.

𝐹𝑠𝑐𝑜𝑟𝑒 Δ

IM

𝛾 = AF
𝜌 = ABA 0.9028 4.0915
𝜌 = NP 0.7985 43.6243
𝜌 = PC 0.9969 3.6471

𝛾 = NR
𝜌 = ABA 0.9028 4.0915
𝜌 = NP 0.7864 41.5318
𝜌 = PC 0.9969 3.5948

𝛾 = RT
𝜌 = ABA 0.9425 4.0663
𝜌 = NP 0.7955 41.7028
𝜌 = PC 0.9969 3.5948

HM

𝛾 = AF
𝜌 = ABA 0.9327 7.4608
𝜌 = NP 0.7365 36.1014
𝜌 = PC 0.9789 4.4412

𝛾 = NR
𝜌 = ABA 0.9402 10.3758
𝜌 = NP 0.7427 36.8831
𝜌 = PC 0.9750 5.3828

𝛾 = RT
𝜌 = ABA 0.4724 6.0812
𝜌 = NP 0.7025 73.5175
𝜌 = PC 0.7176 2.9829

such as Inductive Miner. However, if we use a discovery algorithm that does not ensure traces
replayability, such as Heuristics Miner, the selected metric should take this into account, or the
obtained values will not stabilize, so more false positives will be notified. This can be seen in
the experiments in Table 3.2, where the results of Inductive Miner do not change significantly
no matter which fitness metric is used. On the contrary, when we use Heuristics Miner, best
results are obtained when a more robust fitness metric is used (e.g., alignments based one vs.
percentage of replayable traces).

On the other hand, if we focus on precision, the chosen discovery algorithm has less impact,
as none of the discovery algorithms used in the experimentation ensures a perfect precision.
When computing precision, situations in which a path from the model is only present in few
traces (or even in none) are quite common, so the metric can oscilate a lot. With the use
of the 𝑃𝐶 precision metric this is partially addressed, because this metric does not take into
account how many times a path occurs but only its presence. This forces the metric to converge
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(a) Loan application.
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(b) Hospital emergency ward.
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(c) Central venous catheter.

Figure 3.8: Mean 𝐹𝑠𝑐𝑜𝑟𝑒 (higger is better) and Δ (lower is better) evolution using the 2,500 traces
logs and different window sizes. Shadowed in green is the optimal region.

quickly, so the regression slopes are near to zero earlier, and change more abruptly when the
path disappears competely from the executions.

Taking into account the former results, the experiments in the following sections have been
performed using IM algorithm, RT fitness and PC precision.

3.3.3 Window size impact

In this section we present the results of the experiments on the influence of the window size
on the results. Figure 3.8 show how the window size affects mean 𝐹𝑠𝑐𝑜𝑟𝑒 and mean Δ for
logs for the loan application process with 2,500 traces, changes every 250 traces, and without
automatic window size adjustment.

In all cases, the optimal window size for both 𝐹𝑠𝑐𝑜𝑟𝑒 and Δ ranges between 25 and 100
(this area is boxed in green). Sizes below 25 produce good results in terms of Δ, but strongly
penalize the 𝐹𝑠𝑐𝑜𝑟𝑒 values. In this case, C2D2 identifies many false positives because the
reference window does not include sufficient behavior to discover a model with a high fitness.
C2D2 also gets a low 𝐹𝑠𝑐𝑜𝑟𝑒 for windows with more than 100 traces because the discovered
model has a low precision, allowing too much behavior that is not present in the log, thus
causing false negatives as the window contains behavior of both before and after the change.

3.3.4 Results and benchmarking

In this section, C2D2 algorithm is compared with Trace-Based ProDrift (PD-T) [63], Event-
Based ProDrift (PD-E) [64] and TPCDD [65], the three sudden process drift detection
algorithms with best results in the state of the art. Specifically, we used the following
configurations:

1. PD-T with an adaptive window and an initial size of 50.
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2. PD-E with an adaptive window and an initial size of 50. Relation noise filter threshold
was set to 0% and sensitivity to very high, as the authors recommend for analyzing
synthetic logs without noise.

3. TPCDD minimum window size set to 100 and DBSCAN radius to 10.

Table 3.3 shows the results for the loan application process logs —further detailed results
for the central venous catheter and the hospital emergency ward processes are available in
Appendix A—. C2D2 outperforms the rest of algorithms in terms of 𝐹𝑠𝑐𝑜𝑟𝑒 in all the cases,
except in OIR log, getting always the best average value. Moreover, C2D2 is also the second
best in terms of delay, very close to TPCDD, and being all the values in the same order of
magnitude.

Table 3.3: Mean 𝐹𝑠𝑐𝑜𝑟𝑒 and Δ values for each algorithm using the loan application process logs.

cb

2500 1.0000 6.2222 1.0000 5.5556 0.2000 90.0000 1.0000 78.4444

5000 1.0000 6.7778 0.9000 6.5556 0.7143 57.4000 1.0000 99.6667

7500 1.0000 7.7778 0.9474 16.6667 1.0000 68.6667 0.9474 70.2222

10000 1.0000 9.0000 0.8571 18.2222 0.5000 41.6667 0.8571 84.4444

cd

2500 1.0000 1.7778 1.0000 0.7778 0.0000 — 1.0000 42.4444

5000 1.0000 1.2222 0.9474 0.7778 0.0000 — 0.9412 2.5555

7500 1.0000 2.1111 0.9474 1.0000 0.0000 — 0.9474 2.2222

10000 1.0000 1.5556 0.9474 1.0000 0.0000 — 0.9000 3.3333

cf

2500 1.0000 3.8889 1.0000 1.4444 1.0000 40.0000 1.0000 49.7778

5000 1.0000 3.3333 0.9474 9.2222 1.0000 25.7777 1.0000 50.1111

7500 1.0000 2.7778 0.9474 1.5556 1.0000 22.3333 0.9474 37.5556

10000 1.0000 3.8889 0.9474 5.8889 1.0000 29.6667 0.9474 45.8889

cm

2500 1.0000 5.8889 1.0000 11.5556 0.7143 66.0000 0.9412 95.1250

5000 1.0000 7.7778 0.9474 6.1111 0.7143 51.8000 0.8750 17.5714

7500 1.0000 5.3333 0.9474 4.4444 0.9412 83.8750 0.8889 78.6250

10000 1.0000 8.5556 0.9000 7.6667 0.0000 — 0.9474 97.7778

Log size
C2D2 TPCDD PD-T PD-E

𝐹𝑠𝑐𝑜𝑟𝑒 Δ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ

Continues on next page
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Table 3.3: Mean 𝐹𝑠𝑐𝑜𝑟𝑒 and Δ values for each algorithm using the loan application process
logs. (Continued)

cp

2500 1.0000 2.8889 1.0000 1.2222 1.0000 45.2222 1.0000 39.0000

5000 1.0000 3.5556 0.9000 5.4444 1.0000 33.3333 1.0000 66.2222

7500 1.0000 3.2222 0.9000 1.3333 1.0000 33.2222 0.9474 26.5556

10000 1.0000 4.4444 0.9000 2.3333 1.0000 33.5556 0.9000 30.7778

lp

2500 1.0000 3.6667 0.9474 10.0000 1.0000 52.7778 0.9412 36.5000

5000 1.0000 2.0000 0.9000 4.1111 1.0000 48.4444 1.0000 45.3333

7500 1.0000 1.4444 0.7500 1.2222 1.0000 52.8889 0.7200 34.6667

10000 1.0000 2.3333 0.8182 8.1111 1.0000 47.1111 0.8182 32.8889

sw

2500 1.0000 2.8889 1.0000 1.0000 1.0000 43.5556 0.9412 38.1250

5000 1.0000 2.7778 0.9474 0.6667 1.0000 29.6667 1.0000 21.3333

7500 1.0000 2.6667 0.8571 0.8889 1.0000 32.4444 0.9000 16.1111

10000 1.0000 3.6667 0.9474 1.5556 1.0000 33.4444 0.9000 4.6667

pl

2500 1.0000 1.7778 1.0000 1.3333 0.9412 36.0000 0.9412 51.3750

5000 1.0000 1.2222 0.9474 0.7778 0.0000 — 1.0000 51.2222

7500 1.0000 2.1111 0.9474 1.6667 0.0000 — 0.9474 30.8889

10000 1.0000 1.5556 0.9474 1.1111 0.2000 84.0000 0.9474 30.7778

pm

2500 1.0000 3.2222 1.0000 3.3333 0.8000 49.6667 1.0000 48.4444

5000 1.0000 3.6667 0.9474 3.4444 0.9412 37.0000 1.0000 25.8889

7500 1.0000 3.1111 0.9474 2.6667 1.0000 43.4444 0.9474 14.6667

10000 1.0000 3.6667 0.9474 2.1111 0.7500 31.3333 0.9474 9.0000

re

2500 1.0000 2.0000 1.0000 1.1111 1.0000 19.8889 0.9412 49.8750

5000 1.0000 2.0000 0.9474 1.5556 1.0000 19.1111 0.9474 16.7778

7500 1.0000 2.0000 0.9474 0.5556 1.0000 21.4444 0.9474 27.5556

10000 1.0000 2.0000 0.9000 0.7778 1.0000 17.7778 0.9000 23.0000

Log size
C2D2 TPCDD PD-T PD-E

𝐹𝑠𝑐𝑜𝑟𝑒 Δ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ

Continues on next page
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Table 3.3: Mean 𝐹𝑠𝑐𝑜𝑟𝑒 and Δ values for each algorithm using the loan application process
logs. (Continued)

rp

2500 1.0000 3.0000 1.0000 1.2222 1.0000 45.2222 1.0000 65.0000

5000 1.0000 2.8889 0.9000 0.4444 1.0000 28.2222 0.9412 48.7500

7500 1.0000 2.5556 0.8571 30.6667 1.0000 29.8889 0.9000 50.5556

10000 1.0000 3.7778 0.8182 1.3333 1.0000 31.2222 0.8571 46.2222

IOR

2500 1.0000 2.6667 1.0000 2.0000 1.0000 38.7778 1.0000 63.3333

5000 1.0000 2.2222 0.9474 2.7778 1.0000 24.2222 1.0000 52.0000

7500 1.0000 4.3333 0.9474 10.7778 0.9000 34.5556 0.9474 53.2222

10000 1.0000 2.7778 0.9000 3.0000 1.0000 27.7778 0.9474 59.5556

IRO

2500 1.0000 6.0000 1.0000 2.7778 1.0000 52.3333 1.0000 43.0000

5000 1.0000 5.4444 0.9000 1.7778 1.0000 49.4444 0.9412 31.2500

7500 1.0000 4.2222 0.9000 2.7778 1.0000 53.4444 0.9474 14.3333

10000 1.0000 7.6667 0.9474 2.1111 0.8750 50.1429 0.8571 18.0000

OIR

2500 0.9000 2.6667 1.0000 0.6667 0.6154 29.5000 0.9412 15.7500

5000 0.9474 2.0000 0.9000 1.0000 1.0000 26.6667 0.9412 0.0000

7500 0.5000 2.0000 0.7826 0.3333 1.0000 69.7778 0.9474 0.0000

10000 1.0000 3.8889 0.8182 1.1111 1.0000 32.6667 0.9000 54.6666

ORI

2500 1.0000 2.5556 1.0000 0.6667 1.0000 50.5556 1.0000 35.0000

5000 1.0000 3.2222 0.9000 1.1111 1.0000 36.1111 0.9412 22.7500

7500 1.0000 2.3333 0.8571 0.8889 1.0000 33.1111 0.9000 36.8889

10000 0.1333 2.0000 0.7200 0.2222 1.0000 37.7778 0.9474 2.7778

RIO

2500 1.0000 4.6667 1.0000 10.8889 0.9412 51.1250 0.9412 53.8750

5000 1.0000 5.2222 0.9474 1.7778 1.0000 45.2222 1.0000 59.7778

7500 1.0000 4.2222 0.8571 2.4444 1.0000 40.6667 0.9000 47.6667

10000 1.0000 5.8889 0.7500 2.1111 0.8889 41.0000 0.8182 63.0000

Log size
C2D2 TPCDD PD-T PD-E

𝐹𝑠𝑐𝑜𝑟𝑒 Δ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ

Continues on next page
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Table 3.3: Mean 𝐹𝑠𝑐𝑜𝑟𝑒 and Δ values for each algorithm using the loan application process
logs. (Continued)

ROI

2500 1.0000 2.0000 1.0000 0.7778 1.0000 32.3333 0.9412 40.1250

5000 1.0000 2.0000 0.9474 0.4444 1.0000 26.0000 0.9412 7.5000

7500 1.0000 2.0000 0.9474 1.0000 1.0000 31.3333 0.9474 7.8888

10000 1.0000 2.0000 0.9474 0.4444 1.0000 20.6667 0.9000 8.4444

Average

2500 0.9941 3.3987 0.9969 3.3137 0.8360 46.4349 0.9723 49.7173

5000 0.9969 3.3725 0.9279 2.8235 0.8453 35.8948 0.9692 42.2771

7500 0.9706 3.1895 0.8993 4.7582 0.8730 43.4065 0.9194 32.3309

10000 0.9490 4.0392 0.8831 3.4771 0.7773 37.8540 0.8995 36.1895

Log size
C2D2 TPCDD PD-T PD-E

𝐹𝑠𝑐𝑜𝑟𝑒 Δ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ

Statistical tests

Results of the different algorithms have been evaluated using a Bayesian hypothesis test.
We opted for a Bayesian approach instead of a traditional null hypothesis significance test
(NHST) [73] because:

1. NHST does not provide any certainty about the validity of the null hypothesis. Thus, if
the hypothesis is not rejected, it can only be stablished that there is no evidence to reject
it, but never to accept it as such.

2. NHST does not estimate the probability of the hypotheses to be valid, so comparing the
algorithms is harder.

We have performed a BAyesian INformative Hypothesis Evaluation (BAIN) [74] to analyze
the experimentation. BAIN is based on the use of Bayes factors to compare the conditional
probability between two competing hypotheses. In a simplified form, a Bayesian factor
𝐵𝐹𝐻𝑖𝐻 𝑗

is the ratio of the probability of the hypothesis 𝐻𝑖 to the probability of the hypothesis
𝐻 𝑗 . For example, 𝐵𝐹𝐻𝑖𝐻 𝑗

= 5 would indicate that the hypothesis 𝐻𝑖 is 5 times more likely
than hypothesis 𝐻 𝑗 . The most frequent interpretation of these Bayes factors was proposed
by [75], where the Bayes factor values are classified in 11 levels, from no evidence to extreme
evidence. Table 3.4 shows the different levels of evidence defined in this clasification. For all
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Table 3.4: Evidence levels proposed by [75] for the Bayes factors.

Bayes factor 𝐵𝐹𝐻𝑖𝐻 𝑗
Interpretation

𝐵𝐹𝐻𝑖𝐻 𝑗
> 100 Extreme evidence for 𝐻𝑖

100 > 𝐵𝐹𝐻𝑖𝐻 𝑗
> 30 Very strong evidence for 𝐻𝑖

30 > 𝐵𝐹𝐻𝑖𝐻 𝑗
> 10 Strong evidence for 𝐻𝑖

10 > 𝐵𝐹𝐻𝑖𝐻 𝑗
> 3 Moderate evidence for 𝐻𝑖

3 > 𝐵𝐹𝐻𝑖𝐻 𝑗
> 1 Anecdotal evidence for 𝐻𝑖

𝐵𝐹𝐻𝑖𝐻 𝑗
= 1 No evidence

1 > 𝐵𝐹𝐻𝑖𝐻 𝑗
> 0.3333 Anecdotal evidence for 𝐻 𝑗

0.3333 > 𝐵𝐹𝐻𝑖𝐻 𝑗
> 0.1 Moderate evidence for 𝐻 𝑗

0.1 > 𝐵𝐹𝐻𝑖𝐻 𝑗
> 0.0333 Strong evidence for 𝐻 𝑗

0.0333 > 𝐵𝐹𝐻𝑖𝐻 𝑗
> 0.01 Very strong evidence for 𝐻 𝑗

0.01 > 𝐵𝐹𝐻𝑖𝐻 𝑗
Extreme evidence for 𝐻 𝑗

Table 3.5: BAIN test results for the validation logs, where 𝐵𝐹𝐻𝑖𝐻
𝑐
𝑖

shows the Bayesian factor for 𝐻𝑖

against its complementary 𝐻𝑐
𝑖
= ¬𝐻𝑖 . The most likely hypothesis is shown shaded in blue.

𝐵𝐹𝐻𝑖𝐻
𝑐
𝑖

𝐹𝑠𝑐𝑜𝑟𝑒 Δ

𝐻1: C2D2 > TPCDD and C2D2 > PD-T and C2D2 > PD-E 37.18 2.24
𝐻2: C2D2 = TPCDD 5.46 16.02
𝐻3: C2D2 = PD-T 4.25 × 10−43 4.35 × 10−184

𝐻4: C2D2 = PD-E 0.10 1.33 × 10−19

𝐻5: C2D2 < TPCDD 0.08 1.24
𝐻6: C2D2 < PD-T 7.37 × 10−46 3.90 × 10−187

𝐻7: C2D2 < PD-E 7.42 × 10−4 3.38 × 10−22

the hypothesis proposed for the test, symbols >, = and < refer to the algorithm obtaining better,
equal or worst results. All tests have been executed using the software package JASP [76].

Table 3.5 shows the findings of the BAIN test performed over the results obtained by all
approaches. In this test, the hypothesis 𝐻1 considers that C2D2 achieves better results than
the other state of the art approaches —i.e., C2D2 > TPCDD, C2D2 > PD-T and C2D2 >
PD-E—, while the rest of hypothesis consider the approaches to be equal to (𝐻2 to 𝐻4) or
better then (𝐻5 to 𝐻7) C2D2. As can be seen, there are very strong evidences for 𝐻1 for the
𝐹𝑠𝑐𝑜𝑟𝑒, which means that C2D2 outperforms the rest of the approaches, with a Bayes factor
30 < 𝐵𝐹𝐻1𝐻

𝑐
1
< 100. Furthermore, when checking the results for Δ, we can see that 𝐻2 is the

most likely hypothesis, with a Bayes factor 10 < 𝐵𝐹𝐻1𝐻
𝑐
1
< 30, which means that there are

strong evidences for TPCDD and C2D2 being equal in terms of delay.
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Results discussion

As shown in the previous section, C2D2 outperforms every other approach in terms of 𝐹𝑠𝑐𝑜𝑟𝑒.
Specifically, for the 2,500 trace logs, C2D2 obtains a 𝐹𝑠𝑐𝑜𝑟𝑒 of 1.0 in all logs, except in OIR,
where it returns two false positives. TPCDD also obtains a perfect 𝐹𝑠𝑐𝑜𝑟𝑒, except in lp. In this
case the error is due to a false negative (i.e., a change that remains undetected). Both PD-T and
PD-E have much worse results, having 7 and 8 cases where they does not detect all changes. In
fact, PD-T even is unable to detect any change in cd. For logs with 5,000, 7,500 and 10,000
traces, C2D2 gets similar results, and only do not have a perfect 𝐹𝑠𝑐𝑜𝑟𝑒 in OIR, again because
of false positives and negatives. However, TPCDD behaves much worse, being unable to get a
perfect 𝐹𝑠𝑐𝑜𝑟𝑒 in any log. The same happens to PD-E in logs with 7,500 and 10,000 traces,
where it can not detect all changes correctly. PD-T gets worse 𝐹𝑠𝑐𝑜𝑟𝑒 in most of the logs, and,
in addition, is unable to detect any change in cd and pl, for logs with 5,000 and 7,500 traces,
and in cd and cm, for logs with 10,000 traces.

In terms of Δ, C2D2 and TPCDD obtain similar results for all the logs, being able to detect
all changes always with less than 10 traces of delay. In comparison with PD-T and PD-E,
C2D2 Δ are always an order of magnitude below, thus being able to detect changes closer to
the point where they really happened. As a summary, we can see that C2D2 outperforms every
other algorithm in terms of mean 𝐹𝑠𝑐𝑜𝑟𝑒 and Δ.

3.4 Conclusions

In this chapter, we presented C2D2, an approach to the offline detection of sudden control-flow
drifts in process mining. C2D2 drift detection is supported by the assumption that conformance
checking measures are suitable to detect control-flow drifts. Specifically, we argue that fitness
and precision are complementary metrics in concept drift, and while fitness is useful to identify
traces that are not supported by the model, precision looks for behaviour not present in the
window of traces. Related to this, we propose the usage of two new metrics, one for fitness and
one for precision, that have a low computational complexity to detect changes in models.

Our approach has been validated against 3 synthetic benchmarking dataset, each one
consisting of 68 logs, outperforming the best concept drift algorithms in terms of accuracy
(𝐹𝑠𝑐𝑜𝑟𝑒) while maintaining a minimum delay (Δ). Finally, a statistical test over the results of
all algorithms confirmed that the presented solution is statistically better in terms of accuracy.
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CHAPTER 4

GRADUAL DRIFT DETECTION

There is no intelligence where there is no
change and no need of change.

— Herbert George Wells

In this chapter, we present CRIER (Conformance-based gRadual drIft detEction algoRithm),
an algorithm that focuses on the detection of gradual control-flow drifts, where two versions of
the process coexist for a certain period of time until one of them completely replaces the other.
This type of change is very challenging in process mining since whenever a change is made to
the process, traces already in execution are compliant with the previous version of the model,
while new traces will be compliant with the already modified model.

Proposals that deal with gradual drift in process mining must ideally have a series of
desirable features:

1. Automatically distinguish between gradual and sudden drifts, so it is not know a priori
which kind of changes might be found in the log. Note that there is no possible confusion
between gradual drifts and the other two types of drifts —incremental and recurrent—,
since in the latter two models do not coexist at the same time.

2. Deal with different distributions of traces during the occurrence of gradual changes such
as linear, exponential, random or constant.
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3. Detect gradual changes with a low delay, so a change can be precisely localized in time.

4. Have a high accuracy, detecting all the changes without false alarms nor skipping
changes.

CRIER can detect gradual and sudden changes in event logs based on the change of
conformance checking metrics —fitness and precision— over a sliding window, computing
these metrics for the successive sliding windows from the start until the end of the log. The
evolution of these conformance metrics is evaluated using linear regressions and hypothesis
testing, so that a potential change is detected when the metric values change significantly. In
order to identify gradual drifts, detected change points are analyzed. If the behaviour contained
between two consecutive points is a combination of the behaviour present before the first point
—detected as a change in fitness— and the behaviour after the second one —detected as a
change in precision—, then the change is classified as gradual. This strategy for detecting
gradual changes will be formally proven in the next section.

4.1 Gradual drift detection using conformance metrics

A gradual change is defined between two instants 𝑡1 and 𝑡2, where the process has a behaviour 𝐵1

before 𝑡1, a different behaviour 𝐵2 after 𝑡2, while 𝐵1 and 𝐵2 coexist in [𝑡1, 𝑡2] (see Definition 8).

Theorem 4.1: All gradual drifts are characterized by a fitness change in t1 and by
a precision change in t2 .

Proof: Consider a log 𝐿, with a gradual change between instants 𝑡1 and 𝑡2, in which the
new behaviour is first observed at 𝑡1 and some old behaviour is less and less frequently
observed, until it disappears completely at 𝑡2. Let us consider three disjoint sets of
behaviour:

• 𝐵𝑐, which contains the behaviour that appears throughout the whole duration of
the log 𝐿 and which can be empty;

• 𝐵𝑝 , which contains the previous behaviour of 𝐿 that disappears between 𝑡1 and 𝑡2

and which cannot be empty; and

• 𝐵𝑛, which contains the new behaviour that starts to appear after 𝑡1 and replaces 𝐵𝑝
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after 𝑡2 and which also cannot be empty.

Using these two instants 𝑡1 and 𝑡2, we can split the log 𝐿 in three sublogs. Let 𝐿<𝑡1 be the
log containing all the traces before 𝑡1, 𝐿 [𝑡1 ,𝑡2 ] be the log containing the traces between 𝑡1

and 𝑡2, and 𝐿>𝑡2 be the log with the remaining traces after 𝑡2. Similarly, we can define
the corresponding behaviors for these logs as 𝐵𝐿<𝑡1

= 𝐵𝑐 ∪ 𝐵𝑝 , 𝐵𝐿[𝑡1 ,𝑡2 ]
= 𝐵𝑐 ∪ 𝐵𝑝 ∪ 𝐵𝑛,

and 𝐵𝐿>𝑡2
= 𝐵𝑐 ∪ 𝐵𝑛, respectively, and the reference models 𝑁<𝑡1 , 𝑁[𝑡1 ,𝑡2] and 𝑁>𝑡2 that

can be discovered from the traces of these logs, respectively. The values for fitness and
precision before the change, i.e., 𝐿<𝑡1 , can be computed as follows:

𝛾(𝐿<𝑡1 , 𝑁<𝑡1 ) =
|𝐵𝐿<𝑡1

∩ 𝐵𝑁<𝑡1
|

|𝐵𝐿<𝑡1
| =

| (𝐵𝑐 ∪ 𝐵𝑝) ∩ 𝐵𝑁<𝑡1
|

|𝐵𝑐 ∪ 𝐵𝑝 |
=
| (𝐵𝑐 ∩ 𝐵𝑁<𝑡1

) ∪ (𝐵𝑝 ∩ 𝐵𝑁<𝑡1
) |

|𝐵𝑐 ∪ 𝐵𝑝 |

𝜌(𝐿<𝑡1 , 𝑁<𝑡1 ) =
|𝐵𝐿<𝑡1

∩ 𝐵𝑁<𝑡1
|

|𝐵𝑁<𝑡1
| =

| (𝐵𝑐 ∪ 𝐵𝑝) ∩ 𝐵𝑁<𝑡1
|

|𝐵𝑁<𝑡1
| =

| (𝐵𝑐 ∩ 𝐵𝑁<𝑡1
) ∪ (𝐵𝑝 ∩ 𝐵𝑁<𝑡1

) |
|𝐵𝑁<𝑡1

|

Which can be simplified since 𝐵𝑐 and 𝐵𝑝 are disjoint sets:

𝛾(𝐿<𝑡1 , 𝑁<𝑡1 ) =
|𝐵𝑐 ∩ 𝐵𝑁<𝑡1

| + |𝐵𝑝 ∩ 𝐵𝑁<𝑡1
|

|𝐵𝑐 | + |𝐵𝑝 |
=
|𝐵𝑐 ∩ 𝐵𝑁<𝑡1

|
|𝐵𝑐 | + |𝐵𝑝 |

+
|𝐵𝑝 ∩ 𝐵𝑁<𝑡1

|
|𝐵𝑐 | + |𝐵𝑝 |

𝜌(𝐿<𝑡1 , 𝑁<𝑡1 ) =
|𝐵𝑐 ∩ 𝐵𝑁<𝑡1

| + |𝐵𝑝 ∩ 𝐵𝑁<𝑡1
|

|𝐵𝑁<𝑡1
| =

|𝐵𝑐 ∩ 𝐵𝑁<𝑡1
|

|𝐵𝑁<𝑡1
| +

|𝐵𝑝 ∩ 𝐵𝑁<𝑡1
|

|𝐵𝑁<𝑡1
|

Similarly, fitness and precision values in the change interval [𝑡1, 𝑡2] with respect to this
same model 𝑁<𝑡1 can be computed as follows:

𝛾(𝐿 [𝑡1 ,𝑡2 ] , 𝑁<𝑡1 ) =
|𝐵𝐿[𝑡1 ,𝑡2 ]

∩ 𝐵𝑁<𝑡1
|

|𝐵𝐿[𝑡1 ,𝑡2 ]
| =

| (𝐵𝑐 ∪ 𝐵𝑝 ∪ 𝐵𝑛) ∩ 𝐵𝑁<𝑡1
|

|𝐵𝑐 ∪ 𝐵𝑝 ∪ 𝐵𝑛 |

=
|𝐵𝑐 ∩ 𝐵𝑁<𝑡1

|
|𝐵𝑐 | + |𝐵𝑝 | + |𝐵𝑛 |

+
|𝐵𝑝 ∩ 𝐵𝑁<𝑡1

|
|𝐵𝑐 | + |𝐵𝑝 | + |𝐵𝑛 |

+
|𝐵𝑛 ∩ 𝐵𝑁<𝑡1

|
|𝐵𝑐 | + |𝐵𝑝 | + |𝐵𝑛 |

𝜌(𝐿 [𝑡1 ,𝑡2 ] , 𝑁<𝑡1 ) =
|𝐵𝐿[𝑡1 ,𝑡2 ]

∩ 𝐵𝑁<𝑡1
|

|𝐵𝑁<𝑡1
| =

| (𝐵𝑐 ∪ 𝐵𝑝 ∪ 𝐵𝑛) ∩ 𝐵𝑁<𝑡1
|

|𝐵𝑁<𝑡1
|

=
|𝐵𝑐 ∩ 𝐵𝑁<𝑡1

|
|𝐵𝑁<𝑡1

| +
|𝐵𝑝 ∩ 𝐵𝑁<𝑡1

|
|𝐵𝑁<𝑡1

| +
|𝐵𝑛 ∩ 𝐵𝑁<𝑡1

|
|𝐵𝑁<𝑡1

|
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This equation can be simplified since 𝐵𝑛 only starts to appear after 𝑡1, i.e., 𝐵𝑁<𝑡1
∩𝐵𝑛 = ∅:

𝛾(𝐿 [𝑡1 ,𝑡2 ] , 𝑁<𝑡1 ) =
|𝐵𝑐 ∩ 𝐵𝑁<𝑡1

|
|𝐵𝑐 | + |𝐵𝑝 | + |𝐵𝑛 |

+
|𝐵𝑝 ∩ 𝐵𝑁<𝑡1

|
|𝐵𝑐 | + |𝐵𝑝 | + |𝐵𝑛 |

𝜌(𝐿 [𝑡1 ,𝑡2 ] , 𝑁<𝑡1 ) =
|𝐵𝑐 ∩ 𝐵𝑁<𝑡1

|
|𝐵𝑁<𝑡1

| +
|𝐵𝑝 ∩ 𝐵𝑁<𝑡1

|
|𝐵𝑁<𝑡1

|

Moreover, since 𝐵𝑝 ≠ ∅ and 𝐵𝑛 ≠ ∅, |𝐵𝑐 | + |𝐵𝑝 | + |𝐵𝑛 | > |𝐵𝑐 | + |𝐵𝑝 |. Thus,
𝛾(𝐿<𝑡1 , 𝑁<𝑡1 ) > 𝛾(𝐿 [𝑡1 ,𝑡2 ] , 𝑁<𝑡1 ) but 𝜌(𝐿<𝑡1 , 𝑁<𝑡1 ) = 𝜌(𝐿 [𝑡1 ,𝑡2 ] , 𝑁<𝑡1 ), confirming our
hypothesis that fitness decreases at the beginning of a gradual drift, but precision remaining
unaltered.

Once the beginning of the drift has been detected, a new model 𝑁[𝑡1 ,𝑡2 ] is discovered
using the log 𝐿 [𝑡1 ,𝑡2 ] . Then, the conformance metrics can be computed using Definitions 5
and 6 as follows:

𝛾(𝐿 [𝑡1 ,𝑡2 ] , 𝑁[𝑡1 ,𝑡2 ]) =
|𝐵𝐿[𝑡1 ,𝑡2 ]

∩ 𝐵𝑁[𝑡1 ,𝑡2 ]
|

|𝐵𝐿[𝑡1 ,𝑡2 ]
|

=
|𝐵𝑐 ∩ 𝐵𝑁[𝑡1 ,𝑡2 ]

|
|𝐵𝑐 | + |𝐵𝑝 | + |𝐵𝑛 |

+
|𝐵𝑝 ∩ 𝐵𝑁[𝑡1 ,𝑡2 ]

|
|𝐵𝑐 | + |𝐵𝑝 | + |𝐵𝑛 |

+
|𝐵𝑛 ∩ 𝐵𝑁[𝑡1 ,𝑡2 ]

|
|𝐵𝑐 | + |𝐵𝑝 | + |𝐵𝑛 |

𝜌(𝐿 [𝑡1 ,𝑡2 ] , 𝑁[𝑡1 ,𝑡2 ]) =
|𝐵𝐿[𝑡1 ,𝑡2 ]

∩ 𝐵𝑁[𝑡1 ,𝑡2 ]
|

|𝐵𝑁[𝑡1 ,𝑡2 ]
|

=
|𝐵𝑐 ∩ 𝐵𝑁[𝑡1 ,𝑡2 ]

|
|𝐵𝑁[𝑡1 ,𝑡2 ]

| +
|𝐵𝑝 ∩ 𝐵𝑁[𝑡1 ,𝑡2 ]

|
|𝐵𝑁[𝑡1 ,𝑡2 ]

| +
|𝐵𝑛 ∩ 𝐵𝑁[𝑡1 ,𝑡2 ]

|
|𝐵𝑁[𝑡1 ,𝑡2 ]

|

We can then proceed to define the values after 𝑡2, where 𝐵𝑝 has totally disappeared:

𝛾(𝐿>𝑡2 , 𝑁[𝑡1 ,𝑡2 ]) =
|𝐵𝐿>𝑡2

∩ 𝐵𝑁[𝑡1 ,𝑡2 ]
|

|𝐵𝐿>𝑡2
| =

|𝐵𝑐 ∩ 𝐵𝑁[𝑡1 ,𝑡2 ]
|

|𝐵𝑐 | + |𝐵𝑛 |
+
|𝐵𝑛 ∩ 𝐵𝑁[𝑡1 ,𝑡2 ]

|
|𝐵𝑐 | + |𝐵𝑛 |

𝜌(𝐿>𝑡2 , 𝑁[𝑡1 ,𝑡2 ]) =
|𝐵𝐿>𝑡2

∩ 𝐵𝑁[𝑡1 ,𝑡2 ]
|

|𝐵𝑁[𝑡1 ,𝑡2 ]
| =

| (𝐵𝑐 ∩ 𝐵𝑁[𝑡1 ,𝑡2 ]
) |

|𝐵𝑁[𝑡1 ,𝑡2 ]
| +

|𝐵𝑛 ∩ 𝐵𝑁[𝑡1 ,𝑡2 ]
|

|𝐵𝑁[𝑡1 ,𝑡2 ]
|

Nothing can be affirmed with respect to fitness, but we can conclude that 𝜌(𝐿 [𝑡1 ,𝑡2 ] , 𝑁[𝑡1 ,𝑡2 ]) >
𝜌(𝐿>𝑡2 , 𝑁[𝑡1 ,𝑡2 ]), i.e., precision will decrease at the end of the gradual drift.
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A situation in which a gradual change starts with a change in precision at 𝑡1 is
impossible, since the change in precision necessarily implies a sudden change in the model
structure. Since this proof is straightforward, we did not include it in this dissertation
—𝐵𝑛 = ∅, since no new behavior is added after 𝑡1, otherwise a change in fitness should be
present, and 𝐵𝐿<𝑡1 = 𝐵𝐿[𝑡1,𝑡2] , which contradicts the Definition 9—. □

4.2 Algorithm

The premise underlying the operation of CRIER is that, using fitness and precision metrics,
gradual drifts can be detected with high accuracy. To better understand how the algorithm
works, we illustrate the gradual drift detection with the example of Figure 4.1. The example
is based on a sliding window of size 4. First, traces are read until the window is full. Then,
traces from the first full window 𝜔4 are mined with a discovery algorithm to obtain the model
that describes its behavior. Then, the window is shifted trace by trace and for each shift the
fitness and precision —which are initially 1— are checked to detect whether they change. In
the window 𝜔9 the fitness decreases while the precision does not change, so 𝜏9 is labeled as a
drift candidate. The fitness decrease lasts for three windows, which means that traces from 𝜏10

to 𝜏12 are also drift candidates, so trace 𝜏9 is finally labeled as a drift. As a consequence, a new
model is discovered at 𝜔12, starting a new cycle of the algorithm, until a change in fitness or
precision is detected in the next windows. In this example, a precision decrease is detected for
the windows 𝜔20, 𝜔21, 𝜔22 and 𝜔23, confirming a drift in trace 𝜏17 and, therefore, a gradual
drift between traces 𝜏9 and 𝜏17.

Algorithm 4.1 shows the pseudocode of the CRIER algorithm. The only mandatory inputs
are the event log and a minimum window size. As part of the initialization phase, the algorithm
creates two empty lists for the confirmed drifts, one for sudden and one for gradual drifts (line 2)
and sets the initial window index 𝑖 = 1 (line 4). As the algorithm is based on a sliding window
𝜔𝑖 (Definition 7), in this initialization phase its optimal size 𝑛 is computed (line 3) using the
function AdjustWindow (Algorithm 4.2, lines 1 to 15). The adjustment of the window size is
based on the comparison of the behaviour observed in three consecutive windows. In this step,
we start with a size 𝑛′ initialized as the minimum window size 𝑛 and discover three models
from three consecutive windows of size 𝑛′ (Algorithm 4.2, lines 5 to 7). If the three models
capture the same behaviour (Algorithm 4.2, line 8), the size of each window 𝑛′ is incremented
by 𝑛′ (Algorithm 4.2, line 9) and the process starts again. The procedure finishes when one of
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ID Trace Window Conformance metrics Actions Model

𝜏1 𝐴𝐵𝐶𝐷 𝜔1 = ⟨𝜏1 ⟩ — Window is not full. Read new trace

𝜏2 𝐴𝐵𝐶𝐷 𝜔2 = ⟨𝜏1, 𝜏2 ⟩ — Window is not full. Read new trace

𝜏3 𝐴𝐵𝐶𝐷 𝜔3 = ⟨𝜏1, 𝜏2, 𝜏3 ⟩ — Window is not full. Read new trace

𝜏4 𝐴𝐵𝐶𝐷 𝜔4 = ⟨𝜏1, 𝜏2, 𝜏3, 𝜏4 ⟩
𝛾 (𝑁1, 𝜔4 ) = 1.00
𝜌(𝑁1, 𝜔4 ) = 1.00 Discover model for 𝜔4 𝑁1 A B C D

𝜏5 𝐴𝐵𝐶𝐷 𝜔5 = ⟨𝜏2, 𝜏3, 𝜏4, 𝜏5 ⟩
𝛾 (𝑁1, 𝜔5 ) = 1.00
𝜌(𝑁1, 𝜔5 ) = 1.00 No drift candidate detected

𝜏6 𝐴𝐵𝐶𝐷 𝜔6 = ⟨𝜏3, 𝜏4, 𝜏5, 𝜏6 ⟩
𝛾 (𝑁1, 𝜔6 ) = 1.00
𝜌(𝑁1, 𝜔6 ) = 1.00 No drift candidate detected

𝜏7 𝐴𝐵𝐶𝐷 𝜔7 = ⟨𝜏4, 𝜏5, 𝜏6, 𝜏7 ⟩
𝛾 (𝑁1, 𝜔7 ) = 1.00
𝜌(𝑁1, 𝜔7 ) = 1.00 No drift candidate detected

𝜏8 𝐴𝐵𝐶𝐷 𝜔8 = ⟨𝜏5, 𝜏6, 𝜏7, 𝜏8 ⟩
𝛾 (𝑁1, 𝜔8 ) = 1.00
𝜌(𝑁1, 𝜔8 ) = 1.00 No drift candidate detected

𝜏9 𝐴𝐵𝐷𝐶 𝜔9 = ⟨𝜏6, 𝜏7, 𝜏8, 𝜏9 ⟩
𝛾 (𝑁1, 𝜔9 ) = 0.75
𝜌(𝑁1, 𝜔9 ) = 1.00 Drift candidate on 𝜔9 (by fitness)

𝜏10 𝐴𝐵𝐶𝐷 𝜔10 = ⟨𝜏7, 𝜏8, 𝜏9, 𝜏10 ⟩
𝛾 (𝑁1, 𝜔10 ) = 0.75
𝜌(𝑁1, 𝜔10 ) = 1.00 Drift candidate on 𝜔10 (by fitness)

𝜏11 𝐴𝐵𝐷𝐶 𝜔11 = ⟨𝜏8, 𝜏9, 𝜏10, 𝜏11 ⟩
𝛾 (𝑁1, 𝜔11 ) = 0.50
𝜌(𝑁1, 𝜔11 ) = 1.00 Drift candidate on 𝜔11 (by fitness)

𝜏12 𝐴𝐵𝐶𝐷 𝜔12 = ⟨𝜏9, 𝜏10, 𝜏11, 𝜏12 ⟩
𝛾 (𝑁1, 𝜔12 ) = 0.50
𝜌(𝑁1, 𝜔12 ) = 1.00

Drift candidate on 𝜔12 (by fitness)
Confirm drift at 𝜏9 (by fitness)
Discover model for 𝜔12

𝑁2 A B
C

D

𝜏13 𝐴𝐵𝐷𝐶 𝜔13 = ⟨𝜏10, 𝜏11, 𝜏12, 𝜏13 ⟩
𝛾 (𝑁2, 𝜔13 ) = 1.00
𝜌(𝑁2, 𝜔13 ) = 1.00 No drift candidate detected

𝜏14 𝐴𝐵𝐶𝐷 𝜔14 = ⟨𝜏11, 𝜏12, 𝜏13, 𝜏14 ⟩
𝛾 (𝑁2, 𝜔14 ) = 1.00
𝜌(𝑁2, 𝜔14 ) = 1.00 No drift candidate detected

𝜏15 𝐴𝐵𝐷𝐶 𝜔15 = ⟨𝜏12, 𝜏13, 𝜏14, 𝜏15 ⟩
𝛾 (𝑁2, 𝜔15 ) = 1.00
𝜌(𝑁2, 𝜔15 ) = 1.00 No drift candidate detected

𝜏16 𝐴𝐵𝐶𝐷 𝜔16 = ⟨𝜏13, 𝜏14, 𝜏15, 𝜏16 ⟩
𝛾 (𝑁2, 𝜔16 ) = 1.00
𝜌(𝑁2, 𝜔16 ) = 1.00 No drift candidate detected

𝜏17 𝐴𝐵𝐷𝐶 𝜔17 = ⟨𝜏14, 𝜏15, 𝜏16, 𝜏17 ⟩
𝛾 (𝑁2, 𝜔17 ) = 1.00
𝜌(𝑁2, 𝜔17 ) = 1.00 No drift candidate detected

𝜏18 𝐴𝐵𝐷𝐶 𝜔18 = ⟨𝜏15, 𝜏16, 𝜏17, 𝜏18 ⟩
𝛾 (𝑁2, 𝜔18 ) = 1.00
𝜌(𝑁2, 𝜔18 ) = 1.00 No drift candidate detected

𝜏19 𝐴𝐵𝐷𝐶 𝜔19 = ⟨𝜏16, 𝜏17, 𝜏18, 𝜏19 ⟩
𝛾 (𝑁2, 𝜔19 ) = 1.00
𝜌(𝑁2, 𝜔19 ) = 1.00 No drift candidate detected

𝜏20 𝐴𝐵𝐷𝐶 𝜔20 = ⟨𝜏17, 𝜏18, 𝜏19, 𝜏20 ⟩
𝛾 (𝑁2, 𝜔20 ) = 1.00
𝜌(𝑁2, 𝜔20 ) = 0.66 Drift candidate on 𝜔20 (by precision)

𝜏21 𝐴𝐵𝐷𝐶 𝜔21 = ⟨𝜏18, 𝜏19, 𝜏20, 𝜏21 ⟩
𝛾 (𝑁2, 𝜔21 ) = 1.00
𝜌(𝑁2, 𝜔21 ) = 0.66 Drift candidate on 𝜔21 (by precision)

𝜏22 𝐴𝐵𝐷𝐶 𝜔22 = ⟨𝜏19, 𝜏20, 𝜏21, 𝜏22 ⟩
𝛾 (𝑁2, 𝜔22 ) = 1.00
𝜌(𝑁2, 𝜔22 ) = 0.66 Drift candidate on 𝜔22 (by precision)

𝜏23 𝐴𝐵𝐷𝐶 𝜔23 = ⟨𝜏20, 𝜏21, 𝜏22, 𝜏23 ⟩
𝛾 (𝑁2, 𝜔23 ) = 1.00
𝜌(𝑁2, 𝜔23 ) = 0.66

Drift candidate on 𝜔23 (by precision)
Confirm drift at 𝜏17 (by precision)
Discover model for 𝜔23

𝑁3 A B D C

𝜏24 𝐴𝐵𝐷𝐶 𝜔24 = ⟨𝜏21, 𝜏22, 𝜏23, 𝜏24 ⟩
𝛾 (𝑁3, 𝜔24 ) = 1.00
𝜌(𝑁3, 𝜔24 ) = 1.00 No drift candidate detected

𝜏25 𝐴𝐵𝐷𝐶 𝜔25 = ⟨𝜏22, 𝜏23, 𝜏24, 𝜏25 ⟩
𝛾 (𝑁3, 𝜔25 ) = 1.00
𝜌(𝑁3, 𝜔25 ) = 1.00 No drift candidate detected

𝜏26 𝐴𝐵𝐷𝐶 𝜔26 = ⟨𝜏23, 𝜏24, 𝜏25, 𝜏26 ⟩
𝛾 (𝑁3, 𝜔26 ) = 1.00
𝜌(𝑁3, 𝜔26 ) = 1.00 No drift candidate detected

𝜏27 𝐴𝐵𝐷𝐶 𝜔27 = ⟨𝜏24, 𝜏25, 𝜏26, 𝜏27 ⟩
𝛾 (𝑁3, 𝜔27 ) = 1.00
𝜌(𝑁3, 𝜔27 ) = 1.00 No drift candidate detected

Figure 4.1: Example of a gradual change where some previously unobserved behavior starts to
replace the previous one at 𝜏9, which is no longer observed after trace 𝜏16.
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the three models has a different behavior or when the condition 3 ∗ 𝑛′ < |𝐿 | fails, meaning
that it is not possible to discover three consecutive models, returning the last 𝑛′ as the adjusted
optimal window size (Algorithm 4.2, line 14).

Once the size is adjusted, the window is populated with the first 𝑛 remaining traces from
the initial index. Then, the first process model is discovered (line 6) using the content from
this 𝜔𝑖 window. This model is stored in a list 𝑁 which contains the set of models that will be
discovered for each detected drift.

After this initialization, the drift detection step is executed (lines 8 to 42). This step is
composed of a loop that repeats until no traces remain unprocessed in the log. Thus, as part of
the initialization performed after each change detection, two empty lists are created (line 9), Γ
and 𝑃, for storing the fitness and precision, respectively. Also, two more lists, 𝐷Γ and 𝐷𝑃 ,
are initialized (line 10). These lists will later be populated with booleans indicating if the
successive windows are marked as drift candidates. Finally, a flag used for indicating if a
change has been detected is initialized (line 11).

Once this initialization is completed, the main detection loop begins (lines 12 to 41), where
the detection is performed based on the trends in the values of the conformance metrics. This
loop processes the remaining windows, starting at index 𝑖, until a new change is detected or to
the end of the log if no change is present (line 12). For each window 𝜔𝑖 the fitness and the
precision of the last discovered model 𝑁 |𝑁 | are computed, and their values are appended to
Γ and 𝑃, respectively (lines 13 and 14). Then, using the function IdentifyDriftCandidate
from Algorithm 4.2, the window 𝜔𝑖 is classified or not as a drift candidate (lines 15 to 16). To
carry out this classification step, a simple linear regression —using the ordinary least squares
method— is computed over the metric values (Algorithm 4.2, line 17). If there are enough
data for computing the regression and the slope of the fitted line is different from 0 with
enough statistical confidence —𝑝-value < 0.05 in the 𝑡-test, where 𝐻0 states that the slope of
the regression is 0—, or the slope is 0 and the previous window has been marked as a drift
candidate, the window 𝜔𝑖 will be marked as a drift candidate. To finalize this detection step the
function ConfirmDrift from Algorithm 4.2 is executed (line 29). This function is in charge
of checking whether a drift candidate persists over time, becoming a real change, or, on the
contrary, only represents a noisy trace. A drift candidate is confirmed as a real change if the
last 𝑛 windows have been also marked as drift candidates (Algorithm 4.2, lines 23 to 26).

Once the change is confirmed, it should be pinpointed in time to an specific trace. In case
the drift comes from a change in fitness, the trace causing the drift is the last trace from the
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Algorithm 4.1 CRIER (Conformance-based GRadual DrIft DetEction AlgoRithm)

Inputs: an event log 𝐿, minimum size of the sliding window 𝑛′

Outputs: a set of traces/segments of the log causing drifts

1: procedure ConceptDriftDetection(𝐿, 𝑛′)
2: D𝑆 , D𝐺 ← [ ] //confirmed sudden and gradual drifts
3: n←AdjustWindow(𝑛′ , ⟨𝜏1, . . . , 𝜏|𝐿 | ⟩)
4: 𝑖 ← 𝑛

5: 𝜔𝑖 ← ⟨𝜏𝑖−𝑛 , . . . , 𝜏𝑖 ⟩
6: N← [𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟 (𝜔𝑖 ) ] //save the model in the model history
7: 𝜏∗, 𝜏′ ← 𝜏1
8: while 𝑖 < |𝐿 | do
9: Γ, P← [ ] //fitness and precision measures (Definitions 5 and 6)

10: DΓ , DP ← [ ] //drift candidates (fitness and precision)
11: 𝑓 𝑙𝑎𝑔← 𝐹𝐴𝐿𝑆𝐸

12: while (𝑖 < |𝐿 | ) ∧ ¬ 𝑓 𝑙𝑎𝑔 do
13: Γ← Γ :: 𝛾 (𝜔𝑖 , 𝑁|𝑁 | ) //append current fitness
14: P← P :: 𝜌(𝜔𝑖 , 𝑁|𝑁 | ) //append current precision

15: DΓ ← DΓ :: IdentifyDriftCandidate(n, Γ, DΓ)
16: DP ← DP :: IdentifyDriftCandidate(n, P, DP)
17: if ConfirmDrift(n, DΓ) ∨ ConfirmDrift(n, DP) then//change confirmed

18: if ConfirmDrift(n, DΓ) then
19: 𝜏∗ ← 𝜏𝑖−𝑛 //confirmed drift in the last trace from the first candidate
20: else if ConfirmDrift(n, DP) then
21: 𝜏∗ ← 𝜏𝑖−2𝑛 //confirmed drift in the first trace from the first candidate
22: end if
23: 𝑓 𝑙𝑎𝑔← 𝑇𝑅𝑈𝐸

24: 𝐿′ ← ⟨𝜏′ , . . . , 𝜏∗ ⟩ //store the sublog between confirmed drifts
25: n← AdjustWindow(𝑛′ , ⟨𝜏𝑖+1, . . . , 𝜏|𝐿 | ⟩)
26: 𝑖 ← 𝑖 + 𝑛
27: 𝜔𝑖 ← ⟨𝜏𝑖−𝑛 , . . . , 𝜏𝑖 ⟩
28: N← N :: 𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟 (𝜔𝑖 )//append current model to model history
29: if |𝑁 | > 2 ∧ (∃𝜏 ∈ 𝐿′ : 𝐵𝜏 ∈ 𝐵𝑁|𝑁 |−2 )∧

(∃𝜏 ∈ 𝐿′ : 𝐵𝜏 ∈ 𝐵𝑁|𝑁 | ) ∧ (∀𝜏 ∈ 𝐿′ : 𝐵𝜏 ∈ 𝐵𝑁|𝑁 |−2 ∪ 𝐵𝑁|𝑁 | ) then
30: 𝜏′ ← 𝐷𝑆

|𝐷𝑆 |
31: D𝑆 ← {𝑑 ∈ D𝑆 : 𝑑 ≠ 𝜏′ }
32: D𝐺 ← D𝐺 :: [𝜏′ , 𝜏∗ ) //a gradual change
33: else
34: D𝑆 ← D𝑆 :: 𝜏∗ //a sudden change
35: end if
36: 𝜏′ ← 𝜏∗

37: else
38: 𝑖 ← 𝑖 + 1
39: 𝜔𝑖 ← ⟨𝜏𝑖−𝑛 , . . . , 𝜏𝑖 ⟩
40: end if
41: end while
42: end while
43: return D𝑆 ∪ D𝐺

44: end procedure
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Algorithm 4.2 Auxiliary functions

1: function AdjustWindow(𝑛, 𝐿)
2: 𝑁1, 𝑁2, 𝑁3 ← ∅
3: 𝑛′ ← 𝑛

4: while 3𝑛 < |𝐿 | do
5: 𝑁1 ← 𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟 (⟨𝜏0, . . . , 𝜏𝑛′ ⟩)
6: 𝑁2 ← 𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟 (⟨𝜏𝑛′ , . . . , 𝜏2𝑛′ ⟩)
7: 𝑁3 ← 𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟 (⟨𝜏2𝑛′ , . . . , 𝜏3𝑛′ ⟩)
8: if 𝐵𝑁1 = 𝐵𝑁2 = 𝐵𝑁3 then
9: 𝑛′ ← 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 (𝑛′ )

10: else
11: return 𝑛′

12: end if
13: end while
14: return 𝑛′

15: end function

16: function IdentifyDriftCandidate(n, 𝑑𝑎𝑡𝑎, D)
17: Υ ← 𝑟𝑒𝑔𝑟𝑒𝑠𝑠 ({𝑑𝑎𝑡𝑎|𝑑𝑎𝑡𝑎 |−n, . . . , 𝑑𝑎𝑡𝑎|𝑑𝑎𝑡𝑎 | })
18: 𝑚< ← Υ.slope < 0 ∧ Υ.confidence < 0.05
19: 𝑚> ← Υ.slope > 0 ∧ Υ.confidence < 0.05
20: 𝑚= ← (¬𝑚< ) ∧ (¬𝑚> )
21: return ( |𝑑𝑎𝑡𝑎 | > n) ∧ (𝑚< ∨𝑚> ∨ (𝑚= ∧ (D|D| = 𝑡𝑟𝑢𝑒) ) )
22: end function

23: function ConfirmDrift(n, D)
24: 𝑑′ ← ∀𝑑 ∈ {D|D|−n, . . . , D|D| } : 𝑑 = 𝑡𝑟𝑢𝑒

25: return ( |D | ⩾ n) ∧ 𝑑′

26: end function

first window identified as a candidate —i.e., the first trace causing a change in the metric—.
In the case of a change in precision, the trace causing the drift is the first trace from the first
window identified as candidate —i.e., the first trace from the first window causing a change
in precision—. Then, the flag indicating a detection is updated (line 23) and the sublog 𝐿′

between confirmed drifts is stored for later. The drift must then be classified as sudden or
gradual. Figure 4.2 illustrates this part of the algorithm. The first step is to update both the
index at which the next window will start and its optimal size (lines 25 and 26). Then, the
new window is populated with the traces and the model describing the behavior contained in
this window is discovered (lines 27 and 28). This model is stored in the model list. Since
gradual changes are delimited by two drifts, the last three models of this list —𝑁 |𝑁 |−2, 𝑁 |𝑁 |−1,
and 𝑁 |𝑁 |— are used to check the conditions that determine whether the drift is gradual or not.
Note that the model 𝑁 |𝑁 |−1 corresponds with the sublog in which the confirmed drift has been
detected. These conditions are the following (line 29):
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Figure 4.2: Drift classification phase in CRIER.

1. There are more than two models in the model list (|𝑁 | > 2).

2. At least, one trace from 𝐿′ is supported by 𝑁 |𝑁 | .

3. At least, one trace from 𝐿′ is supported by 𝑁 |𝑁 |−2.

4. The behaviour from every trace in 𝐿′ is part of the behaviour of 𝑁 |𝑁 |−2 or 𝑁 |𝑁 | .

If 𝐿′ fulfills these four requirements, the change is classified as gradual, indicating that the
drift starts at the trace where the last sudden drift 𝐷𝑆

|𝐷𝑆 | was detected and lasts until 𝜏∗.
Furthermore, 𝐷𝑆

|𝐷𝑆 | is removed from the sudden drift list (line 31), and appended to the list
DΓ of classified drifts (line 32). On the other hand, if the candidate cannot be classified as
gradual because it does not meet any of the requirements, the change at 𝜏∗ is classified as
sudden (line 34). Finally, the index 𝑖 is incremented by 1 (line 38), the sliding window is
updated to this index (line 39), and the cycle starts again.

4.3 Experimentation

To evaluate the quality of the results obtained by CRIER against those of the state of the art
approaches, we use the same metrics that we used in Chapter 3. On the one hand, 𝐹𝑠𝑐𝑜𝑟𝑒, which
is calculated as the harmonic mean between precision and recall, and evaluates how reliable
the results are, based on the number of true/false positives and negatives (Equation (3.2a)).
For gradual changes, a true positive (𝑇𝑃) is any change whose detection area overlaps with a
real change not previously detected, while a false positive (𝐹𝑃) is any change that does not
correspond to a region of real change, or that matches a region of change previously detected.
In addition, a false negative (𝐹𝑁) is a region of change that does not overlap with anyone of the
detected changes. On the other hand, Δ, which measures how late a drift is reported from the
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Δ Υ

Real drifts

Detected drifts

Figure 4.3: Example of classification of results over a log with two gradual changes. Upper timeline
shows the real drift regions, marked in green. Lower timeline shows detected drift
regions, marked in orange.

actual occurrence until its detection. In the case of gradual changes, since we are dealing with
areas of change instead of single points, we measure the delay in detecting the beginning of the
region:

Δ(𝑑𝑅, 𝑑𝐷) = |min(𝑑𝑅) −min(𝑑𝐷) | (4.1)

where 𝑑𝑅 and 𝑑𝐷 are intervals indicating a real and a detected drift region, respectively.
Additionally, and to better reflect the goodness of the results when dealing with gradual

changes, these two metrics are complemented with a third one: the change region overlapping
(Υ). This metric evaluates the percentage of the actual region of change that has been detected
by the algorithm, reflecting how well the duration of the changes is captured:

Υ(𝑑𝑅, 𝑑𝐷) = |𝑑
𝑅 ∩ 𝑑𝐷 |
|𝑑𝑅 | (4.2)

where 𝑑𝑅 and 𝑑𝐷 are intervals indicating a real and a detected drift region, respectively.
Figure 4.3 shows an example of how these metrics are applied in the evaluation of the

results. This example presents a log with two gradual changes, one between traces 𝜏10 and
𝜏20, and the other one between traces 𝜏35 and 𝜏45. The algorithm detects two changes, one
between traces 𝜏4 and 𝜏7, classified as a false positive as no real change happened in this time
interval, and one between traces 𝜏17 and 𝜏23, classified as a true positive because it overlaps a
real change. In this second detection, the delay would be 7 traces —from trace 𝜏10 to trace
𝜏17—. On the other hand, the change region overlapping would be 30%, since only 3 traces out
of the 10 that constitute the region of change are detected. Finally, the second change, between
traces 𝜏35 and 𝜏45, will be classified as a false negative, since the algorithm has not detected
any change in that region.

4.3.1 Validation data

Concept drift algorithms are validated with synthetic data generated from real processes, in
which changes are introduced at a specific moment and with a specific duration, since there
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Table 4.1: Derived models resulting of applying the change patterns to the original model from
Figure 3.6.

Model code Change patterns

cp cp

pm pm

re re

rp rp

sw sw

cf cf

OIR lp + re + cd

ORI lp + pl + re

RIO cf + cp + cb

ROI pl + lp + rp

are no real logs in which these change regions are identified. CRIER has been validated with
synthetic logs generated from the loan application process and following the same methodology
for generating the set of models as for the validation of the C2D2 algorithm (Section 3.3.1).

From this base model, and applying the change patterns presented in [48] (Table 3.1a),
modified models have been generated using the methodology described in [63]. Note that,
unlike in the sudden scenario, there are change patterns —specifically, cm, cb, lp, cd, and
pl— that produce models that only would change the precision and, therefore, no gradual
changes could be generated from these models (see Theorem 4.1). As a result of this procedure,
10 derived models are created (Table 4.1). These models are used to generate the trace logs
with which the approach is validated since each one is the result of applying the gradual change
that takes place from the base model. For this generation, a cumulative probability function
(cdf ) selects the model —base or derived— that will generate each trace according to a given
probability distribution (𝑃). Specifically, the following procedure is applied to create the
validation logs:

1. The base model 𝑀1 —i.e., the loan application process model—, the modified model 𝑀2

—i.e., one of the 10 derived models—, and the probability distribution 𝑃 are choosen.

2. A block of 500 traces corresponding to model 𝑀1 is generated.

3. While the cdf of 𝑃 is below the stopping criterion —cdf (𝑃) ⩽ 0.999—, a model is
choosen between 𝑀1 and 𝑀2 with probabilities 1− cdf (𝑃) and cdf (𝑃), respectively, and
a new trace is generated from the selected model. Note that this stopping criterion is due
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Figure 4.4: Log generation example.
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Figure 4.5: Cumulative distribution functions for the applied distributions in the log generation.

to the fact that the cumulative probability function for some distributions is asymptotic
to 1.

4. Repeat from step 2 interchanging 𝑀1 and 𝑀2.

Figure 4.4 shows an example of log generation where the base model is combined with a model
derived from applying the pm pattern by using a linear probability distribution.

In our experimentation, 4 different probability functions have been considered: (i) linear,
where the frecuency of the new behaviour increment linearly when new traces are observed;
(ii) Gaussian, where the change starts to appear slowly and accelerates to end with the old
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Table 4.2: Summary of validation logs and their change points, where 𝑡1 and 𝑡2 are the temporal
points between which the gradual change takes place.

Distribution Log size
Change regions

Drift 1 Drift 2 Drift 3 Drift 4 Drift 5 Drift 6 Drift 7 Drift 8 Drift 9

Linear (slope = 0.1%) 14000
𝑡1 500 2,000 3,500 5,000 6,500 8,000 9,500 11,000 12,500

𝑡2 1,500 3,000 4,500 6,000 7,500 9,000 10,500 12,000 13,500

Linear (slope = 0.2%) 9500
𝑡1 500 1,500 2,500 3,500 4,500 5,500 6,500 7,500 8,500

𝑡2 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000

Linear (slope = 0.5%) 6800
𝑡1 500 1,200 1,900 2,600 3,300 4,000 4,700 5,400 6,100

𝑡2 700 1,400 2,100 2,800 3,500 4,200 4,900 5,600 6,300

Linear (slope = 1.0%) 5900
𝑡1 500 1,100 1,700 2,300 2,900 3,500 4,100 4,700 5,300

𝑡2 600 1,200 1,800 2,400 3,000 3,600 4,200 4,800 5,400

Gaussian (𝜇 = 20, 𝜎2 = 10) 5459
𝑡1 500 1,051 1,602 2,153 2,704 3,255 3,806 4,357 4,908

𝑡2 551 1,102 1,653 2,204 2,755 3,306 3,857 4,408 9,959

Gaussian (𝜇 = 50, 𝜎2 = 30) 6287
𝑡1 500 1,143 1,786 2,429 3,072 3,715 4,358 5,001 5,644

𝑡2 643 1,286 1,929 2,572 3,215 3,858 4,501 5,144 5,787

Exponential (𝜆 = 0.05) 6251
𝑡1 500 1,139 1,778 2,417 3,056 3,695 4,334 4,973 5,612

𝑡2 639 1,278 1,917 2,556 3,195 3,834 4,473 5,112 5,751

Exponential (𝜆 = 0.1) 5630
𝑡1 500 1,070 1,640 2,210 2,780 3,350 3,920 4,490 5,060

𝑡2 570 1,140 1,710 2,280 2,850 3,420 3,990 4,560 5,130

Exponential (𝜆 = 0.5) 5126
𝑡1 500 1,014 1,528 2,042 2,556 3,070 3,584 4,098 4,612

𝑡2 514 1,028 1,542 2,056 2,570 3,084 3,598 4,112 4,626

Constant (𝑝 = 0.5, 𝑛 = 100) 5900
𝑡1 500 1,100 1,700 2,300 2,900 3,500 4,100 4,700 5,300

𝑡2 600 1,200 1,800 2,400 3,000 3,600 4,200 4,800 5,400

Constant (𝑝 = 0.5, 𝑛 = 200) 6800
𝑡1 500 1,200 1,900 2,600 3,300 4,000 4,700 5,400 6,100

𝑡2 700 1,400 2,100 2,800 3,500 4,200 4,900 5,600 6,300

Constant (𝑝 = 0.5, 𝑛 = 500) 9500
𝑡1 500 1,500 2,500 3,500 4,500 5,500 6,500 7,500 8,500

𝑡2 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000

behavior fading away slowly as well; (iii) exponential, where the frequency of the new behavior
grows very fast at the beginning and slows down as new traces are observed; and (iv) constant,
where the old and the new behavior have a constant probability of appearing that is not modified
during a number of traces. For these distributions, several cumulative probability functions
have been applied with different configuration parameters, for a total of 12 distinct probability
distributions, as Figure 4.5 shows. In summary, 120 synthetic logs1 have been generated, using
10 different patterns and 12 probability distributions. Table 4.2 summarizes the features of the
validation logs, with the log size, the change points and the distributions applied.

1Available at https://gitlab.citius.usc.es/ProcessMining/logs/-/tree/master/drift/gradual
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4.3.2 Results and benchmarking

The results of CRIER have been compared with the two main publicly available state of the art
algorithms: the proposal from Martjushev et al. [60] —available as a plugin of the process
mining platform ProM2— and ProDrift3 [63]. Note that ProDrift has not been run for logs
with Gaussian, exponential, and constant distributions since authors explicitly state that it only
deals with linear changes. The rest of the approaches identified in the state of the art have
not been tested as the source code of their implementations are not available. The specific
configurations used for these two algorithms were as follows:

1. Martjushev et al.: local features using the follows relations for all pairs of activities;
J-measure with a window size of 10; adaptive window with a minimum size of 50 and a
maximum of 500; a step of 1, and an automatic gap size; and comparing windows with
the Kolmogorov-Smirnov test with a p-value of 0.4 —the default value specified by the
authors—.

2. ProDrift: trace-based detection, with a fixed-size window of 100 traces.

For the sake of legibility, Table 4.3 includes only the average aggregated results. Details on
the extended results can be found in Tables B.1 to B.4 from Appendix B. The results show that
CRIER performs better than Martjushev et al. and ProDrift in all datasets and for all metrics
evaluated. In further detail:

• Linear logs. CRIER clearly outperforms the other proposals in terms of delay (Δ), with
values of an order of magnitude smaller than the obtained by the rest of approaches.
CRIER achieves better results also in terms of average 𝐹𝑠𝑐𝑜𝑟𝑒, with ProDrift getting better
values for some logs from the collection of linear logs with 0.1% slope, but severely
underperforming in other logs —sw, OIR and ROI—, where no changes are detected
by this approach. However, when changes happen at a faster rate —i.e. the slope of
the linear combination increases—, ProDrift performance significantly drops, detecting
almost no changes, while the results from Martjushev et al. improve, but still clearly
worst than CRIER. Finally, in terms of Υ, CRIER obtains better results than the rest of
the algorithms in all cases but two.

2https://www.promtools.org/
3https://kodu.ut.ee/ dumas/tools/ProDrift2.5.zip
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Table 4.3: Average 𝐹𝑠𝑐𝑜𝑟𝑒, Δ and Υ values for the logs with gradual changes. The colors highlight
the best performing approach for each metric.

CRIER Martjushev et al. ProDrift

𝐹𝑠𝑐𝑜𝑟𝑒 Δ Υ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ Υ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ Υ

Linear

slope = 0.1% 0.6481 57.4677 69.66% 0.4873 416.6944 17.70% 0.5712 252.6599 37.89%

slope = 0.2% 0.9146 25.0048 83.31% 0.5090 148.8261 22.73% 0.3706 243.4345 15.58%

slope = 0.5% 0.9742 18.1222 79.52% 0.4886 187.6234 18.31% 0.0333 406.5000 2.22%

slope = 1.0% 0.9737 11.9873 69.57% 0.2844 137.8463 14.84% 0.0500 433.6667 2.24%

Gaussian
𝜇 = 20 𝜎2 = 10 0.9882 8.7806 63.50% 0.2264 98.5952 16.03% — — —%

𝜇 = 50 𝜎2 = 30 0.9847 11.5921 61.59% 0.4567 161.3414 19.66% — — —%

Exponential

𝜆 = 0.05 0.5591 8.5742 31.11% 0.3646 158.9043 17.37% — — —%

𝜆 = 0.10 0.8999 5.6948 50.21% 0.3036 139.5498 22.03% — — —%

𝜆 = 0.50 0.4584 2.8296 27.34% 0.2093 109.9016 21.52% — — —%

Constant

𝑝 = 0.5 𝑛 = 100 1.0000 6.4333 83.98% 0.3333 160.0795 16.53% — — —%

𝑝 = 0.5 𝑛 = 200 1.0000 4.8333 94.03% 0.5090 220.1310 18.10% — — —%

𝑝 = 0.5 𝑛 = 500 1.0000 5.3778 97.07% 0.6125 147.2569 33.04% — — —%

• Gaussian logs. CRIER clearly outperforms Martjushev et al. in 𝐹𝑠𝑐𝑜𝑟𝑒, Δ and Υ,
obtaining values very close to 1 in 𝐹𝑠𝑐𝑜𝑟𝑒, delays always lower than 25 traces for almost
all the logs, and Υ of more than 60%.

• Exponential logs. CRIER also obtains the best results, with Δ values two orders of
magnitude smaller than those of Martjushev et al.. In terms of 𝐹𝑠𝑐𝑜𝑟𝑒 and Υ, CRIER
still achieves results that are, on average, almost twice better than Martjushev et al..
It is worth noting that Υ values are usually lower with the exponential distribution, if
compared with the other distributions.

• Constant logs. CRIER obtained the best results, with a perfect 𝐹𝑠𝑐𝑜𝑟𝑒 for all the cases,
average Δ of less than 10 traces, and Υ values above 80%. On the contrary, Martjushev
et al. achieves average Δ values between 140 and 220 traces, Υ values always below
60%, and average 𝐹𝑠𝑐𝑜𝑟𝑒 values that do not reach 0.6, with several cases in which no
change is detected —as rp and sw.

Statistical tests

The results of the different approaches have been compared using the same Bayesian approach
as in the case of C2D2. A detailed explanation of how this type of test works can be found in
Section 3.3.4.
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Table 4.4: BAIN test results for the validation logs, where 𝐵𝐹𝐻𝑖𝐻
𝑐
𝑖

shows the Bayesian factor for 𝐻𝑖

against its complementary 𝐻𝑐
𝑖
= ¬𝐻𝑖 . The most likely hypothesis is shown shaded in blue.

𝐵𝐹𝐻𝑖𝐻
𝑐
𝑖

𝐹𝑠𝑐𝑜𝑟𝑒 Δ Υ

Linear logs

𝐻1: CRIER > Martjushev et al.
and CRIER > ProDrift 1.20 × 1012 1.99 × 1013 2.28 × 1013

𝐻2: CRIER < Martjushev et al. 4.30 × 10−12 3.40 × 10−16 7.42 × 10−48

𝐻3: CRIER < ProDrift 9.56 × 10−23 1.96 × 10−14 8.96 × 10−55

𝐻4: CRIER = Martjushev et al. 5.81 × 10−10 5.10 × 10−14 2.10 × 10−45

𝐻5: CRIER = ProDrift 1.83 × 10−20 2.16 × 10−12 2.71 × 10−52

Gaussian logs
𝐻1: CRIER > Martjushev et al. 2.29 × 1013 4.74 × 107 2.29 × 1013

𝐻2: CRIER < Martjushev et al. 8.57 × 10−29 2.11 × 10−8 2.04 × 10−31

𝐻3: CRIER = Martjushev et al. 1.52 × 10−26 1.75 × 10−6 3.79 × 10−29

Exponential logs
𝐻1: CRIER > Martjushev et al. 1.16 × 107 3.05 × 1010 6.60 × 102

𝐻2: CRIER < Martjushev et al. 8.60 × 10−8 3.28 × 10−11 1.51 × 10−3

𝐻3: CRIER = Martjushev et al. 9.03 × 10−6 3.94 × 10−9 0.10

Constant logs
𝐻1: CRIER > Martjushev et al. 9.00 × 1012 2.29 × 1013 2.29 × 1013

𝐻2: CRIER < Martjushev et al. 1.21 × 10−13 1.38 × 10−33 5.64 × 10−75

𝐻3: CRIER = Martjushev et al. 1.75 × 10−11 2.94 × 10−31 2.01 × 10−72

Table 4.4 shows the findings of the BAIN test performed over the results obtained by all
approaches. In this test, the hypothesis 𝐻1 considers that CRIER achieves better results than the
other state of the art approaches —i.e., CRIER > Martjushev et al. and CRIER > ProDrift—,
while 𝐻𝑐

1 considers the contrary hypothesis. As Table 4.4 shows, the Bayes factor 𝐵𝐹𝐻1𝐻
𝑐
1

for
all metrics in all distributions is greater than 100, meaning that there is an extreme evidence for
𝐻1, i.e., CRIER is better than ProDrift and Martjushev et al..

4.3.3 Results discussion

As shown in the previous section, CRIER clearly outperforms the current state of the art
approaches. In particular, for linear logs, ProDrift has a higher accuracy for some logs —cf,
cp, rp, ORI and RIO with slope of 0.1% and pm with slopes of 0.1% and 0.2%— in which
the traces of the new behavior are added at a slower rate at the beginning of the change, while
CRIER has clearly the best performance with higher insertion rates. This low frequency forces
the conformance checking metrics to change slowly, as the behavior causing the change appears
rarely, which in turn leds the slope of the regression to stay invariant until the behaviour is
more frequent; resulting in a late/early confirmation of the change depending on whether we
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are at the beginning or at the end of the change. Consequently, CRIER obtains high delays in
detecting the start of the change, and premature detections at the end of the change, having a
high number of false positives that lead to a decrease in accuracy. Particularly interesting are
the logs with slowest changes —0.1% slope, i.e., 1,000-trace change regions—, where ProDrift
obtains the best 𝐹𝑠𝑐𝑜𝑟𝑒 in 6 out of 10 logs. For these 6 logs, CRIER detects a lower change
region overlapping, but obtains the best results in terms of Δ, which reinforces the idea that the
detection errors are due to false positives in determining the end of the change. However, with
respect to the average values of the metrics, CRIER is the best positioned since ProDrift is not
able to detect any change in 3 of the logs, while Martjushev et al. obtains many false positives,
detecting less than 18% of the traces as a region of change.

In the remaining linear logs, the results of ProDrift suffer a significant degradation, detecting
changes only in 2 of 20 logs with a greater slope than 0.1%, in which it obtains 𝐹𝑠𝑐𝑜𝑟𝑒 values
of 0.5 or less, and Δ of more than 400 traces. This degradation may be due to the fact that, as
changes are much faster, the algorithm does not have enough information to correctly extract the
distribution of partially-ordered-runs before and after the change, not being able to correctly
detect the drifts.

In logs with Gaussian distributions, the results obtained by CRIER are clearly better than
those of Martjushev et al., with 𝐹𝑠𝑐𝑜𝑟𝑒 of 1.0 in 17 of 20 logs. These logs are characterized by
relatively fast changes, but with both a slow start and termination. The results are consistent
with what was previously established for the linear changes: as these are relatively fast changes
—slightly more than 150 traces in the slowest case— the slope of the regression changes
abruptly, facilitating the detection of changes. The values of Δ and Υ obtained by Martjushev
et al. are particularly indicative. The slow start and termination of the new behavior lead to
smaller changes in the distributions of the features, making the statistical test employed by this
approach unable to detect the drifts and causing the beginning of the changes to be detected
late —increasing Δ values— while their termination is detected prematurely —resulting in low
Υ values—.

Something similar happens for logs with constant distribution. In this case, CRIER obtains
the best results, with a perfect average 𝐹𝑠𝑐𝑜𝑟𝑒 and an average Υ of around 90%. This is
because, as soon as the change starts, half of the observed behavior is part of the new model.
Consequently, conformance metrics change very fast, which means that the slope of the
regression is significantly modified and changes are detected almost instantly. For Martjushev
et al., there are several logs in which no change is detected —rp and sw for all cumulative
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probability functions—. The poor performance of this algorithm for the same change patterns
may be caused by the selected features since they are not able to capture such changes. Perhaps
selecting other features that might be more sensitive to this type of changes would improve the
results, however a more in-depth analysis should be performed to confirm this intuition.

Finally, for logs with exponential changes, the results of CRIER are quite degraded when
compared to the other distributions. These results are due to two distinct situations: on the one
hand, in logs with 𝜆 = 0.5, changes are so fast —only 14 traces— that CRIER is not able to
detect them as gradual, leading to false negatives; and, on the other hand, in logs with 𝜆 = 0.05,
changes have such long tails that they are terminated prematurely, and consequently, a high
number of false positives are detected in traces that belong to the actual change but have not
been detected as part of the drift. This behavior of the algorithm is reflected by the values of Δ
and Υ. As seen in the results, all changes are detected very close where they begin —with Δ

below 10 traces in almost all cases—, but Υ values remain around 20%, indicating that only
the initial part of the change region is detected. In addition, logs in which CRIER obtains the
lowest Υ coincide with those with the worst 𝐹𝑠𝑐𝑜𝑟𝑒, confirming this hypothesis.

4.4 Conclusions

In this chapter, we presented CRIER, an offline gradual-drift detection algorithm. CRIER is
based on the hypothesis that change detection and classification can be addressed by analyzing
how the fitness and precision of the process models —the old model and the new one after the
change— vary from the beginning to the end of the gradual change. Specifically, the hypothesis
is that at the beginning there is a modification of the fitness, keeping the precision; while at the
end the precision changes. This hypothesis has been mathematically demonstrated.

The approach has been validated using a synthetic dataset with 120 logs that present
different change patterns and gradual change distributions, from linear to Gaussian, exponential
and constant. The experiments show that CRIER outperforms the results of the main state
of the art approaches in terms of accuracy (𝐹𝑠𝑐𝑜𝑟𝑒); delay (Δ), so drifts are detected faster;
and change region overlapping (Υ), so the time interval during which two processes coexist is
clearly identified.

Furthermore, CRIER is more robust for all types of change distributions and particularly
better for those in which the traces of the new model start to arise with a higher frequency at
the beginning of the gradual drift, such as Gaussian, exponential, and constant distributions.
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Nonetheless, our approach has proven to be more consistent even when the former conditions
are not present such as when the drift follows a linear distribution with a low slope, being able
to detect all the change patterns with less delay Δ and better Υ.
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CHAPTER 5

ROBUST DRIFT DETECTION

I shall either find a way or make one.

— Hannibal

In the previous chapters, we presented two approaches —C2D2 and CRIER— for detecting
sudden and gradual drifts with high reliability. These approaches monitor the behavior of
fitness and precision metrics over the entire log to detect changes in the process control-flow.
By detecting when the metrics deviate from their initial value, both C2D2 and CRIER can
detect the presence of changes in non-noisy event logs.

However, in real-world scenarios, anomalous executions can occur spontaneously without
representing a change that persists over time. Therefore, it is necessary to adapt the developed
algorithms to provide robust solutions to noisy environments, which are common in real
scenarios. The robust version of these algorithms should be able to discriminate noise from
real drifts that persist over time, reducing the number of false positives.

In Figure 5.1, an example of fitness behavior is presented in both a noisy and non-noisy
environment. When no noise is present, the metric value remains at a constant value —in this
case, 1.0—, and decreases when a change occurs. This makes it possible to detect drifts by
identifying decreases in the metric value. However, in presence of noise, the metric fluctuates
around a certain value —approximately 0.75 in the example—, without showing significant
drops until a change occurs.
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Figure 5.1: Fitness and precision behaviour in noisy and non-noisy environments.

In the presence of noise, these fluctuations can result in false positive detections when
anomalous executions occur, unless they are differentiated from the significant drops that occur
in the case of real changes, thus invalidating the result. Furthermore, we cannot determine
the magnitude of the drops a priori, as it depends on the change and the structure of the
process being executed. Therefore, in order to detect changes in noisy environments, our
intuition tells us that it is neccessary to detect multiple consecutive drops in the metric, with
no intermediate increases in the value, are necessary. If the drop persists sufficiently over
time, we can discriminate it from fluctuations caused by anomalous executions, enabling us to
distinguish between a real change and noise.

Based on this premise, this chapter introduces Robust CRIER (R-CRIER), the robust version
of CRIER adapted for execution in both noisy and non-noisy environments.

5.1 Robust drift detection using conformance metrics

In previous chapters, we showed that changes in the process control-flow can be detected by
monitoring their conformance metrics. Also, we used simple linear regressions to monitor
those conformance metrics, detecting a drift when the slope of the regression falls, meaning
that the metric values are decreasing. However, in noisy environments, a drop in one of the
metrics may be caused by transient anomalies that do not represent a real drift. In this section,
we will demonstrate that successive drops in the regression slope can enable robust detection
of changes, even in noisy environments, by separating falls derived from anomalous executions
from those caused by real drifts.

78
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Theorem 5.1: When detecting changes in noisy environments, waiting n/2 negative
slopes for the simple linear regression allows to differenciate drops due to noisy
executions from those due to real drifts.

Proof: To demonstrate this, lets take the formula for calculating the slope of Υ using the
least squares method [77]:

Υ.slope =

∑𝑛
𝑖=1 (𝑥𝑖 − 𝑥) (𝑦𝑖 − 𝑦)∑𝑛

𝑖=1 (𝑥𝑖 − 𝑥)
2 ,

being 𝑥 and 𝑦 the mean values for 𝑥 and 𝑦, respectively. As 𝑥 is the index of the window
for which the conformance metric has been measured, we can replace it by the arithmetic
progression 1..𝑛, so we can replace in the equation:

Υ.slope =

∑𝑛
𝑖=1

(
𝑖 − 1+𝑛

2

)
(𝑦𝑖 − 𝑦)∑𝑛

𝑖=1

(
𝑖 − 1+𝑛

2

)2 .

On the other hand, 𝑦 contains the values of the conformance metrics for each window.
Note that the following is valid for both fitness and precision. When a noisy execution
enters the window 𝜔𝑖 (𝐿, 𝑛), the metric value will decrease, and stay at that value until
the noisy execution disappears at window 𝜔𝑖+𝑛 (𝐿, 𝑛)—we will have only a trace with the
fitting/non-fitting behaviour, regardless of its position in the window lenght—. Thus, for a
given window, there will be 𝑘 measurements with value 𝑐 at the beggining of the window
and 𝑛 − 𝑘 measurements with value 𝑐′ at the end, being 𝑐 > 𝑐′, so we can rewrite 𝑦 as:

𝑦 =
𝑘𝑐 + (𝑛 − 𝑘)𝑐′

𝑛
.

Then, we can rewrite the slope as the following formula, where 𝑘 is the number of
successive measurements without noise counted from the begginning of the window:

𝑓 (𝑘) =

∑𝑘
𝑖=1

(
𝑖 − 1+𝑛

2

) (
𝑐 − 𝑘𝑐+(𝑛−𝑘 )𝑐′

𝑛

)
+∑𝑛

𝑖=𝑘+1

(
𝑖 − 1+𝑛

2

) (
𝑐′ − 𝑘𝑐+(𝑛−𝑘 )𝑐′

𝑛

)
∑𝑛

𝑖=1

(
𝑖 − 1+𝑛

2

)2 .
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Figure 5.2: Example of the evolution of the slope in a noisy environment for 𝑛 = 20, and multiple 𝑐

and 𝑐′ values.

Computing the first and second derivative over 𝑘 to find the critical points, we get:

𝑓 ′ (𝑘) = 6(𝑐 − 𝑐′) (2𝑘 − 𝑛)
𝑛(𝑛2 + 2)

𝑓 ′′ (𝑘) = 12𝑐 − 12𝑐′

𝑛3 + 2𝑛

We know that 𝑐 > 𝑐′ ⩾ 0; 𝑛, 𝑘 ∈ N; 𝑛 > 𝑘 , so 𝑓 ′ (𝑘) = 0 =⇒ 𝑘 = 𝑛/2 and
𝑓 ′′ (𝑘) > 0 ∀𝑘 , i.e., 𝑓 (𝑘) has a minimum on 𝑘 = 𝑛/2.

On the contrary, it is straightforward to demonstrate that, when having a real drift,
with the values from the metric decreasing steadily —as we have one more trace that does
fit/not fit the model on each iteration—, the regression slope will decrease continually
without presenting any critical point. □

This behavior is shown in the example from Figure 5.2. Here, 𝑛 = 20, and we show the
behaviour for some values of 𝑐 and 𝑐′. When 𝑘 increases—i.e., when the occurrences of 𝑐′

increases at the cost of decreasing the number of occurrences of 𝑐—, the regression slope also
decreases, reaching a minumum in 𝑘 = 10, no matter the specific values 𝑐 and 𝑐′ get. From here
onwards, the slope is still negative, but its values increase with 𝑘 until reaching 0.0 at 𝑘 = 20.

5.2 Algorithm

Algorithm 5.1 shows the pseudocode of R-CRIER, the algorithm for robustly detecting process
control-flow drifts, ensuring reliable results even in noisy environments. R-CRIER continuously
monitors process conformance metrics over time, looking for variations that persist and that
may indicate a change in the process. The algorithm utilizes a sliding window that moves over
the entire log and calculates fitness and precision metrics for each window to examine their
evolution over time. R-CRIER takes three inputs: an event log 𝐿, a window size 𝑛, and an

80



Chapter 5. Robust drift detection

Algorithm 5.1 R-CRIER

Inputs: an event log 𝐿, size of the sliding window 𝑛, estimation of the noise probability 𝑟

Outputs: a set of traces/segments of the log causing drifts

1: procedure ConceptDriftDetection(𝐿, 𝑛, 𝑟)
2: L,N← [ ] //list of sublogs between drifts and the respective models
3: 𝑖 ← 𝑛

4: 𝑙𝑎𝑠𝑡 ← 0
5: while 𝑖 < |𝐿 | do
6: Γ, P← [ ] //list of fitness and precision measures (Definitions 5 and 6)
7: ΥΓ ,ΥP ← [ ] //list of regressions for fitness and precision
8: N← 𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟 (𝜔𝑖 (𝐿, 𝑛) )
9: N← N :: 𝑁 //save current model in the models list

10: 𝑏𝑟𝑒𝑎𝑘 ← FALSE
11: while 𝑖 < |𝐿 | ∧ ¬𝑏𝑟𝑒𝑎𝑘 do
12: Γ← Γ :: 𝛾 (𝜔𝑖 (𝐿, 𝑛) , 𝑁 ) //append current fitness
13: P← P :: 𝜌(𝜔𝑖 (𝐿, 𝑛) , 𝑁 ) //append current precision
14: if ( |Γ | ⩾ 𝑛) ∧ ( |P | ⩾ 𝑛) then //enough measurements

15: ΥΓ ← ΥΓ :: 𝑟𝑒𝑔𝑟𝑒𝑠𝑠 (𝑡𝑎𝑖𝑙 (Γ, 𝑛) ) //save regression over last n measurements
16: ΥP ← ΥP :: 𝑟𝑒𝑔𝑟𝑒𝑠𝑠 (𝑡𝑎𝑖𝑙 (P, 𝑛) ) //save regression over last n measurements
17: end if
18: if ( |ΥΓ | ⩾ 𝑛/2) ∧ HasDrift(𝑡𝑎𝑖𝑙 (ΥΓ , 𝑛/2) ) then //fitness drift confirmed
19: 𝑏𝑟𝑒𝑎𝑘 ← TRUE
20: L← L :: [𝜏𝑙𝑎𝑠𝑡 , . . . , 𝜏𝑖−(𝑛/2) ] //save the sublog between drifts
21: 𝑙𝑎𝑠𝑡 ← (𝑖 − 𝑛/2)
22: else if ( |ΥP | ⩾ 𝑛/2) ∧ HasDrift(𝑡𝑎𝑖𝑙 (ΥP, 𝑛/2) ) then //precision drift confirmed
23: 𝑏𝑟𝑒𝑎𝑘 ← TRUE
24: L← L :: [𝜏𝑙𝑎𝑠𝑡 , . . . , 𝜏𝑖−𝑛 ] //save the sublog between drifts
25: 𝑙𝑎𝑠𝑡 ← (𝑖 − 𝑛)
26: end if
27: 𝑖 ← 𝑖 + 1
28: end while
29: end while
30: L← L :: [𝜏𝑙𝑎𝑠𝑡 , . . . , 𝜏𝑖 ] //save the last sublog
31: return ClassifyDrifts(L,N, 𝑟 ) //classify the drifts
32: end procedure

33: function HasDrift(Υ)
34: return ∀Υ𝑖 ∈ Υ→ (Υ𝑖 .slope < 0) ∧ (Υ𝑖 .confidence < 0.05) ∧ ( |Υ𝑖 .slope | ⩽ |Υ𝑖+1.slope | )
35: end function

estimation of the amount of noise present in the log 𝑟. It produces a list of traces or sublogs
from the input log that cause sudden or gradual drifts, respectively.

The algorithm begins by creating two lists, L and N, which will be used to store the sublogs
between changes and the process models for each sublog, respectively (line 2). Next, it sets the
index of the first window to be processed as the size of the window (line 3), which includes the
first 𝑛 traces from the log. Additionally, it initializes a variable to keep track of the position of
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the last detected drift to 0 (line 4).

The main detection loop, which runs from lines 5 to 29, iterates over the log until all
traces have been processed. At the start of the loop, two lists, Γ and P, are initialized to store
historical fitness and precision measurements, respectively (line 6). Additionally, two lists, ΥΓ

and ΥP, are initialized (line 7) to maintain a record of regressions over the fitness and precision
measurements, respectively. These lists are essential for detecting and confirming drifts in the
process control-flow.

Next, the loop discovers a process model using a noise-robust discovery algorithm applied
to the traces in the 𝜔𝑖 (𝐿, 𝑛) window, where 𝐿 is the log, and 𝑛 is the size of the window for
the i-th iteration (line 8). The algorithm used in this case is the Inductive Miner - infrequent
algorithm (𝐼𝑀𝐹) [78]. 𝐼𝑀𝐹 is an adapted version of the original Inductive Miner [23] that
includes additional filtering steps to remove deviating and infrequent behavior to produce more
precise models. After discovering the process model, it is stored in the list of process models,
N (line 9), and a flag is initialized to false (line 10) to break out of the next loop if necessary.

Once the initial setup is complete, the algorithm enters an inner loop that iterates over the
remaining traces until a change is detected or there are no more unprocessed traces (lines 11
to 28). Within this loop, the fitness and precision values for each remaining window are
computed and added to the previously defined lists (lines 12 and 13). If at least 𝑛 measurements
for the conformance metrics have been computed (lines 14 to 17), a simple linear regression is
performed over the last 𝑛 elements of both fitness and precision measurements, and the results
are stored in the designated lists (lines 15 and 16).

Next, the algorithm checks for the presence of drifts in the computed regressions (lines 18
to 26). This involves first ensuring that enough regressions have been computed —at least 𝑛/2
regressions are required, as explained in section 5.1—. The algorithm then determines if the
last 𝑛/2 regressions show a drift using the HasDrift function (lines 33 to 35). To confirm a
drift in the metrics, the last 𝑛/2 regressions must exhibit a negative slope with a confidence
of the slope being equal to 0.0 below 0.05, and the magnitude of the slopes of the successive
regressions should be steadily increasing (line 34).

If a drift is detected, the algorithm sets the flag to break the inner loop (lines 19 and 23),
adds a new sublog between changes to the list L (lines 20 and 24), and stores the location of the
last detected drift in the variable 𝑙𝑎𝑠𝑡 (lines 21 and 25). It is important to differentiate between
fitness-caused and precision-caused drifts to calculate the drift index. This is because of the
different behavior of the two metrics when a change is present. In the case of fitness, when the
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first drifting trace appears in the window, the metric value decreases, resulting in a negative
slope for the regression. Therefore, when a drift is confirmed, the trace that caused the drift is
the last one from the first window evaluated in the regression. Thus, the index of the change
for fitness is 𝑖 − 𝑛 + (𝑛/2) = 𝑖 − (𝑛/2). However, in the case of precision, the value will only
decrease when the last trace before the drift disappears from the window, so the first drifting
trace will be the first one from the first evaluated window. Hence, the index of the change for
precision is 𝑖 − 𝑛.

After checking for the occurrence of a drift, if there is none, we slide the window one position
forward (line 27) and proceed to loop back to the beginning of the inner loop. Otherwise, if
a change has been detected, we break out of the inner loop and restart the detection process.
Once all traces have been processed, the sublog between the last detected change and the end
of the log is added to L (line 30). The algorithm then uses the function ClassifyDrifts from
Algorithm 5.2 to classify the changes as sudden or gradual before returning (line 31).

5.2.1 Drift classification

Once the drift points have been detected from the log, the next step is to classify them as sudden
or gradual drifts using the same criteria described in Chapter 4. However, this classification is
performed as a final step instead of being done during the detection process, and it must also
be adapted to account for noisy environments. Algorithm 5.2 outlines the code used for this
classification.

The algorithm takes in a list of sublogs delimited by drifts L, a corresponding list of models
N, and an estimation of the percentage of noise present in the log 𝑟 . The first step is to initialize
a list D (line 2), which will be used to store the classified drifts. If L contains only two sublogs,
it can be assumed that the drift is sudden and that it occurs on the last trace from the first sublog
(lines 3 to 5). Otherwise, we iterate over the list of sublogs until the antepenultimate sublog is
reached (lines 5 to 20). Within this loop, we select three consecutive models N𝑖 , N𝑖+1 and N𝑖+2,
along with the corresponding sublogs L𝑖 , L𝑖+1 and L𝑖+2. Then it is checked if L𝑖+1 represents
a gradual change using the following four conditions (line 9):

1. The behaviour from N𝑖 and N𝑖+2 must differ from each other.

2. At least one trace in L𝑖+1 must exhibit behavior that is supported by N𝑖 .

3. At least one trace in L𝑖+1 must exhibit behavior that is supported by N𝑖+2.
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Algorithm 5.2 Function for classifying drifts

Inputs: a list of sublogs L, a list of the respective models associated with those sublogs N, the estimation of the
noise probability 𝑟

Outputs: set of traces/segments of the log causing drifts

1: function ClassifyDrifts(L,N, 𝑟)
2: D← [] //the list of classified drifts
3: if |L | = 2 then//if two sublogs, last trace from the first marks a sudden drift
4: D← 𝐷 :: 𝜏|L0 |
5: else
6: 𝑖 ← 0
7: while 𝑖 < ( |L | − 2) do
8: //if models i and i+2 are different, and behaviour is a combination of both
9: if (N𝑖 ≠ N𝑖+2 ) ∧ (∃𝜏 ∈ L𝑖+1 : 𝐵𝜏 ∈ 𝐵N𝑖

) ∧
(∃𝜏 ∈ L𝑖+1 : 𝐵𝜏 ∈ 𝐵N𝑖+2 ) ∧ ( |𝐵L𝑖+1 ∩ (𝐵N𝑖

∪ 𝐵N𝑖+2 ) | ) ⩾ ( |𝐵L𝑖+1 | × 𝑟 ) then
10: 𝑠𝑡𝑎𝑟𝑡 ← ∑𝑖

0 |L𝑛 | //the start drift is the last trace from sublog
11: 𝑒𝑛𝑑 ← 𝑠𝑡𝑎𝑟𝑡 + |L𝑖+1 | //the end drift is start + size of sublog
12: D← 𝐷 :: [𝜏𝑠𝑡𝑎𝑟𝑡 , 𝜏𝑒𝑛𝑑 ) //save the drift
13: 𝑖 ← 𝑖 + 2
14: else
15: 𝑖𝑛𝑑𝑒𝑥 ← ∑𝑖

𝑛=0 |L𝑛 | //sudden drift at the last trace from sublog n
16: D← 𝐷 :: 𝜏𝑖𝑛𝑑𝑒𝑥 //save the drift
17: 𝑖 ← 𝑖 + 1
18: end if
19: end while
20: end if
21: return D
22: end function

4. The percentage of traces in L𝑖+1 that do not exhibit behavior represented by either N𝑖 or
N𝑖+2 must be lower than the estimated noise level, 𝑟 .

If all four conditions are met, it can be concluded that the behaviour in L𝑖+1 is a combination
of the behaviour observed in L𝑖 and L𝑖+2, and, therefore, represents a gradual change. In this
case, we need to calculate the start and end indices (lines 10 and 11), then add the gradual drift
to the list of classified drifts (line 12), and finally, increment the loop counter by two to skip the
already processed sublogs (line 13).

However, if any of the four conditions is not satisfied, the drift is classified as sudden. In
this case, we append the index of the drift to the list of classified drifts (lines 14 to 18) and
increment the loop counter by one to classify the remaining drifts (line 17).
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𝜏1 𝐴𝐵𝐶𝐷𝐸𝐹

𝜏2 𝐴𝐶𝐵𝐷𝐸𝐹

𝜏3 𝐴𝐶𝐷𝐸𝐹

𝜏4 𝐴𝐶𝐵𝐷𝐸𝐹

𝜏5 𝐴𝐵𝐶
. . . . . .

𝜏96 𝐴𝐶𝐷𝐸𝐹

𝜏97 𝐴𝐶𝐹

𝜏98 𝐴𝐵𝐶𝐷𝐸𝐹

𝜏99 𝐴𝐶𝐵𝐷𝐸𝐹

𝜏100 𝐴𝐷𝐸𝐵𝐹

aggregate
traces by
behaviour

𝐵1 : 𝐴𝐵𝐶𝐷𝐸𝐹 ×35
𝐵2 : 𝐴𝐶𝐵𝐷𝐸𝐹 ×33
𝐵3 : 𝐴𝐶𝐷𝐸𝐹 ×22
𝐵4 : 𝐴𝐶𝐵𝐷𝐸𝐹 ×4
𝐵5 : 𝐴𝐷𝐸𝐵𝐹 ×3
𝐵6 : 𝐴𝐵𝐶 ×2
𝐵7 : 𝐴𝐶𝐹 ×1

aggregate
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𝐵1 ×35
𝐵1 ∪ 𝐵2 ×68
𝐵1 ∪ 𝐵2 ∪ 𝐵3 ×90
𝐵1 ∪ 𝐵2 ∪ 𝐵3 ∪ 𝐵4 ×94
𝐵1 ∪ 𝐵2 ∪ 𝐵3 ∪ 𝐵4 ∪ 𝐵5 ×97
𝐵1 ∪ 𝐵2 ∪ 𝐵3 ∪ 𝐵4 ∪ 𝐵5 ∪ 𝐵6 ×99
𝐵1 ∪ 𝐵2 ∪ 𝐵3 ∪ 𝐵4 ∪ 𝐵5 ∪ 𝐵6 ∪ 𝐵7 ×100
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Figure 5.3: Example of the process of estimating the noise from a log.

5.2.2 Automatic noise estimation

One of the key parameters required for robust drift detection in a noisy environment is an
estimation of the noise level, denoted as 𝑟 , present in the log. However, obtaining an accurate
estimation of 𝑟 can be challenging without an extensive a-priory knowledge of the process.
Therefore, an automatic method for estimating 𝑟 needs to be employed. We propose an approach
to estimate the noise percentage in the log which leverages the elbow method, which has been
widely used in mathematical optimization to identify the point at which adding new data is
no longer cost-effective. Despite its simplicity, the elbow method is a popular technique in
machine learning and it is used for various tasks, such as selecting the optimal number of
clusters in a dataset, determining the optimal number of parameters in a model, or identifying
the number of principal components in dimensionality reduction methods [79, 80].

Our approach estimates the amount of noise in the log based on the frequency of the
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behavior. We suppose that the most frequently occurring behavior represents the expected
behavior in the process execution, while anomalous executions should exhibit less frequent
behavior. Figure 5.3 shows how the method works with an example. Initially, the traces are
grouped according to their exhibited behavior, resulting in a list of pairs ⟨𝐵𝑖 , 𝑛⟩ where 𝐵𝑖 is the
behavior shown by the traces and 𝑛 indicates the frequency of occurrence of that behavior. This
list is then sorted in descending order based on that frequency value. Subsequently, a new list
of pairs ⟨𝑐𝑢𝑝 𝑗

𝑘=1𝐵𝑘 , 𝑛⟩ is generated by aggregating the previous list, where ∪ 𝑗

𝑘=1𝐵𝑘 denotes the
union of 𝑗 the most frequent behaviours and 𝑛 represents the number of traces which behaviour
is captured by the union —i.e., the first element of this list exclusively represents the most
frequently observed behavior in the log, along with the corresponding trace count; the second
element combines the two most frequent behaviors and their aggregate trace count; the third
element includes the union of the three most frequent behaviors, and so on—. These pairs are
then utilized to create a graph, where the x-axis represents the number of distinct behaviors
considered in ∪ 𝑗

1𝐵, and the y-axis reflects the number of traces supported by that behavior. To
automatically detect the knee in the plot, we utilize the Kneedle algorithm [81], which finds
this point by looking at the distance of each point to the straight line that connects the first and
the last ones. This algorithm produces accurate results without requiring any modifications
to suit the particular problem at hand. In the plot, the red arrow shows the greatest distance
between the points and the straight line, finding the knee at ∪3

𝑘=1𝐵𝑘 —i.e., where the three most
frequent behaviour are used—, and, thus, estimating the noise level at a 10%.

5.3 Experimentation

To assess the effectiveness of R-CRIER in comparison to other state of the art proposals,
we conducted a comprehensive validation using the same metrics that were introduced in
Chapters 3 and 4:

1. 𝐹𝑠𝑐𝑜𝑟𝑒, which is an accuracy metric, calculated as the harmonic mean of precision and
recall. To compute this metric, the detected drift points/intervals are classified as true or
false positives and negatives, as indicated by Equation (3.2a).

2. Δ, which measures the distance between the true location of the change and where it was
detected, as given by Equation (3.3).
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3. Υ, which is used to measure the percentage of the change region detected by the algorithm
for gradual drifts, as described in Equation (4.2).

Additional details about these metrics can be found in the respective chapters. The implementa-
tion of R-CRIER is publicly available online as a REST API and can also be downloaded from
the provided link.1.

5.3.1 Validation data

The methodology for creating the models from which we generate the logs used to evaluate the
performance of R-CRIER against the state of the art is the same as described for validating the
sudden and gradual concept drift detection algorithms —described in Sections 3.3.1 and 4.3.1—.
After applying this methodology to a base model 𝑀 , which describes a loan application process,
a set of modified models 𝑀 ′ is obtained.

The strategy for generating the noisy logs from these modified models builds on the
approach used by most of the state of the art proposals [63], also considered to validate the
results in Chapters 3 and 4, but has been updated to include noisy executions in the generation
process. The following steps summarize the procedure for generating the logs:

1. Begin with the base model 𝑀 , and select a modified model 𝑀 ′ from the list of modified
models, and define a model for generating noisy executions 𝑀∗.

2. Choose a probability distribution 𝑃 for transitioning between the base model 𝑀 and the
modified model 𝑀 ′. For generating sudden drifts, use a distribution that suddenly jumps
from 0 to 1.

3. Specify the size of the sublog between changes 𝑠 and the noise probability 𝑝𝑛.

4. Randomly select a model between 𝑀 and 𝑀∗ with probabilities (1 − 𝑝𝑛) and 𝑝𝑛,
respectively, and simulate an execution from the selected model. Repeat this step 𝑠 times
to generate the corresponding executions without change.

5. Once the 𝑠 executions without change have been generated, select a model between 𝑀

and 𝑀 ′ using the cumulative probability function of 𝑃. After the model has been selected,
choose between this model and 𝑀∗ with probabilities (1 − 𝑝𝑛) and 𝑝𝑛, respectively, and
simulate an execution to generate a new trace.

1https://tec.citius.usc.es/concept-drift-api/swagger-ui.html
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Figure 5.4: Noisy log generation example.

6. Finally, when the cumulative probability function of 𝑃 reaches a threshold, switch
between 𝑀 and 𝑀 ′ and start again from step 4 to generate a new sublog with the modified
model.

In Figure 5.4, the procedure for generating noisy logs is exemplified using the pm model as
𝑀 ′ and the re model as 𝑀∗. The orange and green segments represent executions from the
base and modified model, respectively, while red lines represent noisy executions. R-CRIER
has been tested for sudden drifts with 2,500, 5,000, 7,500 and 10,000 traces, and for gradual
drifts with linear and constant transition probability distributions with sizes of 5,000 traces.
All scenarios have been tested with noise levels ranging from 0% to 25%, with increments of
5%, resulting in a total of 528 event logs.
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5.3.2 Results and benchmarking

We evaluated the performance of R-CRIER against the same algorithms used in Chapters 3
and 4, but for noisy logs. Specifically, the configuration for each algorithm for sudden drift
detection is as follows:

1. R-CRIER with an fixed window size of 4% of the log size, which corresponds to 100,
200, 300, and 400 traces, and automatic estimation of the noise level using the trace
variant frequency method described in Section 5.2.2.

2. ProDrift [63] with trace-based detection, an adaptive window starting with a size of 100
traces, the noise filter threshold set to the actual percentage of noise in the log, and a
medium sensitivity level for noise detection.

3. TPCDD [65] with a minimum window size of 100 and a DBSCAN radius of 10.

For gradual drift detection, we used the following configurations for each algorithm:

1. R-CRIER with the same parameters used in the sudden case.

2. Martjushev et al. [60] with local features using the follows relations for every pair of
activities, J-measure with a window size of 10, and adaptive window with a minimum
size of 100 and a maximum of 500. We used a step of 1 and an automatic gap size. For
comparing windows we used the Kolmogorov-Smirnov test with a p-value of 0.4, which
is the default value specified by the authors.

3. ProDrift with the trace-based detection, a fixed size window of 100 traces, the noise filter
threshold set to the real percentage of noise in the log, and the noise sensitivity set to
medium.

Following we present a summary of the results —detailed experimental results can be found
in Appendix C—. On the one hand, Table 5.1 summarizes the average results for the datasets
with sudden changes. R-CRIER outperforms all other approaches for every noise level and log
size, achieving 𝐹𝑠𝑐𝑜𝑟𝑒 values greater than 0.8 for every log, and even 1.0 for noise-free logs.
As expected, the 𝐹𝑠𝑐𝑜𝑟𝑒 values decrease with increasing noise levels due to more false positives
in the detection, but remain at reasonably high values. TPCDD also achieves perfect 𝐹𝑠𝑐𝑜𝑟𝑒

values for non-noisy logs with 2,500, 7,500 and 10,000 traces, but its performance degrades
rapidly in the presence of even small amounts of noise, resulting in a high number of false
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Table 5.1: Average 𝐹𝑠𝑐𝑜𝑟𝑒 and Δ values for the noisy logs with sudden changes. The colors highlight
the best performing approach for each metric.

size noise
R-CRIER ProDrift TPCDD

𝐹𝑠𝑐𝑜𝑟𝑒 Δ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ

2500

0% 1.0000 4.6928 0.7082 71.1555 1.0000 2.6391
5% 0.9645 14.5923 0.6585 73.4256 0.6781 16.9935

10% 0.9447 15.5607 0.5723 78.0376 0.6707 16.3464
15% 0.9483 18.7591 0.4301 80.5009 0.6631 18.3007
20% 0.8873 23.7562 0.4407 81.3877 0.6717 21.3137
25% 0.8690 23.4037 0.5410 80.7318 0.6719 22.3660

5000

0% 1.0000 3.8366 0.8029 73.8648 0.9969 2.0458
5% 0.9173 30.6171 0.7017 83.4717 0.4134 11.8876

10% 0.8933 39.9600 0.7248 82.0148 0.4000 17.8529
15% 0.8713 36.7743 0.6952 94.1133 0.3973 17.6635
20% 0.8543 43.6831 0.6579 99.7240 0.3971 19.8169
25% 0.8475 46.6313 0.6149 101.6962 0.4006 21.7647

7500

0% 1.0000 4.6275 0.8235 95.2540 1.0000 2.5948
5% 0.9448 39.4678 0.7338 82.8303 0.2926 12.4727

10% 0.8656 50.3497 0.7253 91.9893 0.2849 13.7190
15% 0.8502 50.3693 0.7000 97.9897 0.2804 20.4118
20% 0.8514 66.1825 0.6225 118.2278 0.2803 19.8497
25% 0.8170 72.9812 0.5946 100.4500 0.2819 20.0719

10000

0% 0.9965 6.7369 0.8440 95.2569 1.0000 2.5882
5% 0.8973 62.3063 0.7806 84.8988 0.2274 12.9281

10% 0.8421 74.6499 0.6746 80.3740 0.2190 16.9739
15% 0.8438 83.6895 0.7190 102.5690 0.2191 16.6078
20% 0.8296 88.7595 0.6516 103.6556 0.2192 22.6797
25% 0.8663 93.2711 0.6058 109.8812 0.2179 19.4314

positives —sometimes more than 60 false positives for 9 true positives—. In contrast, for
ProDrift, 𝐹𝑠𝑐𝑜𝑟𝑒 values decrease with increasing noise levels, but this time due to the number
of false negatives, i.e., real changes that the algorithm fails to detect. Regarding Δ, TPCDD
obtains the best values, outperforming all other approaches, but at the cost of significantly
compromising its 𝐹𝑠𝑐𝑜𝑟𝑒 values. ProDrift obtains the worst results with delay values between
70 and 100 traces for all logs, while R-CRIER lies in the middle, with Δ values lower than
ProDrift but higher than TPCDD. Notably, for R-CRIER, Δ values increase with log size,
indicating higher delays with longer logs, and lower values with smaller ones.

On the other hand, Table 5.2 presents the average results for the logs containing gradual
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Table 5.2: Average 𝐹𝑠𝑐𝑜𝑟𝑒 and Δ values for the noisy logs with gradual changes. The colors highlight
the best performing approach for each metric.

distribution noise
R-CRIER ProDrift Martjushev et al.

𝐹𝑠𝑐𝑜𝑟𝑒 Δ Υ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ Υ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ Υ

Lineal

0% 0.9471 76.1194 47.01% 0.8931 67.2216 46.12% 0.4937 65.3886 26.92%

5% 0.8692 88.0333 33.15% 0.8105 86.2990 34.11% 0.5336 60.1690 28.90%

10% 0.8737 93.3931 32.82% 0.8642 98.3175 33.78% 0.4037 69.5324 22.38%

15% 0.8228 96.6347 28.60% 0.8013 101.0552 29.43% 0.4682 52.4000 27.83%

20% 0.7681 103.2889 19.12% 0.7681 106.7514 19.64% 0.4516 56.0317 23.28%

25% 0.6712 91.5333 9.49% 0.6712 92.7708 9.15% 0.3402 47.7685 18.71%

Constant

0% 0.8313 53.3969 53.92% 0.8260 52.9469 52.82% 0.5075 57.4841 28.75%

5% 0.7835 91.8861 34.40% 0.8098 82.4881 33.22% 0.5562 60.6037 32.14%

10% 0.8073 86.1333 32.36% 0.7891 78.5165 32.23% 0.5200 59.8333 29.17%

15% 0.8110 99.3597 34.86% 0.8110 101.5347 34.96% 0.3924 37.8968 22.04%

20% 0.6825 104.9520 17.71% 0.7018 103.0641 17.71% 0.4100 60.5648 24.19%

25% 0.6194 91.1194 3.99% 0.6194 90.6986 4.46% 0.4300 55.3667 29.44%

changes. R-CRIER continues to outperform other approaches in terms of 𝐹𝑠𝑐𝑜𝑟𝑒, with
consistently higher values overall. However, the differences between the approaches are less
pronounced in this case. As with sudden drifts, the 𝐹𝑠𝑐𝑜𝑟𝑒 decreases with an increase in the
noise level, leading to lower average values, mainly due to false negatives being detected.
Martjushev et al. performed poorly, achieving F-score values below 0.5 in 8 out of 12 logs, and
not exceeding 0.55 in any log. Δ shows the best results for Martjushev et al., whereas both
R-CRIER and ProDrift exhibit worse but similar values. In terms of Υ, the three alternatives
perform similarly, with the best results evenly distributed among them.

Statistical tests

To ensure the validity of the results, we have used statistical methods to compare the performance
of R-CRIER with the state of the art algorithms. Specifically, we conducted a BAIN test to
determine if R-CRIER performs better than the other approaches —details of this test are
explained in Section 3.3.4—. The Bayes factor 𝐵𝐹𝐻𝑖𝐻

𝑐
𝑖

was used as a measure of evidence for
the hypothesis being tested against its complement. The results of this test are summarized in
Table 5.3. For the sudden drift logs, the Bayes factor 𝐵𝐹𝐻1𝐻

𝑐
1

—where 𝐻1 is the hypothesis
that considers that R-CRIER has better results— clearly shows an extreme evidence supporting
the hypothesis that R-CRIER performs better than the other approaches in terms of 𝐹𝑠𝑐𝑜𝑟𝑒.
However, when it comes to Δ, TPCDD is statistically superior to R-CRIER. When it comes to

91



Víctor José Gallego Fontenla

Table 5.3: BAIN test results for the validation logs, where 𝐵𝐹𝐻𝑖𝐻
𝑐
𝑖

shows the Bayesian factor for 𝐻𝑖

against its complementary 𝐻𝑐
𝑖
= ¬𝐻𝑖 . The most likely hypothesis is shown shaded in blue.

𝐵𝐹𝐻𝑖𝐻
𝑐
𝑖

𝐹𝑠𝑐𝑜𝑟𝑒 Δ Υ

sudden drifts

𝐻1: R-CRIER > ProDrift
and R-CRIER > TPCDD 2.28 × 1013 7.06 × 10−25 —

𝐻2: R-CRIER < ProDrift 2.14 × 10−31 6.78 × 10−71 —
𝐻3: R-CRIER < TPCDD 4.58 × 10−91 2.29 × 1013 —
𝐻4: R-CRIER = ProDrift 1.55 × 10−28 7.08 × 10−68 —
𝐻5: R-CRIER = TPCDD 5.75 × 10−88 3.55 × 10−22 —

gradual drifts

𝐻1: R-CRIER > ProDrift
and R-CRIER > Martjushev et al. 3.19 4.23 × 10−10 9.75 × 10−1

𝐻2: R-CRIER < ProDrift 6.35 × 10−1 1.52 1.05
𝐻3: R-CRIER < Martjushev et al. 7.02 × 10−21 4.44 × 109 9.49 × 10−1

𝐻4: R-CRIER = ProDrift 1.29 × 101 1.30 × 101 1.34 × 101

𝐻5: R-CRIER = Martjushev et al. 2.22 × 10−18 4.17 × 10−8 1.34 × 101

gradual drifts, 𝐵𝐹𝐻1𝐻
𝑐
1

indicates that R-CRIER and ProDrift are similarly effective in terms of
𝐹𝑠𝑐𝑜𝑟𝑒, with the highest evidence score. However, Martjushev et al. performs significantly
better than the other two approaches in terms of Δ, according to the test results. In terms of Υ,
the test shows that all three algorithms are evenly matched, with high evidence for their pairing.

5.3.3 Results discussion

The previous section shows that R-CRIER outperforms the rest of the state of the art approaches
in terms of 𝐹𝑠𝑐𝑜𝑟𝑒 when dealing with noisy environments.

The results for sudden changes are promising, with R-CRIER achieving a mean 𝐹𝑠𝑐𝑜𝑟𝑒 value
of 0.9 across all the logs. However, as the level of noise increases, 𝐹𝑠𝑐𝑜𝑟𝑒 values decrease due to
an increase in false positives. This can be attributed to the challenge of differentiating between
a real drift and anomalous executions, which can cause conformance metrics to decrease even
when such presence is spurious. Nevertheless, the number of false positives remains within
tolerable limits, with an average of less than 3, and a maximum of 7 and 8 on the RIO and OIR

logs with 10,000 traces and 25% and 20% of noise, respectively. In these experiments, we
limited the noise presence to a maximum of 25%. However, our results suggest that R-CRIER
may still perform well in environments with even higher levels of anomalous executions.

In contrast to R-CRIER, TPCDD shows a rapid decrease in 𝐹𝑠𝑐𝑜𝑟𝑒 values even with small
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noise levels, and its performance does not significantly change with varying levels of noise.
Instead, the primary factor that affects TPCDD performance is the size of the log, which leads
to a significant number of false positives between changes. This makes TPCDD impractical for
use with the largest logs and higher levels of noise, where it detects over 60 false positives for
all cases.

Among the evaluated approaches, ProDrift falls between R-CRIER and TPCDD. Its 𝐹𝑠𝑐𝑜𝑟𝑒

values show a similar behavior to R-CRIER, decreasing with the noise level, but with lower
magnitude. The maximum 𝐹𝑠𝑐𝑜𝑟𝑒 value achieved was 0.8440 for the 10,000 traces and 0%
noise. However, the decrease in 𝐹𝑠𝑐𝑜𝑟𝑒 is mainly due to an increase in the false negative rates,
with some drifts going unnoticed in an increasing number of logs. This might be caused by
the algorithm building an underfitting reference model, which is too generalized due to the
presence of noise to detect changes accurately.

In terms of Δ, TPCDD outperforms R-CRIER. However, as previously mentioned, TPCDD
becomes impractical in the presence of noise, resulting in numerous false detections. The
mean Δ values for R-CRIER increase with the log size and become closer to those of TPCDD
for smaller logs. All three algorithms show an increase in Δ with the noise level, possibly
because of the algorithms have to wait longer to distinguish a drift from anomalous behavior.
Additionally, Δ values obtained by ProDrift are higher for smaller logs than those of R-CRIER,
but the difference between smaller and larger logs is not as significant as with R-CRIER.

In the case of gradual logs, R-CRIER outperforms the other approaches in terms of 𝐹𝑠𝑐𝑜𝑟𝑒,
achieving values above 0.75 in 78 out of 100 logs. However, as with sudden drifts, the 𝐹𝑠𝑐𝑜𝑟𝑒

values decrease with an increase in noise level. This decrease is mainly due to the inability
of R-CRIER to detect the end of drift regions accurately, resulting in a high number of false
positives at the end of the drift. The Υ values also reflect this, indicating that the algorithm
often fails to detect the entire change region, leading to premature termination of the drift.
ProDrift exhibits similar behavior to R-CRIER but with worse results. In contrast, Martjushev
et al. performs poorly, exhibiting highly variable detection capability depending on the pattern
of change present in the log. While the approach achieves perfect 𝐹𝑠𝑐𝑜𝑟𝑒 values for some
patterns, it fails to detect any change in others, resulting in 𝐹𝑠𝑐𝑜𝑟𝑒 values of 0.0.
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5.4 Conclusions

This chapter presents the R-CRIER algorithm, which builds upon previous works C2D2 and
CRIER to enable drift detection in noisy environments. R-CRIER continuously monitors the
fitness and precision metrics of the model using linear regression, allowing for reliable and
robust detection of changes. The hypothesis that several successive regressions with a negative
slope whose magnitude is always increasing confirms a drift has been mathematically proven.
Experiments with 528 synthetic logs with multiple noise levels for sudden and gradual drifts
demonstrate that R-CRIER outperforms other state of the art proposals with better overall
accuracy values.

Despite its effectiveness, R-CRIER has some limitations that need to be addressed in order
to provide a complete solution for all scenarios. The primary challenge arises from the use of a
fixed window size, which makes it difficult to handle logs with highly unbalanced intervals
between changes. To overcome this limitation, it would be desirable to introduce a mechanism
for automatically calculating the window size, which could be optimized during the execution,
as suggested in Section 3.2.2. However, this presents a significant challenge, as the presence of
anomalous executions in the log can make it difficult to perform such a search for the optimal
size.

Another important limitation arises with the automatic identification of the percentage
of noise in logs from highly unstructured processes. The estimation methods proposed in
Section 5.2.2 may yield suboptimal results in such cases, as there may not be a significant or
easily identifiable knee in the graph. It is worth noting that this is a common issue affecting all
concept drift approaches, as well as a large part of process mining tasks. Extracting valuable
knowledge from such processes is challenging without prior preprocessing. However, exploring
such preprocessing methods falls beyond the scope of this dissertation.
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CHAPTER 6

CONCLUSIONS

If we knew what it was we were doing, it would
not be called research, would it?

— Albert Einstein

In this dissertation, our focus has been on addressing the challenge of identifying changes
in process control-flow by closely monitoring the evolution of conformance metrics over time.
Due to the widespread use of processes across various industries and organizations, coupled
with increasing automation and digitization and the global interconnectivity that opens a
global market for everyone, it is crucial to identify such changes in a timely manner to avoid
underperformance or unexpected outcomes. This dissertation emphasizes the critical nature
of being aware of subtle changes during Process Mining and Business Process Management
tasks. Neglecting to address these changes can lead to adverse consequences in the analysis
and insights derived from such activities.

In recent times, a plethora of solutions have been proposed to address this problem. Some
of these solutions aim to automatically update the process to adapt it to changes in the most
optimal manner. Others seek to detect these changes and inform the relevant parties as quickly
as possible, thereby enabling informed decision-making. Our emphasis has been on the latter
group, so decisions are taken using the latest valid data. Regrettably, most of the approaches that
address this task fall short in one way or another. Firstly, most approaches require substantial
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user intervention to confirm the existence of a change. This can be highly inappropriate in
complex or highly automated environments that generate big amounts of data, rendering the
process infeasible. Secondly, these approaches usually suffer from substantial delays in detecting
changes, taking an excessive amount of time to verify their presence, leading to potential losses
for the process owners. Thirdly, they usually are highly dependent on the patterns of change
observed in the data, performing optimally for some patterns, but inadequately for others. This
makes them unsuitable for environments in which potential patterns of change are unknown.
Finally, the majority of these approaches are not robust, failing to detect changes in noisy
environments where anomalous executions can occur, which is common in the real world.

Taking into account the state of the art limitations previously discussed, we suggest utilizing
conformance metrics as a means for reliable and early detection for changes, regardless of their
patterns. To support our proposal, we put forward three hypotheses:

1. We assert that fitness can detect changes related to unsupported behavior but is
unable to detect fitting behavior that is disappearing from the log, whereas precision
can detect changes related to fitting behavior that is disappearing from the log but
cannot identify new unsupported behavior that is being observed.

2. We suggest that all gradual drifts can be characterized by a fitness change at the
outset and a precision change at the end.

3. We contend that monitoring successive drops in conformance metrics allows us to
differentiate between genuine changes and spurious, unexpected executions.

We have developed three algorithms based on the aforementioned hypotheses, which allow
for the early detection of changes in the control-flow of a process.

In Chapter 3, we focused on sudden changes —i.e., changes that occur immediately, with
new behavior replacing the old behavior from a specific point in time—. In this chapter, we
have demonstrated mathematically that conformance metrics can be used to detect such changes.
We have also developed C2D2, an algorithm that evaluates fitness and precision metrics over a
reference process model using a sliding window and a linear regression, enabling the detection
of changes in the process structure. To enhance the algorithm accuracy, we have proposed two
new, low complexity estimators for the conformance metrics with which the drift detection
is facilitated. We tested C2D2 with two well-established metrics—𝐹𝑠𝑐𝑜𝑟𝑒 and delay— and
evaluated it using a collection of 204 synthetic logs generated from 3 different process models
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from the state of the art and 17 change patterns. We compared the results with those from the
best-performing algorithms from the state of the art, namely TPCDD and ProDrift, and found
that C2D2 outperformed them in terms of 𝐹𝑠𝑐𝑜𝑟𝑒.

Then, in Chapter 4 our focus shifts to gradual drifts. Unlike sudden drifts, gradual drifts
occur when the old behavior is gradually replaced by the new one over time. We have established
and formally proven that such drifts always commence with a change in fitness and culminate
with a change in precision. Also, as part of this chapter, we have developed CRIER, an algorithm
that builds on the premises of C2D2 but extends them to distinguish between sudden and
gradual drifts. Our approach is not constrained by any particular behavior distribution during
the drift, enabling it to handle any changes while maintaining high accuracy. We evaluated
CRIER on 120 event logs, which had 12 different probability distributions. Additionally, we
introduced a new evaluation metric that measures the accuracy of detecting the drifting interval.
The performance of CRIER was compared to two of the best-performing algorithms from the
state of the art, namely ProDrift and Martjushev et al., and it outperformed them considerably.

Lastly, in Chapter 5, our attention is on developing a robust detection system that can operate
effectively even in presence of noise. We have demonstrated that by monitoring successive
drops in conformance metrics, it is possible to differentiate between genuine changes and noisy
executions. To this end, we present the R-CRIER algorithm, which builds on the proposals
outlined in the previous chapters and adapts them to handle noisy environments. Finally, we
evaluate the performance of R-CRIER on a dataset consisting of 528 logs and compare it
with the best-performing approaches from the state of the art, namely TPCDD, ProDrift and
Martjushev et al., showing that our algorithm outperforms them again in terms of accuracy.

With these three proposed algorithms, we have successfully achieved all the objectives
stated in the introduction from Chapter 1. Specifically, we have addressed the problem of
robustly detecting changes in the control-flow of a process, whether they occur suddenly or
gradually, even in noisy environments. We have mathematically proved that conformance
metrics can be used to detect changes, and we have proposed new metrics and algorithms that
improve upon the state of the art approaches. Our algorithms have been extensively evaluated
using synthetic event logs, demonstrating their high accuracy and robustness. By achieving
these objectives, our work contributes to the field of process mining and can have practical
implications in various application domains, such as healthcare, finance, and manufacturing.
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Future work

While the present research has made significant progress in detecting control-flow process
changes in various scenarios, there are still several limitations that need to be addressed in
future research.

• Currently, our algorithms focus solely on the detection of control-flow drifts. However,
there is potential to explore the use of other metrics that could evaluate other process
perspectives, enabling the extension of drift detection to these perspectives. For instance,
time-related metrics could be utilized to monitor changes in the temporal performance
of the process. Alternatively, metrics based on the execution cost or that monitors
complex behavioral patterns, bottlenecks, or frequent subprocesses could be explored.
The addition of such metrics would enable the detection of changes in those perspectives,
thereby broadening the scope of drift detection to cover more scenarios.

• In addition to the limitations related to the control-flow drift detection, our research has
been confined to single-process scenarios. However, as the complexity of the process
environment increases, it is necessary to explore the detection of changes in more
complex scenarios that involve multiple interdependent processes. To address this issue,
future research could focus on exploring the use of clustering techniques to apply a
divide-and-conquer strategy. This approach would involve grouping processes with
similar characteristics into clusters, and then applying our proposed algorithms to each
cluster. To do so, it is necessary to evaluate distance metrics for the clustering algorithm,
which would enable us to measure the similarity between processes and group them
accordingly. Therefore, by expanding our research to more complex process scenarios
and developing appropriate clustering techniques, we can extend the applicability of our
proposed algorithms to a wider range of real-world process environments.

• Finally, the algorithms proposed in this research are solely designed for drift detection
and do not address other stages of the drift management process. Future research
could focus on developing methods for change description and drift cause analysis,
which would provide process owners with more comprehensive information to facilitate
decision-making. Such analysis could involve examining the context in which the drift
occurred, identifying the factors that triggered it, and understanding the implications of
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the change for the overall process performance. This would enable a more complete and
effective management of process drifts.

In summary, this research has opened several avenues for future work that can enhance
the drift detection process in various ways. These include the exploration of new metrics to
detect changes in different process perspectives, the extension of the algorithms to multiple
interdependent processes, and the development of techniques for change description and
drift cause analysis. By addressing these challenges, we can provide a broader approach
to process drift management, and provide more valuable information to process owners for
decision-making. The possibilities for further research in this area are promising and have the
potential to make significant contributions to the field of process mining.
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APPENDIX A

SUDDEN DRIFT DETECTION:
SUPPLEMENTARY EXPERIMENTS

This appendix contains additional detailed results from the validation of C2D2 with the synthetic
logs generated from the Central Venous Catheter and the Hospital Emergency Ward processes.

A.1 Central venous catheter process

Table A.1 shows both 𝐹𝑠𝑐𝑜𝑟𝑒 and Δ values for the three algorithms evaluated and C2D2.
Specifically, C2D2 achieves the highest 𝐹𝑠𝑐𝑜𝑟𝑒 values in all logs. Namelly, it obtains values of
1.0 for every log in this process, outperforming all other algorithms in terms of mean 𝐹𝑠𝑐𝑜𝑟𝑒

values. In addition, the algorithm keeps Δ values low, never exceeding 10 traces, which makes
it again the second best option, being narrowly surpassed only by TPCDD.
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Table A.1: Mean 𝐹𝑠𝑐𝑜𝑟𝑒 and Δ values for each algorithm using the central venous catheter process
logs.

cb

2500 1.0000 2.4444 1.0000 1.8889 0.0000 — 1.0000 49.2222

5000 1.0000 2.0000 1.0000 1.4444 0.0000 — 1.0000 51.5556

7500 1.0000 1.6667 1.0000 1.1111 0.0000 — 1.0000 47.0000

10000 1.0000 2.1111 1.0000 1.5556 0.0000 — 0.9474 48.2222

cf

2500 1.0000 2.0000 1.0000 1.1111 1.0000 66.3333 1.0000 19.2222

5000 1.0000 2.0000 1.0000 0.8889 1.0000 91.1111 0.9474 16.7778

7500 1.0000 2.0000 1.0000 1.1111 1.0000 71.6667 0.9474 18.6667

10000 1.0000 2.0000 1.0000 1.1111 1.0000 64.2222 1.0000 20.1111

cm

2500 1.0000 2.4444 1.0000 1.8889 0.0000 — 1.0000 43.8889

5000 1.0000 2.2222 1.0000 1.6667 0.0000 — 1.0000 56.3333

7500 1.0000 1.5556 1.0000 1.0000 0.0000 — 1.0000 46.0000

10000 1.0000 1.5556 1.0000 1.0000 0.3636 130.0000 1.0000 51.6667

cp

2500 1.0000 2.0000 1.0000 1.0000 0.9412 79.3750 1.0000 12.1111

5000 1.0000 2.0000 1.0000 1.0000 1.0000 65.6667 1.0000 10.2222

7500 1.0000 2.0000 1.0000 1.0000 1.0000 80.0000 1.0000 11.4444

10000 1.0000 2.0000 1.0000 1.0000 0.9412 66.6250 1.0000 12.2222

lp

2500 1.0000 1.7778 1.0000 1.2222 0.0000 — 1.0000 29.3333

5000 1.0000 1.4444 1.0000 0.8889 0.2000 215.0000 1.0000 32.2222

7500 1.0000 2.0000 1.0000 1.4444 0.0000 — 1.0000 36.7778

10000 1.0000 2.3333 1.0000 1.7778 0.0000 — 0.9474 36.6667

sw

2500 1.0000 2.0000 1.0000 1.0000 0.0000 — 1.0000 0.0000

5000 1.0000 2.0000 1.0000 1.0000 0.0000 — 1.0000 0.0000

7500 1.0000 2.0000 1.0000 1.0000 0.0000 — 1.0000 0.0000

10000 1.0000 2.0000 1.0000 1.0000 0.0000 — 1.0000 0.0000

Log size
C2D2 TPCDD PD-T PD-E

𝐹𝑠𝑐𝑜𝑟𝑒 Δ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ
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Table A.1: Mean 𝐹𝑠𝑐𝑜𝑟𝑒 and Δ values for each algorithm using the central venous catheter process
logs. (Continued)

pl

2500 1.0000 2.0000 1.0000 3.7778 0.0000 — 1.0000 20.0000

5000 1.0000 1.6667 1.0000 4.0000 0.0000 — 1.0000 21.6667

7500 1.0000 1.7778 1.0000 4.6667 0.0000 — 1.0000 21.2222

10000 1.0000 1.4444 1.0000 4.8889 0.0000 — 1.0000 30.1111

re

2500 1.0000 2.0000 1.0000 1.0000 1.0000 63.1111 1.0000 15.8889

5000 1.0000 2.0000 1.0000 1.0000 0.9412 62.1250 1.0000 14.4444

7500 1.0000 2.0000 1.0000 1.0000 1.0000 59.0000 1.0000 17.3333

10000 1.0000 2.0000 1.0000 1.0000 0.9412 66.5000 1.0000 14.0000

rp

2500 1.0000 2.0000 1.0000 1.0000 0.9412 72.2500 1.0000 17.4444

5000 1.0000 2.0000 1.0000 1.0000 1.0000 64.5556 1.0000 14.4444

7500 1.0000 2.0000 1.0000 1.0000 1.0000 64.3333 1.0000 15.4444

10000 1.0000 2.0000 1.0000 1.0000 1.0000 65.7778 1.0000 14.4444

IOR

2500 1.0000 2.0000 1.0000 1.0000 0.8750 114.5714 1.0000 12.7778

5000 1.0000 2.0000 1.0000 1.1111 1.0000 144.2222 0.9474 13.7778

7500 1.0000 2.0000 1.0000 1.1111 1.0000 107.7778 1.0000 18.3333

10000 1.0000 2.0000 1.0000 1.1111 1.0000 122.8889 1.0000 18.0000

IRO

2500 1.0000 2.0000 1.0000 1.0000 0.8750 114.5714 1.0000 12.7778

5000 1.0000 2.0000 1.0000 3.1111 0.0000 — 1.0000 1.0000

7500 1.0000 2.0000 0.9474 4.0000 0.0000 — 1.0000 1.5556

10000 1.0000 2.0000 1.0000 3.1111 0.0000 — 1.0000 2.4444

OIR

2500 1.0000 2.0000 1.0000 0.6667 0.2000 — 0.9474 11.5556

5000 1.0000 2.0000 1.0000 0.6667 0.8000 129.8333 1.0000 10.6667

7500 1.0000 2.0000 1.0000 0.6667 0.8750 147.7143 1.0000 9.7778

10000 1.0000 2.0000 1.0000 0.5556 0.7143 139.4000 1.0000 11.2222

Log size
C2D2 TPCDD PD-T PD-E

𝐹𝑠𝑐𝑜𝑟𝑒 Δ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ
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Table A.1: Mean 𝐹𝑠𝑐𝑜𝑟𝑒 and Δ values for each algorithm using the central venous catheter process
logs. (Continued)

ORI

2500 1.0000 2.0000 1.0000 3.3333 0.0000 100.0000 1.0000 0.1111

5000 1.0000 2.0000 1.0000 2.6667 0.0000 — 1.0000 0.2222

7500 1.0000 2.0000 0.9000 2.7778 0.0000 — 1.0000 0.3333

10000 1.0000 2.0000 0.7826 2.8889 0.2000 85.0000 1.0000 0.0000

RIO

2500 1.0000 1.5556 1.0000 0.8889 0.2000 129.0000 1.0000 17.8889

5000 1.0000 1.7778 1.0000 0.8889 0.7143 149.4000 1.0000 19.6667

7500 1.0000 1.7778 1.0000 1.0000 0.7143 144.6000 1.0000 20.1111

10000 1.0000 2.3333 1.0000 1.2222 0.7143 169.2000 1.0000 18.6667

ROI

2500 1.0000 2.0000 1.0000 0.6667 0.8750 76.7143 1.0000 18.5556

5000 1.0000 2.0000 1.0000 1.3333 1.0000 110.0000 1.0000 16.1111

7500 1.0000 2.0000 1.0000 1.5556 0.8750 91.0000 1.0000 16.8889

10000 1.0000 2.0000 1.0000 1.5556 1.0000 89.7778 1.0000 20.6667

Average

2500 1.0000 2.0148 1.0000 1.5704 0.4022 87.6694 0.9965 17.9407

5000 1.0000 1.9407 1.0000 1.5111 0.5104 114.6571 0.9930 18.6074

7500 1.0000 2.0000 0.9898 1.6296 0.4976 95.7615 0.9965 18.7259

10000 1.0000 1.9852 0.9855 1.6519 0.5250 99.9392 0.9930 19.8963

Log size
C2D2 TPCDD PD-T PD-E

𝐹𝑠𝑐𝑜𝑟𝑒 Δ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ

A.2 Hospital emergency ward process

Table A.2 shows the detailed results. As in the rest of the experiments, C2D2 achieves the
highest 𝐹𝑠𝑐𝑜𝑟𝑒 values in almost all logs. Specifically, it outperforms all other algorithms in
terms of mean 𝐹𝑠𝑐𝑜𝑟𝑒 values for all sizes, even obtaining perfect 𝐹𝑠𝑐𝑜𝑟𝑒 values on the 7,500
and 10,000 trace logs. In addition, as in the rest of logs, the algorithm keeps Δ values low,
never exceeding 10 traces, which makes it the second best option, only narrowly surpassed by
TPCDD.
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Table A.2: Mean 𝐹𝑠𝑐𝑜𝑟𝑒 and Δ values for each algorithm using the hospital emergency ward
process logs.

cb

2500 0.9474 2.6666 1.0000 2.8889 0.8000 72.0000 0.4615 12.6667

5000 1.0000 2.4444 1.0000 3.1111 0.9412 63.2500 0.4444 47.7500

7500 1.0000 1.3333 1.0000 1.6667 0.9412 94.2500 0.5000 36.0000

10000 1.0000 2.2222 1.0000 3.3333 0.9412 78.0000 0.2667 140.5000

cd

2500 1.0000 1.7778 1.0000 1.3333 0.8750 71.4286 0.9474 8.2222

5000 1.0000 1.4444 0.9474 1.1111 0.8000 65.1667 0.9000 9.8889

7500 1.0000 1.5556 1.0000 1.1111 0.8000 65.3333 0.9000 10.2222

10000 1.0000 1.2222 1.0000 0.7778 0.8889 87.0000 0.8182 9.2222

cf

2500 1.0000 2.0000 1.0000 3.1111 0.8750 70.7143 0.9000 16.1111

5000 1.0000 2.0000 1.0000 3.0000 0.9412 73.8750 1.0000 17.4444

7500 1.0000 2.0000 1.0000 3.5556 1.0000 86.0000 0.9000 19.0000

10000 1.0000 2.0000 1.0000 4.4444 1.0000 81.4444 0.7826 15.2222

cm

2500 1.0000 3.3333 1.0000 3.1111 0.2000 8.0000 0.6154 25.2500

5000 1.0000 2.6667 1.0000 3.1111 1.0000 79.4444 0.0000 —

7500 1.0000 2.5556 1.0000 2.4444 1.0000 84.7778 0.6316 109.0000

10000 1.0000 3.4444 1.0000 3.4444 0.9412 90.6250 0.5000 33.0000

cp

2500 1.0000 2.0000 1.0000 0.6667 1.0000 57.7778 0.9474 13.0000

5000 1.0000 2.0000 1.0000 0.8889 1.0000 57.3333 0.9000 13.0000

7500 1.0000 2.0000 1.0000 1.0000 0.9412 58.0000 0.8571 12.5556

10000 1.0000 2.0000 1.0000 0.7778 1.0000 63.7778 0.7500 12.1111

lp

2500 1.0000 1.7778 1.0000 2.0000 0.6154 61.7500 0.9000 9.3333

5000 1.0000 1.3333 1.0000 1.2222 0.9412 150.1250 0.8571 8.5556

7500 1.0000 1.2222 1.0000 1.6667 0.7500 134.0000 0.8571 12.7778

10000 1.0000 1.4444 1.0000 1.2222 0.8750 137.4286 0.9474 10.8889

Log size
C2D2 TPCDD PD-T PD-E

𝐹𝑠𝑐𝑜𝑟𝑒 Δ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ
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Table A.2: Mean 𝐹𝑠𝑐𝑜𝑟𝑒 and Δ values for each algorithm using the hospital emergency ward
process logs. (Continued)

sw

2500 1.0000 2.0000 1.0000 0.4444 0.0000 — 0.9474 3.3333

5000 1.0000 2.0000 1.0000 0.8889 0.0000 — 1.0000 3.2222

7500 1.0000 2.0000 1.0000 0.8889 0.0000 — 0.7826 3.6667

10000 1.0000 2.0000 1.0000 1.0000 0.2000 82.0000 1.0000 2.6667

pl

2500 1.0000 1.5556 1.0000 1.1111 0.3636 57.5000 0.9474 7.7778

5000 1.0000 2.2222 1.0000 1.1111 0.0000 — 1.0000 8.4444

7500 1.0000 2.2222 1.0000 1.0000 0.2000 136.0000 1.0000 9.3333

10000 1.0000 2.5556 1.0000 1.2222 0.3636 150.5000 0.8182 7.3333

pm

2500 1.0000 5.8889 1.0000 3.3333 0.0000 — 1.0000 11.3333

5000 1.0000 7.2222 1.0000 3.8889 0.0000 — 0.8182 9.6667

7500 1.0000 5.5556 1.0000 1.5556 0.0000 — 0.7826 14.0000

10000 1.0000 7.7778 1.0000 2.1111 0.0000 — 0.9000 12.0000

re

2500 1.0000 2.0000 1.0000 1.0000 1.0000 58.1111 1.0000 9.4444

5000 1.0000 2.0000 1.0000 0.5556 1.0000 62.4444 0.7826 11.0000

7500 1.0000 2.0000 1.0000 0.6667 1.0000 66.1111 0.8571 11.2222

10000 1.0000 2.0000 1.0000 0.6667 1.0000 65.4444 1.0000 11.8889

rp

2500 1.0000 2.0000 1.0000 0.4444 1.0000 67.0000 0.8571 5.1111

5000 1.0000 2.0000 1.0000 0.3333 1.0000 62.2222 0.9000 6.2222

7500 1.0000 2.0000 1.0000 0.6667 1.0000 69.8889 0.8182 5.4444

10000 1.0000 2.0000 1.0000 0.7778 1.0000 60.7778 1.0000 5.7778

IOR

2500 1.0000 2.0000 1.0000 0.8889 0.3333 24.0000 0.9000 6.4444

5000 1.0000 2.0000 1.0000 0.7778 0.5000 76.3333 0.9474 5.5556

7500 1.0000 2.0000 1.0000 0.7778 0.5000 186.0000 1.0000 6.1111

10000 1.0000 2.0000 1.0000 0.8889 0.3636 144.5000 0.9000 6.1111

Log size
C2D2 TPCDD PD-T PD-E

𝐹𝑠𝑐𝑜𝑟𝑒 Δ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ
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Table A.2: Mean 𝐹𝑠𝑐𝑜𝑟𝑒 and Δ values for each algorithm using the hospital emergency ward
process logs. (Continued)

IRO

2500 1.0000 6.1111 1.0000 2.8889 0.7143 105.8000 1.0000 19.8889

5000 1.0000 7.2222 1.0000 3.0000 0.6154 96.2500 0.8889 18.6250

7500 1.0000 4.6667 1.0000 2.3333 0.6154 104.0000 0.7500 18.5556

10000 1.0000 4.0000 1.0000 2.2222 0.3636 110.0000 0.8182 17.7778

OIR

2500 0.9474 2.0000 0.7826 1.2222 0.7143 82.2000 0.9000 7.5556

5000 0.9474 2.0000 0.6429 1.6667 0.7143 86.8000 0.8571 8.8889

7500 1.0000 2.0000 0.5143 2.1111 0.8750 89.8571 0.7826 3.7778

10000 1.0000 2.0000 0.4186 2.8889 1.0000 106.3333 0.6923 7.0000

ORI

2500 1.0000 2.0000 1.0000 0.6667 0.5000 36.3333 1.0000 6.0000

5000 1.0000 2.0000 1.0000 0.4444 0.5000 94.0000 1.0000 6.7778

7500 1.0000 2.0000 1.0000 0.3333 0.8750 123.4286 0.9474 6.2222

10000 1.0000 2.0000 1.0000 0.6667 0.9412 280.6250 0.9000 6.0000

RIO

2500 1.0000 2.0000 1.0000 0.7778 0.6154 58.7500 0.9000 5.8889

5000 1.0000 2.0000 1.0000 0.8889 0.5556 100.6000 0.7826 5.5556

7500 1.0000 2.0000 1.0000 0.7778 0.7143 105.8000 0.7200 5.5556

10000 1.0000 2.0000 1.0000 0.6667 0.7143 101.8000 0.6207 12.6667

ROI

2500 1.0000 2.0000 0.9474 6.6667 0.9412 100.6250 1.0000 11.2222

5000 1.0000 2.0000 0.8182 7.0000 1.0000 76.8889 1.0000 14.2222

7500 1.0000 2.0000 0.6667 5.6667 1.0000 78.1111 0.9474 15.1111

10000 1.0000 2.0000 0.6000 6.6667 1.0000 80.5556 1.0000 15.0000

Average

2500 0.9938 2.5359 0.9841 1.9150 0.6204 62.1327 0.8955 10.5049

5000 0.9969 2.6209 0.9652 1.9412 0.6863 81.7667 0.8281 12.1762

7500 1.0000 2.3007 0.9518 1.6601 0.7184 98.7705 0.8255 17.5621

10000 1.0000 2.5098 0.9423 1.9869 0.7407 107.5507 0.8067 19.1275

Log size
C2D2 TPCDD PD-T PD-E

𝐹𝑠𝑐𝑜𝑟𝑒 Δ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ
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APPENDIX B

GRADUAL DRIFT DETECTION:
SUPPLEMENTARY EXPERIMENTS

This appendix contains detailed results for the experiments of CRIER for the synthetic logs of
the Loan Application process.

B.1 Linear logs

. Table B.1 shows the results for the linear gradual changes with slopes of 0.1%, 0.2%, 0.5%,
and 1.0%.

Table B.1: 𝐹𝑠𝑐𝑜𝑟𝑒, Δ and Υ values for the logs with linear gradual changes. The colors highlight the
best performing approach for each metric.

cf

slope = 0.1% 0.8000 45.5000 79.86% 0.6207 477.1111 27.90% 0.8750 240.7143 66.28%

slope = 0.2% 1.0000 14.4444 90.93% 0.7826 100.4444 47.42% 0.3636 240.0000 9.00%

slope = 0.5% 1.0000 19.8889 78.67% 0.7273 219.1250 18.00% 0.0000 — 0.00%

slope = 1.0% 1.0000 15.3333 66.22% 0.3810 182.2500 10.11% 0.0000 — 0.00%

CRIER Martjushev et al. ProDrift

𝐹𝑠𝑐𝑜𝑟𝑒 Δ Υ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ Υ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ Υ
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Table B.1: 𝐹𝑠𝑐𝑜𝑟𝑒, Δ and Υ values for the logs with linear gradual changes. The colors highlight the
best performing approach for each metric. (Continued)

cp

slope = 0.1% 0.7619 42.7500 79.23% 0.7200 364.5556 29.44% 0.8750 245.4286 64.96%

slope = 0.2% 1.0000 24.7778 87.29% 0.8000 137.7500 41.80% 0.7143 235.7500 24.42%

slope = 0.5% 1.0000 18.1111 77.94% 0.7368 243.2857 30.44% 0.0000 — 0.00%

slope = 1.0% 1.0000 11.2222 70.33% 0.4444 280.7500 8.89% 0.0000 — 0.00%

pm

slope = 0.1% 0.3448 105.6000 43.72% 0.5000 283.3333 15.09% 0.8750 216.2857 68.73%

slope = 0.2% 0.8000 38.3750 74.80% 0.6154 139.7500 25.84% 0.8235 203.1667 42.67%

slope = 0.5% 0.9474 27.6667 78.28% 0.5000 170.3333 29.78% 0.3333 406.5000 22.00%

slope = 1.0% 0.7368 15.4286 54.00% 0.0000 — 0.00% 0.5000 433.6667 22.44%

re

slope = 0.1% 0.8571 27.6667 82.39% 0.5806 337.7500 24.82% 0.4615 288.3333 20.26%

slope = 0.2% 1.0000 16.7778 88.20% 0.7500 157.1111 34.47% 0.0000 — 0.00%

slope = 0.5% 1.0000 10.3333 82.39% 0.4762 193.6000 16.78% 0.0000 — 0.00%

slope = 1.0% 1.0000 8.1111 68.78% 0.1905 41.0000 12.00% 0.0000 — 0.00%

rp

slope = 0.1% 0.5385 60.5714 56.50% 0.2000 881.0000 1.32% 0.8750 236.1429 63.11%

slope = 0.2% 0.9474 41.6667 81.89% 0.0000 — 0.00% 0.5000 243.3333 12.91%

slope = 0.5% 0.9474 12.5556 71.94% 0.0000 — 0.00% 0.0000 — 0.00%

slope = 1.0% 1.0000 12.0000 68.89% 0.0000 — 0.00% 0.0000 — 0.00%

sw

slope = 0.1% 0.7273 54.0000 79.32% 0.0000 — 0.00% 0.0000 — 0.00%

slope = 0.2% 1.0000 21.1111 86.33% 0.0000 — 0.00% 0.0000 — 0.00%

slope = 0.5% 1.0000 13.3333 81.00% 0.0000 — 0.00% 0.0000 — 0.00%

slope = 1.0% 1.0000 10.1111 66.44% 0.0000 — 0.00% 0.0000 — 0.00%

OIR

slope = 0.1% 0.6087 45.4286 70.71% 0.5455 474.1111 26.09% 0.0000 — 0.00%

slope = 0.2% 0.6364 14.7143 70.18% 0.6667 173.1250 37.71% 0.0000 — 0.00%

slope = 0.5% 1.0000 8.2222 90.56% 0.6957 186.1250 13.44% 0.0000 — 0.00%

slope = 1.0% 1.0000 11.6667 80.56% 0.5600 60.8571 27.00% 0.0000 — 0.00%

CRIER Martjushev et al. ProDrift

𝐹𝑠𝑐𝑜𝑟𝑒 Δ Υ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ Υ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ Υ
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Table B.1: 𝐹𝑠𝑐𝑜𝑟𝑒, Δ and Υ values for the logs with linear gradual changes. The colors highlight the
best performing approach for each metric. (Continued)

ORI

slope = 0.1% 0.4444 81.5000 56.19% 0.5000 435.8889 26.08% 0.8750 325.1429 54.56%

slope = 0.2% 0.7619 27.6250 77.40% 0.5385 208.7143 22.62% 0.3636 341.5000 3.36%

slope = 0.5% 0.9474 34.4444 73.94% 0.6087 209.1429 17.00% 0.0000 — 0.00%

slope = 1.0% 1.0000 11.4444 68.67% 0.4348 31.4000 29.44% 0.0000 — 0.00%

RIO

slope = 0.1% 0.6364 80.2857 67.39% 0.3636 209.5000 10.09% 0.8750 216.5714 69.41%

slope = 0.2% 1.0000 36.7778 83.76% 0.2000 79.0000 7.58% 0.9412 196.8571 56.84%

slope = 0.5% 1.0000 27.6667 78.22% 0.2000 32.0000 11.11% 0.0000 — 0.00%

slope = 1.0% 1.0000 17.2222 70.78% 0.5000 145.0000 33.33% 0.0000 — 0.00%

ROI

slope = 0.1% 0.7619 31.3750 81.29% 0.8421 287.0000 26.34% 0.0000 — 0.00%

slope = 0.2% 1.0000 13.7778 92.36% 0.7368 194.7143 34.51% 0.0000 — 0.00%

slope = 0.5% 0.9000 9.0000 82.28% 0.9412 247.3750 46.28% 0.0000 — 0.00%

slope = 1.0% 1.0000 7.3333 81.00% 0.3333 223.6667 22.89% 0.0000 — 0.00%

Average

slope = 0.1% 0.6481 57.4677 69.66% 0.4873 416.6944 17.70% 0.5712 252.6599 37.89%

slope = 0.2% 0.9146 25.0048 83.31% 0.5090 148.8261 22.73% 0.3706 243.4345 15.58%

slope = 0.5% 0.9742 18.1222 79.52% 0.4886 187.6234 18.31% 0.0333 406.5000 2.22%

slope = 1.0% 0.9737 11.9873 69.57% 0.2844 137.8463 14.84% 0.0500 433.6667 2.24%

CRIER Martjushev et al. ProDrift

𝐹𝑠𝑐𝑜𝑟𝑒 Δ Υ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ Υ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ Υ

B.2 Gaussian logs

. Table B.2 shows the results for the detection of gradual changes in logs that follow two
Gaussian distributions.
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Table B.2: 𝐹𝑠𝑐𝑜𝑟𝑒, Δ and Υ values for the logs with Gaussian gradual changes. The colors highlight
the best performing approach for each metric.

cf
𝜇 = 20 𝜎2 = 10 0.9412 10.8750 61.22% 0.2727 25.6667 20.92%

𝜇 = 50 𝜎2 = 30 1.0000 9.7778 70.78% 0.5000 255.6000 6.84%

cp
𝜇 = 20 𝜎2 = 10 1.0000 8.2222 67.97% 0.2105 170.0000 0.44%

𝜇 = 50 𝜎2 = 30 1.0000 8.6667 63.33% 0.7368 283.0000 18.80%

pm
𝜇 = 20 𝜎2 = 10 1.0000 10.6667 55.56% 0.3636 168.5000 22.22%

𝜇 = 50 𝜎2 = 30 1.0000 14.8889 66.36% 0.6154 94.2500 44.44%

re
𝜇 = 20 𝜎2 = 10 1.0000 6.4444 63.40% 0.2000 55.5000 12.42%

𝜇 = 50 𝜎2 = 30 1.0000 10.0000 62.94% 0.4000 176.0000 9.25%

rp
𝜇 = 20 𝜎2 = 10 1.0000 7.1111 64.49% 0.0000 — 0.00%

𝜇 = 50 𝜎2 = 30 1.0000 9.8889 60.22% 0.0000 — 0.00%

sw
𝜇 = 20 𝜎2 = 10 1.0000 12.2222 63.83% 0.0000 — 0.00%

𝜇 = 50 𝜎2 = 30 0.9474 8.1111 59.75% 0.0000 — 0.00%

OIR
𝜇 = 20 𝜎2 = 10 1.0000 6.4444 64.05% 0.5000 5.3333 61.44%

𝜇 = 50 𝜎2 = 30 1.0000 25.6667 61.93% 0.5000 72.6667 26.34%

ORI
𝜇 = 20 𝜎2 = 10 1.0000 8.6667 62.31% 0.2727 11.6667 29.85%

𝜇 = 50 𝜎2 = 30 1.0000 6.1429 47.40% 0.6087 141.7143 20.44%

RIO
𝜇 = 20 𝜎2 = 10 0.9412 10.3750 60.57% 0.0000 — 0.00%

𝜇 = 50 𝜎2 = 30 1.0000 15.4444 64.34% 0.3636 13.0000 21.13%

ROI
𝜇 = 20 𝜎2 = 10 1.0000 6.7778 69.28% 0.4444 253.5000 17.86%

𝜇 = 50 𝜎2 = 30 0.9000 7.3333 68.07% 0.8421 254.5000 36.52%

Average
𝜇 = 20 𝜎2 = 10 0.9882 8.7806 63.50% 0.2264 98.5952 16.03%

𝜇 = 50 𝜎2 = 30 0.9847 11.5921 61.59% 0.4567 161.3414 19.66%

CRIER Martjushev et al.

𝐹𝑠𝑐𝑜𝑟𝑒 Δ Υ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ Υ

B.3 Exponential logs

. Table B.3 shows the results for the detection of gradual changes in logs that follow three
exponential distributions with 𝜆 set to 0.05, 0.1, and 0.5.
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Table B.3: 𝐹𝑠𝑐𝑜𝑟𝑒, Δ and Υ values for the logs with exponential gradual changes. The colors
highlight the best performing approach for each metric.

cf

𝜆 = 0.05 0.5000 6.0000 23.02% 0.3333 205.2500 11.99%

𝜆 = 0.10 1.0000 5.2222 60.00% 0.2857 38.6667 11.43%

𝜆 = 0.50 0.3636 2.0000 19.05% 0.2857 9.0000 33.33%

cp

𝜆 = 0.05 0.4615 8.8333 12.39% 0.5000 297.8000 15.83%

𝜆 = 0.10 0.9412 6.3750 53.81% 0.2222 300.5000 6.51%

𝜆 = 0.50 0.3636 3.0000 17.46% 0.1111 285.0000 0.79%

pm

𝜆 = 0.05 0.4167 9.8000 25.82% 0.2000 166.0000 11.11%

𝜆 = 0.10 1.0000 8.7778 49.68% 0.2000 217.0000 11.11%

𝜆 = 0.50 0.2000 3.0000 8.73% 0.0000 — 0.00%

re

𝜆 = 0.05 0.6364 7.4286 34.69% 0.5000 92.6667 22.14%

𝜆 = 0.10 1.0000 3.7778 57.46% 0.4348 47.6000 17.14%

𝜆 = 0.50 0.7143 2.8000 44.44% 0.1905 7.5000 11.11%

rp

𝜆 = 0.05 0.4800 8.3333 17.43% 0.0000 — 0.00%

𝜆 = 0.10 0.9412 4.2500 52.70% 0.0000 — 0.00%

𝜆 = 0.50 0.0000 — 0.00% 0.0000 — 0.00%

sw

𝜆 = 0.05 0.2963 11.5000 15.51% 0.0000 — 0.00%

𝜆 = 0.10 0.7000 5.7143 38.73% 0.0000 — 0.00%

𝜆 = 0.50 0.8000 3.3333 50.79% 0.0000 — 0.00%

OIR

𝜆 = 0.05 1.0000 5.2222 69.06% 0.6154 50.3750 41.25%

𝜆 = 0.10 1.0000 3.7778 60.48% 0.6667 20.8889 61.27%

𝜆 = 0.50 0.6154 2.5000 36.51% 0.6667 13.1111 99.21%

ORI

𝜆 = 0.05 0.5000 9.8333 29.42% 0.5600 52.0000 29.58%

𝜆 = 0.10 0.6000 6.5000 35.40% 0.5000 22.1429 53.02%

𝜆 = 0.50 0.3636 2.5000 18.25% 0.4167 11.2000 49.21%

RIO

𝜆 = 0.05 0.8000 12.1250 46.44% 0.2000 160.0000 11.11%

𝜆 = 0.10 0.9412 8.1250 56.67% 0.2000 233.0000 11.11%

𝜆 = 0.50 0.3636 3.5000 16.67% 0.2000 192.0000 11.11%

CRIER Martjushev et al.

𝐹𝑠𝑐𝑜𝑟𝑒 Δ Υ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ Υ
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Table B.3: 𝐹𝑠𝑐𝑜𝑟𝑒, Δ and Υ values for the logs with exponential gradual changes. The colors
highlight the best performing approach for each metric. (Continued)

ROI

𝜆 = 0.05 0.5000 6.6667 29.26% 0.7368 247.1429 25.34%

𝜆 = 0.10 0.8750 4.4286 46.98% 0.5263 236.6000 38.10%

𝜆 = 0.50 0.8000 2.8333 53.17% 0.2222 251.5000 22.22%

Average

𝜆 = 0.05 0.5591 8.5742 31.11% 0.3646 158.9043 17.37%

𝜆 = 0.10 0.8999 5.6948 50.21% 0.3036 139.5498 22.03%

𝜆 = 0.50 0.4584 2.8296 27.34% 0.2093 109.9016 21.52%

CRIER Martjushev et al.

𝐹𝑠𝑐𝑜𝑟𝑒 Δ Υ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ Υ

B.4 Constant logs

. Table B.4 shows the results for the detection of gradual changes in logs that follow three
different constant distributions.

Table B.4: 𝐹𝑠𝑐𝑜𝑟𝑒, Δ and Υ values for the logs with constant gradual changes. The colors highlight
the best performing approach for each metric.

cf

𝑝 = 0.5 𝑛 = 100 1.0000 5.4444 84.33% 0.3158 230.0000 2.22%

𝑝 = 0.5 𝑛 = 200 1.0000 6.2222 93.00% 0.7273 172.5000 26.06%

𝑝 = 0.5 𝑛 = 500 1.0000 6.2222 97.36% 0.9474 127.2222 46.69%

cp

𝑝 = 0.5 𝑛 = 100 1.0000 5.6667 84.33% 1.0000 263.5556 30.44%

𝑝 = 0.5 𝑛 = 200 1.0000 5.1111 92.22% 0.8889 287.7500 28.72%

𝑝 = 0.5 𝑛 = 500 1.0000 4.8889 96.56% 1.0000 125.7778 53.64%

pm

𝑝 = 0.5 𝑛 = 100 1.0000 4.5556 86.44% 0.0000 — 0.00%

𝑝 = 0.5 𝑛 = 200 1.0000 4.4444 94.72% 0.0000 — 0.00%

𝑝 = 0.5 𝑛 = 500 1.0000 6.6667 97.67% 0.6154 81.7500 37.73%

CRIER Martjushev et al.

𝐹𝑠𝑐𝑜𝑟𝑒 Δ Υ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ Υ
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Table B.4: 𝐹𝑠𝑐𝑜𝑟𝑒, Δ and Υ values for the logs with constant gradual changes. The colors highlight
the best performing approach for each metric. (Continued)

re

𝑝 = 0.5 𝑛 = 100 1.0000 3.2222 84.22% 0.1053 93.0000 0.78%

𝑝 = 0.5 𝑛 = 200 1.0000 3.5556 93.39% 0.5714 230.1667 17.33%

𝑝 = 0.5 𝑛 = 500 1.0000 3.0000 96.49% 0.7273 213.7500 37.71%

rp

𝑝 = 0.5 𝑛 = 100 1.0000 17.1111 63.11% 0.0000 — 0.00%

𝑝 = 0.5 𝑛 = 200 1.0000 5.2222 90.94% 0.0000 — 0.00%

𝑝 = 0.5 𝑛 = 500 1.0000 5.8889 96.89% 0.0000 — 0.00%

sw

𝑝 = 0.5 𝑛 = 100 1.0000 4.6667 87.33% 0.0000 — 0.00%

𝑝 = 0.5 𝑛 = 200 1.0000 4.2222 94.44% 0.0000 — 0.00%

𝑝 = 0.5 𝑛 = 500 1.0000 6.8889 96.29% 0.0000 — 0.00%

OIR

𝑝 = 0.5 𝑛 = 100 1.0000 2.7778 89.22% 0.6154 39.7500 49.44%

𝑝 = 0.5 𝑛 = 200 1.0000 3.0000 95.06% 0.5455 191.8333 19.22%

𝑝 = 0.5 𝑛 = 500 1.0000 3.1111 96.73% 0.8571 198.7778 38.87%

ORI

𝑝 = 0.5 𝑛 = 100 1.0000 5.4444 86.56% 0.4545 88.6000 25.89%

𝑝 = 0.5 𝑛 = 200 1.0000 3.5556 96.06% 0.8571 232.5556 19.61%

𝑝 = 0.5 𝑛 = 500 1.0000 3.8889 97.24% 0.6667 256.4444 40.60%

RIO

𝑝 = 0.5 𝑛 = 100 1.0000 12.1111 83.67% 0.0000 — 0.00%

𝑝 = 0.5 𝑛 = 200 1.0000 10.0000 93.11% 0.5000 171.6667 33.06%

𝑝 = 0.5 𝑛 = 500 1.0000 9.8889 97.40% 0.3636 21.0000 20.22%

ROI

𝑝 = 0.5 𝑛 = 100 1.0000 3.3333 90.89% 0.8421 245.5714 42.22%

𝑝 = 0.5 𝑛 = 200 1.0000 3.0000 96.33% 1.0000 254.4444 44.94%

𝑝 = 0.5 𝑛 = 500 1.0000 3.3333 98.36% 0.9474 153.3333 54.98%

Average

𝑝 = 0.5 𝑛 = 100 1.0000 6.4333 83.98% 0.3333 160.0795 16.53%

𝑝 = 0.5 𝑛 = 200 1.0000 4.8333 94.03% 0.5090 220.1310 18.10%

𝑝 = 0.5 𝑛 = 500 1.0000 5.3778 97.07% 0.6125 147.2569 33.04%

CRIER Martjushev et al.

𝐹𝑠𝑐𝑜𝑟𝑒 Δ Υ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ Υ
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APPENDIX C

ROBUST DRIFT DETECTION: SUPPLEMENTARY

EXPERIMENTS

This appendix contains detailed results for the experiments of R-CRIER in noisy environments
for the synthetic logs of the Loan Application process.

C.1 Sudden changes

Tables C.1 to C.4 contains detailed 𝐹𝑠𝑐𝑜𝑟𝑒 and Δ values for both R-CRIER, TPCDD and
ProDrift for the noisy synthetic logs from the Loan Application process with sudden changes.
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Table C.1: 𝐹𝑠𝑐𝑜𝑟𝑒 and Δ values for the noisy logs with sudden changes and 2,500 traces. The colors
highlight the best performing approach for each metric.

cb

0% 1.0000 7.0000 1.0000 88.8889 1.0000 5.5000

5% 0.9412 19.3750 0.9412 100.3750 0.6667 10.8889

10% 0.9474 16.5556 0.6667 94.6000 0.6667 17.6667

15% 1.0000 32.8889 0.5000 108.0000 0.6667 22.5556

20% 0.6667 26.0000 0.5000 108.0000 0.6667 24.4444

25% 0.7778 12.1429 0.4615 91.6667 0.6429 26.8889

cd

0% 1.0000 2.4444 0.0000 — 1.0000 1.6667

5% 1.0000 17.1111 0.0000 — 0.6667 35.2222

10% 0.7500 29.5000 0.0000 — 0.6667 25.1111

15% 0.8750 27.5714 0.0000 — 0.6667 33.4444

20% 0.8889 48.5000 0.0000 — 0.6923 32.2222

25% 0.6667 32.2000 0.0000 — 0.6667 29.7778

cf

0% 1.0000 2.6667 1.0000 44.2222 1.0000 1.8144

5% 1.0000 10.4444 1.0000 66.5556 0.6429 26.3333

10% 1.0000 18.3333 0.9474 54.8889 0.6667 20.3333

15% 1.0000 9.7778 1.0000 55.7778 0.7200 31.3333

20% 0.9474 22.5556 1.0000 55.7778 0.6667 35.2222

25% 0.8571 17.8889 1.0000 65.4444 0.6923 31.5556

cm

0% 1.0000 4.6667 1.0000 91.8889 1.0000 4.1111

5% 0.9474 9.0000 0.8750 82.7143 0.6667 33.7778

10% 0.7778 16.1429 0.8000 104.8333 0.6667 16.4444

15% 1.0000 9.8889 0.4615 109.3333 0.6923 27.6667

20% 0.5882 29.8000 0.4615 109.3333 0.7200 37.2222

25% 0.9474 24.5556 0.3636 103.0000 0.6429 16.0000

noise
R-CRIER ProDrift TPCDD

𝐹𝑠𝑐𝑜𝑟𝑒 Δ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ
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Table C.1: 𝐹𝑠𝑐𝑜𝑟𝑒 and Δ values for the noisy logs with sudden changes and 2,500 traces. The colors
highlight the best performing approach for each metric. (Continued)

cp

0% 1.0000 19.1111 1.0000 93.0000 1.0000 1.5389

5% 0.9474 18.1111 1.0000 47.4444 0.6667 7.1111

10% 0.9474 18.1111 1.0000 60.8889 0.6429 9.1111

15% 0.9474 11.8889 0.6667 102.0000 0.6667 25.0000

20% 0.9000 16.8889 0.7368 109.8571 0.6923 19.2222

25% 0.9000 21.7778 1.0000 75.6667 0.6429 11.1111

lp

0% 1.0000 6.0000 0.8750 79.4286 1.0000 4.7778

5% 0.8889 22.2500 0.3636 91.5000 0.6923 35.6667

10% 0.9474 11.3333 0.2000 68.0000 0.6667 20.1111

15% 0.9474 32.2222 0.0000 — 0.6923 42.7778

20% 0.8571 29.7778 0.0000 — 0.6429 29.0000

25% 0.8421 34.2500 0.0000 — 0.7200 35.6667

pl

0% 1.0000 3.8889 0.0000 — 1.0000 2.4444

5% 1.0000 15.5556 0.0000 — 0.6667 22.1111

10% 1.0000 16.1111 0.0000 — 0.6667 25.5556

15% 0.8571 15.3333 0.0000 — 0.6429 20.5556

20% 1.0000 25.7778 0.0000 — 0.6923 27.1111

25% 0.8889 29.0000 0.0000 — 0.6923 36.4444

pm

0% 1.0000 4.5556 1.0000 64.6667 1.0000 2.8333

5% 1.0000 23.3333 1.0000 84.8889 0.7200 27.1111

10% 1.0000 18.3333 0.8750 91.2857 0.6923 22.7778

15% 1.0000 22.3333 0.3636 52.0000 0.6923 36.1111

20% 0.9000 30.7778 0.3636 52.0000 0.6923 22.5556

25% 0.9000 13.5556 0.6154 91.0000 0.6923 26.7778

noise
R-CRIER ProDrift TPCDD

𝐹𝑠𝑐𝑜𝑟𝑒 Δ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ
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Table C.1: 𝐹𝑠𝑐𝑜𝑟𝑒 and Δ values for the noisy logs with sudden changes and 2,500 traces. The colors
highlight the best performing approach for each metric. (Continued)

re

0% 1.0000 2.0000 1.0000 68.1111 1.0000 1.4022

5% 1.0000 12.5556 1.0000 80.8889 0.6667 9.3333

10% 0.9474 5.0000 0.8235 82.4286 0.6429 6.6667

15% 0.9474 9.5556 0.5556 73.4000 0.6429 8.8889

20% 1.0000 17.3333 0.7778 85.1429 0.6429 7.5556

25% 0.9000 19.8889 1.0000 40.2222 0.6667 12.1111

rp

0% 1.0000 2.3333 0.0000 — 1.0000 1.1422

5% 0.9474 12.2222 1.0000 63.6667 0.6667 1.1111

10% 0.9474 11.2222 1.0000 69.1111 0.6429 2.8889

15% 0.9474 17.5556 1.0000 79.1111 0.6429 6.2222

20% 0.9474 16.0000 1.0000 79.1111 0.6429 10.3333

25% 0.9474 20.5556 1.0000 95.3333 0.6429 6.7778

sw

0% 1.0000 3.0000 1.0000 79.5556 1.0000 0.6444

5% 1.0000 11.7778 0.0000 — 0.7500 8.5556

10% 1.0000 12.8889 0.0000 — 0.7200 17.1111

15% 0.8571 19.7778 0.0000 — 0.6429 2.4444

20% 0.9474 24.0000 0.0000 — 0.6667 9.5556

25% 0.8182 34.3333 0.0000 — 0.6667 17.1111

IOR

0% 1.0000 3.0000 1.0000 42.2222 1.0000 3.4256

5% 0.7778 17.0000 1.0000 48.8889 0.6429 4.7778

10% 0.9474 17.2222 1.0000 51.2222 0.7500 32.6667

15% 0.9474 25.3333 1.0000 63.5556 0.6429 13.3333

20% 1.0000 26.4444 1.0000 63.5556 0.6923 35.8889

25% 0.8235 27.7143 1.0000 78.8889 0.6667 31.0000

noise
R-CRIER ProDrift TPCDD

𝐹𝑠𝑐𝑜𝑟𝑒 Δ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ

Continues on next page

120



Appendix C. Robust drift detection: supplementary experiments

Table C.1: 𝐹𝑠𝑐𝑜𝑟𝑒 and Δ values for the noisy logs with sudden changes and 2,500 traces. The colors
highlight the best performing approach for each metric. (Continued)

IRO

0% 1.0000 6.4444 0.8750 97.4286 1.0000 5.9756

5% 1.0000 4.6667 0.6154 68.7500 0.6667 2.8889

10% 0.9000 14.1111 0.2000 108.0000 0.6429 2.7778

15% 0.9474 14.2222 0.3636 103.5000 0.6667 3.7778

20% 0.8571 20.2222 0.3636 103.5000 0.6429 9.8889

25% 0.9474 23.4444 0.6154 82.2500 0.6923 21.5556

OIR

0% 1.0000 2.0000 0.2000 53.0000 1.0000 1.7667

5% 1.0000 12.6667 0.2000 72.0000 0.6667 2.0000

10% 1.0000 14.1111 0.2000 81.0000 0.6923 10.2222

15% 0.9474 8.8889 0.2000 80.0000 0.6429 6.0000

20% 0.8182 22.0000 0.2000 80.0000 0.6667 7.8889

25% 0.9000 15.4444 0.2000 124.0000 0.6667 22.5556

ORI

0% 1.0000 2.7778 0.8889 81.8750 1.0000 1.3300

5% 1.0000 12.3333 1.0000 71.8889 0.6923 28.8889

10% 1.0000 15.7778 0.8750 114.1429 0.6667 16.6667

15% 0.9000 29.0000 1.0000 91.3333 0.6667 12.2222

20% 1.0000 22.3333 0.8889 82.3750 0.6667 18.2222

25% 0.9000 30.8889 0.9412 87.3750 0.6923 19.1111

RIO

0% 1.0000 5.8889 1.0000 64.8889 1.0000 2.8522

5% 1.0000 20.7778 1.0000 87.1111 0.7200 32.0000

10% 1.0000 17.5556 0.9412 78.1250 0.6667 24.1111

15% 1.0000 22.2222 0.0000 — 0.6429 15.0000

20% 0.8182 13.8889 0.0000 — 0.6667 21.2222

25% 0.8571 24.8889 0.5000 75.0000 0.6923 25.7778

noise
R-CRIER ProDrift TPCDD

𝐹𝑠𝑐𝑜𝑟𝑒 Δ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ
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Table C.1: 𝐹𝑠𝑐𝑜𝑟𝑒 and Δ values for the noisy logs with sudden changes and 2,500 traces. The colors
highlight the best performing approach for each metric. (Continued)

ROI

0% 1.0000 2.0000 0.2000 47.0000 1.0000 1.6389

5% 0.9474 8.8889 0.2000 31.0000 0.6667 1.1111

10% 0.9474 12.2222 0.2000 34.0000 0.6429 7.6667

15% 1.0000 10.4444 0.2000 48.0000 0.6429 3.7778

20% 0.9474 11.5556 0.2000 48.0000 0.6667 14.7778

25% 0.9000 15.3333 0.5000 39.6667 0.6429 10.0000

Average

0% 1.0000 4.6928 0.7082 71.1555 1.0000 2.6391

5% 0.9645 14.5923 0.6585 73.4256 0.6781 16.9935

10% 0.9447 15.5607 0.5723 78.0376 0.6707 16.3464

15% 0.9483 18.7591 0.4301 80.5009 0.6631 18.3007

20% 0.8873 23.7562 0.4407 81.3877 0.6717 21.3137

25% 0.8690 23.4037 0.5410 80.7318 0.6719 22.3660

noise
R-CRIER ProDrift TPCDD

𝐹𝑠𝑐𝑜𝑟𝑒 Δ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ

Table C.2: 𝐹𝑠𝑐𝑜𝑟𝑒 and Δ values for the noisy logs with sudden changes and 5,000 traces. The colors
highlight the best performing approach for each metric.

cb

0% 1.0000 6.5556 1.0000 89.7778 1.0000 6.3333

5% 0.7778 19.2857 1.0000 123.3333 0.4091 19.3909

10% 0.8182 19.4444 0.7143 106.4000 0.4000 34.7043

15% 0.7000 32.2857 0.8000 112.8333 0.4000 20.9827

20% 0.7368 38.0000 0.6154 107.5000 0.4000 36.6807

25% 0.7500 64.0000 0.4615 114.6667 0.4091 17.0574

noise
R-CRIER ProDrift TPCDD

𝐹𝑠𝑐𝑜𝑟𝑒 Δ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ
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Appendix C. Robust drift detection: supplementary experiments

Table C.2: 𝐹𝑠𝑐𝑜𝑟𝑒 and Δ values for the noisy logs with sudden changes and 5,000 traces. The colors
highlight the best performing approach for each metric. (Continued)

cd

0% 1.0000 4.0000 0.2000 35.0000 1.0000 3.4444

5% 0.8235 100.8571 0.0000 — 0.4186 8.5867

10% 0.8000 78.1667 0.0000 — 0.4000 42.1280

15% 0.7619 100.7500 0.0000 — 0.4000 11.3823

20% 0.8750 88.5714 0.0000 — 0.4091 38.2040

25% 0.9474 66.0000 0.0000 — 0.4000 31.8304

cf

0% 1.0000 3.1111 1.0000 27.3333 1.0000 1.8889

5% 0.9000 25.8889 1.0000 49.5556 0.4286 31.3845

10% 0.9000 27.1111 1.0000 55.2222 0.4000 22.2813

15% 0.9000 37.0000 1.0000 58.7778 0.3913 38.1599

20% 0.9474 32.1111 1.0000 55.8889 0.4000 32.1212

25% 0.8571 37.2222 1.0000 67.4444 0.4000 35.8909

cm

0% 1.0000 3.3333 1.0000 100.8889 1.0000 3.0000

5% 0.9474 8.7778 0.8750 83.4286 0.4500 24.7328

10% 0.9412 62.7500 0.8000 83.8333 0.4000 21.7410

15% 0.9000 26.8889 0.3636 78.0000 0.3830 31.4465

20% 0.8571 33.6667 0.8000 122.6667 0.3913 21.0458

25% 0.7778 96.8571 0.6154 135.7500 0.3913 28.3641

cp

0% 1.0000 10.8889 1.0000 42.7778 1.0000 0.2222

5% 0.9000 39.8889 1.0000 50.3333 0.4091 8.8944

10% 0.9000 29.1111 1.0000 67.1111 0.3830 11.9042

15% 0.9474 14.5556 1.0000 73.2222 0.3830 10.8303

20% 0.9474 34.1111 1.0000 64.3333 0.4000 17.6037

25% 0.8182 23.7778 1.0000 71.4444 0.3913 23.5484

noise
R-CRIER ProDrift TPCDD

𝐹𝑠𝑐𝑜𝑟𝑒 Δ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ
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Table C.2: 𝐹𝑠𝑐𝑜𝑟𝑒 and Δ values for the noisy logs with sudden changes and 5,000 traces. The colors
highlight the best performing approach for each metric. (Continued)

lp

0% 1.0000 3.5556 0.9412 138.8750 1.0000 3.2222

5% 0.8421 27.1250 0.3636 140.0000 0.3830 26.4722

10% 0.9000 86.4444 0.6154 156.7500 0.4186 18.6000

15% 0.5000 41.6000 0.7143 196.6000 0.4000 38.6176

20% 0.7778 56.1429 0.3636 156.0000 0.3750 25.2535

25% 0.8000 48.8750 0.0000 — 0.4091 20.8062

pl

0% 1.0000 3.4444 0.0000 — 1.0000 1.7778

5% 1.0000 14.3333 0.0000 — 0.4091 10.2597

10% 0.9412 37.6250 0.0000 — 0.4000 28.7797

15% 0.8421 53.7500 0.0000 — 0.3830 27.5422

20% 0.8235 79.1429 0.0000 — 0.4091 21.6884

25% 0.9000 40.0000 0.0000 — 0.4000 21.9813

pm

0% 1.0000 4.7778 1.0000 72.4444 1.0000 2.6667

5% 0.9474 19.6667 1.0000 71.4444 0.4186 9.4582

10% 0.8571 44.6667 0.8750 85.7143 0.4186 27.0820

15% 0.9474 43.6667 1.0000 92.2222 0.3830 15.7826

20% 0.9000 34.1111 0.6667 94.2000 0.3913 20.1576

25% 0.8571 54.5556 0.8000 — 0.4000 28.1921

re

0% 1.0000 2.0000 1.0000 24.1111 1.0000 1.0000

5% 1.0000 13.0000 1.0000 29.6667 0.4091 1.8593

10% 1.0000 19.1111 1.0000 32.6667 0.4091 5.1811

15% 0.9474 16.1111 1.0000 35.6667 0.3913 3.9598

20% 0.7273 42.3750 1.0000 44.3333 0.3913 10.0977

25% 0.9000 12.7778 0.9474 45.6667 0.4000 17.2620

noise
R-CRIER ProDrift TPCDD

𝐹𝑠𝑐𝑜𝑟𝑒 Δ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ
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Appendix C. Robust drift detection: supplementary experiments

Table C.2: 𝐹𝑠𝑐𝑜𝑟𝑒 and Δ values for the noisy logs with sudden changes and 5,000 traces. The colors
highlight the best performing approach for each metric. (Continued)

rp

0% 1.0000 3.0000 1.0000 49.7778 1.0000 1.2222

5% 1.0000 22.2222 1.0000 47.2222 0.4000 1.9114

10% 0.9000 26.0000 1.0000 64.7778 0.3913 2.3504

15% 0.9474 21.3333 1.0000 65.1111 0.4091 13.5048

20% 0.9474 13.6667 1.0000 81.0000 0.3913 11.3058

25% 0.9000 37.7778 1.0000 78.3333 0.4091 18.7171

sw

0% 1.0000 3.3333 0.0000 — 1.0000 1.1111

5% 0.9474 31.2222 0.0000 — 0.4286 1.5345

10% 1.0000 40.4444 0.0000 — 0.4000 8.4148

15% 1.0000 18.5556 0.0000 — 0.4091 4.8741

20% 0.9000 13.7778 0.0000 — 0.3913 16.7083

25% 0.8571 29.0000 0.0000 — 0.4000 14.8202

IOR

0% 1.0000 2.5556 1.0000 39.5556 0.9474 2.2222

5% 0.6667 59.0000 1.0000 43.1111 0.4000 10.2518

10% 0.8571 44.5556 1.0000 48.5556 0.4286 28.5823

15% 0.9474 34.1111 1.0000 56.1111 0.3830 29.1555

20% 0.7778 49.7143 1.0000 66.5556 0.4000 12.0098

25% 0.8421 34.8750 1.0000 51.2222 0.4000 24.9939

IRO

0% 1.0000 3.1111 1.0000 94.0000 1.0000 2.2222

5% 0.9474 41.3333 0.6667 158.0000 0.4000 4.3951

10% 0.9000 45.3333 0.8750 103.8571 0.3830 3.4499

15% 0.8571 30.7778 0.9412 162.8750 0.4186 2.8403

20% 0.7826 45.0000 0.3636 161.5000 0.4091 9.9153

25% 0.8182 20.3333 0.7143 186.4000 0.4091 19.1576

noise
R-CRIER ProDrift TPCDD

𝐹𝑠𝑐𝑜𝑟𝑒 Δ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ
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Table C.2: 𝐹𝑠𝑐𝑜𝑟𝑒 and Δ values for the noisy logs with sudden changes and 5,000 traces. The colors
highlight the best performing approach for each metric. (Continued)

OIR

0% 1.0000 2.0000 0.6667 137.1667 1.0000 0.8889

5% 0.9474 23.6667 0.2000 70.0000 0.4186 1.3596

10% 0.8571 29.0000 0.5000 89.3333 0.4000 4.0219

15% 0.8571 44.7778 0.2000 110.0000 0.4091 8.7524

20% 0.8182 59.3333 0.5000 75.3333 0.4000 7.8352

25% 0.8571 45.5556 0.2000 109.0000 0.4000 16.8035

ORI

0% 1.0000 2.8889 1.0000 48.7778 1.0000 0.5556

5% 0.9474 29.8889 1.0000 67.0000 0.4186 15.0535

10% 0.8571 33.5556 1.0000 58.1111 0.3830 29.5866

15% 1.0000 36.3333 1.0000 79.2222 0.4000 16.1291

20% 0.9474 35.2222 1.0000 90.4444 0.3913 14.6346

25% 0.7826 35.1111 1.0000 77.1111 0.4000 14.9716

RIO

0% 1.0000 4.6667 1.0000 58.1111 1.0000 1.2222

5% 1.0000 30.6667 1.0000 82.2222 0.4091 24.2738

10% 0.8571 34.1111 0.9412 72.8750 0.3750 13.4123

15% 0.9000 42.4444 0.8000 83.1667 0.4186 13.5766

20% 0.9000 52.7778 0.8750 102.7143 0.4000 26.1103

25% 0.8421 86.1250 0.7143 130.4000 0.4000 28.8601

ROI

0% 1.0000 2.0000 0.8421 149.3750 1.0000 1.7778

5% 1.0000 13.6667 0.8235 153.2857 0.4186 2.2709

10% 0.9000 21.8889 1.0000 123.0000 0.4091 1.2802

15% 0.8571 30.2222 1.0000 113.7778 0.3913 12.7434

20% 0.8571 34.8889 1.0000 173.6667 0.4000 15.5155

25% 0.9000 59.8889 1.0000 147.4444 0.3913 6.7438

noise
R-CRIER ProDrift TPCDD

𝐹𝑠𝑐𝑜𝑟𝑒 Δ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ
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Appendix C. Robust drift detection: supplementary experiments

Table C.2: 𝐹𝑠𝑐𝑜𝑟𝑒 and Δ values for the noisy logs with sudden changes and 5,000 traces. The colors
highlight the best performing approach for each metric. (Continued)

Average

0% 1.0000 3.8366 0.8029 73.8648 0.9969 2.0458

5% 0.9173 30.6171 0.7017 83.4717 0.4134 11.8876

10% 0.8933 39.9600 0.7248 82.0148 0.4000 17.8529

15% 0.8713 36.7743 0.6952 94.1133 0.3973 17.6635

20% 0.8543 43.6831 0.6579 99.7240 0.3971 19.8169

25% 0.8475 46.6313 0.6149 101.6962 0.4006 21.7647

noise
R-CRIER ProDrift TPCDD

𝐹𝑠𝑐𝑜𝑟𝑒 Δ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ

Table C.3: 𝐹𝑠𝑐𝑜𝑟𝑒 and Δ values for the noisy logs with sudden changes and 7,500 traces. The colors
highlight the best performing approach for each metric.

cb

0% 1.0000 6.5556 1.0000 80.1111 1.0000 5.6667

5% 1.0000 37.6667 0.8750 102.8571 0.3000 14.0355

10% 0.7778 50.0000 0.9412 128.3750 0.2727 33.3333

15% 0.8571 43.3333 0.6154 93.0000 0.2769 22.8889

20% 0.8182 89.5556 0.5000 100.3333 0.2903 38.1111

25% 0.8571 83.0000 0.6154 132.7500 0.2727 33.3333

cd

0% 1.0000 3.7778 0.0000 — 1.0000 3.2222

5% 1.0000 87.3333 0.0000 — 0.3103 21.7778

10% 0.5714 163.7500 0.0000 — 0.2951 7.4444

15% 0.6250 116.6000 0.0000 — 0.2813 25.1111

20% 0.7500 151.8333 0.0000 — 0.2727 26.5556

25% 0.3333 33.5000 0.0000 — 0.2687 33.0000

noise
R-CRIER ProDrift TPCDD

𝐹𝑠𝑐𝑜𝑟𝑒 Δ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ
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Table C.3: 𝐹𝑠𝑐𝑜𝑟𝑒 and Δ values for the noisy logs with sudden changes and 7,500 traces. The colors
highlight the best performing approach for each metric. (Continued)

cf

0% 1.0000 2.8889 1.0000 33.1111 1.0000 1.2222

5% 1.0000 28.3333 1.0000 48.4444 0.2951 28.8889

10% 0.9474 38.1111 1.0000 49.5556 0.2769 16.4444

15% 0.8182 78.6667 1.0000 55.0000 0.2687 46.7778

20% 1.0000 19.1111 1.0000 72.1111 0.2813 21.4444

25% 0.8571 83.1111 1.0000 58.6667 0.2857 16.7778

cm

0% 1.0000 5.1111 1.0000 88.4444 1.0000 3.8889

5% 0.9474 29.6667 0.9412 18.3750 0.2951 27.1111

10% 0.8421 51.2500 1.0000 136.1111 0.2647 23.0000

15% 0.9000 40.1111 0.7143 130.4000 0.2857 30.8889

20% 0.8571 92.6667 0.3636 96.0000 0.2535 25.1111

25% 0.8182 99.3333 0.2000 113.0000 0.2813 19.8889

cp

0% 1.0000 24.8889 1.0000 52.6667 1.0000 1.0000

5% 0.9474 84.5556 1.0000 52.7778 0.2903 2.8889

10% 0.8182 50.2222 1.0000 55.7778 0.2769 2.3333

15% 0.8571 29.1111 1.0000 61.0000 0.2813 28.4444

20% 0.8182 23.1111 1.0000 63.2222 0.2769 27.4444

25% 0.7500 71.2222 1.0000 78.2222 0.2857 16.6667

lp

0% 1.0000 3.7778 1.0000 475.6667 1.0000 3.2222

5% 0.9474 49.4444 0.2000 72.0000 0.2951 23.5556

10% 0.9474 61.2222 0.0000 — 0.2813 20.0000

15% 0.7368 76.4286 0.0000 56.3333 0.2769 36.6667

20% 0.7368 78.5714 0.0000 — 0.2813 34.8889

25% 0.8421 83.7500 0.0000 — 0.2857 39.0000

noise
R-CRIER ProDrift TPCDD

𝐹𝑠𝑐𝑜𝑟𝑒 Δ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ
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Appendix C. Robust drift detection: supplementary experiments

Table C.3: 𝐹𝑠𝑐𝑜𝑟𝑒 and Δ values for the noisy logs with sudden changes and 7,500 traces. The colors
highlight the best performing approach for each metric. (Continued)

pl

0% 1.0000 2.3333 0.0000 — 1.0000 2.1111

5% 0.7778 30.2857 0.0000 — 0.2903 2.1111

10% 0.6316 17.5000 0.0000 — 0.2857 14.8889

15% 0.8421 64.2500 0.2000 191.6667 0.2857 13.0000

20% 0.7778 119.1429 0.2000 334.0000 0.2769 24.1111

25% 0.7273 89.8750 0.0000 — 0.2769 38.5556

pm

0% 1.0000 3.1111 1.0000 74.6667 1.0000 10.0000

5% 0.9474 32.1111 0.9412 73.5000 0.2903 16.1111

10% 0.8182 68.6667 0.8750 79.2857 0.3000 10.2222

15% 0.8571 49.5556 0.7143 — 0.2687 16.3333

20% 0.8571 80.5556 0.3636 68.5000 0.2857 25.4444

25% 0.8182 112.3333 0.3636 75.5000 0.2951 22.7778

re

0% 1.0000 2.0000 1.0000 23.4444 1.0000 0.7778

5% 1.0000 22.0000 1.0000 32.6667 0.3051 3.5556

10% 1.0000 63.3333 1.0000 34.5556 0.2813 3.7778

15% 0.9000 15.2222 1.0000 196.4000 0.2813 10.0000

20% 0.9000 25.6667 1.0000 36.1111 0.2769 8.6667

25% 0.9000 41.7778 1.0000 48.3333 0.2857 22.6667

rp

0% 1.0000 2.4444 1.0000 44.0000 1.0000 0.8889

5% 1.0000 27.6667 1.0000 49.5556 0.3000 1.5556

10% 1.0000 19.7778 1.0000 55.2222 0.2857 2.3333

15% 1.0000 42.8889 1.0000 68.7778 0.2813 13.8889

20% 0.8571 43.5556 1.0000 69.6667 0.2813 17.5556

25% 0.8571 45.6667 1.0000 87.7778 0.2813 9.1111

noise
R-CRIER ProDrift TPCDD

𝐹𝑠𝑐𝑜𝑟𝑒 Δ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ
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Table C.3: 𝐹𝑠𝑐𝑜𝑟𝑒 and Δ values for the noisy logs with sudden changes and 7,500 traces. The colors
highlight the best performing approach for each metric. (Continued)

sw

0% 1.0000 2.8889 0.0000 — 1.0000 0.7778

5% 0.9474 38.8889 0.1818 22.0000 0.2903 0.7778

10% 1.0000 35.6667 0.0000 — 0.2903 3.0000

15% 0.8182 49.5556 0.0000 87.0000 0.2727 3.0000

20% 0.9000 50.0000 0.0000 — 0.2769 3.1111

25% 0.8571 45.5556 0.0000 — 0.2857 4.4444

IOR

0% 1.0000 2.5556 1.0000 43.0000 1.0000 2.6667

5% 0.9474 29.7778 1.0000 44.7778 0.2951 15.8889

10% 0.9000 9.3333 1.0000 60.6667 0.2903 27.0000

15% 0.9000 39.2222 1.0000 87.0000 0.2813 12.3333

20% 0.9000 42.0000 1.0000 51.7778 0.3000 11.1111

25% 0.8571 93.4444 1.0000 62.1111 0.2857 23.5556

IRO

0% 1.0000 4.2222 1.0000 84.7778 1.0000 3.0000

5% 0.9000 33.4444 1.0000 103.4444 0.2857 9.8889

10% 0.8571 46.6667 1.0000 167.5556 0.2857 9.0000

15% 0.9474 56.7778 1.0000 44.1111 0.2951 8.8889

20% 0.9000 72.8889 0.9412 177.0000 0.2769 5.3333

25% 0.9000 36.8889 0.5000 148.0000 0.2769 14.0000

OIR

0% 1.0000 2.0000 1.0000 118.0000 1.0000 1.5556

5% 0.9000 36.4444 0.5000 116.3333 0.2951 1.6667

10% 0.9000 35.7778 0.7143 190.2000 0.2857 9.0000

15% 0.8571 32.6667 0.7143 98.5000 0.2813 6.4444

20% 0.9474 78.6667 0.7143 223.8000 0.2769 7.6667

25% 0.8571 87.4444 0.7143 142.2000 0.2951 6.4444

noise
R-CRIER ProDrift TPCDD

𝐹𝑠𝑐𝑜𝑟𝑒 Δ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ
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Appendix C. Robust drift detection: supplementary experiments

Table C.3: 𝐹𝑠𝑐𝑜𝑟𝑒 and Δ values for the noisy logs with sudden changes and 7,500 traces. The colors
highlight the best performing approach for each metric. (Continued)

ORI

0% 1.0000 3.0000 1.0000 46.5556 1.0000 0.5556

5% 1.0000 32.8889 1.0000 59.5556 0.2903 18.4444

10% 0.9000 45.3333 1.0000 65.3333 0.2903 5.3333

15% 0.8182 49.3333 1.0000 145.4444 0.2727 11.2222

20% 0.8182 46.3333 1.0000 80.0000 0.2857 10.4444

25% 0.9000 52.5556 1.0000 83.0000 0.2727 9.5556

RIO

0% 1.0000 5.1111 1.0000 68.2222 1.0000 2.5556

5% 0.9000 39.4444 0.8889 83.5000 0.2727 21.8889

10% 0.8571 55.8889 0.8000 77.3333 0.2903 36.6667

15% 0.8182 44.7778 0.9412 57.2222 0.2857 50.6667

20% 0.8182 79.7778 0.5000 151.6667 0.2903 34.2222

25% 0.8571 125.8889 0.7143 113.4000 0.2813 27.2222

ROI

0% 1.0000 2.0000 1.0000 100.8889 1.0000 1.0000

5% 0.9000 31.0000 0.9474 162.6667 0.2727 1.8889

10% 0.9474 43.4444 1.0000 95.8889 0.2903 9.4444

15% 0.9000 27.7778 1.0000 — 0.2903 10.4444

20% 0.8182 31.6667 1.0000 131.0000 0.2813 16.2222

25% 0.9000 55.3333 1.0000 162.8889 0.2769 4.2222

Average

0% 1.0000 4.6275 0.8235 95.2540 1.0000 2.5948

5% 0.9448 39.4678 0.7338 82.8303 0.2926 12.4727

10% 0.8656 50.3497 0.7253 91.9893 0.2849 13.7190

15% 0.8502 50.3693 0.7000 97.9897 0.2804 20.4118

20% 0.8514 66.1825 0.6225 118.2278 0.2803 19.8497

25% 0.8170 72.9812 0.5946 100.4500 0.2819 20.0719

noise
R-CRIER ProDrift TPCDD

𝐹𝑠𝑐𝑜𝑟𝑒 Δ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ
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Table C.4: 𝐹𝑠𝑐𝑜𝑟𝑒 and Δ values for the noisy logs with sudden changes and 10,000 traces. The
colors highlight the best performing approach for each metric.

cb

0% 1.0000 5.7778 1.0000 94.0000 1.0000 4.8889

5% 0.9474 82.4444 0.9412 113.2500 0.2278 34.8889

10% 0.6667 70.8571 0.8750 110.2857 0.2169 34.8889

15% 0.8000 54.8750 0.8750 95.0000 0.2308 22.5556

20% 0.9000 105.0000 0.5000 125.3333 0.2195 27.3333

25% 0.9000 174.7778 0.8000 138.3333 0.2143 45.0000

cd

0% 1.0000 3.5556 0.2000 243.0000 1.0000 3.2222

5% 0.8235 99.4286 0.0000 — 0.2400 14.5556

10% 0.5714 199.5000 0.0000 — 0.2169 23.4444

15% 0.6667 222.6667 0.0000 — 0.2195 34.1111

20% 0.8421 119.1250 0.0000 — 0.2143 35.3333

25% 0.7778 176.4286 0.0000 — 0.2195 22.3333

cf

0% 1.0000 3.7778 1.0000 36.3333 1.0000 2.2222

5% 0.8571 85.0000 1.0000 46.2222 0.2195 23.0000

10% 0.9474 40.6667 1.0000 49.5556 0.2118 24.1111

15% 0.9000 83.4444 1.0000 59.8889 0.2250 20.0000

20% 0.8000 61.6250 1.0000 67.8889 0.2195 43.0000

25% 0.9474 85.8889 1.0000 78.2222 0.2195 22.0000

cm

0% 1.0000 5.8889 1.0000 105.8889 1.0000 5.4444

5% 0.9000 30.8889 1.0000 136.2222 0.2250 16.5556

10% 0.7500 48.6667 0.8000 87.1667 0.2169 37.7778

15% 0.8571 93.0000 0.9412 133.5000 0.2278 16.5556

20% 0.7778 85.2857 0.3636 93.5000 0.2222 39.1111

25% 0.8889 136.6250 0.5000 113.0000 0.2195 24.3333

noise
R-CRIER ProDrift TPCDD

𝐹𝑠𝑐𝑜𝑟𝑒 Δ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ
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Appendix C. Robust drift detection: supplementary experiments

Table C.4: 𝐹𝑠𝑐𝑜𝑟𝑒 and Δ values for the noisy logs with sudden changes and 10,000 traces. The
colors highlight the best performing approach for each metric. (Continued)

cp

0% 0.9412 53.7500 1.0000 45.3333 1.0000 1.1111

5% 0.9000 45.3333 1.0000 51.1111 0.2169 8.1111

10% 0.8571 71.0000 1.0000 54.5556 0.2169 2.2222

15% 0.8182 110.4444 1.0000 71.0000 0.2250 17.5556

20% 0.7619 52.6250 1.0000 70.1111 0.2250 27.0000

25% 0.8571 45.0000 1.0000 64.7778 0.2169 18.2222

lp

0% 1.0000 5.3333 1.0000 120.4444 1.0000 4.5556

5% 0.9474 162.2222 0.8000 137.0000 0.2195 34.6667

10% 0.8421 114.5000 0.2000 131.0000 0.2169 52.5556

15% 0.8182 118.1111 0.3636 176.0000 0.2195 29.5556

20% 0.7059 284.8333 0.0000 — 0.2069 39.8889

25% 0.8182 118.8889 0.0000 — 0.2195 40.2222

pl

0% 1.0000 2.7778 0.2000 260.0000 1.0000 2.2222

5% 0.9474 29.2222 0.0000 — 0.2222 6.3333

10% 0.7778 177.8571 0.0000 — 0.2143 24.6667

15% 0.8571 58.2222 0.0000 — 0.2118 12.6667

20% 0.7273 51.1250 0.0000 — 0.2278 20.8889

25% 0.9474 128.5556 0.0000 — 0.2250 20.4444

pm

0% 1.0000 3.5556 1.0000 66.0000 1.0000 4.8889

5% 0.8571 56.6667 1.0000 80.6667 0.2338 4.4444

10% 0.9000 85.0000 1.0000 110.0000 0.2250 24.3333

15% 0.9474 94.1111 1.0000 96.4444 0.2169 22.7778

20% 0.8571 70.5556 0.5000 71.3333 0.2143 21.6667

25% 0.8571 85.3333 0.6154 122.2500 0.2143 20.6667

noise
R-CRIER ProDrift TPCDD

𝐹𝑠𝑐𝑜𝑟𝑒 Δ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ
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Table C.4: 𝐹𝑠𝑐𝑜𝑟𝑒 and Δ values for the noisy logs with sudden changes and 10,000 traces. The
colors highlight the best performing approach for each metric. (Continued)

re

0% 1.0000 2.0000 1.0000 26.0000 1.0000 0.8889

5% 0.9000 46.3333 1.0000 24.6667 0.2222 1.7778

10% 0.9474 21.5556 1.0000 32.8889 0.2250 2.4444

15% 0.9000 43.6667 1.0000 33.3333 0.2169 4.1111

20% 0.8571 57.0000 1.0000 39.8889 0.2169 28.6667

25% 0.9000 93.3333 1.0000 49.8889 0.2169 9.4444

rp

0% 1.0000 3.1111 1.0000 48.0000 1.0000 0.6667

5% 0.9000 26.5556 1.0000 49.0000 0.2222 1.0000

10% 0.8571 52.1111 1.0000 58.5556 0.2222 1.2222

15% 0.8182 55.6667 1.0000 63.2222 0.2093 9.4444

20% 0.9000 23.6667 1.0000 70.5556 0.2169 15.1111

25% 0.9474 35.4444 1.0000 76.2222 0.2169 9.8889

sw

0% 1.0000 3.7778 0.0000 — 1.0000 0.8889

5% 0.8571 77.8889 0.0000 — 0.2222 2.2222

10% 0.8571 42.1111 0.0000 — 0.2195 3.1111

15% 0.9000 75.7778 0.0000 — 0.2250 5.5556

20% 0.8421 88.6250 0.0000 — 0.2222 6.0000

25% 0.9474 44.2222 0.0000 — 0.2143 11.0000

IOR

0% 1.0000 2.5556 1.0000 39.5556 1.0000 1.7778

5% 0.9474 48.1111 1.0000 43.4444 0.2250 15.1111

10% 0.9474 31.5556 0.9474 42.2222 0.2250 27.5556

15% 0.9000 60.3333 1.0000 52.3333 0.2195 20.7778

20% 0.9000 88.2222 1.0000 66.1111 0.2118 25.1111

25% 0.9000 104.7778 1.0000 60.8889 0.2222 25.1111

noise
R-CRIER ProDrift TPCDD

𝐹𝑠𝑐𝑜𝑟𝑒 Δ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ
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Appendix C. Robust drift detection: supplementary experiments

Table C.4: 𝐹𝑠𝑐𝑜𝑟𝑒 and Δ values for the noisy logs with sudden changes and 10,000 traces. The
colors highlight the best performing approach for each metric. (Continued)

IRO

0% 1.0000 5.8889 1.0000 94.4444 1.0000 5.5556

5% 0.8182 85.1111 1.0000 144.4444 0.2308 3.3333

10% 0.8571 67.6667 0.6667 148.2000 0.2143 6.6667

15% 0.7826 53.1111 0.7143 122.8000 0.2118 5.6667

20% 0.8571 89.8889 0.7143 158.8000 0.2278 25.5556

25% 0.8182 63.8889 0.3636 156.0000 0.2069 12.1111

OIR

0% 1.0000 2.0000 1.0000 126.2222 1.0000 1.4444

5% 0.9000 30.7778 0.5882 161.0000 0.2308 2.3333

10% 0.8182 72.7778 0.6154 122.7500 0.2195 5.3333

15% 0.8182 93.0000 0.7143 317.0000 0.2118 7.5556

20% 1.0000 45.0000 1.0000 308.0000 0.2250 5.0000

25% 0.7200 82.1111 0.7143 309.4000 0.2118 6.3333

ORI

0% 1.0000 2.5556 1.0000 56.6667 1.0000 0.7778

5% 0.9474 64.2222 1.0000 53.2222 0.2400 13.5556

10% 1.0000 35.4444 1.0000 63.2222 0.2195 3.0000

15% 0.8182 46.8889 1.0000 77.3333 0.2222 19.7778

20% 0.9000 45.8889 1.0000 77.3333 0.2093 11.2222

25% 0.7826 39.4444 0.9412 69.2500 0.2222 20.8889

RIO

0% 1.0000 6.2222 1.0000 69.3333 1.0000 2.3333

5% 0.9474 32.4444 0.9412 84.0000 0.2368 34.2222

10% 0.9000 58.2222 0.3636 65.5000 0.2250 13.3333

15% 0.8421 101.6250 0.6154 85.0000 0.2118 31.0000

20% 0.6923 157.6667 1.0000 98.4444 0.2195 11.6667

25% 0.8182 104.7778 0.3636 101.0000 0.2250 17.3333

noise
R-CRIER ProDrift TPCDD

𝐹𝑠𝑐𝑜𝑟𝑒 Δ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ
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Table C.4: 𝐹𝑠𝑐𝑜𝑟𝑒 and Δ values for the noisy logs with sudden changes and 10,000 traces. The
colors highlight the best performing approach for each metric. (Continued)

ROI

0% 1.0000 2.0000 0.9474 92.8889 1.0000 1.1111

5% 0.8571 56.5556 1.0000 64.3333 0.2308 3.6667

10% 0.8182 79.5556 1.0000 49.3333 0.2169 1.8889

15% 0.9000 57.7778 1.0000 53.1111 0.2195 2.6667

20% 0.7826 82.7778 1.0000 100.2222 0.2278 3.0000

25% 0.9000 66.1111 1.0000 89.2222 0.2195 5.0000

Average

0% 0.9965 6.7369 0.8440 95.2569 1.0000 2.5882

5% 0.8973 62.3063 0.7806 84.8988 0.2274 12.9281

10% 0.8421 74.6499 0.6746 80.3740 0.2190 16.9739

15% 0.8438 83.6895 0.7190 102.5690 0.2191 16.6078

20% 0.8296 88.7595 0.6516 103.6556 0.2192 22.6797

25% 0.8663 93.2711 0.6058 109.8812 0.2179 19.4314

noise
R-CRIER ProDrift TPCDD

𝐹𝑠𝑐𝑜𝑟𝑒 Δ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ

C.2 Gradual changes

Tables C.5 and C.6 contains detailed 𝐹𝑠𝑐𝑜𝑟𝑒, Δ and Υ values for both R-CRIER, Martjushev et
al. and ProDrift for the noisy synthetic logs from the Loan Application process with gradual
changes.
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Appendix C. Robust drift detection: supplementary experiments

Table C.5: 𝐹𝑠𝑐𝑜𝑟𝑒 and Δ values for the noisy logs with linear gradual changes and 200 traces
between changes. The colors highlight the best performing approach for each metric.

cf

0% 1.0000 135.0000 31.33% 0.6667 93.5000 38.06% 1.0000 69.7778 63.39%

5% 0.8571 48.0000 40.17% 0.6667 25.8571 42.94% 1.0000 60.1111 67.56%

10% 0.8571 106.1111 25.06% 0.6667 120.2857 26.44% 0.3636 118.0000 2.28%

15% 0.8000 63.6250 38.83% 0.8000 63.6250 38.83% 1.0000 48.1111 73.39%

20% 0.8000 80.3750 19.22% 0.8000 80.3750 19.22% 0.8000 39.8333 52.33%

25% 0.6923 56.1111 0.50% 0.6923 56.1111 0.50% 0.3636 14.5000 20.06%

cp

0% 0.8571 81.8889 6.72% 0.7619 56.7500 11.28% 0.3636 57.5000 14.39%

5% 1.0000 161.4444 15.33% 0.7778 150.2857 21.22% 0.9474 42.5556 74.28%

10% 0.9000 71.8889 59.56% 0.9000 71.8889 59.56% 0.8000 65.3333 39.56%

15% 0.9412 117.7500 47.39% 0.9412 117.7500 47.39% 0.9412 34.8750 71.06%

20% 0.9000 122.4444 47.50% 0.9000 122.4444 47.50% 0.3636 60.5000 14.00%

25% 0.8571 119.5556 42.89% 0.8571 119.5556 42.89% 0.3636 55.0000 15.06%

pm

0% 1.0000 19.3333 79.00% 1.0000 19.3333 79.00% 0.0000 — 0.00%

5% 1.0000 66.1111 58.00% 1.0000 66.1111 58.00% 0.0000 — 0.00%

10% 0.9474 74.1111 39.44% 0.9474 93.2222 40.72% 0.0000 — 0.00%

15% 0.8421 105.1250 42.72% 0.8421 105.1250 42.72% 0.0000 — 0.00%

20% 0.7826 84.4444 27.06% 0.7826 84.4444 27.06% 0.0000 — 0.00%

25% 0.5926 120.0000 0.44% 0.5926 120.0000 0.44% 0.0000 — 0.00%

re

0% 1.0000 48.4444 31.11% 1.0000 48.4444 31.11% 1.0000 69.1111 61.89%

5% 0.8182 114.1111 24.22% 0.8182 128.8889 24.22% 0.9474 56.4444 63.89%

10% 0.8571 65.1111 30.56% 0.8571 65.1111 30.56% 0.3636 48.0000 15.89%

15% 0.8571 58.4444 49.11% 0.8000 82.3750 51.50% 0.9412 56.1250 61.44%

20% 0.8421 145.7500 10.72% 0.8421 165.5000 11.44% 1.0000 60.1111 68.17%

25% 0.6923 76.1111 3.78% 0.6923 76.1111 0.83% 0.3636 20.0000 19.83%

noise
R-CRIER ProDrift Martjushev et al.

𝐹𝑠𝑐𝑜𝑟𝑒 Δ Υ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ Υ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ Υ
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Table C.5: 𝐹𝑠𝑐𝑜𝑟𝑒 and Δ values for the noisy logs with linear gradual changes and 200 traces
between changes. The colors highlight the best performing approach for each met-
ric. (Continued)

rp

0% 0.8889 138.7500 14.33% 0.8889 138.0000 6.00% 0.0000 — 0.00%

5% 0.7826 80.4444 26.50% 0.7826 101.3333 27.06% 0.0000 — 0.00%

10% 0.8571 122.7778 21.00% 0.8571 122.7778 21.06% 0.0000 — 0.00%

15% 0.7619 102.8750 23.56% 0.6364 104.8571 25.06% 0.0000 — 0.00%

20% 0.8182 168.8889 2.06% 0.8182 168.8889 2.06% 0.0000 — 0.00%

25% 0.7200 98.5556 16.39% 0.7200 98.5556 16.39% 0.0000 — 0.00%

sw

0% 0.8889 122.7500 34.61% 0.8889 118.1250 27.83% 0.0000 — 0.00%

5% 0.7500 89.1111 7.83% 0.6667 75.1250 7.89% 0.0000 — 0.00%

10% 0.7619 83.3750 13.28% 0.8571 99.3333 20.56% 0.0000 — 0.00%

15% 0.7826 73.3333 19.50% 0.7826 93.0000 20.72% 0.0000 — 0.00%

20% 0.6667 62.8750 25.89% 0.6667 62.8750 25.89% 0.0000 — 0.00%

25% 0.6400 89.5000 0.44% 0.6400 89.5000 0.44% 0.0000 — 0.00%

OIR

0% 1.0000 8.6667 89.61% 1.0000 8.6667 89.61% 0.9474 84.8889 47.28%

5% 0.9000 130.1111 18.11% 0.9000 130.1111 18.11% 1.0000 84.7778 54.00%

10% 0.8421 158.0000 9.78% 0.8421 158.0000 9.78% 0.9474 67.3333 58.89%

15% 0.8182 123.1111 11.94% 0.8182 123.1111 11.39% 1.0000 54.8889 69.17%

20% 0.6667 98.3750 4.89% 0.6667 113.2500 8.78% 0.8889 106.5000 41.56%

25% 0.5926 107.1250 0.50% 0.5926 107.1250 0.39% 0.9474 70.1111 58.11%

ORI

0% 0.8889 128.2500 26.94% 0.7778 111.2857 29.56% 0.7368 75.4286 44.67%

5% 0.9474 27.2222 72.72% 0.9474 27.2222 72.72% 0.9412 88.1250 41.33%

10% 1.0000 117.8889 40.28% 1.0000 117.8889 40.28% 0.9474 80.7778 52.67%

15% 0.7500 82.4444 23.06% 0.7500 82.4444 23.06% 0.8000 68.0000 48.78%

20% 0.6957 79.1250 16.83% 0.6957 79.1250 16.83% 0.9000 59.7778 60.28%

25% 0.6957 75.2500 20.11% 0.6957 87.6250 20.11% 1.0000 71.0000 60.67%

noise
R-CRIER ProDrift Martjushev et al.

𝐹𝑠𝑐𝑜𝑟𝑒 Δ Υ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ Υ 𝐹𝑠𝑐𝑜𝑟𝑒 Δ Υ
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Appendix C. Robust drift detection: supplementary experiments

Table C.5: 𝐹𝑠𝑐𝑜𝑟𝑒 and Δ values for the noisy logs with linear gradual changes and 200 traces
between changes. The colors highlight the best performing approach for each met-
ric. (Continued)

RIO

0% 1.0000 62.8889 64.06% 1.0000 62.8889 64.06% 0.0000 — 0.00%

5% 0.8182 69.5556 46.50% 0.8182 69.5556 46.50% 0.0000 — 0.00%

10% 0.8571 65.5556 38.94% 0.8571 65.5556 38.94% 0.0000 — 0.00%

15% 0.9474 139.8889 27.06% 0.9474 139.8889 27.06% 0.0000 — 0.00%

20% 0.8889 137.5000 36.67% 0.8889 137.5000 36.67% 0.2000 17.0000 9.22%

25% 0.6957 106.3750 0.39% 0.6957 106.3750 0.39% 0.0000 — 0.00%

ROI

0% 0.9474 15.2222 76.67% 0.9474 15.2222 76.67% 0.8889 35.6250 74.06%

5% 0.8182 94.2222 29.11% 0.7273 88.5000 31.28% 0.5000 29.0000 26.61%

10% 0.8571 69.1111 42.56% 0.8571 69.1111 42.56% 0.6154 37.7500 34.44%

15% 0.7273 99.7500 13.11% 0.6957 98.3750 16.00% 0.0000 — 0.00%

20% 0.6207 53.1111 0.50% 0.6207 53.1111 0.50% 0.3636 48.5000 16.33%

25% 0.5333 66.7500 0.44% 0.5333 66.7500 0.44% 0.3636 56.0000 14.72%

Average

0% 0.9471 76.1194 47.01% 0.8931 67.2216 46.12% 0.4937 65.3886 26.92%

5% 0.8692 88.0333 33.15% 0.8105 86.2990 34.11% 0.5336 60.1690 28.90%

10% 0.8737 93.3931 32.82% 0.8642 98.3175 33.78% 0.4037 69.5324 22.38%

15% 0.8228 96.6347 28.60% 0.8013 101.0552 29.43% 0.4682 52.4000 27.83%

20% 0.7681 103.2889 19.12% 0.7681 106.7514 19.64% 0.4516 56.0317 23.28%

25% 0.6712 91.5333 9.49% 0.6712 92.7708 9.15% 0.3402 47.7685 18.71%

noise
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Table C.6: 𝐹𝑠𝑐𝑜𝑟𝑒 and Δ values for the noisy logs with constant gradual changes and 200 traces
between changes. The colors highlight the best performing approach for each metric.

cf

0% 0.5556 104.8000 26.39% 0.5556 104.8000 26.39% 0.8750 49.5714 56.78%

5% 0.7619 52.7500 36.39% 0.7619 52.7500 36.39% 1.0000 54.0000 70.28%

10% 0.7826 44.5556 47.39% 0.7826 44.5556 47.39% 1.0000 37.1111 79.44%

15% 0.9000 103.1111 35.78% 0.9000 103.1111 35.78% 0.8235 39.7143 60.06%

20% 0.6364 95.4286 11.78% 0.6364 95.4286 11.78% 0.8000 99.1667 31.22%

25% 0.3810 75.7500 0.22% 0.3810 75.7500 0.22% 0.5000 85.0000 26.72%

cp

0% 0.7000 88.2857 2.22% 0.7000 88.2857 2.22% 1.0000 56.5556 68.28%

5% 0.6667 136.6667 30.83% 0.7778 141.7143 33.00% 1.0000 56.3333 69.83%

10% 1.0000 73.2222 63.28% 1.0000 73.2222 63.28% 1.0000 26.4444 84.11%

15% 0.8421 70.3750 49.17% 0.8421 70.3750 49.17% 0.2000 44.0000 6.00%

20% 0.7273 86.1250 46.11% 0.7619 86.1250 46.11% 1.0000 39.1111 77.44%

25% 0.8000 151.8750 29.00% 0.8000 151.8750 29.00% 1.0000 40.4444 77.56%

pm

0% 1.0000 8.2222 89.28% 1.0000 8.2222 89.28% 0.2000 19.0000 9.00%

5% 0.9412 63.8750 66.44% 0.9412 56.3750 58.56% 0.0000 — 0.00%

10% 0.9000 84.0000 37.00% 0.9000 66.7778 36.94% 0.0000 — 0.00%

15% 0.8889 92.6250 41.44% 0.8889 92.6250 41.44% 0.0000 — 0.00%

20% 0.7778 114.5714 26.78% 0.7778 114.5714 26.78% 0.0000 — 0.00%

25% 0.5217 113.0000 1.11% 0.5217 113.0000 1.11% 0.0000 — 0.00%

re

0% 1.0000 57.3333 63.17% 1.0000 57.3333 63.17% 1.0000 62.7778 66.22%

5% 0.6957 113.8750 11.39% 0.6957 89.5000 11.33% 1.0000 62.7778 66.22%

10% 0.7619 99.7500 22.28% 0.7619 121.7500 22.67% 1.0000 66.0000 64.00%

15% 0.8889 100.6250 51.56% 0.8889 100.6250 51.56% 0.8000 23.6667 56.17%

20% 0.6364 160.7143 4.56% 0.6364 160.7143 4.56% 1.0000 40.0000 75.83%

25% 0.6667 59.4444 0.50% 0.6667 59.4444 0.50% 0.8000 32.5000 53.39%

noise
R-CRIER ProDrift Martjushev et al.
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Appendix C. Robust drift detection: supplementary experiments

Table C.6: 𝐹𝑠𝑐𝑜𝑟𝑒 and Δ values for the noisy logs with constant gradual changes and 200 traces
between changes. The colors highlight the best performing approach for each met-
ric. (Continued)

rp

0% 0.9412 119.7500 42.44% 0.9412 115.2500 32.56% 0.0000 — 0.00%

5% 0.8571 100.0000 21.83% 0.8571 100.0000 21.83% 0.0000 — 0.00%

10% 0.8000 109.2500 18.33% 0.8000 109.5000 21.06% 0.0000 — 0.00%

15% 0.8889 168.8750 16.94% 0.8889 168.8750 16.94% 0.0000 — 0.00%

20% 0.6400 64.8750 18.00% 0.6400 64.8750 18.00% 0.0000 — 0.00%

25% 0.6667 111.5000 0.44% 0.6667 111.5000 0.44% 0.0000 — 0.00%

sw

0% 1.0000 64.0000 53.39% 0.9474 64.0000 53.39% 0.0000 — 0.00%

5% 0.5714 56.3333 29.61% 0.5714 24.0000 29.56% 0.0000 — 0.00%

10% 0.8571 87.2222 35.72% 0.8571 87.2222 35.72% 0.0000 — 0.00%

15% 0.7619 139.5000 12.28% 0.7619 139.5000 12.28% 0.0000 — 0.00%

20% 0.7000 137.8571 13.61% 0.7000 137.8571 13.61% 0.2000 81.0000 1.83%

25% 0.6400 95.1250 0.39% 0.6400 95.1250 0.39% 0.0000 — 0.00%

OIR

0% 1.0000 3.6667 94.39% 1.0000 3.6667 94.39% 1.0000 81.0000 56.28%

5% 0.8421 180.5000 5.56% 0.9474 160.5556 5.56% 0.9000 67.7778 57.33%

10% 0.6957 92.3750 12.44% 0.6957 75.3750 19.94% 1.0000 92.2222 50.67%

15% 0.7273 106.6250 13.28% 0.7273 105.1250 14.00% 1.0000 64.0000 64.11%

20% 0.6957 121.2500 4.06% 0.7826 107.8889 4.06% 0.2000 39.0000 6.67%

25% 0.7200 70.2222 3.11% 0.7200 87.8889 7.39% 1.0000 58.0000 68.61%

ORI

0% 0.5556 30.8000 38.33% 0.5556 30.8000 38.33% 1.0000 76.0000 59.00%

5% 0.8421 70.2500 48.78% 0.8889 70.2500 48.78% 0.9474 69.3333 58.28%

10% 0.6957 76.7500 43.17% 0.6087 14.5714 39.00% 1.0000 76.2222 59.39%

15% 0.7619 61.2500 43.89% 0.7619 84.5000 44.00% 0.9000 51.0000 61.61%

20% 0.7500 83.5556 25.00% 0.7500 83.5556 25.00% 0.9000 65.1111 55.89%

25% 0.5714 56.5000 0.44% 0.5714 34.6250 0.39% 1.0000 60.8889 65.44%

noise
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Table C.6: 𝐹𝑠𝑐𝑜𝑟𝑒 and Δ values for the noisy logs with constant gradual changes and 200 traces
between changes. The colors highlight the best performing approach for each met-
ric. (Continued)

RIO

0% 0.7778 43.0000 60.22% 0.7778 43.0000 60.22% 0.0000 — 0.00%

5% 0.8000 100.5000 27.28% 0.8000 96.6250 27.28% 0.0000 — 0.00%

10% 0.7619 95.8750 26.72% 0.6667 93.8571 19.22% 0.0000 — 0.00%

15% 0.6316 132.8333 23.22% 0.6316 132.8333 23.22% 0.0000 — 0.00%

20% 0.7619 140.0000 20.94% 0.7619 140.0000 20.94% 0.0000 — 0.00%

25% 0.5833 126.0000 0.39% 0.5833 126.0000 0.39% 0.0000 — 0.00%

ROI

0% 0.7826 14.1111 41.83% 0.7826 14.1111 41.83% 0.0000 — 0.00%

5% 0.8571 44.1111 67.89% 0.8571 33.1111 63.11% 0.7143 53.4000 37.56%

10% 0.8182 98.3333 32.28% 0.8182 98.3333 32.28% 0.2000 61.0000 4.33%

15% 0.8182 17.7778 62.00% 0.8182 17.7778 62.00% 0.2000 5.0000 10.44%

20% 0.5000 45.1429 0.33% 0.5714 39.6250 0.33% 0.0000 — 0.00%

25% 0.6429 51.7778 0.50% 0.6429 51.7778 0.50% 0.0000 — 0.00%

Average

0% 0.8313 53.3969 53.92% 0.8260 52.9469 52.82% 0.5075 57.4841 28.75%

5% 0.7835 91.8861 34.40% 0.8098 82.4881 33.22% 0.5562 60.6037 32.14%

10% 0.8073 86.1333 32.36% 0.7891 78.5165 32.23% 0.5200 59.8333 29.17%

15% 0.8110 99.3597 34.86% 0.8110 101.5347 34.96% 0.3924 37.8968 22.04%

20% 0.6825 104.9520 17.71% 0.7018 103.0641 17.71% 0.4100 60.5648 24.19%

25% 0.6194 91.1194 3.99% 0.6194 90.6986 4.46% 0.4300 55.3667 29.44%

noise
R-CRIER ProDrift Martjushev et al.
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One of the main challenges of process mining is to obtain 
models that represent a process as simply and accurately as 
possible. Both characteristics can be greatly influenced by 
changes in the control flow of the process throughout its life 
cycle.
In this thesis we propose the use of conformance metrics to 
monitor such changes in a way that allows the division of the 
log into sub-logs representing different versions of the process 
over time. The validity of the hypothesis has been formally 
demonstrated, showing that all kinds of changes in the process 
flow can be captured using these approaches, including 
sudden, gradual drifts on both clean and noisy environments, 
where differentiating between anomalous executions and real 
changes can be tricky.
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