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A B S T R A C T

The work is framed within optimization and its use for decision making. The logical se-
quence has been modeling, implementation, resolution, and validation leading to a de-
cision. For this, we have used tools of Multi-Criteria Analysis, Multi-Objective Optimiza-
tion, and Artificial Intelligence techniques.

The work has been structured in two parts (divided into three chapters each) corres-
ponding to the theoretical and experimental parts. The first part analyzes the context of
the field of study with an analysis of the historical background, followed by a chapter on
Multi-Criteria Optimization in which known models are included, together with original
contributions to this work. In the third chapter, dedicated to Artificial Intelligence, the
fundamentals of Statistical Learning, Machine Learning, and Deep Learning techniques
necessary for the contributions in the second part are presented.

The second part contains seven real cases to which the described techniques have been
applied. In the first chapter, two cases are studied: the academic performance of students
at the Universidad Industrial de Santander (Colombia) and an objective system for the
selection of the MVP award in the NBA. In the next chapter, Artificial Intelligence tech-
niques are used for musical similarity (plagiarism detection in Youtube), the prediction of
the closing price of a company in the New York stock market, and the automatic classi-
fication of acoustic immersive spatial audio. In the last chapter, Multiple-Criteria Decision
Making techniques are incorporated to the power of Artificial Intelligence to detect univer-
sity school failure early (at the Industrial University of Santander), and Multiple-Criteria
Decision Making methods are used to establish a ranking of Artificial Intelligence models.

To conclude the work, although each chapter contains a partial conclusion, Chapter 8
contains the main conclusions of the entire report and a fairly exhaustive bibliography of
the topics covered. In addition, the work concludes with three appendices containing the
programs and tools, which, although useful for the understanding of the report, we have
preferred to put them separately to make the chapters more fluid.

xix





R E S U M E N

La memoria se enmarca dentro de la optimización y su uso para la toma de decisiones.
La secuencia lógica ha sido la modelación, implementación, resolución y validación que
conducen a una decisión. Para esto, hemos utilizado herramientas del análisis multicrerio,
optimización multiobjetivo y técnicas de inteligencia artificial.

El trabajo se ha estructurado en dos partes (divididas en tres capítulos cada una) que se
corresponden con la parte teórica y con la parte experimental. En la primera parte se anal-
iza el contexto del campo de estudio con un análisis del marco histórico y posteriormente
se dedica un capítulo a la optimización multicriterio en el se recogen modelos conocidos,
junto con aportaciones originales de este trabajo. En el tercer capítulo, dedicado a la inteli-
gencia artificial, se presentan los fundamentos del aprendizaje estadístico , las técnicas de
aprendizaje automático y de aprendizaje profundo necesarias para las aportaciones en la
segunda parte.

La segunda parte contiene siete casos reales a los que se han aplicado las técnicas
descritas. En el primer capítulo se estudian dos casos: el rendimiento académico de los
estudiantes de la Universidad Industrial de Santander (Colombia) y un sistema objetivo
para la asignación del premio MVP en la NBA. En el siguiente capítulo se utilizan técnicas
de inteligencia artificial a la similitud musical (detección de plagios en Youtube), la pre-
dicción del precio de cierre de una empresa en el mercado bursátil de Nueva York y la
clasificación automática de señales espaciales acústicas en entornos envolventes. En el úl-
timo capítulo a la potencia de la inteligencia artificial se le incorporan técnicas de análisis
multicriterio para detectar el fracaso escolar universitario de manera precoz (en la Univer-
sidad Industrial de Santander) y, para establecer un ranking de modelos de inteligencia
artificial de se recurre a métodos multicriterio.

Para acabar la memoria, a pesar de que cada capítulo contiene una conclusión parcial, en
el capítulo 8 se recogen las principales conclusiones de toda la memoria y una bibliografía
bastante exhaustiva de los temas tratados. Además, el trabajo concluye con tres apéndices
que contienen los programas y herramientas, que a pesar de ser útiles para la comprensión
de la memoria, se ha preferido poner por separado para que los capítulos resulten más
fluidos.
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R E S U M

La memòria s’emmarca dins de l’optimització i el seu ús per a la presa de decisions. La
seqüència lògica ha sigut el modelatge, la implementació, la resolució i la validació que
condueixen a una decisió. Per això, hem utilitzat eines de l’anàlisi multicreri, l’optimització
multiobjectiu i tècniques d’intel·ligència artificial.

El treball s’ha estructurat en dues parts (dividides en tres capítols cadascuna) que es
corresponen amb la part teòrica i amb la part experimental. En la primera part s’analitza
el context del camp d’estudi amb una anàlisi del marc històric i posteriorment es ded-
ica el capítol 3 a l’optimització multicriteri en el qual es recullen models coneguts, jun-
tament amb aportacions originals d’aquest treball. En el quart capítol, dedicat a la in-
tel·ligència artificial, es presenten els fonaments de l’aprenentatge estadístic, les tècniques
d’aprenentatge automàtic i d’aprenentatge profund necessàries per a les aplicacions.

La segona part conté set casos reals als quals s’han aplicat les tècniques descrites. En
el capítol cinquè s’estudien dos casos: el rendiment acadèmic dels estudiants de la Uni-
versidad Industrial de Santander (Colòmbia) i un sistema objectiu per a l’assignació del
premi MVP en la NBA. En el capítol 6 s’utilitzen tècniques d’intel·ligència artificial a la
similitud musical (detecció de plagis en Youtube), la predicció del preu de tancament d’una
empresa en el mercat de valors de Nova York i la classificació automàtica de senyals espa-
cials acústiques en entorns envolupants. En el capítol setè, a la potència de la intel·ligència
artificial se li incorporen tècniques multicriteri per a detectar el fracàs escolar universitari
de manera precoç (a la Universidad Industrial de Santander) i, per a establir un rànquing
de models d’intel·ligència artificial es recorre a mètodes d’optimització multicriteri.

Per a acabar la memòria, a pesar que cada capítol conté una conclusió parcial, en el
capítol 8 es recullen les principals conclusions de tota la memòria i una bibliografia prou
exhaustiva dels temes tractats. A més, el treball conclou amb tres apèndixs que contenen
els programes i eines, que malgrat ser útils per a la comprensió de la memòria, s’ha preferit
posar per separat perquè els capítols resulten més fluids.
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1
I N T R O D U C T I O N

Business and technological developments are evolving at inordinate levels, where the un-
certainty of the future and the cyber-connected world generate a rather challenging scen-
ario. World economies are also undergoing major transformations to adapt to this type of
change. Even though last technological and research advances provide us with tools that
help institutions manage their countries’ politics, implementing these techniques does not
turn out to be easy at all. For this reason, the field study of decision analysis has become
an attractive field of study from a mathematical point of view, not only for solving the de-
cision stage but also for offering efficient and easy-to-use methodologies. A clear example
of this concern is the modern agendas for environmental and sustainable development,
where the plan of action for people, planet, and prosperity is clearly defined. Still, the
manner to achieve such goals is not established and/or is not globally possible.

Since the global business environment directly impacts all socioeconomic and techno-
logical policies, implementing enhanced tools and procedures is required for support in
such a challenging task. In most cases, the target is broadly known. However, the prior-
ities, tradeoffs, and complications in this regard remain unclear, thus complicating the
decision process. Decision analysis is the discipline that encompasses the theory, method-
ology, and professional practices needed for addressing a decision-making problem. This
subject was first studied in the 1940s by the mathematician John von Neumann and eco-
nomist Oskar Morgenstern, who established the basis for utility theory. They defined the
principles of game theory and mathematically represented a cooperative framework in
which n decision-makers took actions considering their individual preferences over uncer-
tain outcomes. Over the years, this branch of Operations Research considerably evolved,
offering us a multitude of methods for decision aid.

Nowadays, two fields have attracted much interest regarding decision analysis. On the
one hand, Multiple-Criteria Decision Making (MCDM) is a major discipline in Operations
Research that provides extensive support to decision-makers in complex, ill-structured
problems involving conflicting criteria. MCDM has techniques designed to attach every
single aspect of the decision process, from the problem structuring/modeling to the selec-
tion of the final decision. On the other hand, Artificial Intelligence (AI) covers the theory
and development of computer systems able to solve complex tasks characterized by be-
ing usually performed by humans. In this regard, the fields of computer vision, speech
recognition, and language translation are understood, among others.

The two fields of study above-mentioned represent most of the methodology studied
in this thesis. Then, Chapter 3 describes the methodology of Multiple-Criteria Decision
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2 introduction

Making understood from different approaches, and Chapter 4 contains the theory related
to statistical learning and the principles required to build intelligent systems. Finally, sev-
eral case studies are presented as the experimental part of this thesis to show real-world
applications with new contributions to both fields.

1.1 objectives

This work aims to achieve the following objectives:

1. Combine the fields of study of Multiple-Criteria Decision Analysis and Artificial
Intelligence for decision support.

2. Study the new field of research of the Unweighted Multiple-Criteria Decision Mak-
ing.

3. Analyze the resultant optimal solutions of own-developed decision-making tech-
niques in real-world environments.

1.2 contributions

Our main contributions include:

1. Design and implementation of ranking techniques from the emerging field of study
of Unweighted Multiple-Criteria Decision Making.

2. Incorporation of the new field of Fuzzy-Unweighted Multiple-Criteria Decision Mak-
ing together with a real-life application.

3. Application of customized Artificial Intelligence models for solving highly complex
problems and analyzing the corresponding optimal solution.

4. Combination of the fields of Multiple-Criteria Decision Making and Artificial Intelli-
gence in two case studies with the aim of offering new tools in the area of decision
analysis.

5. Python implementation of the unweighted version of TOPSIS and VIKOR, the fuzzy-
unweighted version of the Weighted Mean Models, and an audio fingerprinting al-
gorithm named SpectroMap. (Published as GitHub repositories in my page Aaron-
AALG).

1.3 thesis outline

The remainder of this thesis is organized as follows:

Part i : Theory and Methodology

https://github.com/Aaron-AALG
https://github.com/Aaron-AALG
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Chapter 2 provides the basis of our research. It introduces the four fields of know-
ledge necessary for the development of this thesis, together with their historical
background.

Chapter 3 contains the methodology related to Multiple-Criteria Decision Analysis
and Decision Making discussed in this thesis. It introduces the motivation and
branches of this field. The theoretical background developed for application
purposes is presented in three parts corresponding to the three approaches:
classic, fuzzy, and unweighted.

Chapter 4 contains the methodology related to Artificial Intelligence techniques de-
veloped in this thesis. In addition to focusing on practical aspects, this chapter
describes various mathematical concepts and statistical notions that build the
underlying functioning of this field. The theory is divided into Machine Learn-
ing and Deep Learning areas to distinguish the complexity of this area of know-
ledge.

Part ii : Experimental Study

Chapter 5 shows the applicability of the unweighted versions of the decision-
analysis techniques in two particular real-world applications. The first section
analyzes the unweighted TOPSIS, and the second section introduces the un-
weighted VIKOR technique.

Chapter 6 contains a total of three case studies from the Artificial Intelligence discip-
line. Different Machine Learning topics have been studied in each section. The
main techniques used have been, firstly, an unsupervised learning technique
and, secondly, two supervised learning problems focusing on classification and
regression, respectively.

Chapter 7 introduces the combination of the Multiple-Criteria Decision Making and
Artificial Intelligence approaches for solving two case studies. On the one hand,
a Multiple-Criteria Decision Making technique is utilized as a feature extractor
in a classification problem. On the other hand, an integrated end-to-end system
is presented for benchmarking Machine Learning models with Multiple-Criteria
Decision Making.

Chapter 8 completes the thesis remarking on the relevant points discussed during this
work and the main contributions obtained thanks to our research. Moreover, we
introduce some interesting topics that were not fully covered in this thesis. We finish
the chapter discussing potential future research areas related to the field of statistics
and operations research.

Finally, Appendices A, B, and C contain the scripts, routines, and programming
strategies conducted for this work. Each appendix has the required code to carry out
the experiments and/or case study presented throughout the thesis.





Part I

T H E O RY A N D M E T H O D O L O G Y





2
H I S T O R I C A L B A C K G R O U N D

Most of the theory required for decision making is highly related to multidisciplinary
knowledge. Both applicability and methodology have been developed by combining mul-
tiple approaches. For this reason, we want to emphasize every single aspect that con-
cerns the state-of-the-art up to the prescriptive stage. Then, we have decided to divide this
chapter into four sections that primarily build the underlying methodology of decision
theory. Each chapter contains the historical background involved in the main fields of
statistics and probability, operations research, computer science, and business analytics.

2.1 statistics and probability

Statistics and probability are two branches of mathematics that generate a strong synergy
for solving problems in multiple real-life environments. Despite the fact that both discip-
lines are widely combined in mathematical applications, it is necessary to understand the
main difference between them. Probability is fundamentally based on measure theory and
it aims to quantify the likelihood of an event occurring. Statistics relies on the applicability
of data analysis for inference purposes, hence it concerns the random sampling of data for
the interpretation and presentation of the obtained results. Once we know their definition,
we can realize why statistics and probability are simultaneously utilized for data analysis.
In this section, we will present the developments of them altogether since most of the
advancements occurred when mathematicians combined both disciplines at once.

Over the years, humans have attempted to measure the likelihood of a certain event tak-
ing place. Although the beginning of this study was completely experimental, empiricism
has helped to develop further analysis. Due to several fields utilizing statistics as the main
data-gathering source, we can find examples of its application in ancient times. The most
representative case is the study of the census for controlling and studying the population’s
behavior. The oldest sample was discovered in India with an approximated origin in 330
B.C, and the oldest preserved was held in China in AD 2 with high accuracy in its calcu-
lations (Bowman, 2000). However, it took a long time until 1663 John Graunt and William
Petty developed the foundations of demography. In regard to probability, the study of
permutations and combinations has been a common interest in various cultures. On the
one hand, cryptography took a central role in research during the Islamic Golden Age. In
the 8th century, Al-Khalil wrote about the combinations of all possible Arabic words, and
subsequently, in the 9th century, Al-Kindi made the earliest known implementation of fre-
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8 historical background

quency analysis and statistical inference for encryption-decoding techniques. On the other
hand, gambling has been a standard when referring to probability because the process of
quantifying success-failure rates helped to set the basis of this science. In the 16th century,
Gerolamo Cardano wrote his Liber de ludo aleae, in which he analyzed various games of
chance by incorporating odds and calculus of probabilities (Ore, 1953).

The year 1654 is globally accepted as the birth of probability theory due to the cor-
respondence established between Pierre Fermat and Blaise Pascal (Fienberg, 1992). They
originally discussed a gambling problem, subsequently called the problem of points or the
problem of the stakes. They reasoned it using the expected value, albeit they did not prove
it with sufficient rigor. It is considered a turning point for the field of probability since,
up to this date, the term probable just indicated the general approval of some event based
on past events. Shortly thereafter, Christiaan Huygens published in 1657 the first books on
probability theory, defining important concepts as the expectation value (Hacking, 2006).

In the 18th century, there was important mathematical progress in the theory of prob-
abilities. Such remarking point is due to the mathematical approach mainly given by two
authors, Jacob Bernoulli, who wrote Ars Conjectandi in 1713, and Abraham de Moivre, who
wrote Doctrine of Chances in 1718. A decisive contribution was the representation of event
probability p as a number between 0 and 1, indicating the odds and the concept of null and
absolute certitude. The definition of a Bernoulli trial as a random event with output based
on a dichotomy with the same probability generated the so-called Bernoulli process with
binomial (or Bernouilli) distribution. Such distribution laid out a discrete-time stochastic
process, marking a turning point in the foundations of probability. In the middle of the
century, Thomas Bayes developed the so-called Bayes’ Theorem, although he formulated
a particular case, and later Laplace stated it as the actual version. For two studied events
A and B with non-zero probability, it gives us a manner to get the conditional probability
associated with the events. It can be mathematically stated as follows:

P(A|B) = P(B|A)P(A)

P(B)
. (2.1)

Thanks to his contributions, nowadays, there exists a branch of probability called Bayesian
probability, which interprets probability as an expectation of degrees of certainty, contrary
to the frequentist approach (Howson and Urbach, 2006). In other words, the concept of
probability can be understood via logical statements where the spectrum of truth values
is unknown a priori. At the end of the century, Pierre-Simon Laplace introduced two laws
of error for measuring the uncertainty associated with some studied processes, which fol-
lowed the theory of errors discussed by Roger Cotes and Thomas Simpson. The laws stated
that the frequency of an error could be expressed as an exponential function of the numer-
ical magnitude of the error (1st law), and such error representation is the exponential
function of the square of the error (2nd law) (Wilson, 1923).

In the 19th century, the development of the least squares method for applications in
regression tasks made a breakthrough in the field of statistical modeling. It was first pub-
lished and formally stated by Adrien-Marie Legendre in 1805 as a fitting problem. How-
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ever, the major credit is associated with Carl Friedrich Gauss due to his contribution to
model the orbit of Ceres, made in 1795 but published in 1809 (Stigler, 1981). In regard
to theoretical advances, three chief findings deserve additional emphasis. Firstly, Pierre
Simon Laplace laid the basis of modern probability and statistics in his Théorie analytique
des probabilités in 1812, in which he rigorously developed several results that are crucial
nowadays as the exponential distributions or hypothesis testing. Secondly, Siméon Denis
Poisson formalized the law of large numbers (LLN), which was previously approached
by Bernoulli and subsequently reformulated by relevant mathematicians such as Khinchin
and Kolmogorov (Seneta, 2013). LLN has two different versions that rely on mathematical
analysis convergence concepts that lead to weak and strong laws. Both versions states that
for an infinite sequence {Xi}i≥1 of independent and identically distributed (i.i.d.) Lebesgue
integrable random variables such that E[Xi] = µ per each i ≥ 1, then the sample average
X̄k =

1
k ∑k

i=1 Xi also converges to µ. The two laws can be mathematically written as in Hsu
and Robbins (1947):

Weak law lim
k→+∞

P
[
|X̄k − µ| < ε

]
= 1, per each ε > 0. (2.2)

Strong law P
[

lim
k→+∞

X̄k = µ

]
= 1. (2.3)

The third key contribution was the concept of normal distribution or Gaussian distribu-
tion, named after Karl Gauss for his publishing Theoria combinationis observationum erroribus
minimis obnoxiae, although de Moivre and Laplace already developed other underlying
ideas. Its general formulation is N(µ, σ2) for a given by a mean value µ and a standard
deviation σ, with a probability density function of:

f (x; µ, σ2) =
1

σ
√

2π
e

1
2 (

x−µ
σ )2

. (2.4)

Whose graphical representation yields the output illustrated in Fig. 2.1.

3 2 + +2 +3
0

Figure 2.1: Normal distribution N(µ, σ2) centered in µ and divided by deviation intervals.
Source: Own elaboration.
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An interesting point that we would like to emphasize about the normal distribution is
the resultant coverage probability between µ± kσ intervals. Table 2.1 shows the accounting
values attached.

Table 2.1: Coverage probability of the normal distribution computed by intervals and truncated to
the 4th decimal place.

Interval Probability Complementary

µ± σ 0.6826 0.3174
µ± 2σ 0.9544 0.0455
µ± 3σ 0.9973 0.0027
µ± 4σ 0.9999 0.0001

We can say that the 18th century got an impressive development in the area of statist-
ical theory. In fact, a statistical framework was developed with the aim of describing the
randomness of physical events with probability. This field was called statistical mechanics,
and the precursors were Ludwig Boltzmann and Willard Gibbs. There were other multiple
mathematicians that contributed to the applied field of statistics. Among many others is
essential to mention Bessel, Lacroix, Laurent, Cournot, Peirce, Quetelet, and De Morgan.

At the end of the 18th century, the definition of likelihood function by Thorvald N. Thiele
(1880) and correlation by Francis Galton (1888) meant a remarkable step towards modern
statistical concepts. Moreover, Galton proposed using linear regressions to perform stat-
istical modeling in various applied fields. Before presenting the following century, it is
necessary to highlight the important contributions made so far in the subfield of data visu-
alization. Despite the fact it does not depend on scientific background, it makes it easier to
follow some experiments by means of charts that visually summarize the results. Among
many contributors, we would like to mention John Venn, who designed the concept Venn
diagram, and Florence Nightingale, a pioneer in applied statistics for sanitary issues and
developer of polar area diagrams.

In the 20th century, the mathematical community aimed to establish the foundations of
probability theory by means of rigorous axiomatization. It took a long time until Andrey
Kolmogorov defined three basic axioms by using the measure theory as a reference. Later,
he wrote Foundations of the theory of probability (Kolmogorov, 1950) in 1933, in which all
these concepts were formalized. In general, let (Ω, F, P) be a measure space; we say such
space is a probability space with sample space Ω, event space F, and probability measure
P as long as the following axioms hold true:

1st axiom (Non-negativity): Each event E ∈ F has associated a non-negative measure, i. e.
P(E) ≥ 0.

2nd axiom (Unit measure): The entire sample space has probability one, i. e. P(Ω) = 1.
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3rd axiom (σ-additivity): Given a countable mutually exclusive sequence {Ei}∞
i=1 of events

in F, then:

P

(
∞⋃

i=1

Ei

)
=

∞

∑
i=1

P(Ei). (2.5)

Following the same line as Kolmogorov, in 1946 Richard Cox develop an alternative
way to formulate probability theory by means of postulates that helped to develop their
famous Cox theorem (Van Horn, 2003). His work was motivated by logical theory where
he discussed the use of degrees of plausibility with a consistent approach.

Apart from the mathematical axiomatization of probability theory, there was a funda-
mental contribution to applied statistics thanks to the introduction of the central limit the-
orem (CLT). It was first referenced in 1920 by Pólya, who was motivated by past Laplace’s
work, but its general formalization was finally drawn up in 1935 with the contributions
of Lindeberg, Lévy, and Bernshtein (Fischer, 2011). The different versions of CLT state the
converge on probability distributions of functions of an increasing number of one or multi-
dimensional random variables (or abstract elements) to a normal distribution. Classic CLT
states that, let {Xi}i≥1 be i.i.d random variables so that E[Xi] = µ and Var[Xi] = σ2 per
each i ≥ 1, then X̄n = 1

n ∑n
i=1 Xi satisfies that:

Classic CLT: lim
n→+∞

X̄n − µ
σ2√

n

∼ N(0, 1). (2.6)

For later versions, it is considered the series s2
n = ∑n

i=1 σ2
n to guarantee stronger condi-

tions. If for every δ > 0 such conditions hold true:

Lyapunov: lim
n→+∞

1
s2+δ

n

n

∑
i=1

E
[
|Xi − µi|2+δ

]
= 0. (2.7)

Lindeberg: lim
n→+∞

1
s2

n

n

∑
i=1

E
[
(Xi − µi)

21{Xi :|Xi−µi |>δsn}

]
= 0. (2.8)

Then, lim
n→+∞

1
sn

n

∑
i=1

(Xi − µi) ∼ N(0, 1).

Before CLT was stated, statistical tests were hard to compute since it is difficult to find
appropriate conditions for the approximation of random variables via Gaussian distribu-
tions (Cam, 1986). Nowadays, the assumption that a sample data has fixed parameters
that determine its probability distribution gives parametric tests higher statistical power
because of the CLT (Kwak and Kim, 2017).

During the first half of the 20th century, we can highlight the contributions in probability
and statistics from Michel Plancherel (ergodic theory), Andrey Markov (Markov process),
Louis Bachelier (mathematical finance via stochastic process), Ronald Fisher (foundations
for modern statistical science), Karl Pearson (mathematical statistics), Jerzy Neyman (con-
fidence interval for testing), William Gosset (t-student test) and P. C. Mahalanobis (statist-
ical distance).
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From the second half of the 20th century, the interest in statistics and probability in-
creased due to the incorporation of modern computers, since they reduced the computa-
tional times. As a result, the field of artificial intelligence grew for the incorporation of
statistical theory in real-life applications, giving customized responses to complex tasks.
Then, the field of statistical learning was founded, with the cases of machine learning
(for known responses) and data mining (for unknown outcomes). Both the historical back-
ground and the foundations are explained in Chapter 4 with further cases and examples.

2.2 operations research

Operations Research (OR) is a subfield of Mathematics that encompasses the disciplines
that optimize problems in order to make decisions. This field provides solutions for de-
cision making by taking into account the structure of real-life events. Then, the main ob-
jective is to model the behavior of the casuistry studied and give the best solution possible
according to the conditions stated. The numerical experiments and the systems that carry
out the solution will consider as many characteristics as possible to describe reality. How-
ever, it depends on the complexity of the situation. Most part of the work is conducted
by analytical processes that require computational techniques to perform the search for
optimal solutions.

The historical development of the Operations Research field started at the beginning
of the 20th century (Gass and Assad, 2014). However, the theoretical background and
the mathematical techniques implemented were developed in Mathematical Analysis and
Differential Calculus. Hence, I would like to introduce some background of the Calculus
discipline to focus history behind OR.

The study of optimization problems has been one of the main applications of mathemat-
ics. From ancient times, people have always attempted to maximize or minimize anything
that could be profitable for them. Once civilizations were built, their citizens faced daily
situations that required them to take better actions or responses for a given situation. Trad-
ing, harvesting, and management were common activities that were required to maximize
the benefits. Conversely, transportation and production involve tasks requiring the min-
imum time possible. Therefore, it is understood that the search for optimal solutions by
means of logical properties or methodological steps is as old as human history.

Years later, humans started to analyze the behavior of physical laws. Since the first
findings in classic mechanics, the idea of minimizing either distances or times has been
a challenging problem for scientists. When focusing on harder problems, we can note
that the universe follows a series of rules that rely on equilibrium points, that is to say,
solutions that optimize some magnitude. Actually, most of the physical phenomena are
governed by the principle of least action. When referring to physical systems, the principle
of minimum energy is an empirical finding that is obeyed in thermodynamics. As we can
see, the human perception of the universe is in connection with optimization regardless of
the matter of study.
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Before the 16th century, major advances in calculus were undertaken in the Middle East,
India, China, and Japan, where Europe took a secondary role. Historically, we can point to
the 17th century as the turning point in the development of analysis and calculus theory.
At the beginning of the 17th century, Pierre de Fermat stated a logical implication to find
local maxima and minima of real differentiable functions defined over open sets. It is called
Fermat’s Theorem, and it marked a major step forward in Mathematical Optimization.
Basically, it states that if a function is differentiable at some point and this point is a
local extremum, then the derivative of the function at such point is zero. In mathematical
language, given a differentiable function f : (a, b) ⊂ R → R with local extremum in
x0 ∈ (a, b), then the derivative is null in its point (i. e. f ′(x0) = 0). Although it only gives
us a necessary condition, it was one of the first propositions that evaluate the stationary
points. Additionally, when the second derivative function exists, i. e. f ′′, we can determine
whether the stationary point is either a maximum or a minimum. In a physical context,
Fermat discussed the law of refraction, which was before approached by W. van Royen
Snell and René Descartes. He stated that in any medium studied, light always travels in
the shortest time. Such contribution, referred to as Fermat’s principle, is now considered
the basis of modern optics. From an academic perspective, it is important to highlight
the contribution of Maria Gaetana Agnesi, the first woman appointed as a mathematics
professor at a university. She wrote Institutioni Analitiche in 1748, the first handbook to
contain extended works on various mathematical fields such as algebra, analysis, and
geometry.

At the end of the 17th century, Sir Isaac Newton and Gottfried Wilhelm Leibniz in-
dependently developed infinitesimal calculus as a field of mathematics that studies the
continuous changes of mathematical objects. Thanks to their joint effort, the notions of
derivative and integral were rigorously defined. The key idea was the definition of infin-
itesimal (dx), which is a quantity that is closer to zero than any other real number, but it is
not equal to zero. Due to such contributions in mathematical calculus, the field of optim-
ization considerably progressed as well. As a demonstration of the interest implicated in
the field, I. Newton stated that “When a quantity is the greatest or the smallest, at that moment
its flow is neither forward nor backward,” which is quite closer to the formal definition. As a
consequence, there were many advantages in this area of knowledge. Some of them were
the fundamental theorem of calculus, the products and chain’s rule, or the formal defini-
tion of mathematical limit and gradient. Nowadays, the basis of Calculus is still based on
the solid conceptualization developed on such days (Brinkhuis and Tikhomirov, 2005).

In the 18th century, Joseph-Louis Lagrange introduced the concept of Lagrange multipli-
ers as a methodology for finding optimal points of a function subject to equality constraints.
This work in the calculus of variations meant a great advance in optimization theory. In
mathematical language, given an objective function f : D ⊂ Rn → R and a constraint
function g : D ⊂ Rn → Rk with k < n such that their derivatives are continuous, i. e. both
belong to C1, we can define the Lagrangian function L(x, λ) = f (x) + λg(x). Here, λ is the
Lagrange multiplier associated with the problem (Föllmer and Kabanov, 1997). Now, if x0

is a solution for the constrained optimization problem, then x0 is also a saddle point of L.
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One of the main advantages of the method was the design of a strategy to solve optimiza-
tion problems with multiple variables. Moreover, the solution does not require an explicit
parametrization of the constraints implicated. The Lagrange multiplier method can also
be generalized for nonlinear programming purposes by adding some rules for inequal-
ity constraints. Within the field of calculus variations, authors such as Johann Bernoulli,
Jacob Bernoulli, Adrien-Marie Legendre, and Leonhard Euler significantly contributed to
its further evolution. Actually, the field received this name after the book Elementa Cal-
culi Variationum written by Euler in 1733. Some remarkable applications were the Seven
Bridges of Königsberg problem (which laid the foundations of graph theory), the Knight’s
Tour problem, and the Transportation problem.

In the 19th century, there were countless contributions by important scientists such as
Charles Babbage, Joseph Fourier, Denis Poisson, and Jacob Jacobi. The rigorous foundation
of Mathematical Analysis is due to the contributions of Karl Weierstrass, who improved
the notation that prevailed in such days by formalizing the ϵ, δ infinitesimals and some ax-
ioms and definitions. Augustin Louis Cauchy developed various mathematical notions that
helped to formalize the axioms of analysis. Moreover, he proposed iterative methods for
solving systems of equations. Carl Friedrich Gauss studied the method of least squares to
predict the orbital location of the asteroid Ceres. As a consequence, such a method is now
extended in applied mathematics as the objective function. Bernhard Riemann defined the
concept of Riemann’s integral and gave rigorous properties for its application in real ana-
lysis. Among many applications, it is noteworthy to mention the formulation of geodesic
and brachistochrone curves. The first is the curve that minimizes the distances between
points, and the second is the curve that minimizes the time required to travel from one
point to another, i. e. the fastest descent. Related to the linear methodologies, around the
1830s, the Fourier–Motzkin elimination algorithm was implemented for solving systems of
linear inequalities via the elimination of variables. A turning point in applicability was the
transportation cost problem studied by Babbage for the Royal Mail of the United Kingdom
and the Diminishing return principle proposed by D. Ricardo for harvesting purposes.

With the background of Mathematical Analysis and Calculus developed by remarkable
mathematicians over the last three centuries, mathematical optimization became a well-
defined discipline. At the beginning of the 20th century, the field of Operations Research
arose as an application to give a quick answer to military conflicts. We must bear in mind
that most applications of modern mathematics emerged due to the impact of the First
World War (1914–1918) and the Second World War (1939–1945), as stated in McCloskey
(1987). Actually, it was not a sheer coincidence since most of the scientific revolutions have
been largely due to historical crises. Around 1936, European countries had one thing in
common, take smart countermeasures that prevent themselves from external attacks. The
interdisciplinary groups of scientists had to follow a plan: collect data from direct ob-
servation, mathematical modeling of the ongoing operations, give the best solution for a
given problem, and give feedback on the impact of the strategy conducted. As a result,
a scientific-based procedure had born. The approach developed is the same that is used
nowadays to carry out projects in the Operations Research field. Not only focused on bel-



2.2 operations research 15

ligerent or military strategies, today we can find applications of OR in logistics, finances,
marketing, R&D management, industrial environments, pharmacist, computer science, ap-
plied physics, and so on.

One of the most known applications of OR is linear programming, which is a set of tech-
niques that provides algorithms and tools to solve mathematical optimization problems
represented by linear equations. In a precise context, we optimize a linear cost function
subject to linear inequality constraints that define the feasible region, that is to say, a con-
vex polyhedron. The canonical form of a linear programming problem can be written as:

Minimize cTx,

Subject to Ax ≤ b, (2.9)

x ≥ 0,

where x ∈ Rn is the decision vector, c ∈ Rn is the coefficients of the objective function,
A ∈ Rm×n is the argument matrix, and b ∈ Rm the vector of constraints. Some examples
of linear programming applications are the following examples:

Problem 1. Diet problem (Pulliam, 1975): Motivated by the USA army, the goal is to min-
imize the cost of food menus satisfying basic nutrient requirements for their soldiers.

Problem 2. Supply Chain problem (Zhou et al., 2000): Based on the idea of a company
that needs to reschedule their production, the goal is to select the best combination
of items to produce so that they maximize the income with limited time and material.

Problem 3. Travelling salesman problem (Laporte and Martello, 1990): Given a list of
points, what is the shortest cycle path that crosses each city exactly once?

Problem 4. Vehicle routing problem (Federgruen and Simchi-Levi, 1995): It is a generaliz-
ation of the above mentioned problem. Given a fleet of vehicles, what is the optimal
set of routes that deliver some product to a set of customers?

In 1939 Leonid Kantorovich defined the formulation of the linear programming problem
with a method for solving it. In a similar way, T. C. Koopmans formulated applied eco-
nomic problems with linear programming formulation and Frank Lauren Hitchcock stud-
ied transportation problems as linear problems with a procedure to solve them. During the
1940s, George B.Dantzig mathematically analyzed the planning problems concerning the
United States Air Forces as part of the Headquarters Statistical Control department. During
this decade, Dantzig defined the general formulation of linear programming methodology
independently from Kantorovich. A great advance came when, in 1947, he developed the
Simplex algorithm (Dantzig, 1990). The name of the algorithm is derived from the geo-
metrical concept of simplex for arbitrary dimensions, in particular, the adjacent vertices
of a point generate a convex n-polytope. The Simplex algorithm operates in the canonical
form of the linear problem and seeks the optimal point in the feasible region defined by
the constraints for a given cost function. The implementation solves linear programming,
under some conditions, via recursive iterations. Dantzig later discussed his method with
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John von Neumann, who quickly linked the Simplex with his work in game theory. As a
consequence, Neumann defined the theory of duality which converts the primal problem
(Eq. 2.9) into a dual problem with representation:

Maximize bTy,

Subject to Ay ≤ c, (2.10)

x ≥ 0.

This transformation provides us with information about the boundaries of the optimal
solution to the primal problem. The dual problem reflected in Eq. 2.10 is called symmetric
due to the x ≥ 0 condition stated in Eq. 2.9, but the problem may be asymmetric when
such condition is not presented. It is easy to note that, for every primal problem with
symmetric duality, the dual of the dual is the primal problem. In addition to this result,
there exists vast literature that gives a mathematical theory for finding optimal solutions
to linear programming, for instance, the fundamental theorem of programming theory. In
1951, Harold Kun and A.W. Tucker formalized the nonlinear optimization problems and,
in 1957, Richard Bellman developed the concept of dynamic programming.

From then on, the interest in Operations Research exponentially increased and so the
literature related with. Consequently, new branches of OR arose such as simulation, expert
systems, machine learning, econometric processes, and multi-criteria decision analysis. All
of them have a common goal: convert human decision making into an automated, rigorous,
and objective procedure.

2.3 computer science

Computer Science is the study of information by means of algorithms and computation
techniques. This academic research covers both theoretical and practical approaches, which
makes it a complete science. Its applicability is highly related to mathematical calculus due
to its objective is to solve a problem by means of a finite number of steps. However, over the
years and the industrial developments, various branches with absolutely different focuses
have been added to this field. Actually, it is proven that the history of computing is way
longer than the history of either software or hardware.

Historically, when we refer to any mechanism or tool that allows humans to perform
calculations, we are implicitly talking about computation. The use of stones for accounting
purposes was humanity’s first attempt to build a computation machine. The first goal was
to aid people to compute calculations correctly and quickly. It was a simple but effective
technique for doing mathematics due to it only requires to have a bunch of stones as great
as needed. Advanced cultures also developed advanced ideas for computation. Another
tool that aided to store mathematical identities and methods was the tally sticks. Such
artifacts were carved to store relevant information and their history is quite ancient. Two
examples are the Lebombo bone, which originated 37000 years ago, and the Ishango bone,
founded in the Democratic Republic of Congo and estimated to be about 8500 years old
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(Pejlare and Bråting, 2019). With the advent of counting tables, humans could perform fast
calculations with a portable tool. The most representative example is the abacus, which is
assumed to be designed in the III century in Sumer. The abacus is utilized for addition,
subtraction, multiplication, and division; with around 2000 years of documentation use
(Samoly, 2012). However, it still has modern educational applications, although with the
Chinese decimal abacus version. For a long time, it has been the major computational tool
built by humans. Even though it may seem poorly elaborated, most of the basic real-life
problems that concern mathematics have been solved by the use of these basic counting
tables.

No accurate history of computer science can be told without recognizing the import-
ance of binary logic. That is not only important for the development of modern computer
systems, but also for establishing the basis for the information age. Thanks to the devel-
opments made in the 18th century by Gottfried Wilhelm Leibniz and in the 19th century
by George Boole. Nowadays, the internal system of computers works by means of on-off
states. In the first place, Leibniz wrote about binary systems as logical operators to execute
actions. Secondly, Boole developed the field of boolean algebra due to their book The Laws
of Thought in 1845, providing consistent algebraic systems and properties to handle binary
statements.

In regard to the first contributions to physical technological devices for computation, we
can mention Charles Babbage as the first scientist to create a mechanical computer that
executed operations up to eight decimal points. In 1834, he designed a machine able to
execute operations by means of a punch-card input system which was called an “Analytic
engine” (Bromley, 1998). Four years later, he has reached the operative functioning of the
machine, which can be considered the first implementation of a modern computer-like
instance. At the same age, Ada Lovelace evolved the first computer algorithm for comput-
ing Bernoulli numbers, making her the first computer programmer in history. Owing to
the research conducted between Babbage and Lovelace, the field of computer science ad-
vanced considerably. A major turning point was made in 1886 by Charles Sanders Peirce,
who meticulously described how logical operators have to be conducted through electrical
switching circuits (Peirce and Eisele, 1976). That revolutionary concept is currently used
to produce digital computers. Afterward, he defined the NAND and NOR universal logic
gates that could replicate the functioning of every other logic gate, although they were
proved and formalized by Henry M. Sheffer.

The 20th century is considered the most prolific era of computer science due to the
main technological developments. In the field of electronics, the introduction of capacit-
ors, diodes, inductors, resistors, and transistors in the industry allowed humans to create
integrated circuits. In 1936, Alan Turing together with Alonzo Church refined the notion
of algorithm, under the so-called Church-Turing thesis, giving a proper definition and
remarking the limitations attached to them (Copeland, 1997). In the same year, Turing
published his work on the Turing machines, which stated the principles of modern com-
puters and the concept of stored-program computer instructions. Hence, a machine able
to execute a given task is considered Turing computable. Thus, we can say that the contri-
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butions of Alan Turing in the field of computer science laid the foundations of this subject,
which is why he is considered the father of theoretical computer science (Cooper and van
Leeuwen, 2013). In addition to him, during the middle of the twentieth century, there were
three scientists whose contributions to this field should be highlighted. John von Neu-
mann (1993) developed the known von Neumann architecture/model, which describes an
electronic digital computer designed with a processing unit, control unit, memory, mass
storage, and input-output devices. Claude Shannon (1948) applied probability theory to
electrical applications of Boolean algebra in his work “A mathematical theory of communica-
tion” and so funding the field of information theory. Norbert Wiener defined the concept
of cybernetics from warlike applications. In addition, he theorized about the possibility of
machine-like intelligence by means of feedback mechanism (Li et al., 2019), which meant
a significant step towards the modern concept.

From the second half of the XX, the number of invents and developments is countless.
All the applications, machines, and theories designed up to that point were very useful for
engineers and scientists at that time. The computer revolution is still a growing process in
both hardware and software. As a consequence, nowadays computers are part of our daily
work.

2.3.1 Python programming language

At the beginning of 1990, Guido van Rossum created open-source Python with the aim of
developing a friendly programming language based on the readability of the code (Van
Rossum and Drake Jr, 1995). It is an object-oriented and high-level programming language
with general-purpose scope. Python supports multiple programming paradigms like pro-
cedural, functional, and object-oriented programming. Currently, it is broadly used due to
its elegant syntax and human-readable typing. For instance, the white space indentation
to delimit blocks and statements makes it understandable.

Table 2.2: Release versions of Python over the years.

Release End of support

Version Subversion Date Subversion Date

0 0.9 20-02-1991 0.9.9 29-07-1993
1 1.0.4 26-01-1994 1.6.1 05-09-2000
2 2.0.1 16-10-2000 2.7.18 01-01-2020
3 3.0.1 03-12-2008 3.10.4 01-10-2026

In its early stage, Rossum started the deployment at Centrum Wiskunde & Informatica
(CWI) in the Netherlands. Thus, the Python interpreter is freely available on their website
https://www.python.org/, which is also freely distributed. That site also contains informa-
tion related to the different versions, documentation, third-party modules, programs, tools,
and many more data. The interpreter also has data types previously implemented in C or

https://www.python.org/
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C++ with the reference implementation of CPython written in C. The released versions
can be divided into four main blocks displayed in Table 2.2.

In 2022, the 3rd version is still maintained and remains the current latest version, which
is considered the launching of 3.11 and 3.12 subversions. During the experiments conduc-
ted within this thesis, we used the 3.8, 3.9, and 3.10 versions of Python.

The Python Package Index, known as PyPI, is a repository of software for the Python
programming language. It helps to find and install software developed by the Python open
community. Among all the libraries and packages implemented in Python, we would like
to emphasize the ones that have helped to carry out the case study and our experiments:

• NumPy: It is a library for numerical computing in Python (Harris et al., 2020).
Numpy is considered referent and a de facto standard for array computing. It of-
fers multiple objects and functions for data vectorization, as well as other algebra
and analytic operators. Official website: https://numpy.org/.

• Pandas: It is a powerful data analysis library used for data import and manipulation
(Wes McKinney, 2010). It highlights its IO tools that handle multiple data formats.
Official website: https://pandas.pydata.org/.

• Matplotlib: It is a library that aims to ease the data visualization procedure (Hunter,
2007). It helps to create static, animated, and interactive plots in a straightforward
way. Official website: https://matplotlib.org/.

• SciPy: It contains fundamental algorithms for scientific computing in Python (Vir-
tanen et al., 2020). SciPy provides algorithms for algebra, mathematical calculus, and
statistics. Official website: https://scipy.org/.

• Scikit-learn: It is the referent Python package for data analysis and Machine Learning
(Pedregosa et al., 2011). Scikit-learn aims to provide not only statistical estimators but
also transformers and pre-processors widely used in Business Analytics. It is built
on Numpy, SciPy, and Matplotlib. Official website: https://scikit-learn.org/stable/.

• PyTorch: It is an optimized tensor library, based on Torch, for deep learning using
GPUs and CPUs (Paszke et al., 2019). By using Python class objects, it converts the
graph-topology architecture into a computational model. Official website: https://
pytorch.org/.

• TensorFlow: It is an end-to-end open source platform for deep learning (Abadi et
al., 2015). It is based on intuitive high-level APIs like Keras for model generation. It
makes use of tensors for data processing, thus making the execution efficient. Official
website: https://www.tensorflow.org/.

• Statsmodels: It is a library with a complete toolbox for statistical and econometric
analysis (Seabold and Perktold, 2010). It provides a large list of models, tests, and
data exploration for statistical purposes. Official website: https://www.statsmodels.
org.

https://github.com/python/cpython
https://pypi.org/
https://numpy.org/
https://pandas.pydata.org/
https://matplotlib.org/
https://scipy.org/
https://scikit-learn.org/stable/
https://pytorch.org/
https://pytorch.org/
https://www.tensorflow.org/
https://www.statsmodels.org
https://www.statsmodels.org
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2.3.2 R programming language

Ihaka and Gentleman (1996) designed and implemented a statistical computing language
for data analysis and graphics called R. This programming language aims to offer statistical
software in an open-source environment with a large variety of packages stored in the
Comprehensive R Archive Network (CRAN). The scope of R applications has approached
subfields of statistics as data analysis (Chambers, 2008), data science (Peng, 2016), and
spatial data analysis (Kaya et al., 2019). Nonetheless, other disciplines that require the use
of computational statistics, such as bioinformatics (Gentleman, 2008) or medicine (Sidey-
Gibbons and Sidey-Gibbons, 2019), also make use of R. The invention of R was influenced
by the S programming language (Chambers, 1998). In particular, R stated as software to
overcome many of the shortcomings of the commercial software S-PLUS. The popularity
of the R software is mainly associated to its applications in data mining, where statistical
success has been obvious (Tippmann, 2015). In 1995, R was made free software under the
GNU General Public License.

R language is an object-oriented and functional programming software whose ap-
proaches and capabilities are given by customized user-created packages. It can be eas-
ily downloaded from its official website https://www.r-project.org/, where its currently
available version is 4.2.1 launched on the 23rd of June of 2022. The integrated development
environment usually linked to R is RStudio Desktop, which has a free-based download on
his website https://www.rstudio.com/. Additionally, it has an excellent reporting system
generated by knitr (Xie, 2015), xtable (Dahl et al., 2019), RMarkdown (Xie et al., 2018), and
Shiny (Chang et al., 2021b). Some of the most useful R packages are listed here:

• Tidyverse: It is a library that contains a collection of packages intended for data sci-
ence (Wickham et al., 2019). In its collection we can find useful modules as dplyr,
tidyr, readr, and purrr. The design of tidyverse has an underlying philosophy, gram-
mar, and data structures. Official website: https://www.tidyverse.org/.

• Tidymodels: It is a collection of packages with a large framework for statistical mod-
eling (Kuhn and Wickham, 2020). The functionality and principles are based on the
tidyverse library. Official website: https://www.tidymodels.org/.

• ggplot2: It is a tidyverse module for data graphics (Wickham, 2016). It is a very
famous package for data visualization due to the beauty and elegance of its aesthetics.
Official website: https://ggplot2.tidyverse.org/.

• NLoptR: It is an R interface of the NLopt library (Johnson, 2020). It provides al-
gorithms for local/global nonlinear optimization with nonlinear constraints and
lower-upper bounds. Official website: https://astamm.github.io/nloptr/.

2.4 business analytics

Business Analytics (BA) refers to the set of procedures and methodologies that develop
models for organizations in order to provide intelligent systems that drives the decision

https://cran.r-project.org/
https://www.r-project.org/
https://www.rstudio.com/
https://github.com/tidyverse/dplyr
https://github.com/tidyverse/tidyr
https://github.com/tidyverse/readr
https://github.com/tidyverse/purrr
https://www.tidyverse.org/
https://www.tidymodels.org/
https://ggplot2.tidyverse.org/
https://astamm.github.io/nloptr/
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making of the business strategy. With the development of modern business models of
the XXI century, the interest in this subject has greatly raised, and so has the literature
related (Power et al., 2018). The main objective is to join the industrial processes to give
added value, which involves tasks from data digitalization to the final launch of the imple-
mentation. Due to a large amount of information to consider, BA involves many different
methods that provide a correct use of the data acquired and a strategic response to im-
prove the situation of a company (Lepenioti et al., 2020). Then, this field can be broken
down into three major subfields:

Descriptive Analytics: It is the study of the current situation of some business event, al-
though it could also analyze past related events. In general, the objective is to gain
insight to make an exhaustive diagnosis of the studied scenario. The point is to collect
raw data (either owned or from other sources) and convert it into valuable informa-
tion for the organization. The analysis is usually presented as a summarized report
that includes the most relevant items. For this stage, data visualization techniques are
commonly applied, which gives an added value that helps the decision makers to un-
derstand their actual situation. Descriptive Analytics aims to answer the questions
“What has happened?”, “Why did it happened?”, and “What is happening now?”

Predictive Analytics: It is the study that provides tools, such as algorithms or models,
that allow the decision-makers to estimate the future situation of an event by means
of forecasting and prognosis. That business part is highly connected with statistics
and computer science because the main background is based on the mathematical
computation of data. The complexity of the different approaches to performing has
changed over the years. Currently, Artificial Intelligence has taken over the sector
with the use of advanced data processing and the use of operations research models.
As we can note, the level of complexity for this stage is considerably high, so the
effort put into this process is also high. Predictive Analytics attempts to answer the
questions “What will happen?”, “How will happen?”, and “Why will happen?”

Prescriptive Analytics: It is the analysis of actions and decisions to carry out from our
current situation and probable future events. It can be understood as the last step to-
wards smart decision making or R&D (research and development). It aims to provide
the best possible response based on intelligent tools and experience in the business
sector. In comparison to Descriptive or Predictive Analytics, this stage is not as de-
veloped nor has the same level of consistency. Moreover, this stage can be as accurate
as our description and prediction of the studied scenario. Then, it is limited by the
knowledge obtained in the last two stages. Prescriptive Analytics has as an objective
answer the questions “What will we do?”, “How should we do so?”, “How can we
take advantage of it?”, “How can we avoid failure?”, and “Assuming a bad prospect
for the organization, could we deploy efficient countermeasures?”

The description of the Business Analytics synergy made between the three stages is
depicted in Fig. 2.2.
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Figure 2.2: Standard stages within a Business Analytics approach for solving some decision-making
problem.

Source: Own elaboration.

In the managing and planning of business processes, every single stage of BA is me-
ticulously conducted. Most companies base their strategies on assessable and measurable
goals, in such a way stakeholders can evaluate the global position of the actions made.
Then, each step is as important as the others because it is necessary to control all the past,
present, and future things that affect the business model. The more versatile and dynamic
are our strategies, the more accurate and suitable our response will be.

Regarding the incorporation of smart techniques into the business sector, BA has to be
understood as a constant loop of proactive implementation. In other words, the representa-
tion of Fig. 2.2 has to be constantly applied with respect to time, thus ensuring continuous
improvement for the ongoing projects. On the contrary, a fixed business strategy will not
take into consideration new competitors or new market niches, so it will not be able to fit
the reality of future events.

As far as multi-criteria optimization and statistics are concerned, their case study is
focused on the predictive analytics stage. The combination of advanced techniques such
as Multiple-Criteria Decision Making, when facing small datasets, or artificial intelligence,
when working in a Big Data environment, allow us to perform smart implementation in
our industrial processes. Nonetheless, when dealing with predictions or responses of some
sort, we usually decide whether to add them to our system or not. In most cases, we do
not analyze nor evaluate why our intelligent systems have returned this particular output.
In such a case, we have to deal with a less-mentioned problem, which is the explainability
of the model’s result against the case study.

In the stage between Predictive and Prescriptive Analytics, the evaluation and validation
of the models is one of the steps which requires major attention and rigor. It is important
to get results that help us to guide our business model, but in any case, it is essential to
prove them in experimental tests or simulated scenarios in order to ensure their commis-
sioning. Whenever we want to evaluate the obtained results, we have several approaches
to perform it that depend on the level of complexity needed. In Fig. 2.3, we have illustrated
the different steps to follow to pass from prediction to decision making. In general, this is
a common standard for business strategies and is broadly accepted in data science. Even
though it may seem a complete process, sometimes the response is not analyzed per se.
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That is to say, even if we know that the answer is correct, we cannot guarantee that such a
response is due to coincidence or a correct methodology.

LaunchingValidationModeling Target
definition

DDBB

PREDICTIVE 
ANALYTICS

PRESCRIPTIVE 
ANALYTICS DECISION-MAKING

Intelligent
response

Figure 2.3: Business Analytics transition from predictive to prescriptive solutions and final decision-
making application.

Source: Own elaboration.

In this thesis, we have focused our attention on the implementation of predictive mod-
els that allow us to give the best response possible for prescriptive purposes. With that
purpose, we have designed multiple attribute optimization methodologies to obtain artifi-
cial intelligence and multi-criteria decision analysis models. In addition, our goal was not
only the algorithms for decision making, but also novel techniques for evaluating how and
why our model has returned some given response. That is why the thesis reinforces the
prescriptive side of the methods by assessing and evaluating the response that leads to a
decision.

2.5 summary

In this chapter, we have carried out a historical review with the aim of presenting the
background related to Multiple-Criteria Decision Making and Artificial Intelligence. For
this purpose, we have introduced elemental concepts of the fields of Probability, Statistics,
Operations Research, Computer Science, and Business Analytics. Hence, it is assumed
that the basic knowledge in each mentioned area is understood and also that the reader is
acquainted with these subjects.





3
M U LT I P L E - C R I T E R I A D E C I S I O N M A K I N G

In our daily lives, we face real-world problems with a high level of complexity, inaccuracy,
and uncertainty. Human intuition when dealing with these problems makes us consider
various points to take into account, which is taught through observation and examination
of related past events. Then, it is essential to recognize that decisions are based on simul-
taneous variables that determine the degree of subjective assessment that people attribute
to each of them. In fact, it would be vague to represent the nature of an event with a unique
variable and expect that it describes the whole behavior of the process. As a consequence,
the strategic planning for aiding a decision-making problem has to be approached by con-
sensus for a multidisciplinary team expert in solving similar matters. They are the so-called
decision-maker. Their experience with the problem will decide the external components to
provide beforehand in order to utilize them during the computational phase. In turn, they
are responsible to analyze the impact and the consequences of both selected criteria and
their relevance over the final decision.

When talking about the relative importance of a criterion, we are implicitly pointing to a
weighting scheme, which is defined as a numerical board containing a value linked to each
criterion. That scheme has to convey the insight of the people in charge of the assessment
that will be mathematically represented. Thus, regardless of the kind of choice (categorical
or numerical), it must be consistent and robust in any case. Such values rely not only on
how decisive a feature is but also on the modeling phase that involves their gathering and
processing. The second part is not trivial due to the nature of the problem can corrupt the
data, as well as their structure.

Multiple-Criteria Decision Analysis (MCDA) or Multiple-Criteria Decision Making
(MCDM) is a branch of operations research defined as a set of algorithms and method-
ologies whose goal is to aid the decision-maker when there exist multiple conflicts of in-
terests (Hwang and Yoon, 1981). In order to study, analyze, and solve the above-mentioned
problems, the MCDA field focuses on the development and implementation of tools from
various perspectives and strategies. It combines mathematical modeling with an econom-
ical underlying point of view to attach a strong level of consistency (Triantaphyllou et al.,
1997). It is also combined with advanced computational calculus to automatize and speed
up the decision times. As a whole, we have an interactive system of methods that allow
the DMs to interactively select and process their datasets with satisfactory feedback that
eases common agreement between the agents involved.

Although MCDA is developed as a distinguished subfield of OR, many other applied
disciplines have utilized their algorithms and techniques to solve conflicting decision scen-
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arios (Doumpos and Grigoroudis, 2013). The major advantage of its application is that
it combines experienced-based background, by means of the selection of criteria, with a
model-driven selection of alternatives based on mathematical reasoning, via discrete op-
timization, which gives quantitative confidence when reported in the decision making
(Roy, 1996). A detailed procedure of the stages involved in a modeling process for MCDA
is depicted in Fig. 3.1.

1st STAGE

Propose the problem 
that requires a 
decision phase

2nd STAGE

Define and quantify 
the criteria

3rd STAGE

Select the procedure 
suited for the

case study

4th STAGE

Perform the model 
that conducts the 
decision making

Figure 3.1: Stages involved in an MCDA process.
Source: Own elaboration.

Due to the optimization background that relies on the MCDA methodology, this field
is divided into two multi-objective optimization branches (Triantaphyllou, 2000). On the
one hand, Multi-Objective Decision Making (MODM) concerns the decision problems for a
continuous decision space. On the other hand, Multi-Attribute Decision Making (MADM)
just refers to decision problems with discrete decision spaces. In particular, when talking
about MCDM we are referring to MADM since we just study discrete optimization.

Despite the fact that MCDA offers many advantages, it is important to know some of
its limitations. Given that the conflict of interests between DM’s might be cumbersome,
the procedures implemented during the methods do not always assure optimal solutions.
Instead, the final decision is actually the result of a mutual accordance among each of the
individuals.

3.1 approaches of multi-criteria decision analysis

The different methodologies implemented in MCDA can be divided into 4 subfields as
stated by Doumpos and Grigoroudis (2013). Depending on the data utilized, the sorting
algorithm, the data processing, the comparisons between alternatives, and the scope of the
investigation we can categorize the deployed method.

3.1.1 Multi-Objective Mathematical Programming

Before we present the list of MCDA algorithms developed in the thesis, we want to high-
light the underlying mathematical optimization required to solve those problems. In the
early 1960s (Charnes et al., 1963; Charnes et al., 1968) introduced simple linear program-
ming for goal programming. Over the years, it meant an incredible advance in operations
research, with increasing success in the 21st century (Aouni and Kettani, 2001). In the
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field of BA, we always have attributes or criteria conflicting with each other. Then, we can
mathematically formulate a multi-objective optimization problem (MOP) as:

minimize F(x) = [ f1(x), . . . , fk(x)] ,

s.t gj(x) ≤ 0, 1 ≤ j ≤ m (3.1)

x ∈ Ω,

where x ∈ Rn is the vector of design variables, Ω is the feasible set of vectors, and each
gj the constraint functions. From now on, we have to define a vector sort criterion because
the vector space Rn is not ordered per se.

Definition 3.1.1. Given two vectors X, Y ∈ Rn, the order relationship ◁ in the vector space Rn

is defined as:

X ◁ Y if and only if xi < yi, 1 ≤ i ≤ n.

X◁Y if and only if xi ≤ yi, 1 ≤ i ≤ n.

Even though the ◁ relationship is well-defined, in MOPs we cannot ensure the existence
of a unique solution that optimizes each objective function fi. Hence, the concept of Pareto
dominance is presented to overcome that concern.

Definition 3.1.2. An element of the feasible set x∗ ∈ Ω in a MOP framework is said to be a Pareto
optimal solution if x∗ dominates any other x ∈ Ω, i. e. F(x) < F(x∗).

The definition of the Pareto optimal solution allows us to define the Pareto frontier
(or Pareto front) as the Pareto solutions over the feasible set associated with the MOP. In
Fig. 3.2 is depicted how a Pareto frontier would be when solving an optimization problem
regarding just two objectives.

One way to address the problem Eq. 3.1 is by means of goal programming formulation
(Tamiz et al., 1995). The point is to optimize some defined goals, to which some deviations
are attached. The concept of a goal has to describe some ideal scenario or reference point
for comparison purposes. Once the goals are set by the decision-makers, the formulation
is presented as:

minimize Gd(d+j , d−j , w),

s.t. f j(x) + d+j − d−j = sj ∀j ∈ {1, . . . , k}, (3.2)

d+j , d−j ≤ 0 ∀j ∈ {1, . . . , k},
x ∈ Ω,

in which, the sj values are the target levels for the objective j and each d+j , d−j are the
target deviations. Finally, Gd is the function of deviations parameterized by a weighting
scheme w.
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f 2
(x
)

f1(x)

Figure 3.2: Pareto frontier (red color) for a bi-objective problem of f1 and f2. The remaining points
represent the non-Pareto solutions.

Source: Own elaboration.

3.1.2 Multi-Attribute Utility/Value Theory

Multi-Attribute Utility/Value Theory, or MAUT/MAVT in short, conveys the classical case
of utility theory in multidimensional spaces to MCDA. On the one hand, the utility refers
to the uncertainty related to the decision matrix (Vincke, 1992). On the other hand, the
value refers to the magnitudes in a known environment. The concept of utility was already
studied in the 18th century by Jeremy Bentham, which stated that every action could be
measured through six dimensions of value, i. e. criteria (Gass and Assad, 2005). In his
proposal, he aggregated positive and negative categories to obtain the score associated
with the action. Hence, it can be considered one of the first approaches to solving decision-
making problems. In modern terminology, it is generalized to multidimensional spaces
with functional operators as utilities or values.

Given a vector of decision data x the objective of both MAUT and MAVT is to aggregate
the known attributes of each alternative to create a reference system. It is computed by
means of a so-called value function V(x), which is responsible to give meaningful inform-
ation to the decision-makers. It is mathematically represented as:

V(x) =
M

∑
j=1

wjvj(xj). (3.3)

Each wj value is the trade-off constant, where it is mainly stated that their sum is equal
to 1, and each vj is the marginal value function per each criterion j. Such functions are set
in a predefined scale, which is usually [0, 1]. The particular case of MAUT/MAVT where
vk(x) = xp, p > 0, is the weighted average mean per each criterion, in which p = 1 matches
with the weighted sum model and p = 0 with the weighted product model.
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Once we know how we asses each criterion vj and how we aggregate them V, we can
arrange each alternative, through their decision data available, by using the ◁ pairwise
relationship per each i, k element:

xi ◁ xk if and only if V(xi) < V(xk) Domination

xi ∼ xk if and only if V(xi) = V(xk) Indifference
(3.4)

Finally, an experimental analysis is applied to the outcome in order to evaluate the
performance of the model. Differential techniques and sensitivity analysis are common
practices that allow us to understand the results and discover new alternatives. In Fig. 3.3
it is depicted the procedure to carry out a Multi-Attribute Utility/Value technique.

Marginal
value

function

Aggregation 
strategy

Final decisionProblem
definition

Order 
relationship

Outcome 
evaluation

Figure 3.3: Workflow required to conduct a Multi-Attribute Utility/Value methodology.
Source: Own elaboration.

3.1.3 Outranking Relationships

Roy (1990) stated the foundations of outranking relation theory (ORT) in the 1960s. The
most representative method is the ELECTRE (ELimination Et Choix Traduisant la REalité)
defined in Benayoun et al. (1966) and subsequently developed in Roy (1968), which deals
with outranking relations via pairwise comparisons among alternatives under each one of
the criteria separately. Afterward, it evolved into ELECTRE II, ELECTRE III, ELECTRE IV,
ELECTRE IS, and ELECTRE TRI; among many other variants.

The prime ELECTRE method can be applied following the next steps stated in Trianta-
phyllou (2000).

ELECTRE method:

Step 1 Normalize the decision matrix [xij], per each i ∈ {1, . . . , N} and j ∈ {1, . . . , M}, as
the vector normalization:

rij =
xij

||xj||1
=

xij

∑M
l=1 xl j

. (3.5)

Step 2 Calculate the weighted normalized decision matrix [vij] according to the set of
weights {wj}M

j=1 such that ∑M
j=1 wj = 1. Then, we have vij = wjrij for each i ∈

{1, . . . , N} and j ∈ {1, . . . , M}.
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Step 3 Determine the concordance and discordance sets that allow us to compute the pair-
wise relationships:

Ckl = {j : vkj ≥ vl j} Concordance set,

Dkl = {j : vkj < vl j} Discordance set.
(3.6)

Step 4 Define the concordance and discordance matrices by means of the previously
defined sets:

Ckl = ∑
j∈Ckl

wj Concordance matrix,

Dkl =

max
j∈Dkl
|vkj − vl j|

max
j
|vkj − vl j|

Discordance matrix,
(3.7)

where the entries k = l are not defined for either matrices C and D.

Step 5 Determine the concordance and discordance matrices via threshold comparisons.
Such values are calculated through average concordance-discordance indexes, whose
values are:

c̄ =
1

M(M− 1) ∑
k ̸=l

∑
l ̸=k

Ckl ,

d̄ =
1

M(M− 1) ∑
k ̸=l

∑
l ̸=k

Dkl .
(3.8)

Now, we can define the binary matrices by means of the c̄ and d̄ values as:

Fkl = 1[Ckl ≥ c̄] Concordance dominance matrix,

Gkl = 1[Dkl ≥ d̄] Discordance dominance matrix.
(3.9)

Step 6 Determine the aggregate dominance matrix as the product of the dominance
matrices, i. e.

Ekl = Fkl ·Gkl . (3.10)

Step 7 Iteratively eliminate the “less favorable” alternatives employing the Ekl entries. It is
easy to note that if Ekl = 1, then the alternative Ak dominates the Al alternative, and
so it is preferred for both concordance and discordance. As a consequence, the best
alternative is the one that overpasses all other alternatives.

Another widely recognized instance of outranking models is the PROMETHEE (Pref-
erence Ranking Organization Method for Enrichment Evaluations) method (Brans, 1982;
Mareschal et al., 1984). It is based on differences among the scores of the alternatives to
get the best sample. There exist six types of preference functions defined by Brans and
Mareschal (2005) for comparative purposes.

The most basic version of the PROMETHEE methods can be applied following the steps
described in Behzadian et al. (2010).
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PROMETHEE method:

Step 1 Compute the deviations between criteria per each alternative for each j ∈
{1, . . . , M}:

dj(a, b) = gj(a)− gj(b) with a, b alternatives, (3.11)

where each gj is the evaluation of the criteria j expressed in their units and magnitude.
Then, these functions are responsible to rescale the data and so avoid a normalization
step.

Step 2 Apply the preference function of each criteria j ∈ {1, . . . , M}:

Pj(a, b) = Fj[dj(a, b)], (3.12)

where each Fj is a function with image in [0, 1].

Step 3 Calculate the overall preference index:

π(a, b) =
M

∑
j=1

wjPj(a, b), a, b alternatives. (3.13)

It is interesting to highlight that 0 ≤ π(a, b) ≤ 1 per each pair of alternatives a, b and
π(a, a) = 0.

Step 4 Calculate the outranking flows, known as PROMETHEE I partial ranking, as the
input-output average of preference index per each alternative a:

ϕ+(a) =
1

N − 1 ∑
b

π(a, b) Positive outranking flow,

ϕ−(a) =
1

N − 1 ∑
b

π(b, a) Negative outranking flow.
(3.14)

The outranking flow expresses the dominance of an alternative over the resultant. So
the higher ϕ+(a) and the lower ϕ−(a), the better the alternative a.

Step 5 Calculate the net outranking flow, known as PROMETHEE II complete ranking, as

ϕ(a) = ϕ+(a)− ϕ−(a). (3.15)

We would like to emphasize that −1 ≤ ϕ(a) ≤ 1 and ∑a ϕ(a) = 0.

Step 6 Rank the alternatives in descending order of the values of ϕ(a) since positive values
indicate that a outranks and negative values indicate that is outranked.

In general, an outranking relationship is understood as a binary relation that determines
the dominance of an alternative. Then, an alternative is preferred to any other if it domin-
ates it for some benchmark. Unlike MAUT/MAVT, the outranking relation methods have
two particular features:

1. Outranking relationships are not transitive, while MAUT/MAVT is transitive.
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2. Outranking relationships are not complete, while MAUT/MAVT has the relation
Eq. 3.4. Then, it is possible to tackle incomparable relations among alternatives.

Other useful outranking methods are described in § 3.2, with further approaches and
in-depth analysis of their properties.

3.1.4 Preference Disaggregation Analysis

When a problem with multiple criteria arises, the main challenge for both decision-makers
and analysts is how we come up with the proper model that leads to the final decision
(Jacquet-Lagreze and Siskos, 2001). Sometimes, the procedure to find a suitable method
is impossible since it is a time-consuming task. On the contrary, analysts could asses the
preferences of DMs by taking into account given successful past related instances. Then,
disaggregation approaches are built on a data-driven system in order to infer from de-
cision examples through regression-like schemes (Doumpos et al., 2022). Thus, Preference
Disaggregation Analysis (PDA) is an indirect approach to extracting underlying preferen-
tial information, such as comparisons, weighting schemes, trade-offs, etc; that will aid to
solve future decision-making problems.

Jacquet-Lagreze and Siskos (1982) developed the UTilité Additive (UTA) method, which
is considered the introduction of PDA theory for MCDA. It is very helpful when time
limitations exist or when the amount of information to process is massive. UTA basic-
ally generates MAUT/MAVT functions by applying linear programming techniques for
optimal inference. In general terms, the Preference Disaggregation Analysis framework is
formally defined as a set G = {g1, . . . , gM} of M criteria to maximize, where each gj(a)
represents the performance of the alternative a over the criterion j (Doumpos et al., 2022).
Depending on the scope of the problem, the objective of the PDA will be to:

1. Select the best alternatives.

2. Rank the set of alternatives.

3. Sort the alternatives through performance categories.

In such a way, the decision model will lead to functional models (MAUT/MAVT func-
tions), relational models (ORT), or symbolic models (based on decision rules). The type of
model has to return the best fit according to a predetermined set of parameters or criteria.
Finally, the evaluation of such fit has to be conducted by means of the set of responses
Y and a defined loss function L. The set of parameters obtained can be mathematically
written as:

P∗ = argmin
P
L(ŶP, Y). (3.16)

A classic example of a PDA method is the UTA-based model named MUlticriteria Sat-
isfaction Analysis (MUSA), presented in Siskos et al. (1998). It was designed to measure
customer satisfaction by using ordinal regression techniques.
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3.1.5 Multi-Criteria Decision Making properties

In the last section, we have mentioned some approaches of MCDA depending on the
strategy used to achieve the best result. Although they are very diverse according to their
focus, they have many properties in common (Hwang and Yoon, 1981). Some of them are
described in the following list in the same way as in Triantaphyllou (2000):

Alternatives: It is the set of available choices to consider for the decision markers. They are
supposed to be finite and well-known for the agents involved in the selection phase.
In general, they represent the candidates, elements, or items to select in MCDM. In
this chapter, we suppose that we have N ∈N different alternatives.

Multiple criteria: Each alternative has a series of associated attributes or features that
allows them to be considered when conducting the appropriate comparisons. They
are responsible for determining whether an alternative is preferred for some objective
or goal. From a mathematical perspective, the criteria determine the dimension of the
decision space. In this chapter, we assume that we have M ∈ N available attributes
to use as criteria.

Conflict among criteria: Owing to the attribute representation, the behavior of the vari-
ables may conflict with each other. A clear example would be the benefits conflicting
with the overhead. Thus, the confrontation among criteria is a common pattern in
MCDM.

Incommensurable Units: It is important to highlight that the nature of the criteria is usu-
ally connected with a certain magnitude, so each attribute might have its own units.
For example, we could have a scheme that considers distances (meters) and times
(seconds). Hence, the incompatibility associated with the combination of criteria adds
more complexity to the MCDM problems

Decision weights: Every MCDM method requires a weighting scheme that assigns the
relative importance or impact over the model. It is broadly extended that they are
normalized, i. e. the sum of them is equal to 1.

Decision matrix: The notation related to an MCDM can be mathematically represented as
a matrix. It is an easy formalization since we have N alternatives and M associated
criteria. Throughout this section, such decision matrix is denoted as X = [xij] with
i ∈ {1, . . . , N} and j ∈ {1, . . . , M}. In addition, the decision weights are attached to
X as w = (w1, . . . , wM), in which all the weights satisfies wj ∈ [0, 1].

Although these six properties appear in every MCDM problem, each method has its
own singularities that determine the type of problem and the scope of the purpose. One
way to classify them is depending on the dataset utilized we can distinguish among three
possible scenarios: Deterministic (no randomness is involved in the problem), Stochastic
(the information is defined as a family of random variables), or Fuzzy (the dataset has
non-random uncertainty attached). Another way to classify the methods is by considering
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Figure 3.4: Principal classes of MCDM methods based on a priori knowledge of the problem.
Source: Own elaboration, based on Hwang and Yoon (1981).

the number of DMs that take part in the decision process. It is basically divided by single
or grouped decision-makers. In this thesis, we have focused our attention on single DM
with deterministic and fuzzy approaches. In Hwang and Yoon (1981) the problems are
distinguished according to the information known by the DM, and the Fig. 3.4 illustrates
the structure described.

3.1.6 Data preprocessing

As far as MCDA is concerned, the decision-makers have to deal with conflict of interest
that entails the decision process. The collection of data, in particular the criteria selected, is
a hard task since it has to describe the reality of the problem and satisfy the requirements
of the DMs at the same time. Then, the criteria obtained has usually a different nature,
and so a different magnitude. It is easy to understand that the combination of distinct
units is mathematically and physically incorrect. In order to avoid the inappropriate step
of combining such magnitudes, we make use of the known process of normalization or
standardization. It basically involves a criteria-based transformation of the data before it
is computed through the decision-analysis algorithms.

In mathematical terms, normalization is a vector application ψ : RN → RN so that it
unifies self-variables or feature ranges in data. In Table 3.1 we have described some of
the most common normalization methods applied in both MCDM and Ia for the data
preprocessing step. An interesting particularity is that most of the researchers agree on
scaling the variables to [0, 1]N , although it is not strictly necessary because it depends on
the origin of the data.
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Table 3.1: List of the most used normalization methods in statistics for a given decision matrix [xij].

Normalization method Formulation [rij]

Vector ℓ1 normalization
xij

||xj||1
=

xij

∑M
l=1 |xl j|

Vector ℓ2 normalization
xij

||xj||2
=

xij√
∑M

l=1 x2
l j

Minkowski p-normalization
xij

||xj||p
=

xij[
∑M

l=1 |xl j|p
] 1

p

Feature (a, b)-rescaling a + (b− a)
xij −min{xij}

max{xij} −min{xij}

Feature rescaling (Max-Min)
xij −min{xij}

max{xij} −min{xij}

Feature Max-rescaling
xij

max{xij}
, with max{xij} > 0

Feature Min-rescaling
min{xij}

xij
, with xij > 0

Feature mean rescaling
xij − 1

M ∑M
l=1 xl j

max{xij} −min{xij}

Feature reference rescaling
xij

λj
, with known λj ∈ R\{0}

Standardization
xij − x̄j

σj

Gaussian normalization
1

σj
√

2π
exp

(
−
(xij − x̄j)

2

2σ2
j

)

Fuzzy normalization µ(xL
j ,xR

j ,αL
j ,αR

j )Lj ,Rj
(xij), as in Def 3.35

3.2 classical approach

As far as MCDM is concerned, the problem is performed by determining the decision
matrix X = [xij], so that i ∈ {1, . . . , N} and j ∈ {1, . . . , M}, where N and M are the
number of alternatives (Ai) and criteria (Cj), respectively. Then, the starting point for a
classical MCDM can be represented as:
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C1 C2 . . . CM

A1 x11 x12 . . . x1M

A2 x21 x22 . . . x2M
...

...
...

. . .
...

AN xN1 xN2 . . . xNM

w w1 w2 . . . wM

The relevance of each criterion within the model is transmitted by means of the w vector.
It is known as the set of weights so that they aggregate and regulate the values of the
decision matrix. In order to formalize a definition of weight in multicriteria optimization,
we design Ω = {(w1, . . . , wM) : ∑M

j=1 wj = 1, 0 ≤ wj ≤ 1} as the set of weights.

3.2.1 Weighted Mean Models

Weighted Mean Models (WMM) are a generalization of the commonly used weighted
sum models (WSM) formally introduced by Fishburn (1967), which is one of the classic
MCDA techniques due to its simplicity (Doumpos and Grigoroudis, 2013). The main idea
of the WMM is the additive utility assumption so that the value of a generalized p-mean
determines the ranking score. The greater the value, the higher score for the alternative.
Unlike the WSM, here we make use of normalization functions to avoid the main weakness
of the magnitude units when working with non-homogeneous data. In order to show the
mathematical properties of the method, Eq. 3.17 indicates its score function for a given
x = (x1, . . . , xM) ∈ RM of positive elements, w = (w1, . . . , wM) ∈ Ω and p ∈ R\{0} to
avoid non-rigorous definitions:

Mp(x, w) =

[
M

∑
j=1

wjx
p
j

] 1
p

(3.17)

Proposition 3.2.1 (Bullen, 2003). According to Eq. 3.17, there exists the limit of Mp when p
tends to −∞, 0, and +∞.

Proof. We assume that xj > 0 per each 1 ≤ j ≤ M, because the 0-case would be trivial.

• If p tends to +∞, we consider that x+ = max
1≤j≤M

xj > 0, then,

lim
p→+∞

Mp(x, w) = x+ lim
p→+∞

(
M

∑
j=1

wj

(
xj

x+

)p
) 1

p

= x+.

The second equality is easy to prove since xj
x+ ≤ 1, ∀j ∈ {1, . . . , M}.
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• When p tends to −∞, we proceed analogously by considering the element x− =

min
1≤j≤M

xj > 0 over the vector ( 1
x1

, . . . , 1
xM

). Thus 1
x− is the maximal element of the

reshaped vector, so we can notice that:

max
1≤j≤M

xj = min
1≤j≤M

(
1
xj

)
=

1

max
1≤j≤M

(
1
xj

) .

Therefore, we just have to apply it in the following statement:

lim
p→−∞

Mp(x, w) = lim
p→+∞

M−p(x, w) =
1

lim
p→+∞

(
M

∑
j=1

wj

xp
j

) 1
p
=

1
1

x−
= x−.

• When p tends to 0, we just have to consider the exponential and logarithmic functions,
because they are monotonic increasing functions in R+. Then,

lim
p→0
Mp(x, w) = lim

p→0
elogMp(x,w) = lim

p→0
e
(

1
p log ∑M

j=1 wjx
p
j

)
.

Applying L’Hôpital’s rule, we obtain lim
t→1

log t
t− 1

= lim
t→0

log t + 1
t

= 1 and lim
t→0

at − 1
t

=

log a. Hence,

lim
p→0

1
p

log
M

∑
j=1

wjx
p
j = lim

p→0

log ∑M
j=1 wjx

p
j

∑M
j=1 wjx

p
j − 1

·
∑M

j=1 wjx
p
j − 1

p
= lim

p→0

∑M
j=1 wjx

p
j − 1

p
=

= lim
p→0

M

∑
j=1

wj
xp

j − 1

p
=

M

∑
j=1

wj log xj = log

(
M

∏
j=1

x
wj
j

)
.

So we can conclude that the limit exists and its value is,

lim
p→0
Mp(x, w) = lim

p→0
elog

(
∏M

j=1 x
wj
j

)
=

M

∏
j=1

x
wj
j .

Proposition 3.2.2 (Bullen, 2003). Let X be a vector in RM, p ∈ R\{0} and w ∈ Ω a vector of
weights, then the following statements hold true:

i. min{x1, . . . , xM} ≤ Mp(X, w) ≤ max{x1, . . . , xM}.

ii. Mp(λX, w) = λMp(X, w), per each λ ∈ R.

iii. Mp ((x1, . . . , xM), w) =Mp
(
(xσ(1), . . . , xσ(M)), w

)
, per each 1-homogeneous permuta-

tion function σ in {1, . . . , M}.
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Once we know that the generalized p-mean is well defined, given a real number p, we
can proceed with the WMM by means of the following three steps.

Weighted Mean Model method:

Step 1 Normalize the decision matrix as [rij], per each i ∈ {1, . . . , N} and j ∈ {1, . . . , M}.

Step 2 Calculate the weighted p-mean of each alternative:

Mp
i = Mp(rij, w) =

[
M

∑
j=1

wjr
p
ij

] 1
p

, 1 ≤ i ≤ N. (3.18)

Step 3 Make a ranking of the alternatives in descending order of the values of {Mp
i }N

i=1.

Although we follow the hypothesis of maximizing the value of each criterion, we can
transform the features by using monotonic decreasing functions. Thus, we are modifying
the optimal direction of our functions. Depending on the scope of the problem, the Step 3
may be suppressed to select just the maximal element of the sequence.

Applying the Proposition 3.2.1, the WMM algorithm can be formalized for every p ∈ R

as:

M−∞(rij) = min
1≤j≤M

{rij} Minimum

M−1(rij) =
1

∑M
j=1

wj
rij

Harmonic mean

M0(rij) =
M

∏
j=1

r
wj
ij Geometric mean

M1(rij) =
M

∑
j=1

wjrij Arithmetic mean

M2(rij) =

√√√√ M

∑
j=1

wjr2
ij Quadratic mean

M+∞(rij) = max
1≤j≤M

{rij} Maximum

For instance, Fig. 3.5 depicts theMp value of the sequence X = {0.01n}100
n=1 when the p is

varied within the interval [−5, 5]. In addition, we have plotted the cases above mentioned
to observe how much the function varies.

Then, WMM can be understood as the generalization of Weighted Sum Models (WSM)
and Weighted Product Models (WPM), since they are particular cases of the cases p = 1
and p = 0 respectively. Moreover, the cost function linked to the ranking function (WMM
Step 2) is the p-norm of the sequence space ℓp. Therefore, we can establish a proposition
that relates the p selected with the results in terms of norms.

Definition 3.2.1. Given 0 < p < +∞ and a vector space KN, the sequence space ℓp(Kn) is the
subspace of all the sequences x = {xk}k∈N so that

∑
k∈N

|xk|p < +∞.
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4 2 0 2 4
0.0

0.2

0.4

0.6

0.8

1.0

Harmonic Geometric Arithmetic Quadratic Mp(X)

Figure 3.5: Image of the generalized p-mean of the {0.01n}100
n=1 sequence with uniform weights.

The X-axis represents the value of p and the Y-axis the image of Mp. The examples
highlighted with dots are the cases of p ∈ {−1, 0, 1, 2}.

Source: Own elaboration.

Then, per each p ≥ 1, we can define the norm || · ||p : KN → R operation as a real-valued
application with formulation:

||x||p =

[
∑

k∈N

|xk|p
] 1

p

.

The space given by ℓp(Kn) is a complete metric space for the norm || · ||p, and so it
is also a Banach space. For the particular case of MCDA, we solve problems defined in
[0, 1]M, so we have a bounded space with a finite dimension.

Proposition 3.2.3. Given two vectors X = (x1, . . . , xn) and Y = (y1, . . . , yn) with elements in

R or C and two real numbers p, q such that
1
p
+

1
q
= 1. Then,

|⟨x, y⟩| ≤ ||x||p||y||q. (3.19)

Eq. 3.19 is known as Hölder’s inequality and it generalizes the Cauchy–Schwarz inequal-
ity, obtained by making p = q = 2. As we are considering a finite n-dimensional Euclidean
space, we can rewrite Eq. 3.19 as:

n

∑
i=1
|xiyi| ≤

(
n

∑
i=1
|xi|p

) 1
p
(

n

∑
i=1
|yi|q

) 1
q

.

Proposition 3.2.4. Given a vector X = (x1, . . . , xn) of elements in R or C and two real numbers
p, q such that 1 ≤ p ≤ q. Then,

||X||p ≤ ||X||q ≤ N
1
p−

1
q ||X||p. (3.20)

As a consequence of Eq. 3.20, if p < q we can say that ℓp dominates ℓq. Thus, each space
is embedded in a decreasing way.
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Now, we can extend the concepts obtained by Propositions 3.2.3 and 3.2.4 in order to
figure out some properties of theMp(x, w) functions.

Proposition 3.2.5. Let X = (x1, . . . , xn) be a vector in Kn and w = (w1, . . . , wn) their weighting
values. Given two real numbers p, q such that 1 ≤ p ≤ q. Then,

Mp(X, w) ≤Mq(X, w), (3.21)

and so

∂

∂p
Mp(X, w) ≥ 0. (3.22)

Proof.

Mp(X, w) =

[
M

∑
j=1

wjx
p
j

] 1
p

=

[
M

∑
j=1

(
w

1
p
j xj

)p
] 1

p

=
∣∣∣∣∣∣w 1

p X
∣∣∣∣∣∣

p
.

We would like to emphasize the contribution of each component of theMp
i formulation,

we can note the variation of each value of the formula via partial differential calculus:

∂

∂xij
Mp

i (X, w) = wjx
p−1
ij

[
M

∑
j=1

wjx
p
ij

] 1
p−1

∂

∂wj
Mp

i (X, w) =
1
p

xp
ij

[
M

∑
j=1

wjx
p
ij

] 1
p−1

∂

∂p
Mp

i (X, w) = Mp
i (X, p)

∑M
j=1 wjx

p
ij log(xj)

p ∑M
j=1 wjx

p
ij

−
log
(

∑M
j=1 wjx

p
ij

)
p2


(3.23)

In regards to the value of p, we can also interpret the p-distance between two vectors
X = (x1, . . . , xn) and Y = (y1, . . . , yn), with X, Y ∈ Kn as

dp(X, Y) =

[
n

∑
i=1

(xi − yi)
p

] 1
p

. (3.24)

So we can basically reformulate Eq. 3.24 as:

dp(X, Y) = np ·Mp(X−Y, w), with wj =
1
n , ∀j ∈ {1, . . . , n}. (3.25)

A visual representation of the spheres resultant from fixing the origin and varying the
radius and the p is depicted in Fig. 3.6.

The interpretation of the illustrated curves of Fig. 3.6 is very important in MCDA since
it is formerly established as a distance for vector comparisons among the different altern-
atives. As a consequence, the sphere representation of such distance will determine “how
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Table 3.2: List of the most used metrics in statistics for two non-null vectors x, y ∈ RM.

Distance function Formulation d(x, y)

Manhattan/Taxicab distance or d1

M

∑
i=1
|xi − yi|

Euclidean distance or d2

√√√√ M

∑
i=1

(xi − yi)2

Minkowski distance or dp

[
M

∑
i=1
|xi − yi|p

] 1
p

Chebyshev distance or d∞ max
1≤i≤M

{|xi − yi|}

Mahalanobis distance or dM

√
(x− y)⊤M−1(x− y), M covariance matrix

Bray-Curtis distance

M

∑
i=1
|xi − yi|

M

∑
i=1
|xi + yi|

Canberra distance

M

∑
i=1
|xi − yi|

M

∑
i=1
|xi|+ |yi|

Cosine distance 1− x · y
||x||2 · ||y||2

Correlation distance 1−
(x− µx)(y− µy)

||x− µx||2||y− µy||2
, being µx, µy means

Discrete distance 1{x=y}(x, y) =

{
1 if x ̸= y
0 if x = y

Hamming (1950) distance
1
M

M

∑
i=1

1{xi=yi}(xi, yi)

Jensen-Shannon divergence

√
1
2
[D(x|µ) + D(y|µ)]

(Fuglede and Topsoe, 2004) D as in Eq. 4.6 and µ the mean of 1
2 (x + y)



42 multiple-criteria decision making

distant two alternatives are” or “how closely an alternative is to some compromise solution”. Then,
it is commonly used in outranking methods for both alternative and attribute pairwise
comparisons.

Even though it is very common to apply dp distances in MCDM problems, it is also pos-
sible to resort to many other alternative spaces than the ℓp. It happens because sometimes
the dp metric over usual vector spaces is not suitable for local comparisons. Depending
on the motivation of the DMs or the data handled, we can utilize the distance functions
defined in Table 3.2.

p=1 p=2 p=3

p= + p=1/2 p=1/3

r=1 r=2 r=3

Figure 3.6: Sphere representations in R2 when we modify the radius (r) and the p of the distance
function.

Source: Own elaboration.

3.2.2 TOPSIS

The Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) defined in
Hwang and Yoon (1981) is a method to rank alternatives regarding positive and negative
ideal solutions. With respect to the weighting scheme, TOPSIS evaluates the dataset by
making full use of the selected criteria. For its application, we just need to consider a
normalization and a vector distance. Then, it computes the relative proximity to the ideal
solutions to provide a cardinal ranking of the alternatives in descending order. It was
originally defined with the Euclidean distance and vector normalization as described in
the following steps.
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TOPSIS method:

Step 1 Normalize the decision matrix as [rij], where each rij ∈ [0, 1] for each i ∈ {1, . . . , N}
and j ∈ {1, . . . , M}. The authors originally defined the method with the specific ℓ2

vector normalization.

Step 2 Calculate the weighted normalized decision matrix [vij] according to the set of
weights {wj}M

j=1 such that (w1, ..., wM) ∈ Ω. Then, we have vij = wjrij for each i ∈
{1, . . . , N} and j ∈ {1, . . . , M}.

Step 3 Positive ideal and negative ideal are determined as PIS = (v+1 , . . . , v+M) and NIS =

(v−1 , . . . , v−M) where

v+j =


max
1≤i≤n

vij if j ∈ Jmax

min
1≤i≤n

vij if j ∈ Jmin

1 ≤ j ≤ M,

v−j =


min

1≤i≤n
vij if j ∈ Jmax

max
1≤i≤n

vij if j ∈ Jmin

1 ≤ j ≤ M,

where Jmax is the set of criteria to be maximized and Jmin is the set of criteria to be
minimized.

Step 4 Calculate the separation measures with regard to PIS and NIS:

D+
i =

[
M

∑
j=1

(vij − v+j )
p

] 1
p

and D−i =

[
M

∑
j=1

(vij − v−j )
p

] 1
p

, 1 ≤ i ≤ N. (3.26)

Originally, the distance selected is the Euclidean (p = 2) but it may vary depending
on the problem.

Step 5 Calculate the relative proximity to the ideal solutions using the relative index:

Ri =
D−i

D+
i + D−i

, 1 ≤ i ≤ N. (3.27)

Step 6 Make a ranking of the alternatives in descending order of the values of {Ri}N
i=1.

TOPSIS transforms a set of features N×M dimensional into a family of N real numbers
that yields decisive information about the global situation of the alternatives involved.
Moreover, we could modify the Step 3 so that we get PIS = (1, . . . , 1) and NIS = (0, . . . , 0).
Then, we would avoid the rank reversal problem since we are removing results dependent
on data (Cables et al., 2016).

3.2.3 VIKOR

The VIseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) method defined in
Opricovic (1998), in English translated as Multicriteria Optimization And Compromise
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Solution, is an MCDM technique which ranks alternatives but emphasizing in the search
of a compromise solution. By using a fixed normalization scheme, it makes use of the
norms {1,+∞} per each alternative to defining two scores (S and R) to finally make a
convex linear combination of them and use it as score function (Q) (Opricovic and Tzeng,
2004). Once, we have computed the Q-score per each alternative, we recursively define
the number of alternatives to be considered in the compromise solution. The procedure to
follow is described in the next steps.

VIKOR method:

Step 1 Determine the ideal solutions PIS = (x+1 , . . . , x+M) and NIS = (x−1 , . . . , x−M) per
each criterion j ∈ {1, . . . , M} as:

x+j =


max
1≤i≤n

xij if j ∈ Jmax

min
1≤i≤n

xij if j ∈ Jmin

1 ≤ j ≤ M,

x−j =


min

1≤i≤n
xij if j ∈ Jmax

max
1≤i≤n

xij if j ∈ Jmin

1 ≤ j ≤ M,

where Jmax is the set of criteria to be maximized and Jmin is the set of criteria to be
minimized.

Step 2 Normalize the decision matrix as [rij] per each i ∈ {1, . . . , N} and j ∈ {1, . . . , M},
where:

rij =
x+ − xij

x+ − x−
. (3.28)

Step 3 Compute the S and R scores per each alternative i ∈ {1, . . . , N}:

Si =
M

∑
j=1

wjrij Utility measure. (3.29)

Ri = max
1≤j≤M

{wjrij} Regret measure. (3.30)

Step 4 Calculate the Q-score as the convex combination according to the maximum group
utility parameter ν ∈ [0, 1]:

Qi = ν
Si − S−

S+ − S−
+ (1− ν)

Ri − R−

R+ − R−
, 1 ≤ i ≤ N, (3.31)

where:
S− = min

1≤i≤N
Si , R− = min

1≤i≤N
Ri,

S+ = max
1≤i≤N

Si , R+ = max
1≤i≤N

Ri.

Step 5 Sort the vectors (S, R, Q) in ascending order to get the arranged arguments per
each score. We consider the sorting arguments as {σS, σR, σQ} respectively. Then, we
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can say that the alternative aσQ(1) is a compromise solution if satisfies the following
statements:

a) Acceptable advantage: QσQ(2) −QσQ(1) ≥
1

M− 1
.

b) Acceptable stability: σQ(1) = σS(1) or σQ(1) = σR(1).

In case both conditions are satisfied, we can say that the compromise solution is
“stable within a decision-making process" if ν > 0.5, or “by consensus" if ν = 0.5± ϵ, or
“with veto" if ν < 0.5.

When one of the conditions is not satisfied, we can propose a new scheme of com-
promise solutions. If the solution has no stability (Step 5b is false), we need to select
k alternatives so that QσQ(k) − QσQ(1) ≥

1
M−1 , then (aσQ(1), . . . , aσQ(k)) would be com-

promise solution. Conversely, if we have no advantage (Step 5a is false), we can select
(aσQ(1), aσQ(2)) as compromise solution.

In 1990, Opricovic presented the VIKOR method as an MCDM outranking strategy to
rank alternatives based on the search for a feasible compromise solution (Opricovic, 1998).
From then on, many variations of the method with multiple perspectives have arisen
(Mardani et al., 2016). Opricovic and Tzeng (2003a) introduced crisp sets to solve conflict-
ing cases of fuzzy approaches for defuzzification methods, later on, Opricovic and Tzeng
(2003b) added strategies with incomplete information. A scheme for compromise solutions
under fuzzy logic was written in Opricovic (2007). For membership of the weights, Devi
(2011) added triangular fuzzy numbers to give the intuition of feasible importance. We
can also find papers that extend the VIKOR problem to interval numbers in Sayadi et al.
(2009). Finally, there are combinations of VIKOR methodology with other fields such as
gray relational analysis (Kuo and Liang, 2011) and group decision making (Park et al.,
2011).

3.3 fuzzy approach

In 1965, Zadeh proposed the concept of fuzzy mathematics with the aim of controlling the
uncertainty that involves real-world events. The idea of Zadeh was to study such imprecise
events by making use of new mathematical sets, called fuzzy sets (Zadeh, 1996). Since the
beginning of fuzzy logic, we can find an enormous list of literature linked to the topic
in so many different research areas, which suggests that most applied science deals with
unstable factors to take into account (Bojadziev and Bojadziev, 1995; Mittal et al., 2020).
Moreover, what makes fuzzy logic a very interesting approach is that not only external
sources determine what is non-accurate but also the human perception of what we think
or reason about something specific.

Fuzzy logic also attempts to give a response to vague or shallow statements that are
commonly extended among people, and so, among decision-makers. We usually refer to
subjective terms as if they were standards for everybody, but it is known that human in-
sights rely on context, culture, and background. For example, if I say that Juan is successful,
would everyone coincide with me? It is obvious that it depends on the person, but in any
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case, my perception would be the same regardless of the people I am talking to. Given
that human brains have their particular way of reasoning, Zadeh attempted to model that
behavior with the construction of fuzzy memberships, which basically ascertain the truth
value of a statement. That assigned degree of membership indicates the truthfulness of
the event. It is typically represented in the [0, 1] interval so that the 0 value represents a
totally false case and the 1 value is an absolute truth. Thus, all the range between 0 and 1
indicates an intermediate degree of truth, in a way that partial truth can be analyzed and
also accepted when appropriate.

In general, the incorporation of fuzzy logic allows us to control and limit the degree of
reliability of the case study, hence we can take advantage of uncertainty when the condi-
tions and hypothesis are well stated. To be more precise, this theory formalizes the notion
of human reasoning in a mathematical way. People usually deal with the absolute truth
of fake statements, therefore a large number of daily decisions are made under conflict-
ing and incomplete information. When facing an environment of imprecision it is not an
easy task to realize which of the possible alternatives will lead us to our goal or, at least,
to an acceptable final stage. Additionally, the capabilities of human reasoning have some
limitations when mixing mental and physical concepts. That is why Zadeh proposed a
methodology to perform accurate strategies under uncertain conditions. In fact, a power-
ful approach in fuzzy logic is the transformation from subjectivity to measurable results.

In many real-world applications, uncertainty takes over the data selection procedure.
Sometimes it happens when the measurements cannot be as accurate as it is required, but
in many other cases, non-observed events indirectly affect the extraction process that we
are analyzing. It is not necessarily related to the kind of data we are handling, but the
degree of subjectivity related to the experiment. For values, we can distinguish between
singular values, which are numerically formulated, and granular values, which can be
obtained from words, signals, colors, etc. So far, we can transform non-numerical values
(granular) to real stated numbers (singular) by means of scales. However, we would be
losing information since we are assuming the lack of intermediate values, and so it means
an imprecise interpretation of reality. Besides, the temporal behavior, the magnitudes, or
the physical context does not have to follow a monotone pattern, which introduces the
concept of crisp fuzzy sets. In either case, decision-makers need to take all these details
into consideration since diffuse data may lead to non-significative results, especially when
it is not considered in the hypothesis of the model. Another problem that is overcome with
fuzzy logic is the measurement study of an event through membership functions. We all
agree that probability is focused on measuring how likely is something to occur, however,
probability functions cannot attach the degree or impact of an event. For example, with
probability, we can estimate how likely is tomorrow to snow, but we cannot answer the
question "How cold will it get tomorrow?". Therefore, fuzzy logic can be understood as a
way to complement statistics and probability because of the concept of degrees of truth.
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In the field of multi-objective optimization, Zimmermann (1978) proposed the notion of
fuzzy-linear programming (FLP) based on linear fuzzy constraints and k linear objective
functions as:

minimize z(x) = [z1(x), . . . , zk(x)]

s. t. Ax ≤ b, (3.32)

x ≥ 0.

The k objective functions are formulated as zi(x) = cix per each i ∈ {1, . . . , k}. Then,
each goal is a linear fuzzy cost function. For multicriteria optimization, the DMs associate
an acceptable value of membership through the functions:

µL
i (zi(x)) =


0 if zi(x) ≥ z0

i ,
zi(x)− z0

i

z1
i − z0

i
if z0

i ≤ zi(x) ≤ z1
i ,

1 if zi(x) ≤ z1
i ,

(3.33)

That set of functions establishes the degree of membership of each i-objective function
and each pair z0

i and z1
i indicate the limits where the uncertain events are measured (Zim-

mermann, 2001).
Based on the model presented in Eq. 3.32, Bellman and Zadeh (1970) reformulated the

FLP problem as:

maximize min
1≤i≤k

{
µL

i (zi(x))
}

s. t. Ax ≤ b, (3.34)

x ≥ 0.

From this point on, the development of fuzzy optimization was considerably raised
and it was not just focused on obtaining solutions, but on theories of the existence and
consistency of such solutions. Additionally, it began the incorporation of fuzzy sets to
both attributes and constraints.

As far as multicriteria optimization is concerned, dealing with such a problem is trouble-
some because the mathematical formalization of the objective is very sensitive to precision
errors. In addition, the error propagation during the computational process would return a
non-representative output. As a response to solving such concerns, Fuzzy Multiple-Criteria
Decision Making (FMCDM) emerged to provide algorithms and tools to tackle non-precise
data or shallowly defined criteria.

Definition 3.3.1. (Zadeh, 1965) Let X be a space of points or objects. A fuzzy set A in X is
characterized by a membership function µA which associates with each point x in X a real number
in the interval [0, 1], with the value of µA at x representing the “grade of membership” of x in A.
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Depending on the grade of a given x ∈ A, we can say that x is:

Not included if µA(x) = 0,

Partially included if 0 ≤ µA(x) ≤ 0,

Fully included if µA(x) = 0,

in relation to the fuzzy set (A, µA).

Definition 3.3.2. Let (A, µA) be a fuzzy set and 0 ≤ α ≤ 1. We define the following sets:

α− cut : Aα = {x ∈ A|µA(x) ≥ α},
Support : Supp(A) = {x ∈ A|µA(x) > 0},
Core : Core(A) = {x ∈ A|µA(x) = 1}.

Definition 3.3.3. (Dubois and Prade, 1978) A LR-fuzzy number X̃ is a 4 component array
X̃ = (xL, xR, αL, αR)L,R whose membership function has the following form:

µX̃(t) =


L
(

xL − t
αL

)
if t < xL,

1 if xL ≤ r ≤ xR,

R
(

t− xR

αR

)
if t > xR,

(3.35)

where L, R : R+ → [0, 1] are the so-called reference functions which are decreasing in the support
of X̃ and upper semi-continuous with L(0) = R(0) = 1.

In most cases, the LR-fuzzy representation is denoted as trapezoidal numbers, that is to
say when the spread of each side can be formulated by linear interpolation.

L(t) =


t− αL

xL − αL if αL ≤ t ≤ xL,

0 otherwise.

R(t) =


αR − t

αR − xR if xR ≤ t ≤ αR,

0 otherwise.

The nature of the problem defines the structure of the number X̃. Fig. 3.7 depicts six
common cases in fuzzy methodology. It is easy to note that we can formalize the notion
of regular numbers by means of fuzzy logic, we just have to set the number with neither
spread nor interval. In mathematical terms, (x, x, 0, 0) is the LR-fuzzy form for any real
number x. Moreover, with regard to the membership function, fuzzy logic also generalizes
the notion of the characteristic function of any subset. Among many examples, we can
highlight the Heaviside step, Kronecker delta, and Dirac delta functions.

Given two LR-fuzzy numbers X̃1 and X̃2 with bounded support and non-null compon-
ents, we can define some basic operations for fuzzy theory. For compatibility purposes,
we assume that all the components of both numbers are positive numbers. Moreover, we
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consider an increasing monotonic non-zero function F defined in X̃1 and a positive scalar
λ ∈ R+.

Addition: X̃1 ⊕ X̃2 = (xL
1 + xL

2 , xR
1 + xR

2 , αL
1 + αL

2 , αR
1 + αR

2 )L1+L2,R1+R2 ,

Scalar product: λ⊙ X̃1 = (λxL, λxR, λαL, λαR)L,R,

Fuzzy product: X̃1 ⊗ X̃2 = (xL
1 xL

2 , xR
1 xR

2 , αL
1 αL

2 , αR
1 αR

2 )L1L2,R1R2 ,

Negation: ⊖X̃1 = (−xR
1 , −xL

1 , −αR
1 , −αL

1 )R1,L1 ,

Inversion: 1/X̃1 = (1/xR
1 , 1/xL

1 , 1/αR
1 , 1/αL

1 )R1,L1 ,

Division: X̃2 ⊘ X̃1 = X̃2 ⊗ 1/X̃1,

Application: F(X̃1) = (F(xL), F(xR), F(αL), F(αR))L,R.

Now, instead of using the LR-fuzzy numbers, we can define some basic operators for
their respective membership functions µX̃1

and µX̃2
:

Intersection: µX̃1∩X̃2
(t) = min{µX̃1

(t1), µX̃1
(t2)},

Union: µX̃1∪X̃2
(t) = max{µX̃1

(t1), µX̃1
(t2)},

Complement: µX̃C
1
(t) = 1− µX̃1

(t).
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Figure 3.7: Different representations of LR-fuzzy numbers X̃ = (xL, xR, αL, αR)L,R.
Source: Own elaboration.
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Definition 3.3.4. Let X̃ and Ỹ be two LR-fuzzy numbers. Then, we can define the X̃ ∨ Ỹ and
X̃ ∧ Ỹ fuzzy numbers whose membership function are:

µX̃∨Ỹ(t) = sup
s,t
{µX̃(t1) ∧ µỸ(t2)},

µX̃∨Ỹ(t) = inf
s,t
{µX̃(t1) ∨ µỸ(t2)},

respectively.

Definition 3.3.5. Let X̃ be an LR-fuzzy number. We say that X̃ is normal if and only if

sup
t

µX̃(t) = 1.

Definition 3.3.6. Let X̃ be an LR-fuzzy number. We say that X̃ is convex if per each t1 and t2 its
membership function satisfies:

µX̃ (λt1 + (1− λ)t2) ≥ min {µX̃(t1), µX̃(t2)} , ∀λ ∈ [0, 1].

Definition 3.3.7. Let X̃ and Ỹ be two fuzzy numbers. Then,

X̃ ≳ Ỹ ←→ X̃ ∨ Ỹ = X̃, (3.36)

where ∨ represents the logical maximum generator.

The last stated definition may seem complete and robust, however, its applicability can
cause problems of irresolution (Dubois et al., 2000). By considering the ideas of Tanaka
(1984) and Inuiguchi et al. (1990), we can state a flexible version of such a definition to
avoid that concern. First, we require a condition for joint fuzzy sets as in Ramík and
ímánek (1985).

Lemma 3.3.1. Let X̃ and Ỹ be two LR-fuzzy numbers. Then, X̃ ∨ Ỹ = X̃ if, and only if, per each
0 ≤ h ≤ 1 the two statements are satisfied:

inf{s|µX̃(s) ≥ h} ≥ inf{t|µỸ(t) ≥ h},
sup{s|µX̃(s) ≥ h} ≥ sup{t|µỸ(t) ≥ h}. (3.37)

In other words, we can rewrite the two expressions in Eq. 3.37 above as:

xL − L∗(h)αL ≥ yL − L′∗(h)βL ∀h ∈ [0, 1],

xR + R∗(h)αR ≥ yR − R′∗(h)βR ∀h ∈ [0, 1], (3.38)

where X̃ = (xL, xR, αL, αR)L,R and Ỹ = (yL, yR, βL, βR)L′,R′ and the new reference func-
tions are:

L∗(h) = sup{t|L(t) ≥ h}, L′∗(h) = sup{t|L′(t) ≥ h},
R∗(h) = sup{t|R(t) ≥ h}, R′∗(h) = sup{t|R′(t) ≥ h}.
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In the particular case of similar reference functions, i.e. L = L′ and R = R′, we can
reconvert the Eq. 3.38 to:

xL ≥ YL and xL − αL ≥ YL − βL,

XR ≥ YR and xR + αR ≥ YR + βR. (3.39)

Definition 3.3.8. Let X̃ and Ỹ be two LR-fuzzy numbers and a real number 0 ≤ h ≤ 1. Then,
X̃ ≳h Ỹ = X̃ if, and only if, the two statements below hold true:

inf{s|µX̃(s) ≥ k} ≥ inf{t|µỸ(t) ≥ k},
sup{s|µX̃(s) ≥ k} ≥ sup{t|µỸ(t) ≥ k}. (3.40)

per each k ∈ [h, 1].

In practice, when working with LR-fuzzy numbers with bounded support, we could
modify the Definition 3.3.8 and maintain that X̃ is h-greater than Ỹ whenever:

xL − L∗(k)αL ≥ yL − L′∗(k)βL ∀h ∈ [0, 1],

xR + R∗(k)αR ≥ yR − R′∗(k)βR ∀h ∈ [0, 1]. (3.41)

In such a case, note that we have formulated a less restrictive condition in comparison
with the statements of Lemma 3.3.1. Therefore, we have a more flexible strategy to compare
two LR-fuzzy numbers. See León et al. (2003), for instance.

When combining fuzzy logic and MCDM, the problem is performed by determining
the fuzzy decision matrix X̃ = [x̃ij], so that i ∈ {1, . . . , N} and j ∈ {1, . . . , M}. Now, we
have a trapezoidal LR-fuzzy representation per each x̃ij = (xL

ij, xR
ij , αL

ij, αR
ij)LijRij , in which

it is represented by the lower and upper spread of each magnitude. Regarding the set of
weights, we can determine a fuzzy-weighting scheme Ω̃, so that if (wL, wR, βL, βR)L′R′ ∈ Ω̃
then:

βL(r) ≥ 0 and βR(r) ≤ 1, per each r ∈ R+. (3.42)

3.3.1 Fuzzy-WMM

The Fuzzy Weighted Mean Models (FWMM) is the WMM version to deal with fuzzy num-
bers (Triantaphyllou, 2000). By means of the definitions and propositions previously stated,
we can convert the operations of theMp functions into a reshaped case for functional pur-
poses.

Fuzzy-WMM method:

Step 1 Determine the fuzzy decision matrix [x̃ij] so that x̃ij = (xL
ij, xR

ij , αL
ij, αR

ij)LijRij and
define the fuzzy weights w̃j = (wL

j , wR
j , βL

j , βR
j )L′jR

′
j
, per each i ∈ {1, . . . , N} and

j ∈ {1, . . . , M}.
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Step 2 Normalize the fuzzy decision matrix as [r̃ij], per each i ∈ {1, . . . , N} and j ∈
{1, . . . , M}.

Step 3 Calculate the weighted p-mean of each alternative:

M̃p
i = Mp(r̃ij, w̃) =

[
M

∑
j=1

w̃j ⊗ r̃p
ij

] 1
p

, 1 ≤ i ≤ N, (3.43)

in which the product w̃j ⊗ r̃p
ij is computed as (wL

j xL
ij, wR

j xR
ij , βL

j αL
ij, βR

j αR
ij)L′L,R′R and

the summation is conducted with the ⊕ operator.

Step 4 By means of a fuzzy order relationship, make a ranking of the alternatives in des-
cending order of the values of {M̃p

i }N
i=1.

For further extensions and applications see, for instance, Triantaphyllou (2000).

3.3.2 Fuzzy-TOPSIS

The fuzzy version of TOPSIS (FTOPSIS) was presented in Chen and Hwang (1992). Its
different approaches and implementations have been widely studied (Chen, 2000; Chen
and Lee, 2010; Chen and Tsao, 2008) due to the large popularity of this ranking technique
(Triantaphyllou, 2000). The development of this technique involves the following steps.

Fuzzy-TOPSIS method:

Step 1 Determine the fuzzy decision matrix [x̃ij] so that x̃ij = (xL
ij, xR

ij , αL
ij, αR

ij)LijRij and
define the fuzzy weights w̃j = (wL

j , wR
j , βL

j , βR
j )L′jR

′
j
, per each i ∈ {1, . . . , N} and

j ∈ {1, . . . , M}.

Step 2 Normalize the fuzzy decision matrix as [r̃ij], for each i ∈ {1, . . . , N} and j ∈
{1, . . . , M}.

Step 3 Calculate the fuzzy weighted normalized decision matrix [ṽij] according to the set
of fuzzy weights {w̃j}M

j=1. Then, we have ṽij = w̃j ⊗ r̃ij for each i ∈ {1, . . . , N} and
j ∈ {1, . . . , M}.

Step 4 Positive ideal and negative ideal are determined as P̃IS = (ṽ+1 , . . . , ṽ+M) and ÑIS =

(ṽ−1 , . . . , ṽ−M) where

ṽ+j =


m̃ax
1≤i≤n

{
ṽij
}

if j ∈ Jmax

m̃in
1≤i≤n

{
ṽij
}

if j ∈ Jmin

1 ≤ j ≤ M,

ṽ−j =


m̃in

1≤i≤n

{
ṽij
}

if j ∈ Jmax

m̃ax
1≤i≤n

{
ṽij
}

if j ∈ Jmin

1 ≤ j ≤ M,

where Jmax, Jmin are the sets of criteria to be maximized/minimized and m̃ax , m̃in
stands for the max , min operators per fuzzy component.
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Step 5 Calculate the separation measures with regard to P̃IS and ÑIS.

D̃+
i =

[
M

∑
j=1

(ṽij ⊖ ṽ+j )
p

] 1
p

and D̃−i =

[
M

∑
j=1

(ṽij ⊖ ṽ−j )
p

] 1
p

, 1 ≤ i ≤ N. (3.44)

Originally, the distance selected is the Euclidean (p = 2) but it may vary depending
on the problem.

Step 6 Calculate the relative proximity to the ideal solutions using the relative index:

R̃i =
D̃−i

D̃+
i ⊕ D̃−i

, 1 ≤ i ≤ N. (3.45)

Step 7 By means of a fuzzy order relationship, make a ranking of the alternatives in des-
cending order of the values of {R̃i}N

i=1.

For further extensions and applications see, for instance, Nădăban et al. (2016) or Salih
et al. (2019).

3.3.3 Fuzzy-VIKOR

The fuzzy version of the VIKOR method (FVIKOR) was presented in Opricovic (2011),
although it was first studied by Sanayei et al. (2010). The main purpose was to determine
the compromise solution of a fuzzy multicriteria problem. The procedure to perform the
ranking algorithm has the following steps.

Fuzzy-VIKOR method:

Step 1 Determine the fuzzy decision matrix [x̃ij] so that x̃ij = (xL
ij, xR

ij , αL
ij, αR

ij)LijRij and
define the fuzzy weights w̃j = (wL

j , wR
j , βL

j , βR
j )L′jR

′
j
, per each i ∈ {1, . . . , N} and

j ∈ {1, . . . , M}.

Step 2 Determine the ideal solutions P̃IS = (x̃+1 , . . . , x̃+M) and ÑIS = (x̃−1 , . . . , x̃−M) per
each criterion j ∈ {1, . . . , M} where:

x̃+j =


m̃ax
1≤i≤n

{
x̃ij
}

if j ∈ Jmax

m̃in
1≤i≤n

{
x̃ij
}

if j ∈ Jmin

1 ≤ j ≤ M,

x̃−j =


m̃in

1≤i≤n

{
x̃ij
}

if j ∈ Jmax

m̃ax
1≤i≤n

{
x̃ij
}

if j ∈ Jmin

1 ≤ j ≤ M,

where Jmax, Jmin are the sets of criteria to be maximized/minimized and m̃ax , m̃in
stands for the max , min operators per fuzzy component.

Step 3 Normalize the decision matrix as [r̃ij]per each i ∈ {1, . . . , N} and j ∈ {1, . . . , M},
where:

r̃ij =
x̃+ ⊖ x̃ij

x̃+ ⊖ x̃−
. (3.46)
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Step 4 Compute the S and R scores per each alternative i ∈ {1, . . . , N}:

S̃i =
M

∑
j=1

w̃j ⊗ r̃ij Utility measure. (3.47)

R̃i = m̃ax
1≤j≤M

{w̃j ⊗ r̃ij} Regret measure. (3.48)

Step 5 Calculate the Q̃-score as the convex combination according to the maximum group
utility parameter ν ∈ [0, 1]:

Q̃i = ν · S̃i ⊖ S̃−

S̃+ ⊖ S−
⊕ (1− ν) · R̃i ⊖ R̃−

R̃+ ⊖ R̃−
, 1 ≤ i ≤ N, (3.49)

where:
S̃− = m̃in

1≤i≤N
{S̃i} , R̃− = m̃in

1≤i≤N
{R̃i},

S̃+ = m̃ax
1≤i≤N

{S̃i} , R̃+ = m̃ax
1≤i≤N

{R̃i}.

Step 6 Sort the vectors (S̃, R̃, Q̃) in ascending fuzzy order to get the arranged arguments
per each score by means of a defuzzification method (Leekwijck and Kerre, 1999) to
get (S, R, Q). We consider the sorting arguments as {σS, σR, σQ} respectively. Then, we
can say that the alternative aσQ(1) is a compromise solution if satisfies the following
statements:

a) Acceptable advantage:

QσQ(2) −QσQ(1)

QσQ(M) −QσQ(1)
≥ 1

M− 1
Opricovic (2011) version. (3.50)

QσQ(2) −QσQ(1) ≥
1

M− 1
Sanayei et al. (2010) version. (3.51)

b) Acceptable stability: σQ(1) = σS(1) or σQ(1) = σR(1).

When one of the conditions is not satisfied, we can propose a new scheme of com-
promise solutions. If the solution has no stability (Step 6b is false), we need to select
k alternatives so that QσQ(k) − QσQ(1) ≥

1
M−1 , then (aσQ(1), . . . , aσQ(k)) would be com-

promise solution. Conversely, if we have no advantage (Step 6a is false), we can select(
aσQ(1), aσQ(2)

)
as compromise solution.

For further extensions and applications see, for instance, Gul et al. (2016).

3.4 unweighted approaches

As we have mentioned in the last two sections, multi-attribute optimization applied for
aiding in the decision-making processes allows us to sort a set of alternatives. As a result,
we are ready to select or exclude (or maybe both) some number of alternatives, which is
very useful and supportive within prescriptive analytics. So far, we just have to decide
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which method is the best suited for our case study, thus accepting whether the implement-
ation is fuzzy-based or not, and determining the weighting scheme that fits the behavior of
our event. The first step may seem very complicated due to the mathematical background
required to understand the arrangement strategy, nonetheless, the result is strictly based
on such statements. Then, we can agree that the selection of the method is rather object-
ive since it is complemented by theoretical properties. When referring to the selection of
weights, it is not easy to determine their values and avoid conflict among decision-makers.
DMs usually add their bias to the MCDM procedure, basically because they are expected
to be experts in the field. In any case, non-objective ratings may lead to unfair resolutions.

For the last comment concerned, it is known that one of the major shortcomings of the
MCDM is the choice of weights. They define the relative importance of each criterion in
the decision phase of the algorithm. As we emphasized at the beginning of the section, for
decision-makers, it is a hard task to select a scheme that leads to a common agreement.
Each individual choice should be studied meticulously. However, an objective selection
could not meet the requirements of the DM. But, in any case, the output of any set of
weights does not give us meaningful properties and conditions of the optimal of each
alternative over the criteria predetermined. It is easy to notice that their selection directly
alters the resultant ranking, hence the weighted scheme has to be not only balanced but as
objective as possible.

Let Ωlu = {w ∈ [0, 1]M|∑M
j=1 wj = 1, lj ≤ wj ≤ uj} be the weighting set. We can define

the optimization problem associated with an MCDM method ranking score function (R).
Then, by considering R as our objective function, we process the minimal and maximal
values over the feasible region. It can be executed as follows:

min/max R(w)

s.t.
M

∑
j=1

wj = 1,

lj ≤ wj ≤ uj 1 ≤ j ≤ M,

lj, uj ≥ 0 1 ≤ j ≤ M,

lj, uj ≤ 1 1 ≤ j ≤ M,

where (lj, uj) are the selected lower and upper bounds that limit the criteria vanishing or
saturation. By definition lj, uj ∈ [0, 1] with 1 ≤ j ≤ M, but they are expected to be more fit-
ted depending on the needs of the decision-makers. In this way, we would get the optimal
values inherent in each optimization problem RL and RU as lower and upper scores, with
their optimal points WL and WU associated with minimization and maximization respect-
ively. Under this assumption, we can operate in the field of unweighted Multiple-Criteria
Decision Making or UW-MCDM.
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3.4.1 Unweighted Mean Models

The Unweighted Mean Models (UW-MM) are a non-weighted version of the WMM tech-
niques. Given that we have removed the weights, the only step before the score optimiza-
tion is the normalization stage. The main purpose of the unweighted approach is to tackle
the weaknesses of the p-mean values obtained for WMM. Moreover, it is very simple to
adult the resultant ranking by setting the values of the weighting scheme, which is basic-
ally the major concern of the MCDM theory. In Triantaphyllou (2000), we can find some
cases in which it is exposed the main drawbacks for WSM and WPM cases.

Unweighted Mean Models method:

Step 1 Normalize the decision matrix as [rij], per each i ∈ {1, . . . , N} and j ∈ {1, . . . , M}.

Step 2 Given w ∈ Ωlu, we consider the functionMp
i : Ωlu → [0, 1] per each i ∈ {1, . . . , N}

as:

Mp
i (w) = Mp(rij, w) =

[
M

∑
j=1

wjr
p
ij

] 1
p

. (3.52)

Step 3 Compute the mathematical optimization problem by considering the p-mean
(Eq. 3.52) as the cost function, per each alternative 1 ≤ i ≤ N:

Mp,L
i = min

{
Mp

i (rij, w) : w ∈ Ωlu
}

. (3.53)

Mp,U
i = max

{
Mp

i (rij, w) : w ∈ Ωlu
}

. (3.54)

An interesting point to highlight is that the formulation of the problem in Eq. 3.53 and
Eq. 3.54, matches with a linear programming system as long as p = 1. In addition, the Ωuw

set is clearly convex. Then, we can obtain the optimal solutions by means of classic solvers.
The mathematical formulation would be the following:

Min/Max
M

∑
j=1

wjrij,

s.t
M

∑
j=1

wj = 1,

lj ≤ wj ≤ uj 1 ≤ j ≤ M,

lj, uj ≥ 0 1 ≤ j ≤ M,

lj, uj ≤ 1 1 ≤ j ≤ M.

Thus, it is easy to note that the last statement holds true whenever the UW-MM tech-
nique is shifted to the unweighted version of the WSM.

Proposition 3.4.1. Given an Unweighted Mean Model framework in which the following state-
ments hold true:
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(a) The p-mean utilized in Eq. 3.52 is the weighted mean, i. e. p = 1.

(b) The bounds selected for Step 2 verify lj = uj = w0
j per each j ∈ {1, . . . , M}.

Then, the UW-MM result coincides with the classical WSM of Fishburn (1967).

Proof. Considering the decision matrix as [rij], with the (a) statement, we can rewrite the
score function as M1

i (w) = M1(rij, w) = ∑M
j=1 wjrij. In other words, we have the same

weighted aggregation as the original. In addition, the (b) statement converts the Ωlu into
the standard Ω set as in § 3.2. Therefore, the values of each Mp,L

i and Mp,U
i coincides with

M1
i per each 1 ≤ i ≤ N, thus returning a classic WSM method.

The pseudo-code of the Unweighted Mean Model algorithm is presented in Al-
gorithm 3.1, where it is included the incorporation of custom normalization, choice of
p-mean, selection of (lj, uj)-bounds, and initial guess for the optimal weights.

Algorithm 3.1 Unweighted Mean Model algorithm implemented as in our GitHub repos-
itory López-García (2022a).

Require: Input decision matrix X = [xij]
Require: Normalization Φ
Require: Generalized mean p
Require: Weight bounds L and U
Require: Initial guess W0

1: Ω = {w|∑j wj = 1, lj ≤ wl ≤ uj} Define the weight space
2: [rij] = Φ([xij]) Normalize the decision matrix
3: for i = 1, . . . , N do
4: Mp,L

i , WL
i =minimize(Mp

i , [rij], Ω, p, W0) MinimizeMp
i

5: Mp,U
i , WU

i =minimize(−Mp
i , [rij], Ω, p, W0) MaximizeMp

i
6: end for
7: return {Mp,L

i , Mp.U
i }

N
i=1, {WL

i , WU
i }N

i=1

Remark. For the last Proposition 3.4.1, we can also formalize the WPM method if we modify the
(a) statement for the value p = 0. The proof would be trivial since M0

i (w) = M0(rij, w) =

∏M
j=1 wjrij.

Remark. For the last Proposition 3.4.1, we can also generalize such property for any value of p in
the (a) statement. The proof would be similar given that the (b) statement converts the Ω set into a
single vector, i. e. null for Lebesgue measure, with no spread in [0, 1]M.

Despite the fact that we have not mentioned the normalization step, it is important to
highlight that such transformation is essential in MCDA. In the particular case of WSM and
WPM, the approach relies on the additive utility assumption. Nonetheless, both methods
should be utilized with a defined normalization for Step 1 to avoid the aggregation of
different units of measure Triantaphyllou et al. (1997).
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3.4.2 Unweighted TOPSIS

The Unweighted TOPSIS (uwTOPSIS) technique Liern and Pérez-Gladish (2020) ranks de-
cision alternatives based on the classical TOPSIS approach before mentioned in § 3.2.2. As
a result of working without weights, the method solves the optimization problems that in-
volve the relative proximity function (Eq. 3.27) in Step 5. The output gives us information
about both minimal and maximal possible rank values per each alternative. Unlike the
weighted approach, now the algorithm can be conducted by following the next six steps,
in which the Step 2 is removed.

Unweighted TOPSIS method:

Step 1 Normalize the decision matrix as [rij], where each rij ∈ [0, 1] for each i ∈ {1, . . . , N}
and j ∈ {1, . . . , M}.

Step 2 Positive ideal and negative ideal are determined as PIS = (v+1 , . . . , v+M) and NIS =

(v−1 , . . . , v−M) where

v+j =


max
1≤i≤n

rij if j ∈ Jmax

min
1≤i≤n

rij if j ∈ Jmin

1 ≤ j ≤ M,

v−j =


min

1≤i≤n
rij if j ∈ Jmax

max
1≤i≤n

rij if j ∈ Jmin

1 ≤ j ≤ M,

where Jmax is the set of criteria to be maximized and Jmin is the set of criteria to be
minimized.

Step 3 Given Ωlu and d a distance defined in [0, 1]M × [0, 1]M, we consider the separating
functions D+

i , D−i : Ωlu → [0, 1] for each of i ∈ {1, . . . , N} as

D+
i

(
w
)
= d

(
(w1ri1, . . . , wMriM), (w1v+1 , . . . , wMv+M)

)
. (3.55)

D−i
(
w
)
= d

(
(w1ri1, . . . , wMriM), (w1v−1 , . . . , wMv−M)

)
. (3.56)

Step 4 The relative proximity function to the ideal solutions is defined as Ri : Ωlu → [0, 1]
with:

Ri(w) =
D−i (w)

D+
i (w) + D−i (w)

, 1 ≤ i ≤ N. (3.57)

Step 5 For each i ∈ {1, . . . , N}, the values RL
i and RU

i are calculated by solving the mathem-
atical programming problems over Ri considering the set of weights as the problem
variables

RL
i = min {Ri(w) : w ∈ Ωlu} , (3.58)
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RU
i = max {Ri(w) : w ∈ Ωlu} , (3.59)

where lj lower bound and uj upper bound of each wj, ∀j ∈ {1, . . . , M}.

The main consequence of the absence of weights is that the Eq. 3.26 and Eq. 3.27 in the
classical TOPSIS are converted into functions that depend on the w ∈ Ωlu as in Eq. 3.55,
Eq. 3.56, and Eq. 3.57. Hence, the output is not only a decision interval [RL

i , RU
i ] but a set of

optimal weights {w∗L
i , w∗Ui } which give us information about separation boundaries and

relative importance of the criteria. It is noteworthy to mention that uwTOPSIS does not
rank alternatives per se, in case our goal is to sort a number of alternatives, we would
need to define a rank function that involves the values of RL

i and RU
i .

Proposition 3.4.2. Given a uwTOPSIS framework in which the following statements hold true:

(a) The normalization in Step 1 is the vector ℓ2 normalization (Table 3.1).

(b) The distance d utilized in Step 3 is the Euclidean distance.

(c) The bounds selected for Step 5 verify lj = uj = w0
j per each j ∈ {1, . . . , M}.

Then, the uwTOPSIS result coincides with the classical TOPSIS of Hwang and Yoon (1981).

Proof. The demonstration of this proof is based on the original form extracted from Liern
and Pérez-Gladish (2020). According to (a), the normalized matrix has the shape:

rij =
xij√

∑N
i=1 x2

ij

. (3.60)

For (b) we have set the same distance function than Hwang and Yoon (1981), so the
relative proximity function R can be written as:

Ri(w) =

[
∑M

j=1(wjrij − wjv−j )
2
] 1

2

[
∑M

j=1(wjrij − wjv+j )
2
] 1

2
+
[
∑M

j=1(wjrij − wjv−j )
2
] 1

2
(3.61)

Given that (c) implies that Ω is a null set, we can represent Ω = {w0
1, . . . , w0

M}. As a
result, it is trivial that the domain of the function is a single element, transforming it into a
vector representation. Then, Ri(Ωlu) = RL

i = RU
i = Ri so uwTOPSIS and TOPSIS coincide.

The pseudo-code of the Unweighted TOPSIS algorithm is presented in Algorithm 3.2,
where it is included the incorporation of optimal directions, custom normalization, dis-
tance function, selection of (lj, uj)-bounds, the initial guess for the optimal weights, and
the option of whether to force ideal solutions.

In the first proposal of Liern and Pérez-Gladish (2020), uwTOPSIS was applied to com-
pare its performance with classical TOPSIS, in which the mathematical programming prob-
lem was solved by using the LINGO software. The examples implied solving a real car
selection problem based on the dataset of Kao (2010) and rank factoring companies with
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Algorithm 3.2 Unweighted TOPSIS algorithm implemented as in our GitHub repository
López-García (2021a).

Require: Input decision matrix X = [xij]
Require: Optimal directions v
Require: Normalization Φ
Require: Distance function D
Require: Weight bounds L and U
Require: Initial guess W0
Require: Whether to force ideal solutions f is

1: Ω = {w | ∑j wj = 1, lj ≤ wl ≤ uj} Define the weight space
2: [rij] = Φ([xij]) Normalize the decision matrix
3: PIS, NIS = get_ideals(v, f is) Get ideal solutions
4: for i = 1, . . . , N do
5: RL

i , WL
i = minimize{Ri, [rij], Ω, p, W0} Minimize Ri

6: RU
i , WU

i = minimize{−Ri, [rij], Ω, p, W0} Minimize Ri
7: end for
8: return {RL

i , RU
i }N

i=1, {WL
i , WU

i }N
i=1

the sane decision matrix as Alemi-Ardakani et al. (2016). With the aim of expanding the
use of this method, Benítez and Liern (2021) developed an open source R package (Benitez
and Liern, 2020) and showed the deployment of their program for sustainability analysis.
In particular, they studied the classification of Green Star hotels in Istanbul for sustainable
tourism and the Social Progress Index (SPI) indicator to analyze the European Union re-
gions. In the same line, Blasco-Blasco et al. (2021) developed an open source Python library
(López-García, 2021a) and gave an application to build composite indicators for academic
purposes in the Industrial University of Santander. Other remarkable contributions of the
Unweighted TOPSIS method are the building of composite indicators for gender diversity
Liern and Pérez-Gladish (2021), sustainable tourism management in Spain after COVID-
19 Vicens-Colom et al. (2021), and the ranking of companies based on their diversity and
financial performance Bouslah et al. (2022).

3.4.3 Unweighted VIKOR

The Unweighted VIKOR (uwVIKOR) ranks decision alternatives based on the classical
VIKOR approach before mentioned in § 3.2.3. As a consequence of working without
weights, the method solves the optimization problems that involve the aggregation func-
tion (Eq. 3.31), but unlike uwTOPSIS, now we have three score functions that yield six
different scores. Now, the uwVIKOR can be applied by following the next steps:

Unweighted VIKOR method:

Step 1 Determine the ideal solutions PIS = (x+1 , . . . , x+M) and NIS = (x−1 , . . . , x−M) per
each criterion j ∈ {1, . . . , M} as in Step 1 of VIKOR.

Step 2 Normalize the decision matrix as [rij] as in Eq. 3.28 per each i ∈ {1, . . . , N} and
j ∈ {1, . . . , M}.
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Step 3 Given a w ∈ Ωlu, we define the functions Si, Ri : Ωlu → [0, 1] per each i ∈ {1, . . . , N}
as:

Si(w) =
M

∑
j=1

wjrij. Utility function. (3.62)

Ri(w) = max
1≤j≤M

{wjrij} Regret function. (3.63)

Step 4 Given a utility parameter ν ∈ [0, 1], we define the aggregation function Qi : Ωlu →
[0, 1] per each i ∈ {1, . . . , N} as the combination:

Qi(w) = ν
Si(w)− S−

S+ − S−
+ (1− ν)

Ri(w)− R−

R+ − R−
, (3.64)

where:
S− = min

1≤i≤N
Si(w) , R− = min

1≤i≤N
Ri(w),

S+ = max
1≤i≤N

Si(w) , R+ = max
1≤i≤N

Ri(w).

Step 5 For each i ∈ {1, . . . , N}, the values QL
i and QU

i are calculated by solving the math-
ematical programming problems over Qi considering the set of weights as the prob-
lem variables:

QL
i = min {Qi(w) : w ∈ Ωlu} , (3.65)

QU
i = max {Qi(w) : w ∈ Ωlu} , (3.66)

where lj is the lower bound and uj is the upper bound of each wj, ∀j ∈ {1, . . . , M}.

Once the procedure is conducted, we get the pairs (QL
i , QU

i ) for every alternative with
their optimal points (WL

i , WU
i ) in Ωlu. As a consequence, we can also get the utility and sta-

bility measures associated with such points by evaluating them with Eq. 3.62 and Eq. 3.63.
Thus we get (RL

i , RU
i ) and (SL

i , SU
i ). The reader must take into account that such scores

do not necessarily have to be their R or S optimal points, because in the Step 5 just the
Qi-score is optimized.

One of the major contributions of the VIKOR is the introduction of compromise solutions
by means of the Q-score that defines the final ranking. In the unweighted approach, we
cannot sort the alternatives since there is no direct binary relation that defines a partial
order for pairs. Therefore, we present here some possible solutions to determine whether
the resultant output of uwVIKOR has a compromise solution.

Option 1 Given 0 < λS, λR, λQ < 1 and p ∈ R, we define:

Si =
(

λS(SL
i )

p + (1− λS)(SU
i )

p
) 1

p
,

Ri =
(

λR(RL
i )

p + (1− λR)(RU
i )

p
) 1

p
,

Qi =
(

λQ(QL
i )

p + (1− λQ)(QU
i )

p
) 1

p
. (3.67)
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So we basically operate with the generalization of theMp per each score to aggregate
the results obtained.

Option 2 Given 0 < νS, νR, νQ < 1, we calculate the values of:

SL
− = min

1≤i≤N
{SL

i } , SU
− = min

1≤i≤N
{SU

i } , SL
+ = max

1≤i≤N
{SL

i } , SU
+ = max

1≤i≤N
{SU

i },

RL
− = min

1≤i≤N
{RL

i } , RU
− = min

1≤i≤N
{RU

i } , RL
+ = max

1≤i≤N
{RL

i } , RU
+ = max

1≤i≤N
{RU

i },

QL
− = min

1≤i≤N
{QL

i } , QU
− = min

1≤i≤N
{QU

i } , QL
+ = max

1≤i≤N
{QL

i } , QU
+ = max

1≤i≤N
{QU

i },

to propose:

Si = νS
SL

i − SL
−

SL
+ − SL

−
+ (1− νS)

SU
i − SU

−
SU
+ − SU

−
.

Ri = νR
RL

i − RL
−

RL
+ − RL

−
+ (1− νR)

RU
i − RU

−
RU
+ − RU

−
,

Qi = νQ
QL

i −QL
−

QL
+ −QL

−
+ (1− νQ)

QU
i −QU

−
QU

+ −QU
−

. (3.68)

In both cases, we would proceed with the final scores in the same way that Step 5 in
VIKOR works with (Ri, Si, Qi) to define a new version of the compromise solution for the
non-weighted approach.

The pseudo-code of the Unweighted VIKOR algorithm is presented in Algorithm 3.3,
where it is included the incorporation of optimal directions, utility parameter, selection of
(lj, uj)-bounds, and initial guess for the optimal weights.

Algorithm 3.3 Unweighted VIKOR algorithm implemented as in our GitHub repository
López-García (2021b).

Require: Input decision matrix X = [xij]
Require: Optimal directions v
Require: Utility parameter ν
Require: Weight bounds L and U
Require: Initial guess W0

1: Ω = {w|∑j wj = 1, lj ≤ wl ≤ uj} Define the weight space
2: for j = 1, . . . , M do
3: if vj == ”max” then
4: rij = ( max

1≤i≤N
{xij} − xij)/( max

1≤i≤N
{xij} − min

1≤i≤N
{xij}) Normalize Max-direction

5: else
6: rij = (xij − min

1≤i≤N
{xij})/( max

1≤i≤N
{xij} − min

1≤i≤N
{xij}) Normalize Min-direction

7: end if
8: end for
9: for i = 1, . . . , N do

10: QL
i , SL

i , RL
i , WL

i =minimize(Qi, [rij], Ω, v, ν, W0) Minimize Qi

11: QU
i , SU

i , RU
i , WU

i =minimize(−Qi, [rij], Ω, v, ν, W0) Maximize Qi
12: end for
13: return {SL

i , SU
i , RL

i , RU
i , QL

i , QU
i }N

i=1, {WL
i , WU

i }N
i=1
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Proposition 3.4.3. Given an uwVIKOR framework in which the bounds selected for Step 3 verify
lj = uj = w0

j per each j ∈ {1, . . . , M}. Then, the uwVIKOR result coincides with the classical
VIKOR of Opricovic (1998).

Proof. The boundary limitation of lj = uj per each j ∈ {1, . . . , M} means that the Ωlu

set has null measure in RM. As a result, the w values per each function S, R, Q have no
spread. Therefore, it returns a single value per each weighting scheme, giving us the same
Qi(Ω) = QL

i = QR
i = Qi as in classic VIKOR.

Unlike in Proposition 3.4.1 and 3.4.2, the VIKOR method has clearly stated the kind of
normalization (Eq. 3.28) and score functions (utility Eq. 3.29 and regret Eq. 3.30). Then, it
makes it easier to transform from the unweighted scheme to the classic one.

3.4.4 Problems attached to the Unweighted MCDM

As long as we assign numerical values to a weighting scheme, the decision-makers in-
volved will add their personal bias to the selection of alternatives. Even though the meth-
odology is mathematically well-design, we also have to pay attention when selecting the
relative importance of each criterion within the MCDM procedure. As a manner to solve
such concerns, we have developed a set of methods that guarantees a free-bias system
for member selection. The methodology is called Unweighted Multiple-Criteria Decision
Making or UW-MCDM in short. By addressing a set of boundaries to each component of
the weighting scheme we can not only remove the bias attached to each weight but also
check how susceptible each alternative is in regard to the criteria selected. Hence, decision-
makers can operate considering intervals instead of single values, in which we have more
information about the behavior among alternatives for each MCDM framework.

The first problem that we encounter when we perform an unweighted model is the
definition of an order relationship (⪯) so that we can generate a cardinal ranking from
the RL and RU scores. Even though we have recommended some ways to generate a final
score, it may not behave as we expect and it could not work for every single UW-MCDM
environment.

The second problem is the assignment of bounds (lj, uj) in the Ωlu set for j ∈ {1, . . . , M}.
Although it makes a more flexible approach, we still have to decide their values and justify
whether different criteria have associated different range limits. Then, it is not an easy task
because we can note that an unweighted methodology with no bounds, i. e. lj = 0 and
ul = 0 per each j ∈ {1, . . . , M}, would underestimate the non-significant attributes per
each alternative, thus exploding the most predominant criterion. In such a case, the result
would not be accepted since it would not consider all the set of criteria.

3.5 fuzzy unweighted approach

With the aim of combining the best of fuzzy and unweighted approaches, we present an
outline of how they should be defined with their stages and functionality. The objective is
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to include uncertainty together with non-biased schemes to generate an adaptive system
that prevents most part of the common drawbacks of the MCDM techniques. Fig. 3.8
illustrates the process to carry out a decision-making problem by means of the fuzzy
unweighted strategy.

Decision making 
problem to solve

Optimization of 
ranking functions

Fuzzy order 
relationship

Attribute 
definition

Uncertainty 
aggregation

Boundary 
restriction

Fuzzy Unweighted

Classic

2nd STAGE1st STAGE 3rd STAGE 4th STAGE

Figure 3.8: Scheme applied when solving an MCDM problem via Fuzzy Unweighted approach.
Source: Own elaboration.

In the main, the technique is the same as § 3.3, although unweighted schemes add high
complexity in terms of mathematical approach and computational calculus. Despite the
fact that fuzzy operations are clearly stated at the beginning of § 3.3, it is not an easy task
to perform the optimization of such ranking functions. The main problem is that the set of
fuzzy numbers is not a totally ordered group, hence it requires an order relationship ⪯ so
that we can compare the fuzzy results per each alternative.

For this thesis, the field of FUW-MCDM is introduced as a new methodology for help-
ing decision-makers by means of the combination of fuzzy sets with non-static weighting
schemes. Our proposal is to define the fuzzy unweighted version of WMM presented in
§ 3.2.1, as the Fuzzy Unweighted Mean Models (FUW-MM) method.

Fuzzy Unweighted Mean Models method:

Step 1 Determine the fuzzy decision matrix [x̃ij] so that x̃ij = (xL
ij, xR

ij , αL
ij, αR

ij)LijRij and
define the fuzzy weights w̃j = (wL

j , wR
j , βL

j , βR
j )L′jR

′
j
, per each i ∈ {1, . . . , N} and

j ∈ {1, . . . , M}.

Step 2 Determine a fuzzy order relationship ⪯ to make pairwise comparisons between
alternatives.

Step 3 Define the bounded weight space as Ω̃lu = {w̃|l̃j ⪯ w̃j ⪯ ũj}, where l̃j =

(lL
j , lR

j , αL
j , αR

j )LjRj and ũj = (uL
j , uR

j , αL
j , αR

j )LjRj .

Step 4 Normalize the fuzzy decision matrix as [r̃ij], per each i ∈ {1, . . . , N} and j ∈
{1, . . . , M}.

Step 5 Given w̃ ∈ Ω̃lu and p ∈ R, we consider the fuzzy function M̃p
i : Ω̃lu → [0, 1] per

each i ∈ {1, . . . , N} as in Eq. 3.52.

Step 6 Compute the mathematical optimization problem by considering M̃p
i as cost func-

tion, per each alternative 1 ≤ i ≤ N:
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M̃p,L
i = min

{
M̃p

i (r̃ij, w̃) : w̃ ∈ Ω̃lu
}

. (3.69)

M̃p,U
i = max

{
M̃p

i (r̃ij, w̃) : w̃ ∈ Ω̃lu
}

. (3.70)

Step 7 Perform a defuzzification method (Leekwijck and Kerre, 1999) that turns M̃p,L
i and

M̃p,U
i into numerical scoresMp,L

i andMp,U
i .

The pseudo-code of the FUW-MM algorithm is presented in Algorithm 3.4.

Algorithm 3.4 Fuzzy Unweighted Mean Model algorithm implemented as in our GitHub
repository López-García (2022a).

Require: Input fuzzy decision matrix X̃ = [x̃ij]
Require: Set the (L, R) reference functions as trapezoidal
Require: Normalization Φ
Require: Generalized mean p
Require: Fuzzy weight bounds l̃ and ũ
Require: Fuzzy order relationship ⪯
Require: Initial guess W0

1: x̃ij = (xL
ij, xR

ij , αL
ij, αR

ij)LijRij Define the fuzzy structure
2: w̃j = (wL

j , wR
j , αL

j , αR
j )LjRj Define the fuzzy weights

3: l̃j = (lL
j , lR

j , αL
j , αR

j )LjRj Define the fuzzy lower bounds
4: ũj = (uL

j , uR
j , αL

j , αR
j )LjRj Define the fuzzy upper bounds

5: Ω̃ = {w̃ | l̃j ≤ w̃l ≤ ũj} Define the fuzzy weight space
6: [r̃ij] = Φ([x̃ij]) Normalize the fuzzy decision matrix
7: for i = 1, . . . , N do
8: M̃p,L

i , W̃L
i = minimize (M̃p

i , [r̃ij], Ω̃, p, W̃0,⪯) Minimize M̃p
i

9: M̃p,U
i , W̃U

i = minimize (−M̃p
i , [r̃ij], Ω̃, p, W̃0,⪯) Maximize M̃p

i
10: end for
11: return {M̃p,L

i ,M̃p.U
i }

N
i=1, {W̃L

i , W̃U
i }N

i=1

Unless otherwise stated, the order relationship defined in Step 2 of the FUW-MM al-
gorithm is given by the distance of an LR-fuzzy number to the fuzzy zero (0, 0, 0, 0). Then,
a fuzzy alternative is greater than another if and only if its distance to is higher. In this
manner, we can perform the optimization problem stated in Step 6 by calculating the
longer/shorter distance with respect to the LR-fuzzy zero.

In contrast with the procedure detailed in § 3.3.1, now it is addressed mathematical
programming together with an order relationship (⪯). The incorporation of both concepts
transforms a fuzzy outcome (subjected to a defuzzification stage) into a fuzzy scheme in
which the components of the fuzzy numbers are composed of interval solutions. Hence,
this range of fuzzy values will be responsible for generating the ranking system. When
comparing Algorithms 3.4 and 3.1, the incorporation of LR-fuzzy numbers considerably
complicates the optimization problem of the ranking functions. Not only for the mathem-
atical approach but also for the computational cost involved in its implementation.
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In the same line as § 3.4.1, we have analyzed some properties of the FUW-MM al-
gorithms. The motivation of the following proposition is to show the link among the four
different kinds of MCDA algorithms presented in Chapter 3.

Proposition 3.5.1. Given a Fuzzy Unweighted Mean Model framework to solve a decision-making
problem, then the following properties hold true:

(a) If l̃j = ũj = w̃0
j per each j ∈ {1, ..., M}, then the FUW-MM result coincides with the

FWMM problem described in § 3.3.1 for the weighting scheme {w̃0
j }M

j=1.

(b) If every fuzzy set involved in the problem x̃ij, w̃i, l̃j and ũj have crisp-number shape, then the
FUW-MM resultant ranking coincides with the ranking of a UW-MM problem described in
§ 3.4.1 for the defuzzification of all the fuzzy sets.

(c) If every fuzzy set involved in the problem x̃ij, w̃i, l̃j and ũj have crisp-number shape and
l̃j = ũj = w̃0

j per each j ∈ {1, ..., M}, then the FUW-MM resultant ranking coincides with
the ranking of a WMM problem described in § 3.2.1 for the defuzzification of all the fuzzy
sets with weighting scheme {w0

j }M
j=1.

Proof. For the case (a), we proceed equivalently than in the proof (and two remarks) of the
Proposition 3.4.1. It is easy to note that Ω̃lu now is composed by a single vector of fuzzy
number w̃0

j , then the fuzzy score M̃p
i as a unique image over Ω̃lu. Hence, the resultant

score per each alternative matches with the FWMM score described in § 3.3.1.
For the case (b), it is essential to take into account that the reference functions of crisp-

numbers (L, R) are zero-valued out of the fuzzy core and such core consists of a single
value, so xL

ij = xR
ij = x0

ij per each i, j pairs. This is also applicable for w̃i, l̃j and ũj. As
a result, any operation out of the fuzzy cores is null, thus limiting the fuzzy properties
presented throughout § 3.3. Then, all the operations described for the core of the FUW-
MM problem are the same as the methodology presented in UW-MM. Therefore, the score
result of the FUW-MM after the defuzzification step matches with the UW-MM for the
conditions described.

For the case (c), we just have to combine the notions detailed for the proofs of (a) and
(b). Along the same line, the score obtained in an FUW-MM framework will be the same
as a WMM problem.
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3.6 summary

In this chapter, we have focused on how Multiple-Criteria Decision Analysis and Decision-
Making operate and how helpful and profitable this subject is for decision-makers when
facing a real problem with conflicting criteria. We have indicated different aspects and
approaches regarding the kind of application desired or the environment selected. Within
the family of outranking algorithms in MCDM, we have presented three families of al-
gorithms with three different methodologies: classic, fuzzy, and unweighted. Apart from
describing how they were designed and modeled, we have defined various versions of such
algorithms, especially for the unweighted approach. Our main objective has been to gener-
ate a complete scheme for applicability purposes when outranking methods are required
in a decision-making problem. Finally, a new area of study is presented concerning the
Multiple-Criteria Decision Analysis field under the name of Fuzzy-Unweighted Multiple-
Criteria Decision Making. Some interesting properties are presented to understand the
FUW-MCDM area as a generalization of the three methodologies previously presented.
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A RT I F I C I A L I N T E L L I G E N C E

From 1760 to 1840, the world experienced a massive change due to the Industrial Re-
volution. Great Britain was the first place where the economic, social, and technological
transition occurred. Still, it did not take so long to expand to the European continent and
the United States (Wrigley, 2018). The transformation implemented led to the standardiz-
ation of new manufacturing processes thanks to the rise of mechanized factory systems.
The use of machine tools and the power sources of coal, steam, and water provided hu-
mans with advanced methods that increased productivity, then achieving economies of
scale. As a result, industrialization is considered one of the significant turning points in
human history. Nowadays, the way we perceive societies is highly marked by the impact
of the Industrial Revolution (Clark, 2014).

Over time, there have been four substantive stages related to transitions in the industry.
As technologies advanced and their use was relevant at work, their impact has been
marked throughout history. The following items summarize an overview of the different
phases (de Vries, 1994).

I Industrial Revolution: The first human transition from hand production to machinery
and supply chain use. Between the 18th and 19th centuries, the textile manufacturing
and iron industry experienced rapid growth at the time. It made a difference in the
societal status with the rise of the middle class.

II Industrial Revolution: It is also known as the Technological Revolution. In the late
19th century, there was a rapid spread of information due to the incorporation of
the telegraph, which connected people around the world. In a physical context, the
development of railroad networks enhanced the transportation of raw materials and
finished products. Then, it is understood as the first step towards globalization. For
societies, it meant a significant improvement in the standard of living due to the
incorporation of gas and water supply along sewage systems in most regions of each
country. The end of this period was due to the outbreak of the First World War in
Europe.

III Industrial Revolution: It is also known as the Digital Revolution. It started at the half
of the 20th century, with a transition marked by the emergent development of the
Second World War. The key point for this stage was the shift from mechanical and
analog systems to digital electronics and electric technologies. Since their incorpora-
tion into the industry, the world changed to the so-called Information Age, and it was
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due to the proliferation of digital computers and digital communications. The use of
integrated circuits and transistors meant a great advance compared to the second
industrial revolution. Due to the underlying technological change, mass production
was a new standard for capitalist societies.

IV Industrial Revolution: It is an ongoing revolution called Industry 4.0 or 4IR. At the
end of the 20th century, there was rapid change due to the smart automation of pro-
cesses. Most of these enhancements involve using artificial intelligence techniques,
including robotics and multi-agent systems. Moreover, the cybernetic tools allowed
humans to perform decentralized and interconnected economies. The rise of the Inter-
net of Things (IoT) through digitization provided an enormous advantage regarding
the last industrial revolutions.

A summarized visualization of the last mentioned is illustrated in Fig. 4.1.

Figure 4.1: Transitions made in the four stages of the industrial revolutions.
Source: LinkedIn

The systems of digitalization have represented a breakthrough in the way we perceive
the business world (Gamil et al., 2020). The continuous scanning and tracking of informa-
tion is performed during the entire year and exchanged via Internet communication net-
works worldwide. The hardware responsible for collecting, processing, and storing some
input information is diverse and specific depending on the task. Thus, all the physical
devices and the software that enhances both digitalization and transmission of data are
known as the Internet of Things (Miraz et al., 2015). Some usual examples are wireless
sensors, control systems, cameras, and microphones. The rise of embedding systems has
been the main responsible for developing intelligent systems and the industrial automa-
tion of processes. The main idea is to monitor the activity of most parts of a business
sequence to control and evaluate its performance and yield.

The applicability of IoT is not only focused on machinery, it is also implemented for the
customer, government, infrastructure, digital marketing, operational, and security applic-
ations (Ramson et al., 2020). As long as some routine tasks can be digitalized, the use of
these sets of software can give us valuable information about the current situation.

https://www.linkedin.com/pulse/4th-industrial-revolution-ensuring-africa-left-behind-oscar-ondo/
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Figure 4.2: Activities, standards, and processes of the Internet of Things ecosystem.
Source: Own elaboration

So far, industries made a big effort to cover the automation processes. Since the first
Industrial Revolution, the goal was to reduce human intervention, substituting it with ma-
chine activity. Over the next stages, the industries attempted to increase their productivity
in order to achieve economies of scale and guarantee efficiency in their sector. However, it
took a long time until people realized that he could mimic human behavior and respond
intelligently to a given environment and conditions. By following that line, Artificial Intel-
ligence (AI) emerged as a field of computer science that replicates the natural intelligence
that characterizes humans to include it in algorithms or models displayed in real-life cases
(Doumpos and Grigoroudis, 2013; Hastie et al., 2009). It utilizes the so-called intelligent
agents to capture the event studied, and the system takes actions or decisions by means of
the information given by such agents.

Although considering an intelligent machine may seem a very innovative notion, in
1950, Alan Turing already discussed whether or not it is possible for machinery to show
intelligent behavior and whether machines could think by themselves (Cooper and van
Leeuwen, 2013). So far, we have created software that simulates smart activity. However,
some blatant limitations point out their inferiority against humans (LeCun et al., 2015).
First, the machines can learn as much as the owner has decided. Second, the independence
of machines is only considered for the task that they carry out. Last, regardless of the
performance shown by intelligent systems, humans are responsible for taking the next
step and deciding whether the system is ready to be launched.

In the previous paragraphs, we discussed that AI tries to replicate a human perception
of reality to give an appropriate solution to some problem. Although it is correct, we all
agree that the range of daily problems in our lives cannot be considered equally complex.
Then, the action to execute will determine the level of involvement by machine interactions.
Depending on the needs of the situation approached, we can divide the technique for
learning the task into two different classes (Hastie et al., 2009).
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• Intelligent Systems: Under some specific circumstances well defined and measurable,
the model returns an exact decision to follow. Hence, human knowledge is conveyed
to the machine.

• Statistical Learning: For the event that we are analyzing, the past information gives
us the knowledge to perform an accurate response. Then, the model learns how to
solve an uncertain scenario by making use of mathematical techniques.

Actually, AI can be understood as a division of three subfields that depends on how
the algorithm has learned to respond to some particular action and how it processes the
information given. In addition, the structure of the algorithm describes the architecture
of the intelligent model, as well as the scope of the response that will be returned. Thus,
the difficulty associated with the studied event and the data utilized in the learning phase
requires a concrete architecture, which may be an Intelligent System, Machine Learning,
or Deep Learning, as shown in Fig. 4.3.

Deep
Learning

Machine
Learning

Intelligent
Systems

ARTIFICIAL  INTELLIGENCE

Figure 4.3: Main subfields of the Artificial Intelligence.
Source: Own elaboration

Thanks to the contributions made by mathematical analysis, operations research, stat-
istics, and computation, nowadays, interdisciplinary teams develop robust and powerful
artificial intelligence systems with incredible applications for real-life solutions. However,
it took multiple scientists a long time and effort until they got the notion of what we today
know as artificial intelligence (Doumpos and Grigoroudis, 2013).

The beginning of AI was world-renowned in the 1950s due to the significant contribu-
tions that arose at the time. Two of the main recognized theorists were Alan Turing, known
as the father of theoretical computer science (Cooper and van Leeuwen, 2013), and Claude
Shannon, known as the father of information theory (James, 2009).

4.1 machine learning

In the second half of the XX century, the field of Machine Learning (ML), also known
as Statistical Learning, was a mathematical pure field with a theoretical perspective of
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functional analysis, operations research, probability, and statistics. This science aims to
approximate, estimate, or recognize some response or patterns from a given dataset. For
this purpose, researchers paid special attention to the construction of intelligent machines
that automatically generate human-like interactions. Even though it seemed such a hard
task in those days, the development of modern computers made it feasible.

The ML field includes advanced statistics, pure mathematics, modern computation tech-
niques, and programming languages. Over the years, the literature related to this discip-
line has exploded due to the multiple applications that emerged for Industry 4.0 and Big
Data. Nonetheless, their limitations are also a problem to face when implementing statist-
ical techniques in the business. It is broadly known that three main points limit machine
learning algorithms.

• Data: The amount of data utilized when dealing with real-life problems allows us to
generalize and find common patterns in the studied events. We can also learn from
large datasets and discriminate non-significant characteristics from a dataset. In such
a way, the law of large numbers and the central limit theorem allow us to generalize
our data. Moreover, the quality of the data is an important element to consider. We
not only need to gather as much data as possible but also make sure that our dataset
satisfies some basic properties that characterize the subjects of study.

• Complexity: An in-depth analysis can lead us to reach our goals. However, in the
field of statistical learning, it is not always a necessary condition. The human bias
can be a counterpart for computers since clear facts for humans are not as evident
to detect with algorithms. Then, the computational part of the problem must be as
simple as possible. It is the same point as Ockham’s razor fallacy states, we should
model a straightforward solution.

• Computation: Even though modern computer science allows us to easily perform
our algorithms, computation is still a concern when dealing with large datasets or
heavy input data. Moreover, almost every artificial intelligence problem is NP-hard,
so the computational cost implies an exponential time.

The implementation of machine learning models requires considering some individual
terms. Given a dataset D = {Xi, yi}N

i=1 of N random independent identically distributed
(i.i.d.) samples, the goal of ML models is to solve the mathematical programming problem
of minimizing the empirical risk associated with some loss function L over the dataset
(Vapnik, 1992). That is to say, we can formulate it by considering a functional decision set
F = { f : X → Y} so that D = {Xi, yi}N

i=1 ⊂ X×Y, we can define a loss function as the cost
function defined over Y× Y such that it returns positive values that indicates the amount
of lost information by our model. Then, L : f (X)×Y → R+ contrasts the response and the
actual result. The key role of this function is to operate over the image of some function
f ∈ F and to determine how suited the function is for the model over the data samples.
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Finally, our objective is to obtain the best possible model, so we define the risk associated
with the decision function in F as:

Risk: R( f ) = EX,y [L( f (X), Y)] =
∫

X×Y
L( f (X), y)dP(X, y), ∀ f ∈ F . (4.1)

When dealing with real problems, the dataset is extracted from a sample, which is usu-
ally discrete. Hence, the equation 4.1 can be converted to:

Empirical risk: RD( f ) =
1
N

N

∑
i=1
L( f (Xi), yi), ∀ f ∈ F . (4.2)

Once we have determined the dataset, the set of models, the loss function, and the
empirical risk associated, now we can define the optimization problem behind machine
learning:

Minimize RD( f ),

st. f ∈ F .

Then, the best model is the one that satisfies to be argmin
f∈F

RD( f ).

Given that the role of the loss function (L) is to determine how good is the output
of the model, it is crucial to select a function that appropriately interprets our data and
punishes the errors propagated. Depending on the objective of the problem and the input
data selected, we can decide on multiple losses. Considering {ŷi}N

i=1 as the set of response
elements, some of the common cost functions L(ŷi, yi) are:

0− 1 loss: 1{ŷi ̸=yi} =

 1 if ŷi ̸= yi,

0 otherwise.
(4.3)

Quadratric loss:
1
N

N

∑
i=1

(ŷi − yi)
2. (4.4)

Cross Entropy loss: −
N

∑
i=1

yilogŷi. (4.5)

A great part of the classification approaches makes use of the Kullback-Leibler diver-
gence, also known as relative entropy, as a loss function (Joyce, 2011). It is commonly
extended since our predictions will represent the membership probability to some set. It
can be formulated for two probability distributions P and Q as follows:

DKL(P|Q) = ∑
x∈X

P(x)log
(

P(x)
Q(x)

)
, discrete version. (4.6)

DKL(P|Q) =
∫

X
p(x)log

(
p(x)
q(x)

)
dx, continuous version. (4.7)

It is easy to note that DKL is an asymmetric distance that compares the difference in
distribution between the two probability samples. In other words, it is the expectation of
the logarithmic coefficient between the two random samples. The relative entropy does
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not satisfy the triangle inequality either. It happens because it is a divergence in terms
of information geometry. Its representation within machine learning is to measure the
information gain of a distribution P in regard to an actual distribution Q.

As far as the learning process is concerned, the objective of the machine is to generalize
from a given dataset and export the acquired knowledge to further data. How the data is
structured will define the approach when learning. Machine learning algorithms may be
divided into four different approaches (Suthaharan, 2016).

Supervised learning: The dataset contains both the input and the output of the event.
The objective is to simulate the behavior of the event studied so that it fits the actual
response in the future. Common types of supervised techniques include classification
and regression.

Unsupervised learning: The dataset just has input samples with no additional informa-
tion. This approach aims to discover the underlying structure of data. It is usually
based on pattern recognition by means of statistical estimators. Two well-known ap-
plications are clustering and auto-encoders to classify or reconstruct input variables.

Semi-supervised learning: This approach is a mixture of supervised and unsupervised
techniques. This problem arises when our dataset just has outputs for some fraction
of the samples. It may occur when dealing with uncertainty or when combining
different sources of information. Then, the implementation requires some assump-
tions that relate to the given samples. Some applications are speech analysis or the
automatic text classifier.

Reinforcement learning: This approach attempts to mimic the behavior of how humans
or intelligent systems take their actions in a given environment. Then, most of the
algorithms implemented make use of dynamic programming techniques to solve
such problems. Most of these models are implemented to simulate human behavior
against some complex activity such as autonomous driving or competing in board
games.

The models from each family have different structures, but they share the use of weights
or parameters that through approximation techniques achieve the better fitting possible
(Vapnik, 1999). Previously, we have described a functional decision set F which basically
represents the family of models that can tackle some tasks. Then, per each f ∈ F , we can
attach to the model their combination of weights to process the desired set of data, i. e.
f (x, W) for W ∈ ΩF . The main objective of machine learning models is to fit the input
data given by assigning an adequate value of W.

When we refer to fitting a model, the underlying idea is the optimization stage utilized
for minimizing the empirical risk associated (Vapnik, 1992). To execute this process, the
input data is usually divided into batches that contain a certain number of elements, so
the number of iterations is a multiple of the ceiling function of such a division. Finally, all
these batches are iteratively introduced to the model f as many times as required, which
is named epochs. Then, the entire dataset is passed forward through the model as many
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times as epochs are determined. The idea of utilizing the same set of samples multiple
times may seem a little confusing and inefficient, however, we have to keep in mind that
the data is serialized and computed in batches to transform the fitting phase into a feasible
problem in terms of computational cost.

In the framework needed to implement the methodology of machine learning, we basic-
ally have defined a functional decision set and a loss function. The functional model f con-
tains the weights to be optimized and the loss function ascertains the objective function for
the optimization process (Hastie et al., 2009; Vapnik, 1992). In order to perform such a task,
we have to make use of the so-called optimizers, which are a set of algorithms that optim-
izes the weights of the function when learning from data. Assuming differentiability for the
loss function in the neighborhood of an initial point W0 ∈ ΩF , we can define the following
optimizers for a dataset D = {Xi, yi}N

i=1 = (X, y) and F(W|X, y) = L( f (X, W), y). In order
to ease the mathematical notation applied, we assume that ∇W F(W|X, y) = ∇F(W|X, y)
because it is well known that we are optimizing with regard to the W parameters. De-
tailed information for the implementation and formulation of the following optimization
algorithms can be found in Ruder (2016).

1. Gradient Descent (GD): It is a first-order optimization algorithm. The strategy is to
move along the steepest direction of the function, i. e. the inverse direction of the
gradient. It can be computed in an iterative way as:

Wk+1 = Wk + η∇F(Wk|X, y), with k ≥ 0. (4.8)

The η parameter is a positive value known as the learning rate. Sometimes it can also
be sequenced as:

ηk+1 =

∣∣[Wk+1 −Wk]
⊤[∇F(Wk+1)−∇F(Wk)]

∣∣
||∇F(Wk+1)−∇F(Wk)||2

, with k ≥ 0. (4.9)

2. Stochastic Gradient Descent (SGD): Unlike the GD algorithm, now an updating is
performed per each sample. The idea is to reduce the high redundancy through
one-by-one iterations. It is also much faster because the update of the weights is eval-
uated with a single pair (Xi, yi), which is computationally advantageous for limited
machines.

W i
k+1 = W i

k + η∇F(W i
k|Xi, yi), with k ≥ 0. (4.10)

3. Mini-batch Gradient Descent: Given a fixed length 0 < b < N, we can compute the
SGD by batches of samples instead of individual sampling. With the batch strategy,
we are reducing the individual variance during the learning phase which may lead
us to better local minima.

W i
k+1 = W i

k + η∇F(W i
k|X(i:i+b), y(i:i+b)), with k ≥ 0. (4.11)
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Where the (i : i + b) subindex indicates the batch sequence from the i element to the
i + b. An implementation of the algorithm is described in 5.

4. Momentum Stochastic Gradient Descent: In order to control the variation rate of
the updated weights in the SGD algorithm, we can incorporate the concept of mo-
mentum by computing ∆Wk per iteration. Such a concept allows the algorithm to
control steep changes among the elements of W. We can set a decay rate 0 < α < 1 to
determine the amount of information passed to ∆Wk. It accelerates the convergence
to an optimal solution since we are considering the direction, and so, reducing the
oscillations across iterations.

vi
k = η∇F(W i

k|Xi, yi) + α∆Wk ,

W i
k+1 = W i

k + vi
k, with k ≥ 0. (4.12)

We can note that now we have an additional parameter to set, which adds more
complexity when establishing the initial conditions of the optimizer. However, it is
commonly set as α = 0.9.

5. Nesterov Accelerated Gradient (NAG): The incorporation of direction vector quantity
with moment makes the algorithm more consistent. Nonetheless, we are still omitting
the practical variation of ∇F regarding its last position of the weights Wk+1. Then,
we can guide the cost function in each update by modifying the evaluation of our
loss.

vi
k = η∇F(W i

k − α∆Wk|Xi, yi) + α∆Wk ,

W i
k+1 = W i

k + vi
k, with k ≥ 0. (4.13)

The change in the image per W i
k − α∆Wk controls the accumulated gradient vector,

so the NAG optimizer prevents fast results to non-satisfactory local optima.

6. Adaptive Gradient (AdaGrad): It is an adaptive-gradient method that tunes the learn-
ing rate to the parameters, which is highly recommendable when dealing with sparse
data (Zeiler, 2012). Then, the updates rely on the gains obtained when evaluating the
next step. We first define the gradient of the objective function at step k and compon-
ent j ∈ {1, . . . , J}:

gk,j =
[
∇F(Wk|X, y)j

]J
j=1 = ∂jF(Wk|X, y). (4.14)

Then, we compute a similar weight update than SGD but now the learning rate
is now modified by step and iteration using the sum of squares of each gradient
component ∂jF(W i

k|Xi, yi):
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Wk+1,j = Wk,j −
η√

Gk,jj + ϵ
gk,j. (4.15)

Where Gk is the diagonal matrix with the j, j components are the sum of squares of
the j-component of ∇F(Wk|X, y) up to the step k. The ϵ constant is the smoothing
term, which avoids the division by zero, and it is a very small value like 10−8. One
of the main benefits of AdaGrad is that the learning rate is iteratively tuned, so the
choice of the initial value is not as rigorous as in SGD. In practice, it is usually set as
0.01 to control the gradient decay.

7. AdaDelta: It is an extension of AdaGrad with a different adaptive system for the
learning rate parameter (Zeiler, 2012). The principal drawback of the AdaGrad al-
gorithm is the aggressive monotonic reduction of the learning rate. As a manner to
solve this problem, AdaDelta incorporates an accumulated window of w past itera-
tions and Hessian function approximations for second-order methods. With the same
representation of the gradients gk, the square sum is averaged as an expectation.

E[g2]k = ρE[g2]k−1 + (1− ρ)g2
k ,

where ρ is the controlling decay parameter usually fixed equal to η. We must bear in
mind that now, the average just sums the past w elements.

Then, the weight update could be conducted with learning rate adaption over
E[g2]k+1 as:

Wk+1,j = Wk,j −
η√

E[g2]k + ϵ
gk

= Wk,j −
η

RMS[g]k
gk. (4.16)

When studying the updates, we can note that the units do not match. Then, we can
define an exponentially decaying average instead.

E[∆W2]k = ρE[∆W2]k−1 + (1− ρ)∆W2, (4.17)

In such a way, the iteration is computed by:

RMS[∆W]k =
√

E[∆W2]k + ϵ. (4.18)

Now, we can approximate the value of RMS[∆W]k with their update until the previ-
ous step. Finally, we replace the learning rate η in 4.16 by RMS[∆W]k−1 to give the
formulation:

Wk+1,j = Wk,j −
RMS[∆W]k−1

RMS[g]k
gk. (4.19)
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A great development for optimizing is that the learning rate has been suppressed
in the AdaDelta algorithm. Another interesting advance in both computational and
analytical areas is the limitation in the gradient accumulation by w length.

8. RMS propagation (RMSprop): It is a particular case of the AdaDelta algorithm, but
is very extended in the Artificial Intelligence sector. In this algorithm, it is suggested
the use of ρ = 0.9 for the squared sum of gradients, so that it leads to the following
representation:

E[g2]k = 0.9E[g2]k−1 + 0.1g2
k ,

Wk+1,j = Wk,j −
η√

E[g2]k + ϵ
gk. (4.20)

9. Adaptive Moment Estimation (ADAM): It is an algorithm that computes adaptive
learning rate as well (Kingma and Lei Ba, 2014). Its advanced implementation stores
an exponentially decaying average of both past gradients mk and past squared gradi-
ents vk.

mk = β1mk−1 + (1− β1)gk,

vk = β2vk−1 + (1− β2)g2
k . (4.21)

Where they were usually initialized as 0-vectors. Thus, Adam estimates the first and
second moment of gradients starting by gk and g2

k respectively. It has been proven
that this strategy is biased by 0, then we can counteract such concern by computing
the following correctors:

m̂k =
mk

1− β1
,

v̂k =
vk

1− β2
. (4.22)

To conclude, Adam takes a similar implementation to AdaDelta in Eq. 4.16 but with
the following difference:

Wk+1,j = Wk,j −
η√

v̂k + ϵ
m̂k. (4.23)

The authors recommended the use of β1 = 0.9, β2 = 0.999. For the numerical stability
is used ϵ = 10−8. An implementation of the algorithm is described in 5.

10. AdaMax: It is an infinite norm generalization of the Adam algorithm. The update
strategy for Adam is to scale the gradient of the loss by means of an ℓ2 vector norm,
as we can see in Eq. 4.21. Then, we could generalize such an idea to ℓp spaces as:

vk = β
p
2vk−1 + (1− β

p
2)|gk|p

= (1− β
p
2)

k

∑
l=1

β
p(k−l)
2 |gl |p. (4.24)
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For the AdaMax algorithm, we consider the p = +∞ case for Eq. 4.24, so we can get
the mathematical formulation by taking the limit:

uk = lim
p→+∞

[vk]
1
p

= lim
p→+∞

[
(1− β

p
2)

k

∑
l=1

β
p(k−l)
2 |gl |p

] 1
p

= lim
p→+∞

[
1− β

p
2

] 1
p

[
k

∑
l=1

β
p(k−l)
2 |gl |p

] 1
p

(4.25)

= lim
p→+∞

[
k

∑
l=1

[
β
(k−l)
2 |gl |

]p
] 1

p

= max
1≤l≤k

{
β
(k−l)
2 |gl |

}
.

The procedure to get to the last equity is by means of the same reasoning as Propos-
ition 3.2.1. So we can finally write the formula:

uk = max {β2uk−1, |gk|} . (4.26)

This algorithm allows us to know the bounds of the weight updates. The main profit
is that we do not need to correct the initialization bias.

We have seen how stochastic optimization is performed. In particular, we have shown
the main implementation of the steepest descendent, which is the Stochastic Gradient, and
how it has been developed until current optimizers for neural networks. An illustration of
the training cost implicated in a classification task is shown in Fig. 4.4.

The procedure where our model learns from a given dataset D, is broadly known as the
fitting phase (Suthaharan, 2016). In general, both the procedure and the dataset are split
into three phases, which are called training, validation, and testing. During the training,
the model sequentially makes experiments with the train data to give the first response and
store their batch empirical loss. Afterward, the weights are fixed, and then the validation
data are handled likewise. The point is to compare the losses obtained per each batch
and per each group (train vs validation) and then check how our model performs by
comparing it along the number of epochs within the fitting. Once training and validation
are conducted, the test phase evaluates how well is our model generalizing, since the test
data is not known by our model when fitting their weights. Then, the test stage is the
final proof that analyzes the quality of the predicted output until the model is eventually
launched. Even though these steps might seem confusing, their proper implementation
guarantees a good praxis in the data analytics field. Among many advantages, we would
like to emphasize the following fit cases (Bashir et al., 2020):

1. Under-fitting: The resultant model had not learned significant information from the
dataset. Therefore their applicability to reality remains far.
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Figure 4.4: Performance of five different gradient-based optimization algorithms in the classifica-
tion task of MNIST dataset.

Source: Kingma and Lei Ba (2014).

2. Good-fitting: The model has learned to generalize the studied event. It has shown
an acceptable performance during the training and validation phases and, in turn, in
the test phase.

3. Over-fitting: The resultant model just "memorized" the input data, that is to say, its
applicability is limited to our dataset. As a consequence, our model will not be able
to work out of the experimental set.

In Fig. 4.5, it is illustrated the three mentioned cases for a particular regression problem
defined in R2.
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Figure 4.5: Possible fitting cases when facing a regression problem.
Source: Own elaboration.
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Apart from the fitting structure presented in the predictions, we can also represent the
loss curves presented during the training phase. In other words, we can successively store
the values of L in both the training and validation sets and check how these successions
converge. It is easy to realize that a balanced learning phase with acceptable fitting has
to have similar loss values in the involved sets. A visible representation of the three men-
tioned cases of the fitting is depicted in Fig. 4.6, for a learning instance of 100 epochs.
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Good-fitting

0 25 50 75 100

Over-fitting
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Figure 4.6: Loss curves for the three different cases in a learning procedure.
Source: Own elaboration.

We would like to mention that there exist some other cases related to a learning proced-
ure. We already mentioned at the beginning of this section that the limitations of machine
learning are subjected to data, complexity, and computation boundaries. Then, we can
obtain multiple different results when facing hard tasks or when handling data under
uncertainty. Nonetheless, we are assuming basic conditions that would lead to standard
behavior in terms of learning.

The performance of the fitted model has to be evaluated in the testing phase, and so
with the proper test set that was put aside. So far, we have described the fitting proced-
ure and the protocol implemented over the train and validation sets, however, we have
not indicated the utility of the test set. We first need to emphasize that the loss operator
computed over the batches and epochs shows the global situation of the model’s execu-
tion. Thus, the empirical risk is iteratively minimized to fit the dataset behavior. When
we obtain the argmin RD( f ) by modifying the weights, we could evaluate the model with
the same used sets, nonetheless, it would imply an inappropriate. In the first case, this is
because the fitting has been conducted in order to reproduce the best possible response.
Second, it may occur that our model only “memorizes” the data instead of learning the
event’s behavior. Hence, an external set (test set) is utilized to overcome that hypothetical
case. It is important to mention that we could also process the data to study the attributed
loss, but it is essentially studied some performance measures for the predictions returned
by the model.

When studying a binary case, our model is expected to respond f (Xi) = ŷi ∈ {0, 1}
indicating whether the case study occurs. As a result, we can face four different cases
depending on the two possible values of yi and ŷi. They are defined as follows:
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Hit True positive TP yi = 1 and ŷi = 1

Correct rejection True negative TN yi = 0 and ŷi = 0

Type I error False positive FP yi = 0 and ŷi = 1

Type II error False negative FN yi = 1 and ŷi = 0

In a matrix form, we can categorize the result given by our model as an actual-predicted
representation. It is important not only for the formalization of the AI model evaluation but
for the easy visualization that is generated. Table 4.1 contains a decision matrix example
for a binary classification problem.

Table 4.1: Confusion matrix for a binary classification problem.

Predicted label
Positive Negative
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It is easy to note that TP + TN + FP + FP = N since the predictions can be obtained
by using the entire dataset (although it is broadly extended only by the use of the testing
set). Then, we can obtain the associated ratios to check the performance of our AI model
in the testing phase (or any other), because the absolute may mislead us when comparing
them. The largely used ratios to evaluate diagnostic systems (Bradley, 1997; Fawcett, 2006;
Power et al., 2018) are:

True Positive Rate or Recall
TP

TP + FN
, (4.27)

True Negative Rate or Specificity
TN

TN + FP
, (4.28)

False Positive Rate or Fall-out
FP

TP + FN
, (4.29)

False Negative Rate or Miss rate
FN

TN + FP
, (4.30)

Positive Predictive Value or Precision
TP

TP + FP
, (4.31)

Negative Predictive Value
TN

TN + FN
, (4.32)
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False Discovery Rate
TP

TP + FP
, (4.33)

False Omission Rate
FN

TN + FN
, (4.34)

Accuracy
TP + TN

TP + TN + FP + FP
, (4.35)

Balanced Accuracy
TPR + TNR

2
. (4.36)

In general, we reference them by using the acronym made by their initials. By means of
the combination of some of the evaluation ratios previously described, we can construct
more specific and robust synthetic evaluation metrics.

Positive Likelihood Ratio
TPR
FPR

, (4.37)

Negative Likelihood Ratio
FNR
TNR

, (4.38)

Fβ-Score (1 + β2)
P · R

β2P + R
, (4.39)

Brier score
N

∑
i=1

(yi − ŷi)
2 , (4.40)

Jaccard score
TP

TP + FP + FN
, (4.41)

Informedness or J-statistic TPR + TNR− 1, (4.42)

Markedness or ∆p PPV + NPV − 1, (4.43)

Fowlkes–Mallows Index
√

PPV · TPR, (4.44)

κ-Coefficient
2(TP · TN − FP · FN)

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
, (4.45)

ϕ-Coefficient or MCC
TP · TN − FP · FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
. (4.46)

Before we use the metrics above defined, it is essential to give a better explanation of
their need and correct implementation. The likelihood ratios estimate the probability of
cross-hit-error cases for dichotomous outcomes. For that reason, it is widely used for val-



4.1 machine learning 85

idating medicine diagnostics (Harrell et al., 1982) together with precision and recall. The
Fβ-score (Sasaki, 2007), with β ≥ 0, considers the relevance of recall when evaluating β-
times than precision. The traditional form is with β = 1, so it is the harmonic mean of
precision and recall. The Brier score (Brier, 1950) is the only mentioned formulation that
evaluates the classifier by taking into account the predicted class probabilities via mean
squared error. The Jaccard score (Jaccard, 1912) determines the similarity between the
asymmetric binary attributes of the sample. The informedness (Youden, 1950) indicates
the information of a predictor for some condition and the markedness (Power et al., 2018)
shows how marked a predictor is for some condition, both based on all the predictions.
The Fowlkes–Mallows Index (Fowlkes and Mallows, 1983) is widely used for evaluating
clustering techniques because it determines the similarity between groups. The higher this
index, the higher similarity is presented. Finally, the ϕ-coefficient (Matthews, 1975), known
as the Matthews correlation coefficient, is a robust measure to evaluate a classification task.
Owing to their formulation, it considers every single case assumed in the confusion mat-
rix. Then its use is highly recommended, particularly for binary classification evaluation
(Chicco and Jurman, 2020; Chicco et al., 2021), being more informative than the before men-
tioned. It is noteworthy to mention that Informedness, Markerdness, Cohen’s κ-coefficient
(Cohen, 1960), and MCC ϕ-coefficient values are bounded by −1 and 1, therefore a 0 value
is equivalent to an average random prediction.

Despite the fact that the rate metrics (Eq. 4.27 to Eq. 4.36) combined with the confusion
matrix give us meaningful information about the model performance, we also have to
mind the misclassification errors that may occur (Bradley, 1997). This is the main reason
that explains the need for additional metrics (Eq. 4.37 to Eq. 4.46) with complementary
interpretation. In order to cover every point that relates to the diagnostic evaluation, we can
make use of the Receiver Operating Characteristic (ROC) curve. The ROC curve illustrates
the true positive rate (sensitivity) against the false positive rate (specificity) as the decision
threshold is varied (Marzban, 2004). The area under the ROC curve, known as AUC, is a
simple measure to summarize such trade-off as a single value that allows us to visualize
the accuracy of the diagnostic test (Swets, 1988). By accumulating every slope of the ROC
points when the decision threshold is varied, we can define a trapezoidal integration curve
of the FP-rate (ai) and TP-rate (1− bi) series per each value of i ∈ {2, . . . , N}, as a threshold
invariant score:

AUC:
N

∑
1=2

[
(1− bi)(ai − ai−1) +

1
2
(bi−1 − bi)(ai − ai−1)

]
. (4.47)

By Eq. 4.47, we can see that the TPR and FPR distributions are simultaneously con-
sidered for calculating the AUC score. Then, the graphical representation allows us to
interpret the performance of our classifier when we modify the decision threshold. In or-
der to give an in-depth analysis of the ROC curve interpretation, Fig. 4.7 illustrates the
variations on the curve depending on two main aspects: the decision threshold and the
discriminability index returned from the model performance.
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Figure 4.7: Behaviour of the ROC curve when the discrimination threshold (A-top) and the discrim-
inability index (A-bottom) vary over the observations.

Source: Christensen (2009).

The last paragraphs have been dedicated to evaluating the performance of classification
models. However, applying such metrics would not make sense in regression tasks. Owing
to the nature of the regression problems, the motivation is to approximate the behavior of
a known event. Then, the actual value (yi) and the prediction (ŷi) have to be compared
by measuring the closeness of the results because a direct comparison between numbers
would be misleading. The usual manner to estimate the model’s accuracy is through pair-
wise comparisons. Some of the evaluation functions used are mentioned above.

Mean Absolute Error MAE =
1
N

N

∑
i=1
|yi − ŷi| (4.48)

Mean Square Error MSE =
1
N

N

∑
i=1

(yi − ŷi)
2 (4.49)

Root Mean Square Error RMSE =
√

MSE (4.50)
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Mean Square Log-Error MSLE =
1
N

N

∑
i=1

[log(1 + yi)− log(1 + ŷi)]
2 (4.51)

Mean Absolute Percentage Error MAPE =
1
N

N

∑
i=1

|yi − ŷi|
|yi|

(4.52)

Weighted-MAPE WMAPE =
∑N

i=1 |yi − ŷi|
∑N

i=1 |yi|
(4.53)

Median Absolute Error MedAE = median{|yi − ŷi|}N
i=1 (4.54)

Max Error MaxE = max{|yi − ŷi|}N
i=1 (4.55)

Relative Absolute Error RAE =
∑N

i=1 |yi − ŷi|
∑N

i=1 |yi − µy|
(4.56)

Total Error TE =
1
N

N

∑
i=1

(yi − ŷi) (4.57)

Coefficient of determination R2 = 1− ∑N
i=1(yi − ŷi)

2

∑N
i=1(yi − µy)2

(4.58)

Adjusted R2 R2
adj = 1− (1− R2)(N − 1)

N − k
(4.59)

Explained Variance EV = 1− Var[y− ŷ]
Var[y]

(4.60)

λ−Quantile Loss λQ =
1
N

[
1{y−ŷ} − 1{ŷ−y}

]
(4.61)

Tweedie (1984) Deviance
2
N

N

∑
i=1

(
max{yi, 0}2−p

(1− p)(2− p)
−

yiŷ
1−p
i

1− p
+

ŷ2−p
i

2− p

)
(4.62)

Huber (1964) loss Lδ =

 1
2 (yi − ŷi)

2 if yi − ŷi ≤ δ,

δ
(
|yi − ŷi| − 1

2 δ
)

otherwise.
(4.63)

4.1.1 Probabilistic and statistical notions

In mathematics, we say a system is deterministic as long as such a system is not affected or
involved by random variables. Hence, the behavior and the conditions of the system stud-
ied will not be altered by randomness in any of their states. A common study approached
by deterministic models is the physical solution of differential equations because the ini-
tial conditions and development are assumed to be given. On the contrary, there exists
systems and processes defined by means of random variables. They are called stochastic
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or random systems, and they are widely used in mathematical modeling to describe ran-
dom phenomena.

Since most of the Machine Learning models depend on random variables that affect the
state of the process studied, we focus the thesis on developing probabilistic models that
help us build more complex intelligent systems.

One of the most basic models for regression analysis is linear regression (LR). It basically
predicts some targets through a weighted sum of the input data. The interpretation is quite
easy since it learns the linear relationship between variables. When it is tackled as one
input for one output, it is named simple linear regression. On the contrary, a multivariate
linear regression maps multiple input data to one output. In any case, the input variables
are called explanatory variables. LR has various applications, but it is broadly used in two
cases. First, when making predictions or forecasting, LR learns from a dataset, and then the
linear error is evaluated in the resultant fitting. Second, we can analyze and quantify the
linear relationship among different terms when explaining the variation between actions
and responses. For the standard implementation of linear regression from a dataset D =

{Xi, yi}N
i=1, we have to assume weak exogeneity, normality, linear correlation (X over y),

homoscedasticity, and error independence. The mathematical formulation is presented as:

y = Xβ + β0 + ε.

yi = X⊤i β + β0 + ε i (4.64)

= β0 + β1xi1 + · · ·+ βnxin + ε i ∀i ∈ {1, . . . , n}.

The homoscedasticity implies that each error ε i ∼ N (0, σ2
i ). As we can see, the β-vector

determines the set of coefficients to fit during the training, where the β0 term is called
intercept, and it marks the vertical step of the line. The most common way to fit the
weighted sum is via the ordinary least squares method, i. e. a loss function equal to Eq. 4.4.
Then:

β∗ = argmin
β

(y− Xβ)⊤(y− Xβ) =

argmin
β0,...,βn

N

∑
i=1

[
yi − β0 −

n

∑
k=1

βkXk

]2

.
(4.65)

By means of the coefficients of β, we can draw conclusions about the weighted value
of each instance in the output. Thus, we can get information about which of the features
have major relevance when predicting because larger values affect the outcome more. It is
very easy to notice due to the linear representation of LR. That is why linear models are
very used in most applied sciences. Besides, each β-weight has an associated confidence
interval, which is so advantageous when understanding the impact of the feature variation
in the response. Another way to get the feature importance of our data is to perform the
t-statistic as:

tβ∗k
=

β∗k
SE(β∗k)

, (4.66)
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being SE(·) the standard error operator. We can interpret it as a penalized version of the
coefficient, so the more variance has, the less impact the feature has.

Sometimes, the dataset we are trying to analyze has leverage to some features or some
set of outliers regarding their distribution. In such a case, we conveniently add the so-
called regularization to prevent non-significant results caused by the attached bias. As we
have mentioned, we can measure the impact of an explanatory variable through their βk-
coefficient associated, so we can force the model to limit the global values of the β vector.
Both sparse data or outliers are usually regularized by using the loss functions:

Lasso: (y− Xβ)⊤(y− Xβ) + λ1||β||1, (4.67)

Ridge: (y− Xβ)⊤(y− Xβ) + λ2||β||2, (4.68)

Elastic Net: (y− Xβ)⊤(y− Xβ) + λ1||β||1 + λ2||β||2. (4.69)

Andrey Tikhonov was the first person to implement regression techniques. Nonetheless,
he applied them in the field of integral equations as an ℓ2 corrector. The incorporation
of regularization to solve linear regression was proposed for Hoerl et al. (1962), where
authors applied the Ridge analysis developed by Tikhonov. Tibshirani (1996) incorporated
the Lasso (least absolute shrinkage and selection operator) estimator. Its application with
sparse data was already implemented by Chen and Donoho (1994) for the basis pursuit
technique for optimization problems. As a combination of both to overcome some weak-
nesses presented in Lasso and Ridge, Zou and Hastie (2005) presented Elastic Net as a
manner to correct the double shrinkage problem. They generally control the bias-variance
tradeoff usually presented in real datasets by means of ℓp norms (Li and Liny, 2010).

The performance of linear regression models in real-world applications is not very ef-
fective. The explanation is chiefly related to the assumptions stated previously. Firstly, LR
formulation only describes linear relationships (Eq. 4.64) based on a weighted sum. In
other words, every non-linearity presented among the explanatory variables will not be
taken into consideration. Second, their predictive power is less than modern statistical
techniques in regression or forecasting tasks. It is merely related to the simplification ac-
cepted via single linear functions that describe the dataset as unique events. Nonetheless,
it is important to recognize that its easy interpretation of weights is very intuitive when
analyzing the feature’s effect in our model.

In addition to the least square method that is used as a loss function L, we can also
calculate the coefficient of determination, also known as R2, to measure the proportion
of variation explained by the set of dependent variables. The mathematical formulation is
shown in Eq. 4.70.

R2 = 1− ∑i(yi − ŷi)
2

∑i(yi − ȳ)2 = 1− SSresidual

SStotal
. (4.70)

Thus, we can interpret the R2 coefficient as a measure of goodness of the global fit
obtained by our model. However, the coefficient is not defined to describe non-linear
variations or collinearity nor to indicate the existence of omitted-variable bias. Moreover,
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neither R2 nor least squares provide evidence about whether the independent variables
are suitable for the regression task.

As long as we want to infer in regression problems, we can utilize LR models to describe
some responses. But, if we want to ascertain whether an event y belongs to some class, we
will not be able to perform it with LR formulation, since it does not output probabilities.
The linear structure cannot behave as a probability function either, so we need to create
new techniques for classification tasks. The binary logistic model is a statistical estimator of
probability events by calculating the log odds by using independent variables as predictors.
It was one of the first solutions for solving binary classification as {0, 1} labels, i. e. it is
assumed that y ∼ Bernoulli(p) for some probability p. The logistic model computes the
membership probability of an event through the logistic function, which has the formal
representation:

logistic(t) =
1

1 + e−t . (4.71)

It is easy to note that logistic(t) ∈ (0, 1) per each t ∈ R. A point to emphasize is that
4.71 is differentiable, and so, its derivative as well.

For a given dataset D = {Xi, yi}N
i=1, such that yi ∈ {0, 1} indicates whether or not the

response belongs to the studied class, we combine the predictor variables as a weighted
aggregation and map it over 4.71 to obtain:

P(yi = 1) = logistic (β0 + β1xi1 + · · ·+ βnxin)

=
1

1 + e−(β0+β1xi1+···+βnxin)
. (4.72)

Given that P(yi = 1) is bounded, we have to consider a decision threshold so that it
separates the results as 0 or 1. It is usually set as 0.5 because it is the half value of the
output space. The error associated with the predicted class is evaluated with the cross-
entropy loss (4.5). By doing so, we are considering the averaged probability log error as
a measure of goodness of fit, i. e. comparing P(yi = 1) against yi. An important point to
highlight is that it is impossible to obtain a zero loss per any prediction since yi ∈ {0, 1}
and 0 < P(yi = 1) < 1. It has a contrary interpretation to LR models, given that linear
approximations may return similar values for some points. We can also note that we can
link {P(yi = 1), P(yi = 0)} with {yi, 1− y1} because we have assumed that y is a Bernoulli-
distributed variable.

We can see the difference in the approach of linear regression and logistic models in the
illustration in Fig. 4.8. The blue dots are the dependent variable to describe, and the red
line indicates the solution of the fitting.

For interpretability purposes, now the β-coefficient states the weights of each explanat-
ory variable in a different manner.

odds = log
(

P(yi = 1)
1− P(yi = 1)

)
= log

(
P(yi = 1)
P(yi = 0)

)
= eβ0+β1xi1+···+βnxin . (4.73)
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Linear Regression type Logistic Regression type

Figure 4.8: Difference between linear regression and logistic regression approaches. The red lines
indicate the solution to the fitting.

Source: Own elaboration.

As a consequence, when we modify the value of the xi variable to xi + ∆i, we have an
odds ratio of:

odds∆i

odds
= eβi∆i (4.74)

Hence, the ratio variation of a change ∆i is exponentially proportional to βi.

4.1.2 Principal tasks in Machine Learning

In this section, we have mentioned the four different approaches that concern the develop-
ment of ML models. Even though they represent distinguished fields, the tasks that could
be executed can coincide.

4.1.2.1 Classification and regression

It is the assignment problem for a given dataset by supervised approach. In particular,
the different values, categories, classes, groups, or types are assumed to be known and
distinctive among the others. The main point is to generate a pattern recognition method
by means of the known output (yi). Hence, the classification algorithm is able to yield an
accurate answer (ŷi) for a given input (Xi). The main difference between classification and
regression tasks is that the first one aims to identify the relationship of a sample within a
set of sub-populations (classes) by means of the so-called explanatory variables or feature
vectors (Carrizosa and Romero Morales, 2013), and the second one, the main objective is
to estimate the relationship between a set of dependent variables (outcome or response)
and a set of independent variables (predictors) through a number of unknown parameters
and the statistical error terms (Freund et al., 2006).

Owing to the nature of this thesis is mainly focused on presenting the supervised meth-
odology, the list of algorithms, methods, and applications will be described throughout
our work.
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4.1.2.2 Clustering

Cluster analysis is considered one of the main pattern recognition techniques that concern
unsupervised tasks (Diday and Simon, 1976), gaining a great deal of attention from the
middle of the 20th century onwards (Blashfield and Aldenderfer, 1978). This task consists
in finding the underlying structure in a collection of unlabeled data. Then, a cluster is
a subset of elements of the original collection that contains objects with similar patterns
among them (Madhulatha, 2012). It is important to remark that, while the goal of clustering
analysis is descriptive, the goal of classification techniques is entirely predictive, so there
should be no confusion between them. Therefore, the clustering’s target is to discover
a set of categories that remain unknown. Thus, we can recognize new groups that are of
interest in themselves and their intrinsic assessment (Rokach and Maimon, 2005). As stated
in Tryon and Bailey (1971), “understanding our world requires conceptualizing the similarities
and differences between the entities that compose it”.

According to Rokach and Maimon (2005), given a space S, the clustering structure is
represented as a set of subsets C = {C1, . . . , Cn} of S, such that,

S =
n⋃

i=1

Ci, Ci ∩ Ci = ∅, per each i ̸= j. (4.75)

When solving a clustering problem, the task of finding a partitioning from a given data-
set is usually performed by means of some optimality criterion (Duran and Odell, 2013).
The purpose of the optimality criterion is to reflect the levels of the desirability of the
various partitions. In general, clustering algorithms can be considered hierarchical or par-
titional. Hierarchical algorithms find successive clusters by taking into account previously
established clusters, whereas partitional algorithms ascertain all clusters at time (Madhu-
latha, 2012). On the one hand, hierarchical algorithms rely on distance-based methods, in
which any of the metrics defined in Table 3.2 may be considered to merge the different
nested partitions and measure the linkage among clusters. An example of the application
of this kind of algorithm is presented in Yim and Ramdeen (2015), where it is used for
studying language variables for psychological purposes. On the other hand, partitional
algorithms draw for the premise that k different clusters are considered beforehand. In
turn, the algorithm searches for the best possible positions by iteratively reallocating refer-
ence points over the sample space. The search criterion is widely known as fitness meas-
ure (Nanda and Panda, 2014). One of the first partitional algorithms was the K-means
(Lloyd (1982) but originally presented in 1957), which still remains popular due to its
low-complexity attached (Jain, 2010). Over the years, various partitional algorithms have
been implemented with different approaches. For instance, two well-known algorithms are
the Partitioning Around Medoids (PAM) (Kaufman and Rousseeuw, 1990) or the Density-
Based Spatial Clustering of Applications with Noise (DBSCAN) (Ester et al., 1996).
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4.1.2.3 Dimensionality reduction

It is the set of data transformation techniques from the actual N-dimensional space into
a lower n-dimensional embed space. That task is usually performed when dealing with
a large number of observations or large observational variables. Thus, we can limit the
computational cost associated with processing all the information at once. Depending on
the motivation of the problem, it is required to select or extract features from the original
dataset, which divides the task into two subgroups.

This study is commonly known as manifold learning, due to the topological objects,
and it relies on the assumption that the high data dimensionality representation is usually
artificial because the features or parameters of each sample can be described by low di-
mension functions (Cayton, 2005). As a consequence, the implicit function theorem allows
us to model the dataset as a low-dimensional manifold space embedded into the original
one. Then, the set of algorithms for manifold learning is designed to extract the parameters
that define the embedded representation.

A common example of dimensionality reduction is the principal component analysis
(PCA) technique (Pearson, 1901), which is an unsupervised method for projection that max-
imizes the variance in the mapping space through matrix eigenvectors. PCA is also applied
for exploratory data analysis to summarize the main features that compound the Xi input
data. In a similar way, the linear discriminant analysis (LDA) technique (Fisher, 1936) seeks
a linear combination that describes and/or distinguishes various classes. Hence, LDA can
be applied for either dimensionality reduction (unsupervised) or classification (supervised)
because it determines the effectiveness of the set of variables over the class membership.
Finally, an example of artificial neural networks applied in this task is the Autoencoders,
which reduce the feature space into a latent space by means of efficient codification of the
input data. Their implementation is broadly used in examples as anomaly detection (Chen
et al., 2018) and denoising techniques for clinical samples (Gondara, 2016), speech (Lu
et al., 2013), and image (Majumdar, 2018). A widely recognized case of encoder-decoders
is the transformers networks (Vaswani et al., 2017), being the state-of-the-art in natural
language processing (Wolf et al., 2020).

4.1.3 K-Nearest Neighbours

Over the XX century, lots of algorithms and techniques have been deployed to solve clas-
sification a regression tasks. A major breakthrough occurred in the middle of the century
when Fix and Hodges (1951) studied the consistency properties of non-parametric discrim-
ination problems. For a random variable Z and two distributions F and G with known
density functions f and g respectively, it is defined the likelihood ratio procedure over a
threshold c for the quotient f (z)/g(z). Motivated by the discrimination properties stated in
Fix and Hodges (1951), Cover and Hart (1967) introduced the concept of K-Nearest Neigh-
bours (KNN), a non-parametric method for estimation without making strong assump-
tions about the dataset. Further properties about the convergence of the algorithm were
presented in Devroye (1978), and other basic concepts are explained in Altman (1992). The
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KNN method is built by a distance function that determines the closeness over a sample in
regard to the entire set of observations. The forecast is obtained by ranking such distances
and the result is based on a voting system for the K neighbor elements. In Fig. 4.9 is illus-
trated the KNN functioning through three steps procedures: addition of a new unlabeled
sample, calculation of the pair-wise distance comparison for the entire dataset, and voting
system for the K nearest elements in the set.

K = 3

Introduce a new instance
to classify

Compute the distance d
per each labeled sample

Voting system for the K
number of neighbours

Figure 4.9: Graphical interpretation of the KNN classification algorithm for binary classification
(red/blue classes) with Euclidean distance and K = 3 neighbors.

Source: Own elaboration.

It is easy to note that the principal parameters that set the method are the number
of neighbors K ∈ N and the distance function considered d to determine the pair-wise
proximity to the resultant elements. The distance usually utilized for KNN is the Euclidean
distance for continuous variables or the Hamming distance for discrete variables, although
the metric selection can also be attached with supervised metric learning (the definition
can be found in Wang and Sun (2015)). The choice of K also has a significant impact on
the method because it determines the misclassification error (Hall et al., 2008). On the one
hand, larger values of K lead to less chance of error but it is prone to high computational
times when predicting. On the other hand, smaller values of K ease the decision process
but they ascertain non-precise decision boundaries when there exist noisy features. In
practice, it is commonly extended the use of heuristic techniques such as empirical study
(Chomboon et al., 2015) or hyperparameter optimization (Feurer and Hutter, 2019). The
last matter to emphasize is the voting system utilized to predict the class of an instance
because the original KNN makes use of straightforward counting. This concern is harder to
overcome since it cannot be handled by means of numerical experiments. However, it has
been demonstrated that the use of weighting schemes via distance-to-sample to produce
class probability estimation outperforms the default KNN strategy (Jiang et al., 2007).

Over the years, the structure of the KNN algorithms has considerably evolved, where
the target data and procedure are responsible for the generalization of such techniques
(Bhatia and Vandana, 2010). The KNN performance has also been a matter for study with
efficiency improvement obtained by Sproull (1991) and Liu et al. (2003). With respect to the
K-Nearest Neighbours applications, its predictive power has been shown in multiple tasks
such as economic forecasting (Imandoust and Bolandraftar, 2013), television advertisement



4.1 machine learning 95

rating (Hariadhy et al., 2021), tumor diagnosis (Yuan et al., 2004), and text categorization
(Guo et al., 2004).

4.1.4 Support Vector Machine

Within the family of constructive models, Boser et al. (1992) proposed a supervised al-
gorithm for classification that relied on the marginal distance between classes in the direct
space. The basis for implementation and empirical risk minimization was already studied
by Vapnik (1992). The point was to obtain the best statistical generalization performance in
a very high-dimensional feature space via separation properties (Vapnik, 1999). A widely
known example is the Support Vector Machine (SVM) of Cortes and Vapnik (1995). SVMs
are a set of robust predictors based on non-probabilistic methods. Their strategy relies
on the search of a hyperplane w⊤ · x + b = 0 so that it maximizes the distance between
the different class events. The w vector is the normal vector of the hyperplane and it is
responsible to separate the feature space generating a margin of size b

||w|| . In such a way,
we can distinguish three hyperplanes.

w⊤ · x + b =


1; 1− class decision boundary,

0; Optimal hyperplane,

−1; −1− class decision boundary.

(4.76)

In practice, it is just a technique via the geometric constructive procedure. The support
vector machine models can be divided into linear and nonlinear implementations (Hastie
et al., 2009). In the particular case when the data domain can be divided linearly to separ-
ate the classes, it is called linear-SVM. From a topology perspective, a data domain D is
linearly separable by a support vector w⊤ · x + b = 0 if there exist two subdomains that
make a disjoint union of D.

D1 = {X : w⊤ · x + b ≤ 0},
D2 = {X : w⊤ · x + b > 0}.

(4.77)

As a consequence, the subdomains D1 and D2 determine the different classes, as in-
dicated in Eq. 4.76. The optimization strategy is basically a search of the parameters that
maximize the marginal distance between classes (Suthaharan, 2016). Similarly, a multiclass
support vector machine can be deployed as a combination of various binary-class support
vectors together with an ensemble approach (Franc and Hlavac, 2002).

For the cases when the data is not linearly separable, some extensions transform the data
domain into a high dimensional feature space to solve the prescriptive procedure called
non-linear-SVM (Suthaharan, 2016). The mapping functions that convert the original space
into the feature space are known as kernel functions (Scholkopf et al., 1999), and so the
support vector can be rewritten as w⊤ϕ(x) + b, where ϕ : RN → RN′ for N′ >> N.

In Fig. 4.10 is depicted two simple 2-dimensional examples of linear and non-linear SVM
problems.
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Linearly separable Non-linear separable

Figure 4.10: Maximum-margin hyperplane and class-margins for a support vector machine model
in two binary classification tasks. The left plot depicts a problem in a linear separable
space and the right plot shows the decision boundaries after a mapping over a kernel.

Source: Own elaboration.

For both cases, the optimization problem associated with the fitting stage can be per-
formed by means of the following expression of Bottou and Lin (2007):

minimize
1
2
||w||22,

s.t S(w⊤ϕ(x) + b) ≥ 1, (4.78)

∀i ∈ {1, ..., N}.

where S is the response function for each Xi sample over the N′-hyperplane.
In the field of machine learning, support vector machines have been considered one of

the most important algorithms due to their friendly usage and great performance (Pra-
dhan, 2012). Their applicability has been demonstrated in various fields such as bioin-
formatics (Byvatov and Schneider, 2003) and chemistry (Chen et al., 2004). Among many
interesting applications of SVM algorithms, it is worth mentioning the machine condition
monitoring (Widodo and Yang, 2007) and web content classification (Sun et al., 2002). Other
approaches can be found as the Lagrangian matrix expansion (Balasundaram and Kapil,
2010), quantum assisted (Rebentrost et al., 2014), fuzzy structured (Wang et al., 2005) or
wavelet-based kernel (Zhang et al., 2004) types of support vector machines.

4.1.5 Decision Trees

In graph theory, a tree is a connected, acyclic, and undirected graph formerly defined by
Arthur Cayley (1857). Within the field of ML, a decision tree (DT) is a tree-like structure
defined as a graph G = (V, E) with the set of nodes V and edges E. Its nodes can be
considered as decision, chance, and terminals that define a disjoint collection as V =

D ∪C ∪T respectively. A tree is built by a root node, leaf nodes that represent the classes,
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and internal nodes that represent the test conditions. In Fig. 4.11 is depicted as a graph
structure of a decision tree.

Root node

Decision nodeDecision node

Leaf node Leaf node Leaf node Decision node

Leaf
node

Leaf
node

S
ub

-T
re

e

Figure 4.11: Decision tree graph representation with its nodes and vertices.
Source: Own elaboration.

Decision trees were designed to cover both regression and classification. The first regres-
sion instance was named automatic interaction detection (AID) by Morgan and Sonquist
(1963) and the first classification instance was developed under the name θ-AID (Messen-
ger and Mandell, 1972), however, it took a long time until classification and regression
trees (CART) by Breiman et al. (1984) made a breakthrough in the DT field.

The vertices that define the paths are constructed via inductive rule, where the node split
is defined by the association of such decision rules. For a given node t with two leaves tL

and tR, we can mathematically represent the node “impurity” as a function that computes
the deviation of the splitting, some examples are presented as follows (Loh, 2014):

ϕ(t) = ∑
i∈S(t)

(yi − ŷt)
2, (4.79)

ϕ(t) = ∑
i∈S(t)

(yi − ŷt)2

yi
χ-squared, (4.80)

ϕ(t) = −∑
j

p(j|t) log p(j|t) Entropy, (4.81)

ϕ(t) = 1−∑
j

p(j|t)2 Gini index, (4.82)

where S(t) is the set of data after t and p(j|t) stands for the observations of the j-class
proportion. With the use of p(j|t) we can also compute the classification error as:

Classification error : CE(T) = 1−max
j

p(j|t). (4.83)

As a manner to control the tree complexity, it was included the search for the most
appropriate descriptor per each split by calculating the best reduction in impurity between
a decision node and its leaves (Deconinck et al., 2005). Tree pruning is an alternative to
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control both overfitting and outlier influence. This strategy compares the branches to find
the least complex one, in which multiple versions can be defined (Esposito et al., 1997).
The manner DTs classify input data is by means of the concept of information gain. The
entropy (H) is originally used as the measure to count that gain because it quantifies the
disorder or uncertainty of data. Then, the conditional entropy is just the j-entry of the
summation and so the information gain associated with the tree hit as:

Information gain : ∇I(p, j) = H(p)− H(j|p). (4.84)

Finally, we can use the gain ratio to quantify the quantity of information obtained in the
splitting:

Gain ratio : g(p, j) =
∇I(p, j)

H(p)
. (4.85)

During the fitting, the gain ratio gives us information about the goodness of a split
(Singh and Gupta, 2014). Additionally, it helps to reduce the favor given by entropy or the
Gini index for outliers.

4.1.5.1 Random Forest

With the aim of preventing the limitations presented in DTs and improving their per-
formance, Ho (1995) designed the Random Forest (RF) model. It consists of a tree-based
algorithm that makes use of stochastic modeling to combine each subtree structure via i.i.d.
random vectors. In its formal definition, Random Forest is an ensemble of a finite num-
ber of trees {h(X, θj)}n

j=1 where each θj is an independent identically distributed random
vector and each h(X, θj) tree unit contributes equally to the final output (Breiman, 2001).
The incorporation of the random component θj allows us to add randomness in two ways
(Cutler et al., 2012). First, an independent bootstrap from the original data is used to fit
the trees. Second, considering the inputs Xi = (xi1, . . . , xik), it is selected a subsample of
l ≤ k to search for the best split independently at each node.

Once we have computed the basic steps to insert the randomization to the learning trees
and we have fitted the decision trees ĥi, we can predict each new input F(x) as:

Regression :
1
k

k

∑
j=1

ĥj(x) (4.86)

Classification : argmax
y

k

∑
j=1

1{ĥj(x)=y}(x) (4.87)

Given that the bootstrap sample is taken as a subset of the dataset D = {Xi, yi}N
i=1, there

will be another subset that contains the “out-of-bag” data as I = {i : (Xi, yi) /∈ D}. Hence,
such a set is very useful for estimating generalization error and variable importance (Cutler
et al., 2012).
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Finally, it is essential to highlight that the generalization error for random forest con-
verges to a bounded limit when the number of trees hj tends to infinite (Breiman, 2001).
Additionally, such error relies on the strength and correlation among trees.

4.1.5.2 Gradient Boosting Machines

Gradient Boosting Machines (GBM) is a set of algorithms that learns from data via weak
learners through an additive approach (Friedman, 2001). The underlying idea relies on the
iterative search of an approximation function that accurately maps the response of a given
training data sample D = {Xi, yi}N

i=1 of known values. Regarding a loss function L(y, ·),
GBMs estimate the objective function of the minimization problem that implies the fitting
of the joint distribution of (Xi, yi)-pairs. In turn, the optimal function may be defined as in
Eq. 4.88:

F∗(X) = argmin
F

EX,yL(y, F(X)). (4.88)

Now, we build the additive expansion of an approximation function F(X; a) where a is
the set of characteristic parameters. Thus, we can estimate the objective by following the
ensemble technique of the Eq. 4.88, i. e. by a weighted accumulation sum of learners.

Fm(X) = Fm−1(X) + ρmhm(X; a).

F0(X) = argmin
α

N

∑
i=1
L(yi, α).

(4.89)

Here, hm are the weak learners, and ρm are the multipliers of the linear search. The
iterative upload steps of the algorithm are described as the procedure described in Eq. 4.90.
The underlay goal is to greedily improve the model performance by minimizing the loss
function at each time (hm) via linear search (ρm).

ỹi,m = −
[

∂L(y, Fm−1(Xi))

∂Fm−1(Xi)

]
i,m

.

am = argmin
a,β

N

∑
i=1

[ỹi − βh(Xi, a)] .

ρm = argmin
ρ

N

∑
i=1
L(yi, Fm−1(Xi) + ρh(Xi; am)).

Fm(X) = Fm−1(X) + ρmh(X; am).

(4.90)

We can use this procedure to minimize any differentiable loss L with forward stage-
wise additive modeling. It fits the learners h(X, a) to the responses of the approximated
member of the pseudoresponses ỹi of the loss function in the steepest-descent strategy. For
the particular case in which we consider decision trees as base learners h, then we are
focusing on the Gradient Tree Boosting (GTB) methodology (Friedman, 2002).
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4.1.5.3 Extreme Gradient Boosting

A particular case of GBs is the Extreme Gradient Boosting (XGBoost) defined in Chen
and Guestrin (2016), which is a GTB ensemble with a scalable end-to-end system. The
approximation method for the optimal search is based on a similar approach as the GBM
additive procedure described in § 4.1.5.2. Nevertheless, XGBoost executes decision trees as
weak learners, then the loss function is regularized in order to penalize the tree complexity.
By doing so, we also avoid over-fitting. The representation is described in equation 4.91.

LXGB(y, F(X)) = L(y, F(X)) + ∑
k

Ω(hk), (4.91)

where Ω(hk) = γT +
λ

2
||whk ||

2
2.

In particular, considering T trees, Ω prevents over-fitting by smoothing the learned
weights (w). The parameter γ regularizes the loss reduction gain and so determines the
complexity of the tree base learners. The λ parameters control the impact of the weights
over the loss. It is easy to note that, when γ = λ = 0 in equation Eq. 4.91, we have the
same methodology as tree-GBMs.

During the fitting phase, the XGBoost loss can be controlled through the formal defini-
tion of the iterative process. Now, we can build the sequence described for GBMs (Eq. 4.89)
as an iteration k over the loss equation Eq. 4.92.

LXGB(y, Fk(X)) =
N

∑
i=1
L (yi, Fk−1(Xi) + hk(Xi)) + ∑

k
Ω(hk). (4.92)

XGBoost is known to be one of the state-of-art techniques in machine learning. Its ef-
fectiveness and applicability have been proven in several challenging areas of classification
(Ogunleye and Wang, 2020) and regression (Gumus and Kiran, 2017), proving an excellent
performance with easy and scalable launching. Moreover, XGBoost is also a good classifier
in imbalance tasks such as financial assessment (Chang et al., 2018), credit scoring (He
et al., 2018), or face image manipulation (Dang et al., 2019).

4.2 deep learning

Deep learning is a subfield of machine learning algorithms (as shown in Fig. 4.3) character-
ized by artificial structures (Shinde and Shah, 2018). It allows computational models that
are composed of multiple processing layers to learn representations of data with multiple
levels of abstraction (LeCun et al., 2015). In the same spirit as traditional ML, deep learning
can solve any of the tasks described in § 4.1.2, although deep models have been mostly
designed to tackle unsupervised problems (Goodfellow et al., 2016). The explanation of
this is that data processing through multiple customized mathematical operators (Vidal
et al., 2017) can extract high-level features from input data (Deng and Yu, 2014).



4.2 deep learning 101

4.2.1 Neural Networks

The nervous system is responsible to conduct electric signals through the organism in
order to send a response for a given stimulus, which will be turned into action in sensory
information. A neuron is an electrically excitable cell that constitutes the basic component
of the nervous system. It is presented in all animals but sponges and placozoa, in addition,
plants and fungi have different structures. A typical neuron can be classified into three
types: sensory neurons respond to stimulus, motor neurons coordinate the signal and
the locomotive system, and interneurons connect one neuron to another making a neural
circuit. In general, the structure of a neuron can have many different shapes and sizes, but
it is commonly divided into the cell body, dendrites, and axons. Their basic function is to
coordinate the information via complex and specialized feedback known as synapses, in
which an electrical or chemical signal is transmitted from one to another neuron.

Figure 4.12: Structure of a biological neuron divided by its major regions.
Source: CUSABIO.

The biological study of neural circuits started in the 19th century. Santiago Ramón y
Cajal proposed the behavior of neurons as basic functional elements of the nervous system.
In his research, he stated that neurons perform as discrete cells that transmit information
through electric connections. That pioneer idea is the basis of neuron doctrine and modern
neuroscience. The contributions of Ramón y Cajal were recognized with the Nobel Prize
in Medicine in 1906, shared with Camillo Golgi.

Once neuroscience advanced, the study of neural circuits and their anatomy became a
consolidated field of biology. In parallel with the study of the nervous system of humans,
scientists also started to analyze the behavior of synapses to develop intelligent systems. In
1943, McCulloch and Pitts (1943) developed the concept of artificial neurons as a computa-
tion unit that mimics the behavior of a biological neuron in a very simple formulation. The
logical gate implemented processed the input and fitted the response by using a decision
threshold. The idea of utilizing a threshold was to distinguish spatial sections under the
assumption of linearly separable problems. It was the first attempt at an implementation
of an artificial neuron system. We can represent it with formal mathematics as:

https://www.cusabio.com/Cell-Marker/Neuron-Cell.html


102 artificial intelligence

fθ(x) =

 1 if w⊤ · x ≥ θ,

0 otherwise.
(4.93)

Their system was called the MCP neuron, but it is also known as the Threshold Logic
Unit or Linear Threshold unit. The convex combination of weights w⊤ · x = ∑m

i=1 wixi de-
termines the spatial regions, which are activated via step function. Such weighted product
of vectors of m-dimension is fitted to the input to give the most accurate response for the
given data. In other words, it is required to optimize the parameters w1, . . . , wm in order
to fit the actual distribution of some event. They are called neurons or parameters of the
gate function. This kind of artificial neuron operates over the logical identities based on
the following Table 4.2.

Table 4.2: Basic truth tables for all binary logical combinations: P and Q.

P Q AND OR NAND NOR XOR XNOR → ←

T T T T F F F T T T
T F F T T F T F F T
F T F T T F T F T F
F F F F T T F T T T

In 1957, Rosenblatt made an impressive breakthrough with the implementation of an
algorithm known as a perceptron, Rosenblatt (1957, 1958, 1963). Its simple implementation
did not take long in becoming widely popular. Such an artificial neuron was designed
to compute a binary classification by using step functions over a linear combination of
features. The main idea of the function is to divide the input into regions and determ-
ine which of them are representative when making a decision. A simple mathematical
formulation of a perceptron function is presented as follows:

ρ(x) =

 1 if ϕ(w⊤ · x + b) ≥ 0,

0 otherwise.
(4.94)

For artificial neurons, the concept of weights defined by the perceptron functions is quite
different than the idea of the weighting scheme discussed in Chapter 3. Additionally, we
have the notion of bias, i. e. the parameters that control the spatial position of the features
studied.

In the equation given above, the function maps the x input by combining it with a
weighted aggregation. A major advance in difference with Eq. 4.93 is the use of customiz-
ing activation functions ϕ. For feed-forward networks, the activation used to transfer the
information to the output is the logistic function (Eq. 4.71). Depending on the scope of the
problem, they are expected to process the weighted sum (w⊤ · x) and adjust an adequate
output. For instance, multi-classification problems require different activation functions
than regression problems. Unlike the Linear Threshold unit, now we have a bias b which
is a new parameter to fit when fitting the function. In any case, the Threshold Logic Unit



4.2 deep learning 103

Figure 4.13: Implementation of the generalized perceptron function.
Source: Own elaboration.

can be understood as a particular case of the perceptron function of Rosenblatt. As de-
scribed in Fig. 4.13, the artificial neuron of McCulloch and Pitts has a fixed activation
function (Heaviside step) and a fixed bias parameter as the decision threshold.

In regard to activation functions, they are responsible to transmit the processed input
data to the response. Then, an activation determines how the model propagates the inform-
ation to the output (Sazli, 2006). Actually, sometimes the activation is also called a transfer
function. When performing AI tasks, the choice of these functions relies on the objective of
the problem. For example, some specific functions just belong to the family of regressors
and others can only be applied when performing pattern recognition. In any case, a crucial
requirement for the activation function is that it has to be bounded in their domain since
the operation of FNN is based on the universal approximation theorem (Laudani et al.,
2015). On the whole, we can distinguish three different categories of functions:

• Ridge: Actuates over linear combinations of the input variables.

• Radial: Actuates with a metric or distance established over some origin.

• Folding: Processes the input via high-order functions recursively.

In order to give a graphical representation of the commonly used activation functions,
Fig. 4.14 depicts the behavior of ten different R-valued activation functions defined in
[−3, 3]. Thus, we can also analyze their image of them and their differential properties.

When referring to Deep Learning, a parallel concatenation of them is called neural
network (NN), and it is considered the most basic feed-forward neural network (FNN)
(Schmidhuber, 2015). It happens because the information only flows forward, in which its
weights are responsible to learn from the input data. It was subsequently generalized to
multiclass-perceptrons in order to tackle the simultaneous labeling problems. Thanks to
the definition of perceptron and the construction NNs, nowadays we can build artificial
neural networks (ANN) with millions of parameters. This architecture is popularly called
as Multi-Layer Perceptron (MLP) (Hastie et al., 2009). In Fig. 4.15 is depicted the inform-
ation flow over an FFN. The formal definition of each layer of the perceptron is a hidden
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Figure 4.14: Ten different types of activation functions for neural networks.
Source: Own elaboration.

layer since the idea is that it is connected between the input in the output and it is sequen-
tially applied through the Chain’s rule. In general, the number of layer nodes is usually
set as N ≥ l1 ≥ · · · ≥ ln ≥ k, being N the size of the input, li the number of neurons in
the ith layer, and k the output length. It is important to bear in mind that for each node of
these hidden layers the workflow is the same as described in Fig. 4.13.

It is noteworthy to mention that deep neural structures may also have attached seri-
ous problems. A powerful system made by multiple concatenated neurons is able to learn
features unnoticeable to the human eye, so the ANN can also learn non-representative
elements from a given dataset, such as statistical noise (Bebis and Georgiopoulos, 1994).
Hence, such models are prone to overfitting, causing null applicability of the network. As
a manner to solve that concern, Srivastava et al. (2014) introduced a straightforward way
to prevent it via intermediate layers that randomly drop units (along with their connec-
tions) from the neural network during training. These kinds of layers are called dropout
regularization layers and they are very effective to prevent the excessive adaptation of the
perceptron units. Fig. 4.16 depicts the application of a dropout within a neural network.

Over the years, deep structures of dense layers fully connected have shown great per-
formance in both supervised (Murtagh, 1991) and unsupervised problems, demonstrating
a state-of-the-art methodology (Cheng and Titterington, 1994; Delashmit and Manry, 2005).
Among the great multitude of applications in multiple fields, we can highlight contribu-
tions to subjects such as industrial anomaly detection (Aldakheel et al., 2021), financial
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Inputs Hidden layers Output

Figure 4.15: Architecture of a feed-forward model with k hidden layers.
Source: Own elaboration.

Figure 4.16: Neural net workflow trained with standard structure (left) and with dropout regular-
ization after each layer (right).

Source: Srivastava et al. (2014).

forecasting (Corchado et al., 1998), chemistry pattern recognition (Burns and Whitesides,
1993), and survival analysis (Biganzoli et al., 1998). As a consequence, at the end of the
XX century, there was a high interest in this subject (see Wasserman and Schwartz (1988)
or Zhang (2000)). Apart from the structure and functionality of FNN, their performance is
supported by Cybenko’s theorem, which states that finite linear combinations of composi-
tions of fixed univariate function and a set of affine functionals can uniformly approximate
any continuous function of N real variables with support in the unit hypercube (Cybenko,
1989).

4.2.2 Convolutional Neural Networks

In functional analysis, convolution is a mathematical operator that is applied over two func-
tions to produce a resultant one. This function is computed as the integral of the product
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over the domain in which the original functions interact. The mathematical formulation
for two Lebesgue integrable scalar functions f and g in RN may be written for element
x ∈ RN as:

( f ∗ g)(x) =
∫

RN
f (τ)g(x− τ)dτ, Continuous version. (4.95)

( f ∗ g)(x) = ∑
t∈T

f (t)g(x− t), Discrete version. (4.96)

It is easy to note that convolution is an operator on the linear space of integrable func-
tions, which yields interesting properties such as commutativity, distributivity, and asso-
ciativity (functional and scalar). In addition, when considering Lebesgue spaces the con-
volution operator measure is dominated by the used functions, i. e. whenever f ∈ L1(RN)

and g ∈ Lp(RN) with p ≥ 1, then f ∗ g ∈ Lp(RN) and || f ∗ g||p ≤ || f ||1||g||p. Owing to the
special properties presented in that operator, convolution is widely utilized in many areas
of mathematics, physics, and engineering.

Convolutional Neural Networks (CNN) is a type of ANN whose aim is to perform con-
volutional operators for the input data with a subsequent inner product. The key point
is the kernel of the operation since it defines the dimensions (height, width, and depth)
passed through a feature map followed by a number of strides that determines the spatial
dimensionality to operate. Such kernels contain the weights, and so they are responsible
to learn from data (O’Shea and Nash, 2015). Convolutional layers, similar to FCNs, also
expand the inputs to extract patterns for data, although they are designed to extract spatial
components by means of convolutional operators. As a result, each stage of the convolu-
tional process for training AI models processes the input by means of local transformations,
in turn, each model can learn from robust spatial features that characterize the dataset util-
ized (Albawi et al., 2017). Another particularity of CNN layers is that their neurons only
convey the information via small regions of the preceding layer, which gives them a special
behavior when handling data.

In regard to deep learning, CNNs are considered one of the most used types of ANNs
(Li et al., 2021). CNNs were mainly defined to solve difficult tasks related to image-
driven pattern recognition. Its particular manner to operate with input tensors makes
them shift/space invariant thanks to their inner structure. Then, they are very useful to
capture and extract spatial features that describe either the behavior or representation of
some subject. Even though the convolution operator is the decisive factor of the CNNs,
their architecture is also composed of more elements (Wu, 2017).

1. Kernels It is responsible to learn from the input samples, so they define how the
model process the data. It is designed to work with small spatial dimensionality and
spread it all over the depth of the network.

2. Pooling layer: It is responsible to reduce the dimension of feature maps via summar-
ization techniques. It is usually performed over small portions of data with common
maximum or average transformations.
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3. Activation function: It is the same concept in every neural network and works the
same way.

4. Normalization: It is responsible to normalize the output after the kernel process.
Sometimes this element is suppressed, although it is statistically recommended to
standardize the result before the following step.

5. Fully connected layer: It is responsible to connect the neurons of the last layer to
the desired output. Sometimes, it is utilized a flattened layer (i. e. from tensor to
1D-vector) in order to perform a total combination of the neurons.

The combination of the convolution operator, kernel, activation, normalization, and pool-
ing is called a convolutional block. In a mathematical 2D representation, assuming a filter
size of n×m for a kernel with parameters W l at the depth l, if our resultant tensor hl has
N ×M size the block performs as:

hl+1
ij =

n−1

∑
a=0

m−1

∑
b=0

wl
abhl

i+a,j+b. (4.97)

Then, it is applied an activation ϕ, which is widely used ReLU (Fig. 4.14), and a nor-
malization ψ, where the common one is the so-called batch normalization or statistical
standardization (Table 3.1).

An instance of a CNN model is depicted in Fig. 4.17, where an image classification task
motivates the use of such a network.

Max-Pool
Convolution

Max-Pool
Flatten

16@32x32
16@16x16

8@16x16 8@4x4
1x128 1x128

1x10

Convolution

Dense

Dense

Figure 4.17: Topoogy of a CNN model designed to classify 10 different animals. In this case, it is
processing a beautiful dog.

Source: Own elaboration built with NN-SVG.

Over the years, the complexity attached to the deep structures of CNNs has exploded.
One of the earliest CNN in achieving global recognition was presented by LeCun et al.
(1989) under the name of LeNet. It was subsequently improved, with great performance in
handwritten digit recognition, and named LeNet-5 (LeCun et al., 1998). Afterward, it took
time until Krizhevsky et al. (2012) presented AlexNet for image classification purposes,
successfully competing in the ImageNet challenge. The developments in comparison with
LeNet are remarkable in terms of input RGB format, deep structure, incorporation of dro-
pout layers, and a high number of output responses among many others. Since 2012 until
now, there have been considerable advances in the design of new convolutional architec-
tures for general applications, although highly focused on image-related tasks. The major

http://alexlenail.me/NN-SVG/LeNet.html
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developments came from VGG-nets (Simonyan and Zisserman, 2014), residual networks
(ResNets) (He et al., 2016), and MobileNets (Howard et al., 2017) (and its further versions
Howard et al. (2019) and Sandler et al. (2018)).

4.2.3 Recurrent Neural Networks

Given that traditional neural networks cannot convey the temporal information of the
times series, Recurrent Neural Networks (RNN) were designed in order to address this
problem with their inner loop sequence. These networks are characterized by their infinite
impulse response and the graph representation that they have. Its internal structure con-
nects the data previously processed with the following input, as shown in Fig. 4.18, so they
can learn the underlying temporal characteristics and apply them successively. This allows
it to convey the dynamic patterns of the datasets as well as connect them recursively with
a self-feedback. This forward direction described is responsible to analyze input data in
the series-time domain.

Let ht be the impulse response of an RNN, a simple approach of RNNs is the Elman
networks (Elman, 1990), in which the activation function is applied over a copy of the
hidden response, with a definition as follows:

Hidden vector ht = σh (Whxt + Vhht−1 + bh) (4.98)

Output vector ŷt = σy
(
Wyht + by

)
(4.99)

In each equation, xt represents the sequenced input at time t, ŷt is the output generated,
ht is the impulse response of the RNN block, W and V the weights matrices, b the bias, and
σ are activation functions. The σ function commonly used is the sigmoid function because
the response ranges between 0 and 1, so the output eases the weight update. As stated in
Eq. 4.98 and Eq. 4.99, the activation functions may be different depending on the aim of
the application.

Figure 4.18: RNN layer architecture and its serialization over t steps.
Source: Own elaboration adapted from ResearchGate.

We have decided to emphasize the Elman approach because it is the recursive method
that we have implemented for the RNN examples in 6.2. It is considered a Simple Recursive
Network (SRN) for its blocks and its input-output representation. Nevertheless, there exist
other kinds of SRNs such as Jordan networks (Jordan, 1997), Recursive Auto-Associative
Memory (RAAM) (Pollack, 1990), Gated Recurrent Units (GRU) (Dey and Salemt, 2017),
and Independently RNN (IndRNN) (Li et al., 2018) among many others.

https://www.researchgate.net/figure/Block-diagram-of-a-simple-RNN-that-unfolds-with-time-forming-a-chain-structure-A_fig5_318796117
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Since its first release, many authors have utilized the recursive networks in many dif-
ferent branches. Actually, the efficacy of its application has been proven to solve various
machine learning problems such as forecasting (Zhang and Xiao, 2000), prediction (Fan et
al., 2017), anomaly detection (Huang et al., 2019), outlier detection (Williams et al., 2002),
translation (Cho et al., 2014), handwriting recognition (Koutník et al., 2014), speech recog-
nition (Miao et al., 2015), audio generation (Koutník et al., 2014), and sentiment analysis
(Basiri et al., 2021).

The implementation of recurrent neural networks made a breakthrough in the area of
machine learning. However, there are some limitations that simple recurrent blocks cannot
overcome. Since the development of SRNs, it has been proved that these models are unable
to learn long-time sequences. Another limitation that is commonly reported is the behavior
of gradients caused by backpropagation through time because the sum of gradient errors
tends to explode or vanish.

4.2.4 Long-Short Term Memory

A particular case of RNNs is the LSTM (Long Short-Term Memory) layers introduced in
Hochreiter and Schmidhuber (1997). They are a gradient-based model that was developed
to adapt the long-term dependencies through a cell state that joins the entire model. The
merge of short and long properties of a series gives the LSTM layers more advantages
when learning from data compared to simple RNN layers. Thus, they are able to connect
larger time adequately lags with lower error. There is a limitation of the back-flow error
since it is enforced to be limited by the use of constant error carousels (CECs). With the
use of CECs, the conflict of weight updating is targeted. Apart from being more robust in
terms of implementation, they can outcome both exploding and vanishing error problems.
Hence, they have proven to bridge long-time lags within datasets better.

LSTM layers have a similar recurrent structure to Elman networks, but the data flow is
transmitted for different blocks. The innovation attached to these layers is the combination
of three gates called forget (Eq. 4.100), input (Eq. 4.101), and output (Eq. 4.104) that trans-
mit the short and long terms over a memory cell (Eq. 4.103) before sending the output to
the neurons through a hidden gate (Eq. 4.105). These three stages allow the network to
keep or forget past components in data, merge them with recent information, and com-
pute it to get a response. Moreover, the described memory cell is constantly uploaded as a
combination of the last output (ht−1) and the current input (xt) (Eq. 4.102), indicating con-
tinued feedback that determines how relevant is the information received and whether or
not include it in the model. The multiplicative gate units mentioned learn how to handle
the constant error flow. Finally, the output is produced as a filtered result of the entire
process combined with the cell state.

The definition of each gate is written from the equations (Eq. 4.100) to (Eq. 4.105), and
the data flow is shown in Fig. 4.19:
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Figure 4.19: LSTM layer architecture with its workflow and different gates.
Source: Own elaboration adapted from Towards Data Science.

Forget gate ft = σ
(
W f ht−1 + Vf xt + b f

)
(4.100)

Input gate it = σ (Wiht−1 + Vixt + bi) (4.101)

New memory C̃t = tanh (WCht−1 + VCxt + bC) (4.102)

Memory cell Ct = ft ⊗ Ct−1 + it ⊗ C̃t (4.103)

Output gate ot = σ (Woht−1 + Voxt + bo) (4.104)

Hidden gate ht = ot ⊗ tanh(C̃t) (4.105)

In each equation, xt represents the sequenced input at time t, ht is the impulse response
of the LSTM layer, W and V the weights matrices, b the bias, ⊗ the Hadamard product
and σ is the logistic function. We would like to highlight that the LSTM structure that we
have presented matches its first definition (Fig. 4.19). However, multiple variants approach
various fields of machine learning. It is worth mentioning that the depicted architecture
refers to a single LSTM layer, but we can also combine them and get different models
based on how we build them.

It is important to remember that the above-mentioned gates are not layers, despite the
fact that they are responsible for fitting the weights and biases in the neural network. This
innovation simultaneously avoids input weights conflicts and prevents information loss
among their gates. Additionally, the different products applied open and close the access
to the propagation error by keeping it constant (Hochreiter and Schmidhuber, 1997).

To conclude with general RNN blocks, there exists a manner to concatenate RNN layers
via bidirectional structures. The underlying idea is to process the input forwards and
backward so as to capture relevant features in both directions. They are called bidirectional
RNN blocks. They are widely used in multiple applications. Most of them show better
performance (Schuster and Paliwal, 1997). In Fig. 4.20, we have shown the topology of a
bidirectional LSTM block.

https://towardsdatascience.com/understanding-lstm-and-its-quick-implementation-in-keras-for-sentiment-analysis-af410fd85b47
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Figure 4.20: Architecture of a bidirectional LSTM block with its flow forward and backward.
Source: Own elaboration.

4.3 explainable artificial intelligence

Artificial Intelligence has achieved incredible success in many different fields of study.
As we have explained during this section, the number of approaches and tasks that can
be performed by means of machine learning is countless. Hence their incorporation for
practical purposes is nowadays standard. We have remarked that evaluating AI models is
a very important stage before their launch. However, another point to cover apart from
accuracy and correct operation is the interpretation of the results.

As far as artificial intelligence is concerned, the devices and/or systems that allow
their execution is supposed to interact autonomously since ML algorithms can cover the
decision-making process and return the response to humans. Even though it is claimed
that model explainability it is not required (Gunning et al., 2019), it is hard for a pro-
fessional team to give credibility to a black box. Understanding the reasons behind the
predictive analysis is crucial because trustworthiness must be a standard in the field of
statistical learning (Ribeiro et al., 2016). For such reasons, transparent feedback is neces-
sary, particularly when we let AI techniques solve problems with sensible data such as
cybersecurity, defense, finance, medicine, self-driving, and so on. Nowadays, such concern
is further aggravated due to the use of deep neural networks. Their implementation is
widespread in multiple applications where they play a key role in regard to decision mak-
ing. Nonetheless, there is a lack of knowledge and interpretation that researchers have
attempted to solve.

Explainable Artificial Intelligence (XAI) is a recent field of AI composed of a set of
tools, techniques, and algorithms that provides explanations, interpretation, and intuition
in a human-like way to understand the functioning of ML models (Das and Rad, 2020).
The main purpose of the XAI field is to convert a black box into an intelligible system
whose behavior and operation are comprehensible for the final user (Gunning et al., 2019).
The suitable way to proceed during the preparation of an AI system is to incorporate an
additional step between the evaluation and project start-up as depicted in Fig. 4.21.

The importance of XAI techniques is rising owing to the great performance lately
achieved by DNNs (Došilović et al., 2018). First, the computing systems are notably im-
proving, allowing longer processing stages. Second, the availability of large datasets en-
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Figure 4.21: Visualization of the XAI step between evaluation and launching.
Source: Own elaboration.

ables high-level deep AI systems to perform considerably well. Consequently, it generated
a framework in which human reasoning is far from understanding internal behavior.

One of the first known techniques for explainability was presented by Schetinin et al.
(2007) as a seminar work motivated by the interpretation of results in clinical applica-
tion. After this important contribution, we find several works approaching the XAI prob-
lem. For images, Bach et al. (2015) introduced Layer-wise Relevance Propagation (LRP), a
pixel-wise decomposing technique that attributes relevance scores via backpropagation. In
newer works, the Local Interpretable Model-Agnostic Explanations (LIME) of Ribeiro et al.
(2016) presents an importance search via binary paths towards the output. Thus, LIME
can estimate the most informative areas per each data input. Another recent contribution
was the SHapley Additive exPlanations (SHAP) in Lundberg and Lee (2017). From a given
input, SHAP attempts to find explainable predictions by calculating the feature contribu-
tions from the input to the output prediction. Even though multiple XAI techniques have
been implemented over the years, we have just focused on introducing some of them in
this thesis. For a detailed introduction to this topic, Das and Rad (2020) prepared a com-
prehensive summary of the different algorithms with their applications.

For the particular case of convolutional neural networks, there exists vast bibliography
related to their output and XAI techniques. One of the first steps toward interpretability
was the analysis of activation and saliency maps. The most representative approach is the
class activation map (CAM) algorithm (Zhou et al., 2015), which highlights the discriminat-
ive zones of a given input. Although the CAM algorithm made a significant breakthrough
in the field of explainability, the requirement of a global average pooling before the out-
put layer meant a great limitation in terms of computational structure. As a manner to
solve this issue, Selvaraju et al. (2017) presented Grad-CAM, an algorithm that extracts
the spread of the gradients in the network graph to remark the most representative areas
per each sample. By doing so, all the preceding layers play a part in the projected sali-
ency map. Another contribution is that the gradient projection can be represented at any
network depth. Intending to generalize the concept of Grad-CAM, Chattopadhay et al.
(2018) defined Grad-CAM++. This new algorithm allows a better localization employing
weighted incorporation of the CNN partial derivatives, thus covering bigger areas of the
input object. Finally, Omeiza et al. (2019) presented a variation of Grad-CAM++ named
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Smooth-Grad-CAM++. The difference is that now activation maps are generated with an
addition of Gaussian noise to detect anomalous activations. The objective of Smooth-Grad-
CAM++ is to identify such anomalies and generate sharper saliencies from the input space.
An illustrated comparison of this family of XAI algorithms can be found in Pinciroli Vago
et al. (2021), where it is applied in iconography artwork analysis.

4.4 summary

During this chapter, we have detailed how the field of Artificial Intelligence was foun-
ded, showing the motivation under this matter of study and the basic notions that define
its functionality. After that, we focused our attention on the Machine Learning and Data
Mining subjects, where a statistical and optimization background is given. Once we have
presented the main tasks that concern this study, we have introduced three main ML al-
gorithms: K-Nearest Neighbours, Support Vector Machines, and Decision Trees. Finally,
we have presented the concepts of Deep Learning, a subfield of Machine Learning. Once
we have clarified the definition of Deep Neural Network, we have introduced three fam-
ilies of Artificial Neural Network: Feed-forward Neural Network, Convolutional Neural
Network, and Recurrent Neural Network.





Part II

E X P E R I M E N TA L S T U D Y

This part of the thesis is divided into three chapters as follows:

Chapter 5 Multiple-Criteria Decision Making:

5.1 An academic performance indicator using flexible multi-criteria meth-
ods.

5.2 uwVIKOR: An Unweighted Multi-Criteria Decision Making Ap-
proach for Compromise Solution.

Chapter 6 Artificial Intelligence:

6.1 A Proposal to Compare the Similarity Between Musical Products. One
More Step for Automated Plagiarism Detection?

6.2 Multivariate time series prediction based on stock market and senti-
ment analysis regressors.

6.3 On the Application of Explainable Artificial Intelligence Techniques
on HRTF Data.

Chapter 7 Combination of MCDM and AI:

7.1 Early detection of students’ failure using Machine Learning tech-
niques.

7.2 Multiple-Criteria Decision Making approach for an in-depth bench-
marking of supervised Machine Learning models.





5
M U LT I P L E - C R I T E R I A D E C I S I O N M A K I N G C A S E
S T U D I E S

5.1 mcdm-case 1: an academic performance indicator using flexible

multi-criteria methods

This case study is based on our published research: Blasco-Blasco O, Liern-García
M, López-García A, Parada-Rico SE “An Academic Performance Indicator Using Flex-
ible Multi-Criteria Methods”. Mathematics, 2021; 9(19):2396, DOI: 10.3390/math9192396,
(Blasco-Blasco et al., 2021). Hence, all the information or results mentioned in this section
have been already addressed in that paper.

5.1.1 Experiment Setup

Composite indicators are a very useful tool for summarizing global performance of institu-
tions and enabling future decision-making. Ultimately, there is an increasing demand for
performance measures that assess an ongoing implementation strategy. Due to the major
challenges attached to such task, in this case study we address the three following points.

1. How to evaluate it at different points in time.

2. How to estimate the weighting scheme of the criteria.

3. How to normalize the data.

Our proposal is based on a recent method denominated uwTOPSIS extensively described
in 3.4.2. It has been applied to data collected from 2975 students enrolled in the first
year of technical careers (exact sciences and engineering), from the first semester of 2016
to the first semester of 2019 of the Industrial University of Santander of Colombia. In
the section we show that our proposal makes it possible to measure and evaluate the
academic performance of students at two points in time and this allows the University
to know whether its student support policy has been successful and to what degree it
has been effective. In regard with the computation of such amount of data, it has been
managed mainly by using the version 3.8.5 of the Python programming language.

This case study is structured as follows. First, I indicate how to construct the academic
performance indicator. Second, I describe the requirements to guarantee the development
of a well-defined indicator. Third, I study the properties of the academic performance
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indicator. Finally, I present the study case applied to the Industrial University of Santander,
or UIS in short for the Spanish translation of Universidad Industrial de Santander, with a
discussion and conclusions of the work conducted.

5.1.2 Construction of the academic performance indicator

In this section, it will be constructed a composite indicator that allows us to relate the
evaluation of the alternatives and assess performance over two time periods when only
one of the criteria varies as in Parada et al. (2019). Steps will be followed to construct a
composite indicator are as follows:

Step 1 Development of the conceptual framework or theoretical model, which will allow
us to identify the phenomenon to be measured, the groups involved, and identify
the variables.

Step 2 Selection of the decision criteria. It is essential to identify the variables or simple
indicators. Determining how to obtain the data, studying whether there is missing
data and how to resolve it, and analyzing the data structure is fundamental to con-
structing a quality.

Step 3 Comparison of alternatives. When a composite indicator is constructed, in most
cases, the units in which the variables are measured and the nature of these are very
diverse (Wang, 2014). To compare and aggregate variables, and simple indicators, it
is necessary to express them on a similar scale, i. e. , normalize (Freudenberg, 2003).
However, the normalization method must be carefully assessed because the results
may vary depending on the method used. In this work, the method proposed by
Liern and Pérez-Gladish (2020).

Step 4 Assignment of weights and aggregation. One of the problems, widely discussed
in the literature is the weighting of variables according to their relative importance
(Ouenniche et al., 2018; Saisana et al., 2005). Sometimes, the assignment is done
based on expert judgment, but at other times, as we will develop in this paper, we
will not assign the weights a priori but apply the uwTOPSIS method, in which it is
not necessary to have the weights showing a priori the relative importance of the
criteria.

Step 5 Fifth and final step. Comparison of the alternatives and sensitivity analysis of the
composite indicator. In this case, the total and partial performance of each student
will be evaluated using the indicator proposed in this work. When an indicator is pro-
posed, it is necessary to test its usefulness and study whether it meets the properties
of the indicators (European Commission. Joint Research Centre. and Organisation
for Economic Co-operation and Development., 2008) and finally, the robustness of
the indicator must be determined.
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5.1.2.1 Academic performance indicator

Given the values of the m dimensions considered at time t, a multicriteria method is ap-
plied and the relative proximity interval is determined for each alternative, obtaining the
performance range RI

i = [RL
i , RU

i ] per each i ∈ {1, . . . , n}. If at time t + 1, of all dimensions
considered in the previous period, only one has varied the variables that compose it, so
the score of the modified dimension is considered and the values obtained are normalized
for each alternative using min-max normalization (Cables et al., 2016).

Once the score at time t + 1 has been obtained for each alternative, it is compared with
the score at time t. Thus, the results for each alternative are obtained at two points of time,
which allows a priori-posteriori contrast to be carried out.

Suppose an individual has an initial score [RL, RU ] and a final score x previously nor-
malized. When comparing x with [RL, RU ], a scalar λ > 0 would be expected to exist, so
x = RL + λRU , since its initial interval indicates its reference framework. However, it can
be that x is outside this range, which would indicate that the individual has obtained a
score lower or higher than the performance range. So the next indicator is defined.

Definition 5.1.1. (Academic performance indicator) Given a set D = {(x, RL, RU) ∈ [0, 1]3 :
RL ≤ RU}, the academic performance indicator is defined as PA : D → [0, 1] such that

PA
(

x, RL, RU) =


0 if x ≤ RL

x− RL

RU − RL if RL < x < RU

1 if x ≥ RU

(5.1)

In the case RL = RU , the academic performance indicator is given by the characteristic
function of the interval [RU , 1].

Proposition 5.1.1. Given 0 ≤ RL < RU ≤ 1, then per each y ∈ [0, 1] exists x ∈ [0, 1] such that
PA(x, RL, RU) = y.

Proof. The proof is trivial by taking x = RL + (RU − RL)y, where it exists and 0 ≤ RL +

(RU − RL)y ≤ RL + (RU − RL) = RU ≤ 1.

From Proposition 5.1.1 it is concluded that the indicator PA is surjective in D\Π, where
Π = {(x, RL, RU) ∈ D : RL = RU}.

5.1.2.2 Determination of performance range values with uwTOPSIS

To determine the performance range RI
i = [RL

i , RU
i ] the MCDM technique uwTOPSIS is

used, because unlike the TOPSIS algorithm, it considers the weights as variables. In order
to avoid that data-dependence attached to the usual TOPSIS normalization, which is the
|| · ||2 vector normalization, we have considered an alternative normalization functions
that returns a rank-reversal decision making approach. As a result, the score for each
alternative is given as an interval that describes the minimum and maximum possible
score that could be obtained by varying the set of weights if they were calculated by
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applying the TOPSIS method. Then, the interval RI
i = [RL

i , RU
i ] as our performance range,

so that it represents the worst and the best possible score for each alternative i ∈ {1, . . . , n}.
In particular, we have designed our uwTOPSIS technique with customized normalization
(ϕ), usual separation function (D euclidean distance), proximity function (R) and the set of
lower and upper bounds of the weights (Λ = {lj, uj}m

j=1). Therefore, each RI
i can be written

as RI
i (X0

i , Λ, ϕ, D, R) due to the implicit function theorem, where X0
i is the vector with the

dimensions of the i-th student a priori.
In order to generate a rank-reversal system, we have re-designed the unweighted ver-

sion. First, the positive and negative ideals have been considered to be A+ = (1, . . . , 1)
and A− = (0, . . . , 0) thus having a data independent comparative model. Second, the ϕ

normalization used is the same than the proposed by Liern and Pérez-Gladish (2020), in
which two normalization functions η and ξ are given by the following expressions:

ηA,a,b,B;k1,k2(x) =



1− ek1
x−A
a−A

1− ek1
if A ≤ x < a

1 if a < x < b
1− ek2

B−x
B−b

1− ek2
if b < x ≤ B

0 otherwise

(5.2)

ξA,a,b,B(x) =



x− A
a− A

if A ≤ x < a

1 if a < x < b
B− x
B− b

if b < x ≤ B

0 otherwise

(5.3)

In both normalization functions, the (A, a, b, B) array represents the trapezoidal fuzzy
shape and the (k1, k2) coefficients are the left and right exponents that determines whether
each the spread is convex or concave. For a better understanding of their functionality,
Fig. 5.1 depicts how η and ξ transform the data.
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Figure 5.1: Particular case of the normalizations η and µ in which the values (A, a, b, B) = (1, 6, 7, 9)
have been set. The first graph is the normalization η with the values k1 = k2 = 1, the
second is the normalization η with k1 = k2 = −1 and the third is the normalization ξ.

Source: Blasco-Blasco et al. (2021).
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5.1.2.3 Properties of academic performance indicator

When constructing an indicator, it is necessary to make sure that it verifies properties
that guarantee its usefulness (Ivanova et al., 1999; Parada et al., 2019; Zheng, 1993). In the
following, the properties that verifies PA will be checked.

1. Existence and determination. For every tern (x, RL, RU) ∈ D the function PA is well-
defined and the value of PA(x, RL, RU) exists due to the proposition 5.1.1.

2. Uniqueness. By the indicator’s construction, each element of its domain returns a
unique value.

3. Monotonicity. Given (x, RL, RU) ∈ D, for the cases where x ≤ RL and x ≥ RU the
indicator is monotonically being a constant. For the case that RL < x < RU , the
gradient of the indicator can be defined as

∇PA(x, RL, RU) =

(
1

RU − RL ,− x− RL

(RU − RL)2 ,
x− RU

(RU − RL)2

)
.

Therefore, the function is monotonic increasing with respect to x and monotonic
decreasing with respect to RL and RU .

Fig. 5.2 shows a particular case of the behavior of the excellence indicator. Three
graphs are represented where one of the variables varies and the rest remain fixed.
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Figure 5.2: Special case of the behavior of the academic performance indicator PA by increasing the
value of each of its variables 0.15.

Source: Blasco-Blasco et al. (2021).

4. Continuity. The indicator is continuous except for the case where RL = RU . This is
because, for each (x, RL, RU) ∈ D, where RL < RU is satisfied

lim
x→(RL)+

PA(x, RL, RU) = 0 and lim
x→(RU)−

PA(x, RL, RU) = 1.

5. Decomposability. Given D1,D2 ⊂ D such that D1 ∪ D2 = D and D1 ∩ D2 = ∅, it is
easy to see PA = PA|D1 + PA|D2 . For the case that RL = RU the proof is trivial. Now if
in each D1 and D2 is satisfied RL < x < RU , we have the same decomposition since
the function has no discontinuities in D as is well demonstrated by the property 4.
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6. Normality. By definition, the indicator PA takes values between 0 and 1, where in
addition the same scale is guaranteed for each of the variables in D.

7. Scale invariance. Given an element (x, RL, RU) ∈ D and a scalar λ ∈ R such that
(λx, λRL, λRU) ∈ D, so that PA(λx, λRL, λRU) = λx−λRL

λRU−λRL = x−RL

RU−RL = PA(x, RL, RU).

8. Translation invariance. Given an element (x, RL, RU) ∈ D and a scalar λ ∈ R such that
(x + λ, RL + λ, RU + λ) ∈ D, so that PA(x + λ, RL + λ, RU + λ) = (x+λ)−(RL+λ)

(RU+λ)−(RL+λ)
=

x−RL

RU−RL = PA(x, RL, RU).

Having verified that the academic performance indicator obeys the stated properties
and in order to contrast the a priori and a posteriori results, the academic performance
indicator for the set of ternaries

{
(X1

i , RL
i (X0

i ), RU
i (X0

i ))
}

1≤i≤n will be applied of each al-
ternative. Where, X0

i and X1
i are the variables of the i-th alternative at time t and t + 1

respectively.

5.1.3 Application of the academic performance indicator to UIS students

In this section, the academic performance indicator will be applied to data from the Indus-
trial University of Santander, Bucaramanga campus, Colombia. For this purpose, we have
obtained information from science and engineering students enrolled in the periods from
the first semester of the academic year 2016 to the first semester of 2019.

First, a global study of the results obtained by applying the academic performance in-
dicator have been carried out, thus determining the performance of students in their first
semester at university. Subsequently, the results obtained are shown when grouped by
gender and economic status. Finally, to analyze student performance using the academic
performance indicator, a threshold of α = 0.6. is set. It is considered that if a student has
a PA score equal to or higher than 0.6, he/she presents an adequate academic level and
meets the minimum required by the university.

5.1.3.1 Dataset

For this work, from the data provided by the SEA, 2975 students enrolled in the first year
of science and engineering are selected and the data of the academic, cognitive, economic,
health and social dimensions of students who have just joined the university have been
obtained. The variables that compose each dimension are:

Academic dimension (A) This dimension is composed of three items: a diagnostic test of
UIS Math (DTM); EFAI-4 numerical ability (NUA); and, 11-Math Knowledge Test
(PSO).

Cognitive dimension (C) Five items are assessed: verbal reasoning (VR), numerical reas-
oning (NR), abstract reasoning (ABR), memory (MEM) and spatial attitude (SA).

Economic dimension (E) The variables that analyze this dimension are: Income from eco-
nomic dependence, ED = wage/SMMLV (where SMMLV = current legal minimum
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monthly wages), the number of siblings (NS), the position between siblings (PS) and
the payment of rent during the course (PRC).

Health dimension (H) The eight variables that compose this dimension are: Anxiety
(ANX), Depression (DEP), Emotional Adjustment (EMA), Alcohol Dependence
(ALD), Psychoactive Substance Abuse (PSA), Chronic Illnesses (CI), Disability (DI)
and “Question 23” (P23), which refers to the tendency toward suicide.

Social dimension (S) This is determined by family dysfunction (FAD), through the “Fam-
ily APGAR” (Smilkstein, 1978).

As the dimensions are measured on different scales (Table 5.1) the transformation pro-
posed by Liern et al. (2020b) has been used, which allows us to work with data grouped
by intervals and combine different types of variables.

Table 5.1: Dimensions, ranges, ideals and normalization functions in the UIS dataset.

Dimension Original Transf. Ideal Normalization

Academic {VL, L, LM, M, MH, H, VH} [1, 7] [6, 7] η1,6,7,7;1,0(x)

Cognitive {VL, L, LM, M, MH, H, VH} [1, 7] [6, 7] η1,6,7,7;−1,0(x)

Economic [0, 1] [0, 1] [0.8, 1] ξ0,0.8,1,1(x)

Health [0, 0.65] [0, 0.65] 0.65 ξ0,0.65,0.65,0.65(x)

Social {0.1, 0.5, 0.7, 1} [0.1, 1] [0.7, 1] ξ0.1,0.7,1,1(x)

At the end of the semester, to study the variation in academic performance, the grades of
each student in the subjects of calculus and algebra are considered and not the university
entrance grades, which were considered in the academic dimension before the beginning
of the semester. Since the grades are measured differently from the other dimensions, they
will be normalized using the min-max normalization and calculate the mean.

Performance on admission to college will be determined by the interval [RL, RU ], which
represents the worst and best possible score for each student on entering university and
is the result of aggregating the five dimensions. The uwTOPSIS method will be applied to
obtain the interval. At the end of the semester, the value of the academic dimension will be
calculated, which will be given by the X1 value, normalized with the minimum-maximum
normalization. With the data obtained before and after the end of the first semester, the
students will be classified depending on whether or not the academic dimension score
is contained within the interval. The student can be considered to have had an expected
performance if the final score is contained in the interval [RL, RU ], excellent if he/she has
obtained a final score higher than RU and, on the contrary, insufficient score if he/she has
had a final score lower than RL. From now on, the academic performance of students are
distinguished as shown in Table 5.2.
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Table 5.2: Type of academic performance from PA.

Indicator PA(X1, RL, RU)

Excellence PA = 1

Expected 0 < PA < 1

Insufficient PA = 0

In the case study, the dimensions as criteria have been considered to be maximized. This
will cause students with worse conditions to obtain a small value in RL and, on the con-
trary, those with stable conditions will have a value close to 1 in RU . We have considered
the positive and negative ideals to be A+ = (1, . . . , 1) and A− = (0, . . . , 0) respectively.
Finally, to prevent the method from eliminating certain criteria when optimizing, we have
considered the minimum and maximum weights to be, respectively, 0.1 and 0.5.

Due to the large amount of data handled, both the data management and the model
implementation has been done with Python (Van Rossum and Drake Jr, 1995). In particular,
we have made use of our GitHub repository designed to apply the uwTOPSIS method
(López-García, 2021a). For implementation purposes, 5.1.6 contains the Script 3, which is
the Python implementation with both η and ξ normalization functions.

Remark. The mathematical optimization associated to the problem has been computed with the
optimize module of the SciPy library (Virtanen et al., 2020). We would like to highlight that this is
not an unique option, although for our particular case it was enough. In cases when we face more
complex problems, it would be convenient to develop a metaheuristic algorithm that fits with the
behaviour of the objective function.

5.1.3.2 Classification of students at UIS Colombia according to gender and economic status.

Taking into account the interval values obtained with the uwTOPSIS method, the perform-
ance of students in each semester of the academic years 2016 to 2019 was studied. The
results obtained by applying the proposed academic performance indicator (5.1) on the
data set offered by the SEA, show us that on average the academic performance is 0.6498
or higher in all the periods analyzed, except in those corresponding to the two semesters
of 2018 that take values of 0.2177 and 0.2795 (Table 5.3).
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Table 5.3: Average of the a priori, posteriori and academic performance indicator results by
semester.

Course RL RU X1 PA

2016_1 0.3718 0.8540 0.8346 0.8602

2016_2 0.4081 0.8533 0.7913 0.7734

2017_1 0.4225 0.8671 0.8172 0.7814

2017_2 0.5192 0.8879 0.7733 0.6498

2018_1 0.5753 0.8988 0.5868 0.2177

2018_2 0.5080 0.8835 0.5723 0.2795

2019_1 0.5334 0.8868 0.8299 0.7560

Thus, for example, while in the semester of 2016_1, on average they had an academic
performance of 0.8602 or in 2017_1 the value of the indicator is 0.7814, in 2017_2 the value
is reduced to 0.6498 due to the number of students who had low scores. In addition, in the
two periods of 2018 there was an atypical behavior due to the fact that the students’ scores
when considering all dimensions were not good and also the width of the interquartile
range in these periods was larger (Fig. 5.3). One possible explanation is the national uni-
versity strike in Colombia in 2018. That strike forced the institution to delay classes. Some
students had to cancel the academic semester and a majority failed many subjects, among
them calculus and linear algebra.

2019_1

2018_2

2018_1

2017_2

2017_1

2016_2

2016_1

0.0 0.4 0.8 1.2

Distribution of a posteriori results per course

Figure 5.3: Distribution of students by academic semester.

Source: Blasco-Blasco et al. (2021).

If the academic performance according to gender for all periods is analyzed, information
on 2040 male and 935 female science and engineering students is considered. The average
academic performance for males is 0.6211 and for females 0.6632, therefore, it is seen that
the values are similar when disaggregated by gender. (Table 5.4).
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Table 5.4: Academic performance indicator PA values broken down by gender.

Group PA Var N

M 0.6211 0.1555 2040

F 0.6632 0.1380 935

When breaking down the mean values by gender, for each semester, it can be seen that
the highest scores occur in semester 2016_1, where the mean for men is 0.8571 and for
women is 0.8667. The largest differences occur in semester 2017_2, where the mean for
men is 0.6149 while for women in this same period is 0.7195. In this case, it can be seen
that the variance in the men’s group for this period is the highest with 0.1454. More detail
can be seen in Table 5.5. In Fig. 5.4, it can be seen that there are no significant differences
in the academic performance score by gender for the different periods studied. Therefore,
it can be said that academic performance is not affected by gender for these semesters.

Table 5.5: Mean and variation of the academic performance indicator broken down by semester and
gender.

Course Group Mean Var

2016_1
M 0.8571 0.0681

F 0.8667 0.0667

2016_2
M 0.7623 0.1175

F 0.7949 0.0919

2017_1
M 0.7708 0.1012

F 0.8046 0.0854

2017_2
M 0.6149 0.1454

F 0.7195 0.0974

2018_1
M 0.2125 0.0839

F 0.2297 0.0927

2018_2
M 0.2661 0.0856

F 0.3075 0.0796

2019_1
M 0.7452 0.1095

F 0.7848 0.0786
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Figure 5.4: Value of the academic performance indicator by gender.

Source: Own elaboration.

Next, it is intended to study how the economic condition of students who access the UIS
affects academic performance. The institution classifies students according to whether their
economic risk is low, medium or high. However, for the periods analyzed, students are
either low risk (ERl) or high risk (ERh). Thus, a total of 458 students are at low economic
risk while a total of 2517 are at high economic risk, which is 84.6% (Table 5.6).

If we group by economic status and gender, it can be seen that 85.15% of men and
83.42% of women belong to the high economic risk group (Table 5.6). Therefore, most of
the students accessing UIS have a hard economic situation. It is worth mentioning that the
UIS is one of the most important official universities in the region and due to its public
institution it serves students from the lowest socioeconomic strata, which is reflected in
the data.

Table 5.6: Students by risk group and gender.

Number of students Percentage of students

Gender ERl ERh ERl ERh

M 303 1737 14.85 85.15

F 155 780 16.58 83.42

If Table 5.7 is observed , where the average performance values per semester are shown,
it can be seen that in all periods, except in 2016_1 the scores are higher for students with
low economic risk. If in the 2016_2 and 2017_1 periods the scores between the two groups
do not differ by more than 0.06 points. From this period onwards, the differences are
significant, reaching the maximum difference in 2018_1 as reflected in Fig. 5.5.
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Table 5.7: Academic performance indicator values broken down by semester per economic condi-
tion.

Course Group PA Var

2016_1
ERl 0.8411 0.1000

ERh 0.8629 0.0631

2016_2
ERl 0.8276 0.0855

ERh 0.7663 0.1116

2017_1
ERl 0.8130 0.0748

ERh 0.7792 0.0979

2017_2
ERl 0.7525 0.0767

ERh 0.6270 0.1412

2018_1
ERl 0.4747 0.0739

ERh 0.1568 0.0702

2018_2
ERl 0.4968 0.0399

ERh 0.2200 0.0795

2019_1
ERl 0.9110 0.0360

ERh 0.7174 0.1101

2016_1 2016_2 2017_1 2017_2 2018_1 2018_2 2019_1
0.0

0.2

0.4

0.6

0.8

1.0

ERl ERh

Figure 5.5: Value of the academic performance indicator by economic risk.

Source: Own elaboration.

The intention is to compare the results of academic performance with PA taking into
account whether they have received actions or not. If Table 5.8 is observed, it can be seen
that in all semesters except in 2019_1 the mean value of the PA indicator is higher for
students who have not received complementary actions, i. e. those who had a high score in
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the academic dimension when they accessed the university. It can also be highlighted the
differences that exist between the two groups of students in semester 2016_2, where the
average academic performance for those who did not participate in any action was 0.9080
and those who participated in some action was 0.6924. In 2018_2, the mean academic
performance for those who did not participate in any action was 0.6229 and those who
participated in any action was 0.2654. This may be due to the fact that in some semesters
the political situation in the country led to class stoppages during part of the semester and
the suspension of complementary actions. In this way, students with greater needs ceased
to have some support actions.

Table 5.8: Academic performance indicator by semester and participation.

No Participation Participation

Course PA Var PA Var

2016_1 0.8977 0.0488 0.7982 0.0927

2016_2 0.9080 0.0386 0.6924 0.1336

2017_1 0.8004 0.0950 0.7641 0.0972

2017_2 0.6509 0.1352 0.6492 0.1297

2018_1 0.2030 0.1262 0.2182 0.0855

2018_2 0.6229 0.1744 0.2654 0.0756

2019_1 0.7020 0.1494 0.7577 0.0999

The percentages of students appearing in each group (Excellence, Fail or Expect) show
disparate results depending on the semester analyzed, but in all of them students who
do not participate in actions present a higher percentage of Excellence (Table 5.9). For ex-
ample, in 2016_2, the percentage of Excellence among students who did not participate in
any action was 64.62%, while that of those who participated in at least one was 39.81%.
Surprising again, the results obtained for the 2018_1 and 2018_2 semesters by the few stu-
dents who have an Excellence score, the 8.33% and 38.46% of those who do not participate
in complementary actions and the 3% and 1.26% of those who participate, but above all,
the percentage of students in the Fail situation, 41.67% and 23.08% in the group of those
who do not participate and 49.50% and 40.69% of those who have participated in some
complementary action, is surprising in these periods.
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Table 5.9: Percentage of students according to whether or not they have participated in the support
program.

Percentage of students

Course Excellence Fail Expected α ≥ 0.6

N
o

Pa
rt

ic
ip

at
io

n
2016_1 62.62 2.49 34.89 90.97

2016_2 64.62 1.54 33.85 90.77

2017_1 49.62 6.77 43.61 79.32

2017_2 28.43 14.21 57.36 62.94

2018_1 8.33 41.67 50.00 16.67

2018_2 38.46 23.08 38.46 61.54

2019_1 46.67 13.33 40.00 66.67

Pa
rt

ic
ip

at
io

n

2016_1 40.21 7.22 52.58 81.44

2016_2 39.81 12.04 48.15 67.59

2017_1 39.38 6.16 54.45 76.37

2017_2 27.51 13.59 58.90 64.08

2018_1 3.00 49.50 47.50 13.00

2018_2 1.26 40.69 58.04 13.56

2019_1 38.84 8.37 52.79 77.25

Next, the data of the students who have obtained a value of PA ≥ 0.6 will be ana-
lyzed. According to the UIS criteria, we consider that from this value, they present an
adequate academic performance. In all periods the percentage was higher than 61%, ex-
cept in 2018_1, where the percentage of those who did not receive complementary actions
was 16.67% and of those who received was 13% and in 2018_2, where the percentage of
students who received complementary actions was 13.56%. If the results are compared for
each semester, it is seen that in all periods the percentages are higher for students who do
not receive complementary actions, except in 2019_1, where students who do not particip-
ate account for 66.67% and those who participate account for 77.25%. In any case, what
can be observed is that the complementary actions allow a high percentage of students to
be above the proposed threshold. Obviously, our intention goes beyond comparing groups.
The most important thing is to prevent students in vulnerable situations from being unable
to continue university studies. With these actions, a high percentage of students achieve
the expected results and reduce the dropout rate, which is a success for the institution.

If the groups by gender are analyzed (Table 5.10), it can be seen that the results are not
very different between men and women. Both in the groups that have not participated in
complementary actions and in those that have participated in at least one, women obtain
better results. The percentage of women with an Excellence score among those who do not
participate in any action is 56.98% while that of men is 47.07%. The same is true for those
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who participate in any complementary actions. The percentage of women is 26.14% while
that of men is 24.20%. If we focus on the percentage of students by gender in the case of
α ≥ 0.6, we see that the pattern is repeated. In the case of females who do not participate
in any action, the percentage is 86.43%, compared to 76.55% for males. The same is true
for students participating in complementary actions (55.54% of females have a value of PA

higher than 0.6, while the percentage of males is 51.88%).

Table 5.10: Gender of the students that have not participated in the support program (NP) and the
students that have participated, at least once, in the support program (P).

Percentage of students

Group Excellence Fail Expected α ≥ 0.6

NP
M 47.07 8.24 44.69 76.55

F 56.98 5.04 37.98 86.43

P
M 24.20 23.70 52.09 51.88

F 26.14 17.58 56.28 55.54

Regarding the study of the economic conditions of the students, a higher percentage of
excellent students is observed in the groups that have not participated in the SEA support
program (Table 5.11). Thus, 55.29% of students who have not participated in complement-
ary actions and who have a low economic risk are excellent versus 32.98% of those who
have participated in some action. Among those with high economic risk, ERh, of those who
have not participated in complementary actions, 49.38% are excellent versus 23.06% who
have participated in at least one action. In any case, if it is considered that the students
who have participated in complementary actions, 61.93% of those with a low economic
risk, ERl and 51.14% of those with a high economic risk, ERh have obtained an academic
performance indicator score, PA above 0.6. Given that more than half of the students who
have participated in the complementary actions organized by the SEA, have had a score
higher than the threshold set as success of the strategy, it is justified to recommend to the
UIS to continue with the actions carried out and implement some more so that the success
rate is close to that of the students who do not have support needs.

Table 5.11: Economic risk of the students that have not participated in the support program (NP)
and the students that have participated, at least once, in the support program (P).

Percentage of students

Excellence Fail Expected α ≥ 0.6

NP
ERl 55.29 1.18 43.53 84.71

ERh 49.38 7.96 42.66 78.86

P
ERl 32.98 3.49 63.54 61.93

ERh 23.06 25.69 51.26 51.14
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5.1.4 Discussion

We do not want to finish this work without including a discussion about the construction
and use of indicators and the application of a MCDM method, the uwTOPSIS, where it is
not necessary to assign the weights a priori.

An indicator of academic performance has been constructed which lets see the evolution
of the students in two moments of time, comparing the final value with the initial score
obtained using the uwTOPSIS multi-criteria method. For alternative, a lower bound and
an upper bound are considered, which allows constructing an interval Ri = [RL

i , RU
i ] that

represents the worst and the best possible score. In addition, comparing the information
obtained by applying the uwTOPSIS at a time t, with the data obtained at time t+ 1 for the
same dimension but considering different variables, we can construct an indicator of aca-
demic performance that determines whether the performance of a student has worsened,
maintained, or improved.

The main use of the uwTOPSIS method is that it considers the weights as variables,
and allows the evaluation of the alternatives without a prior assignment of the weights. It
means an appreciable improvement since in previous works using data from the Univer-
sidad Industrial de Santander, allocation of weights was made based on expert judgment.
This sometimes implied difficulties in reaching a consensus, and consequently, studies
were not fully implemented in the strategy. Undoubtedly, uwTOPSIS allows progressing
in improving of the procedures we have applied since it has several advantages:

• An interval associated with the worst and the best possible result of each student is
obtained, which allows knowing their aspirations.

• It has been avoided that the results depend on the data handled (rank reversal Cables
et al., 2016), using (1, 1, . . . , 1) and (0, 0, . . . , 0) as ideal and antiideal respectively.

• A standardization has been applied that allows taking into account the criteria of the
institution, which makes easier the future applicability of the results.

As happens in all studies that are used in real problems, with a large number of data
and involving several decision-makers, our proposal does not resolve some issues:

• In this study, stability/regularity in the data has not been taken into account. As it
was said in the different sections, there are periods with clear differences with respect
to the others, and this could require an in-depth study of the homogeneity between
periods. However, once the results are known, it is clear that these differences should
be taken into account in a subsequent study.

• The intervals assigned to the weights, although they make the results more flexible
and objective, determine (in some way) the groupings. This could be avoided by
allowing weights that could span the entire interval [0, 1]. However, this would not
make complete sense in a multi-criteria environment. According to Ishizaka and
Labib (2011) a weight greater than 50% in any of the criteria in a decision context
with more than two criteria, it is not sustainable with the multi-criteria character.
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The choice of the TOPSIS method is based on the conclusions of Liern et al. (2020b), since
it was proved that this technique fitted appropriately with the SEA-UIS dataset. Moreover,
the approach of unweigthed MCDA techniques is a field in which we must research in
depth.

We also consider the use of machine learning algorithms for future works, in which we
could implement supervised learning techniques to estimate future academic performance
or unsupervised learning techniques for cluster analysis. Nonetheless, in this paper we
have not applied such techniques because we have followed the UIS guidelines in terms of
the data preparation and both evaluation and classification of their students.

Finally, it is pointed out the difficulties involved in applying some methods in practice
due to the associated computational cost of solving uwTOPSIS, when calculating uwTOP-
SIS for 2975 alternatives and 5 criteria, which means a decision matrix with 14875 entries.
When calculating the optimal solutions of the relative proximity function (R), a total of
5950 mathematical optimization problems are performed to obtain each [RL, RU ]. With all
this, our code (López-García, 2021a) has been compiled on a computer with AMD Ryzen
7 3700U with Radeon Vega Mobile Gfx processor and 16GB of RAM, obtaining a compu-
tational cost of 4651.98 seconds (1h, 17’ and 31.98”) to run the code in full, which is 1.27
iterations per second. However, when adding the Python Joblib module to execute parallel
computation, the computational cost was 1629.83 seconds (27’ and 9.83”) when using 8
CPUs simultaneously, which is 3.65 iterations per second.

5.1.5 Conclusions

By constructing composite indicators that incorporate all the variables and meet a series of
indicator properties, it is possible to synthesize the information and draw simple and rapid
conclusions that help institutional decision-makers. However, the proper construction of
indicators requires overcoming or resolving several obstacles. Once the standardization
problems have been solved, by applying the proposal made by Liern et al. (2020b), one of
the pending issues is the assignment of weights. The objective of this work is to propose
a composite indicator in which the weights are considered variable. Taking these aspects
into account, the proposed indicator, called Academic Performance Indicator, allows academic
institutions to obtain the value of the indicator for each student and to know whether or
not there has been an improvement in the results.

The use of the proposed indicator allows the institution to know whether the comple-
mentary actions implemented have been successful or not, since at the beginning of the
semester, based on the available data of the five dimensions analyzed, it is determined
which students can participate in the actions promoted by the institution. At the same
time, global data on the students is provided, and groups can be established according to
the result of the academic performance calculated from the indicator.

The proposed method was applied to the data obtained from the students of the In-
dustrial University of Santander (Colombia) to draw conclusions that can be applied to
decision making. The UIS committed, investing economic and human resources, to offer
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complementary actions and wants to determine whether this decision is adequate or needs
to be modified. One way to determine this is by calculating the academic performance in-
dicator, so that if it improves or is maintained, the investment is adequate; if not, the
university will have to reinforce the proposed activities, determine other alternatives or
even change the policy carried out so far.

By applying the method to the UIS data, it is verified that there are no significant dif-
ferences in academic performance when calculating the indicator according to gender;
however, these differences are greater if the economic condition of the students is taken
into account. However, by applying complementary actions, the institution guarantees an
improvement in the results of students who presented deficiencies at the beginning of the
semester, improving academic results and reducing the dropout rate.

This work is expected to continue deepening in the construction of indicators that allow
the UIS to have a global vision of the results of the policies implemented in 2014, the year
in which the SEA is founded and actions to help students with academic and economic
problems began to be implemented. It is also intended that the use of indicators will allow
comparison with other universities and facilitate other universities or local governments
in the design of student curricula and the implementation of educational policies.

5.1.6 Python implementation

The script that yields the results before mentioned through the uwTOPSIS implementation
is presented in § A.2.
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5.2 mcdm-case 2: uwvikor : an unweighted multi-criteria decision mak-
ing approach for compromise solution

5.2.1 Experiment Setup

Decision-making requires objective frameworks that satisfy the needs of the stakeholders
implicated. The more flexible the algorithm, the more balance the results will be. However,
rankings not only have to sort elements but offer guarantees that the best alternative is
as satisfactory as required. Despite having classic outranking methods that help us to
arrange a set of alternatives, they require the use of weights. The definition of the weighting
scheme is a critical step in any multi-criteria decision-making method, which can heavily
affect the final result. As a solution to this problem, we extend a methodology, previously
used with the TOPSIS algorithm, and introduce an unweighted version of the VIKOR
method. We show that this new method offers flexible tools to decision-makers for dealing
with compromise solutions. We illustrate the new VIKOR method with three study cases,
the first one is a comparison with the classical VIKOR method for a problem of locating
hydropower plants, the second is a comparison with the current state-of-the-art uwTOPSIS
method, and the third one is a direct application to the selection of the Most Valuable
Player (MVP) of the NBA league, where we compare our results with the actual rankings
and with other MCDM methodologies.

5.2.2 Introduction

The field of multi-criteria decision-making helps us to select, from among several altern-
atives, which is the best, according to different pre-established criteria that may conflict
with each other. Moreover, these criteria do not necessarily have to be of equal importance.
Therefore, one of the steps that every multi-criteria decision-making (MCDM) method has
is the weighting of the criteria. This is a critical step, since, on many occasions, a small
change in these weights can cause a substantial change in the final decision choice. A
widespread option for determining weights is the use of expert advice. Here, following a
predefined methodology, the help of a panel of experts in the field, who define the pref-
erences of the criteria, is used. This can be achieved either by consensus (Delphi Method,
Sackman, 1974), or by pair-wise comparisons (AHP, Saaty and Vargas, 2012). However, one
of the most important criticisms that these methods based on expert panels raise is that
they inevitably introduce subjective opinions, which can lead to biases in the process.

Thus, finding methods that allow the determination of criteria weights as objectively as
possible is a topic that has attracted the interest of many researchers in the field of multi-
criteria analysis, for example, the Entropy method (Shannon, 1948), the LINMAP method
(Srinivasan and Shocker, 1973), or more recently, the IDOCRIW method (Zavadskas and
Podvezko, 2016), the Bayesian approach (Vinogradova et al., 2018), or the FUCOM method
(Pamucar et al., 2018).
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Notwithstanding this, a new approach to the problem of weight determination has been
proposed for the TOPSIS method by Liern and Pérez-Gladish, 2020 and by Benítez and
Liern, 2021. This new approach focuses on completely eliminating the precise definition
of the criteria weights in the problem, allowing the decision-maker to state only some
sensible bounds for such weights, resulting in an unweighted TOPSIS method.

The aim of this paper is to analyze how this unweighted methodology presented in Liern
and Pérez-Gladish (2020) can be extended to another MCDM method such as the VIKOR
outranking algorithm (Opricovic, 1998), used for finding compromise solutions. We will
also illustrate this new methodology with three applications: in the first one, we compare
the newly-introduced uwVIKOR with the classical VIKOR for a problem of locating a
hydropower system studied by Opricovic and Tzeng (2007), the second one is another
classical problem of Jacquet-Lagreze and Siskos (1982) in which we compare uwVIKOR
with the results obtained in Benítez and Liern (2021) with the uwTOPSIS method, and the
third case study is an application of the method to the determination of the Most Valued
Player (MVP) of the NBA Basketball League from 2001 to 2020.

The aim of this paper is to analyze how the unweighted methodology presented in
Liern and Pérez-Gladish (2020) can be used for finding compromise solutions by means of
the VIKOR outranking algorithm. We will also illustrate this new methodology with two
applications: the first one is a classical problem of Jacquet-Lagreze and Siskos (1982), and
the second one is an application of the method to the determination of the Most Valued
Player (MVP) of the NBA Basketball League from 2001 to 2020.

5.2.3 Literature review

In the 1990s, Serafim Opricovic presented the VIseKriterijumska Optimizacija I Kompromisno
Resenje (VIKOR) method, in English translated as Multicriteria Optimization And Com-
promise Solution (Opricovic, 1998). It was introduced as an MCDM outranking strategy to
rank alternatives based on the search for a feasible compromise solution.

From then on, many variations of the method with multiple perspectives have arisen
(See Mardani et al. (2016), and references therein). For instance, Opricovic and Tzeng
(2002) and Opricovic and Tzeng (2003a) introduced crisp sets to solve conflicting cases
of fuzzy approaches for defuzzification methods, later Opricovic and Tzeng (2003b) added
strategies with incomplete information. A scheme for compromise solutions under fuzzy
logic was written in Opricovic (2007). For membership of the weights, Devi (2011) added
triangular fuzzy numbers to give the intuition of feasible importance. We can also find
papers that extend the VIKOR problem to interval numbers (Sayadi et al., 2009). Finally,
there are combinations of the VIKOR methodology with other fields such as gray relational
analysis (Kuo and Liang, 2011) and group decision making (Park et al., 2011).

A fundamental problem in multi-criteria decision analysis methods is the determination
of the relative importance of the various criteria (Triantaphyllou, 2000). Many methods
require a quantitative definition of the weight of each criterion, and such a definition is
often difficult. Sometimes the definition of the weighting itself is not precise or the values
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themselves are given with a certain degree of uncertainty. Although weights sometimes
have no meaning beyond relative preference or importance, their value can significantly
affect the outcome of the decision-making.

The first approach is to consider, given an initial set of weights, the ranges within which
these weights can vary without changing the result of the ranking of alternatives. Such
stability intervals were first considered by Mareschal (1988), and Wolters and Mareschal,
1995 for additive and PROMETHEE methods. Later, Opricovic and Tzeng, 2007 defined the
stability intervals for the VIKOR method. However, the stability intervals simply determine
how to vary the weights so that the ranking of alternatives does not change with respect
to a given ranking with initially indicated weights. Therefore, this approach does not solve
the problem of determining the importance of the criteria in the first place.

In order to determine the relative importance of the different criteria considered in an
MCDM problem, a multitude of methods has been developed. Those weighting meth-
ods are usually divided into subjective and objective methods (Nutt, 1980; Odu, 2019;
Roszkowska, 2013). In the former, the task of assigning weights to the different criteria
is placed on the shoulders of the decision-maker (or, better still, on an expert who may
be external to the decision-making process). The expert must assign the weights based on
previous experience so that the assignment will necessarily be subject to his or her prefer-
ences. On the other hand, in the objective methods, the decision-maker takes no role in the
weighting process. This is particularly useful when either the relatively subjective weights
cannot be obtained, or when there is no expert available. It is also sometimes the case that
the decision-maker does not want to make a judgment on the importance of the criteria
in order to maintain a degree of impartiality with respect to the possible outcomes of the
ranking of the alternatives.

Subjective methods can be further divided into direct weighting methods and pairwise
comparison methods. In the direct weighting schemes, the expert directly assigns values
to the importance of the different criteria. For example, in the Simple Multiattribute Rating
Technique (SMART) (Edwards, 1977), the criteria are first ranked according to their import-
ance, from the worst attribute levels to the best levels, and then the least important is given
10 points, and the rest are scored relative to the one ranked lowest in importance. Later,
Edwards and Barron (1994) improved the method with the SMARTER method, where the
centroid method of Solymosi and Dombi (1986) was used, and then the criterion ranked in
the i-th position among n different criteria, was given the numerical weight wi =

1
n ∑n

k=i
1
k .

Another widely used direct weighting scheme is the Simos method (Figueira and Roy,
2002), where a “playing cards” strategy was implemented in order to assess the relative
dissimilarities between the different weights. However, some authors have risen concerns
regarding the robustness of this method (Shanian et al., 2008; Siskos and Tsotsolas, 2015).

Pairwise comparison methods include the well-known Analytic Hierarchical Process
(AHP), which derives relative importance of criteria from paired comparisons of those
criteria (Saaty, 1987; Saaty, 1977; Saaty, 1980; Saaty and Vargas, 2012), the eigenvector
weighting scheme, initially considered by Saaty (1980), and then extended by Cogger and
Yu (1985) and Takeda et al. (1987), incorporating to Saaty’s eigenweight vector a least-
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distance approximation model. Another pairwise comparison method worth mentioning
is the Modified Digital Logic (MDL) (Dehghan-Manshadi et al., 2007).

The main characteristic of subjective methods is that they are all based on the initial
determination of the relative importance of the criteria by the decision maker (or expert)
according to his or her personal experience, beliefs, or preferences.

In contrast to these subjective methods, there are the aforementioned objective methods,
among which the following are worth considering: the Mean weighting scheme (or equal
weights), which despite its simplicity, it has been found to be very reliable (Dawes and
Corrigan, 1974; Schmidt, 1971), the Standard deviation weighting (Jahan et al., 2012), where
the weights of the criteria are proportional to their standard deviation, the CRITIC (Criteria
Importance Through Inter-criteria Correlation), developed by Diakoulaki et al. (1995) in a
financial framework, where the weight of each criterion is depends on both, its standard
deviation and the correlation coefficients between the criterion and the rest of the criteria.
Finally, several objective weighting schemes have been based on the definition of entropy
in classical information theory given by Shannon (1948), where, likewise the SD weighting
and the CRITIC method, the weight of each criterion is proportional to some characteristic
of the criterion, namely the entropy (see for instance, Kumar et al. (2021) for a recent review
on entropy methods applied to engineering problems).

Recently, Liern and Pérez-Gladish (2020) developed an unweighted MCDM TOPSIS-
based algorithm (Yoon et al., 1995) to evaluate alternatives avoiding the use of a priori
weights. Such an approach meant a significant advance in the field of decision making
because one of the most controversial steps was partially solved. Despite the fact that they
needed to define a boundary set that limits the weights to vanish or saturate, such selection
is way more flexible due to the use of intervals. Among many experimental applications,
we would like to mention the selection of alternatives in the automotive sector (Liern and
Pérez-Gladish, 2020), evaluation of measures for sustainable development (Benítez and Li-
ern, 2021), the definition of performance indicators for academic purposes (Blasco-Blasco
et al., 2021), the assessing of sustainable tourism management in Spain after COVID-19
(Vicens-Colom et al., 2021), and the ranking companies based on their diversity and fin-
ancial performance (Bouslah et al., 2022). The uwTOPSIS method has been already imple-
mented in R (Benitez and Liern, 2020) and Python (López-García, 2021a), which greatly
facilitates the use of this methodology.

5.2.4 New proposals for compromise solutions

One of the major contributions of the VIKOR is the introduction of compromise solutions
by means of the Q-score that defines the final ranking. In the unweighted approach, we
cannot sort the alternatives since there is no direct binary relation that defines a partial
order for pairs. Therefore, we present here some possible solutions to ascertain whether
the resultant output of uwVIKOR has a compromise solution.
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5.2.4.1 Ranking functions

When we construct a ranking, we usually make use of a sequence that allows us to arrange
the alternatives. In the case of VIKOR, such a sequence of Qi elements is increasingly
sorted since the main comparison is against ideal conditions (item Step 4). It should be
noted, however, that there also exist MCDM methods that rank the other way around,
such as WSM, WPM, or TOPSIS among others.

Unlike classic multi-criteria optimization problems, the unweighted approaches give us
an interval of possible values per each individual [min fi, max fi] and a set of optimal
points {W−i } and {W+

i }. Even though we could define an ordering relationship to deal
with intervals, it is more intuitive if we transform the boundaries into a single value. As
a consequence, we might consider a continuation of the method by following the last step
of ordering.

For the uwVIKOR, we propose three different options to convert the optimal results of
Qi(w), and their respective Si(w) and Ri(w) evaluated in WL

i and WU
i , into a value:

Option 1 Given 0 < νS, νR, νQ < 1 and p ∈ R, we define per each i ∈ {1, . . . , N}:

Si =
[
νS(SL

i )
p + (1− νS)(SU

i )
p] 1

p , (5.4)

Ri =
[
νR(RL

i )
p + (1− νR)(RU

i )
p] 1

p , (5.5)

Qi =
[
νQ(QL

i )
p + (1− νQ)(QU

i )
p] 1

p . (5.6)

So we basically operate with the generalized p-mean per each score to aggregate the
results obtained.

Option 2 Given 0 < νS, νR, νQ < 1, we calculate the values of:

SL
− = min

1≤i≤N
{SL

i } ; SU
− = min

1≤i≤N
{SU

i } ; SL
+ = max

1≤i≤N
{SL

i } ; SU
+ = max

1≤i≤N
{SU

i }.

RL
− = min

1≤i≤N
{RL

i } ; RU
− = min

1≤i≤N
{RU

i } ; RL
+ = max

1≤i≤N
{RL

i } ; RU
+ = max

1≤i≤N
{RU

i }.

QL
− = min

1≤i≤N
{QL

i } ; QU
− = min

1≤i≤N
{QU

i } ; QL
+ = max

1≤i≤N
{QL

i } ; QU
+ = max

1≤i≤N
{QU

i }.

to propose per each i ∈ {1, . . . , N}:

Si = νS
SL

i −SL
−

SL
+−SL

−
+ (1− νS)

SU
i −SU

−
SU
+−SU

−
, (5.7)

Ri = νR
RL

i −RL
−

RL
+−RL

−
+ (1− νR)

RU
i −RU

−
RU
+−RU

−
, (5.8)

Qi = νQ
QL

i −QL
−

QL
+−QL

−
+ (1− νQ)

QU
i −QU

−
QU

+−QU
−

. (5.9)

Option 3 Following the same line as Option 2, we propose the same strategy as in Eq. 3.31
with the new synthetic Si and Ri scores defined in equations 5.7 and 5.8.

In any of the mentioned cases, we would proceed with the final scores in the same
way that VIKOR Step 5 works with (Ri, Si, Qi) to define a new version of the compromise
solution for the non-weighted approach.
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5.2.4.2 Optimal dominance

When multiple alternatives are studied, it is essential to measure how good the comprom-
ise solution is. For instance, the acceptable conditions of VIKOR (stages Step 5a and Step
5b) help us to know the dominance of the selected set of alternatives over the remaining
ones. In this regard, it is interesting to determine whether an alternative is capable of ob-
taining the extreme values for the score Q, no matter the final position achieved in the
ranking. Hence we introduce the following concepts:

Definition 5.2.1. Given an MCDM decision matrix F = [ fij] consisting of N alternatives and M
criteria, we say that the ith alternative is:

uwVIKOR-L-dominant if QL
i = 0.

uwVIKOR-U-dominant if QU
i = 1.

According to this definition, an alternative is L-dominant if there exists a set of weights
for which the alternative can obtain the best possible score (Q = 0), while if there are some
weights for which the alternative obtains the worst score (Q = 1), then we will consider
this alternative as U-dominant. Note that those two concepts are not mutually exclusive
(i.e., an alternative can be lower and upper dominant at the same time, or be none).

5.2.4.3 Evaluation of the optimal solutions

In the step Step 5 of the uwVIKOR, we not only obtain the optimal values of Qi(w) but
also the optimal points (WL

i , WU
i ). Once we have defined the Ω set and the boundaries of

each weight lj and uj per each criterion 1 ≤ j ≤ M, we have a decision space of feasible
elements to solve the mathematical problem. Therefore, each pair (WL

i , WU
i ) satisfies the

condition to be acceptable for a weighting scheme of a MCDM method.
It is well-known that the stage of importance assessment of criteria is very problematic

due to the bias of the decision-makers involved. Then, we also have to take into account
how suitable are the resultant set of weights. Our proposal is to evaluate the centrality of
the (WL

i , WU
i ) elements. That is to say, we have to check whether a weight wj saturates the

lj, uj-restriction, i.e wj ∈ {lj, uj}. For this, we define the w-centrality indicator ϕl,u, which
is basically a membership function of each interval [lj, uj]. Some examples of w-centrality
functions are depicted in Fig. 5.6.

Once we have computed {ϕlj,uj(wj)}M
j=1, we can get information about how balanced is

the weighting scheme. We define the joint centrality indicator as the averaged mean of
the sequence, as shown in Eq. 5.10. We would like to emphasize that such indicator can
be applied over both WL

i and WU
i , so we can study the lower and upper balance of the

optimal weights.

Φ(w) =
1
M

M

∑
j=1

ϕlj,uj(wj), ∀w ∈ Ω. (5.10)
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Figure 5.6: Examples of ϕl,u representation with their stages. Lines represent the image of possible
values of wj. Lower points indicates the interval [lj, uj] and top points the core of the
membership.

Source: Own elaboration.

5.2.5 Cases study

5.2.5.1 Location of a hydropower system

Opricovic and Tzeng (2007) presented an extension of the VIKOR method for evaluating
alternative hydropower systems on the Drina river, a 346 km long river that forms a large
portion of the border between Bosnia and Herzegovina and Serbia. From a given set of
potential dam sites for reservoirs to provide hydropower, the authors performed a com-
parative scheme also considering other MCDM techniques. In Table 5.13 is displayed the
6 reservoir systems that were considered as alternatives and a total of 8 criteria composed
of 4 economic and 4 social features. With respect to the economic criteria, the profit and
cost are measured in 106 Dinar currency (Din) and the total and peak energy produced
in GW per hour. For the social criteria, the number of homes to relocate and villages to
displace are integer features, the surface reservoir area is measured in hectares, and the
environmental protection is a grade between 1 and 5.

5.2.5.2 Choice of the best car

Jacquet-Lagreze and Siskos (1982) published an example of a real decision-making case in
which the aim was to select the best alternative in the automotive industry. As shown in
Table 5.12, the problem is composed of ten cars whose criteria are based on engine, space,
and economic specifications. The alternative selection has been conducted with detail since
there has been a combination of maximization and minimization attributes, in particular
three of each. Given that the selection of a model car could be attached to a conflict of
interest and so a non-objective framework, it is crucial that we pay special attention to
the importance of each feature. Subsequently, Kao (2010) studied the same problem with
the aim of determining a weighting scheme with a posterior application of the TOPSIS
method.

5.2.5.3 Selection of the MVP of the NBA

The study of sports performance is a matter that has been approached in terms of the
estimation of characteristics player-dependent. In regard to the NBA case, authors have
studied the contribution of players to the win of their teams (Berri, 1999) or their estimated
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Table 5.12: Decision matrix from Kao (2010) with 10 cars and their 6 attributes.

Car Model
Maximal
speed
(km/h)

Horse
power
(CV)

Space

(m2)

Consump.
in town
(l/100km)

Consump.
at 120km/h
(l/100km)

Price

(CHF)

Peugeot 505 GR 173 10 7.88 11.4 10.01 49500
Opel Record 2000 LS 176 11 7.96 12.3 10.48 46700
Citroën Visa Super “E” 142 5 5.65 8.2 7.30 32100
VW Golf 1300 GLS 148 7 6.15 10.5 9.61 39150
Citroën CX 2400 Pallas 178 13 8.06 14.5 11.05 64700
Mercedes 230 180 13 8.47 13.6 10.40 75700
BMW 520 182 11 7.81 12.7 12.26 68593
Volvo 244 DL 145 11 8.38 14.3 12.95 55000
Peugeot 104 ZS 161 7 5.11 8.6 8.42 35200
Citroën Dyane 117 3 5.81 7.2 6.75 24800

Optimization criteria Max Max Max Min Min Min
Positive ideal (F∗) 182.00 13.00 8.47 14.50 12.95 75700
Negative ideal (F−) 117.00 3.00 5.11 7.20 6.75 24800
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Table 5.13: Decision matrix from Opricovic and Tzeng (2007) with the 6 different reservoir systems and 8 economic and social criteria.

Profit

(106Din)

Costs

(106Din)

Total energy
produced
(GW/h)

Peak energy
produced
(GW/h)

Homes to be
relocated
(Integer)

Reservoirs
area
(ha)

Villages to
displace
(Integer)

Environm.
protection
(Grade)

A1 4184.3 2914.0 407.2 251.0 195 244.0 15 2.41
A2 5211.9 3630.0 501.7 308.3 282 346.0 21 1.41
A3 5021.3 3920.5 504.0 278.6 12 56.0 3 4.42
A4 5566.1 3957.9 559.5 335.3 167 268.0 16 3.36
A5 5060.5 3293.5 514.1 284.2 69 90.0 7 4.04
A6 4317.9 2925.9 432.8 239.3 12 55.0 3 4.36

F+ 5566.1 2914.0 559.5 335.3 12 55.0 3 4.42
F− 4184.3 3957.9 407.2 239.3 282 346.0 21 1.41

Max Min Max Max Min Min Min Max
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Table 5.14: Statistics of the main nominees to the MVP, voted at least once “Pts Won”, of the 2019-2020 regular season where the maximum number of points
was 1010.

Player Age Tm Pts Won 1st Pos G MP PTS TRB AST STL BLK FG% 3P% FT% WS WS/48

Giannis Antetokounmpo 25 MIL 962 85 63 30.4 29.5 13.6 5.6 1.0 1.0 0.553 0.304 0.633 11.1 0.279
LeBron James 35 LAL 753 16 67 34.6 25.3 7.8 10.2 1.2 0.5 0.493 0.348 0.693 9.8 0.204
James Harden 30 HOU 367 0 68 36.5 34.3 6.6 7.5 1.8 0.9 0.444 0.355 0.865 13.1 0.254
Luka Dončić 20 DAL 200 0 61 33.6 28.8 9.4 8.8 1.0 0.2 0.463 0.316 0.758 8.8 0.207
Kawhi Leonard 28 LAC 168 0 57 32.4 27.1 7.1 4.9 1.8 0.6 0.470 0.378 0.886 8.7 0.226
Anthony Davis 26 LAL 82 0 62 34.4 26.1 9.3 3.2 1.5 2.3 0.503 0.330 0.846 11.1 0.250
Chris Paul 34 OKC 26 0 70 31.5 17.6 5.0 6.7 1.6 0.2 0.489 0.365 0.907 8.9 0.193
Damian Lillard 29 POR 23 0 66 37.5 30.0 4.3 8.0 1.1 0.3 0.463 0.401 0.888 11.6 0.225
Nikola Jokić 24 DEN 18 0 73 32.0 19.9 9.7 7.0 1.2 0.6 0.528 0.314 0.817 9.8 0.202
Pascal Siakam 25 TOR 17 0 60 35.2 22.9 7.3 3.5 1.0 0.9 0.453 0.359 0.792 5.4 0.123
Jimmy Butler 30 MIA 9 0 58 33.8 19.9 6.7 6.0 1.8 0.6 0.455 0.244 0.834 9.0 0.221
Jayson Tatum 21 BOS 1 0 66 34.3 23.4 7.0 3.0 1.4 0.9 0.450 0.403 0.812 6.9 0.146
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skills and abilities with a statistical perspective (Fearnhead and Taylor, 2011). For team
analysis, some authors as Mikołajec et al. (2013) have designed performance indicators and
other underlying factors that affect the game such as ethic (Kraus et al., 2010), pressure
(Cao et al., 2011) or payments (Sigler and Sackley, 2000).

Since 1956, the National Basketball Association of United States grants the player that
has shown the best performance during the regular season with an iconic award. Such
accomplishment is rewarded with the so-called MVP trophy, whose abbreviation means
Most Valuable Player. The trophy is also known as Maurice Podoloff in honor of the first
chief executive of the NBA. The judging criteria to assess the players has changed over the
years. Until 1980 the election system was held by the players of the league, who voted at
the end of it. From then onwards, the selection is conducted by an expert committee of
journalist and broadcasters of USA and Canada.

In regard with the voting scheme, each person in charge votes for first to fifth place to
five different players, where each position is worth 10, 7, 5, 3, and 1 respectively. Once
the scrutiny is conducted, the player with higher points is the one who wins the trophy.
Even though there exist multiple statistics followed by a follow-up report that help the
experts to make their final decision, such response is based on their personal perspective.
In addition, the number of features to analyze and the pair-wise comparisons are not
an easy task. Hence, we cannot assert that the Maurice Podoloff Trophy is given under
objective conditions.

In order to limit the computational cost that would imply a joint decision matrix with
every single player that have participated at least once in the NBA, we have decided to pick
the players that have obtained at least one point in the voting system. The experimental
dataset contains the statistics of the players from 2001 to 2020, in which the number of play-
ers per year have varied because of the amount of votes received. As a result, the number of
alternatives to consider per problem has ranged between 9 and 17 players. Altogether, we
have collected a total 283 entries. The data is publicly available in the basketball-reference
website1. The entire dataset is presented in Table 5.14, where players are divided by season.

5.2.6 Results and discussion

In this section, we present the application of the uwVIKOR algorithm in three different
scenarios based on the three case studies. The first case study (5.2.5.1) studies the extension
of our method with respect to the classical VIKOR. We show the advantage and flexibility
that supposes the use of weighting bounds instead of precise weight vectors. The second
case study (5.2.5.2) contains a step-by-step procedure of how to carry out the uwVIKOR
for a given MCDM problem. As the approach to this problem is rather problematic, we
show the importance of the concepts of L,U-dominance offered by uwVIKOR that cannot
be studied with uwTOPSIS. The third case study (5.2.5.3) contains an in-depth evaluation
of a predictive ranking system for NBA players. The aim is to extract the most performing
player by means of basketball statistics, thus removing non-objective parameters during

1 https://www.basketball-reference.com/

https://www.basketball-reference.com/
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Table 5.15: Statistics of the main nominees to the MVP, voted at least once (Pts Won), of the 2020
regular season. The ∗ index means that such value is the average per number of games
played.

Acronym Description

Tm Name of the player’s team
Pts Won Points won in the voting system
1st Pos Number of times voted as 1st place
G Games played in the season
MP∗ Minutes played
PTS∗ Points
TRB∗ Total rebounds
AST∗ Assists
STL∗ Steals
BLK∗ Blocks
FG %∗ Field goal as percentage
3P %∗ 3-Point field goal as percentage
FT %∗ Free throw as percentage
WS Winning shares per game
WS/48∗ Winning shares per 48 minutes

the selection process. Furthermore, the performance of uwVIKOR when ranking has been
analyzed using fitting measures.

5.2.6.1 Hydropower system localization

Table 5.16: Analysis of the compromise solutions obtained per each ranking method and the study
of the components of such compromise solutions.

Ranking QσQ(2) −QσQ(1) Advantage Stability

Balanced A5 ⪰ A3 ⪰ A6 ⪰ A4 ⪰ A1 ⪰ A2 0.4731 ✓ ✓

Economy A5 ⪰ A2 ⪰ A3 ⪰ A4 ⪰ A6 ⪰ A1 0.5329 ✓ ✓

Social A5 ⪰ A3 ⪰ A6 ⪰ A4 ⪰ A1 ⪰ A2 0.1059 - ✓

Unweighted A5 ⪰ A3 ⪰ A6 ⪰ A4 ⪰ A2 ⪰ A1 0.2763 ✓ ✓

In view of the fact that the problem posed by Opricovic and Tzeng (2007) involves
a major conflict of interests, we have computed both VIKOR and uwVIKOR for different
weighting schemes and boundaries. The main authors proposed three different assessment
strategies based on the expected judgment per each criterion. The weighting schemes were



5.2
m

c
d

m
-
c

a
s

e
2

147

Table 5.17: Decision matrix from Opricovic and Tzeng (2007) with the 6 different reservoir systems and 8 economic and social criteria.

Balanced Economy Social Unweighted

S R Q S R Q S R Q SL SU RL RU QL QU

A1 0.692 0.125 0.991 0.701 0.167 1.000 0.683 0.113 0.684 0.636 0.734 0.092 0.167 0.528 1.000
A2 0.700 0.125 1.000 0.600 0.114 0.533 0.800 0.167 1.000 0.611 0.731 0.092 0.167 0.382 1.000
A3 0.290 0.121 0.473 0.386 0.161 0.552 0.193 0.080 0.147 0.254 0.386 0.080 0.161 0.042 0.552
A4 0.423 0.125 0.670 0.365 0.167 0.563 0.480 0.122 0.554 0.311 0.534 0.083 0.167 0.015 0.779
A5 0.280 0.067 0.000 0.317 0.089 0.000 0.243 0.044 0.041 0.263 0.243 0.046 0.044 0.000 0.041
A6 0.346 0.125 0.578 0.459 0.167 0.686 0.232 0.083 0.191 0.232 0.459 0.083 0.167 0.107 0.686
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designed to perform a ranking system by means of balanced (5.11), economy (5.12), and
social (5.13) approaches.

Balanced (WB): wj =
1
8 , ∀j ∈ {1, . . . , 8}, (5.11)

Economy (WE): wj = 2wk, ∀j ∈ {1, . . . , 4}, k ∈ {5, . . . , 8}, (5.12)

Social (WS): 2wj = wk, ∀j ∈ {1, . . . , 4}, k ∈ {5, . . . , 8}. (5.13)

The objective is to study such a problematic decision scenario by means of the schemes
proposed and show the advantage that supposes our unweighted framework. Instead of
performing several experimental tests, our method is able to analyze all possible scen-
arios among the approaches proposed in the original problem. For the implementation
of uwVIKOR, we have selected decision bounds composed of the minimal and maximal
weights of the three strategies. In other words, we have the following pairs: lj = min {min{WB}, min{WE}, min{WS}} = 1/12,

uj = max {max{WB}, max{WE}, max{WS}} = 1/6.
(5.14)

A1 A2 A3 A4 A5 A6

0.0

0.2

0.4

0.6

0.8

1.0

QL QU uwVIKOR Balanced Economy Social

Figure 5.7: Comparison of the score systems obtained for the balanced, economy, and social weight-
ing schemes of Opricovic and Tzeng (2007) and our uwVIKOR method (ν = 0.5 and
p = 1) for the hydropower plant location problem.

By doing this, the resultant (QL, QU) score vectors contain the Q vectors of the VIKOR
method for the three strategies defined by Opricovic and Tzeng (2007). In addition, we can
observe how susceptible the alternatives are regarding the weight selection by analyzing
the amplitude of the scores as mentioned in Equations 5.4, 5.5, and 3.67. The results ob-
tained are shown in Table 5.17, where it is presented the (S, R, Q) score vectors of each
ranking system and the intervals of these scores through our unweighted VIKOR method.
Moreover, we have depicted the results in Fig. 5.7, in which the uwVIKOR has been ag-
gregated using the arithmetic mean of QL and QU .

The advantage of uwVIKOR over standard VIKOR implementations in terms of offering
ranking systems is worth noting. As we can see in Fig. 5.7, each of the scores of the
weighted methods are contained into the [QL, QU ] score intervals of uwVIKOR since their
weights belong to the Ω set. In addition, we can study the dominance of the alternatives
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when determining compromise solutions. In this particular case, we conclude that A5 ⪰ Ai

because QU
5 ≤ QL

i for all i ̸= 4, in other words, Q5(w) ≤ Qi(w) as long as w ∈ Ω and i ̸= 4.
In regard to the compromise solutions, the results obtained per each method have been

analyzed to check whether we can guarantee advantage and/or stability conditions for
the methods. In Table 5.16, we have displayed the ranking of the alternatives with the
conditions required to build each compromise solution.

5.2.6.2 Cars ranking system

For the first experiment, we want to obtain the best car from a given set of alternatives
with different automotive sector attributes. In order to carry out the raking process, we
conduct a step-by-step procedure to show the whole process. As we described in 3.4.3, we
have to extracts ideal solutions F∗ and F− to subsequently normalize decision matrix [ fij]

(Table 5.12). The transformation [rij] is presented in Table 5.18.

Table 5.18: Car decision matrix normalized as in Eq. 3.28

Car Model
Maximal
speed
(km/h)

Horse
power
(CV)

Space

(m2)

Consump.
in town
(l/100km)

Consump.
at 120km/h
(l/100km)

Price

(CHF)

Peugeot 505 GR 0.1384 0.3000 0.1755 0.5753 0.5258 0.4852
Opel Record 2000 LS 0.0923 0.2000 0.1517 0.6986 0.6016 0.4302
Citroën Visa Super “E” 0.6153 0.8000 0.8392 0.1369 0.0887 0.1434
VW Golf 1300 GLS 0.5230 0.6000 0.6904 0.4520 0.4612 0.2819
Citroën CX 2400 Pallas 0.0615 0.0000 0.1220 1.0000 0.6935 0.7838
Mercedes 230 0.0307 0.0000 0.0000 0.8767 0.5887 1.0000
BMW 520 0.0000 0.2000 0.1964 0.7534 0.8887 0.8603
Volvo 244 DL 0.5692 0.2000 0.0267 0.9726 1.0000 0.5933
Peugeot 104 ZS 0.3230 0.6000 1.0000 0.1917 0.2693 0.2043
Citroën Dyane 1.0000 1.0000 0.7916 0.0000 0.0000 0.0000

In the same line than Liern and Pérez-Gladish (2020), we have selected the boundaries
lj = 0.01 and uj = 0.75 per each criterion j ∈ {1, ..., 6}. This constraint selection was already
based on the weights used by Kao (2010). The Ω is thus defined and the score functions
can be utilized to perform the steps Step 3, Step 4 and Step 5. The results obtained are
shown in Table 5.19, where the uwVIKOR column is the arithmetical mean between QL

and QU , so we have decided to set νQ = 0.5 for the Option 1 in the ranking system.
The uwVIKOR ranking score places the Peugeot 505 GR in the first position, making

it the best choice with regard to the set of alternatives. A comparative plot is depicted
in Fig. 5.8 to see the score variations between alternatives. In addition, the score of Liern
and Pérez-Gladish (2020) is added with a change in their result of 1− Ri, being Ri their
uwTOPSIS score. For the dominance approach, it is interesting that just the VW Golf 1300
GLS is considered U-dominant with a minimal score of 0.0841, despite having balanced
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Table 5.19: Score functions of the uwVIKOR method per each alternative.

Car Model SL SU RL RU QL QU uwVIKOR

Peugeot 505 GR 0.3281 0.5218 0.1053 0.2278 0.0000 0.5911 0.2955
Opel Record 2000 LS 0.2167 0.6424 0.1152 0.5239 0.0000 0.6940 0.3470
Citroën Visa Super “E” 0.2913 0.8016 0.1102 0.5287 0.0000 0.8963 0.4481
VW Golf 1300 GLS 0.3994 0.5349 0.1947 0.2533 0.0841 0.8098 0.4470
Citroën CX 2400 Pallas 0.1417 0.8782 0.1014 0.7400 0.0000 1.0000 0.5000
Mercedes 230 0.0997 0.8397 0.0526 0.7500 0.0000 1.0000 0.5000
BMW 520 0.1295 0.8561 0.0516 0.5876 0.0000 0.9435 0.4717
Volvo 244 DL 0.1814 0.8903 0.0947 0.7500 0.0000 1.0000 0.5000
Peugeot 104 ZS 0.3052 0.8357 0.0999 0.7500 0.0000 1.0000 0.5000
Citroën Dyane 0.1175 0.8575 0.0600 0.7500 0.0000 1.0000 0.5000

automotive conditions. Moreover, we have five U-dominant cars that are actually placed
in the last positions of the ranking.

In regard to the optimal solutions attached to the uwVIKOR, Table 5.20 contains the
weight matrices WL and WU . We can see that the weights have saturated the lower bounds
lj 23 times (10 for QL and 13 for QU) and the upper bounds uj 8 times (3 for QL and 5 for
QU). It indicates that, for this particular problem, the weighting scheme is more prone to
vanish than explode to 1. Moreover, there is only one case of upper saturation in which
the alternative has not achieved the best optimal possible. That is the case of maximization
of the Opel Record 2000 LS, where the maximal value was 0.6940. In all other cases, there
has been a result of either 0 or 1.

Pe
ug

eo
t 5

05
 G

R

Ope
l R

ec
or

d 
20

00
 L
S

Citr
oë

n 
Visa

 S
up

er
 E

VW
 G

ol
f 1

30
0 

GLS

Citr
oë

n 
CX 2

40
0 

Pa
lla

s

M
er

ce
de

s 
23

0

BM
W

 5
20

Vol
vo

 2
44

 D
L

Pe
ug

eo
t 1

04
 Z

S

Citr
oë

n 
Dya

ne

0.0

0.2

0.4

0.6

0.8

1.0

QU

QL

uwVIKOR

Liern & Pérez-Gladish (2020)*

Figure 5.8: Ranking systems obtained for our uwVIKOR method (QL, QU , and uwVIKOR) and the
uwTOPSIS of Liern and Pérez-Gladish (2020), where the ∗mark indicates that such score
has been reversed in order to present the same ascending order than VIKOR technique
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Table 5.20: Optimal weights of the uwVIKOR optimization problem for both QL and QU cases. Bold
values highlight the upper saturation of the weight, i. e. wj = uj.

Car Model
Maximal
speed
(km/h)

Horse
power
(CV)

Space

(m2)

Consump.
in town
(l/100km)

Consump.
120km/h
(l/100km)

Price

(CHF)

Q
L

op
ti

m
al

w
ei

gh
ts

:W
L

Peugeot 505 GR 0.4406 0.0100 0.0783 0.1830 0.1314 0.1565
Opel Record 2000 LS 0.5985 0.0412 0.0412 0.0100 0.0412 0.2677
Citroën Visa Super “E” 0.1752 0.1378 0.0100 0.0462 0.5842 0.0462
VW Golf 1300 GLS 0.0100 0.3245 0.0205 0.0100 0.0100 0.6248
Citroën CX 2400 Pallas 0.0462 0.7470 0.0336 0.0100 0.0336 0.1293
Mercedes 230 0.0600 0.7500 0.0600 0.0600 0.0600 0.0100
BMW 520 0.7500 0.0600 0.0600 0.0600 0.0100 0.0600
Volvo 244 DL 0.0327 0.0327 0.7319 0.0327 0.0100 0.1596
Peugeot 104 ZS 0.2572 0.1666 0.0100 0.4867 0.0396 0.0396
Citroën Dyane 0.0100 0.0600 0.0600 0.7500 0.0600 0.0600

Q
U

op
ti

m
al

w
ei

gh
ts

:W
U

Peugeot 505 GR 0.0100 0.0100 0.0100 0.3961 0.2295 0.3443
Opel Record 2000 LS 0.0100 0.0100 0.0100 0.7500 0.1133 0.1066
Citroën Visa Super “E” 0.0100 0.3285 0.6300 0.0114 0.0100 0.0100
VW Golf 1300 GLS 0.2345 0.0100 0.3668 0.1184 0.1296 0.1404
Citroën CX 2400 Pallas 0.0100 0.0100 0.0749 0.7400 0.0100 0.1550
Mercedes 230 0.0600 0.0100 0.0600 0.0600 0.0600 0.7500
BMW 520 0.0100 0.0100 0.0100 0.0100 0.6612 0.2987
Volvo 244 DL 0.0600 0.0600 0.0100 0.0600 0.7500 0.0600
Peugeot 104 ZS 0.0600 0.0600 0.7500 0.0100 0.0600 0.0600
Citroën Dyane 0.7500 0.0600 0.0600 0.0100 0.0600 0.0600

The results show a big amplitude in the intervals [QL
i , QU

i ], where there are five cases of
full amplitude [0, 1]. It is noteworthy that our results are very similar to the ones of Liern
and Pérez-Gladish (2020), in which the major contrast can be seen in the first alternative.
Another remarkable detail is that both schemes return the same winner, i. e. the Peugeot
505 GR.

5.2.6.3 Selection of the MVP player per season

For the second experiment, our goal is to present an objective solution to the choice of the
MVP problem by applying the uwVIKOR technique. In such a way we guarantee an object-
ive scheme to extract compromise solutions that lead to the choice of the best performance
during the year. For this purpose, we have collected the statistics of the players for each
year, as shown in Table 5.14. For a better understanding of the acronyms, Table 5.15 ex-
plains their meaning. We would like to highlight that we have selected features in regard
to attack, defense, and physical characteristics.

For the uwVIKOR implementation case, the procedure of the algorithm was held by
narrowing down the headers of the dataset to G, MP, PTS, TRB, AST, STL, BLK, FG%, and



152 multiple-criteria decision making case studies

WS/48. Then, we gave relevant importance only to seven variables. Thus, in an equitable
scenario, the contribution of each feature to the final decision would be 14.29%. Their
relative importance within the ranking ranges from 0.1 to 0.4, so lj = 0.1 and uj = 0.4,
∀j ∈ {1, ..., M}.

In order to ease the computational cost that requires both MCDM application and the
mathematical programming under Q(w) optimization, we have developed a repository in
GitHub with open access to the project in PyPI (López-García, 2021b). An example of the
implementation of the technique can be found in C.2.2.

We have fixed νQ = 0.5 so as to study the generalized p-mean over p ∈ {0, 1, 2}, i.e we
have computed the geometric, arithmetic and quadratic means as in Option 1. Fig. 5.12
illustrates the results obtained per season and the impact of the p-mean when estimating
the final score. In regard to the results, it is easy to note that GM ≤ AM ≤ QM, due to the
properties of the mean. However, the results significantly vary when a player is considered
uwVIKOR-L-dominant, most notably for the geometric mean. For this instance, a player
considered L-dominant will always be ranked in the first position, even though this first
position could be shared with other contenders.

During the 20 years studied, we have realized that in seven years we could unanimously
assign the MVP trophy, i.e. that there is a number one regardless of the p-median selec-
ted. That is the case of Garnett (2004), four times James (2009, 2010, 2012, 2013), Durant
(2014), and Antetokounmpo (2019). Stated another way, these four players have shown
their dominance in statistical terms, so their level on the court is undoubtedly insuperable.

Another interesting result is that not every player that won an MVP award in a particular
year, has obtained the first position in our ranking system in the same year. This is the
case for Nash (2005 and 2006), Bryant (2008), Rose (2011), and Curry (2015). With respect
to the three different scores considered, they did not achieve the first position in any
circumstances. We would want to mention that they can get the 2nd position with the
arithmetic mean, except for Curry whose best possible position is the 3rd place. For the
resultant cases, although there are cases where they are not classified as the best, there
exists an option for which they can be ranked far beyond their competitors.

Since we want to evaluate the uwVIKOR estimations, Fig. 5.9 illustrates the results ob-
tained (averaged) of the cardinal position obtained with the generalized p-means imple-
mented. Then, we can study the deviations between the real position obtained by the expert
panel and the predicted by our method. It is essential to note that each p-score has been
averaged, so now they do not have to respect the property said in the first paragraph of
the section. Regarding the cardinal system obtained, we got an increasing tendency which
follows the result that we expected.

An additional evaluation of Fig. 5.9 is the Table 5.21. By applying two performance
measures, we have numerically evaluated the averaged results of Fig. 5.12. On the one
hand, we evaluated the linear relationship between the results obtained and the actual
ranking with the Pearson correlation or R2. On the other hand, we measured the cardinal
deviation within the ranking with the mean absolute error or MAE.
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Figure 5.9: Cardinal ranking comparison of the uwVIKOR with arithmetic (AM), quadratic (QM)
and geometric (GM) means. X-axis is the official ranking by year and Y-axis is the rank-
ing uwVIKOR-based.

Source: Own elaboration.

Table 5.21: Performance measures (R2 and MAE) for the predicted positions given by the general-
ized p-means.

Measure Arithmetic Quadratic Geometric

R2 0.9706 0.9455 0.9485
MAE 1.7954 2.0244 1.8195

We can conclude by saying that, in our dataset, the arithmetic mean has been the most
suitable summary function for the Option 1. Such mean has shown better results in both
deviation and positioning as we can see in Table 5.21.

5.2.6.4 L,U-dominance per year

In order to study the performance of the top members of each year, Table 5.22 shows the
number of players considered as lower or upper dominants. Since their definition is not
complimentary, we have decided to figure out how many players belong to each category
as an independent event.

WWe also want to underline the particular analysis of the actual MVPs. It is interesting
that in five years, the trophy has been given to U-dominant players. As stated in 5.2.6.3,
these players are Nash, Bryant, Rose, and Curry. The most notorious cases are Derrick Rose
because his QL is 0.2239 for 2011, and Steve Nash and Stephen Curry who obtained a min-
imal value of 0.0049 in 2005 and 0.0051 in 2015, respectively. This proves that, although we
have attempted to create a methodology that studies the particular case of each individual,
there still exist some limitations associated with the criteria selected and their boundaries
{lj, uj}.

Nevertheless, when considering the dominance condition, there is no MVP rewarded
member that can be labeled as U-dominant in any studied year. In addition, there are no
players that can be considered lower and upper dominant at the same time. Even though it
might seem obvious, the condition based on Definition 5.2.1 allows an alternative to belong
to both groups at the same time. That can be understood as proof of the consistency of the
procedure that constitutes the uwVIKOR algorithm.
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Table 5.22: Summary of the players by the conditions stated in Definition 5.2.1. The table is broken
down by total amount of elements and its percentage.

L-dominant U-dominant
Year Total Percentage Total Percentage

2001 2 11.76 3 17.65
2002 6 33.33 2 11.11
2003 5 38.46 2 15.38
2004 2 12.50 4 25.00
2005 4 25.00 2 12.50
2006 5 45.45 2 18.18
2007 5 29.41 3 17.65
2008 4 23.53 2 11.76
2009 4 33.33 2 16.67
2010 2 13.33 5 33.33
2011 3 23.08 4 30.77
2012 2 13.33 1 06.67
2013 2 12.50 2 12.50
2014 6 35.29 2 11.76
2015 3 25.00 2 16.67
2016 4 40.00 1 10.00
2017 6 54.55 2 18.18
2018 3 23.08 1 07.69
2019 4 33.33 4 33.33
2020 4 33.33 1 08.33

5.2.6.5 Evaluation of optimal weights

We have decided to generalize the stability of the weights by implementing the standard
w-centrality function defined in Eq. 5.15. It matches with the fuzzy membership function
of a linear trapezoidal number with spread and core of the same size, in our case 1

3 (u− l).
Its graph would be similar to the center plot of Fig. 5.6.

ϕl,u(wj) =



3 ·
wj − l
u− l

if l ≤ wj ≤ 1
3 (u + 2l),

1 if 1
3 (u + 2l) ≤ wj ≤ 1

3 (2u + l),

3 ·
u− wj

u− l
if l + 1

3 (2u + l) ≤ wj ≤ u,

0 if wj /∈ [l, u].

(5.15)

Fig. 5.13 depicts, for each year, the joint stability indicator for both the lower and upper
optimal solutions. There, the degree of saturation of the optimal solutions can be easily
determined.
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In addition to being a useful measure to assess the selection of criteria and how it
affects the empirical performance of the players, the function Φ can also play a key role
when solving conflicts in matches. For instance, when there is a theoretical match between
alternatives just like in 2020, we can make the decision of picking the player with the higher
balance. Thus, we are promoting either versatile players or players with high influence on
the success of their teams.

We would like to focus on the 2020 season because it has been one of the most chal-
lenging in terms of decision making. In that year, the uwVIKOR output gave us a com-
plicated situation in which four players deserved the prize in almost similar conditions:
Antetokounmpo, James, Harden, and Davis. Even though the scenario was very complex,
the Φ-indicator led us to the final decision, in which the actual MVP winner (Antetokoun-
mpo) was the one that dominated the compromise solution.

5.2.6.6 Comparison against other MCDM methods: MVP award selection in 2021

When evaluating a new MCDM technique, it is essential to compare it with other similar
approaches in order to analyze the main differences among them. Owing to the raise of
applications with uwTOPSIS, we have decided to contrast the results in the case of the NBA
league. Moreover, we have published a GitHub repository (López-García, 2021a) with the
algorithm that speeds up the optimization problems. Then, we have two techniques with
two different approaches, i.e. classic and unweighted.

In order to give a slightly different approach, we now consider the player performance
for the 2021 case. The data collected is presented in Table 5.23, in which the source and
procedure were the same as in § 5.2.5.3.

5.2.6.7 Comparing the output of un-weighted methods

Owing to the lack of literature related to unweighted MCDM theory, we compare our
method with the state-of-the-art technique uwTOPSIS. Thus, we can analyze the resultant
p-mean score (average mean) and the oscillation of the intervals [QL, QU ]. In the same
way as the beginning of § 5.2.6, we have limited lj = 0.1 and uj = 0.4 per each attribute
j ∈ {1, ..., M} and we set p = 1

2 . With this purpose, we have represented the central value
with its range for both methods in Fig. 5.10.

It is worth mentioning that the numeric cardinal produced for TOPSIS is the opposite of
VIKOR. Instead of minimizing the score, in TOPSIS greater values mean better positioning.
If we analyze Fig. 5.10, we can notice a more flexible score system for the uwVIKOR
method. When comparing the amplitude of the optimal intervals, we have 0.6131± 0.1476,
for (QL, QU)-scores, and 0.3531 ± 0.0897, for (RL, RU)-scores. The underpinning idea of
this result is that exists a higher range of values that could be achieved by modifying the
initial weighting schemes when applying classic MCDM models.

As we highlighted at the beginning of the paper, the order is important but the accept-
ance of the final decision should verify some rules to increase the reliability of the output.
That is the advance presented in uwVIKOR. For the uwTOPSIS, we carried out the ranking
and we just pick the first one, in our case, Rudy Gobert. For uwVIKOR, Antetokounmpo
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Table 5.23: Statistics of the main nominees to the MVP, voted at least once “Pts Won”, of the 2020-2021 regular season where the maximum number of points
was 1010.

Player Age Tm Pts Won 1st Pos G MP PTS TRB AST STL BLK FG% 3P% FT% WS WS/48

Nikola Jokić 25 DEN 91.0 971.0 72 34.6 26.4 10.8 8.3 1.3 0.7 0.566 0.388 0.868 15.6 0.301
Joel Embiid 26 PHI 1.0 586.0 51 31.1 28.5 10.6 2.8 1.0 1.4 0.513 0.377 0.859 8.8 0.266
Stephen Curry 32 GSW 5.0 453.0 63 34.2 32.0 5.5 5.8 1.2 0.1 0.482 0.421 0.916 9.0 0.201
Giannis Antetokounmpo 26 MIL 1.0 348.0 61 33.0 28.1 11.0 5.9 1.2 1.2 0.569 0.303 0.685 10.2 0.244
Chris Paul 35 PHO 2.0 139.0 70 31.4 16.4 4.5 8.9 1.4 0.3 0.499 0.395 0.934 9.2 0.201
Luka Dončić 21 DAL 0.0 42.0 66 34.3 27.7 8.0 8.6 1.0 0.5 0.479 0.350 0.730 7.7 0.163
Damian Lillard 30 POR 0.0 38.0 67 35.8 28.8 4.2 7.5 0.9 0.3 0.451 0.391 0.928 10.4 0.209
Julius Randle 26 NYK 0.0 20.0 71 37.6 24.1 10.2 6.0 0.9 0.3 0.456 0.411 0.811 7.8 0.140
Derrick Rose 32 TOT 1.0 10.0 50 25.6 14.7 2.6 4.2 1.0 0.4 0.470 0.388 0.866 3.1 0.118
Rudy Gobert 28 UTA 0.0 8.0 71 30.8 14.3 13.5 1.3 0.6 2.7 0.675 0.000 0.623 11.3 0.248
Russell Westbrook 32 WAS 0.0 5.0 65 36.4 22.2 11.5 11.7 1.4 0.4 0.439 0.315 0.656 3.7 0.075
Ben Simmons 24 PHI 0.0 3.0 58 32.4 14.3 7.2 6.9 1.6 0.6 0.557 0.300 0.613 6.0 0.153
James Harden 31 TOT 0.0 1.0 44 36.6 24.6 7.9 10.8 1.2 0.8 0.466 0.362 0.861 7.0 0.208
LeBron James 36 LAL 0.0 1.0 45 33.4 25.0 7.7 7.8 1.1 0.6 0.513 0.365 0.698 5.6 0.179
Kawhi Leonard 29 LAC 0.0 1.0 52 34.1 24.8 6.5 5.2 1.6 0.4 0.512 0.398 0.885 8.8 0.238



5.2 mcdm-case 2 157

would be the one that deserved the MVP, nonetheless, this solution is not acceptable ac-
cording to Step 5a and Step 5b conditions. Therefore, we can create a compromise solution
shared by Jokić, Embiid, and Antetokounmpo so that it creates a compromise solution.

0.00

0.25

0.50

0.75

1.00 uwVIKOR

0 2 4 6 8 10 12 14
0.00

0.25

0.50

0.75

1.00 uwTOPSIS

Figure 5.10: Comparison between uwVIKOR (top) and uwTOPSIS (bottom). Dotted lines illustrates
the lower an upper interval per each case.

Source: Own elaboration.

5.2.6.8 Ranking systems: VIKOR vs TOPSIS

The use of outranking models to arrange alternatives is wide use. In particular, we can
say that both VIKOR and TOPSIS are the most popular techniques to sort members when
there exist conflicting criteria. That is why we have decided to compare such methods for
the NBA ranking system. Moreover, this kind of comparison is very extended, Opricovic
and Tzeng (2004) made a numerical example showing similarities and some differences.

The data utilized in § 5.2.6 is supposed to be well structured and criteria independent,
we accept that the impact of the seven features on the final decision is the same. In other
words, the classical algorithms have a weighting scheme of wj = 1/7 for all j ∈ {1, . . . , M}.
In addition, the unweighted algorithms ranked the alternatives by utilizing the arithmetic
mean of the optimal interval obtained. The Python implementation of classic approaches
is explained in § A.3.

We have decided to transform the Ri score of TOPSIS (both approaches) per each altern-
ative per 1− Ri, being i ∈ {1, ..., N}. By doing so, we still respect the ranking system, but
now we have the same order that VIKOR does when sorting the nominees. Therefore, we
can judge the results obtained by taking into account that, the lower the value, the better
positioned in the ranking.

We could remark that VIKOR method is the one with the most variation score between
alternatives, in fact, it ranges from 0.0383 to 1.0. By contrast, TOPSIS has returned the least
variation with values between 0.1682 and 0.6336, which means an oscillation of 0.4653. For
the models with no weights, it is interesting to point out that, except for Rudy Gobert’s
case, the uwVIKOR got values way closer to the ideal condition.
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Figure 5.11: Comparison between VIKOR and inverse TOPSIS, both with classic and unweighted
approach.

Source: Own elaboration.

In order to complement the results depicted in Fig. 5.11, we have sorted the NBA players
according to the scores obtained. In Table 5.24, we can find the cardinal ordination with
their respective names per each system.

Table 5.24: Comparison of the ranking systems obtained for the 2021 MVP selection. First row
matches with the real positions in the voting scheme. The shortened “ ∗” item indicates
the player Antetokounmpo.

Actual ranking uwVIKOR VIKOR uwTOPSIS TOPSIS

Jokić (1st) Antetok∗ Antetok∗ Gobert Gobert
Embiid (2nd) Jokić Jokić Antetok∗ Antetok∗

Curry (3rd) Embiid Embiid Harden Embiid
Antetok∗ (4th) Leonard James Jokić Jokić
Paul (5th) Harden Harden Westbrook Harden
Dončić (6th) Dončić Leonard Embiid Westbrook
Lillard (7th) Gobert Dončić Simmons James
Randle (8th) James Gobert Dončić Dončić
Rose (9th) Westbrook Paul James Simmons
Gobert (10th) Simmons Westbrook Leonard Leonard
Westbrook (11th) Curry Curry Paul Paul
Simmons (12th) Paul Randle Randle Lillard
Harden (13th) Lillard Simmons Lillard Randle
James (13th) Randle Lillard Curry Curry
Leonard (13th) Rose Rose Rose Rose

Even though the ranges of values in each method are very different, we can highlight
some interesting points. First, every method has returned Derrick Rose as the last one in
the ranking. When looking at his stats during the season, it does not seem like a major
error. Actually, he only got just a vote (which was a first choice). Indeed, uwVIKOR points
Rose as an U-dominant for the 2020-2022 season. Second, each method has a winner clearly
stated regarding their methodology. For VIKOR, the champion is Antetokounmpo, but for
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TOPSIS Gobert is the chosen one. It also gives us information about the stability of the
uwVIKOR algorithm, because Nikola Jokić got the second position in the ranking and he
is uwVIKOR-L-dominant as we can see in Fig. 5.11.

5.2.7 Conclusions

The unweighted VIKOR technique has shown several advantages with respect to the
MCDM approaches. By making use of the compromise solutions, we can solve conflict-
ing decision problems and select alternatives as acceptable as we require. Among many
strengths addressed in the paper, we would like to emphasize the following pros of the
uwVIKOR:

1. We have removed the problematic step of weighting scheme selection. Then, we can
process an immersive analysis of the chosen criteria to give an integral answer to the
decision makers.

2. Thanks to the ranking functions developed in § 5.2.4.1, we can transform the [QL
i , QU

i ]

interval obtained in the last step of the algorithm. Hence, we can provide compromise
solutions by means of the comparison of these scores and the acceptable conditions
Step 5a and Step 5b.

3. We have developed an algorithm that relates outranking methods with productive
efficiency. The QL

i score allows us to ascertain whether an alternative can get the best
score for a given set of weights.

4. By means of the optimal weights (WL
i and WU

i ) and their evaluation via w-centrality
and joint centrality indicators, we can determine when a weighting scheme is biased
or if such weights just suit some alternatives.

5. Even though the computational complexity attached to the optimization problem
is elevated, the code available at our GitHub repository makes the implementation
of the uwVIKOR straightforward (the code of two sample scripts can be seen in
Appendix A.3).

It would be unfair to finish this paper omitting some of the counterparts presented in
our methodology. Unlike classical methodology, we may emphasize the following cons:

1. Although we have removed the introduction of a priori weights, we still need to
establish their boundaries. It is clear that the unweighted scheme is more flexible,
however, the relative importance now is addressed via the (lj, uj) pairs. Moreover,
we have to pay attention to such intervals in order to prevent criteria vanishing or
the existence of a dominant criterion.

2. As long as we define weights as variables in Ω, we could obtain saturated points in
the boundaries (lj, uj). Therefore, it could be considered misconduct by the decision-
makers. We still need to formalize a way to evaluate optimal points returned by
uwVIKOR. So far, we just have the w-centrality and joint centrality indicators.
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3. The concepts of lower and upper dominance depend on how the data is structured
and the constraints given by the (lj, uj) pairs.

Finally, in regard to the NBA dataset selected, we have assumed some limitations when
processing a small number of players. First, it would have been more reliable if we had
considered the entire dataset of the NBA. It would not only take into account the results
of the league, but we also would add more players to the feasible set. Second, the criterion
system just required seven features to rank alternatives. Despite having a complete scheme
of basketball variables, we could also include statistics such as turnovers per game, plus-
minus (+/-), player’s usage %, player impact estimate, or true shooting % among many
others. This would give a way more general perspective when making decisions. However,
we would like to mention that, the more variables we add, the less impact they individually
have on the model.

5.2.8 Python implementation

The code utilized to perform the experiments of this case study is presented in § A.3,
where five different scripts are given to conduct the data preprocessing, uwVIKOR imple-
mentation, uwVIKOR ranking outputs, uwVIKOR-domination, and weights evaluation.
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Figure 5.12: Qi values of the uwVIKOR with arithmetic (AM), quadratic (QM) and geometric (GM)
means of the players broken down per year.

Source: Own elaboration.
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Figure 5.13: Qi values of the uwVIKOR with arithmetic (AM), quadratic (QM) and geometric (GM)
means of the players broken down per year.

Source: Own elaboration.
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5.3 summary

In this chapter, we have addressed two case studies by means of the newly field of un-
weighted Multiple-Criteria Decision Making. In the first case study § 5.1, we have built
composite indicators by means of the uwTOPSIS technique. For this purpose, the (RL, RU)

scores obtained from the initial situation of the students of the Universidad Industrial de
Santader gave us signification about the early stage of the people studied. The final marks
of the students in mathematical competencies were utilized as final benchmark. Then, the
academic performance indicator (PA) was defined to analyze the overall performance of
the UIS institution. In the second case study § 5.2, a novel unweighted approach named
uwVIKOR was presented in order to study the compromise solutions without the need for
incorporating any a priori weighting scheme. The applicability of the new technique was
proven over two datasets, where not only the ranking systems were displayed but also the
analysis of the optimal solutions.

The main objective of this chapter was, in a nutshell, to present the unweighted Multiple-
Criteria Decision Analysis approach and show the advantages and profits of its implement-
ation regarding the classical MCDM methods. The flexibility of the unweighted outranking
techniques has been remarkable, in which the final ranking system is not the only outcome
that decision-makers will take into account when selecting from a set of alternatives. Fi-
nally, the publication of the GitHub repositories (López-García, 2021a,b, 2022a) means a
breakthrough, since they offer us great advantages with a straightforward implementation.
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A RT I F I C I A L I N T E L L I G E N C E C A S E S T U D I E S

6.1 ai-case 1: a proposal to compare the similarity between musical

products . one more step for automated plagiarism detection?

This case study is based on our published research: López-García A., Martínez-Rodríguez
B., Liern V., “A Proposal to Compare the Similarity Between Musical Products. One More
Step for Automated Plagiarism Detection?”. In International Conference on Mathematics
and Computation in Music (pp. 192-204). Springer, Cham, 2021, ISBN: 978-3-031-07015-0,
DOI: 10.1007/978-3-031-07015-0_16, (López-García et al., 2022). Hence, all the information
or results mentioned in this section have been already addressed in that paper.

6.1.1 Experiment Setup

In Martínez-Rodríguez and Liern (2019), the authors presented a measure of similarity
between melodies by identifying them with sequences of ordered vectors and using a clus-
tering process based on fuzzy logic. Along the same line, we propose a measure of mu-
sical similarity between fragments of digital audio. We present the SpectroMap algorithm
(López-García, 2022b) that allows us to detect the local maxima of the audio spectrogram
representation, also known as audio fingerprint or constellation map, and we compared
the similarity between different maps belonging to different audio excerpts. As a result, it
is obtained a value that represents the resemblance between two musical products. This
procedure could be used as a non-subjective tool in automatic plagiarism detection. To
illustrate this method, three experiments have been carried out comparing different ver-
sions of famous pop songs. The results point to the usefulness of the method, although
this should be contrasted with an analysis of the human perception of this similarity.

6.1.2 Introduction

In past editions of Mathematics and Computation in Music (MCM) we have presented
a method to estimate the similarity between different characteristics of symbolic music
(melody, rhythm, harmony, tunning) (see Martínez-Rodríguez and Liern, 2017, 2019). In
2019 we presented Mercury ®, a computer framework in which techniques from fuzzy
clustering were implemented to Computer-Assisted Musical Composition. This saved, to
a certain extent, the uncertainty/inaccuracy inherent in any kind of music (Liern, 2005).
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Despite the use of software, the approach has always been from the point of view of
symbolic music, never from the pure treatment of sound. In this paper, we propose to
extend the applicability of the techniques shown in Martínez-Rodríguez and Liern (2017)
to comparison of digital audio, based on some attributes of the spectrogram representation.

To achieve our goal, it is necessary to previously process the audio. For this, we have de-
signed an algorithm, which we have called SpectroMap (López-García, 2022b), for filtering
local maxima (peaks) of the spectrograms. Once this filtering process has been carried out,
we obtain the constellation map or fingerprint of the audio fragment (Wang, 2003). Con-
stellation maps can be easily incorporated into the similarity calculations implemented
in Mercury, thus obtaining a non-subjective numerical value of similarity between digital
audio fragments.

The assessment of the similarity in the conditions described above can be considered
as an important element to take into account for the detection of plagiarism. We do not
mean to say that the subjective and perceptual part is not important, but if the calculation
of similarity between two musical productions is automated, a high value of similarity
between them should alert us. In this case, we could also conduct the traditional and
pertinent tests to evaluate the existence or not of plagiarism (De Prisco et al., 2017).

We present some examples of similarity estimation between different versions of the
same song, using both the spectrogram filtering methods and the similarity calculation
methods implemented in Mercury over three different corpora, one for each reference
song. The results obtained, beyond giving a ranking of which version is most similar
to the original, also provide information about possible compositional interrelationships
between the different versions.

6.1.3 Theoretical background

6.1.3.1 Clustering methods

Clustering methods are aimed to create groups of elements within an initial data set so that
the elements included in each group can be considered similar to each other. Unlike the
classification methods, in which the elements are assigned with a pre-existing class, in the
clustering methods the different classes or subgroups in which the data set is going to be
divided have to be defined beforehand the execution of the analysis phase. The clustering
procedure will consist of finding a partition of a data set X that satisfies certain grouping
criteria. Following the criteria exposed in Jain and Dubes (1988), given a data set, we will
call element to each minimum unit of information belonging to it. Each element will have
associated a total of q scalar magnitudes called characteristics or attributes. The term cluster
(also group or class) will be used to designate each of the c groupings made from the data
set. In hard clustering, it is understood that the elements that belong to certain cluster
share properties or characteristics with each other and are differentiable from the elements



6.1 ai-case 1 167

belonging to another cluster. In fuzzy clustering this distinction is no longer so clear. The
term centroid denotes the central point of each of the clusters. The set of n data is

X = {x1, x2, . . . , xn} ⊂ Rq. (6.1)

where each xi ∈ Rq, will be a point of q characteristics belonging to a metric space q-
dimensional Rq. The index i will designate the i-th element xi; the number xik will des-
ignate the value of the k-th characteristics of xi. The total amount of characteristics q is
known as the dimensionality of the data set X, and it will have to be a finite and integer
number greater than zero.

6.1.3.2 Hard and soft partitions

In Bezdek (1981) and Bezdek et al. (1999) we find the necessary theoretical foundations to
define the different types of partitioning of a data set. Suppose that X is a finite set of n
elements such that X = {x1, x2, . . . , xn} and we want to distribute the elements of the set
X in a number c of subsets C = {C1, C2, . . . , Cc} with 2 ≤ c ≤ n. This family of subsets
{Cj : 1 ≤ j ≤ c} ⊂ X will be a partition of type hard if:

c⋃
j=1

Cj = X, Cj ∩Ck = ∅, 1 ≤ j ̸= k ≤ c. (6.2)

The matrix U =
[
uij
]

will represent the membership coefficients of each element xi to
each subset Cj.

6.1.3.3 k-means clustering

The k-means algorithm, first described by MacQueen (1967), is one of the most widely
used clustering methods. It can be classified as a non-hierarchical partitioning method of
clustering, in which the data set is divided into a number k of groups, each with a centroid
called mean. This algorithm requires setting the number of clusters k in advance, as well as
perform a previous initialization of the groups. The grouping results obtained will depend
deterministically both on the number of clusters and on the initialization performed, so to
trust the results it will be convenient to repeat the procedure with different initializations.

As we have seen, the operation of the algorithm has two main phases: the initialization
phase and the iteration phase. In the first phase, each of the n elements will be randomly
assigned to one of the k clusters. Is it possible to formulate the k-means algorithm as
an optimization problem of an objective function that will be minimized under given
convergence conditions (Gan et al., 2007).

Definition 6.1.1. Let X = {x1, x2, . . . , xn} ⊂ Rq be a data set of n elements. The k-means
objective function Jw : Mc ×Rcq → R+ is defined as

JW(U, v) =
n

∑
i=1

c

∑
j=1

uij(dij)
2. (6.3)
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where dij = d(xi, vj) is a distance function calculated between the element i and the
centroid j; v = (v1, v2, . . . , vc) ∈ Rcq, vj ∈ Rq∀j is the set of centroids from the clusters;
vj is the centroid of the cluster uj ∈ U, 1 ≤ j ≤ c; and the matrix U = [uij] ∈ Mcp is the
belonging matrix to a hard partition, accomplishing

uij ∈ {0, 1},
c

∑
j=1

uij = 1, per each 1 ≤ i ≤ n, 1 ≤ j ≤ c. (6.4)

6.1.3.4 Fuzzy C-Means clustering (FCM)

The fuzzy c-means algorithm supposes a generalization of the functions described in Eq. 6.3,
transforming them into an infinite family of functions. The first of these generalizations
were made in Dunn (1973), later formulated by Bezdek (1981) as an extension of the well-
known k-means algorithm.

Definition 6.1.2. Let X = {x1, x2, . . . , xn} ⊂ Rq be a data set of n items. The fuzzy objective
function c-means Jw : M f c ×Rcq → R+ is defined as

Jλ(U, V) =
n

∑
i=1

c

∑
j=1

uλ
ij(dij)

2. (6.5)

where U ∈M f c is a fuzzy partition of X, and V = (v1, v2, . . . , vc) ∈ Rcq, vj ∈ Rq is the
set of centroids associated to the clusters uj, 1 ≤ j ≤ c; and dij = d(xi, vj) is any distance
function in Rq; uij is the membership coefficient of the element xi to the cluster j; and
finally λ ∈ [1, ∞) is the weight exponent, or fuzziness degree of the process.

The function originally proposed by Dunn (1973) is obtained by setting λ = 2 and
selecting the Euclidean distance d(ij) = deuc(ij). It was later generalized by Bezdek (1981)
into the following family of functions {Jλ|1 ≤ λ < ∞}. We can now see that the objective
functions have the distance weighted by the membership coefficients uij. Since M f c is a
fuzzy partition, the coefficients uij ∈ [0, 1].

The fuzzy clustering process will be achieved through an iterative optimization of the
objective function Jλ, updating in each iteration both the membership coefficients uij and
the centroids vj by following the expressions (see Bezdek, 1981):

uij =

(
c

∑
k=1

[
d(xi, vj)

d(xi, vk)

] 2
λ−1
)−1

, vj =

n

∑
i=1

uλ
ijxi

n

∑
i=1

uλ
ij

. (6.6)

The matrix U = (uij), 1 ≤ i ≤ n, 1 ≤ j ≤ c is now a fuzzy partition of X, built by the
membership coefficients uij. The fuzzy partition verifies

c

∑
j=1

uij = 1, per each 1 ≤ i ≤ n. (6.7)

In what follows we will show the implementation of the fuzzy c-means clustering al-
gorithm proposed by Bezdek (1981):
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Step 1 Fix a number of clusters m, 2 ≤ m < n. Choose any inner product norm metric for
Rq; fix λ, 1 ≤ λ < ∞. Initialize U(0).

Step 2 Calculate the fuzzy centroids {v(k)j } with U(k) and expression Eq. 6.6.

Step 3 Update U(k) using expression Eq. 6.6 and {v(k)j }.

Step 4 Compare U(k) to U(k+1) using a convenient matrix norm, being ϵ ∈ (0, 1) and
arbitrary termination criterion. If ∥ U(k+1) −U(k) ∥≤ ϵ then stop, otherwise set k =

k + 1 and return to Step 2.

6.1.3.5 A dissimilarity based on FCM algorithm

Definition 6.1.3. Let T A = {x1, . . . , xn} ⊂ Rq and T B = {y1, . . . , ym} ⊂ Rq be two data
sets, where n > m. Let d : Rq ×Rq → R be a distance function. Let uij be the final membership
coefficients calculated with the FCM algorithm, using data set T A as data to be partitioned and
T B as the initial set of centroids. The average dissimilarity D from the data set T A to the data set
T B is defined by

D(T A, T B) =
1

n ·m
n

∑
i=1

m

∑
j=1

uijd(xi, yj) . (6.8)

It is noteworthy that dissimilarity D does not consider the possible natural order that
could exist in both data sets, achieving a partition of T A without any special weight to
the elements whose degree of neighbourhood is stronger.

6.1.4 Fuzzy Ordered C-Means clustering (FOCM)

In Martínez-Rodríguez and Liern (2017, 2019) we presented FOCM, an improvement of the
FCM algorithm in which the order of both data set and centroids sequences were taken
into account during the partition process. Instead of partitioning a data set X with a given
set of c centroids belonging to C categories, let us consider the possibility to implement the
partition process by introducing the order of the elements in the fuzzy partition process.
For that purpose, let us consider two sequences S A and S B with a different number of
elements. Sequence S A will be the ordered data set to be partitioned, and sequence S B

will represent the initial set of centroids.
In FOCM, the Neighbourhood Functions will provide higher weights of comparison

to the pair of elements of the sequences that share closer positions in the order of each
sequence. At the same time, they will decrease the contribution to the global dissimilarity
to those pairs of elements that are ordinally distant.

The purpose of FOCM is to modify the algorithm FCM so the natural order of both data
set sequence S A = {x1, . . . , xn} and centroids sequence S B = {y1, . . . , ym}, with, n < m,
is considered during the partition process.

FOCM algorithm works as follows: for every step in which the fuzzy partition U has
been calculated, the coefficients uij will be multiplied by weight by means of a specific
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neighbourhood function f (i, j). For accomplishing with de convergence criterion, the mat-
rix should be normalized as follows into Ũ

ũij =
uij f (i, j)

m
∑

k=1
uik f (i, k)

. (6.9)

Step 1 Set {v(0)j } = {yj}. Let m, n be the number of notes of S B and S A, respectively.
Choose any convenient neighbourhood function.

Step 2 Choose any inner product norm metric for Rq, and fix λ ≥ 1. Calculate the initial
Ũ(0) using Eq. 6.6, Eq. 6.9 and {v(0)j }.

Step 3 Calculate the fuzzy cluster centers {v(k)j } with Ũ(k) and Eq. 6.6.

Step 4 Update Ũ(k) using Eq. 6.6, Eq. 6.9 and {v(k)j }.

Step 5 Compare Ũ(k) to Ũ(k+1) using a convenient matrix norm; being ϵ ∈ (0, 1) and
arbitrary termination criterion. If ∥ Ũ(k+1) − Ũ(k) ∥≤ ϵ then stop; otherwise set k =

k + 1 and return to Step 3.

There is a big number of possible neighbourhood functions (Gaussian, Triangular, Ex-
ponential, Sigmoidal, etc.) (Martínez-Rodríguez and Liern, 2017). In this paper, we have
chosen the Gaussian neighbourhood function, i. e.

fG(i, j) = A exp

(
− 1

2σ2

[
i + 1− (n− 1) · (j− 1)

(m− 1)

]2
)

. (6.10)

6.1.4.1 Definition of a dissimilarity based on FOCM clustering

Using the FOCM algorithm, in Martínez-Rodríguez and Liern (2017) was defined a dissim-
ilarity between any pair of sequences with a different number of elements.

Definition 6.1.4. Let S A = {x1, . . . , xn} ⊂ Rq and S B = {y1, . . . , ym} ⊂ Rq be two se-
quences, where n > m. Let d : Rq×Rq → R be a distance function. Let uij be the final membership
coefficients calculated with the FOCM algorithm, using sequence S A as data to be partitioned and
sequence S B as the initial set of centroids. The average dissimilarity D̃ from the sequence S A to
the sequence S B is defined by

D̃(S A, S B) =
1

n ·m
n

∑
i=1

m

∑
j=1

ũijd(xi, yj). (6.11)

In what follows we show the utility of expression Eq. 6.11 for evaluating the dissimilarity
between songs or music compositions.

6.1.5 A comparison of musical products based on FOCM

Establishing an objective measurement for calculating the dissimilarity between musical
products like pop, rock songs, or classical music compositions, can be very useful as a tool
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for automatic plagiarism detection. Our approach for comparing two musical products
will consist of: selecting the digital audio excerpts to be compared; extracting the constella-
tion map (proposed in Wang, 2003) from the spectrogram of each excerpt; calculating the
FOCM dissimilarity between constellation maps of both excerpts, with Eq. 6.11, taking into
account that a constellation map is a sequence of points formed by time and frequency.

6.1.5.1 Fast Fourier Transform (FFT) process

With the aim of implementing a fingerprint extraction for a given musical signal Xt, we
have designed an algorithm that computes a global peak detection over the spectrogram
associated to give us its constellation map. Let NFFT and NO be the length of the Fast
Fourier Transform (FFT) window and the number of elements to overlap between seg-
ments respectively, we first compute the spectrogram of the signal (St f a), by using the
Hamming window, in order to get the (time, frequency, amplitude) vectors by consider-
ing these two parameters. Such representation contains the amplitude spatial information
to analyze. Our engine search determines whether a time-frequency point can be con-
sidered locally relevant according to its neighbourhood. Then, the detection is processed
regarding a required band. Let {Ti}n

i=1 and {Fj}m
j=1 be the time and frequency bands of

the spectrogram with the amplitude of the event, we can reformulate the spectrogram
St f a = (Ti)

n
i=1 = (Fj)

m
j=1 as its rows and columns representations.

Figure 6.1: Example of waveform from an excerpt of a pop song.

Source: Own elaboration.
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Figure 6.2: Spectrogram visualization of the previous excerpt.

Source: Own elaboration.

6.1.5.2 Peak detection Algorithm

As part of the engine search, we define two windows ϕdT
T and ϕdF

F to process the local pair-
wise comparisons with a respective length of dT and dF, whose functionality is to extract a
number of elements of the band and return the local maximum. We can describe the time-
band window mechanism with a length of 0 < dT ≤ n and structure Ti = (T1

i , . . . , Tn
i )

as

ϕdT
T (Ti) =

(
max {Tk

i , . . . , Tk+dT
i }

)
1≤k≤n−dT−1

, 1 ≤ i ≤ n. (6.12)

When we group all the values we drop those elements that have an equal index to avoid
duplicates. We can group the window of each band to create the set:

ΦdT
T = {ϕdT

T (Ti)}n
i=1. (6.13)

This way, we get the topologically prominent elements per each feature vector. With
Eq. 6.12, it is easy to note that even though there are n − dT − 1 matches, the window
ϕdT

T (Ti) may contain a smaller number of elements whenever dT > 2. Depending of how
restrictive we need to be, we can proceed with just one of the bands or combine them to
create a more stringent search since it is returned only if the peaks that are prominent
in both directions. Finally, the algorithm merges all the band-dependent peaks (Eq. 6.13)
to give us the total number of spatial points that determines the audio fingerprint. Our
engine search, SpectroMap, processes audio signals in order to return an output file with the
(time, frequency, amplitude) peaks detected. A graphical interpretation of the algorithm is
depicted in Fig. 6.3
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Figure 6.3: Flowchart of the SpectroMap algorithm from the audio input process to the final audio
fingerprint output. The search engine is based on the illustrated time-frequency bars.

Source: Own elaboration.

Figure 6.4: Spectrogram (left picture) and the result of peak detection algorithm in time-frequency
coordinates represented as pixels (right picture).

Source: Own elaboration.

The algorithm works in these steps:

Step 1 Decide the window to use and set the parameters NFFT and NO.

Step 2 Read the audio file to get its amplitude vector and its sample rate.

Step 3 Compute the spectrogram through the associated Fourier transformations.

Step 4 Set a fixed window length (dT, dF or both) for the pairwise comparisons.

Step 5 Choose the settings to proceed with the peak detection over a selected band or a
combination of both.

Step 6 Create an identification matrix that consists of a binary matrix with the same shape
as the spectrogram with the position of the highlighted prominences.
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Step 7 Extract such elements and create a file with the (time, frequency, amplitude) vec-
tors.

Regarding step Step 5, the authors highly recommend selecting both bands to perform
the peak detection since the output is more filtered and spatially consistent. For the re-
mainder steps, the choice is a personal decision that depends on the scope of the research.

6.1.5.3 Constellation Map

As it was previously explained, the constellation map is obtained by means of the filter-
ing of local maximum (peak detection) using the algorithm SpectroMap. The sequence of
peaks is created by sorting each peak by its appearance time.

Definition 6.1.5. A Constellation Map is the sequence M A = {x1, . . . , xn} ⊂ R2 where each
xi ∈ R2 is an observable defined by 2 features: time and frequency. Each element has been sorted by
its appearance time.

Figure 6.5: Example of constellation map generated (white “x” markers) from an audio excerpt.

Source: Own elaboration.

6.1.5.4 Calculation of the dissimilarity based on FOCM

Using the FOCM algorithm, we can define a dissimilarity between any pair of constellation
maps.

Definition 6.1.6. Let M A = {x1, . . . , xn} ⊂ R2 and M B = {y1, . . . , ym} ⊂ R2 be two con-
stellation maps, where n > m. Let d : R2 ×R2 → R be a distance function. Let uij be the final
membership coefficients calculated with the FOCM algorithm, using constellation map M A as data
to be partitioned and constellation map M B as the initial set of centroids. The average dissimilarity
D̃ between this two constellation is defined by

D̃(M A, M B) =
1

n ·m
n

∑
i=1

m

∑
j=1

ũij · d(xi, yj). (6.14)
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The expression Eq. 6.14 allows us to evaluate the musical plagiarism between any two
given excerpts of digital audio.

6.1.6 Experiments

To illustrate the applicability of this method, we have designed three experiments to es-
timate the similarity between different versions of three different pop songs. We have
chosen the songs: Someone Like You, by Adele; When I was your man, by Bruno Mars; All of
me, by John Legend. This selection is convenient for creating the three different corpora,
since there are numerous and different covers available on YouTube. The videos have been
downloaded, and the digital audio has been extracted in wav format at 44.100Hz and 16
bits, selecting the same fragment of the song. With this excerpts we have created three
experimental corpora. For each corpora we will calculate the similarities using the method
explained in the previous section: applying the SpectroMap algorithm and Eq. 6.14. In
Table 6.4 are shown the audio sources used in each experiment. For each corpora, we will
compare the different versions with each other and with the original, in order to sort them
from greater to lesser similarity. The results obtained are shown in Tables 6.1, 6.2 and 6.3.

For experiment No.1, according to the data displayed in Table 6.1, the closest resemb-
lance to the official one is the version by the artist jordan (8.21). However, the leo, imy2 and
masha versions are more similar to each other than to the official version. This fact could
indicate a notable influence between these three artists. The version farthest from the offi-
cial one is that of leo (13.62). Once this result is obtained, we listen to the version and verify

Table 6.1: Dissimilarities calculated between different covers from 1st experiment.
Cover Cover Dissim. Cover Cover Dissim. Cover Cover Dissim. Cover Cover Dissim.

leo imy2 5.405 jordan brit 9.693 oficial brit 10.270 leo oficial 13.620

leo masha 5.416 oficial masha 9.698 imy2 brit 10.455 leo jordan 14.392

imy2 masha 5.603 brit jordan 9.778 oficial imy2 12.759 nursera brit 14.440

masha imy2 5.658 brit masha 9.788 jordan imy2 13.568 nursera masha 17.487

oficial jordan 8.212 jordan nursera 9.831 oficial leo 13.586 nursera imy2 21.603

oficial nursera 9.680 leo brit 10.998 imy2 jordan 13.608 nursera leo 22.847

Table 6.2: Dissimilarities calculated between different covers from 2nd experiment.
Cover Cover Dissim. Cover Cover Dissim. Cover Cover Dissim. Cover Cover Dissim.

smith bml 1.018 bmo scaccia 1.326 smith imy2 1.427 smith scaccia 1.571

stewart smith 1.262 scaccia bml 1.335 bml imy2 1.430 imy2 stewart 1.615

imy2 bml 1.264 imy2 bmo 1.340 bml bmo 1.466 bmo smith 1.651

bmo bml 1.311 imy2 smith 1.398 bml scaccia 1.495 scaccia stewart 1.766

imy2 scaccia 1.324 stewart bml 1.425 scaccia smith 1.554 stewart bmo 2.042

Table 6.3: Dissimilarities calculated between different covers from 3rd experiment.
Cover Cover Dissim. Cover Cover Dissim. Cover Cover Dissim. Cover Cover Dissim.

scaccia jll 1.935 jlo jll 2.191 jll hoying 2.309 hoying jlo 2.832

jll scaccia 1.989 leroy hoying 2.210 jll leroy 2.316 leroy jlo 2.917

scaccia jlo 2.099 scaccia hoying 2.211 scaccia zogbi 2.662 zogbi hoying 2.969

jlo scaccia 2.137 hoying scaccia 2.270 zogbi scaccia 2.686 zogbi leroy 3.196

scaccia leroy 2.142 leroy jll 2.273 jlo zogbi 2.722 zogbi leroy 3.196
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that the artist has made a version in rock style of Adele’s theme, effectively far removed
in perceptual terms from the original version. The furthest versions are those of nursera
and leo (22.85). Again, if we listen to both versions, the auditory difference is evident, since
both versions represent antagonistic musical styles.

The results for experiment No.2 are shown in Table 6.2. The closest resemblance to
the official one is the live version by the same artist John Legend (1.311), due to the big
similarity of tempi between two versions. The versions of artist smith and imy2 are more
similar to the live version. The artist closest to the official version is scaccia (1.326). The
version farthest from the official one is of stewart (13.62).

In experiment No.3 in Table 6.3. The closest resemblance to the official song is the cover
by artist scaccia (2.099), which is also the closest to the live version (1.935). The farthest
version from the official one is of leroy (2.927).

Table 6.4: Audio sources used in the experiments.

Someone like you When I was your man All of me

Adele official (official) Bruno Mars official (bmo) John Legend official (jlo)
Adele Live (britawards) Bruno Mars Live (bml) John Legend Live (jll)
Angelina Jordan (jordan) Alexander Stewart (stewart) Leroy Sanchez (leroy)
Nursera Yener (nursera) Sam Smith (smith) Luciana Zogbi (zogbi)
Masha (masha) imy2 (imy2) Stephen Scaccia (scaccia)
imy2 (imy2) Stephen Scaccia (scaccia) Scott Hoying (hoying)
Leo Moracchioli (leo)

6.1.7 Conclusions

The fuzzy logic-based procedures that were implemented for computer-assisted music
composition in Mercury software can be used for automatic assessment of music plagiar-
ism from digital audio files.

The Internet and social networks offer an excellent platform for the dissemination of
musical content. However, plagiarism detection requires automatic tools that allow quick
and effectively discriminate of those versions that may be suspicious in terms of their
resemblance to others. Beyond the legal and ethical aspects, this resemblance can be useful
for the performers or authors themselves, who can discover their own and other influences
in other artists.

6.1.8 Python implementation

Throughout the section, we have discussed the use of SpectroMap as a manner to extract
audio fingerprinting in music-related tasks. However, it can be utilized in other experi-
ments within and outside the acoustics field. In § B.1 are presented two scripts to execute
the SpectroMap algorithm for both raw audio signals and audio spectrograms.

https://www.youtube.com/watch?v=hLQl3WQQoQ0
https://www.youtube.com/watch?v=ekzHIouo8Q4
https://www.youtube.com/watch?v=450p7goxZqg
https://www.youtube.com/watch?v=qemWRToNYJY
https://www.youtube.com/watch?v=gY4GZgZK9H0
https://www.youtube.com/watch?v=s18cJqrBIOk
https://www.youtube.com/watch?v=nU9TA70fXro
https://www.youtube.com/watch?v=j_d3gq5JCAc
https://www.youtube.com/watch?v=Im6_k-UMJeo
https://www.youtube.com/watch?v=Z9iylN-IiUA
https://www.youtube.com/watch?v=_ZaLIiV7c7Y
https://www.youtube.com/watch?v=39_OmBO9jVg
https://www.youtube.com/watch?v=0EwSEsSvxGY
https://www.youtube.com/watch?v=uBh_7PBy8cg
https://www.youtube.com/watch?v=07McLNDuffo
https://www.youtube.com/watch?v=qIuPgPyTNKE
https://www.youtube.com/watch?v=Nhm0MHQKYDY
https://www.youtube.com/watch?v=d0GR60bul4M
https://www.youtube.com/watch?v=pkbbd3fhcMw
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6.1.9 Extra section: Explicit URL link to the dataset sources

As we said at the beginning of the experiments § 6.1.6, all the audio excerpts are avail-
able on YouTube. Then, any experiment could be reproduced so as to attach more audio
samples or compare longer excerpts. For an easy search of the clips utilized, Table 6.5
contains the explicit URLs for every song.

Table 6.5: Explicit YouTube URL source of the audio sources used in the experiments divided by
the different experiments.

Audio reference YouTube URL address

So
m

eo
ne

li
ke

yo
u

Adele official (official) https://www.youtube.com/watch?v=hLQl3WQQoQ0

Adele Live (britawards) https://www.youtube.com/watch?v=qemWRToNYJY

Angelina Jordan (jordan) https://www.youtube.com/watch?v=nU9TA70fXro

Nursera Yener (nursera) https://www.youtube.com/watch?v=Z9iylN-IiUA

Masha (masha) https://www.youtube.com/watch?v=0EwSEsSvxGY

imy2 (imy2) https://www.youtube.com/watch?v=qIuPgPyTNKE

Leo Moracchioli (leo) https://www.youtube.com/watch?v=pkbbd3fhcMw

W
he

n
I

w
as

yo
ur

m
an Bruno Mars official (bmo) https://www.youtube.com/watch?v=ekzHIouo8Q4

Bruno Mars Live (bml) https://www.youtube.com/watch?v=gY4GZgZK9H0

Alexander Stewart (stewart) https://www.youtube.com/watch?v=j_d3gq5JCAc

Sam Smith (smith) https://www.youtube.com/watch?v=_ZaLIiV7c7Y

imy2 (imy2) https://www.youtube.com/watch?v=uBh_7PBy8cg

Stephen Scaccia (scaccia) https://www.youtube.com/watch?v=Nhm0MHQKYDY

A
ll

of
m

e

John Legend official (jlo) https://www.youtube.com/watch?v=450p7goxZqg

John Legend Live (jll) https://www.youtube.com/watch?v=s18cJqrBIOk

Leroy Sanchez (leroy) https://www.youtube.com/watch?v=Im6_k-UMJeo

Luciana Zogbi (zogbi) https://www.youtube.com/watch?v=39_OmBO9jVg

Stephen Scaccia (scaccia) https://www.youtube.com/watch?v=07McLNDuffo

Scott Hoying (hoying) https://www.youtube.com/watch?v=d0GR60bul4M

https://www.youtube.com/watch?v=hLQl3WQQoQ0
https://www.youtube.com/watch?v=qemWRToNYJY
https://www.youtube.com/watch?v=nU9TA70fXro
https://www.youtube.com/watch?v=Z9iylN-IiUA
https://www.youtube.com/watch?v=0EwSEsSvxGY
https://www.youtube.com/watch?v=qIuPgPyTNKE
https://www.youtube.com/watch?v=pkbbd3fhcMw
https://www.youtube.com/watch?v=ekzHIouo8Q4
https://www.youtube.com/watch?v=gY4GZgZK9H0
https://www.youtube.com/watch?v=j_d3gq5JCAc
https://www.youtube.com/watch?v=_ZaLIiV7c7Y
https://www.youtube.com/watch?v=uBh_7PBy8cg
https://www.youtube.com/watch?v=Nhm0MHQKYDY
https://www.youtube.com/watch?v=450p7goxZqg
https://www.youtube.com/watch?v=s18cJqrBIOk
https://www.youtube.com/watch?v=Im6_k-UMJeo
https://www.youtube.com/watch?v=39_OmBO9jVg
https://www.youtube.com/watch?v=07McLNDuffo
https://www.youtube.com/watch?v=d0GR60bul4M


178 artificial intelligence case studies

6.2 ai-case 2: multivariate time series prediction based on stock market

and sentiment analysis regressors

6.2.1 Background

6.2.1.1 Financial time series/Stock market

At the beginning of the 19th century, the study of time series was mainly marked by the
approach of deterministic models. In 1927, this notion was reformulated by considering
stochastic processes for prediction (Yule, 1927), which led to the definition of autoregress-
ive (AR) and moving average (MA) models, whose combination is the autoregressive mov-
ing average (ARMA) model. Thanks to advances in the methodology of Box and Jenkins
(1970), integrated autoregressive moving average (ARIMA) models, a powerful set of meth-
ods for both univariate and multivariate forecasting, were introduced.

In the second half of the last century, exponential smoothing methods constituted the
state-of-the-art set of techniques for extrapolating univariate time series with a single
source of error (white noise, Gooijer and Hyndman, 2006). These methods studied the
classification of the trend and seasonality components of the series as additive or multi-
plicative, i.e., as linear or nonlinear. The Holt-Winter methods should be highlighted as
one of the best-known and applied at the time. Over the years, there were many improve-
ments in terms of model performance. For example, some researchers tackled the problem
of prediction with missing values and prediction with additional constraints (Gooijer and
Hyndman, 2006). Another relevant contribution in this field was the proposal of normaliz-
ation schemes to eliminate bias (Archibald and Koehler, 2003).

At the turn of the century, although ARIMA models were still very popular, and the
default technique for time series prediction, some researchers realized that linear statist-
ics was not a suitable approach, as it required that time series had to be generated from
linear events (Zhang et al., 1998). Then, several nonlinear models were designed, such as
threshold autoregressive (Tong and Lim, 1980), autoregressive conditional heteroskedasti-
city model (ARCH, Engle, 1982), the generalized autoregressive conditional heteroskedasti-
city (GARCH, Bollerslev, 1986), and the Markov-switching models (Hamilton, 1989).

6.2.1.2 Machine learning

In the field of financial analysis, there exists vast literature related to the prediction of stock
features. Over the years, researchers have attempted to approach such a task with the use of
classical time series analysis, as described in § 6.2.1.1. Although these methods can be very
useful when describing linear relationships between explanatory variables, the complexity
of the stock market makes these models unable to predict nonlinear behavior. Recently, the
methodology related to this problem has changed considerably. This is due to the rise of
machine learning algorithms and modern statistical techniques, which have become state-
of-the-art approaches. By definition, neural networks are nonlinear, making them more
suitable for interpreting the structure of stock market data. Due to the uncertainty and
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chaos associated with the market and the speed of response required, machine learning
can be considered the best alternative to take, as it has the ability to correctly adapt to the
data and describe slight correlations between variables, allowing decision-makers to make
more far-reaching decisions.

In this regard, both supervised and unsupervised techniques have been applied with
great success. In particular, for supervised learning, we can find literature related to the
application of support vector machine (SVM, Kim, 2003), Random Forest (RF, Krauss et al.,
2017), Naive-Bayes (NB), multilayer perceptron (MLP, Pasero et al., 2010), convolutional
neural networks (CNN, Selvin et al., 2017), or recurrent neural networks (RNN, Althelaya
et al., 2018; Siami-Namini et al., 2019; Zhang and Xiao, 2000).

Within the area of artificial neural networks (ANNs), it has been shown that they per-
form better for prediction than classical statistical methods. Especially for longer data
sequences, either with more backward steps to analyze or with a longer horizon to predict.
In fact, they are better in terms of consistency, as they can obtain more inflection points
(Kohzadi et al., 1996). In addition, ANNs are better at tasks involving nonstationary data
(Lachtermacher and Fuller, 1995).

6.2.1.3 Sentiment analysis

Companies are heavily influenced by comments and rumors spread by both internal and
external sources. In fact, the trust and reputation of a company are one of the most im-
portant decision factors to take into account in finance. In recent times, everyone can cre-
ate content and disseminate it through social networks, which generates a scenario with
massive information that lacks objectivity. Social media content can play a key role in daily
trading, so both companies and public entities have to deal with fake news, hoaxes, and
propaganda that could tarnish their public image. In general, this is not a trivial task, as
the background is closely linked to monetary interests. Even if it is not perceived as a per-
nicious activity, disinformation has a major impact on societies and global economies. It
is therefore essential to implement software that analyzes global content in real-time and
provides us with a dashboard to monitor it on a regular basis. In this way, these programs
can provide investors with a powerful tool that represents the real perception that the pub-
lic has of an entity. Once we know the external opinion, we can take steps to improve it or
maintain the same guidelines to keep a good reputation.

Sentiment analysis is a currently exploited text mining field. It studies the treatment of
all sorts of content that have associated subjective opinions or emotions in order to analyze
them by making use of Natural Language Processing (NLP). Its target features are mainly
words, but some researchers have added emojis or emoticons that complement the text
(Eisner et al., 2016; Fernández-Gavilanes et al., 2018). Then, the sentiment related is usually
categorized with multi-labels that vary depending on the scope of the research. Mostly,
it is labeled as positive or negative as a binary classification. However, there are some
researchers that have considered different labels which can also be attached to neutral
emotions or feelings.
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Sentiment analysis is a classification problem that is commonly approached with two
distinguished fields: The first is artificial intelligence algorithms and the second is lexicon
and corpus-based models. The features selected are mostly categorized as terms presence/-
frequency, parts of speech, opinion words/phrases, and negations (Medhat et al., 2014).
Generally, such deployments make use of both big data and advanced computer science
techniques to conduct, gather, and operate a large amount of data. In the first set of AI
implementations, researchers have approached the task at three stages of granularity: docu-
ment level, sentence level, and aspect level (Zhang et al., 2018). In this strategy, we can find
very simple approaches to deep neural networks to tackle the NLP problem (Mishev et al.,
2020). Supervised methods rely on the annotated labels as bag of words, noun phrases,
and proper names; so. Unsupervised approaches overcome hand annotation problems by
using keyword lists that capture sentiments (Basiri et al., 2021; Medhat et al., 2014). In
the second field of lexicon-based models, they utilize a dictionary with types of words
(nouns, verbs, adjectives, ...) that have associated scores. It can also contain features such
as polarity or strength per each word or phrase. Then, they compute the sentiment per
each word throughout the text to give a response as a final score (Khoo and Johnkhan,
2018; Medhat et al., 2014; Taboada et al., 2011). Moreover, we can also find techniques that
partially combine both perspectives with a hybrid-based model, for instance, Bahrainian et
al. (2014) defines a context-sensitive sentiment lexicon that is self-maintained via transfer
learning. Thus, the number of word false matches is reduced and the updated dictionaries
are generalized by appending more words, making them more robust.

Regarding finance, there is evidence that online content in social media can severely
affect stock prices (Nasseri et al., 2015). Owing to the internationalization that is happen-
ing nowadays, break news weighs the returns and the volatility. Although this impact
is thought to be caused for last-minute information, it is also triggered by pernicious
propaganda against some financial asset or company. NLP in this field is studied from
sources such as news in papers (Schumaker and Chen, 2009) and microblogging platforms
(Renault, 2020) to modern social networks (Smailović et al., 2013). In contrast with the
standard sentiment analysis framework, sometimes it is used labels as bullish (negative)
or bearish (positive). Researchers study this concern in order to measure such impact
and predict either future sentiment analysis (acceptance/rejection) or market movements
(Mishev et al., 2020; Rekabsaz et al., 2017).

6.2.1.4 COVID-19 scenario

In December 2019, the first case of SARS-CoV-2 was identified in Wuhan1, China. Its initials
mean Severe Acute Respiratory Syndrome Coronavirus 2. Nowadays, it is still considered
an ongoing global pandemic by the WHO due to its high spread and its presence world-
wide. Since 2020, governments around the world decided to take action one way or another,
becoming one of the major concerns in their agendas. In most countries, a lockdown was
applied and lots of restrictions were added to the regulations in order to prevent recurrent
spikes of infections. At the end of 2020, the COVID-19 disease took the life of 1.813.188

1 Content available online at The Wall Street Journal website (published on 26/02/2021)

https://www.wsj.com/articles/in-hunt-for-covid-19-origin-patient-zero-points-to-second-wuhan-market-11614335404
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people, but sources like WHO is convinced that this number could raise up to is at least 3
million, which is 1.2 million more deaths than officially reported2.

As a consequence of this serious problem, most of the main pharmaceutical companies
have invested large amounts of money in order to design an appropriate vaccine that could
stop such a catastrophe. In particular, AstraZeneca is one of the companies that have led
the road to the release of its own vaccine. After lots of efforts, the Oxford-AstraZeneca
COVID-19 vaccine, also named AZD1222, was approved on December 30 of 2020 and its
first administration was on January 4 of 2021. Despite the fact that it could be considered a
turning point for the prevention of COVID-19, it had a social negative impact. During the
first month of vaccination, the company registered 31 cases of thrombosis, 9 of them with
fatal ending3. In social networks, the hype related to the topic became a trending topic
alarmingly rapid. A major concern related to internet content is that propaganda is not as
easy to spot, because modern techniques are able to create pseudoperiodistic style that can
confuse anybody. In turn, there were lots of hoaxes and fake news that exacerbated the
cases and allegedly associated its product with death. On March 31 of 2021, the vaccine was
no longer administered to people under the age of 60 in some countries as a consequence
of a failure in the roll-out4. The fake news and social pressure were not the main facts of
the end of the vaccination row, notwithstanding it created social uncertainty that got to be
clarified by AstraZeneca5 and the European Union’s medicines agency6.

As time goes by, the spread of the virus was unstoppable as well as the amount of
misinformation posted in internet7 against AstraZeneca. Whatever the topic is, these kinds
of arguments lack basis, rationally, and approval so it needs a priori verification from main
sources. It is important to bear in mind that not only the ones to create content are solely
responsible but also the ones that disseminate it take part in the problem by intensifying it.
As a consequence, the anti-vaccine movement played a significant role in online platforms.
The broadcast of their arguments left no one indifferent. That is a common case in social
media where the massive propagation creates a stage way more severe than it really is
because of amplification created for the super-spreaders8. Such comments can contain from
little misunderstandings9 to blatant lies10, anyway, the response was imminent. Regardless
of the degree of reliability of their posts, most of the platforms were filled up with users
that warmed about dreadful outcomes because of COVID-19 vaccination. Even though
it might seem a minor concern, the high spread of content on digital platforms aroused
the interest of undecided people that have not resolved their doubts yet. Therefore, it is
essential to provide an additional tool that can sort out this concern by verifying online
content and ensuring a democratic free choice for everybody.

2 Content available online at World Health Organisation website (published on 01/03/2021)
3 Content available online at European Medicines Agency website (published on 07/04/2021)
4 Content available online at BBC website (published on 03/09/2021)
5 Content available online at AstraZeneca website (published on 14/03/2021)
6 Content available online at European Medicines Agency website (First published on 18/02/2021 and last

updated on 25/05/2022)
7 Content available online at SOMA Disinformatory website (published on 31/03/2021)
8 Content available online at BBC website (last accessed on 27/06/2022)
9 Content available online at Reuters website (published on 14/12/2020)

10 Content available online at Reuters website (published on 25/05/2021)

https://www.who.int/data/stories/the-true-death-toll-of-covid-19-estimating-global-excess-mortality
https://www.ema.europa.eu/en/news/astrazenecas-covid-19-vaccine-ema-finds-possible-link-very-rare-cases-unusual-blood-clots-low-blood
https://www.bbc.com/news/world-europe-58426880
https://www.astrazeneca.com/content/astraz/media-centre/press-releases/2021/update-on-the-safety-of-covid-19-vaccine-astrazeneca.html
https://www.ema.europa.eu/en/medicines/human/EPAR/vaxzevria-previously-covid-19-vaccine-astrazeneca
https://www.ema.europa.eu/en/medicines/human/EPAR/vaxzevria-previously-covid-19-vaccine-astrazeneca
https://www.disinfobservatory.org/astrazeneca-vaccine-how-disinformation-exploited-real-problems-to-create-fake-ones-all-around-europe/
https://www.bbc.co.uk/bitesize/articles/zcr8r2p
https://www.reuters.com/article/uk-factcheck-microchip-not-injected-covi/fact-check-covid-19-vaccine-labels-would-not-microchip-or-track-individuals-but-serve-logistical-purpose-idUSKBN28O1TM
https://www.reuters.com/article/factcheck-astrazeneca-bluetooth-idUSL2N2NC2G9
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So far, lots of researchers have analyzed this scenario with a perspective of sentiment
analysis in order to capture and describe the underlying emotions and feelings posted on
social media (Nemes and Kiss, 2021). As a practical application of the problem, we can
find authors that put their efforts into examining the crisis communication among popula-
tion (de las Heras-Pedrosa et al., 2020), authors that study the danger of propaganda and
negative tagged content in digital platforms and its high spread (Chakraborty et al., 2020),
and authors that contrast the impact of COVID-19 with past outbreak-related incidents of
infectious diseases (Alamoodi et al., 2021).

6.2.2 Methodology

6.2.2.1 Data

With the aim of studying the situation of AstraZeneca within the stock market, we have
been tracking information about the company from 2018 to the second semester of 2021. As
we decided to analyze the company via an intraday market in order to design a prediction
model, the features selected reported parameters extracted day-by-day. Such information
contains data directly related to the stock market and the Twitter platform. In both cases,
we have filtered the results in order to have the features daily distributed. Then, we can
define the variables of our problem as dependent on the market (endogenous) or inde-
pendent of it (exogenous), in which we have two groups depending on the source from
that they have been obtained.

1. Stock market: Close, Open, Low, High, Net, %Chg, Volume, Turnover-GBP, and Flow.

2. Twitter platform: Accumulated sentiment analysis.

6.2.2.2 Feature selection

On the one hand, the stock market-related features have been downloaded from Refinitiv,
in which we have price information (Close, Open, Low, and High), price variation (Net,
%Chg, and Flow) and global position (Turnover and Volume). A financial candlestick rep-
resentation is depicted in Fig. 6.7. As far as trading is concerned, they can be utilized
as a set of variables that describe the financial behavior of the company since we know
the full range of the event and the day-by-day differences. Regarding the minimum and
maximum values of the company, during the event studied the pharmaceutical enterprise
ranged between 4545 and 10120, in which their volume as a company has been varying
from 309.945 to 8809.096 with an interval of change in percentage of [−9, 8]. We are aware
that financial business requires further details about the company’s situation, a selective
study of the complementary stock exchange, an in-depth analysis of the stage of the coun-
tries in which the pharmaceutical operates, and also get extra data about other companies
in the same market that directly compete with our target enterprise. Nevertheless, the se-
lected subset of variables contains enough market characteristics to obtain great results as
will be shown in § 6.2.8.
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On the other hand, the collected tweets have been filtered and selected by using Refinitiv,
in which the sentiment analysis associated is also extracted simultaneously. In this case,
when we refer to sentiment analysis we mean the acceptance or disapproval attached to
some message in regard to AstraZeneca. Then it can be labeled as a positive, neutral, or
negative sentiment analysis. As we wanted to avoid non-relevant information, we only
downloaded content from relevant sources, that is to say, the program skipped messages
with low spread. As a consequence, we have only considered messages which have been
either significant or highly retweeted. Since our purpose is to match the daily rate, we
have accumulated the sentiments of the tweets per day and then we have transformed
the labels from {positive, neutral, negative} to {1, 0,−1}. Then, we merged the result as
a sum of each list per day as an accumulated indicator that showed the overall review of
the pharmaceutical company in terms of subjective emotions. During the event, the higher
value was registered on January 11 of 2021 as a positive sentiment of 7, and the lower
value was registered on March 15 of 2021 as a surprising negative peak of −37 reflecting
how disrupted the pharmaceutical’s image was on Twitter.

A more precise representation of the procedure conducted for data and feature extrac-
tion is depicted in Fig. 6.6, in which the whole process has been graphically represented
as a flowchart.

Altogether, we have computed 10 different variables over 1250 days. For a better under-
standing, Fig. 6.8 depicts the temporal evolution of the set of regressors above mentioned.

Market
research

Data
monitoring

Data
collection

AstraZeneca
filter

Business
analytics

Data
pipeline

Train Evaluation

Sentiment
analysis

Stock 
market

Twitter

Deep
learning

Recurrent
neural 

networks

Model 
generator

Figure 6.6: Flowchart of the procedure followed in our paper, which it is included the data prepar-
ation, feature extraction, model implementation, and evaluation.

Source: Own elaboration.
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Figure 6.7: Financial candlestick chart of AstraZeneca of the entire dataset.
Source: Own elaboration.

Table 6.6: Sample with the first four days of June of 2021 with the different stock market features.

Date Close Open Low High Net %Chg Volume Turnover Flow

2021-06-01 7,957 8,095 7,946 8,107 -89 -0.011 2,532,475 2.03·108 2.03·108

2021-06-02 7,932 7,935 7,885 7,992 -25 -0.003 1,697,118 1.34·108 6.88·107

2021-06-03 7,948 7,932 7,870 7,973 16 0.002 1,309,821 1.03·108 1.72·108

2021-06-04 8,055 7,993 7,932 8,059 107 0.013 841,590 6.74·107 2.40·108
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Figure 6.8: Temporal series of the regressors of AstraZeneca stored from 1/1/2018 to 4/6/2021.

Source: Own elaboration.

Tables 6.6 and 6.7 shows excerpts of data with details of the datasets.



6.2 ai-case 2 185

Table 6.7: Sample with the first two weeks of March of 2021 with the accumulated sentiment ana-
lysis feature in the first two weeks of March of 2021.

Time series at March of 2021

Day 01 02 03 04 05 06 07 08 09 10 11 12 13 14
Sentiment -3 -2 -11 -13 -1 -1 -4 -5 -6 -9 -21 -5 -4 -16

6.2.2.3 Data pre-processing

Once we have computed the input data, we need to sequence the matrix as concatenated
vectors with a fixed size that has associated with a defined output. Here, we have selected
a 5 steps back sequence with a unique step forward value as output. The choice of the
number of steps back is not trivial, however, we have fixed it as five steps because it can be
understood as a complete standard business week. Additionally, after a comparative study
of the correlation between the output (yt) and an output selected from 0 < τ < N steps
back (yt−τ), we got sufficient evidence that our lag is adequately selected. Fig. 6.9 depicts
the lag correlation for different steps τ.
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Figure 6.9: Comparative lag correlation for the AstraZeneca close price by considering a different
number of steps back τ. It is considered one and two business weeks, a month, and a
year as different lags.

Source: Own elaboration.

In regard to the steps forward, we have decided to model a univariate output for time
series forecasting. Hence, each variable was sequentialized as [(xt−τ, . . . , xt), xt+1] per each
t ∈ {τ, . . . , N − 1}.

In order to standardize the sequences and avoid scale problems, we have computed
the statistical typification, also known as a standard scaler or batch normalization, which
consists of the quotient of each variable (Xk

t ) minus its mean (µk
X) out to its standard

deviation (σk
X).

Xk
t − µk

X

σk
X

, being t ∈ {1, . . . , N} (time) and k ∈ {1, . . . , m} (stock feature). (6.15)



186 artificial intelligence case studies

6.2.3 Model architecture

Regarding the structure of the models, we have generated three kinds of models based
on their layer serialization. We have Simple, Stacked, and Bidirectional recurrent models.
This procedure was also applied so as to analyze and compare the results with respect to
certain measures. For additional comparison purposes, we have computed simple RNNs
and LSTM layers, then, we can determine whether the long-term is effective for prediction.
Per each model, the architecture is the following:

Simple: Only one recursive layer with unidirectional flow (forward).

Stacked: Multiple recursive concatenated and fully connected. The hidden layer has the
same number of neurons in order to perform a more complex process of our series.

Bidirectional: Two-way model with two recursive layers, both of them connected to the
same output layer. The main advantage is that the input is processed forward and
backward, adding extra information to the learning process.

6.2.4 Regressor sets

As we described in § 6.2.2.1, we have two different types of variables classified as endo-
genous and exogenous. For univariate time series, we just need to consider the number of
steps back and forward to conduct the model training and its subsequent forecast. How-
ever, when adding regressors to our system a number of variables have to be selected to
carry out the due processes. In our case, we split the extracted variables as Sentiment-based
(S) and Price-based (P). Then, we have four sets of regressors depending on the addition
of them as inputs into the model.

NSNP: Only contains the close price, which leads to univariate time series forecasting.

S: Contains the close price and the daily accumulated sentiment analysis of the company.

P: Contains the close price and the stock features of the company.

SP: Contains the entire set of variables.

In this manner, we can generate 24 distinct models because we have 2 different sorts of
layers, 3 types of model architecture, and 4 types of regressor sets.
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6.2.5 Model implementation
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Figure 6.10: Procedure followed in this paper to get, process, serialize, train, and forecast according
to our model architecture.

Source: Own elaboration.

In the mentioned models, we have designed them with 128 neurons for both LSTM and
Elman’s RNN. Every recursive block returns the sequences of the hidden gate ht to main-
tain the long-term rendering. They also have a fully connected layer with the same neuron
units as the recursive block and a last connected layer with one neuron as output. The first
FC layer mixtures the sequences by merging the short and long responses, thus we obtain
further relationships between series. As part of the model control, in the recursive kernel
we have set an adaptive dropout of N f 10−2 and an L2 regularization of N f 10−4, in which
N f is the number of features that contains the series. Hence we have been more restrictive
when more elements to analyze in order to avoid overfitting and to standardize the fitting
phase. On the one hand, the dropout helps us to regularize by omitting a proportion of
neurons within the neural networks during training. On the other hand, the L2 regulariza-
tion in the recursive kernel allows us to prevent leverage from large outliers. For a detailed
description, Fig. 6.10 shows the different stages whereby the data is computed until we get
the forecast.

6.2.6 Evaluation metrics

In order to gauge the fitting obtained by our models, we have considered some evaluation
metrics for comparison purposes. This stage is fundamental to understanding the loss
given by our predictive model, so we have appropriately selected three different measures.
First, we considered the mean absolute error (MAE) Eq.6.16 as the loss function when
training the models (§ 6.2.7). We have decided to take this deviation measure because it is
less sensitive to erratic predictions. It is easy to note that RMSE

(
Y, Ŷ

)
≥ MAE

(
Y, Ŷ

)
, for

any time series Y = {yt}N
t=1 real-valued. Then, unlike some papers, we decided to dispense

with RMSE because it would not give us further information. Second, we needed to choose
a relative error measure of accuracy, so we selected the mean absolute percentage error
(MAPE) Eq.6.17. Because the interval over which the closing price varies is considerably
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high, we expect to obtain lower values as long as the prediction is accurate. Third, it is
essential to know whether a prediction fits actual data, so we have deployed the ρ-score,
known as the Spearman coefficient, to measure how correlated are the real and forecasted
values. Moreover, this coefficient does not rely on linear relationships but on monotonic
growths.

Given a time series sequence Y = {yt}N
t=1 and a prediction of such series Ŷ = {ŷt}N

t=1,
the definition of the above-mentioned measures is presented in the following equations:

MAE
1
N

N

∑
t=1
|yt − ŷt| (6.16)

MAPE
100
N

N

∑
t=1

∣∣∣∣yt − ŷt

yt

∣∣∣∣ (6.17)

ρ-score 1−
6

N

∑
t=1

(yt − ŷt)
2

N(N2 − 1)
(6.18)

Although other accuracy metrics could be interesting when predicting stock values, we
have avoided training our models with such an approach. Not only because we aim to
offer an accurate global fitting with veracious predictions, but we want to quantify the
effect of external elements over the target feature.

6.2.7 Software implementation

All the preparation, processing, methodology, and modelization described in this paper
have been implemented in Python 3.8. The data has been processed with Pandas 1.3.4 and
scaled with Scikit-Learn 0.22. The recurrent models have been implemented using Keras
with TensorFlow 2.4.1 as the backend. For compatibility purposes, the NumPy version
selected was 1.20.3.

With respect to the fitting phase, all the models were trained using Adam optimizer
(Kingma and Lei Ba, 2014) with a learning rate of 10−3 and MAE as a loss function. As
the structure of the models mentioned in § 6.2.5 are uneven, such learning rate may not be
suitable per each one. Hence, we have defined a learning rate reducer (ReduceLROnPlat-
eau) which diminishes the current learning rate by a factor of 0.5 when the loss has not
improved for 10 epochs. Moreover, we have avoided big reductions by setting a minimum
value of 10−5. Finally, we have selected 200 epochs per each learning phase, in which the
fitting stops automatically (EarlyStopping) when the validation loss did not improve, at
least a progress of 10−4, for 30 epochs.

https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/ReduceLROnPlateau
https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/ReduceLROnPlateau
https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/EarlyStopping
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6.2.8 Results and discussion

We have developed 24 different recursive models in order to contrast the performance
obtained depending on the regressors that we have fed to them. Basically, we have four
sets of regressors, three kinds of architectures, and two recursive layers. We wanted to
avoid randomness during the fitting, so we have fixed the Keras seed, the batch size and
the dataset shuffle option. In addition, the data pipeline is a regular process, then the
only different part is the number of regressors that it returns. Provided that the number
of experiments is quite big, we had no chance to search the optimal parameters to each
model without losing generality among the others, anyway we have ensured that training
loss curves follow an appropriate decreasing rate. Fig. 6.11 shows the forecasts obtained
per each model divided into LSTM and Elman’s layers as columns. Thus we can compare
the output of each model by the regressors utilized.

When comparing the results obtained in tables 6.8 and 6.9, it has been shown that light-
weight architectures can outperform deeper ANNs. By seeing the prediction measures,
Elman’s networks have obtained a mean of 75.44 whilst LSTMs obtained a mean of 173.03,
which means an MAE difference of more than twice in terms of loss. However, when
comparing this measure by isolated model structures, we find that LSTMs outperformed
Elman’s in every regressor set but the S-based as stated in table 6.10.

For the layer implementation, we can see that bidirectional Elman’s models have
achieved the lowest loss. It is worth mentioning that simple models have shown robustness
at predicting albeit their lightweight structure in terms of the number of parameters and
model depth. Another point that we would to emphasize is the limited usefulness of the
stacked models for our case study.

Table 6.8: Evaluation of LSTM models broken down by the regressor sets.

Training Validation
Regressor Model MAE MAPE ρ-score MAE MAPE ρ-score

SP

Simple 33.42 0.5309 0.9997 43.56 0.5852 0.9941
Stacked 12.57 0.1919 0.9999 59.23 0.8044 0.9622
Bidirectional 33.23 0.5292 0.9997 62.47 0.8462 0.9830

N
SN

P Simple 85.45 1.2508 0.9939 80.49 1.0869 0.9400
Stacked 80.90 1.1790 0.9945 78.66 1.0615 0.9404
Bidirectional 84.78 1.2392 0.9940 80.39 1.0853 0.9401

P

Simple 35.43 0.5369 0.9996 37.41 0.4993 0.9978
Stacked 54.40 0.7799 0.9973 90.57 1.2157 0.9216
Bidirectional 44.51 0.6867 0.9995 49.03 0.6532 0.9980

S

Simple 88.02 1.2889 0.9936 228.33 3.1407 0.9175
Stacked 82.71 1.2124 0.9944 949.08 12.9104 0.6303
Bidirectional 86.81 1.2708 0.9937 317.15 4.3710 0.9009
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Table 6.9: Evaluation of RNN models broken down by the regressor sets.

Training Validation
Regressor Model MAE MAPE ρ-score MAE MAPE ρ-score

SP

Simple 34.83 0.5468 0.9998 44.42 0.5993 0.9937
Stacked 32.94 0.5281 0.9992 93.03 1.2588 0.9580
Bidirectional 28.96 0.4498 0.9998 36.92 0.4970 0.9924

N
SN

P Simple 83.67 1.2270 0.9945 81.34 1.0993 0.9398
Stacked 83.24 1.2264 0.9946 80.28 1.0824 0.9424
Bidirectional 84.40 1.2413 0.9945 81.48 1.1010 0.9407

P

Simple 39.18 0.6109 0.9998 41.29 0.5512 0.9965
Stacked 78.06 1.1538 0.9953 114.56 1.5420 0.9237
Bidirectional 39.44 0.6155 0.9996 36.23 0.4827 0.9964

S

Simple 84.58 1.2484 0.9945 75.83 1.0218 0.9502
Stacked 85.09 1.2837 0.9947 141.92 1.9267 0.8805
Bidirectional 84.58 1.2448 0.9944 77.96 1.0545 0.9432

An interesting point is that social media, in particular Twitter, can influence the stock
market. It has been proven that trying to predict stock features by considering the accu-
mulated sentiment analysis intra-day is considerably chaotic, especially when there are
activity spikes registered over some concern that affects the company. The contrast for
tables 6.8 and 6.9 indicates that long dependencies worsen the prediction process, so it can
only take into consideration the short term of the series. Although it is possible to train
and obtain acceptable results if the validation set contains non-regular data the forecast
will not be representative. Another important view is that the worst predictions have been
obtained with the S approach.

Another evidence that sentiment analysis is influential is the lower impact obtained
when training with the entire set of features. The most feasible explanation is that accu-
mulated sentiment affects similarly the stock features, then adds exogenous information
about their variation. In the training phase, the model with more complexity (Stacked) has
achieved the lowest loss (12.57), unlike what happened by removing it (35.43), and almost
1 ρ-score which demonstrates an exact fitting. Therefore, robust models with appropriate
tuned parameters could outperform it and show that sentiment analysis could help to fit
the forecast in stock markets.

Even though the SP-forecast had great performance, the top performed forecasts have
been achieved just with the stock features, with 37.41 for LSTM and 36.23 for RNN. This
can be related to what we have mentioned in the last paragraph about the influence of
sentiment analysis. It is worth mentioning that such impact is less significative than the
S-case with a difference of 7.58% (stacked model) against 76.78% (bidirectional model). In
any case, the minor gap between both sets was reached with the simple architecture with
a difference of 0.69 in MAE, which is practically unnoticeable with regard to the values of
the series.
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Figure 6.11: Results obtained for each recursive model and divided depending on the model architecture. The dotted gray line splits the train and validation
sets.

Source: Own elaboration.
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Table 6.10: Mean of the MAE validation loss obtained per each regressor set and model architecture,
grouped by model type.

Model SP NSNP P S Simple Stacked Bidirectional

LSTM 55.09 79.85 59.00 498.19 101.37 295.20 122.53
RNN 58.12 81.03 64.03 98.57 60.72 107.45 58.15

We would also want to highlight the importance of our selected measures in § 6.2.6.
When contrasting the predictions, we can spot that Elman’s RNNs obtained a slightly
better ρ-score in NSNP-case (0.9722 against 0.9725) than LSTM despite having higher MAE
(64.03 against 59.00). It may happen because the fitting is not as good in comparison,
though it has a more adequate monotonic behavior. Additionally, it could be mentioned
that it also has the worst percentage error (0.86% against 0.79%).

Regarding the model complexity, we can see that simple models have obtained great
results in spite of their limited number of parameters. In cases in which the computational
times are crucial, simple Elman networks may play an important role and it could also be
studied as a reduction of the number of neurons.

6.2.8.1 Outlier detection

As mentioned above, the sentiment analysis feature seems to worsen our predictions when
adding it to our model architectures. Therefore, it is necessary to study its behavior over
time and understand why just this variable has this impact on our data. We have imple-
mented a basic technique for time series anomaly detection to check local deviations in a
sequence. We have decided to label the elements of a series as anomalous (i. e. an outlier
point) whenever st /∈

[
QSA

1 −
5
2 IQRSA, QSA

3 + 5
2 IQRSA], being SA = {st}N

t=1 the accumu-
lated sentiment time series, QSA

k the k-quartile and IQRSA = QSA
3 − QSA

1 the interquartile
range of SA respectively.

Fig. 6.12 illustrates the distribution of outliers over time, in which it is shown that 10
elements belong to the training set and 46 belong to the validation set. In other words,
the training set has a 1.32% of anomalous values, while the validation set has a 42.59% of
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Figure 6.12: Anomaly detection performed for the accumulated sentiment analysis features. The
interval selected to label values as outlier is [Q1 − 5

2 IQR, Q3 +
5
2 IQR].

Source: Own elaboration.
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them. Even though it may seem a bad choice of this feature, it clearly indicates that the
underlying misinformation and fake news in Twitter have not had a decisive impact on the
AstraZeneca company. As we can see in the S-case in Fig. 6.11, the long-term model has
predicted a drastic decrease, however it did not actually happen. In fact, it returned a max-
imal error between 3.14% and 12.91% with a bad fit to the original curve. We would like to
emphasize that, when applying our model architectures to real-time events, it is necessary
to analyze all the possible anomalies of the series before the prediction is computed.

6.2.8.2 Regressors impact

Most parts of this paper rely on the study of the impact of each set of regressors. We have
developed four different approaches depending on the regressors utilized, then we can
measure the impact of them when we add or substrate when generating the models. This
way, we can assess the performance of the models regarding the use of sentiment analysis
or stock features. Table 6.11 shows the difference and the error obtained, in terms of MAE,
when a regressor set is added. It is clear that the stock features played a key role when
predicting the close price of AstraZeneca because this set improved the performance of the
forecast in every case study. Conversely, the accumulated sentiment analysis only allows
for an enhanced fitting when it is combined with the prices. It substantially became worse
when we attempted to predict in the sentiment-based model, especially for the LSTMs.
Such an effect could happen due to the number of features to process, since the impact
in all-based models is always positive, so it possibly complemented the variations of each
other descriptive variable.

In regard to the layer performance, it is noteworthy that higher improvements in loss
measures are given by the LSTMs. Actually, it is also proof that RNNs are more stable in
multivariate problems, in which the experimental loss has been 63.25± 25.08, and LSTMs
can learn from more sequences in comparison with Elman layers because of the transfer
of long-term information. As far as training is concerned, the reader must bear in mind
that there has been a standardization process for all the models, hence we could profit as
much as we tune the hyperparameters involved per each case.

6.2.9 Conclusions and future work

1. Design a web scrapping pipeline for real-time data through stock and news sources.

Table 6.11: Difference of the MAE validation loss obtained when comparing the addition of re-
gressors. Values in parentheses are the error of such addition.

Model NSNP→S P→ SP NSNP→ P S→ SP

LSTM 418.34 (5.24) -3.92 (-0.07) -20.85 (-0.26) -443.10 (-0.89)
RNN 17.54 (0.22) -5.91 (-0.09) -17.00 (-0.21) -40.45 (-0.41)
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2. Make our own custom Sentiment Analysis extractor by implementing an NLP model
with deep neural networks.

3. Model and tune the hyperparameters of each model architecture, one by one, in
order to get a performance as balanced as possible per each regressor set.

4. Define an indicator that measures the robustness-weakness of a company against
online social content.

6.2.10 Python implementation

The scripts utilized to perform the regression task are displayed in § B.2. Owing to the
nature of this problem and the high complexity attached, we have presented a bash file
(Script 11) and a Python file (Script 12) with a callable argument parser.
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6.3 ai-case 3: on the application of explainable artificial intelligence

techniques on hrtf data

This case study is based on our published research: De Rus J.A., López-García A., López-
Ballester J., Lopez J.J., Torres A.M., Ferri F.J., Montagud M., Cobos M., “On the Applica-
tion of Explainable Artificial Intelligence Techniques on HRTF Data”. In 24th International
Conference on Acoustics, ICA 2022. Hence, all the information or results mentioned in this
section have been already addressed in that paper.

6.3.1 Experiment Setup

Binaural reproduction is today a widely used technique for immersive spatial audio. To
provide a listener with a realistic sensation of spatial hearing over headphones, sound
signals are typically convolved with Head-Related Impulse Responses (HRIRs), or filtered
according to their spectral equivalents, i. e. the Head-Related Transfer Functions (HRTFs).
These describe the transfer properties of sound waves as they travel from a given sound
source location in space to the ear canal in free space. Since HRIRs are highly individual
(they depend on a subject’s anthropometric features), deviations from the user’s own
HRIRs can affect negatively the listening experience. Therefore, the identification of rel-
evant localization cues and their preservation is a topic of continuous interest within the
spatial audio research community. In this context, while numerous studies have been car-
ried out in the past to identify salient localization cues, for example by applying principal
component analysis (PCA) to HRIR datasets, some recent works are exploiting the fea-
ture learning capabilities of deep learning-based approaches. In this work, we explore the
use of common explainable artificial intelligence (XAI) techniques, such as class activation
mapping, on convolutional neural networks (CNN) trained for classifying HRIR datasets
into different directional sectors, exploring further this issue.

6.3.2 Introduction

With the advent of immersive acoustic scenarios for virtual reality, achieving accurate loc-
alization of sound sources has become a major challenge. One of the peculiarities that
complicate the development of accurate reproduction systems is that human spatial hear-
ing is closely related to the listener’s anatomy. Acoustic effects caused by the head, torso,
shoulders, and pinnae have a great impact on human localization ability. It is a well-known
fact that such human characteristics can be statistically described to aid the auditory loc-
alization process (Searle et al., 1976). Most acoustic models usually utilize time-domain
Head-Related Impulse Responses (HRIRs) or, equivalently, Head-Related Transfer Func-
tions (HRTFs) in the frequency domain. With regards to HRTF signals, several works have
proposed the use of preprocessing and postprocessing techniques to capture the relative
influence of relevant anthropometric features (Zhu et al., 2017). The localization of virtual
sources can also be improved via scaling the directional transfer functions (Middlebrooks,
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1999). An interesting finding that matches with the objective of this paper is that prom-
inences (either peaks or notches) in the curves of the transfer functions may reveal in-
formation associated with the elevation of a source (Blauert, 1996; Hebrank and Wright,
1974).

The use of deep neural networks for decision aid in acoustic environments has been
growing steadily. In particular, the use of convolutional neural networks (CNNs) is crucial
in most of the artificial support tasks like acoustic scene classification (Abeßer, 2020), music
tagging (Kim et al., 2018), and speech emotion recognition (Mustaqeem and Kwon, 2020),
among many others. Along the same line, the development of binaural spatial datasets
allows training neural networks in order to model personalized HRTFs and enable a more
realistic listening experience. Recent studies have shown the possibility to capture spatial
audio features in HRTF datasets using CNNs (Thuillier et al., 2018). These studies may be
understood as a new manner to study human performance in source localization. Other
studies have recently focused on the front-back discrimination of binaural music record-
ings (Zieliński et al., 2022), revealing interesting information about the relevant frequency
bands assisting such discrimination tasks.

In the same spirit of Thuillier et al. (2018), this paper focuses on the application of
explainable artificial intelligence (XAI) techniques for the analysis of HRTF datasets. More
specifically, we consider the analysis of the HRTF CIPIC dataset (Algazi et al., 2001) using
a conventional 1D-CNN model. In contrast to Thuillier et al. (2018), HRTFs transformed
to a mel-scale are directly used as input to the network. Moreover, we apply two different
XAI techniques for saliency analysis, namely class activation mapping (CAM) and the
more general gradient-based CAM method (Grad-CAM). The results obtained using these
techniques will be analyzed to discover frequency bands in the HRTFs that encode location
cues relevant to the determination of the elevation of a source.

6.3.3 Project inception

6.3.3.1 Experimental dataset and data preprocessing

The CIPIC HRTF Database is a public-domain database of high-spatial-resolution HRTF
measurements for 45 different subjects, including the KEMAR mannequin with both small
and large pinnae (Algazi et al., 2001). It includes 2.500 measurements of HRIRs for 45
subjects at 25 different azimuths and 50 different elevations (1250 directions) at approx-
imately 5◦ angular increments. The standard measurements were recorded at 25 different
interaural-polar azimuths and 50 different interaural-polar elevations. The sample dura-
tion of each HRIR is 200 samples (4.5 ms at a sample rate of 44.1 kHz). Additional special
measurements of the KEMAR manikin were made for the frontal and horizontal planes.

As in Thuillier et al. (2018), we focus this study on the analysis of elevation cues. To this
end, we divide all the responses of the CIPIC database into a set of 9 spherical regions
according to their elevation, as depicted in Fig. 6.13. Note that the number of sampled
directions within each of the elevation classes is not uniform, although not severely unbal-
anced.
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Figure 6.13: Spatial source location in the CIPIC dataset divided into 9 regions for the classification
task.

Source: Own elaboration.

The full dataset is composed of 56250 HRIR samples (corresponding to the combina-
tion of the 45 subjects, 25 azimuth angles, and 50 elevation angles) with their associated
ipsilateral and contralateral channels.

To obtain the corresponding HRTF signals, we compute the one-sided fast Fourier trans-
form of each channel with 512 points, resulting in 257 frequency bins. In order to provide
the network with a perceptually-motivated input, we warp the frequency axis by consid-
ering a mel-scale mapping. This is achieved by dividing the range [0-22050] Hz into 257
uniformly spaced points in the mel-scale and taking the frequency bins that are closer to
their equivalent frequencies in Hz. Finally, only the magnitude spectrum of each channel
in logarithmic scale is considered. The shape of each dataset example is therefore (257,2).

The dataset was divided into two partitions for training and validation. The data of 36
subjects (45000 samples) was used for the training partition and the data of 9 different
subjects (11250 samples) for validation.

6.3.3.2 Model architecture

This work considers a fully convolutional model with a straightforward architecture, rep-
resented in Fig. 6.14. The design of the network was carried out with the aim of achieving
significant classification accuracy while keeping the model simple enough to facilitate the
application of common XAI techniques. It consists of three 1D convolutional blocks with
ReLU activation and max-pooling in between blocks to downsample the frequency in-
formation. A last convolutional layer followed by Global Average Pooling (GAP) is used
to summarize the filter responses before the final dense layer, configured with softmax
activation.

The information related to the construction of each layer of the CNN is shown in
Table 6.12. It shows detailed information about how the model was built, including the
dimensions involved at different depths and the number of associated parameters.

The model was trained with Adam optimizer (Kingma and Lei Ba, 2014), with η = 10−3,
using categorical cross-entropy as a loss function. For the fitting, we set a batch of 16
elements and 100 epochs with early stopping, which actually was activated during the
training processes.
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Figure 6.14: Topology of the convolutional architecture developed for this paper to classify HRTFs
into nine elevation sectors.

Source: Own elaboration.

Table 6.12: Configuration of the CNN layers with its first dimension (Dims), number of filters, ker-
nel sizes, and number of parameters (Params). Here, Conv stands for 1D-Convolutional
layer and Pool for 1D-Max-Pooling operator.

Input 1st Block 2nd Block 3rd Block Output
Conv Pool Conv Pool Conv Pool Conv GAP Dense

Dimension 257 257 128 128 64 64 32 32 16 9
Filters 2 64 64 32 32 32 32 16 1 1
Sizes 0 64 2 16 2 8 2 8 0 0
Parameters 0 2112 0 32800 0 8224 0 4112 0 153

6.3.3.3 Feature explainability

The use of XAI techniques may be understood as an additional phase in model evaluation
(Arrieta et al., 2020). As a manner to give explainability in the same way as the studies
above mentioned, we have analyzed the outputs of our deep convolutional architecture.
Once our model is fitted and yields an acceptable performance, we want to remove the
black-box produced by the CNN architecture. With that purpose, we have applied CAM
(Zhou et al., 2015) and Grad-CAM (Selvaraju et al., 2017) to analyze both saliency maps
and class activation maps. Even though both XAI techniques were designed solely to cover
the limitations of CNNs, their implementation is widely extended thanks to their ability
to generate localization maps highlighting significant spatial regions (Li et al., 2018). CAM
originally arose as a technique that yields class activation maps of CNNs applied over
object detection tasks. It allowed the trained models to localize class-specific patterns in
image detection. Owing to the main disadvantage of CAM is the requirement of a GAP
layer to operate over the convolutional filters, Grad-CAM overcomes that limitation by the
use of gradients over the first dense layer in the architecture. Regardless of their differ-
ences, both techniques rely on the assumption that the decision vector Yc for the class c
is described by means of the feature maps Ak of the last convolutional layer. Then, the
saliency map for the class c is a weighted aggregation of the spatial components of each
feature map, written as:

https://www.tensorflow.org/api_docs/python/tf/keras/layers/Conv1D
https://www.tensorflow.org/api_docs/python/tf/keras/layers/MaxPool1D
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ij.

(6.19)

Where the i and j indexes denote the matrix indices of the spatial components and the
k index associates the number filters. Regarding the weighting scheme (wc

k), CAM utilizes
a backward projection of the output weights onto the maps of the last convolutional layer.
On the contrary, Grad-CAM estimates each class-weight for each feature map as a linear
combination of the partial derivatives ∂Yc

∂Ak
ij

. Their implementation is highly related to image

classification (Li et al., 2018; Selvaraju et al., 2017; Zhou et al., 2015) varying from clinical
test (Chang et al., 2021a) to computer games simulation through reinforcement learning
(Joo and Kim, 2019).

6.3.4 Results

6.3.4.1 CNN performance

After training, the model achieved global accuracy of 0.8090 on the validation set, which
suggests that the model performs reasonably well in the task of determining the elevation
class of a given HRTF, regardless of its azimuth. To analyze the classification performance
in more detail, Fig. 6.15 shows the confusion matrix (hit percentage) for the different eleva-
tion classes. The proportion of class examples is shown in red-scale. Note that most wrong
predictions are misclassified to adjacent spatial regions, showing robustness in terms of
understanding the underlying spatial cues.
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Figure 6.15: Confusion matrix computed by hit ratio for the CNN model.
Source: Own elaboration.

6.3.4.2 Saliency Maps

This section shows the results obtained by the XAI techniques considered in this work, ana-
lyzing the saliency maps provided by the CAM and Grad-CAM methods. These saliency
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maps provide meaningful information on how the convolutional kernels process a given
input example to determine its corresponding elevation class. Fig. 6.16 shows represent-
ative HRTF responses selected from the validation set together with their corresponding
saliency in the background. The selection was made according to a maximum-probability
criterion, i. e. they correspond to the responses pertaining to each class that the model
classified with the highest confidence. Dark red zones correspond to frequencies having
a high saliency, while light zones correspond to frequencies that are less relevant for the
classification task. For each class, the CAM saliency is shown at the top of the plot, while
the Grad-CAM result is shown at the bottom. It can be observed for each of the represen-
ted examples that both CAM and Grad-CAM provide similar saliency zones, although the
intensity of such zones may vary from one method to the other. In general, there is a high
level of agreement in the results provided by both approaches.
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Figure 6.16: CAM (top) and Grad-CAM (bottom) saliency maps over the most representative
sample of each class. The predicted class probability ŷi is given in parentheses. The
color bar is red-scaled, then white shades indicate low relevance and red ones have
high relevance.

Source: Own elaboration.

To gain more insight into the relevant spatial components processed by the CNN model,
we analyzed the average saliency maps resulting from CAM and Grad-CAM across all
subjects and azimuth angles. The aim is to get an overall picture of the relevant frequencies
assisting the classification of the whole dataset. The lateral regions were not considered as
they do not really affect elevation. The averaged frequency-elevation saliency maps are
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shown in Fig. 6.17, where red indicates more importance and blue is less important for
classification.

Finally, Fig. 6.18 shows as an image the saliencies of the individual responses belonging
to each class in the validation set, both for CAM and Grad-CAM. Note that there is a
high correlation between the saliency results obtained for the different responses within
each class, suggested by prominent vertical bands located at narrower or wider frequency
regions. Again, the results obtained by CAM and Grad-CAM are considerably similar.
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Figure 6.17: CAM (left) and Grad-CAM (right) saliency maps averaged across subjects and azimuth,
showed per elevation class.

Source: Own elaboration.
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6.3.5 Discussion

The saliency maps obtained in the previous section are considered in accordance with some
of the results derived from previous psychoacoustical experiments. Next, we describe how
our results are linked to some known spectral cues and effects related to elevation and
front-back discrimination. Note that, since the average CAM saliency map in Fig. 6.17
(left) seems to be more consistent than the one obtained from Grad-CAM, we will discuss
our findings taking into account mostly the CAM results.

Many studies have shown that spectral distortions caused by pinnae in the high-
frequency range approximately above 4 kHz act as cues for median plane localization
(Iida and Ishii, 2011). Indeed, by looking at the resulting saliency maps, the most intense
saliencies are found, as expected, in the mid and high-frequency range. However, there
are some interesting low-frequency effects (below 500 Hz) in the classes “up", “back-up",
“back-level" and “back-down". These may suggest that HRTFs from back directions show
some low-frequency features assisting the perception of elevation that may not be present
for frontal directions. In this context, although a behind cue was reported by Hebrank and
Wright (1974) to appear as a small peak around 12 kHz, we observe the average saliency
to be high at this frequency for “back up", but also contributions from higher frequencies
at “back level" and “back down", suggesting a shift of cues towards very high frequencies
when a behind source moves from down to up.

Butler and Belendiuk (1977) showed that the prominent notch moves toward the lower
frequencies as the sound source moves from above to below the aural axis in the frontal
half of the median plane. For frontal directions, moving from “front-up" to “front-down",
we can indeed see the saliency change towards lower frequencies (from around 8 kHz to 3
kHz).

Additionally, as observed in Fig. 6.16 and Fig. 6.18, there appear to be complementary
saliencies on samples of opposite spatial classes that may hint at more cues, as follows.
Samples from the classes “lateral-up" and “lateral-down" present opposite saliencies on
the 8-15 kHz band, while being similar on the rest of the frequencies. Similarly, samples
from the classes “front-level" and “back-level" present opposite saliencies on the 2-10 kHz
band, while being quite similar out of this range.

6.3.6 Conclusions

This work presented a preliminary study on the use of explainable artificial intelligence
techniques, namely CAM and Grad-CAM, for assisting in the interpretation of HRTF el-
evation cues. To this end, we trained a convolutional neural network on mel-scale-warped
HRTF responses extracted from the CIPIC database. The model was trained to classify
responses into 9 different spatial classes related to different elevation sectors and showed
considerable generalization capabilities over a validation set with responses from subjects
different from the ones in the training set. The explainability techniques were applied over
the trained model to obtain saliency maps indicating the relevant frequency bands used
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by the network to classify a given input response into one of the elevation classes. Al-
though both CAM and Grad-CAM provided similar saliency regions, the results of CAM
appeared to be more consistent across both the training and validation sets. The saliency
regions identified by the applied explainable techniques were also consistent with most
findings obtained through psychoacoustic experiments, although additional unexpected
low-frequency effects were obtained for behind directions.

6.3.7 Python implementation

The required code to perform this case study is shown in § B.3, in which the entire proced-
ure (Script 13) and model implementation (Script 14) are approached.

6.3.8 Extra section: CNN evaluation

Here we want to attach additional information shown in § 6.3.4.1 related to the CNN
performance. Given that the problem is a multi-classification task with 9 different labels,
we offer the automatic Sklearn report of the function classification_report.

Table 6.13: Classification report for the trained convolutional network for the validation set.

Label Precision Recall F1-score Support

Front Down FD 0.79 0.81 0.80 945
Front Level FL 0.81 0.78 0.79 1323
Front Up FU 0.85 0.82 0.83 1701
Up UP 0.77 0.76 0.76 1323
Back Up BU 0.78 0.83 0.81 1701
Back Level BL 0.73 0.72 0.72 1323
Back Down BD 0.83 0.79 0.81 1134
Lateral Up LU 0.87 0.88 0.87 1152
Lateral Down LD 0.78 0.81 0.79 648

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html
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Source: Own elaboration.

6.4 summary

In this chapter, we have presented three Artificial Intelligence case studies focused as three
different Machine Learning tasks: unsupervised (§ 6.1), regression (§ 6.2), and classification
(§ 6.3). Each experiment has been a major challenge due to the high difficulty associated
with each task. In order of appearance, the case studies consisted of a musical similarity
algorithm based on audio fingerprinting for plagiarism detection, a study on the impact
of regressors in a time series forecasting of stock prices for the AstraZeneca company
particular instance, and the analysis of sound sources of head-related transfer functions
(HRTFs) via Convolutional Neural Networks and explainability techniques. In this man-
ner, we have faced complex real-life problems with customized Machine Learning models
showing great performance on the application and resolution of the methods.
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M U LT I P L E - C R I T E R I A D E C I S I O N M A K I N G &
A RT I F I C I A L I N T E L L I G E N C E C A S E S T U D I E S

7.1 mcdm & ai-case 1: early detection of students’ failure using ma-
chine learning techniques

This case study has been sent for publication to Expert Systems with Applications as:
López-García A, Blasco-Blasco O, Liern-García M, Parada-Rico SE “Early detection of stu-
dents’ failure using Machine Learning techniques”.

7.1.1 Experiment Setup

The educational system determines one of the major strengths of an advanced society.
For some time, all countries have had to guarantee accessible and free education to their
citizens as a common goal. Actually, a country lacking culture has been shown to be less
competitive due to the inequality suffered by its people. Institutions and organizations are
putting their efforts into tackling that problem. In most cases, indicators and measures
already exist that evaluate the situation of the educational system. Nevertheless, it is not
an easy task to explain why their students have failed or what are the conditions that
affect such situations. Our proposal is to demonstrate that Machine Learning can predict
academic failure by means of the student features stored by the institution. The point is to
generate an ensemble tree-based method with MCDM and synthetic oversampling. As a
result, we can figure out the problem and how it occurs to propose customized measures.
The case study of this paper has been the Industrial University of Santander, Colombia.

7.1.2 Introduction

The classification of students via educational features is widely studied by both institutions
and research teams. There are many factors that determine the academic performance of
students that must be taken into account when predicting how their evolution will be
during their university studies. In most of the studies conducted, the measure has been
approached from three non-exclusive perspectives: direct use of indicators (Parada et al.,
2019; Parada et al., 2017, Liern et al., 2020a), traditional statistical methods (Adams and
Hancock, 2000) or through machine learning techniques. (Bhutto et al., 2020, Verma et
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al., 2022). In other articles, such as Paliwal and Kumar, 2009, an analysis is carried out to
predict academic performance using neural networks and traditional statistical techniques.

The development of well-established datasets with detailed information about differ-
ent academic, economic, and social attributes is being approached for analyzing academic
performance (Delahoz-Dominguez et al., 2020; Hussain et al., 2018). That stage is very im-
portant since it gives an experimental scenario for researchers with real conditions. The
academic prediction is usually addressed with supervised models because the informa-
tion is gathered a priori for a posteriori case study. In Imran et al. (2019), we can find
the implementation of various machine learning methods in this sense. We can also find
tree-based methods applied over small datasets (Hasan et al., 2018) since they can work
without huge amounts of samples. Keser and Aghalarova (2022) presented an ensemble of
gradient boosting machine methods to obtain the most suited possible algorithm via hy-
perparameter tuning. Nonetheless, juts ML-based models are not always a suited approach
for this subject. For example, we can find a combination of fuzzy and neural networks in
Hidayah et al. (2013) for capturing the uncertainty behind student behavior. Another ex-
ample is the use of tree-based methods and fuzzy genetic algorithm (Hamsa et al., 2016).
It is noteworthy to mention the efforts made to study the gender gaps that may occur
within educational centers, thus guaranteeing gender equality. An example with that line
is conducted by Sapiezynski et al. (2017), where they applied class performance with Lin-
ear Discriminant Analysis (LDA) via an imbalanced gender perspective. Another point
to highlight is the emphasis made on the marginal groups. An example of oversampling
methods for tackling imbalanced conditions is found in Thai-Nghe et al. (2009), where
they applied the SMOTE algorithm to oversample the students’ set.

In this paper, we have combined multiple approaches with the aim of classifying the
students of the SEA-UIS program. For that purpose, we have implemented a tree-based
classifier so that we cannot only know those prone to fail but also understand why it will
happen. In other words, we want to remove the black boxes commonly attached to most
machine learning algorithms by controlling the intrinsic feature importance when predict-
ing. Owing to the relation success-failure for the institution is disproportionate, such nat-
ural imbalance means a problem for us. That is why we have implemented oversampling
techniques focused on marginal samples to increase the accuracy and incorporate a ma-
jor generalization. We have depicted the procedure conducted in Fig. 7.1, where the five
different stages are remarked.

Figure 7.1: Methodological steps carried out in this paper to perform the classification of the SEA-
UIS students.

Source: Own elaboration.
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7.1.3 Student classification according to its academic performance

In this section, we explain the procedure that we have carried out during our experiments.
Since descriptive analytics may play a key role in helping the decision-makers of the Indus-
trial University of Santander, it is essential to know how the data is obtained and stored.
The more rigorous and accurate we are, the greater support will be given to the educa-
tional system. Taking this into account, we have selected the information of the newcomer
students known for the UIS-SEA institution before they enroll in the university. To be more
precise, the sample obtained belongs to science and engineering careers.

First, feature extraction of a priori information is conducted by applying the TOPSIS and
uwTOPSIS methods. The values obtained per student determine its initial stage before the
beginning of the first semester. Second, an explanatory analysis is designed to assess the
importance and influence of the student features. Third, we implement an XGBoost model
with hyper-parameter tuning to find the best classifier possible.

For this work, we have followed the same guidelines as our last paper (Blasco-Blasco
et al., 2021). Our dataset, provided by SEA with 2975 students, is composed of the same
five dimensions: Academic, Cognitive, Economic, Health, and Social. Therefore, we have
a set with five features that describes the initial conditions of the UIS students. In a way,
such a combination of variables is supposed to mark on the course of events during the
first year at the university. In Parada et al. (2019), the authors proved that using this set
could lead to interesting studies about the academic achievements of the institution via
adequacy indicators. Therefore, we have been trying to make the best use of the given
data.

Once the semester is finished, we can keep the final marks of the students in order to
verify whether they have passed the tests. In our particular case, we have analyzed the
final grades of calculus and algebra subjects. Both variables range between 0 and 5 so it is
assumed that a student with an average lower than 2.5 have not passed the mathematical
test, and so we consider it as a failure. Then, we define the binary variable Y, which
determines whether a student has passed the course or not as shown in Eq. 7.1.

yi =

 1 if 1
2 (Algebra + Calculus)i < 2.5

0 otherwise
, for all 1 ≤ i ≤ N. (7.1)

Where (Algebra + Calculus)i is the sum of the grades in algebra and calculus subjects
for the ith individual.

Once we have calculated the y vector, we noticed that the proportion of our sample is al-
most 3 : 7 with regard to the failure event. More specifically, we have 1099 failure subjects
(70.71%) and the remaining 2435 passed the course (29.29%). Although it is understood
as good news for the university, due to their great work, now it leads to an imbalanced
learning problem. There are many methods to face such problems, in which we can dis-
tinguish two procedures: undersampling and oversampling. Given that we want to pay
full attention to every single element in the sample, we decided to apply an oversampling
technique. Moreover, as we wanted to cluster the students regarding their academic fail-
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ure, we would like to emphasize the {yi = 0}-group. That is why we decided to apply the
ADASYN algorithm. As we will detail in subsection 7.1.3.3, this method generates copies
of those cases that are hard to learn during training, so we are highlighting the excluded
classes.

Y-vector

XGBoost

Failure
prediction

Institution
assessment

ADASYN

TOPSIS
(R, RL, RU)

Data
preprocessingDataset

Figure 7.2: Flowchart of the procedure conducted in this paper. It involves the pipeline of collection,
preparation, normalization, feature extraction, model fitting, and output presentation.

Source: Own elaboration.

7.1.3.1 Normalization

It is well known that data must be properly normalized before the computations are ap-
plied. As we have described in § 3.2.2 and § 3.4.2, a normalization technique is needed
to implement both methods. Therefore, the normalizations to be used are the same as we
implemented by the authors Parada et al. (2019), in which the following expressions give
the functions η and ξ:

ηA,a,b,B;k1,k2(x) =



1− ek1
x−A
a−A

1− ek1
if A ≤ x < a

1 if a < x < b
1− ek2

B−x
B−b

1− ek2
if b < x ≤ B

0 otherwise

(7.2)

ξA,a,b,B(x) =



x− A
a− A

if A ≤ x < a

1 if a < x < b
B− x
B− b

if b < x ≤ B

0 otherwise

(7.3)

Due to the definition of the dimensions, the (A, a, b, B) array represents the trapezoidal
fuzzy shape, and the (k1, k2) coefficients are the left and right exponents that determine
the convexity or concavity of the function. Table 7.1 shows the transformations of the data
and the kind of normalization employed per each feature.
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Table 7.1: Features, DDBB values, range transformations, ideal elements, and normalizations.

Dimension Original Transf. Ideal Normalization

Academic {VL, L, LM, M, MH, H, VH} [1, 7] [6, 7] η1,6,7,7;1,0(x)
Cognitive {VL, L, LM, M, MH, H, VH} [1, 7] [6, 7] η1,6,7,7;−1,0(x)
Economic [0, 1] [0, 1] [0.8, 1] ξ0,0.8,1,1(x)
Health [0, 0.65] [0, 0.65] 0.65 ξ0,0.65,0.65,0.65(x)
Social {0.1, 0.5, 0.7, 1} [0.1, 1] [0.7, 1] ξ0.1,0.7,1,1(x)

7.1.3.2 MCDM feature extractor

In order to evaluate the initial scenario of each particular student, we have implemented
both TOPSIS and uwTOPSIS techniques. On the one hand, the TOPSIS method has been
applied as in our last paper (Blasco-Blasco et al., 2021) because the SEA-UIS has metic-
ulously chosen the weighting scheme. This advantage allows us to understand how the
institution notices the initial stage of people and then adds it to our dataset. On the other
hand, the uwTOPSIS has followed our last contribution to the academic performance ana-
lysis in the UIS (Blasco-Blasco et al., 2021). By applying a rank reversal approach, we can
extract the (RL

i , RU
i )-pairs per each alternative and consider it as an additional feature that

evaluates the a priori global situation of the set of students. The required ideals in the Step
2 of the unweighted algorithm have been fixed as PIS = (1, . . . , 1) and NIS = (0, . . . , 0) to
avoid an output that depends of the entire dataset. In other words, we wanted to preserve
their limitations in terms of educational attributes.

Despite having three different features (Ri, RL
i , RU

i ) that might seem highly correlated,
what we have merged with this process is an indicator of institution insight plus their
relative boundaries in which it varies. Although many other features could be included in
the model to improve the performance, we have decided to follow the guidelines of the
managers of the UIS. In turn, we have designed a dataset with size N = 2975 and M = 8
features, so each Xi array can be decomposed as (Ai, Ci, Ei, Hi, Si, Ri, RL

i , RU
i ) to examine

their impact in the classification task.

7.1.3.3 Adaptive Synthetic Sampling Approach

ADAptive SYNthetic (ADASYN) sampling approach is an over-sampling algorithm for
learning from imbalanced datasets (He et al., 2008). The main idea of this technique is
the use of a weighted distribution over the minority class examples according to their
difficulty in learning. Then, ADASYN generates synthetic data elements that reduce the
learning bias and the decision boundary of such samples.

Considering the dataset D = {Xi, yi}N
i=1, we distinguish the minority (m) and majority

(M) samples as Nm and NM respectively, so that, Nm ≤ NM and Nm + NM = N. Then, the
ADASYN oversampling technique may be applied following the steps, in which we can
assume, without limiting the generality of the foregoing, that the dataset is sorted so that
the first Nm elements belong to the minority class.
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1. Define G = (NM − Nm)µ as the number of elements to generate, with 0 ≤ µ ≤ 1 the
desired proportion to oversample.

2. Compute the KNN algorithm over the minority class to get the values {ri}Nm
i=1, where

ri = ∆i/K and ∆i is cardinal of the neighbors of Xi that belongs to the majority class.

3. Normalize {ri}Nm
i=1 as ri = ri/ ∑Nm

i=1 ri per each 1 ≤ i ≤ Nm.

4. Generate gi = riG samples of each i ∈ {1, . . . , Nm} instance, providing a µ-balanced
dataset.

As a consequence of the step 3, we notice that ||r||1 = 1, hence we have build a density
distribution of {ri}Nm

i=1. Moreover, a new synthetic dataset can be generated with a partial
proportion over the majority class, as stated in step 1.

For the case study, we have set µ = 1 to create a fully balanced dataset. In such a way, we
have just oversampled the less representative students labeled as “failure” so as to learn
their distribution and adapt the intelligent system to their marginal situation.

7.1.3.4 Model Implementation

In order to compare and contrast the results obtained by the XGBoost classifier, we have
decided to implement other classification tree methodologies to carry out an in-depth ana-
lysis. The models that have been trained with the Colombian set of students are XGBoost,
GBoost, Random Forest, and Decision Tree. These all have been implemented by using the
Sklearn library in Python.

7.1.3.5 Evaluation metrics

The binary classification of students is a difficult task and it can be explained by means of
various factors. First, the actual behavior of students is somehow chaotic because school
dropout is a major concern in public universities. Second, the annotations associated with
each student can be subject to uncertainties due to the number of different entities that
handle such values. Third, we are just feeding our model with data stored by the uni-
versity. Therefore, we are disregarding relevant historical information that concerns each
individual.

Anyway, the data collection has been duly collected, annotated, and stored by the SEA-
UIS, thus facilitating the goals of this paper. Nevertheless, we are facing a problem of
imbalanced learning due to the number of students that passes the course being consider-
ably greater than the ones who fail. In fact, it made us apply the ADASYN technique for
oversampling. As a result, we have to utilize metrics that appropriately evaluate the model
performance. In order to understand the notation used in the following equations, table
4.1 shows how a confusion matrix splits the output of a classifier.

The metrics that will be used for model evaluation are defined by the following equa-
tions:



7.1 mcdm & ai-case 1 213

Precision : P =
TP

TP + FP
Fβ-Score : (1 + β2)

P · R
β2P + R

Recall : R =
TP

TP + FN
Accuracy : Acc =

TP + TN
TP + TN + FP + FP

(7.4)

In our particular case, we will utilize F1-Score in which P and R metrics will help us
understand the value’s representation. The choice of β = 1 gives the same importance to
sensitivity and specificity as most state-of-the-art studies. In a complementary way, the
accuracy metric will describe the global performance of our model. This value will be
relevant if we need to generalize the results by placing the same value on both groups
(Pass-Fail). In addition, we also have to cover the misclassification errors that may occur
(Bradley, 1997). Then, we select the AUC score since it is threshold invariant and describes
the relation between hit and error.

7.1.4 Results and discussion

In this section, we present and describe the results obtained by evaluating the validation
sets. We have basically faced three problems: Imbalanced learning, learning over synthetic
datasets, and hyperparameter tuning for optimized model configuration. The implementa-
tion of the three cases is graphically described in Fig. 7.3, where the workflow is segmented
per each problem.

PREPROCESSING STRATEGY TRAINING

ADASYN

ADASYN Hyperparameter
tuning

Decision
Tree

Learning

Decision
Tree

Learning

XGBoost
Database

Testing

Figure 7.3: Workflow of the case study divided into three stages: top for imbalanced learning,
middle for synthetic balanced learning, and bottom for hyperparameter tuning strategy.

Source: Own elaboration.

7.1.4.1 Classification task

The sample of 2975 students has been serialized to get our experimental dataset {Xi, yi}i,
where each Xi ∈ R8. For the training data split, we have decided to put aside the 20% of
the data (595 students) for the evaluation set so that this number of elements that have not
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taken part in the fitting procedure can be analyzed a posteriori for high-reliability experi-
ments. Hence, the following tables (7.2 and 7.3) contain the evaluation metrics associated
with students that belong to the out-of-train set.

Table 7.2: Evaluation of the classification task with the evaluation set of the imbalanced strategy.

Precision Recall F1-score Accuracy AUC

XGBoost 0.4118 0.0524 0.0930 0.6912 0.6035
GBoost 0.3721 0.0599 0.1032 0.6855 0.5994
Random Forest 0.4486 0.1798 0.2567 0.6855 0.5714
Decision Tree 0.4196 0.1760 0.2480 0.6776 0.5534

Table 7.3: Evaluation of the classification task with the evaluation set of the ADASYN oversampling
strategy.

Precision Recall F1-score Accuracy AUC

XGBoost 0.8206 0.5639 0.6685 0.7080 0.7677
GBoost 0.8205 0.5562 0.6630 0.7047 0.7658
Random Forest 0.7863 0.5840 0.6702 0.6999 0.7605
Decision Tree 0.7987 0.5501 0.6515 0.6927 0.7380

7.1.4.2 Hyperparameter tuning

In order to get the best performance possible, we implemented a hyperparameter tuning
strategy. It is essential in most machine learning implementations because when more
accurate, more applicable to further data. With this aim in mind, we have defined a com-
putational grid for some of the basic parameters that XGBoost requires for its fitting. Two
elements to take into account for boosting are the maximum depth of the trees (Dmax)
and the number of decision trees (DTs) to fix for our model. As we discussed in subsec-
tion 4.1.5.3, equation 4.91 presents two parameters for regularization γ and λ. Finally, the
learning rate (η) is always a value to select meticulously so as to balance the learning
gain during training. In table 7.4, the possible values have been presented for the cross-
validation search technique, which implies 3520 different combinations. Moreover, the last
column of table 7.4 indicates the optimal solution of the discrete choice values.

With the exception of the DTs parameter, the selected values were affordably selected
with a usual scheme of values. It is clear that the grid could have been extended to a high
cardinality, however, the computational limitations have led us to bound the complexity
of the problem. For the number of decision trees implemented, we empirically discover
that under a value of 200, we faced an underfitting response, while with a value over 300,
we got overfitting with no generalization techniques. Therefore, we designed a uniformly
distributed sequence with differences of 10 units per step.

Now, by considering the tuned configuration described in table 7.4, the validation res-
ults of the tuned XGBoost outperform the last trained models. In particular, the resultant
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Table 7.4: Grid with the hyperparameters involved during the cross-validation search.

Parameter Values Optimal

Dmax 5, 6, 7, 8, 9 7
DTs {200 + 10i}10

i=0 250
η 0.1, 0.05, 0.02, 0.01 0.1
γ 0.075, 0.1, 0.125, 0.15 0.1
λ 0.2, 0.25, 0.3, 0.5 0.25

array (F1, Acc, AUC) is positioned beyond the last ones, indicating better behavior when
classifying, generalizing, and avoiding mismatching.

Table 7.5: Evaluation of the classification task with XGBoost tuned as table 7.4 states.

Precision Recall F1-score Accuracy AUC

XGBoost tuned 0.8333 0.6028 0.6996 0.7305 0.7915

For a further assessment of the tuned classifier, we need to plot the rates of success-
failure of the values of 4.1 as a way to represent and complement the evaluation metrics.
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Figure 7.4: Evaluation curves of the XGBoost after the hyperparameter tuning. From left to right, it
is shown: First, the Precision-Recall tradeoff for different probability thresholds with its
average precision (AP). Second, the ROC curve with its AUC value (AUC). Third, the
Type I and Type II error tradeoffs in percentage, known as Detection Error Tradeoff.

Source: Own elaboration.

7.1.4.3 Feature importance

The classification has been conducted through the sequential process of the input features
X. Once the training phase is done, we can study the impact of the model of the selected set
of variables (Ai, Ci, Ei, Hi, Si, Ri, RL

i , RU
i ). As we explained in section 4.1.5.3, the XGBoost

method is a GTB ensemble architecture, then we can extract the resultant assessment of
each feature when classifying. The table embedded into the Fig. 7.5 shows the importance
of each feature for the trained models.
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Figure 7.5: Feature importance illustrated as a heat map of the model weights with values from 0
(white color) to 1 (red color). Rows from 1 to 4 correspond to the results for the original
dataset. Rows from 5 to 8 correspond to the results with the ADASYN technique. The
last row is the combination of ADASYN plus hyperparameter tuning.

Source: Own elaboration.

One of the most significant points is the relevance gains associated with the eco-
nomic and health dimensions. For the economic variable, the minimal value achieved has
changed from 0.0892 to 0.1689, which is almost a twice increment, and for the health one,
the change was from 0.0798 to 0.1912, i. e. more than double. For the maximal values, we
can note in the case of GBoost that the combination of both means varied from 13.45%
to 62.97%, which means an increase of its predictive power of 49.52 percentage units. We
can also see a clear decreasing impact of the MCDM relative proximity values (R, RL, RU)

when applying the synthetic oversample. Nevertheless, the sum of them means the 19.63%
of the decision in its lowest case (XGBoost) and 44.01% in its greatest case (Random Forest).

It is interesting to check that before the oversampling technique was applied, the cognit-
ive variable got a significant impact on the predictions. For the XGBoost case, more than
the fifth part of the bundle depended on the C variable. On another note, the most stable
feature is the social one because its variation has not been compromised by the ADASYN
technique.

For the particular case of the optimized extreme gradient boosting model, it is neces-
sary to emphasize that over half of the forecast impact (53.41%) is due to the economical-
sanitary situation of the student before their entry into the university. By adding the social
dimension, it raises to 65.48%. Since none of them are directly correlated with the academic
effort, it makes us think, once again, that marginal ditching is a major concern in countries
such as Colombia because our model has succeeded in the 71.12% of the cases.

For a further visualization that illustrates the variation between feature importance,
Fig. 7.5 shows a positional heat map of such values in a scale of [0, 1]. All the variations pre-
viously mentioned have been reflected in such a chart. Due to the color mapping, we can
see that the decision-weighted scheme varied from the (R, RL, RU) TOPSIS-array (imbal-
anced set) to the (E, H) features (synthetic set). As far as classifiers are concerned, Random
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Fail PassFeatures density plot without oversample

(a) Density distribution of the features with the imbalanced approach.

Academic Cognitive Economic Health Social Ranking Min Max

Fail PassFeatures density plot with ADASYN

(b) Density distribution of the features with ADASYN approach.

Figure 7.6: Comparison between feature distributions with the different approaches implemented.
Source: Own elaboration.

Forest has been the model with minor modifications of their relative importance weights
after the oversampling. It might explain why it has been the model with the best R and F1

score in both approaches.
Regardless of the results obtained, we can say that the TOPSIS feature extraction has

been very supportive of the classification problem. When we had no balance over our
sample of students, the three values contributed to finding the correct response. Once we
obtained a balanced case, even though their impact decreased, they still greatly impacted
the decision making. On average, their importance meant the 28.50% of the weighted
system.

Finally, we want to check the impact of the ADASYN technique on our dataset. To this
effect, Fig. 7.6 shows the difference with regard to density before (Fig. 7.6a) and after
(Fig. 7.6b) the ADASYN algorithm is applied.

7.1.5 Conclusions

One of the keys to academic success is the early detection of difficulties so that it allows the
institutions to execute actions to correct them. With this in mind, machine learning imple-
mentation enables the estimation of future outcomes that could help academic institution
managers to take actions that increase academic performance.

In this paper, we have developed a decision-support system that predicts academic fail-
ure considering only information from students prior to their entry into the university. Our
system consists of an XGBoost predictor fed by SEA-UIS data and TOPSIS-based features.
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In addition, the underlying imbalanced problem has been handled by implementing the
ADASYN technique. For the predictive task, we have achieved a precision of 0.8333. When
comparing our predictive model with other baselines, we have obtained better perform-
ance in comparison with other decision tree models. In this manner, our systems enable
the implementation of a priori countermeasures for the Universidad Industrial de Sant-
ander.

7.1.6 Python implementation

The script that performs the process for training the dataset and obtaining the results
shown in 7.1.4.1 is presented in Script 15 (§ C.1) as a continuation of Script 3 (§ A.2).
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7.2 mcdm & ai-case 2: multiple-criteria decision making approach for

an in-depth benchmarking of supervised machine learning models

This case study is presented as a continuation of the problems studied in § 6.2 and § 6.3.
Our aim is to present an MCDA scheme to select the best possible AI model from a
set of alternatives assessed in different aspects regarding their performance. Then, the
underlying problems are solved by means of artificial intelligence models, but the final
step is approached with multiple-criteria decision-making techniques.

7.2.1 Experiment Setup

In the field of artificial intelligence, the evaluation process is one of the main stages before
the model deployment. Owing to the complexity associated with the supervised machine
learning techniques, there exist multiple manners to carry out the evaluation phase. In
such a task, the goodness of fit through measures of the model’s predictive power has been
widely studied. When comparing the performance among different algorithms, methodo-
logies, and/or ensembles; most of the final decision is usually given by a single statistic.
However, it would be a big mistake if the model selection just depended on a single at-
tribute. Furthermore, it is important to take into account that not only accuracy should be
considered when evaluating, but also other attributes such as computational cost and size
that affect the implementation of the AI solution. For this reason, benchmarking machine
learning algorithms is a complex and time-consuming task. In this case study, we have
designed an automatic work routine that contrasts the different results after an in-depth
empirical analysis of supervised models. We propose an integrated end-to-end system
that generates a k-fold cross-validation from a given dataset and a subsequent fuzzy un-
weighted multiple-criteria decision-making approach as a ranking system.

7.2.2 Literature review

The comparison of supervised algorithms haven approached in different ways. With an ex-
perimental purpose, Belavagi and Muniyal (2016) reported the performance results of basic
data mining classifiers for automatic intrusion detection. In a similar way, Sujatha and Ma-
halakshmi (2020) and Malakar et al. (2018) conducted the model evaluation followed by
a graphic comparison. A major contribution was given by Peng et al. (2008), where the
authors designed a novel multiple-criteria mathematical programming scheme for model
benchmarking. Withing the Multiple-Criteria Decision Analysis approach, Kou et al. (2012)
utilized various MCDM methods with a final use of Spearman’s rank correlation coefficient
to resolve differences among the methods. Other authors as Mohammed et al. (2020), Malik
et al. (2022), and Shakor (2022) implemented single techniques, Entropy, AHP-TOPSIS, and
TOPSIS respectively, for the final selection of the best ML model. Motivated by the analysis
of uncertainty in data, Sahu et al. (2015) used Fuzzy-MCDM, in particular fuzzyTOPSIS,
considering linguistic qualitative criteria by means of trapezoidal fuzzy numbers. In the
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same line, Awodele et al. (2020) implemented fuzzy-AHP for triangular-fuzzy numbers
and Salih et al. (2022) for Fermatean fuzzy sets. Out of the outranking MCDM methodo-
logy, Nandy and Singh (2021) implemented a fuzzy-DEA scheme for calculating efficiency
ratios of the different data mining alternatives. Apart from MCDA methodology, Ali et al.
(2022) analyzed the robustness of machine learning algorithms by means of data perturb-
ation for genome sequence classification of SARS-CoV-2.

As we indicated, the benchmarking task requires long runtimes together with a high pro-
gramming load. So, this stage is generally avoided or even omitted from the AI-operating
schedule. As a manner to solve this issue, there have been various attempts at software
automation. In particular, we would like to highlight PyCaret (Ali, 2019) and LazyPredict
(Pandala, 2019). Both libraries prepare the data pipeline and a training phase for various
ML algorithms depending on the objective of the problem, but they present a final report
in distinct ways.

7.2.3 Methodology

For the remaining of the case study, it is assumed that the reader has fully understood the
methodology presented in § 6.2.2 and § 6.3.3 since here we discuss topics with respect to
both cases. The methods implemented to carry out the problems differ with respect to the
experimental datasets. This distinction is due to the different machine-learning approaches.
Despite the fact that both problems have a supervised background, one is a regression
task and the other is a classification task. The illustration of the step-by-step methodology
conducted is shown in Fig. 7.7.

Train data k-fold
cross-validation

LR-Fuzzy 
transformation FUW-MCDM Ranking

system

STEP 1 STEP 2 STEP 3 STEP 4 STEP 5

Figure 7.7: Description of the methodology implemented throughout this case study as a flowchart.
Source: Own elaboration.

7.2.3.1 k-fold cross-validation

In the field of statistics, the estimation of prediction error is crucial when evaluating a
fitted ML algorithm (Ljung, 2002). A widely utilized method for estimating such errors is
cross-validation, which validates the predictive effectiveness of a statistical learning model
(Browne, 2000). The first known application of cross-validation was presented in Mosier
(1951), where the author evaluated a linear regression equation. In artificial intelligence,
the selection of the best-performing model is usually made by means of cross-validation
(Yang, 2007). Although, it is worth mentioning that such a search criterion would just
lead to the best empirical model evaluated rather than a better manner for estimating the
prediction error (Fushiki, 2011).
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Even though many researchers apply the so-called leave-one-out cross-validation, in
which the train and test sets are fixed during the entire fitting process, it is more than
recommendable to implement the k-fold cross-validation (Fushiki, 2011). The motivation
of the k-fold is to split the training sample in k ∈ N different ways so that the cross-
validation can be conducted for the k splits. It is easy to note that this strategy is more
profitable from a computational point of view.

In Fig. 7.8, we have graphically represented our particular implementation of k-fold
cross-validation for our case studies. The only difference between the cases is the set of
algorithms chosen for the experimental comparison.

Dataset

k-fold
cross-validation

Selection of
optimal 

parameters

Model
evaluation

Train split Test split

Model
fitting

Model selection

Figure 7.8: Flowchart to implement a k-fold cross-validation procedure from a given dataset.
Source: Own elaboration.

Motivated by the composition of the CIPIC dataset, in both problems (regression and
classification) we have set k = 9. The main difference is that the fold partitioning for CIPIC
is made by taking into account the subject in the study, whilst for the AstraZeneca case the
data split has been randomized.

7.2.3.2 LR-Fuzzy transformation

Once the k-fold cross-validation has finished, we obtain a k different set of results. In most
cases, the user just considers the top-performing model according to a certain measure.
However, this criterion is not a good practice due to the selected model has solely shown
the best performance in an empirical way, as we discussed in § 7.2.3.1. In this way, such
misconduct would lead to a static solution in which just one experiment is contemplated.
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In our case, we have decided to take into account every single result within the k-fold
cross-validations technique, thus leading us to a more integrated evaluation system. For
this purpose, we implement a fuzzy transformation (as described in § 3.3) from the set of
scores S = [sij], in which i ranges from one to the number of experiments and j ∈ {1, . . . , k}.
The algorithm for fuzzy transformation is presented as follows:

Step 1 Extract the score components after k-fold cross validation per each alternative as
S = [sij] where i stands for the number of alternatives and j for the number of k-fold
cross-validations conducted.

Step 2 Per each alternative, sort the vector (si1, . . . , sik) in ascending order, i. e. as a new
vector Ri = (ri1, . . . , rik) so that ri1 ≤ · · · ≤ rik.

Step 3 Transform to trapezoidal fuzzy number as T̃ = (T1, T2, T3, T4), where

T1 = max{ri1, µRi − 1
2 σ2

Ri
},

T2 = min{rik, µRi +
1
2 σ2

Ri
},

T3 = min{ri1, µRi − 1
2 σ2

Ri
},

T4 = max{rik, µRi +
1
2 σ2

Ri
},

(7.5)

in which the components of T are the vertexes of the support of its membership
function, instead of the LR-fuzzy representation previously defined. In order to ease
the notation, µRi and σRi stand for the mean and standard deviation of Ri respectively.

Step 4 Construct the fuzzy decision matrix X̃ = [x̃ij] per each alternative i and cross-
validation j.

7.2.3.3 Fuzzy Unweighted Multiple-Criteria Decision Making as ranking system

Given the corresponding decision matrix, X̃ = [x̃ij] so that x̃ij = (xL
ij, xR

ij , αL
ij, αR

ij)LijRij from
the set of scores S = [sij], our aim is to select the best machine learning model from the
set of alternatives. As we discussed in Chapter 3, the outranking field of Multiple-Criteria
Decision Making gives us tools for sorting a set of alternatives when there exist multiple
conflicts of interest. In this way, we can apply an outrank methodology for helping final
users to select the appropriate alternative for their needs.

In this particular case study, we have implemented a fuzzy transformation in order to
ascertain the uncertainty of the functionality of a model. In addition, we did not want to at-
tach our personal bias to the final decision, since it would corrupt the resulting ranking. So,
we have incorporated an unweighted technique to avoid direct assignment of importance
per each attribute. As a result, we have implemented the FUW-MM algorithm presented
in § 3.5 to carry out the decision-making stage.

For an additional comparison among the FUW-MM outputs, we have selected 6 different
configurations. They are the result of combining the exponent p ∈ {0, 1, 2} in Step 5 and
the operator Φ as the vector ℓ2 normalization and Min-Max normalization (see Table 3.1)
in Step 4. Furthermore, the fuzzy order relationship ⪯ to obtain the score from the M̃p

i is
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computing the distance from LR-fuzzy zero (0, 0, 0, 0) to M̃p
i . Then, when the higher the

distance is, the more valuable the score is.

7.2.3.4 Feature selection for the ranking system

We have decided to select four evaluation metrics that measure the fitting of the predictions.
They are indicated in the following list:

• Regression task: Root Mean Squared Error (RMSE 4.50), Mean Absolute Percentage
Error (MAPE 4.52), Median Absolute Error (MedAE 4.54) and R2 (4.58).

• Classification task: accuracy (ACC 4.36), Fowlkes–Mallows index (FM 4.44), Mat-
thews correlation coefficient (MCC 4.46) and AUC (4.47).

Moreover, other computer-based attributes have been collected to complete the MCDM
stage. Regardless of the task performed, we have monitored the times (in seconds) associ-
ated with:

• Training: Time required for loading, initializing, and fitting the model.

• Predicting: For our entire dataset (train and set), the time needed to process all the
input samples.

• Saving: Time required for saving the model in our local working directory.

Finally, we have stored in the working space each model once the fitting and prediction
have been conducted. Then, we have the size of each model represented as the attribute:

• Storage: Size in MB of the models stored locally.

7.2.4 Forecast of the AstraZeneca close price with the use of stock market regressors

The experimental dataset utilized for this section is the same as the one presented in
§ 6.2. It has been tracked and gathered the stock features of AstraZeneca from 2018 to the
second semester of 2021. As a result, we have stored data of the company creating a time
series of 1250 days with 10 different variables. As well as the past study, we have done
a feature selection of the open, net, and volume regressors in order to make a regression
for predicting the close price of the company. Hence, the dataset is presented as D =

{Xi, yi}1250
i=1 , in which Xi ∈ R4×R5. The data pre-processing is also the same, i. e. there has

been applied the statistical typification of Eq. 6.15 to normalize data. The experiments are
divided into two stages. First, an experimental proof in which AstraZeneca’s close price is
studied as a decomposable time series. Second, the methodology described is implemented
over a set of regressor models.
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7.2.4.1 Preliminary test: Regression analysis via additive models

Given that the information on the stock market has been tracked day-by-day, it is inter-
esting to see whether the time series prediction can be approached by means of additive
models for non-linear regression. To this effect, we apply Prophet (Taylor and Letham,
2018), a tuneable software robust to missing data and seasonal effects that produces fore-
casting at scale. It is an additive model based on three components: trend, seasonality, and
holidays. They are combined in the following equation:

ŷt = g(t) + s(t) + h(t) + εt. (7.6)

To make the forecast, g(t) is the trend function that models non-periodic changes in
the dependent variable, s(t) incorporates the periodic changes (i. e. seasonality), and h(t)
represents the effects of holidays. The error term εt is assumed to be normally distributed.
Similarly, it could be reformulated in the multiplicative version.

In practice, the effectiveness of Prophet forecasting financial markets has been compared
with other ML regressors such as ARIMA (Garlapati et al., 2021) or LSTM (Fang et al.,
2019), as well as other applications such as cloud management (Daraghmeh et al., 2021)
and waste generation in bitcoin mining (Jana et al., 2022).

For this preliminary test, we have applied the Prophet 1.1.1 version of Python over the
AstraZeneca dataset. The motivation of this experiment is to ascertain whether the trend,
seasonality, and holiday effect are good descriptive variables for regression analysis of the
close price of the company. With this purpose, we have fitted the Prophet model consider-
ing the three stock regressors to forecast the close price of the pharmaceutical enterprise.
In Fig. 7.9 and Table 7.6 are shown the forecasting and the evaluation respectively.

2021-01 2021-02 2021-03 2021-04 2021-05 2021-06

6000

6500

7000

7500

8000

Prophet test forecasting

Real
Predicted
Uncertainty

Figure 7.9: Prophet forecasting made for the testing dataset in which the uncertainty in the predic-
tion has been considered.

Source: Own elaboration.

Table 7.6: Results obtained in the forecasting the test data of AstraZeneca for the Prophet model.

RMSE MAE MedAE MAPE R2

Prophet 484.62 291.65 59.95 39.11 -1.1626
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The conclusion extracted from this preliminary test is that AstraZeneca is financially a
strong company since its stock behavior cannot be estimated by means of seasonality or
holiday patterns. As we can see, the forecast from 2021 is completely chaotic, in which
even the MedAE achieves just under 60 dollars of error. Then, we can say that the Prophet
additive model is not able to fit the company’s behavior from the financial regression
standpoint.

7.2.4.2 Main problem: Selection of the best regression model

The main purpose is to obtain the best fitting possible for the close price of the pharmaceut-
ical company. To this effect, we have selected five different regression models in order to
benchmark the performance among them. For this task, we have selected four tree-based
machine-learning regressors and a Gaussian process regressor model. The tree regressors
are Random Forest (RF, Ho, 1995), XGBoost (XGB, Chen and Guestrin, 2016), LightGBM
(LGB, Ke et al., 2017), and CatBoost (CatB, Prokhorenkova et al., 2017). This selection is not
trivial since this model set is commonly used for comparison purposes (see Natekin and
Knoll (2013) or Bentéjac et al. (2021)). In the same line, we have selected a Gaussian pro-
cess regressor model (GPR, Seeger, 2004) with radial basis function (RBF, Buhmann, 2000)
kernel (for detailed information about GPR properties see Schulz et al., 2018). GPR models
have shown great performance in various regression tasks (for instance: motion analysis
Kim et al., 2011) and efficiency for large datasets (Banerjee et al., 2012). In addition, the
use of gradient boosting machines and Gaussian processes as benchmark comparisons in
data mining is quite extended in the ML literature (Yetilmezsoy et al., 2021).

For the configuration set up for the experiment, the loss function has been the root mean
square loss for the gradient boosting algorithms except for the GRP, in which the L-BFGS-
B1 was selected (Zhu et al., 1997). In each data split, we have concatenated each component
as a one-dimensional data input so that we turned four vectors in R30 into a single vector
in R120. We have additionally modified the random state in each iteration by multiplying
13 by the iteration number.

Since the problem is given as a regression task, the k-fold splitting is not as simple as in
the classification problem. In order to prevent non-significant outputs, we have defined a
sliding window method with 8 days gap and size of 770 samples partitioned as 70 : 700
relation between test and train. The sliding window strategy is broadly applied for time
series forecasting as in Alberg and Last (2018) or Suresh et al. (2020). The results after
training 9-fold cross-validation are displayed in Table 7.7 with an LR-fuzzy shape. The
results are essentially stable, where the variation of the RMSE ranges from 37.98 (GPR)
to 47.08 (XGB). However, it is remarkable the oscillation for the RMSE in the CatBoost
algorithm, in which the maximum difference for the loss function was 100.65. Thus, the
maximum standard deviation was also obtained by the CatBoost regressor, with a value of
33.17 units.

For adding visual representations, in Fig. 7.10 is depicted as the resulting prediction for
the last cross-validation conducted for the experiment. We have decided to choose the last

1 The acronym stands for Limited-memory Broyden–Fletcher–Goldfarb–Shanno with Bounds algorithm.
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Table 7.7: Fuzzy decision matrix of the regression models for the AstraZeneca dataset regarding evaluation metrics, processing times (seconds) with five
significant figures, and computational sizes (MB). The values per each criteria are presented according to Eq. 7.5 after the 9-fold cross-validation
process.

RMSE MedAE MAPE R2

Model T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4

XGB 114.22 122.81 137.18 161.31 62.197 70.433 81.621 99.000 1.2012 1.2781 1.3954 1.5703 0.6906 0.7426 0.8099 0.9079
LGB 108.22 118.26 133.58 151.53 69.619 80.093 89.479 100.380 1.1378 1.2638 1.4221 1.6131 0.6927 0.7641 0.8222 0.9048
CatB 110.65 125.31 158.49 211.30 73.577 86.920 110.468 144.206 1.1923 1.3630 1.7085 2.2469 0.5227 0.6699 0.7889 0.9077
RF 110.46 116.84 131.46 157.42 70.697 75.726 81.984 88.449 1.1927 1.2646 1.3619 1.5273 0.7351 0.7704 0.8255 0.9139
GPR 113.75 127.99 139.01 151.73 68.064 81.869 96.591 117.720 1.1324 1.3580 1.5299 1.6701 0.7041 0.7303 0.7969 0.9087

Training (s) Predicting (s) Saving (s) Storage (MB)

Model T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4

XGB 1.5226 2.4342 2.8721 2.9309 0.0054 0.0058 0.0070 0.0093 0.0119 0.0130 0.0150 0.0191 0.8540 0.8579 0.8618 0.8674
LGB 4.8725 5.5865 7.1366 9.7139 0.0280 0.0321 0.0433 0.0603 0.0585 0.0641 0.0774 0.0949 2.7671 2.7768 2.7870 2.7958
CatB 9.4103 12.2631 16.2888 18.5829 0.0059 0.0081 0.0109 0.0133 0.0039 0.0061 0.0088 0.0106 1.1046 1.1048 1.1049 1.1051
RF 25.8278 27.0226 29.7354 32.6173 0.1282 0.1299 0.1490 0.1885 0.4436 0.5098 0.5854 0.6732 55.3713 55.5291 55.6091 55.6758
GPR 3.8146 6.2284 10.9514 19.6338 0.0773 0.0911 0.1072 0.1303 0.0067 0.0202 0.0316 0.0399 4.2449 4.2624 4.2682 4.2694
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time series split for our sliding window because the output has a similar structure to the
studied in § 6.2. Even though it is evident that the default configuration of the models
implemented returned an overfitted prediction, our aim is to evaluate and benchmark the
models under the same conditions. In any case, the five forecasts are good enough to carry
out a benchmarking process.

Table 7.8: Results obtained in the forecasting the last cross-validation of AstraZeneca for the exper-
imental models.

RMSE MAE MedAE MAPE R2

XGB 114.22 89.17 65.96 1.2011 0.9079
LGB 116.14 84.78 69.61 1.1377 0.9048
CatB 114.37 92.04 73.57 1.2359 0.9077
RF 110.46 88.46 76.57 1.1926 0.9139
GPR 113.75 83.62 68.06 1.1323 0.9087

In general, we can see a good test fit which it is shown the robustness of the algorithms.
The evaluation obtained per each model is presented in Table 7.8. It is worth mentioning
that the lowest R2 obtained is higher than 0.9, indicating a great forecast in terms of ad-
justing the AstraZeneca stock behavior. Moreover, the highest percentage error in mean
achieved has been lower than 1.25%, a value considerably low considering the close prices
attached to the pharmaceutical.

When contrasting Table 7.8 with Table 7.7, we can notice that the last iteration for the
9-fold cross-validation was one of the best rated in terms of evaluation. With respect to the
reference loss function, the minimum value was obtained in 3 of the 5 algorithms (XGB, RF,
and GPR). For the remaining ones, the difference with the minimum was 7.92 for the LGB
and 3.91 for the CatB. In either case, it is remarkable that in Table 7.8 the R2 coefficient
matches with the αR values in Table 7.7, indicating the best result possible in the evaluation
set of 9 validations.

Once we were sure that the 9-fold cross-validation returned acceptable results, we ap-
plied the FUW-MM technique for ranking the regression models. In this part of the bench-
marking stage, we generated six different ranking systems in order to compare both the
models and the new FUW-MCDM system. In Table 7.9 is displayed such ranking system
disaggregated per normalization function and p-norm.

It is easy to note that the Extreme Gradient Boosting Machine has been the best-ranked
regressor model, achieving the first position in every of the decision-making systems. In
practice, the XGBoost model has shown excellent computational features, with the lowest
times in every criterion but saving cost, even though it did not have good results regarding
the predictive performance. For the rest of the models, it is worth noting the Random
Forest case. Despite having obtained great fittings for the stock price, with the minimum
MAPE and maximum R2, its position in the ranking has placed in the last position due to
the long delays in its implementation. Another similar example is the case of LightGBM,
in which it succeeded in the prediction task, with the lowest loss for the common objective
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Figure 7.10: Forecasting of the close price of AstraZeneca’s stock value for the different regressor
models in the last cross-validation. The vertical lines indicate the test split for data.

Source: Own elaboration.

Table 7.9: Score and ranking systems for the AstraZeneca regressor models by the FUW-MM tech-
nique disaggregated per normalization function and p-norm.

ℓ2 vector Min-Max

p = 0 p = 1 p = 2 p = 0 p = 1 p = 2

XGB 1.5115 (1) 3.9256 (1) 5.6409 (1) 1.7859 (1) 4.6357 (1) 6.4149 (1)
LGB 1.4803 (2) 3.8726 (3) 4.8710 (3) 1.6614 (2) 4.4391 (2) 6.1067 (2)
CatB 1.4520 (3) 3.8876 (2) 4.2954 (4) 1.3328 (4) 4.3932 (3) 5.9011 (3)
RF 1.2438 (5) 3.0410 (5) 4.2747 (5) 0.4800 (5) 2.7616 (5) 3.7194 (5)
GPR 1.4428 (4) 3.8131 (4) 5.3648 (2) 1.5082 (3) 4.2935 (4) 5.8072 (4)

function (RMSE) but obtained the highest times in comparison with the other models.
Anyway, the position of the LGB in the FUW-MM ranking has ranged between second and
third place.
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7.2.5 Front-Back sound discrimination on HRTF data

The experimental dataset utilized for this section is the same as the one presented in
§ 6.3. The 2500 measurements for the 45 subjects presented in the CIPIC dataset have been
processed in the same way, however, we have now delimited the spherical region into two
different sources: Front and Back. It is easy to note that now we face a binary classification
problem in which the classes are complementary to each other, i. e. Bernoulli process. In
order to ease the source localization, we have removed the lateral samples considered in
the last experiments, so the lateral up and down have not taken part in this case study.
As a consequence of such discrimination, it has been removed 200 positional areas from
the original dataset, which means a loss of 9000 HRTF binaural signals from the 56250
that had been considered in § 6.3. Another significant difference with respect to the other
problem is that we have now aggregated the ipsilateral and contralateral channels of the
recordings via pair-wise addition of components in each frequency band as the authors in
Zieliński et al. (2022).

Regarding the k-fold cross-validation, we have decided to set k = 9 because the original
data split considered 36 subjects for training and 9 for testing. The idea is to present a more
robust system since it is not mixed the different signals for different subjects. By doing so,
during the fitting stage, the model has not seen any sample of any subject in the test set.

For a better understanding of the experimental procedure, Fig. 7.11 depicts the data
preparation plus the k-fold cross-validation and the front-back source discrimination.

Aggregation

Ipsilateral

Contralateral

Figure 7.11: Linear Discriminant Analysis implementation for the Front and Back audio sources
presented in the CIPIC dataset.

Source: Own elaboration.
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7.2.5.1 Preliminary test: Dimensionality reduction via Linear Discriminant Analysis

In order to show a first attempt to classify the CIPIC source locations, we have implemen-
ted a Linear Discriminant Analysis approach to discover whether exists linear combina-
tions of the features (frequency bands) that separate the data domain. The point of the
experiment is also to generate a low-dimensional representation of the HRTF signals with
this dimensionality reduction and illustrate it graphically. In Fig. 7.12 is depicted a two-
dimensional representation of the LDA score per each audio instance. Although there is
no linear separation between the projection of each class, we can see a boundary region
with notorious differences in front-back localization.

0 1000 2000 3000 4000 5000 6000 7000 8000

4

2

0

2

4

Linear Discriminant Analysis for 1-channel HRTF sources
Front
Back

Figure 7.12: Linear Discriminant Analysis implementation for the Front and Back audio sources
presented in the CIPIC dataset.

Source: Own elaboration.

We have additionally extracted the evaluation scores using the LDA algorithm as a
binary classifier for the entire CIPIC dataset. The results are shown in Table 7.10.

Table 7.10: Test results obtained by Linear Discriminant Analysis in the predictive task of CIPIC for
test data.

ACC AUC MCC FM

Linear Discriminant Analysis 88.74 88.56 78.20 80.29
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From Table 7.10 and Fig. 7.12 we can extract interesting conclusions. Apart from hav-
ing great discrimination between front-back spatial sources, with a 0.8856 AUC score, we
can also spot clear differences regarding LDA components. This has been reflected in the
results, especially with the MCC and FM coefficients. Regarding the positive and negative
rates, it has been shown that LDA has been able to distinguish between classes since the
accuracy measure is quite similar to AUC.

7.2.5.2 Main problem: Selection of the best classification model

In order to discriminate the front and back sound sources of the HRTF spatial sound ex-
cerpts, we have selected five machine learning models to carry out the binary classification
task. As we mentioned, the models had an input vector defined in R257 with the aggregated
Mel-scale frequency bands of the ipsilateral and contralateral channels of each HRTF signal.
The models selected have been the K-Nearest Neighbours (KNN, Cover and Hart, 1967),
Multi-Layer Perceptron (MLP, Rosenblatt, 1963), Support Vector Machine (SVM, Vapnik,
1992), logistic regression (Logistic), and XGBoost (XGB). The choice of these models is not
trivial since KNN, SVM, and MLP are usually compared in terms of performance, see
for instance Tsai et al. (2009) or Dino and Abdulrazzaq (2019). Moreover, we also wanted
to add an explainability phase, in which the feature importance from logistic regression
and XGBoost can be easily extracted. Another point to remark on is the use of Logistic
regression as a benchmark since it is one of the most straightforward models in data min-
ing. Thus, we can compare the predictive power of the other models with respect to this
baseline.

The models have been trained with the default parameters set by Sklearn. In this way,
it has been implemented KNN with an automatic learning algorithm, MLP with log-loss
function and Adam optimizer, SVM with RBF kernel, Logistic regression with L2 pen-
alty and L-BFGS solver, and XGBoost with log-loss. As we described the 9-fold cross-
validation has been performed by dividing the number of subjects, 45 in total, instead of
audio samples. So we have generated a 9:36 test-train split with the same split ratio as
utilized in § 6.3.

The results obtained after the 9-fold cross-validation stage are presented in Table 7.11,
where they are shown in LR-fuzzy shape. It is interesting to highlight that the minimum
AUC score reached has been 0.81 for the Logistic model, thus proving great performance
in the binary classification conducted. In any case, the mean for the area under the curve
metric has been superior to 0.9 for each of the other classifiers. It is easy to note that,
in terms of machine learning evaluation, the SVM has outperformed the remaining al-
gorithms with a minimum accuracy of 0.9493, this value being greater than the maximum
for every other model but MLP. As we assumed, Logistic regression has been the model
with the worst performance in the four evaluation metrics selected, however, it is worth
mentioning that it is quite efficient in terms of usage and applicability of its low predictive
cost and computer storage.

For further information about the models’ performance, we have displayed the confusion
matrices per each cross-validation in Fig. 7.13. We have highlighted the hit ratio in a green
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Figure 7.13: Confusion matrices as hit ratio for the different 9-fold cross-validations (rows) and
models implemented (columns). The ratios are presented in a gray colormap.

Source: Own elaboration.
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Table 7.11: Fuzzy decision matrix of the classification models for the CIPIC dataset regarding evaluation metrics (percentage), processing times (seconds) with
five significant figures, and computational sizes (MB). The values per each criteria are presented according to Eq. 7.5 after the 9-fold cross-validation
process.

ACC AUC MCC FM

Model T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4

kNN 90.71 91.85 92.90 94.25 90.56 91.72 92.80 94.21 81.99 84.16 86.11 88.56 83.33 85.18 86.91 89.19
MLP 93.36 95.55 96.77 97.76 93.48 95.56 96.73 97.73 87.29 91.30 93.62 95.55 87.64 91.55 93.77 95.63
SVM 94.93 96.09 96.79 97.34 94.94 96.08 96.76 97.28 89.87 92.23 93.66 94.80 90.38 92.51 93.81 94.84
Logistic 80.88 84.30 86.84 88.78 81.00 84.35 86.74 88.58 62.25 69.44 74.54 78.50 69.20 73.92 77.53 80.42
XGB 86.49 89.03 90.48 91.36 86.48 88.97 90.35 91.17 72.96 78.46 81.69 83.76 76.64 80.64 82.99 84.49

Training (s) Predicting (s) Saving (s) Storage (MB)

Model T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4

kNN 0.0076 0.0079 0.0088 0.0103 30.4348 33.5744 38.1458 43.6406 0.1443 0.1932 0.2559 0.2955 67.0974 67.0974 67.0974 67.0974
MLP 56.1889 85.2881 121.3578 144.5448 0.3209 0.4256 0.5131 0.6051 0.0146 0.0155 0.0196 0.0265 0.6295 0.6299 0.6307 0.6316
SVM 22.4708 23.5912 24.9391 25.5122 4.6086 4.9301 5.1437 5.2921 0.0180 0.0209 0.0280 0.0367 5.5942 5.8016 6.0794 6.3374
Logistic 30.1764 32.7952 35.7487 39.8029 0.0066 0.0071 0.0076 0.0080 0.0062 0.0072 0.0109 0.0171 0.0030 0.0030 0.0030 0.0030
XGB 44.7915 45.0619 45.4225 45.8712 0.0677 0.0700 0.0725 0.0744 0.0067 0.0076 0.0085 0.0096 0.0730 0.0732 0.0734 0.0735
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scale in order to see the precision in each stage. In this graphic, we can also check that MLP
and SVM have returned a great fit for the HRIR signals since they have reached maximum
ratios of (0.99, 1.0) and (0.98, 1.0) for the front and back labels respectively. For KNN and
XGB, their predictive power has been shown in the second trial, in which the true and
negative ratios were (0.89, 0.99) and (0.86, 0.99) respectively.

From Table 7.11, we have conducted the decision-making stage as stated in § 7.2.3.3.
Table 7.12 contains the six respective ranking systems for the FUW-MM methodology
broken down per normalization function and p-norm.

Table 7.12: Score and ranking systems for the CIPIC classifiers by the FUW-MM technique disag-
gregated per normalization function and p-norm.

ℓ2 vector Min-Max

p = 0 p = 1 p = 2 p = 0 p = 1 p = 2

KNN 0.9685 (5) 2.1956 (5) 2.6101 (5) 0.0000 (5) 2.9074 (5) 3.4982 (5)
MLP 1.0847 (2) 2.7971 (2) 3.9404 (4) 1.4114 (2) 4.4698 (1) 6.1985 (1)
SVM 1.1148 (1) 2.6294 (3) 4.0231 (1) 1.7773 (1) 4.4636 (2) 4.9211 (3)
Logistic 1.0655 (4) 2.8078 (1) 3.9926 (2) 0.9191 (4) 3.3100 (4) 4.5318 (4)
XGB 1.0840 (3) 2.5977 (4) 3.9854 (3) 1.3873 (3) 3.6370 (3) 5.0820 (2)

In this experiment, we have not obtained the best classification model unanimously. It is
obvious that KNN can be considered the worst choice in terms of front-back discrimination
of the HRTF signals. Although its predictive ratios are quite good, the computational task
places it in the last position. For the best classification model, we can conclude that SVM
is the most suitable classifier for the problem of the CIPIC’s excerpts. Our decision is
basically guided by two points. First, the support vector machine has been unique to reach
the top position in the ranking 3 times. Second, SVM has clearly outperformed the other
models according to the evaluation metrics selected. In any case, the performance of MLP
is remarkable as shown in the positions achieved in Table 7.12 and its reduced differences
with SVM. For the Logistic regression and XGBoost, the positions have varied within the
last places of the ranking, except the first place achieved by the Logistic model for the ℓ2

normalization and 2-mean.

7.2.6 Conclusions

We have presented an integrated end-to-end system for benchmarking Machine Learning
models. In this manner, we have conducted an objective comparative study in which the
decision-maker just has to set an appropriate number of experiments and reasonable lower
and upper bounds for the criteria considered. The proposed system is in charge of perform-
ing the analysis and then returning a ranking that will lead to the final model selection by
means of three stages. First, it is performed a k-fold cross-validation. Second, the k samples
are transformed into LR-fuzzy numbers. Third, a novel MCDM methodology (FUW-MM)
is applied to carry out the ranking, thus yielding the decision-making step.
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The applicability of our system has been demonstrated in two distinct supervised tasks:
classification and regression. For this purpose, we have selected two datasets associated
with two complex real-life problems. In order to give a comprehensive comparison, four
evaluation metrics and four computational attributes were considered. Furthermore, in
both tasks five Machine Learning models were assessed. Hence, the decision phase meant
a difficult issue for human benchmarking due to the conflict among criteria and their
different magnitudes. Finally, six different ranking systems were given to compare and
contrast the results obtained per each model.

7.2.7 Python implementation

The scripts utilized for this case study are presented in § C.2, where they are disaggreg-
ated per each experiment in § C.2.1 and § C.2.2 respectively. For the regression of the close
price of AstraZeneca in the stock market, we have displayed the Prophet implementation
(Script 18) and the k-fold cross-validation for time series over the XGBoost, LightGBM,
CatBoost, Random Forest, and Gaussian Regressor Process (Script 17). For the front-back
source localization of signal sources for the CIPIC dataset, we have shown the implement-
ation of the supervised version of Linear Discriminant Analysis (Script 20) and the k-fold
cross-validation for the K-Nearest Neighbours, Multi-Layer Perceptron, Support Vector
Machine, Logistic Regression, and XGBoost (Script 19).
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7.3 summary

In this chapter, two case studies have been approached with a combination of Multiple-
Criteria Decision Making and Artificial Intelligence methodologies. In the first case (§ 7.1),
we have studied the early detection of students’ failure in the Universidad Industrial de
Santander via a tree-based learning algorithm. Thus, we have analyzed the situation of the
university and produced two interesting tools for the Colombian institution. An automatic
ML model (XGBoost) that detects students at risk of academic failure and a dashboard
that indicates the weaknesses of the criteria considered for the university. In the second
case (§ 7.2), an integrated end-to-end system for automatic benchmarking of ML models
has been presented with the aim of easing the model selection stage for decision-makers.
Our system is composed of a k-fold cross-validation, a fuzzy transformation, and a new
MCDM technique, named FUW-MM, that operates with LR-fuzzy numbers and without a
priori weighting scheme. The robustness of our proposal has been shown in two Machine
Learning supervised tasks: classification and regression.



8
C O N C L U S I O N S

During the development of this thesis, we deepened our research in the area of decision
support systems. For this purpose, we based our work on the fields of Multiple-Criteria
Decision Analysis and Artificial Intelligence to cover a large part of the problems related
to decision making. Even though we have already highlighted some relevant points in the
course of the book, this chapter remarks on the major contributions worth mentioning on
the whole.

8.1 contribution 1: design and implementation of unweighted multiple-
criteria decision making techniques

The Chapter 3 of this thesis has associated the development of outranking unweighted
techniques as one of the main goals. The study of the UW-MM, uwTOPSIS, and uwVIKOR
means a breakthrough towards new ways of understanding the field of decision analysis.
The main advantage is that an a priori weighting scheme is not required to implement the
algorithms, instead, a flexible set of feasible solutions Ω allows us to obtain the best and
worst solutions under a set of bounds {(lj, uj)}M

j=1. As a result, we have a set of optimal
pairs that may be combined to give a score that will yield the final ranking. Depending on
the model and the approach some variants can be used to compute such a score. The selec-
tion of these models is determined by the scope of the problem performed since UW-MM
offers fast computations, uwTOPSIS has high complexity attached to computing the rank-
ing by ideal solutions, and uwVIKOR incorporates the notion of compromise solutions.
Furthermore, the optimal solutions, i. e. the optimal weights (WL, WU), can be studied to
analyze how the final scores have been calculated, giving us significant information about
how decisive the criteria have been in evaluating the alternatives.

Intending to give a theoretical background to these methods, we have shown that the un-
weighted approaches generalize the classic ones through the Propositions 3.4.1, 3.4.2, and
3.4.3. In essence, these propositions proved that as long as the bounds satisfy lj = uj = w0

j ,
per each criterion j ∈ {1, . . . , M}, the output of the unweighted versions of WMM, TOP-
SIS, and VIKOR for {(lj, uj)}M

j=1 coincide with the classical one for the weighting scheme
{w0

j }M
j=1.

The applicability and further details about similarities and differences among them have
been discussed in Chapter 5. In particular, two case studies have shown the implementa-
tion of uwTOPSIS and uwVIKOR. Apart from being more flexible techniques, the solutions
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could be analyzed, thus giving interesting information about the attribute importance and
alternative limitations.

8.2 contribution 2: incorporation of the fuzzy unweighted multiple-
criteria decision making approach

Another of the main goals of Chapter 3 is the incorporation of FUW-MCDM techniques.
In § 3.5 is presented a routine for implementing this new methodology, where the addi-
tion of uncertainty and unweighted schemes makes this approach more complete than
the classical one. The core idea is to handle the incertitude presented and help decision-
makers with unique solutions because real problems cannot be considered as static sys-
tems. For applicability purposes, the Fuzzy Unweighted Mean Models method has been
designed for LR-fuzzy numbers and its due computational implementation was presented
in Algorithm 3.4. For theoretical purposes, Proposition 3.5.1 states that the FUW-MM is a
generalization of the unweighted, fuzzy, and classic versions.

The applicability and robustness of the Fuzzy Unweighted Mean Models have been
shown in the last case study § 7.2. In that experiment, the FUW-MM was part of an integ-
rated end-to-end system for Machine Learning models benchmarking. In particular, the
last stage of the process consisted of the implementation of the FUW-MM for selecting the
best model according to its performance.

8.3 contribution 3: application and evaluation of customized artifi-
cial intelligence models in complex environments

In Chapter 6 three case studies were approached from the Artificial Intelligence perspect-
ive. In every case, different methodologies were designed and implemented for achieving
our target, where the customization level was considerably high. As we have shown in
the case studies, all the final models have outperformed the state-of-the-art baselines, so
they could be incorporated and deployed into their respective fields of work. Nevertheless,
solving the problem was not the only objective of the experiments but also the evaluation
of the optimal solution obtained. In general, the final solutions have been analyzed with
the purpose of adding comprehensive information about the model input processing or
representing other input for making a-posteriori comparisons.

8.4 contribution 4: combination of the fields of multiple-criteria de-
cision making and artificial intelligence

This thesis is focused on the study of decision analysis. For this reason, one of our aims was
to utilize the MCDM and AI fields separately and together. By applying these two subjects,
we have shown that they could be combined to reinforce the objective of decision-makers.
First, the scores obtained in outranking MCDM techniques offer significant information
about the alternatives’ performance. Then, the use of MCDM scores as a feature extractor
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can be very useful and beneficial in guiding the Machine Learning models. Second, we
have shown that model benchmarking for Artificial Intelligence solutions can be addressed
by MCDM. More specifically, FUW-MCDM can be used to aid decision markers and over-
come the limitations of human-subjective decisions.

8.5 contribution 5: publication of github repositories

This thesis is structured in theoretical and practical cases with the same level of importance.
Because of this, we have put a lot of effort into programming and documenting every
single detail concerning the experiments conducted. For this reason, we have published
four GitHub repositories that have considerably helped the development of this work.
For reproducibility and sharing purposes, all the packages are publicly available on my
GitHub personal page: Aaron-AALG.

8.6 outlook and future work

Given that the field of decision theory is a very prolific area of research, the continuation
of this work is connected with innovative research opportunities and new market niches
due to their broad applicability. For this reason, it would not be appropriate to finish this
thesis without mentioning potential avenues for follow-up research. In essence, we believe
that the following list of future work is worth proposing.

1. Study the properties of the unweighted versions of other Multiple-Criteria Decision
Making methods. Throughout the thesis, we have focused our attention on some
MCDA outranking techniques. However, this approach could be extended to other
outranking techniques and/or other methods within the MCDM perspective.

2. Apply the Fuzzy Unweighted Mean Models technique in a real decision-making
scenario. The purpose is to create a comprehensive example in which the importance
of the p-mean and the normalization function will be studied together with the use
of LR-fuzzy numbers and fuzzy bounds.

3. Design and program the integrated end-to-end system for automatic model bench-
marking defined in the case study § 7.2 as an open-source solution. The core idea
is to publish a library that reproduces the entire work routine for a given set of Ma-
chine Learning models to benchmark and the number of experiments to carry out
during the k-fold cross-validation. Our system will automatically process the exper-
iment with complete autonomy and will return the output ranking and the optimal
solutions associated.

4. Study more possible combinations of MCDM and AI for decision-aiding. Since we
have shown that ensemble approaches can be very helpful in decision-making, we
must emphasize these automated computer-assisted solutions that really support
decision-makers.

https://github.com/Aaron-AALG
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A
A P P E N D I X 1 : M U LT I P L E - C R I T E R I A D E C I S I O N
M A K I N G C O M P U TAT I O N A L I M P L E M E N TAT I O N S

a.1 implementation of classic topsis and vikor methods

One of the main contribution of this thesis is the publication of our GitHub repositories:
uwTOPSIS (López-García, 2021a) and uwVIKOR (López-García, 2021b). Both repositories
contain the Python modules to implement both unweighted techniques in the Python
programming language. As we discussed in § 3.4, there exists a generalization from the
unweighted approach to the classic one, being this demonstrated in Propositions 3.4.2 and
3.4.3.

Script 1: Example of Python script for applying TOPSIS and uwTOPSIS over a dataset.

1 # Required packages
2 import pandas as pd
3 import numpy as np
4 from uwTOPSIS.uwTOPSIS import *
5
6 # Import the dataset
7 data = pd.read_csv("dataset . csv")
8 M = data.shape[1]
9

10 # TOPSIS parameters
11 directions = np.repeat("max", M)
12 L = np.repeat(1/(M+1), M)
13 U = np.repeat(1/(M-1), M)
14 weights = np.repeat(1/M, M)
15 norm = "euclidean"
16 p = 2
17 alpha = 0.5
18 forceideal = False
19 epsilon = np.finfo(float).eps
20
21 # Compute TOPSIS methods
22 uwT = uwTOPSIS(x, directions, L, U, norm, p, weights, alpha, forceideal)
23 try:
24 T = uwTOPSIS(data, directions, L = weights, U = weights + epsilon)
25 except:
26 T = uwTOPSIS(data, directions, L = weights - epsilon, U = weights)

Script 2: Example of Python script for applying VIKOR and uwVIKOR over a dataset.

1 # Required packages
2 import pandas as pd
3 import numpy as np
4 from uwVIKOR.uwVIKOR import *
5
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6 # Import the dataset
7 data = pd.read_csv("dataset . csv")
8 M = data.shape[1]
9

10 # VIKOR parameters
11 directions = np.repeat("max", M)
12 L = np.repeat(1/(M+1), M)
13 U = np.repeat(1/(M-1), M)
14 weights = np.repeat(1/M, M)
15 v = 0.5
16 epsilon = np.finfo(float).eps
17
18 # Compute TOPSIS methods
19 uwV = uwVIKOR(x, directions, L, U, v, forceideal)
20 try:
21 V = uwVIKOR(data, directions, L = weights, U = weights + epsilon)
22 except:
23 V = uwVIKOR(data, directions, L = weights - epsilon, U = weights)

a.2 script for an academic performance indicator using flexible multi-
criteria methods

This subsection is particularly dedicated to the Python implementation of uwTOPSIS to
obtain the results for the students of Universidad Industrial de Santander.

Script 3: Implementation of the uwTOPSIS method for the entire SEA-UIS dataset.

1 import pandas as pd
2 import numpy as np
3 from uwTOPSIS.uwTOPSIS import *
4
5 # Definition of the eta normalization
6 def eta(x, A, a, b, B, k1, k2):
7 def f(x, v1, v2, k):
8 return (1-np.exp(k*(x-v2)/(v1-v2)))/(1-np.exp(k))
9 if A <= x and x < a:

10 z = f(x, a, A, k1)
11 elif a < x and x < b:
12 z = 1
13 elif b < x and x <= B:
14 z = f(-x, -b, -B, k2)
15 else:
16 z = 0
17 return z
18
19 # Definition of the xi normalization
20 def xi(x, A, a, b, B):
21 def f(x, v1, v2):
22 return (x-v2)/(v1-v2)
23 if A <= x and x < a:
24 z = f(x, a, A)
25 elif a < x and x < b:
26 z = 1
27 elif b < x and x <= B:
28 z = f(-x, -b, -B)
29 else:
30 z = 0
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31 return z
32
33 # Data preparation
34 path_to_data = ’path/to/data . xlsx ’
35 data = pd.read_excel(path_to_data)
36 directions = np.repeat("max", 5)
37 L = np.repeat(0.1, 5)
38 U = np.repeat(0.5, 5)
39 norm = "none"
40 p = 2
41
42 # Data normalization
43 data[ ’Academic ’] = data[ ’Academic ’].apply(lambda x: eta(x,1,6,7,7,1,0))
44 data[ ’Cognitive ’] = data[ ’Cognitive ’].apply(lambda x: eta(x,1,6,7,7,-1,0))
45 data[ ’Economic ’] = data[ ’Economic ’].apply(lambda x: xi(x,0,0.8,1,1))
46 data[ ’Health ’] = data[ ’Health ’].apply(lambda x: xi(x,0,0.65,0.65,0.65))
47 data[ ’ Social ’] = data[ ’ Social ’].apply(lambda x: xi(x,0.1,0.7,1,1))
48
49 # Application of unweighted TOPSIS method
50 x = uwTOPSIS(data, directions, L, U, norm, p, forceideal=True)

a.3 script for uwvikor : an unweighted multi-criteria decision making

approach for compromise solution

Similarly to the uwTOPSIS algorithm, the implementation of uwVIKOR is coded with the
same libraries and follows the same guidelines. Then, this section is just focused to show
the minimal code to compute all the experiments. First, we describe how to conduct the
data analysis and how to perform the unweighted algorithm.

Script 4: Data preprocessing to clean and prepare the data.

1 # Required packages
2 import os
3 import glob
4 import pandas as pd
5 import numpy as np
6
7 # Set the working directory
8 path_to_files = os.path.join( ’MVP_nominees’, ’ * . csv ’)
9 # Get just CSV format files

10 files = glob.glob(path_to_files)
11 # List the attributes to change as float
12 attributes = [ ’G’, ’MP’, ’PTS’,
13 ’TRB’, ’AST’, ’STL’,
14 ’BLK’, ’FG%’, ’3P%’,
15 ’FT%’, ’WS’, ’WS/48 ’]
16
17 NBA_dataset = []
18 for year in files:
19 data = pd.read_csv(year)
20 # Drop useless columns
21 data.drop([ ’Unnamed: 0 ’, ’X’], axis=1, inplace=True)
22 data.columns = data.loc[0]
23 # Drop useless rows
24 data.drop(0, axis=0, inplace=True)
25 # Modify format of the attributes
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26 data[attributes] = data[attributes].astype(float)
27 # Store the data
28 NBA_dataset.append(data)

Script 5: Implementation of the uwVIKOR algorithm for the entire dataset.

1 # Import uwVIKOR library
2 from uwVIKOR.uwVIKOR import *
3
4 # Set parameters
5 J = NBA_dataset[0].shape[1]
6 directions = np.repeat( ’max’, J)
7 L = np.repeat(1/(J+1), J)
8 U = np.repeat(1/(J-1), J)
9 v = 0.5

10
11 # Compute uwVIKOR per each year
12 DF = []
13 for data in NBA_dataset:
14 x = uwVIKOR(data, directions, L, U, v)
15 DF.append(x)

Once we have executed the code showed before, now we are able to carry out the addi-
tional programs that allow us to analyze the whole execution and the outcome. The follow-
ing scripts contain a basic code instance that return the ranking positions, the uwVIKOR-
efficiency, and the evaluation of weights.

Script 6: Ranking output for the three different measures p ∈ {0, 1, 2}.

1 RANKING = []
2 for i in range(N):
3 # Get Q_L and Q_R ranks
4 QL = DF[i][0].Q_Min
5 QR = DF[i][0].Q_Max
6 # Compute our three means
7 AM = 0.5*(QL+QR)
8 QM = (0.5*(QL**2+QR**2))**0.5
9 GM = (QL*QR)**0.5

10 # Transform ranking to cardinal order
11 AM_rank = np.concatenate([np.argsort(AM), np.repeat([np.nan], 18-len(AM))])
12 QM_rank = np.concatenate([np.argsort(QM), np.repeat([np.nan], 18-len(QM))])
13 GM_rank = np.concatenate([np.argsort(GM), np.repeat([np.nan], 18-len(GM))])
14 RANKING.append([AM_rank, QM_rank, GM_rank])
15 # Print MVP with scores
16 print( ’Year : { } | MVP {:22 s } | Scores : { : . 3 f } ; { : . 3 f } ; { : . 3 f } ’.format(
17 2001+i, DF[i][0].Player[0], GM[0], AM[0], QM[0]))
18 # Print its cardinality
19 n_times_best = int(GM[0]==GM.min()) + int(AM[0]==AM.min()) + int(QM[0]==QM.min())
20 print( ’ {}| Best { :7 .0 f } { : 7 . 0 f } { : 7 . 0 f } | Higher? { } ; { } ; { } ( { } )\n’.format(
21 11* ’ ’,
22 GM_rank[0], AM_rank[0], QM_rank[0],
23 GM[0]==GM.min(), AM[0]==AM.min(), QM[0]==QM.min(),
24 n_times_best))

Script 7: Tables of the uwVIKOR-efficiency broken down by year.

1 N = len(DF)
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2 # Count the efficient and non-efficient elements
3 eff = [(DF[i][0].Q_Min == 0).sum() for i in range(N)]
4 Neff = [(DF[i][0].Q_Max == 1).sum() for i in range(N)]
5 # Compute them as percentage
6 eff_p = [(DF[i][0].Q_Min == 0).sum()/len(DF[i][0].Q_Min) for i in range(N)]
7 Neff_p = [(DF[i][0].Q_Max == 1).sum()/len(DF[i][0].Q_Max) for i in range(N)]
8 # Present it as table
9 df_efficiency =pd.DataFrame([eff, eff_p, Neff, Neff_p],

10 index = [ ’Total ’, ’Percentage ’, ’Total ’, ’Percentage ’,],
11 columns=[2001 + i for i in range(20)])
12 print(df_efficiency.T.to_latex(float_format="%.4f "))

Script 8: Evaluations of weights via trapezoidal fuzzy functions.

1 # Define the trapezoidal fuzzy evaluation function
2 low = 0.1
3 up = 0.4
4 def merit_function(X, l=low, u=up):
5 # Calculate the two superior breaks of the trapezoid
6 stop1 = l + (u-l)/3
7 stop2 = l + 2*(u-l)/3
8 merit_vector = []
9 for x in X:

10 # Outside the trapezoid
11 if x <= l or x >= u:
12 merit = 0
13 # Left spread
14 elif x > l and x <= stop1:
15 merit = (x - l)/(stop1 - l)
16 # Fuzzy core
17 elif x >= stop1 and x <= stop2:
18 merit = 1
19 # Right spread
20 elif x >= stop2 and x < u:
21 merit = (x - stop2)/(u -stop2)
22 merit_vector.append(merit)
23 return merit_vector
24
25 # Compute the evaluation of weights
26 merit_DF = []
27 merit_metrics = []
28 for i in range(N):
29 merit_min = DF[i][1].apply(merit_function, axis=0) # min
30 merit_max = DF[i][2].apply(merit_function, axis=0) # MAX
31 merit_DF.append([merit_min,
32 merit_max])
33 merit_metrics.append([merit_min.mean(axis=1),
34 merit_max.mean(axis=1)])





B
A P P E N D I X 2 : A RT I F I C I A L I N T E L L I G E N C E
C O M P U TAT I O N A L I M P L E M E N TAT I O N S

b.1 script for a proposal to compare the similarity between musical

products . one more step for automated plagiarism detection?

In our GitHub repository López-García (2022b), we designed an audio fingerprinting al-
gorithm by means of two different manners: from raw audio (Script 9) or from a given
spectrogram (Script 10).

Script 9: An example to apply SpectroMap over a raw signal.

1 import numpy as np
2 from spectromap.functions.spectromap import spectromap
3
4 y = np.random.rand(44100)
5 kwargs = { ’ fs ’: 22050, ’ nfft ’: 512, ’noverlap ’:64}
6
7 # Instantiate the SpectroMap object
8 SMap = spectromap(y, **kwargs)
9

10 # Get the spectrogram representation plus its time and frequency bands
11 f, t, S = SMap.get_spectrogram()
12
13 # Extract the topological prominent elements from the spectrogram.
14 # Get (time, freq) coordinates of the peaks and the matrix with just these peaks.
15 fraction = 0.15 # Fraction of spectrogram to compute local comparisons
16 condition = 2 # Axis to analyze (0: Time, 1: Frequency, 2: Time+Frequency)
17 id_peaks, peaks = SMap.peak_matrix(fraction, condition)
18
19 # Get the peaks coordinates as as (s, Hz, dB)-array.
20 extraction_t_f_dB = SMap.from_peaks_to_array()

Script 10: An example to apply SpectroMap over a computed spectrogram.

1 from spectromap.functions.spectromap import peak_search
2
3 fraction = 0.05 # Fraction of spectrogram to compute local comparisons
4 condition = 2 # Axis to analyze (0: Time, 1: Frequency, 2: Time+Frequency)
5 id_peaks, peaks = peak_search(spectrogram, fraction, condition)

b.2 script for multivariate time series prediction based on stock market

and sentiment analysis regressors

In § 6.2.7, we already mentioned the detailed description of the library versions. Then, this
section is exclusively dedicated to showing the Python implementation for this paper. It is

267
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easy to realize that the procedure has to be automatized in order to ease the computational
complexity of designing and training eight different RNNs. Then, we developed a bash
script that sequentially executes the Script 11. The Python code needed to compute every
single task for the achievement of results is written in the Script 12.

Script 11: Bash code to automate the execution of the models in a computer with Ubuntu 20.04
Focal Fossa as OS.

1 #!/bin/sh
2 printf "\n [−] Environment\n\n"
3 printenv
4 printf "\n [−] Host\n\n"
5 hostname
6 printf "\n [−] Current directory\n\n"
7 pwd
8 printf "\n [−] User\n\n"
9 whoami

10 printf "\n [−] Space Left\n\n"
11 df -h
12 printf "\n [−] Conda environment activation\n\n"
13 conda activate tf_LSTM
14 conda info
15 printf "\n [−] NVIDIA info\n\n"
16 nvidia-smi
17 printf "\n [−] Python execution\n\n"
18 python3 az_stateful_model.py -r all
19 python3 az_stateful_model.py -r none
20 python3 az_stateful_model.py -r prices
21 python3 az_stateful_model.py -r sentiment
22 python3 az_stateful_model.py -r all -m RNN
23 python3 az_stateful_model.py -r none -m RNN
24 python3 az_stateful_model.py -r prices -m RNN
25 python3 az_stateful_model.py -r sentiment -m RNN

Script 12: Script to perform the training of RNN models for predicting the stock prices of As-
traZeneca.

1 # Package importation
2 # Basic packages
3 import os
4 import argparse
5 import pandas as pd
6 import numpy as np
7 import matplotlib.pyplot as plt
8 import matplotlib.dates as mdates
9 # TF library

10 import tensorflow as tf
11 from tensorflow.keras.models import Sequential
12 from tensorflow.keras.layers import Dense
13 from tensorflow.keras.layers import LSTM, SimpleRNN
14 from tensorflow.keras.layers import Bidirectional
15 from tensorflow.keras.regularizers import l2
16 from tensorflow.keras.callbacks import EarlyStopping, ReduceLROnPlateau
17 # Sklearn library
18 from sklearn.preprocessing import StandardScaler
19 from sklearn.metrics import median_absolute_error, r2_score, accuracy_score
20
21 # Sentiment
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22 AZ_sent = pd.read_csv(os.path.join( ’Datasets ’, ’AstraZenca_sentiment . csv ’))
23 AZ_sent.drop([ ’Unnamed: 0 ’], axis=1, inplace=True)
24 # Price
25 AZ_price = pd.read_csv(os.path.join( ’Datasets ’, ’AstraZenca_prices . csv ’))
26 date_price = pd.to_datetime(AZ_price[ ’Exchange Date ’])
27 AZ_price.drop([ ’Unnamed: 0 ’, ’Exchange Date ’], axis=1, inplace=True)
28
29 # Parser object
30 parser = argparse.ArgumentParser(description = ’Model generation and training\nTwo

needed parameters : Model and Regressor ’)
31 parser.add_argument( ’−m’, ’−−model ’,
32 help = ’ Indicate whether the model is "LSTM" or "RNN" . ’,
33 default="LSTM")
34 parser.add_argument( ’−r ’, ’−−regressor ’,
35 help = ’ Indicate i f the regressor is "none" , "sentiment" , " prices

" or " a l l " . ’,
36 default="sentiment")
37 args = parser.parse_args()
38
39 units = 2**7
40 model_type = args.model
41 regressor = args.regressor
42
43 if regressor == ’sentiment ’:
44 df = AZ_sent
45 df.drop(df.index[-1], axis=0, inplace=True)
46 elif regressor == ’ prices ’:
47 df = AZ_price
48 elif regressor == ’none ’:
49 df = AZ_price.loc[:, [ ’Close ’]]
50 else:
51 AZ_price.drop([ ’Close ’], axis=1, inplace=True)
52 df = pd.concat([AZ_sent,AZ_price], axis=1)
53 df.drop(df.index[-1], axis=0, inplace=True)
54
55 # Data standarization
56 scaler = StandardScaler()
57 df_scaled = scaler.fit_transform(df)
58
59 # Preprocess and prepare train/validation sets
60 def data_to_sequences(data, steps_back = 5, steps_forward = 1, start = ’end’):
61 ’’’
62 Prepare the temporal sequences of our data
63 INPUT:
64 data: Data Frame. Contains the predictor and the regressor
65 steps_back: Integer. Number of needed elements to make a prediction
66 steps_forward: Integer. Number of predictions for a given output
67 start: Either "beginning" or "end" to indicate at which point the loop

sequence starts
68 OUTPUT:
69 x: Array with the X-dataset sequenced [(N-steps_forward)/steps_back,

steps_back]-shaped
70 y: Array with the Y-dataset sequenced [(N-steps_forward)/steps_back,

steps_forward]-shaped
71 ’’’
72 # Split data into the n of steps back as input(X) and get the following steps

forward as output (Y)
73 x = []
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74 y = []
75 N = data.shape[0]
76 if start == ’beginning ’:
77 for i in range(steps_back, N-steps_forward+1):
78 x.append(data[i-steps_back : i, 0:data.shape[1]])
79 y.append(data[i+steps_forward-1 : i+steps_forward, 0])
80 elif start == ’end’:
81 for i in range(N-steps_back-steps_forward+1):
82 x.append(data[N-i-steps_back-steps_forward : N-i-steps_forward, 0:data.

shape[1]])
83 y.append(data[N-i-steps_forward : N-i-steps_forward+1, 0])
84 # Since we started from the last value, now we rearrange from N to 0.
85 y = [y[i] for i in range(len(x)-1, -1, -1)]
86 x = [x[i] for i in range(len(x)-1, -1, -1)]
87 return np.array(x), np.array(y)
88
89 # Sequentalization of the data
90 from_2021 = 108
91 batch_size = 4
92 X, y = data_to_sequences(df_scaled)
93 X_train, Y_train = X[:-from_2021], y[:-from_2021]
94 X_val, Y_val = X[-from_2021:], y[-from_2021:]
95
96 print( ’ { } ’.format(20* ’− ’))
97 print( ’Training sets\nX−shape : {}\nY−shape : {}\n{ } ’.format(X_train.shape, Y_train.

shape, 20* ’− ’))
98 print( ’Validation sets\nX−shape : {}\nY−shape : {}\n{ } ’.format(X_val.shape, Y_val.shape

, 20* ’− ’))
99 print( ’Data−shape : {}\n{ } ’.format(df.shape, 20* ’− ’))

100
101 # Fitting
102 Stop = EarlyStopping(mode = ’min’, patience = 30, verbose=1, min_delta = 1e-4)
103 LRed = ReduceLROnPlateau(factor=1/2, patience=10, verbose=1, min_lr=1e-6)
104
105 def RNNs(model_type, layer, units, shape, regressor):
106 ’’’
107 Model generation of LSTM-RNN.
108
109 # Parameters
110 model_type: Type of model, either LSTM or RNN.
111 layer: Type of layer arch, either bidirectional, simple or stacked.
112 units: Number of neurons for the recursive blocks.
113 shape: Batch input shape for stateful RNNs.
114 regressor: Name of the regressors.
115
116 # Return
117 model: Recursive Keras model.
118 ’’’
119 # Parameters
120 to_drop = 1e-2*shape[-1]
121 reg = l2(l2 = 1e-4*shape[-1])
122 # 1st: Select the recursive model
123 if model_type == ’LSTM’:
124 RNN = LSTM
125 elif model_type == ’RNN’:
126 RNN = SimpleRNN
127 # 2nd: Select the layer architecture
128 model = Sequential()
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129 if layer == ’ bidirectional ’:
130 model.add(Bidirectional(RNN(units,
131 batch_input_shape=shape,
132 stateful=True,
133 dropout=to_drop,
134 recurrent_regularizer=reg),
135 name= ’ Bidirectional ’))
136 elif layer == ’simple ’:
137 model.add(RNN(units,
138 batch_input_shape=shape,
139 stateful=True,
140 dropout=to_drop,
141 recurrent_regularizer=reg,
142 name= ’Simple ’))
143 elif layer == ’ stacked ’:
144 model.add(RNN(units,
145 batch_input_shape=shape,
146 stateful=True,
147 dropout=to_drop,
148 return_sequences=True,
149 name= ’Stack0 ’))
150 model.add(RNN(units,
151 batch_input_shape=shape,
152 stateful=True,
153 recurrent_regularizer=reg,
154 name= ’Stack1 ’))
155 # 3rd: Fully connected layer
156 model.add(Dense(units, name = ’FC’))
157 model.add(Dense(1, name = ’Dense_Out ’))
158 # 5th: Compile
159 model.compile(loss= ’mean_squared_error ’, optimizer= ’adam’)
160 return model
161
162 # Model generation
163 inp_shape = [batch_size, X_train.shape[1], X_train.shape[2]]
164 model_list = []
165 for arch in [ ’ bidirectional ’, ’simple ’, ’ stacked ’]:
166 model = RNNs(model_type = model_type,
167 layer = arch,
168 units = units,
169 shape = inp_shape,
170 regressor = regressor)
171 model._name = ’ { } _ { }_ { } ’.format(arch, model_type, units)
172 model_list.append(model)
173
174 history_list = []
175 model_arch = [ ’ bidirectional ’, ’simple ’, ’ stacked ’]
176 for i, model in enumerate(model_list):
177 print( ’\nFitting {}\n{ } ’.format(model._name, 22* ’− ’))
178 history = model.fit(X_train, Y_train,
179 validation_data = (X_val, Y_val),
180 epochs=350,
181 batch_size=batch_size,
182 verbose=2,
183 shuffle=False,
184 callbacks=[Stop, LRed],
185 )
186 model.reset_states()
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187 model.save( ’ { } _ { } . hdf5 ’.format(regressor, model._name))
188 history_list.append(history)
189 # Plot train-validation loss curves
190 fig, axs = plt.subplots(1, len(history_list), figsize=(8,4), sharey=True)
191 for i, history in enumerate(history_list):
192 axs[i].plot(history.history[ ’ loss ’], label = ’Loss ’)
193 axs[i].plot(history.history[ ’ val_loss ’], label = ’Val−loss ’)
194 axs[i].set(xlabel= ’Epochs ’)
195 axs[i].set_title(model_list[i]._name)
196 axs[i].legend()
197 plt.yscale( ’ log ’)
198 plt.tight_layout()
199 plt.savefig( ’ train_curves_ { }_ { } . pdf ’.format(model_type, regressor))
200
201 # Scores and predictions
202 predictions = []
203 for model in model_list:
204 pred = model.predict(X, batch_size=batch_size)
205 pred = scaler.inverse_transform(pred.repeat(X.shape[2], axis=-1))[:,0]
206 model.reset_states()
207 predictions.append(pred)
208
209 # Evaluation
210 y_real = scaler.inverse_transform(y.repeat(X.shape[2], axis=-1))[:,0]
211
212 measures = []
213 for preds in predictions:
214 # Train
215 y_train = y_real[:-from_2021]
216 pred_train = preds[:-from_2021]
217 MAE_train = np.mean(np.abs(y_train - pred_train))
218 MAPE_train = 100*np.mean(np.abs((y_train-pred_train) / y_train))
219 R2_train = r2_score(y_train,pred_train)
220 # Validation
221 y_val = y_real[-from_2021:]
222 pred_val = preds[-from_2021:]
223 MAE_val = np.mean(np.abs(y_val - pred_val))
224 MAPE_val = 100*np.mean(np.abs((y_val-pred_val) / y_val))
225 R2_val = r2_score(y_val, pred_val)
226 # Results
227 dic = { ’MAE’:[MAE_train, MAE_val],
228 ’WMAPE’: [MAPE_train, MAPE_val],
229 ’R2’: [R2_train, R2_val],
230 }
231 measures.append(dic)
232
233 # Store evaluations as CSV
234 eval_list = []
235 for m in measures:
236 ev = pd.DataFrame(m, index = [ ’Train ’, ’Val ’])
237 eval_list.append(ev)
238 ev.round(4).to_csv( ’ evaluations_ { }_ { } . csv ’.format(model_list[i]._name, regressor)

)
239 pd.concat(eval_list).to_csv( ’ evaluations_ { }_ { } . csv ’.format(regressor, units))
240
241 # Generate the data splits per architecture
242 dates_prediction = date_price[5:]
243 DATE = [dates_prediction,
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244 dates_prediction[:-from_2021],
245 dates_prediction[-from_2021:]]
246 Y_REAL = [y_real, y_train, y_val]
247 PREDICTION = [[p, p[:-from_2021], p[-from_2021:]] for p in predictions]
248 MODEL_ARCH = [ ’ bidirectional ’, ’simple ’, ’ stacked ’]
249
250 # Plot predictions
251 _lw = 0.9
252 fig, axs = plt.subplots(3, 3, figsize=(20,8))
253 for k, pred in enumerate(PREDICTION):
254 for i in range(3):
255 axs[k, i].plot(DATE[i], Y_REAL[i], label = ’Real ’, lw=_lw)
256 axs[k, i].plot(DATE[i], pred[i], label = ’ Prediction ’, lw=_lw)
257 if i == 0:
258 axs[k, i].axvline(pd.to_datetime( ’2021−1−1 ’),
259 linestyle= ’−−’,
260 linewidth=_lw)
261 if i == 1:
262 axs[k, i].legend()
263 axs[k, i].set_title(model_list[k]._name)
264 if i != 2:
265 axs[k, i].xaxis.set_major_locator(mdates.MonthLocator(bymonth=(1, 7)))
266 else:
267 axs[k, i].xaxis.set_major_locator(mdates.MonthLocator(bymonth=(1, 2, 3,

4, 5, 6)))
268 plt.tight_layout()
269 plt.savefig( ’ predictions_ { }_ { } . pdf ’.format(model_type, regressor))

b.3 script for on the application of explainable artificial intelligence

techniques on hrtf data

This section outlines the Python code needed to perform some parts of the experimental
case. It is noteworthy that the whole script is quite long to be attached here, so we decide to
cover just the important steps that concern the data procedure and model implementation.

Script 13: Data preparation and preprocess required from the import to pre-fitting phase.

1 # Data import
2 import numpy as np
3 npzfile = np.load( ’ cipic .npz’)
4
5 # Break down each component of the numpy file
6 sr = 44100
7 X_hrir = npzfile[ ’ arr_0 ’].astype( ’ f loat ’)/(2**15) # HRIR data normalized
8 subj_indx = list(npzfile[ ’ arr_1 ’]) # Subjects
9 az_indx = list(npzfile[ ’ arr_2 ’]) # Azimuth angles

10 elev_indx = list(npzfile[ ’ arr_3 ’]) # Elevation angles
11
12 # Reshape the data to merge all the responses for all the subjects
13 X_hrir_s = np.reshape(X_hrir, (200, 45, -1, 2))
14 # Get elevation an azimuth indexes
15 y_elevation = np.asarray(list(range(50)) * 25)
16 y_azimuth = np.repeat(list(range(25)), 50)
17 y = np.vstack([y_azimuth, y_elevation])
18
19 # Defining directional sectors for classification
20 def get_direction_class(elev, azi):
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21 if elev >= -90 and elev <= -20 and azi >= -60 and azi <= +60:
22 cl = ’front_down ’
23 if elev > -20 and elev <= +20 and azi >= -60 and azi <= +60:
24 cl = ’ front_level ’
25 if elev > +20 and elev <= +70 and azi >= -60 and azi <= +60:
26 cl = ’ front_up ’
27 if elev > +70 and elev <= +110 and azi >= -60 and azi <= +60:
28 cl = ’up’
29 if elev > +110 and elev <= +160 and azi >= -60 and azi <= +60:
30 cl = ’back_up ’
31 if elev > +160 and elev <= +200 and azi >= -60 and azi <= +60:
32 cl = ’back_level ’
33 if elev > +200 and elev <= +270 and azi >= -60 and azi <= +60:
34 cl = ’back_down’
35 if np.abs(azi)>60 and elev >= 0 and elev <= 180:
36 cl = ’ lateral_up ’
37 if np.abs(azi)>60 and (elev < 0 or elev >= 180):
38 cl = ’ lateral_down ’
39 return cl
40 # Disaggregate spatial components into classes
41 y_class = [get_direction_class(elev_indx[k[1]], az_indx[k[0]]) for k in y.T]
42 class_dict = { ’front_down ’: 0, ’ front_level ’: 1, ’ front_up ’: 2,
43 ’up’: 3, ’back_up ’: 4, ’back_level ’: 5,
44 ’back_down’: 6, ’ lateral_up ’: 7, ’ lateral_down ’: 8 }
45 y_class = [class_dict[k] for k in y_class]
46
47 # HRTF transformation
48 X = np.reshape(X_hrir_s, (200,-1,2))
49 X = np.swapaxes(X, 0, 1)
50 # Compute FFT
51 NFFT = 512
52 X_l = X[:, :, 0]
53 X_r = X[:, :, 1]
54 Xf_l = np.fft.rfft(X_l, NFFT, axis=1)
55 Xf_r = np.fft.rfft(X_r, NFFT, axis=1)
56 Xf = np.stack([Xf_l, Xf_r], axis=2)
57 Xf = np.abs(Xf)
58 Nbins = Xf.shape[1]
59
60 # Track original angles
61 y_sj = np.repeat(list(range(45)), 25*50)
62 y_az = np.asarray(list(y_azimuth)*45)
63 y_el = np.asarray(list(range(50))*45*25)
64 y = np.stack([y_sj, y_az, y_el], axis=1)
65 yc = np.asarray(y_class*45)
66
67 # Change channels
68 y_az_ang = np.asarray([az_indx[k] for k in y_az])
69 y_contra = np.nonzero(y_az_ang > 0)[0]
70 Xf2 = np.copy(Xf)
71 Xf2[y_contra, :, 0] = Xf[y_contra, :, 1]
72 Xf2[y_contra, :, 1] = Xf[y_contra, :, 0]
73
74 # Mel-scale frequency warping
75 def Hz_to_Mel(f_hz):
76 return (2595 * np.log10(1 + f_hz/700))
77
78 def Mel_to_Hz(f_mel):
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79 return (700* (10**(f_mel/2595)-1))
80 # Prepare transformation
81 f_min = 0
82 f_max = sr/2
83 f_min_mel = Hz_to_Mel(f_min)
84 f_max_mel = Hz_to_Mel(f_max)
85 f_mels = np.linspace(f_min_mel, f_max_mel, Nbins)
86 # Transform
87 f_Hz = Mel_to_Hz(f_mels)
88 mel_bins = np.round(f_Hz/(sr/Nbins)).astype(int)
89 Xm = np.log10(np.abs(Xf2[:, mel_bins, :]) + np.finfo(float).eps)
90
91 # Train-Validation splits
92 X_train, y_train = Xm[0:36*1250, :], yc[0:36*1250]
93 X_val, y_val = Xm[36*1250:, :], yc[36*1250:]

Script 14: Implementation of the 1D-CNN architecture for input of 2 channels as described in
Table 6.12.

1 # TensorFlow import
2 import tensorflow as tf
3 from tensorflow.keras import layers, models
4 from tensorflow.keras.callbacks import CSVLogger, ModelCheckpoint, EarlyStopping,

ReduceLROnPlateau
5 from pathlib import Path
6
7 # Basic parameters
8 CONV_KERNEL = 16
9 CONV_FILTERS = 16

10 POOL_KERNEL = 2
11
12 N_classes = len(np.unique(yc))
13 model = models.Sequential(name= ’CIPIC_2Channels ’)
14 # 1st block
15 model.add(layers.Conv1D(CONV_FILTERS*4, CONV_KERNEL,
16 activation= ’ relu ’, padding= ’same’,
17 input_shape=X_train.shape[1:], name= ’Conv1’))
18 model.add(layers.MaxPooling1D(POOL_KERNEL, name= ’MaxP1’))
19 # 2nd block
20 model.add(layers.Conv1D(CONV_FILTERS*2, CONV_KERNEL,
21 activation= ’ relu ’, padding= ’same’, name= ’Conv2’))
22 model.add(layers.MaxPooling1D(POOL_KERNEL, name= ’MaxP2’))
23 # 3rd block
24 model.add(layers.Conv1D(CONV_FILTERS*2, int(CONV_KERNEL/2),
25 activation= ’ relu ’, padding= ’same’, name= ’Conv3’))
26 model.add(layers.MaxPooling1D(POOL_KERNEL, name= ’MaxP3’))
27 # 4th block
28 model.add(layers.Conv1D(CONV_FILTERS, int(CONV_KERNEL/2),
29 activation= ’ relu ’, padding= ’same’, name= ’Conv4’))
30 # Output
31 model.add(layers.GlobalAveragePooling1D(name= ’GlobPool ’))
32 model.add(layers.Dense(N_classes, activation= ’softmax ’, name= ’ Prediction ’))
33 model.summary()
34
35 # Create callbacks
36 checkpoint_name = ’HRTFModel’
37 checkpoint_dir = ’ ./checkpoints ’
38 checkpoint_path = str(Path(checkpoint_dir)/(checkpoint_name+" . hdf5"))
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39 logs_dir = ’ ./logs ’
40 logs_path = str(Path(logs_dir)/ ’ { } . csv ’.format(checkpoint_name))
41
42 # Create folders if they don’t exist
43 Path(checkpoint_dir).mkdir(parents=True, exist_ok=True)
44 Path(logs_dir).mkdir(parents=True, exist_ok=True)
45
46 # Create the callback list
47 callbacks = []
48 # Save best checkpoints
49 callbacks.append(
50 ModelCheckpoint(filepath = checkpoint_path,
51 monitor = ’ val_loss ’,
52 mode = ’min’,
53 save_best_only = True,
54 save_weights_only = False,
55 verbose = True)
56
57 )
58 # Save training history in csv
59 callbacks.append(
60 CSVLogger(filename = logs_path, append = False)
61 )
62 # Early stopping
63 callbacks.append(
64 EarlyStopping(monitor = ’ val_loss ’,
65 patience = 25,
66 verbose = True)
67 )
68 #Reduce learning rate
69 callbacks.append(
70 ReduceLROnPlateau(monitor = ’ val_loss ’,
71 factor = 0.5,
72 patience = 15,
73 verbose = True)
74 )
75 # Compile the model
76 model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=1e-4),
77 loss=tf.keras.losses.SparseCategoricalCrossentropy(),
78 metrics=[ ’accuracy ’])
79 # Fit the model
80 history = model.fit(X_train,
81 y_train,
82 validation_data = (X_val, y_val),
83 callbacks = callbacks,
84 batch_size = 16,
85 epochs=1000)
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A P P E N D I X 3 : M U LT I P L E - C R I T E R I A D E C I S I O N
M A K I N G & A RT I F I C I A L I N T E L L I G E N C E
C O M P U TAT I O N A L I M P L E M E N TAT I O N S

c.1 script for early detection of students’ failure using machine learn-
ing techniques

The entire development for this case study has been implemented in Google Colab. Then,
the Python version utilized was 3.7.13 with Pandas 1.3.5 and Numpy 1.21.6. In this case,
we have implemented machine learning algorithms and evaluations from the Sklearn 1.0.2
library with the XGBoost 0.90 package for the main tree-gradient algorithm used for clas-
sification. The ADASYN technique was applied with the imblearn 0.8.1 package.

The following Script 15, contains the Python process for training the dataset and obtain-
ing the results shown in § 7.1.4.1. It is assumed that this script follows the code and results
computed in the Script 3, and so it is known the dataset X.

Script 15: Implementation of the tree-based methods for the SEA-UIS dataset, assuming a continu-
ation from Script 3.

1 # Data packages
2 import pandas as pd
3 import numpy as np
4 # Classification models
5 from xgboost import XGBClassifier
6 from sklearn.tree import DecisionTreeClassifier
7 from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
8 # Additionals for ML
9 import imblearn

10 from collections import Counter
11 from sklearn import metrics
12 from sklearn.preprocessing import minmax_scale
13 from sklearn.model_selection import GridSearchCV, cross_val_score
14 from sklearn.model_selection import train_test_split, RepeatedStratifiedKFold
15
16 # Main default parameters
17 RANDOM = 13
18 N_ESTIMATORS = 500
19 LEARNING_RATE = 0.1
20 DEPTH = 10
21
22 # Extraction of success-failure labels
23 df = pd.read_excel( ’datosUIS . xlsx ’)
24 df[ ’Pass ’] = 0.5*(df[ ’Calculus ’] + df[ ’Algebra ’]).to_numpy() < 2.5
25 y = df[ ’Pass ’].to_numpy().astype( ’ int ’)
26
27 # Generate the train-test splits
28 X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=RANDOM)

277
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29
30 # Generate ADASYN-oversampling sets (so far we do not used them)
31 oversample = imblearn.over_sampling.ADASYN(random_state=RANDOM)
32 X_adasyn, y_adasyn = oversample.fit_resample(X, y)
33 X_adasyn_train, X_adasyn_test, y_adasyn_train, y_adasyn_test = train_test_split(

X_adasyn_norm, y_adasyn)
34
35 # Function that jointly evaluates the model output
36 def get_scores(y_pred, y_real, y_prob):
37 PRF1 = metrics.precision_recall_fscore_support(y_real, y_pred, average= ’binary ’)
38 acc = metrics.accuracy_score(y_real, y_pred)
39 auc = 1 - metrics.roc_auc_score(y_real, y_prob)
40 return np.array([PRF1[0], PRF1[1], PRF1[2], acc, auc])
41
42 # Model definition
43 models = [XGBClassifier(max_depth = DEPTH,
44 n_estimators = N_ESTIMATORS,
45 learning_rate = LEARNING_RATE,
46 random_state = RANDOM),
47 GradientBoostingClassifier(max_depth = DEPTH,
48 n_estimators = N_ESTIMATORS,
49 learning_rate = LEARNING_RATE,
50 random_state = RANDOM),
51 DecisionTreeClassifier(max_depth = DEPTH,
52 random_state = RANDOM),
53 RandomForestClassifier(max_depth = DEPTH,
54 n_estimators = N_ESTIMATORS,
55 random_state = RANDOM),
56 ]
57 # Model names
58 model_names = [ ’XGBoost ’,
59 ’GBoost ’,
60 ’Decision_Tree ’,
61 ’Random_Forest ’,
62 ]
63 # Definition of the vector outputs to store
64 feat_importance = []
65 predictions = []
66 scores = []
67 dec_matrix = []
68
69 # Loop to train each model
70 for i, model in enumerate(models):
71 # Training
72 model.fit(X_train, y_train)
73 # Get feature weights
74 feat_importance.append(model.feature_importances_)
75 # Get decision and probability vectors
76 y_pred = model.predict(X_test)
77 y_prob = model.predict_proba(X_test).T[0]
78 predictions.append(y_pred)
79 # Compute scores and decision matrices
80 scores.append(get_scores(y_pred, y_test, y_prob))
81 dec_matrix.append(metrics.confusion_matrix(y_test, y_pred))

Script 16: Implementation of the hyperparameter tuning for the XGBoost model.

1 # Create the computational grid
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2 param_grid = {
3 "max_depth": [i+5 for i in range(5)],
4 "n_estimators": [200 + 10*i for i in range(11)],
5 "gamma": [0.075, 0.1, 0.125, 0.15],
6 " learning_rate ": [0.1, 0.05, 0.02, 0.01],
7 "reg_lambda": [0.2, 0.25, 0.3, 0.5],
8 "random_state": [RANDOM],
9 }

10
11 # Initialize the XGBoost classifier
12 xgb_binary = XGBClassifier()
13
14 # Init Grid Search
15 grid_binary = GridSearchCV(xgb_binary,
16 param_grid,
17 n_jobs=-1,
18 cv=3,
19 scoring="roc_auc",
20 verbose=1)
21 # Compute the grid search
22 grid_binary.fit(X_over_train, y_over_train)
23
24 # Print the results
25 print( ’Tunned parameters ’)
26 for _key in grid_binary.best_params_:
27 print( ’ {:<14s } : { : 7 . 2 f } ’.format(_key, grid_binary.best_params_[_key]))
28
29 # Print model
30 grid_binary.best_estimator_

c.2 script for multiple-criteria decision making approach for an in-
depth benchmarking of supervised machine learning models

The implementation of the code presented in this subsection is entirely related to our
GitHub repository López-García (2022a). Due to the different settings required per im-
plementation, we have divided this section into two subsections. This first one concerns
the topics related to the AstraZeneca regression task and the second one with the issues
related to the CIPIC classification task.

c.2.1 Case one: Forecast of the AstraZeneca close price with the use of stock market regressors

Script 17: Implementation of the fitting stage for the XGB, LGB, CatB, RF, and GPR regressor mod-
els.

1 # Basics
2 import os
3 import time
4 from datetime import datetime
5 import numpy as np
6 import pandas as pd
7 from joblib import dump, load
8
9 # Remove warnings

10 import warnings
11 warnings.filterwarnings( ’ ignore ’)
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12 warnings.simplefilter( ’ ignore ’)
13
14 # Statistics
15 from sklearn.preprocessing import StandardScaler
16 from sklearn.pipeline import Pipeline
17 from sklearn.metrics import r2_score, mean_squared_error, median_absolute_error,

mean_absolute_error
18 from sklearn.model_selection import TimeSeriesSplit
19
20 # Machine learning
21 # Gaussian process
22 from sklearn.gaussian_process import GaussianProcessRegressor
23 from sklearn.gaussian_process.kernels import RBF, DotProduct, WhiteKernel
24 from sklearn.gaussian_process.kernels import Matern, RationalQuadratic
25 # Regressors
26 from sklearn.ensemble import AdaBoostRegressor, RandomForestRegressor
27 from xgboost import XGBRegressor
28 from lightgbm import LGBMRegressor
29 from catboost import CatBoostRegressor
30 from prophet import Prophet
31
32 # Graphics
33 import matplotlib.pyplot as plt
34 import matplotlib.dates as mdates
35 plt.rcParams[ ’ figure . figsize ’] = [8, 2.5]
36 plt.rcParams[ ’ lines . linewidth ’] = 0.75
37 plt.rcParams[ ’ lines . markersize ’] = 1.5
38
39 # Constants of the problem
40 RANDOM = 13
41 N_ESTIMATORS = 1000
42 STOPPING = 20
43 TREE_VERBOSE = 1
44
45 # Preprocess and prepare train/validation sets
46 def data_to_sequences(data, steps_back = 30, steps_forward = 1, start = ’end’):
47 ’’’
48 Prepare the temporal sequences of our data
49
50 INPUT:
51 data: Data Frame. Contains the predictor and the regressor
52 steps_back: Integer. Number of needed elements to make a prediction
53 steps_forward: Integer. Number of predictions for a given output
54 start: Either "beginning" or "end" to indicate at which point the loop

sequence starts
55
56 OUTPUT:
57 x: Array with the X-dataset sequenced [(N-steps_forward)/steps_back,

steps_back]-shaped
58 y: Array with the Y-dataset sequenced [(N-steps_forward)/steps_back,

steps_forward]-shaped
59 ’’’
60 # Split data into the number of steps back as input(X) and get the following

steps forward as output (Y)
61 x = []
62 y = []
63 for i in range(len(data)-steps_back-1):
64 x.append(data[i : (i+steps_back), :])
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65 y.append(data[(i+steps_back), 0])
66 return np.array(x), np.array(y)
67
68
69
70 # Evaluation of the predictions
71 def model_evaluation(y_real, y_predicted):
72 ’’’
73 Set of evaluation functions
74
75 INPUT:
76 y_real: Array with real values of the time series
77 y_predicted: Array with the forecast values of a model
78
79 OUTPUT:
80 List with the scores: MSE, RMSE, MAE, MedAE, MAPE, WMAPE, Rsquare
81 ’’’
82 MSE = mean_squared_error(y_real, y_predicted)
83 RMSE = np.sqrt(MSE)
84 MedAE = median_absolute_error(y_real, y_predicted)
85 MAPE = np.sum(np.abs((y_real - y_predicted) / y_real))/len(y_real) * 100
86 Rsquare = r2_score(y_real, y_predicted)
87
88 return [RMSE, MedAE, MAPE, Rsquare]
89
90 metrics_names = ["RMSE", "MedAE", "MAPE", "R2"]
91
92 # Load AZ dataset
93 regressor_type = ’ prices ’
94 df = pd.read_csv(os.path.join( ’AstraZenca_ { } . csv ’.format(regressor_type)), index_col

=0)
95 N = df.shape[0]
96
97 # We convert the data structures into float32
98 df.index = pd.to_datetime(df[ ’Exchange Date ’])
99 df.drop(df.columns[0], axis=1, inplace=True)

100 df = df.astype( ’ float32 ’)
101
102 # Scale the data for fitting
103 scaler = StandardScaler()
104 df_scaled = scaler.fit_transform(df)
105
106 # Sequentialize data series
107 STEPS_BACK = 30
108 X, Y = data_to_sequences(df_scaled, STEPS_BACK)
109
110 # Get sizes to split data
111 from_2021 = np.sum(df.index > ’2021−01−01 ’)
112
113 # Split the dataframe as train and test
114 X_train, Y_train = X[ : -from_2021, ], Y[ : -from_2021, ]
115 X_val, Y_val = X[-from_2021 : , ], Y[-from_2021 : , ]
116 print( ’Train shapes : { } , {}\nVal shapes : { } , { } ’.format(X_train.shape, Y_train.

shape, X_val.shape, Y_val.shape))
117
118 # Data preparison for Tree-Based models: Concatenate all the regressors into a single

vector
119 def regressor_flatten(data):
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120 ’’’
121 Per each component in data, it flattens the next components into a single vector

.\n
122 It returns a matrix with shape:\n
123 (data.shape[0], data.shape[1] * ... * data.shape[N_regressors])
124 ’’’
125 data_flatten = []
126 for i in range(data.shape[0]):
127 data_flatten.append(data[i].flatten())
128 return np.array(data_flatten)
129
130 X_flat = regressor_flatten(X)
131 X_train_flat = regressor_flatten(X_train)
132 X_val_flat = regressor_flatten(X_val)
133
134 print( ’New shapes for f la t datasets ’)
135 print( ’ Entire : {}\nTrain : {}\nTest : { } ’.format(X_flat.shape,
136 X_train_flat.shape,
137 X_val_flat.shape))
138
139 y_real = np.expand_dims(Y, -1)
140 y_real = y_real.repeat(df.shape[1], axis=-1)
141 y_real = scaler.inverse_transform(y_real)[:,0]
142 y_real.shape
143
144 # Create new working directory
145 AZ_DIR = ’AZ_FINAL_EXPERIMENT’
146 os.chdir( ’ ./{} ’.format(AZ_DIR))
147
148 N_SPLITS = 9
149 SERIES_GAP = 5
150 TEST_SIZE = from_2021 - N_SPLITS * SERIES_GAP
151 TRAIN_SIZE = X.shape[0] - from_2021 - N_SPLITS * SERIES_GAP
152
153 def Time_Series_CV(timeseries, N_SPLITS = 9, GAP = 8):
154 TRAIN_SIZE = 700
155 TEST_SIZE = 70
156 train_test_splits = []
157 for n in range(N_SPLITS):
158 train_split = timeseries[n*GAP : n*GAP + TRAIN_SIZE]
159 test_split = timeseries[n*GAP + TRAIN_SIZE : n*GAP + TRAIN_SIZE + TEST_SIZE]
160 train_test_splits.append([train_split, test_split])
161 return train_test_splits
162
163 TB_model_names = [
164 ’XGB’,
165 ’LGB’,
166 ’CatB ’,
167 ’RF’,
168 ’GPR’,
169 ]
170
171 TB_setting_times = []
172 TB_fitting_times = []
173 TB_saving_times = []
174 TB_predictions = []
175 TB_evaluations = []
176 TB_feat_importance = []
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177 TB_indexes = []
178 # TB_eval_curves = []
179
180 # iteration = 1
181 # for train_index, test_index in TS_split.split(X, Y):
182 TS_split = Time_Series_CV(np.arange(X.shape[0]))
183 for iteration, [train_index, test_index] in enumerate(TS_split):
184 print( ’ ( { } ) Cross−Validation number {}\n{ } ’.format(datetime.now().strftime( ’%H:%M

:%S ’), iteration, 70* ’=’))
185 start_time = time.time()
186 # Get sets from indexes
187 X_train, X_val = X[train_index], X[test_index]
188 Y_train, Y_val = Y[train_index], Y[test_index]
189 TB_indexes.append([train_index, test_index])
190 # Flat X-components
191 X_flat = regressor_flatten(X)
192 X_train_flat = regressor_flatten(X_train)
193 X_val_flat = regressor_flatten(X_val)
194
195 RANDOM = 13 * iteration
196 TB_models = [
197 XGBRegressor(n_estimators = N_ESTIMATORS,
198 objective = ’ reg : squarederror ’,
199 # early_stopping_rounds = STOPPING,
200 random_state=RANDOM,
201 ),
202
203 LGBMRegressor(n_estimators = N_ESTIMATORS,
204 objective = ’mse’,
205 # early_stopping_round = STOPPING,
206 random_state=RANDOM,
207 ),
208
209 CatBoostRegressor(n_estimators = N_ESTIMATORS,
210 loss_function = ’RMSE’,
211 silent = True,
212 # early_stopping_rounds = STOPPING,
213 random_state=RANDOM,
214 ),
215
216 RandomForestRegressor(n_estimators = N_ESTIMATORS,
217 criterion = ’squared_error ’,
218 # early_stopping_rounds = STOPPING,
219 random_state=RANDOM,
220 ),
221
222 GaussianProcessRegressor(kernel = Matern(),
223 n_restarts_optimizer = 10,
224 random_state = RANDOM)
225
226 ]
227 st = []
228 sv = []
229 ft = []
230 pr = []
231 ev = []
232 fi = []
233 for i, model in enumerate(TB_models):
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234 print( ’ ( { } ) {:<4s } model ’.format(datetime.now().strftime( ’%H:%M:%S ’),
235 TB_model_names[i]),
236 end= ’ ’)
237 # Training phase
238 t0 = time.time()
239 if TB_model_names[i] == ’GPR’ or ’RF’:
240 model.fit(X_train_flat, Y_train)
241 else:
242 model.fit(X_train_flat,
243 Y_train,
244 eval_set = [(X_train_flat, Y_train), (X_val_flat, Y_val)],
245 verbose=False)
246 ft.append(time.time() - t0)
247 print( ’ | Fit : { : 5 .2 f }" ’.format(ft[i]), end= ’ ’)
248
249 # Predictive phase
250 t1 = time.time()
251 pr.append(model.predict(regressor_flatten(X)))
252 st.append(time.time() - t1)
253 print( ’ | Predict : { : 5 .2 f }" ’.format(st[i]), end= ’ ’)
254
255 # Save model
256 t2 = time.time()
257 dump(model, ’ { }_CV{ } . joblib ’.format(TB_model_names[i], iteration))
258 sv.append(time.time()-t2)
259 print( ’ | Save : { :5 .2 f }" ’.format(sv[i]))
260
261 # Feat importance
262 if TB_model_names[i] != ’GPR’:
263 fi.append(model.feature_importances_)
264
265 print( ’ ( { } ) [ { } ] Results saved! ’.format(datetime.now().strftime( ’%H:%M:%S ’), ’\

u2713 ’))
266 TB_fitting_times.append(ft)
267 TB_setting_times.append(st)
268 TB_saving_times.append(sv)
269 TB_feat_importance.append(fi)
270 TB_predictions.append(pr)
271 TB_evaluations.append(ev)
272 print( ’ ( { } ) Cross−Validation performed in { :6 .2 f } seconds\n{}\n\n’.format(

datetime.now().strftime( ’%H:%M:%S ’), time.time()-start_time, 70* ’=’))
273
274 # Save results
275 np.save("TB_fitting_times .npy", TB_fitting_times)
276 np.save("TB_setting_times .npy", TB_setting_times)
277 np.save("TB_saving_times .npy", TB_saving_times)
278 np.save("TB_feat_importance .npy", TB_feat_importance)
279 np.save("TB_predictions .npy", TB_predictions)
280 np.save("TB_evaluations .npy", TB_evaluations)

Script 18: Prophet regression for the close price of the AstraZeneca company.

1 from prophet import Prophet
2 from prophet.utilities import regressor_coefficients
3 from prophet.plot import plot, plot_components_plotly
4
5 m = Prophet()
6
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7 # Create customized Prophet-dataset
8 prophet_structure = {
9 ’ds ’ : df.index[: -from_2021],

10 ’y ’ : df.Close[: -from_2021],
11 ’Open’ : df.Open[: -from_2021],
12 ’Net ’ : df.Net[: -from_2021],
13 ’Volume’ : df.Volume[: -from_2021],
14 }
15
16 df_prophet = pd.DataFrame(prophet_structure)
17 df_prophet.index = np.arange(df_prophet.shape[0])
18
19 # Adding the set of regressors
20 for reg in df_prophet.columns[2:]:
21 m.add_regressor(reg)
22
23 # Fitting Prophet model
24 m.fit(df_prophet)
25
26 # Create a test-set with its regressors
27 future = m.make_future_dataframe(periods=from_2021)
28 for reg in df_prophet.columns[2:]:
29 future[reg] = df[reg].to_numpy()
30
31 # Make future predictions
32 forecast = m.predict(future)
33 m_eval_train = model_evaluation(df[ ’Close ’].to_numpy()[:-from_2021],
34 forecast.yhat[:-from_2021])
35
36 m_eval_val = model_evaluation(df[ ’Close ’].to_numpy()[-from_2021:],
37 forecast.yhat[-from_2021:])
38
39 print(pd.DataFrame([m_eval_train, m_eval_val], columns=metrics_names, index=[ ’Train ’,

’Val ’]).to_latex())
40
41 # Save results
42 forecast.to_csv( ’prophet_forecast . csv ’)
43 # Plot results
44 plt.figure()
45 plt.plot(df.index[-from_2021 :], df[ ’Close ’].to_numpy()[-from_2021 :], label= ’Real ’)
46 plt.plot(df.index[-from_2021 :], forecast[ ’yhat ’].to_numpy()[-from_2021 :], linestyle

= ’ −. ’, label= ’Predicted ’)
47 plt.fill_between(df.index[-from_2021 :],
48 forecast[ ’yhat_lower ’][-from_2021 :],
49 forecast[ ’yhat_upper ’][-from_2021 :],
50 color = ’ tab : orange ’,
51 alpha = 0.2,
52 label = ’Uncertainty ’)
53 plt.title( ’Prophet test forecasting ’)
54 plt.legend()
55 plt.tight_layout()
56 plt.savefig( ’Prophet_validation . pdf ’)

c.2.2 Case two: Front-Back sound discrimination on HRTF data
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Script 19: Implementation of the fitting stage for the KNN, MLP, SVM, Linear regression, and XGB
classification models.

1 import time
2 from datetime import datetime
3 from joblib import dump, load
4 import pandas as pd
5
6 from sklearn.pipeline import Pipeline
7 from sklearn.metrics import classification_report, confusion_matrix,

ConfusionMatrixDisplay
8 from sklearn import neighbors, linear_model, ensemble, svm
9 from sklearn import metrics

10
11 from sklearn.linear_model import LogisticRegression
12 from sklearn.neighbors import KNeighborsClassifier
13 from sklearn.svm import SVC
14 from sklearn.neural_network import MLPClassifier
15
16 def from_classes_to_binary(X_train, X_val, y_train, y_val):
17 # SELECT NON-LATERAL CLASSES
18 IDX_binary_train = np.array([__y in [0,1,2,4,5,6] for __y in y_train])
19 IDX_binary_val = np.array([__y in [0,1,2,4,5,6] for __y in y_val])
20 # REMOVE LATERAL CLASSES
21 X_binary_train = X_train[IDX_binary_train,:,:]
22 X_binary_val = X_val[IDX_binary_val,:,:]
23 Y_binary_train = y_train[IDX_binary_train]
24 Y_binary_val = y_val[IDX_binary_val]
25 # CONVERSION TO BINARY
26 for i, __y in enumerate(Y_binary_train):
27 if __y in [0, 1, 2]:
28 Y_binary_train[i] = 0
29 else:
30 Y_binary_train[i] = 1
31
32 for i, __y in enumerate(Y_binary_val):
33 if __y in [0, 1, 2]:
34 Y_binary_val[i] = 0
35 else:
36 Y_binary_val[i] = 1
37 return X_binary_train, X_binary_val, Y_binary_train, Y_binary_val
38
39 COLUMNS = [ ’ Precision ’, ’ Recall ’,
40 ’F1−score ’, ’Accuracy ’,
41 ’AUC’, ’p−AUC’,
42 ’ Brier ’, ’ Jaccard ’,
43 ’MCC’, ’FM’, ’Log−Loss ’]
44
45 def get_scores(y_pred, y_real, y_prob):
46 acc = metrics.accuracy_score(y_real, y_pred)
47 auc = metrics.roc_auc_score(y_real, y_pred)
48 mcc = metrics.matthews_corrcoef(y_real, y_pred)
49 fm = metrics.fowlkes_mallows_score(y_real, y_pred)
50
51 return np.array(acc, auc, mcc, fm])
52
53 # PERFORM 9-FOLD CROSS-VALIDATION
54 X_idx = np.arange(Xm.shape[0])
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55
56 model_names = [ ’kNN’,
57 ’MLP’,
58 ’SVM’,
59 ’ Logistic ’,
60 ’XGBoost ’,
61 ]
62 fitting_times = []
63 setting_times = []
64 saving_times = []
65 feat_importance = []
66 predictions = []
67 scores = []
68 dec_matrix = []
69
70 N_cross_validations = 9
71 for n in range(N_cross_validations):
72 print( ’ ( { } ) Cross−Validation number {}\n{ } ’.format(datetime.now().strftime( ’%H:%M:%

S ’), n+1, 80* ’=’))
73 start_time = time.time()
74 # Make a 36:9 of 45 subjects of split
75 cv_idx = np.arange(n*1250, (n+36)*1250)
76 data_split = np.in1d(X_idx, cv_idx)
77
78 # Data split for train-validation
79 X_train = Xm[data_split, :, :]
80 y_train = yc[data_split]
81 X_val = Xm[~data_split, :, :]
82 y_val = yc[~data_split]
83 X_binary_train, X_binary_val, Y_binary_train, Y_binary_val = from_classes_to_binary

(X_train, X_val, y_train, y_val)
84
85 # Sum the Ipsilateral/Contralateral components
86 X_binary_train_1channel = X_binary_train.sum(axis=-1)
87 X_binary_val_1channel = X_binary_val.sum(axis=-1)
88
89 RANDOM = n*13
90 models = [KNeighborsClassifier(n_neighbors=6, n_jobs=-1),
91 MLPClassifier(random_state = RANDOM),
92 SVC(random_state = RANDOM),
93 LogisticRegression(random_state = RANDOM, max_iter=250, n_jobs=-1),
94 XGBClassifier(random_state = RANDOM, n_jobs=-1),
95 ]
96 ft = []
97 st = []
98 sv = []
99 fi = []

100 pr = []
101 sc = []
102 dm = []
103 for i, model in enumerate(models):
104 print( ’ ( { } ) {:<8s } model ’.format(datetime.now().strftime( ’%H:%M:%S ’),
105 model_names[i]),
106 end= ’ ’)
107 t0 = time.time()
108 model.fit(X_binary_train_1channel, Y_binary_train)
109 ft.append(time.time()-t0)
110 print( ’ | Fit : { : 6 .2 f }" ’.format(ft[i]), end= ’ ’)
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111 # Just store the feature importance of the possible models
112 if i < 3:
113 fi.append(np.zeros(X_binary_train_1channel.shape[1]))
114 elif i == 3:
115 lr_intercept = model.intercept_

116 fi.append(model.coef_)
117 else:
118 fi.append(model.feature_importances_)
119 t1 = time.time()
120 y_pred = model.predict(X_binary_val_1channel)
121 if i == 2:
122 y_prob = y_pred
123 else:
124 y_prob = model.predict_proba(X_binary_val_1channel).T[0]
125 st.append(time.time()-t1)
126 print( ’ | Predict : { : 5 .2 f }" ’.format(st[i]), end= ’ ’)
127 # Save model
128 t2 = time.time()
129 dump(model, ’ { }_CV{ } . joblib ’.format(model_names[i], n))
130 sv.append(time.time()-t2)
131 print( ’ | Save : { :5 .2 f }" ’.format(sv[i]))
132 # Save resultant objects
133 pr.append(y_pred)
134 sc.append(get_scores(y_pred, Y_binary_val, y_prob))
135 dm.append(metrics.confusion_matrix(Y_binary_val, y_pred))
136
137 # Save results for the Cross-Validation
138 print( ’ ( { } ) [ { } ] Results saved! ’.format(datetime.now().strftime( ’%H:%M:%S ’), ’\

u2713 ’))
139 fitting_times.append(ft)
140 setting_times.append(st)
141 saving_times.append(sv)
142 feat_importance.append(fi)
143 predictions.append(pr)
144 scores.append(sc)
145 dec_matrix.append(dm)
146 print( ’ ( { } ) Cross−Validation performed in { :6 .2 f } seconds\n{}\n\n’.format(datetime.

now().strftime( ’%H:%M:%S ’), time.time()-start_time, 80* ’=’))
147
148 # Saver results
149 np.save(" fitting_times .npy", fitting_times)
150 np.save(" setting_times .npy", setting_times)
151 np.save("saving_times .npy", saving_times)
152 np.save("feat_importance .npy", feat_importance)
153 np.save("predictions .npy", predictions)
154 np.save("scores .npy", scores)
155 np.save("dec_matrix .npy", dec_matrix)

Script 20: Linear Discriminant Analysis classification strategy for the HRTF signals of the CIPIC
dataset.

1 from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
2
3 clf = LinearDiscriminantAnalysis()
4 clf.fit(X_binary_train_1channel, Y_binary_train)
5 clf.score(X_binary_val_1channel, Y_binary_val)
6
7 # X-y values
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8 y_LDA = clf.transform(X_binary_val_1channel)
9 x_LDA = np.arange(len(y_LDA))

10
11 # Graphic representation
12 plt.figure(figsize=(8, 5))
13 marker_LDA = [ ’^’, ’o ’]
14 color_LDA = [ ’ tab : red ’, ’ tab : green ’]
15 label_LDA = [ ’Front ’, ’Back ’]
16 for p in range(2):
17 sns.scatterplot(x=x_LDA[Y_binary_val == p],
18 y=y_LDA[:,0][Y_binary_val==p],
19 marker=marker_LDA[p],
20 color = color_LDA[p],
21 alpha = 0.5,
22 edgecolor = color_LDA[p],
23 label = label_LDA[p])
24 plt.xlim(0-10, len(y_LDA)+10)
25 plt.title( ’Linear Discriminant Analysis for 1−channel HRTF sources ’)
26 plt.legend(loc = ’upper right ’)
27 plt.tight_layout()
28 plt.savefig( ’CIPIC_LDA_1channel. pdf ’)





colophon

I want to conclude by highlighting the leading websites that helped me develop my thesis.
The document that yields this thesis has been compiled with LATEX. The edition, storage,
and online compilation have been in the collaborative cloud-based Overleaf. We would
like to mention that our thesis style is provided by the author of the ltu-thesis GitHub
repository. Then, we are very thankful for the beauty and elegance of their template. The
reference managing has been carried out via the Mendeley Desktop. Regarding the graph-
ics presented throughout the thesis, all the “Own elaboration” sources have been drawn
by utilizing the following sources: Matplotlib for scientific plots, SlidesGo for standard
graphics, and Inkscape for image edition.

https://www.latex-project.org//
https://www.overleaf.com/
https://github.com/bashimao/ltu-thesis
https://www.mendeley.com/
https://matplotlib.org/
https://slidesgo.com/
https://inkscape.org

	Contents
	List of Figures
	List of Tables
	List of Scripts
	List of Algorithms
	Abstract
	Resumen
	Resum
	Declaration of Authorship
	Dedication
	Acknowledgments
	Publications
	Acronyms
	Introduction
	Objectives
	Contributions
	Thesis Outline

	Theory and Methodology
	Historical Background
	Statistics and Probability
	Operations Research
	Computer Science
	Python programming language
	R programming language

	Business Analytics
	Summary

	Multiple-Criteria Decision Making
	Approaches of Multi-Criteria Decision Analysis
	Multi-Objective Mathematical Programming
	Multi-Attribute Utility/Value Theory
	Outranking Relationships
	Preference Disaggregation Analysis
	Multi-Criteria Decision Making properties
	Data preprocessing

	Classical approach
	Weighted Mean Models
	TOPSIS
	VIKOR

	Fuzzy approach
	Fuzzy-WMM
	Fuzzy-TOPSIS
	Fuzzy-VIKOR

	Unweighted approaches
	Unweighted Mean Models
	Unweighted TOPSIS
	Unweighted VIKOR
	Problems attached to the Unweighted MCDM

	Fuzzy Unweighted approach
	Summary

	Artificial Intelligence
	Machine Learning
	Probabilistic and statistical notions
	Principal tasks in Machine Learning
	K-Nearest Neighbours
	Support Vector Machine
	Decision Trees

	Deep Learning
	Neural Networks
	Convolutional Neural Networks
	Recurrent Neural Networks
	Long-Short Term Memory

	Explainable artificial intelligence
	Summary


	Experimental Study
	Multiple-Criteria Decision Making case studies
	MCDM-Case 1
	Experiment Setup
	Construction of the academic performance indicator
	Application of the academic performance indicator to UIS students
	Discussion
	Conclusions
	Python implementation

	MCDM-Case 2
	Experiment Setup
	Introduction
	Literature review
	New proposals for compromise solutions
	Cases study
	Results and discussion
	Conclusions
	Python implementation

	Summary

	Artificial Intelligence case studies
	AI-Case 1
	Experiment Setup
	Introduction
	Theoretical background
	Fuzzy Ordered C-Means clustering (FOCM)
	A comparison of musical products based on FOCM
	Experiments
	Conclusions
	Python implementation
	Extra section: Explicit URL link to the dataset sources

	AI-Case 2
	Background
	Methodology
	Model architecture
	Regressor sets
	Model implementation
	Evaluation metrics
	Software implementation
	Results and discussion
	Conclusions and future work
	Python implementation

	AI-Case 3
	Experiment Setup
	Introduction
	Project inception
	Results
	Discussion
	Conclusions
	Python implementation
	Extra section: CNN evaluation

	Summary

	Multiple-Criteria Decision Making & Artificial Intelligence case studies
	MCDM & AI-Case 1
	Experiment Setup
	Introduction
	Student classification according to its academic performance
	Results and discussion
	Conclusions
	Python implementation

	MCDM & AI-Case 2
	Experiment Setup
	Literature review
	Methodology
	Forecast of the AstraZeneca close price with the use of stock market regressors
	Front-Back sound discrimination on HRTF data
	Conclusions
	Python implementation

	Summary


	Conclusions
	Contribution 1: Design and implementation of Unweighted Multiple-Criteria Decision Making techniques
	Contribution 2: Incorporation of the Fuzzy Unweighted Multiple-Criteria Decision Making approach
	Contribution 3: Application and evaluation of customized Artificial Intelligence models in complex environments
	Contribution 4: Combination of the fields of Multiple-Criteria Decision Making and Artificial Intelligence
	Contribution 5: Publication of GitHub repositories
	Outlook and Future Work

	Bibliography
	Appendices
	Appendix 1: Multiple-Criteria Decision Making computational implementations
	Implementation of classic TOPSIS and VIKOR methods
	Script for An academic performance indicator using flexible multi-criteria methods
	Script for uwVIKOR: An Unweighted Multi-Criteria Decision Making Approach for Compromise Solution

	Appendix 2: Artificial Intelligence computational implementations
	Script for A Proposal to Compare the Similarity Between Musical Products. One More Step for Automated Plagiarism Detection?
	Script for Multivariate time series prediction based on stock market and sentiment analysis regressors
	Script for On the Application of Explainable Artificial Intelligence Techniques on HRTF Data

	Appendix 3: Multiple-Criteria Decision Making & Artificial Intelligence computational implementations
	Script for Early detection of students' failure using Machine Learning techniques
	Script for Multiple-Criteria Decision Making approach for an in-depth benchmarking of supervised Machine Learning models
	Case one: Forecast of the AstraZeneca close price with the use of stock market regressors
	Case two: Front-Back sound discrimination on HRTF data



