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Supervised by Ángel Corberán Salvador,

Isaac Plana Andani and José Maŕıa Sanchis Llopis
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How fortunate it is for me that my heart can feel
the plain, naive delight of the man who puts on the
table a cabbage that he has grown himself, and for

whom it is not merely the vegetable, but all the good
days, the fine morning when he planted it, the plea–

sant evenings when he watered it, taking his pleasure
in its thriving growth, that he enjoys again in one

comprehensive moment.
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Introduction

The emerging technology of unmanned aerial vehicles, commonly known as drones,
has provided new opportunities for practitioners in urban logistics in the last decade.
Transportation plays a crucial role in society and economy, and a fundamental engine
of economic development in recent times has been the investment on increasingly effi-
cient transport systems. Drones present attractive advantages compared with standard
ground vehicles, such as avoiding the congestion on road networks, eliminating the risk
of personnel in difficult access operations or getting higher measurement accuracy in
infrastructure inspection. Many commercial companies have recently shown interest in
using drones for more cost–efficient and faster last–mile deliveries. Amazon announced
at the end of 2013 that they would deliver packages directly to each doorstep through
Prime Air using small drones 30 minutes after the “buy” button was hitted by the cus-
tomers (CBSNews.com, 2013). As promised by the corporation, a later released version
of its Prime Air delivery drone was a robust hybrid aircraft capable of vertical takeoff
and landing that could fly up to 15 miles and deliver packages under five pounds to
the customers in less than 30 minutes (Vincent and Gartenberg, 2019). Along with
Amazon, other delivery services like UPS or Google have been testing the potential use
of drones for parcel delivery (Mack, 2018). Since aerial drones are not restricted by
local infrastructure, they can also be profitably used in rural distribution, surveillance
and intralogistics (DHL, 2014), as well as environmental and geological 3D mapping
for data collection (Sujit et al., 2012). The use of drones within all these scenarios
faces multiple issues (and challenges) that can be addressed by routing problems, whose
solution models aim to find the most efficient route (or routes) related to an explicit
resource such as distance, time or energy.

This thesis focuses on the study of some extensions of arc routing problems in which
such aerial vehicles, drones, are used to optimize a certain service. Given a graph
representing a network, arc routing problems (ARPs) consist of finding a tour, or a set
of tours, with total minimum cost traversing (servicing) a set of links (arc or edges)
of the graph, called required links, and satisfying certain conditions (see Corberán and
Laporte, 2014; Mourão and Pinto, 2017; and Corberán et al., 2020). Well–known ARPs
are the Chinese postman problem (CPP) and the rural postman problem (RPP), where
a single vehicle has to traverse all or some of the links of the graph, respectively, and the
capacitated arc routing problem (CARP), where a fleet of vehicles with limited capacity
is available to jointly service all the required links. The main interest in studying this
type of problems lies in the fact that they model a large number of real–life situations
such as mail delivery, meter reading, garbage collection, network maintenance, and so
on. ARPs can be formulated as combinatorial optimization problems, where the goal is
to find, among a countable (but huge) set of feasible solutions, one that minimizes (or
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2 Introduction

maximizes) a cost function, called objective function. Unfortunately, except for some
of the simplest problems, it is not reasonable to expect to find algorithms capable of
solving any instance of a problem in a number of operations that grows polynomially
with the size of the instance.

The use of drones to perform the service in ARPs involves significant changes in
the traditional way of modeling and solving these problems. In classical ARPs with
ground vehicles, the streets requiring waste collection, roads from which snow must be
removed, or pipelines to be inspected, for example, are represented by edges or arcs of
a network that ignore the geometric shape of the modeled infrastructure (although not
its cost or distance), since these vehicles have to traverse an arc or edge (a road) from
one endpoint to the other one. Furthermore, vehicles in traditional ARPs cannot travel
off the network. Instead, aerial drones have the capability to travel directly between
any two points of the network, not necessarily between vertices of the graph. They may
start the service of an edge at the most appropiate point along the edge according to
the drone trajectory and the shape of each line to service. This consideration makes arc
routing problems with drones continuous optimization problems with an infinite and
uncountable number of feasible solutions.

Applications for drones in ARPs include inspection and monitoring of infrastructure
and facilities that can be modeled as networks or collections of lines. Two relevant appli-
cation areas are energy transmission systems and transportation. Jordan et al. (2018)
provides examples of applications of drone inspection in a wide variety of areas, in-
cluding power lines, railways, sewers, geographical features, buildings, bridges and wind
turbines. In some areas such as power lines, the use of drones provides cost–effective,
faster and safer inspections (Rauhakallio, 2020), and a new industry has developed to
provide commercial power line inspection services. The academic research on power
line inspection with drones is still limited. Liu et al. (2019) models the inspection of
power lines, represented as straight line segments, by several drones that are launched
from ground vehicles at a set of nodes on the road network, proposing constructive and
improvement heuristics to design the routing planning of such a cooperative system.
Other energy–related drone inspection topics receiving attention are wind turbine su-
pervision, especially for expensive and difficult to access offshore wind farms (Durdevic
et al., 2019); Shafiee et al., 2021), and monitoring of offshore oil and gas facilities and
pipelines (Jones et al., 2019; Knight, 2019).

In transportation systems, drone arc routing examples arise in areas such as road
traffic monitoring, railroad and transit track inspection, bridge and road inspection,
and managing vegetation. The monitoring of urban traffic and road systems provides
important applications for drone arc routes along infrastructure that naturally can be
modeled with curved lines (see, for example, Li et al., 2018; Karaduman et al., 2019;
and Luo et al., 2019). Bridges and other buildings associated with transportation sys-
tems also provide opportunities for drone arc routing to guarantee efficient inspections
(Plotnikov et al., 2019; Outay et al., 2020). Other applications with drone flights cov-
ering linear features include surveillance along borders (Delair, 2020) and surveillance
to prevent marine ingress near nuclear power plants (Catapult, 2020), in which case
the area to be inspected by drones can be represented as a network of linear features
(providing sensor coverage of the desired areas).

Throughout this thesis, we study three variants of arc routing problems with drones,
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which are modeled as combinatorial optimization problems and addressed with heuristic
and exact mathematical approaches. The book is structured in seven chapters as follows.
The first two are introductory chapters aimed at bringing the reader closer to essential
notions and topics related to the content of the thesis. In Chapter 1, several basic
definitions and theoretical results of graph theory, linear and integer programming, and
combinatorial optimization are presented, and Chapter 2 provides an overview of the
main routing problems studied in the academic literature.

The next three chapters deal with the Length–Constrained K–Drones Rural
Postman Problem (LCK–DRPP). This is a continuous optimization problem where a
fleet of homogeneous drones have to jointly service (traverse) a set of (curved or straight)
lines of a network. In Chapter 3, the LC K–DRPP and also its discrete approximation,
the Length–Constrained K–vehicles Rural Postman Problem (LC K–RPP),
are defined. A formulation and some valid inequalities for the LC K–RPP are presented,
as well as a branch–and–cut algorithm for its solution. A matheuristic algorithm for
solving the LC K–DRPP is also developed, and extensive computational experiments
to assess the performance of both algorithms are carried out.

Chapter 4 delves into the study of the LC K–RPP. We propose a new formulation
for this discrete arc routing problem, whose binary variables are inspired by the work in
Corberán et al. (2013) for the maximum benefit Chinese postman problem. Throughout
this chapter, a polyhedral study of the set of solutions of a relaxed formulation is devel-
oped, proving that some inequalities from the formulation define facets of its associated
polyhedron. Several families of valid inequalities are presented and some conditions un-
der which such inequalities induce facets of the polyhedron are studied. In Chapter 5, a
new algorithm for solving the LC K–DRPP is proposed. We present a new branch and
cut for the LC K–RPP based on the formulation introduced in the previous chapter,
which incorporates the separation of the valid inequalities proposed. This branch and
cut is the main routine of an iterative algorithm that solves an LC K–RPP instance at
each step in order to find good solutions for the original LC K–DRPP instance. The
computational results obtained show the effectiveness of this new algorithm.

In Chapter 6, the Multi–Purpose K–Drones General Routing Problem
(MP K–DGRP) is presented and studied. In this continuous optimization problem, a
fleet of multi–purpose drones, aerial vehicles that can both make deliveries and conduct
sensing activities, have to jointly visit a set of nodes to make deliveries and also map one
or more continuous areas. We propose a matheuristic algorithm to solve the problem.
Moreover, we define the Multi–Purpose K–vehicles General Routing Problem
(MP K–GRP), a discrete optimization problem whose solution provides an upper bound
of the optimal MP K–DGRP solution. For this problem, we present a mathematical
formulation and several families of valid inequalities, and propose a branch–and–cut
algorithm to solve it. Extensive computational experiments on two randomly generated
sets of MP K–DGRP instances are carried out to test the performance of the proposed
algorithms.

Chapter 7 presents the Load–Dependent drone General Routing Problem
(LDdGRP). This problem is a variant of the classical GRP in which a drone has to
traverse some required edges of a graph and also visit a set of nodes that require a
delivery. Unlike basic GRP, where the total cost of the route is minimized and the
cost of traversing each edge is constant, in the LDdGRP we aim to minimize the total
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flight duration, where we assume that the traversal time of an edge is proportional to the
product of the distance travelled and the total weight (including cargo) of the drone. We
propose a mathematical formulation for the problem and develop a theoretical study
of the polyhedron associated with the LDdGRP solutions. Several families of valid
inequalities are also proposed. We design a branch and cut for solving the LDdGRP
that incorporates new separation procedures for all the proposed inequalities, and some
computational experiments testing the efficiency of our exact approach are presented.

Finally, a section of conclusions is included as a recap of all the work developed in
this thesis, and future lines of research are also outlined. Some of the original content
appearing in this book has been published or submitted to international journals for
publication. The content of Chapter 3 is based on the following published paper:

B J. F. Campbell, Á. Corberán, I. Plana, J. M. Sanchis, and P. Segura (2021).
Solving the length constrained K–drones rural postman problem. European
Journal of Operational Research 292, 60–72.

Part of the polyhedral study developed in Chapter 4 for the length constrainedK–drones
rural postman problem (the special case K = 1) can be found in

B Á. Corberán, I. Plana, J. M. Sanchis, and P. Segura (2021). Polyhedral
study of a new formulation for the Rural Postman Problem. Technical report,
http://www.uv.es/plani/reports.html

and a more compact version of the content of Chapters 4 and 5 is published in the
following article:

B J. F. Campbell, Á. Corberán, I. Plana, J. M. Sanchis, and P. Segura (2022).
Polyhedral analysis and a new algorithm for the length constrained K–drones
rural postman problem. Computational Optimization and Applications 83,
67–109.

Chapter 6 is based on the following paper already submitted to an international journal
for publication:

B J. F. Campbell, Á. Corberán, I. Plana, J. M. Sanchis, and P. Segura (2023).
The multi–purpose K drones general routing problem. Under revision.

The content of Chapter 7 will be submitted soon to a recognized journal in the area.



Chapter 1

Preliminary concepts

This chapter is aimed at introducing the reader to some basic concepts and results
in the fields of graph theory, polyhedral theory, linear and integer programming, and
combinatorial optimization, as well as presenting the mathematical terminology and
notation used in the remaining chapters.

1.1 Graph theory

Many real–world problems, including vehicle routing problems, can be described and
modeled by means of graph theory. We provide in this section some definitions and
results of graph theory that will be used throughout the thesis. For further information
in this field, we refer the reader to the excellent books by Harary (1969), Berge (1973),
Christofides (1975), and Bondy and Murty (1976).

Let V be a non–empty finite set and let E be a finite family of unordered pairs (i, j)
of (not necessarily distinct) elements in V . An undirected graph G is defined as a pair
(V,E), where the elements of V are called vertices or nodes of G and the elements of
E are called edges of G.

If the pair e = (i, j) is an edge of G, then e is said to be incident with i and j, and
vertices i and j are called the ends (or endpoints) of e, and are said to be adjacents. If
an edge has identical ends, it is called a loop. If two edges are incident with the same
pair of vertices, they are said to be parallels. A graph G is simple if it has no loops and
no parallel edges. If G is simple and there is an edge (i, j) between each pair of distinct
vertices i, j of G, it is said to be complete.

Given a vertex i of a graph G, we denote by δG({i}) (or simply δ(i), if there is no
ambiguity) the set of edges of G that are incident with i. The degree dG(i) of vertex i
is the number of edges of G incident with i, where each loop counts as two edges. A
vertex of G is said to be even if it has even degree, and odd otherwise. A graph G is
even if all its vertices are even.

Theorem 1.1.1. An undirected graph G has an even number of vertices of odd degree.

5
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Let S1 and S2 be two disjoint subsets of V . We denote by (S1 : S2) the set of those
edges in G with one end in S1 and the other end in S2. For any non–empty set S ⊆ V ,
the set δ(S) = (S : V \ S) is called a cutset of G associated with S. In particular, each
vextex i ∈ V defines a cutset δ(i) of G. A cutset is said to be even if contains an even
number of edges, and odd otherwise.

Theorem 1.1.2. δ(S) is an odd cutset of G if, and only if, S and V \ S have an odd
number of vertices of odd degree.

A graph G′ = (V ′, E′) is a subgraph of G = (V,E) if V ′ ⊆ V and E′ ⊆ E. Given a
subset V ′ ⊆ V , we denote by E(V ′) the set of those edges of G that have both ends in V ′.
The graph G(V ′) = (V ′, E(V ′)) is called the subgraph of G induced by V ′. Similarly,
given a subset E′ ⊆ E, we denote by V (E′) the set of vertices of G that are ends of an
edge in E′. The graph G(E′) = (V (E′), E′) is called the subgraph of G induced by E′.

Let us consider an undirected graph G = (V,E) and two vertices i0, ik ∈ V . A
walk from i0 to ik in G is a finite sequence w = (i0, e1, i1, e2, . . . , ek, ik) whose terms are
alternately vertices and edges of G, such that the ends of each edge er are ir−1 and ir,
for 1 ≤ r ≤ k. The integer k is the length of the walk. In a simple graph, a walk can be
specified by the sequence (i0, i1, i2, . . . , ik) of its vertices, and if the vertices of this se-
quence are distinct, w is called a simple walk or path. A closed walk in G is called a tour.

Theorem 1.1.3. Any tour in G traverses an even number of times (or zero) any cutset
in G.

Two vertices i and j of an undirected graph G are connected if there is a path from
i to j in G. G is said to be connected if there is at least one path between each pair
of vertices of G. A graph with a single vertex is connected by convention. A connected
component of G is a connected subgraph of G induced by a set of vertices of G which
is maximal with respect to the cardinality of such subset of vertices.

A vertex cut of an undirected connected graph G is a subset of nodes V ′ ⊆ V such
that the graph G\V ′ is disconnected. A vertex cut of k elements is called a k–vertex cut.
A complete graph has no vertex cuts. An undirected graph G is said to be k–connected
if k is the minimum number of vertices that must be removed for G to be disconnected.
Similarly, an edge cut of G is a subset of edges E′ ⊆ E such that the graph G \ E′
is disconnected, and an edge cut of k elements is called a k–edge cut. The size of a
minimum edge cut in a connected graph G gives its edge connectivity.

A cycle in G is a closed path. A Hamiltonian path of G is a path that contains every
vertex of G, and a Hamiltonian cycle of G is a cycle that contains every vertex of G.
A graph G is said to be Hamiltonian if it contains a Hamiltonian cycle. An Eulerian
tour in graph G is a tour that traverses each edge of G exactly once. G is said to be
Eulerian if it contains an Eulerian tour.

Theorem 1.1.4 (Euler). An undirected graph G is Eulerian if, and only if, it is
connected and even.

Let V be a non–empty finite set and let A be a finite family of ordered pairs (i, j) of
(not necessarily distinct) elements in V . A directed graph G, or digraph, is defined as a
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pair (V,A), where the elements of V are called vertices or nodes of G and the elements
of A are called arcs of G.

Let V be a non–empty finite set, E a finite family of unordered pairs (i, j) of (not
necessarily distinct) elements in V , and A a finite family of ordered pairs (i, j) of (not
necessarily distinct) elements in V . A mixed graph G is defined as a tuple (V,E,A),
where the elements of V are called vertices or nodes of G, the elements of E are called
edges of G, and the elements of A are called arcs of G.

All the concepts already introduced for undirected graphs can be adapted to directed
and mixed graphs.

1.2 Linear algebra and polyhedral theory

Let us denote by Rn the space of all the column vectors with n real components, and let
xi ∈ Rn, with i = 1 . . . ,m. A vector y ∈ Rn is said to be a linear combination of vectors
xi if, and only if, it can be expressed as y =

∑m
i=i λixi, with λi ∈ R. If

∑m
i=i λi = 1

holds, y is said to be an affine combination of vectors xi. A linear combination of vectors
xi satisfying λi ≥ 0 is a conic combination, and an affine combination of vectors xi in
which λi ≥ 0 is a convex combination.

Let us consider a set of vectors X ⊂ Rn. The linear (resp. affine, conic, convex )
hull of X is the set of all the linear (resp. affine, conic, convex) combinations of vectors
in X, and it is denoted by lin(X) (resp. aff (X), cone(X), conv(X)). X is said to be a
linear (resp. affine, conic, convex ) subspace of Rn if X = lin(X) (resp. X = aff (X),
X = cone(X), X = conv(X)).

Vectors xi ∈ Rn, 1 ≤ i ≤ m, are said to be linearly independent if none of them can
be written as a linear combination of the others, or equivalently, if

∑m
i=1 λixi = 0 implies

that λi = 0 for each i. Otherwise, they are said to be linearly dependent. Similarly,
vectors xi ∈ Rn, 1 ≤ i ≤ m, are said to be affinely independent if none of them is an
affine combination of the others, or equivalently, if

∑m
i=1 λixi = 0 with

∑m
i=1 λi = 0

implies that λi = 0 for each i. Otherwise, they are said to be affinely dependent.

Theorem 1.2.1. Let us consider a set X ⊆ Rn. The following statements are equiva-
lent:

i) X is affinely independent.

ii) For each y ∈ X, {x− y : x ∈ X,x 6= y} is linearly independent.

iii) For each y ∈ Rn, {x− y : x ∈ X} is affinely independent.

The range of a set of vectorsX ⊆ Rn is the maximum number of linearly independent
vectors in X, and is denoted by rg(X). The range of a matrix A, denoted by rg(A), is
the range of its column vectors, which coincides with the range of its row vectors.

If X is a linear subspace of Rn, any finite subset B of linearly independent vectors
in X such that lin(B) = X is said to be a base of X. All the bases of a linear subspace
of Rn have the same number of vectors, and this number is called the dimension of
X. If X is an affine subspace of Rn, there is a unique linear subspace X ′ ⊆ Rn such
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that X ′ = {x − y : x ∈ X} for any y ∈ X, and the dimension of X ′ coincides with the
dimension of X. If X is an arbitrary subset of Rn, its dimension corresponds to the
dimension of aff (X), and is denoted by dim(X).

Let a ∈ Rn and α ∈ R. A set {x ∈ Rn : aTx = α} is called a hyperplane in Rn, and
it divides Rn into two half–spaces, {x ∈ Rn : aTx ≤ α} and {x ∈ Rn : aTx ≥ α}. A
polyhedron in Rn is defined as the intersection of a finite number of half–spaces in Rn
or, equivalently, as the set of solutions of a system of inequations of the form Ax ≤ b,
where A is an m × n matrix and b ∈ Rm. If a polyhedron is bounded, it is called a
polytope. A polyhedron P ⊆ Rn is said to be full–dimensional if dim(P ) = n.

Let a ∈ Rn and α ∈ R. An inequality aTx ≤ α is a valid inequality for a polyhedron
P if P ⊆ {x ∈ Rn : aTx ≤ α}. F ⊆ Rn is said to be a face of the polyhedron P if there
exists a valid inequality aTx ≤ α for P such that F = P ∩ {x ∈ Rn : aTx = α}. It is
said that face F is induced by the inequality aTx ≤ α. A face F of a polyhedron P
can be induced by different inequalities and, in this case, these inequalities are said to
be equivalent with respect to P . Clearly, a polyhedron is a face of itself, and the other
non–empty faces of P are called proper faces. A non–empty proper face of a polyhedron
P that is maximal with respect to the inclusion of sets is called a facet of P .

Theorem 1.2.2. Let P ⊆ Rn be a polyhedron and let F be a non–empty proper face
of P induced by a valid inequality aTx ≤ α. Then, F is a facet of P if, and only if,
dim(F ) = dim(P )− 1.

A non–empty proper face of a polyhedron P that is minimal with respect to the
inclusion of sets, that is, any face of P formed by a single point F = {v}, is called a
vertex of P .

Theorem 1.2.3. Let P = {x : Ax ≤ b} and v ∈ P . Then, v is a vertex of P if, and
only if, v cannot be expressed as a convex combination of vectors in P \ {v}.

A polyhedron P whose vertices have all their components integer is called an integral
polyhedron.

1.3 Linear and integer programming

Linear programming dates back to the 1940s. In 1939, Leonid Kantorovich addressed
the earliest linear programming problems that were used by the military during World
War II to reduce army costs and increase battlefield efficiency. George B. Dantzig
devised in 1947 the well–known simplex method to solve linear programming problems,
and John von Neuman developed the theory of duality that same year.

A linear programming problem (LP) is the problem of minimizing (maximizing) a
linear function

f(x) = cTx, cT ∈ Rn,

called objective function, over a polyhedron P = {x ∈ Rn : Ax ≤ b}, where x ∈ Rn is a
vector of decision variables and the linear inequalities Ax ≤ b, with A an m× n matrix
and b ∈ Rm, are called constraints of the problem. Each x ∈ P is a feasible solution of



1.3. Linear and integer programming 9

the LP, and we call optimal solution to any x∗ ∈ P such that

cTx∗ = min{cTx : x ∈ P}.

Theorem 1.3.1. If P has at least one vertex and min{cTx : x ∈ P} is finite, then there
exists at least one vertex in P that is an optimal solution.

The simplex algorithm (Dantzig, 1963) begins at a vertex of P and moves iteratively
along the edges of the polytope until the vertex of an optimal solution is reached. Klee
and Minty (1972) proved that this algorithm is not polynomial by finding a set of LP
instances for which the simplex algorithm requires a number of operations that depends
exponentially on the size of the instance. Khachian (1979) developed a polynomial
algorithm called ellipsoid method to solve linear programming problems. The most
important contribution of this method is the verification that LPs are problems in the
so–called class P. A few years later, Karmarkar (1984) proposed another polynomial
method that has given rise to a whole family of algorithms, the so–called interior point
methods, which move within the feasible region until an optimal solution is found.
These methods rival the simplex in efficiency, especially on large instances. However,
the simplex is still the most widely used algorithm in practice.

An integer linear problem (ILP) is the problem of minimizing (maximizing) a linear
function

f(x) = cTx, cT ∈ Rn,

with integer decision variables x ∈ Zn, over a polyhedron P ∈ Rn. If the integrity
constraint of the variables is omitted, an LP results that is called the linear relaxation
of the ILP.

Integer linear problems are combinatorial optimization problems with a discrete set
of feasible solutions, and although they may seem a simple subject at first sight, they
can be extremely difficult to solve. For most combinatorial optimization problems,
polynomial–time algorithms are not known, nor the existence of such algorithms is
expected. They are known as NP–hard.

There is a variety of algorithms that can be used to deal with the ILPs exact solution.
One of the most used is the branch and bound. After an optimal solution x∗ of the
LP relaxation is found, this method chooses some variable xi that takes a fractional
value x∗i in the optimal solution of the LP, and generate one new subproblem with
the additional constraint xi ≤ bx∗i c and a second one with the additional constraint
xi ≥ dx∗i e. Repeating this step on each new subproblem leads to the construction of
a search tree whose nodes correspond to the linear relaxation of the original ILP with
some additional constraints. The optimal values of the linear relaxations at the nodes
of the tree are used as bounds to prune the tree, until an optimal integral solution is
found.

Another procedure to solve ILPs exactly are the cutting–plane methods. The scheme
of these algorithms is the following. We initially have an integer programming formu-
lation of the problem min{cTx : x ∈ P, x is integral} for some polyhedron P , and some
classes of inequalities that are valid for all the integral solutions. First, an optimal
solution x∗ of the LP relaxation min{cTx : x ∈ P} is found with a linear programming
algorithm. If x∗ is integral, then it is also an optimal solution of the ILP. Otherwise,
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we look for valid inequalities of the known classes to find some that are violated by
x∗. Then, these violated inequalities are added to the LP relaxation and a new optimal
solution x∗∗ is found. Again, if x∗∗ is integral, we are done, and otherwise, we search
for inequalities that are violated by x∗∗, add them to the current LP relaxation, and so
on. One option when no longer violated inequalities are found in the root node is to
proceed to branch. This generally more efficient method is called branch and cut, and
combines the two optimization algorithms already mentioned, branch and bound and
cutting–plane.

When ILPs contain a huge number of variables, they can be addressed with branch–
and–price algorithms, which are a hybrid of branch and bound and column generation
methods. At the beginning of this algorithm, a reformulation is used to define the
master problem, and the LP relaxation of a restricted version of the master problem
that considers only a subset of the columns is solved. Then, to check for optimality,
a subproblem called pricing problem is solved to try to find columns with a negative
reduced cost to be added to the restricted master problem, and the relaxation is re-
optimized. When no profitable columns are found and the LP solution is not integral,
the algorithm proceeds to branch and applies column generation at other nodes of the
branch and bound tree until an optimal integral solution is found.

An alternative to exact methods for solving integer programming problems are the
so–called heuristic algorithms. They provide a wide variety of non–exact procedures
and strategies that, although cannot guarantee the best solution found to be an optimal
one, can achieve a high–quality solution in reasonable computing time. These methods
can be useful to obtain good bounds to prune the tree when ILPs are addressed with
branching algorithms.

1.4 Polyhedral combinatorics

We summarize in this section the basis of the polyhedral approach for solving NP–hard
combinatorial optimization problems.

Let us consider a finite set E, called ground set, with a cost ce associated with each
e ∈ E, and a finite (or countably infinite) family F of subsets of E, called feasible
solutions. A combinatorial optimization problem (COP) with linear objective function
is to find a set F ∗ ∈ F such that c(F ∗) =

∑
e∈F ∗ cexe is minimum (or maximum), where

xe denotes the number of times that e ∈ E is in F ∗.

The polyhedral approach to the COP defined above starts with the definition of
a polyhedron PF whose vertices, and maybe other points in PF , follow a one–to–one
correspondence with the feasible solutions in F . For that, we define an incidence vector
xF of a feasible solution F ∈ F as

xF = (xFe )e∈E ∈ Z|E|,

where xFe denotes the number of times e ∈ E is in F , and then a convex set PF is
defined as

PF = conv{xF : F ∈ F}.

The set PF is not a polyhedron in general (the set F can be infinite), but for most
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COPs it can be shown that it is. We will therefore assume that PF is a polyhedron.
By construction, each feasible solution F ∈ F corresponds to a point in PF and each
vertex of PF corresponds to a feasible solution F ∈ F . Therefore, an optimal solution
of the COP can be found by solving the LP

min{cTx : x ∈ PF}. (1.1)

Thus, the COP has been naturally transformed into the LP (1.1), but in order to address
problem (1.1) with the linear programming techniques, it is necessary to know the linear
system that describes PF , or at least a significant part of it.

Even if a complete linear description of the polyhedron PF is known, it is not possible
to generate and store all the equations and inequalities that define the associated LP,
since this linear system can be expected to be extremely large (in many problems, the
number of inequalities grows exponentially with the number of variables in the problem).
Instead of generating the entire linear system, what is done is to successively solve the
following problem:

Separation Problem (or Facet Identification Problem). Given a polyhe-
dron PF and a point x̄ ∈ R|E|, either conclude that x̄ ∈ PF or, if not, find a linear
inequality aT x̄ ≤ α defining a facet of PF that is violated by x̄ (i.e., aT x̄ > α).

Using the facet identification problem as a subroutine in a cutting–plane algorithm,
we could generate inequalities (which define facets of PF ) that are violated as we need
them to cut off optimal fractional solutions of the LPs. If a complete description of
PF is known and the separation problem can be solved, the cutting–plane ends at an
optimal solution of the COP.

Theorem 1.4.1. The optimization problem (1.1) is polynomially solvable if, and only
if, the separation problem is polynomially solvable.

Unfortunately, the complete description of the linear system that defines the poly-
hedron associated with an NP–hard problem is highly improbable (Papadimitrou, 1984)
and, likewise, the separation problem of an NP–hard problem is also NP–hard. However,
a partial knowledge of the PF linear system and a “partial solution” of the separation
problem may be enough to obtain important results if, when no violated inequalities
are found, we start, for example, a branch–and–bound process. Thus, one important
challenge in polyhedral combinatorics is to find a sufficiently large subsystem of the
complete linear system that describes the polyhedron PF in order to design efficient
strategies to solve the problem.





Chapter 2

Routing problems overview

Routing problems are among the most studied problems in the last decades within
the area of combinatorial optimization. This second introductory chapter focuses on
bringing the reader closer to these problems, offering a summarized overview of their
origin and classification, as well as some important definitions and relevant results from
them.

A generic definition of the family of routing problems can be the following: given a
vehicle (or a fleet of vehicles) and a set of transportation requests, to determine a route
(or a set of routes) with minimum cost satisfying all the requests and meeting certain
additional conditions. Many real world situations can be modeled as routing problems.
For example, the distribution of goods to customers, the garbage collection over the
streets, or the inspection and maintenance of highways or electrical infrastructures.
These routing problems are modeled mathematically by representing the transport net-
work on a graph, where each of its edges or arcs represents a connection (street, road,
boundary, shoreline) of the real network and has an associated weigth representing the
distance or cost of traversing it.

Classical routing problems can be naturally classified into two groups, namely node
routing problems and arc routing problems, depending on where in the graph the ser-
vice will be performed. In node routing problems, also called vehicle routing problems
(VRPs), the service to be performed is located at the vertices of the graph. These
problems would represent, for example, a real situation in which a traveler must visit a
series of cities in such a way that the distance traveled is minimized. We will address
this first group of problems in more depth in Section 2.1.

Consider now the situation in which a postman leaves his office, delivers the mail
along the streets, and then returns to his office. Designing a route of minimum length
for the postman is in this case equivalent to finding a tour on a graph where some edges
(roads) have a certain demand and must be serviced. Those routing problems in which
the solution must traverse a set of edges and/or arcs of the graph are called arc routing
problems (ARPs). Section 2.2 is devoted to this second group of problems, providing a
summary of the main ARPs defined in the literature, as well as some theoretical results
and extensions of them. Arc and node routing problems can be further unified in the
so–called general routing problems, as will be seen in Section 2.3, in which it is necessary
to traverse a set of arcs, as well as visit a set of vertices of the graph.

13
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Another way to classify routing problems could be based on the type of graph on
which they are modeled. An undirected graph could represent a situation in which each
road can be traversed at the same cost in both directions, a directed graph could model
the case, for example, in which the roads can be traveled in only one direction, and a
more flexible case where some streets can be traveled in only one direction and others
in both could be represented in a mixed graph. Minieka (1979) introduced the windy
postman problem as a generalization of the undirected, directed and mixed cases in
which the cost of traversing an edge is not assumed to be the same on both directions.
The name attributed to these problems arose from the idea of assuming one direction
to be uphill (against the wind) and the other downhill (with the wind), and they could
represent a frequent transport situation in which fares are different depending on the
direction. Windy routing problems are modeled on an undirected graph where each
edge (i, j) has two associated costs cij , cji (not necessarily equals) which represent the
cost of traverse the edge from i to j or from j to i, respectively.

In many cases, a single postman (or vehicle) does not have enough capacity to meet
all the demand, and the problem that arises is to find one route for each vehicle of a given
set, so that the global demand is satisfied. Moreover, any of these routing problems may
be complemented with additional conditions derived from the characteristics presented
by the real situation they model, including time windows within which the service must
be performed, multiple depots, precedence relationships of some services over others,
split delivery, balancing of the routes, prohibited transitions from one arc or edge of the
graph to another one, or some complex loading constraints, among others.

In recent years, the increasing advancement of aerial vehicle technologies has made
drones very useful in some practical applications, such as transport of small packages,
infrastructure inspection or border control. Either independently or in a cooperative
environment with ground vehicles (trucks), these remote controlled devices offer new
opportunities to improve logistics. We dedicate Section 2.4.1 to briefly comment on some
of the new applications that appear when drones are used to solve routing problems, as
well as some recent works and references in this new line of research. The main ideas and
new considerations introduced in Campbell et al. (2018) to address arc routing problems
with drones are summarized in some detail in Section 2.4.1, since they motivate part of
the work described in the following chapters.

2.1 Node routing problems

In node routing problems, the transportation requests are concentrated in specific points
of a road network, which is equivalent to assuming that a set of vertices of a graph needs
to be visited by the solution of the problem at hand. There is a vast literature on node
routing problems, much more extensive than for arc routing problems, motivated by
their practical relevance and also their considerable difficulty. This section provides a
review of the two most famous node routing problems, the traveling salesman problem
and the vehicle routing problem, as well as some of their extensions and reference
works in the area of vehicle routing. The interested reader can find more information
on vehicle routing problems, solution methods and applications in the excellent book
edited by Toth and Vigo (2014).
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2.1.1 The traveling salesman problem

The traveling salesman problem (TSP) is almost certainly the most studied vehicle
routing problem in the scientific literature within the area of combinatorial optimization.

Let us consider a complete weighted graph G = (V,E), where the set of vertices V
would represent a set of cities, the set of edges E would represent the roads between
each pair of cities, and each weight we would be the cost or distance of road e. The
TSP aims to find a Hamiltonian cycle with minimum weight on G, that is, the shortest
route visiting each city exactly once and returning to the one of origin. Karp (1972)
proved the TSP to be NP–hard.

The graphical traveling salesman problem (GTSP) was introduced in Cornuejols et
al. (1985) and Fleischmann (1985, 1988) as a variant of the TSP in which the graph
is not necessarily complete, and then the tour must visit each vertex of graph G at
least once. The main advantages of the GTSP formulation compared to the classical
formulation of the TSP are that the polyhedron of solutions is full–dimensional and
fewer variables are necessary, in general, since we can work directly on the graph that
models the road network, which is normally quite far of being a complete graph.

Basic variants of the TSP are the symmetric TSP, which is defined on a weighted
undirected graph without loops, and the asymmetric TSP, which is defined on a directed
graph. Most node routing problems were first introduced as variants of the TSP (that
is, by considering the single vehicle case), but later extended to a multi–vehicle scenario.
We will summarize some of these extensions in the next subsection directly for the case
of several vehicles, the so called vehicle routing problem. Ilavarasi and Joseph (2014)
provide a survey of variants of the TSP, and a detailed description of exact methods
and computational studies for the TSP can be found in the book by Applegate et al.
(2006).

2.1.2 The vehicle routing problem

The vehicle routing problem (VRP) is a generalization of the TSP introduced more than
60 years ago in Dantzig and Ramser (1959) as the truck dispatching problem, whose
objective was the delivery of gasoline to service stations with a fleet of trucks. Dantzig
and Ramser (1959) presented the first mathematical formulation for the VRP and also
an algorithmic approach for its solution. A few years later, Clarke and Wright (1964)
proposed an effective heuristic algorithm for solving the VRP, and such a combinatorial
problem became very popular among researchers.

Given a set of customers and a fleet of vehicles located at a depot or warehouse, the
VRP is to determine a set of routes with minimum cost to service all the customers with
the given vehicle fleet. This generalization of the TSP involves deciding which vehicle
visits which customer (that is, a partition of the set of customers) and in which order
so that all vehicle routes can be feasibly executed. Therefore, it is also an NP–hard
problem. The most studied version of the VRP is the capacitated VRP, which assumes
that all vehicles have the same limited capacity to attend the customers demands. The
wide variety and richness of methods proposed in the literature for the capacitated
VRP are analized, in Laporte (1992), Toth and Vigo (2002), Cordeau et al. (2007), and
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Baldacci et al. (2010, 2011), among others.

Many variants of the VRP have been studied in the scientific literature. One of them
is the VRP with time windows (VRPTW), where the service at each customer must
start within an associated time interval, which is called a time window. The VRPTW is
also NP–hard, even if the number of vehicles is fixed (Savelsbergh, 1985). In the existing
literature concerning VRPTWs, an unlimited number of vehicles are usually available to
serve the customers, and while the objective for exact methods is to minimize the total
traveled distance, many heuristics prioritize minimizing the number of vehicles used.
We refer the reader to the surveys of Braysy and Gendreau (2005) and Baldacci et al.
(2012) for additional information on heuristic and exact algorithms for the VRPTW.

Another important variant of the VRP is the family of pickup and delivery problems
(PDPs) for the transportation of commodities or goods from different origins to different
destinations. There are many categories of PDPs according to the considered type
of demand and route structure: there may be one or several different types of goods
involved, and these can be transported from a single or multiple depots to the customers,
and also collected from the customers and transported back to one or several depots.
PDPs have applications in, for example, repositioning of inventory, car sharing systems,
collection of empty bottles and cans, or door–to–door transportation services. A general
survey of PDPs in the literature is given in Parragh et al. (2008a, 2008b).

2.2 Arc routing problems

The origin of arc routing problems is attributed to the well–known Königsberg bridges
problem. In the 18th century, the river Pregel divided the Prussian city of Königsberg
into four parts which were connected by seven bridges a, b, c, d, e, f , and g (as can
be seen in Figure 2.1), and it was popularly wondered if it was possible to arrange a
route that would cross each bridge exactly once and then return to the starting point.
This question was answered in the negative by Euler (1736), who argued that “when
there are more than two areas in which an odd number of bridges leads, such journey
is impossible”. This problem can be posed as a routing problem in a graph with the
different parts A, B, C, and D of the city represented by vertices and the bridges by
edges, where we know that it is impossible to find an Eulerian circuit since the four
vertices are odd. The study of Euler for this problem would lay the foundations for
modern graph theory.

It was not until 1960 that the first publication related to an arc routing problem, the
widely known Chinese postman problem, appeared. Guan (1962) stated the problem
of designing the shortest distance route for a postman who had to walk through all the
streets in a given neighborhood in order to deliver the mail, and proposed an (non-
polynomial) algorithm for solving it. A few years later, this problem was shown to be
solvable in polynomial time on some types of graph. In the earlier 1980s, a first overview
of arc routing problems appears in the works of Assad et al. (1983) and Benavent et
al. (1983), and Bodin and Golden (1981) offer a more detailed classification of these
problems. Since then, arc routing field has evolved a lot within the area of combinato-
rial optimization, and many exact and heuristic algorithms that reach a high level of
sophistication have been developed, allowing the solution of increasingly large instances
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Figure 2.1: Euler’s drawing of the river Pregel and the seven Königsberg bridges

in very reasonable computing times. The growing interest in the study of this type of
problems has been motivated, in addition to its great theoretical appeal, by the large
number of real–life situations they model, such as meter reading, newspaper delivery,
snow plowing and salt spreading for winter maintenance of roads, waste management
and collection along the streets, infrastructure inspection, and so on.

In the remaining of this section, we present a brief review of the most important
arc routing problems studied in the scientific literature: the Chinese postman problem,
the rural postman problem, and the capacitated arc routing problem. For each one of
these problems, its definition on undirected graphs, which appears naturally depending
on whether the demand is in all the edges of the graph, in only a subset of them,
or whether a single vehicle can service the total demand or not, will be given. Their
complexity on different types of graph and some of their most relevant extensions will
also be mentioned. More information on definitions, methods and applications of arc
routing problems can be found on the excellent book edited by Corberán and Laporte
(2014). A recent annotated bibliography on arc routing problems is presented in Mourão
and Pinto (2017), and a forecast of future lines of research in this area is provided in
Corberán et al. (2021).

2.2.1 The Chinese postman problem

One of the most studied arc routing problems is the Chinese postman problem (CPP),
which owes its name to the Chinese mathematician Meigu Guan, who introduced it in
Guan (1962) more than 60 years ago. Given an undirected graph G = (V,E) with a
travel cost ce associated with each edge e ∈ E, the CPP is to determine a least cost
tour on G traversing each edge in E at least once. When the graph is connected and all
its vertices are even, G is Eulerian and there exists a CPP solution which traverses each
edge in E exactly once. Instead, if some vertices of G have odd degree, the problem
is to identify a subset of edges to traverse twice, that is, to determine a least–cost
augmentation of G that renders all degrees even.

In its undirected and directed version, the CPP is solvable in polynomial time and
a complete description of its associated polyhedron is known (Edmonds and Johnson,
1973). The difficulty of the problem changes if it is defined on a mixed or windy graph.
Papadimitriou (1976) shown the mixed CPP to be NP–hard. The windy postman
problem, proposed in Guan (1984), includes as particular cases the previous ones and,
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therefore, it is NP–hard. Win (1989) proved the CPP to be solvable in polynomial time
on a windy graph in certain special cases, such as when the graph is Eulerian.

Some variants of the CPP, many of them inspired from extensions of the TSP, appear
in the scientific literature. Dror et al. (1987) introduced the hierarchical CPP, in which
a precedence relation on arcs was considered, and developed an algorithm for solving it.
The complexity of the algorithm of Dror et al. (1987) was reduced later in Ghiani and
Improta (2000). Dror and Haouari (2000) proposed the generalized CPP, in which the
set of edges is partitioned in several subsets and the solution has to contain at least one
edge of each of such subsets. Aminu and Eglese (2006) introduced the CPP with time
windows and proposed two exact constraint programming algorithms for its solution. A
sophisticated branch and cut for the windy postman problem can be found in Corberán
et al. (2012).

2.2.2 The rural postman problem

The rural postman problem (RPP) was first defined in Orloff (1974) as an extension
of the CPP. Let us consider an undirected graph G = (V,E) with a cost ce associated
with each edge e ∈ E, and let ER ⊆ E be a non–empty subset of edges of G, which will
be called required. The goal of the RPP is to find a tour on G traversing each edge in
ER at least once with total minimum cost. Equivalently, the RPP aims at determining
a least cost set of deadheaded (i.e., non–required) edges that, together with the set of
required edges, generate an Eulerian graph.

The RPP on undirected and directed graphs was proven to be NP–hard in Lenstra
and Rinnooy Kan (1976). However, when the set of required edges or arcs induces a
connected graph, the RPP is reduced to the CPP and, therefore, it can be solved in
polynomial time. As the RPP defined on mixed and windy graphs contain the undirected
RPP as a special case, both are also NP–hard.

The first mathematical formulation for the RPP appears in Christofides et al. (1981).
A constructive heuristic method for the RPP was proposed in Frederickson (1978), and
several authors developed later alternative procedures (Hertz et al., 1999; Groves and
van Vuuren, 2005; Ghiani et al., 2006). Blais and Laporte (2003) solved the directed
RPP by transforming it into an asymmetric TSP. Since the general routing problem
(GRP) generalizes the RPP, as will be seen in the next section, many results proposed
for the first problem can be applied to the second one. Ávila et al. (2015) proposed a
branch–and–cut algorithm for the directed general routing problem, and the branch and
cut proposed in Corberán et al. (2007) for the windy general routing problem optimally
solves the largest undirected RPP instances at present.

2.2.3 The capacitated arc routing problem

The capacitated arc routing problem (CARP) was introduced in Golden and Wong (1981)
as a generalization of the RPP in which each edge of the graph has an associated demand,
and a single vehicle does not have enough capacity to satisfy the total demand.

Let us consider an undirected and connected graph G = (V,E) with a cost ce ≥ 0
and a demand qe ≥ 0 associated with each edge e ∈ E, a depot node, and a fleet of
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vehicles with the same capacity. The CARP is to find a set of routes for the vehicles
with total minimum cost, all of them starting and finishing at the depot, and in such a
way that customer demand is satisfied without exceeding the capacity of the vehicles.

Since the CARP contains the RPP as special case, it is also NP–hard. Belenguer
and Benavent (1994) developed a branch and cut for the CARP based on a formulation
with two indices, and a few years later developed a cutting–plane algorithm based on
a one–index formulation (Belenguer and Benavent, 2003). The first column genera-
tion approach for the CARP appears in Gómez–Cabrero et al. (2005). Baldacci and
Maniezzo (2006) transformed the CARP into a capacitated VRP and solved it with an
exact method.

The CARP has also been defined for directed and mixed graphs. Belenguer et al.
(2006) presented a cutting–plane algorithm which embeds the one–index formulation for
the undirected CARP adapted for the mixed case, and Gouveia et al (2010) proposed
a formulation for the mixed CARP that considers flow variables. Several constructive
heuristics and metaheuristics algorithms have also been proposed for the CARP in
the literature, many of them based on the classic path–scanning and augment–merge
algorithm (Golden et al., 1983), or in the Ulusoy method (Ulusoy, 1985).

2.3 General routing problems

The most general case among routing problems is the one in which the service demand
is found both in the links and in the nodes of the graph, namely the general routing
problem (GRP).

The GRP was introduced in Orloff (1974), and its undirected version is defined as
follows. Let us consider an undirected and connected graph G = (V,E) with a cost
ce associated with each edge e ∈ E, let ER ⊆ E be a subset of required edges of G
and let VR ⊆ V be a subset of required nodes of G. The GRP is to find the minimum
cost tour on G which traverses each edge e ∈ ER and visits each node v ∈ VR at least
once. Note that the GRP includes as special cases most of the problems already defined
above. When the set of edges ER is empty and VR = V , the GRP becomes the GTSP.
If VR = ∅, it is reduced to the RPP, and if ER = E, then the CPP arises.

The GRP was also proven to be NP–hard in Lenstra and Rinnooy Kan (1976). Since
then, the problem has been studied in undirected, directed, mixed, and windy graphs
(Corberán and Sanchis, 1994, 1998; Letchford, 1997, 1999; Corberán et al., 2001, 2003,
2005, 2007). Some variants of the GRP studied in the literature are the capacitated
GRP in mixed graphs (Pandi and Muralidharan, 1995; Bosco et al., 2013), also known as
the node, edge and arc routing problem (Bach et al., 2013), or the undirected capacitated
GRP with profits (Archetti et al., 2017).

2.4 Routing problems with drones

So far this century, research dedicated to the use of aerial drones in transportation
has grown in importance along with continuous technological advances in the drone
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industry. Drones are increasingly used by large companies to perform tasks such as
traffic monitoring, last–mile delivery, remote sensing or aerial inspection, and new real
world situations require new models that better reflect their characteristics.

Several extensions of the node routing problems described above that consider the
use of drones have been proposed in the scientific literature. The first version of the TSP
with drones, or TSP–D, was introduced in Murray and Chu (2015) by combining the
service of some customers (those requiring heavier weight packages) by a truck and of
the others by a drone (without cooperation). Agatz et al. (2018) proposed two heuristic
approaches for a TSP–D that considers synchronization between both types of vehicle
involved (truck and drone). These two works have served as a basis for a large number
of scientific articles addressing TSP–D variants in recent years.

Wang et al. (2017) presented a generalization of the TSP–D, the VRP–D, that
considers a fleet of trucks equipped with drones that can be dispatched from and picked
up at any node (location) of the network. The authors conducted the analysis of several
worst–case scenarios, and later Wang and Sheu (2019) presented an arc–based model
and proposed a branch–and–price algorithm for the problem. Di Puglia Pugliese and
Guerriero (2017) extended the VRP–D by considering time windows for each customer,
and Ulmer and Thomas (2018) presented a dynamic variant of the VRP–D. Other
extension of the classical VRP is the drones delivery problem (DDP), in which the fleet
is composed only by drones, and several particular technical aspects of the drones, such
as battery capacity or energy consumption, are taken into account (Dorling et al., 2017;
Coelho et al., 2017; Troudi et al., 2019).

For a more extensive insight into recent work on node routing problems with drones,
we suggest the reader the recent surveys of Macrina et al. (2020) and Rojas Viloria et
al. (2021).

2.4.1 Drone arc routing problems

Unlike the growing scientific interest in addressing different versions of drone VRPs,
references to arc routing problems with drones in the academic literature are still scarce.
In transportation systems, drone arc routing examples arise in areas such as road traffic
monitoring (Li et al., 2018; Luo et al., 2019), railway inspection (Plotnikov et al., 2019;
Wishart et al., 2020), and roadway surface inspection (Outay et al., 2020), in which
infrastructure is naturally modeled with curved line features.

Campbell et al. (2018) presented the first approach to drone arc routing problems
(Drone ARPs) and studied their relation with classical ARPs. As pointed out in Camp-
bell et al. (2018), Drone ARPs extend classical ARPs to allow vehicles (drones) to travel
directly between any two points on the given network. In traditional ARPs, the vehicles
travel through the edges of a network, and each edge has to be completely traversed
(from one of its endpoints to the other one), or not traversed. However, while ground
vehicles are limited to following the local infrastructure (roads), drones have the flexi-
bility to travel off the network as well. These aerial vehicles may service only part of an
edge and then travel in a straight line to any point of another edge, without following
the links of the network. As a consequence, Drone ARPs are continuous optimization
problems with an infinite number of feasible solutions.
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Since drones may start and end the service of each edge of the network at any point
of it (even in the middle), another relevant difference of Drone ARPs with respect to
classical ARPs is that now the geometric shape of the lines must be taken into account
in the construction of the routes.

With all the above assumptions, Campbell et al. (2018) defined the rural postman
problem with drones, or Drone RPP, as follows:

(Drone RPP) Given a set of lines, each one with an associated service
cost, and a point called the depot, and assuming that the cost of
deadheading between any two points is the Euclidean distance, find
the minimum cost tour starting and ending at the depot that services
all the given lines.

The mathematical approach developed by the authors for its solution was based on
approximating each curve in the plane by a polygonal chain with a finite number of
segments, and solving the problem as a discrete optimization problem (a postman RPP),
where vehicles are allowed to enter and leave each curved line only at the points of the
polygonal chain. Once discretized, the set of non–required edges in Drone ARPs forms
a complete graph, and the deadheading cost between any pair of points is given by the
Euclidean distance.

The work presented in the next chapters of this thesis extends the drone RPP defined
in Campbell et al. (2018) to assume that the autonomy (flight range) of the drones is
limited and a fleet of (homogeneous) drones is needed to perform all the service. Other
related problem in the literature can be found in Amorosi et al. (2021), where the
authors study the coordination problem that arises between a mothership vehicle and
a drone that can be launched from it to (partially) perform inspection activities over
a two–dimensional space, a connected piecewise linear polygonal chain, or a general
graph.





Chapter 3

The length constrained K–drones
rural postman problem

This chapter addresses the first problem studied in this thesis, the length constrained
K–drones rural postman problem (LC K–DRPP). This problem was introduced in
Campbell et al. (2018) as an extension of the Drone RPP in which the limited flight
range of the drones implies that a single vehicle cannot perform all the required service,
and is defined as follows:

(LC K–DRPP) Given a set of lines, each one with an associated
service cost, and a point called the depot, assuming that the cost of
deadheading between any two points is the Euclidean distance, and
given a constant L, find a set of drone routes starting and ending at
the depot and with lengths no greater than L such that they jointly
traverse all the given lines completely with minimum total cost.

Unlike ground vehicles in traditional ARPs, which have to follow the links of a given
graph, drones can fly directly between any two points. Thus, a drone can enter a line
that requires service through any of its (infinite) points, traverse and service part of it,
exit the line through another of its points, then travel directly to any point on another
required line, and so on. In this way, shorter solutions can be obtained using drones
than with ground vehicles. The price to pay is that the problem is much more difficult:
the LC K–DRPP is a continuous optimization problem, with an uncountable number
of feasible solutions.

As carried out in Campbell et al. (2018), one way to deal with this problem is
to digitize each specific instance by defining each curved line by a (usually) large set
of points, each one with its corresponding coordinates. In other words, each line can
be approximated by a polygonal chain in such a way that drones are allowed to enter
and leave each line only at the points of the polygonal chain, thus obtaining a discrete
optimization problem. Obviously, the greater the number of points, the closer the
discrete problem is to the continuous problem.

When an LC K–DRPP instance is discretized, we obtain an instance of a com-
binatorial optimization arc routing problem, the Length Constrained K–vehicles

23
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Rural Postman Problem (LC K–RPP). These last instances are defined on an undi-
rected graph G = (V,E), where the set of vertices V is formed by all the points of the
polygonal chains plus the depot, the set of required edges, ER ⊂ E, is formed by all
the segments of the polygonal chains, and the non–required edges, ENR ⊂ E, define a
complete graph over the vertex set V . The cost of traversing and servicing each required
edge (segment) e ∈ ER, cse ≥ 0, is equal to the proportional part of the total cost of
servicing the corresponding original line (assuming that the cost rate of servicing a line
is the same in all its parts), while the (deadheading) cost, ce ≥ 0, associated with the
traversal of a non–required edge e = (i, j) ∈ ENR is given by the Euclidean distance
from i to j. Note that, for each required edge e ∈ ER, there is a non–required parallel
edge e′ ∈ ENR. It is assumed that cse ≥ ce′ . The goal of the LC K–RPP is to find K
routes (tours) starting and ending at the depot that jointly traverse all the required
edges and such that the total cost, or length, of each route does not exceed a maximum
value L, with minimum total cost.

Note that when the number of points used to discretize the lines of an LC K–DRPP
instance is large, the corresponding LC K–RPP instance can be extremely large and,
therefore, very difficult to solve optimally, and even heuristic algorithms can fail to
provide feasible solutions in reasonable computing times. For example, an instance
with 84 polygonal chains with 20 intermediate points per chain has 1763 vertices, 1764
required edges, and 1553203 non–required edges. An alternative is to generate smaller
LC K–RPP instances by approximating each line with very few segments, provided that
the intermediate points are significant points.

The smallest LC K–RPP instance, and the least tight approximation to the cor-
responding LC K–DRPP instance, is the one obtained by approximating each line of
the LC K–DRPP instance by a single edge (a polygonal chain with a single segment,
without intermediate points). We will call LC K–RPP(0) to these instances. They can
be meaningful in real situations where it is mandatory, or recommended, that each line
is fully serviced by the same drone, from one endpoint to the other. We want to point
out that since drones can fly directly between any two endpoints, in these instances
the non–required edges form a complete graph, whereas in traditional ARPs the graph
often corresponds to a sparse network.

The contributions of this chapter are arranged as follows. In Section 3.1, we propose
a formulation with binary variables and some families of valid inequalities for the discrete
LC K–RPP, and a branch–and–cut algorithm (B&C) based on the proposed formulation
is presented in Section 3.2. Section 3.3 describes a matheuristic algorithm for the LC
K–DRPP resolution. We report in Section 3.4 the extensive computational experiments
carried out to assess the performance of both algorithms on two sets of instances based
on the ones proposed in Campbell et al. (2018) for the Drone RPP and also on 15 new
larger instances generated in this work.

3.1 A formulation for the length–constrained K–vehicles
rural postman problem

In this section, we present a formulation for the LC K–RPP on the graph G = (V,E)
described above. Since (V,ENR) is a complete graph, G is an undirected multigraph
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with a non–required edge e′ parallel to each required edge e, with different costs ce′

and cse. Given that G is undirected, the single tour associated with any drone traverses
each edge in G at most twice (if a tour traverses an edge e three or more times, we can
remove two traversals of e and obtain another tour with lower cost). Furthermore, it
can be seen that, for each tour that traverses an edge e twice in the same direction, we
can build an equivalent tour (with the same cost) that traverses e once in each direction.
Therefore, we can assume that the tours associated with each drone traverse each edge
at most once in each direction.

The LC K–RPP can be formulated with the following binary variables. For each
edge e = (i, j) ∈ E and for each drone k ∈ {1, . . . ,K} we define two binary variables
xkij , x

k
ji. If e is required, variables xkij , x

k
ji take the value 1 if, and only if, e is serviced

and traversed by drone k from i to j or from j to i, respectively. If e is non–required,
variables xkij , x

k
ji take the value 1 if, and only if, e is deadheaded (traversed without

service) by drone k from i to j or from j to i, respectively.

We use the following notation. Given a subset S ⊆ V , δ(S) denotes the edge set
with one endpoint in S and the other one in V \S, and E(S) denotes the set of edges
with both endpoints in S. We denote δR(S) = δ(S) ∩ ER and ER(S) = E(S) ∩ ER.
Finally, for any subset F ⊆ E, we denote xk(F ) =

∑
e=(i,j)∈F (xkij + xkji).

The LC K–RPP can be formulated as follows:

Minimize

K∑
k=1

∑
e=(i,j)∈ENR

ce(x
k
ij + xkji) +

K∑
k=1

∑
e=(i,j)∈ER

cse(x
k
ij + xkji) (3.1)

s.t.: ∑
(i,j)∈δ(i)

(xkij − xkji) = 0, ∀i∈V, ∀k ∈ {1, . . . ,K} (3.2)

xk(δ(S)) ≥ 2(xkij + xkji), ∀S⊂V \{1}, ∀(i, j)∈ER(S), ∀k (3.3)

K∑
k=1

(xkij + xkji) = 1, ∀(i, j)∈ER (3.4)∑
e=(i,j)∈ENR

ce(x
k
ij + xkji) +

∑
e=(i,j)∈ER

cse(x
k
ij + xkji) ≤ L, ∀k ∈ {1, . . . ,K} (3.5)

xkij , x
k
ji ∈ {0, 1}, ∀(i, j) ∈ E, ∀k ∈ {1, . . . ,K} (3.6)

The objective function (3.1) minimizes the total cost of the routes. The first term
represents the “deadheading cost” while the second represents the cost of the required
edges that, due to constraints (3.4), is a constant and therefore can be removed:

K∑
k=1

∑
e=(i,j)∈ER

cse(x
k
ij + xkji) =

∑
e=(i,j)∈ER

cse

(
K∑
k=1

(xkij + xkji)

)
=

∑
e=(i,j)∈ER

cse.

Symmetry constraints (3.2) force each drone k to exit a vertex i as many times as
it enters it. Connectivity inequalities (3.3) ensure each single route is connected and
connected to the depot, while constraints (3.5) guarantee that the length or cost of each
route does not exceed L. The traversal of all the required edges exactly once is ensured
by equations (3.4). Constraints (3.6) are the binary conditions for the variables.
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The above formulation can be strengthened with the following inequalities. Given
a required edge e = (i, j) ∈ ER and its corresponding non–required parallel edge e′ =
(i, j)′ ∈ ENR, and since the tour performed by a vehicle k travels at most once from i
to j, the following single–traversal inequalities are satisfied:

xkij + xk(ij)′ ≤ 1. (3.7)

Moreover, the following parity inequalities are also valid and very useful to cut many
fractional “solutions”:

xk(δ(S)\F ) ≥ xk(F )−|F |+1, ∀S⊂V, ∀F ⊆δ(S) with |F | odd, ∀k ∈ {1, . . . ,K}.(3.8)

These inequalities are based on the fact that all vehicles have to traverse any edge cut–
set an even, or zero, number of times, and it is easy to see that they are valid for the
K–RPP on G. Since |F | is odd, the tours xk for which xk(F ) = |F | holds, should satisfy
xk(δ(S) \ F ) ≥ 1. Tours xk for which xk(F ) < |F |, obviously satisfy xk(δ(S) \ F ) ≥ 0.
Inequalities (3.8) are referred to as cocircuit inequalities by Barahona and Grötschel
(1986) and were proposed for the RPP by Ghiani and Laporte (2000).

3.2 A branch–and–cut algorithm for the LC K–RPP

We have implemented a branch–and–cut algorithm for the LC K–RPP based on the
formulation presented in Section 3.1. The initial LP is defined by all inequalities (3.2),
(3.5), (3.7), and equations (3.4), while connectivity inequalities (3.3) and parity in-
equalities (3.8), which are exponential in number, are separated at each iteration of the
cutting–plane algorithm and added to the LP. Let x̄k, for k = 1, . . . ,K, be the fractional
solution obtained at an iteration of the cutting–plane algorithm. We use the following
separation algorithms.

Separation of connectivity inequalities

For each drone k, we compute the connected components of the graph induced by the
edges e ∈ E such that x̄kij + x̄kji ≥ 1 − ε, where ε is a given parameter, and the depot,
if necessary. For each connected component with node set S not including the depot,
we select the edge e = (i, j) ∈ ER(S) with maximum value for x̄kij + x̄kji and check the

corresponding inequality x̄k(δ(S)) ≥ 2(x̄kij + x̄kji) for violation. We start with ε = 0 and,
while the algorithm fails in finding a violated inequality, we successively try ε = 0.25,
0.5, and 0.75.

Connectivity inequalities can be exactly separated with the following polynomial
time algorithm. In the graph induced by the depot and the edges e = (i, j) ∈ E such
that x̄kij + x̄kji > 0, we compute, for each edge e ∈ ER, the minimum cut separating

edge e from the depot. If the weight of this cut is less than 2(x̄kij + x̄kji), then the
corresponding inequality (3.3) is violated.
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Separation of parity inequalities

Parity inequalities can also be separated in polynomial time by means of a procedure
similar to the one proposed in Padberg and Rao (1982). However, since the procedure
is time consuming, we do not use it in the cutting–plane algorithm. Instead, we use the
following heuristic.

First, note that parity inequalities (3.8) can be written as∑
(i,j)∈δ(S)\F

(xkij + xkji) +
∑

(i,j)∈F

(1− xkij − xkji) ≥ 1. (3.9)

For each vehicle k, we compute the connected components of the graph induced by
the edges e = (i, j) ∈ E such that x̄kij + x̄kji ≥ 1− ε, where ε is a given parameter, and
the depot, if necessary. For each connected component with node set S we check the
edges in δ(S). For each e = (i, j) ∈ δ(S), if x̄kij + x̄kji > 0, 5, we put e in F . If |F | is odd,
we are done. Otherwise, it is easy to determine the edge to be removed from or added
to F , in such a way that the resulting set F minimizes the LHS of (3.9). If the LHS is
less than 1, the inequality (3.9) is then violated. Otherwise there is no set F ⊆ δ(S) for
which (3.9) is violated for the given set S. We start with ε = 0 and, while the algorithm
fails in finding a violated inequality, we successively try ε = 0.25, 0.5, and 0.75.

3.3 A matheuristic for the LC K−DRPP

In this section we present a matheuristic algorithm for the LC K−DRPP. It begins
by finding good solutions for the LC K−RPP(0) instances. Then, we sequentially
incorporate some promising intermediate points to find better solutions. Eventually, the
matheuristic provides feasible solutions for the LC K−DRPP with the characteristic,
typical of drones, that some lines are serviced in different parts by different drones or,
equivalently, that some drones only service part of some lines. The procedure developed
here has three phases:

i) In phase 1, we consider the LC K−RPP(0) instance in which each original line is
approximated by only one (required) edge without intermediate points. First, the
algorithm computes a “giant tour” traversing all the required edges by optimally
solving an RPP on the corresponding graph G. This giant tour is then partitioned
into K routes, one for each drone, to obtain an LC K−RPP solution. The process
of forming a giant route and partitioning it into K routes is repeated several times
to obtain different LC K−RPP solutions. This is described in Section 3.3.1. Three
local search procedures are then applied to each of these solutions to improve the
routes (described in Section 3.3.2), and finally each of the single routes of the
resulting solutions are optimized (described in Section 3.3.3).

ii) In phase 2, we consider the n best solutions obtained in phase 1. For each of these
solutions, we add an intermediate vertex to each required edge, thus obtaining
n solutions of the LC K−RPP instance where each original line is approximated
by a polygonal chain with two segments (edges). We then apply the local search
and the single route optimization procedures to each of these solutions to possibly
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improve them. We call this procedure “1–splitting” and it is described in Section
3.3.4.

iii) In phase 3, the most “promising” segments of each solution obtained in phase 2
are split again by adding one new intermediate vertex to them, while some unused
intermediate vertices are removed. This procedure is called “3–splitting” because
some of the original lines are approximated by a polygonal chain with three in-
termediate vertices (four edges). Again, the local search and the single route
optimization procedures are applied to improve each solution. In a second step
of this phase, called “7–splitting”, we add once again new intermediate vertices
on the “promising” segments and remove some unused vertices of each improved
solution. After applying the local search and the single route optimization proce-
dures to the resulting solutions, we keep the best of them as final solution of the
algorithm. This is described in Section 3.3.5.

Before describing in detail the different procedures that compose the matheuristic
algorithm, let us introduce some notation. A solution S is a set of K drone routes, with
each route starting and ending at the depot and of length no greater than L, such that
each required edge is serviced (traversed) in exactly one route. A route T is represented
by a sequence {(i, j), (k, l), . . . , (u, v)} of required edges, which will be denoted ET . A
route T is called feasible if its length is not greater than L. It is assumed that route
T services the required edges on ET in the same order as they appear in the sequence.
It is also assumed that the deadheading from the depot to vertex i, from the end of a
required edge to the beginning of the following edge in the sequence, and from vertex
v back to the depot, is done by traversing the corresponding non–required edge. Note
that the length of a route T is the sum of the costs of the required edges on ET and the
deadheading costs of the needed non–required edges. Throughout this section we will
denote by Ti the i−th route in a given solution S, with i ∈ {1, 2, . . . ,K}.

3.3.1 Initial LC K−DRPP solutions

In the first step of the algorithm, a giant tour TG onG = (V,E) (the graph corresponding
to the LC K–RPP(0) instance) traversing all the required edges is found by solving this
RPP instance optimally with the branch–and–cut algorithm proposed in Corberán et al.
(2007). This giant tour (see Figure 3.1a) is then partitioned into K routes of length no
greater than L (see Figure 3.1b) by means of the procedure proposed by Ulusoy (1985)
for the CARP. This procedure works on an auxiliary directed graph G∗ constructed
from TG as follows:

i) G∗ is a directed graph with |ER|+1 nodes that admits a rectilinear representation
(see Figure 3.2). The first node of G∗, denoted by v1, corresponds to the depot of
G. Associated with each required edge (i, j) of G we add a node vij on G∗. The
nodes are arranged from left to right following the order in which their associated
required edges are traversed in the giant tour TG. Recall that each required edge
is traversed only once in the optimal giant tour since drones can travel between
any pair of vertices of G through a non–required edge with equal or lower cost
due to the completeness of the graph (V,ENR).
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Figure 3.1: Splitting an optimal giant tour TG into K feasible routes

ii) Each arc on graph G∗ represents a feasible drone route on G. An arc from node
vij to node vk` is added to G∗ if the required edge (i, j) is the last one serviced
before the edge (k, `) in the giant tour TG. This arc represents the route starting
at the depot, deadheading to vertex k, servicing edge (k, `), and deadheading back
to the depot, that is, the route {(k, `)}. The cost (length) of arc (vij , vk`) in G∗ is
equal to the cost of its associated route. Furthermore, an arc from node v1 to the
first node vij is added to G∗ with cost that of the route {(i, j)} in G (see Figure
3.2).

iii) There are additional arcs included in graph G∗ associated with feasible drone
routes that service more than one required edge. An arc (vrs, vtw) is added to the
auxiliary graph if the route from the first required edge after (r, s) to edge (t, w)
is feasible. Furthermore, there is an arc in G∗ from node v1 to the node vtw if the
route from the first required edge of the giant tour to edge (t, w) is feasible. The
length of these arcs is the cost associated with the corresponding route. In Figure
3.2, arc (vij , vnp) in G∗ implies that the route {(k, `), (`,m), (n, p)} has a length
no greater than L. However, arc (v1, vnp) is not included in G∗ because the route
{(i, j), (k, `), (`,m), (n, p)} is not feasible.

v1 vij

vk`

v`m vq1vnp

Figure 3.2: Auxiliary graph G∗ generated from TG = {(i, j), (k, `), (`,m), (n, p), (q, 1)}

In graph G∗ we compute a shortest path from node v1 to node vq1 using the topo-
logical ordering, a technique that calculates shortest paths from a single source in
O(|V |+ |E|) time for directed acyclic graphs (Cormen et al., 2009). In Ulusoy (1985) it
is proved that the set of arcs in this shortest path defines a partition of the giant tour
TG into K feasible tours, and this partition is optimal regarding the ordering of the
traversal of the required edges in TG. For example, the shortest path in the graph G∗

in Figure 3.2, represented in bold lines, corresponds to the K feasible routes depicted
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in Figure 3.1b. These K routes define a solution S of the LC K–RPP(0) to which we
will apply the local search phase.

In order to obtain a larger set of initial solutions, we repeat the above algorithm
with other giant tours on G defined by other Eulerian circuits obtained from the optimal
RPP solution. Note that an RPP solution is an Eulerian graph that can be traversed in
different ways. We try to generate different Eulerian circuits by applying the Hierholzer
algorithm |ER| times, starting each time with a different required edge (Hierholzer,
1873). We thus obtain a set S̄ of different initial LC K–RPP(0) solutions, with |S̄| ≤
|ER|.

3.3.2 Local search procedures

Three local search procedures are used in the matheuristic to attempt to improve a set
of drone routes. They are based on the exchange of edges between different routes in
order to minimize the total cost. The first two procedures explained below are applied
by following a first improvement strategy. These procedures are applied to the initial
solutions for the LC K–RPP(0) in S̄. They will also be applied later to the set of
solutions in the 1–splitting, 3–splitting and 7–splitting procedures.

0 to `− exchange. In this procedure, a move consists of removing ` consecutive
required edges from the route servicing them and inserting all of them between two
consecutive required edges of another route. The algorithm uses the following strategy.
We consider the removal of all the possible sets of ` consecutive required edges and
their insertion in all the possible positions of other routes such that the total cost is
smaller than the original and the length of the new route does not exceed L. The
procedure starts with ` = 1. If no exchange that improves the current solution is found,
we increment ` by 1, otherwise ` is reset to 1. The procedure stops when ` = `max
and there are no moves (insertions) that improve the total cost, where `max is a given
parameter.

`1 to `2− exchange. This procedure is similar to the one described above but now
a move consists of interchanging `1 consecutive required edges from a route Ti with `2
consecutive required edges from another route Tj , with `1 ≤ `2 and i, j ∈ {1, 2, . . . ,K}.
The algorithm starts with `1 = 1 and `2 = 1, and tries to interchange the required edges
between the two routes in order to find an improving move. If there are no exchanges
that reduce the total cost, then `2 increases by one unit and the process is repeated. If
`2 reaches `max and no improving exchanges are found, then `1 increases by one unit
and `2 is set equal to `1. If an improving exchange is discovered, it is executed and `1, `2
are reset to 1. The algorithm ends when `1 = `2 = `max and there are no exchanges
that improve the total cost.

Destroy and Repair. In each iteration of the destroy and repair algorithm, we
randomly choose r required edges, where r is a random value between 2 and 8, and these
edges are removed from the routes servicing them. This strategy randomly shortens
some of the routes of the solution in order to possibly complete them again differently
with lower total cost. Then, we try to relocate these required edges one by one in the
same order they were removed. Each required edge is inserted in the route and the
position that minimizes the total cost, only if the length of the resulting route does not
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exceed L. Note that it is possible that a required edge can not be placed in its original
position because another edge has been previously added to its route. If an edge cannot
be inserted in any route, a new route servicing it is created. If the obtained solution
does not improve the starting one, the changes made in this iteration are discarded.
This procedure is repeated until rmax consecutive iterations without any improvement
are performed, where rmax is a given parameter.

3.3.3 Optimization of the routes

The route optimization phase is applied to a solution S once the local search procedures
are terminated. It is aimed at optimizing each drone route in S by solving an RPP
instance with the branch–and–cut algorithm proposed in Corberán et al. (2007). Thus,
for each route Ti in the solution S we define an RPP instance on graph G with set of
required edges ETi formed by the required edges that are traversed and serviced in route
Ti (plus the depot). This RPP instance is then solved optimally. Each obtained route
is feasible and has a cost less than or equal to that of the original route.

3.3.4 1–splitting procedure

The best solutions obtained after applying the local search and the route optimization
procedures to all the initial solutions in S̄ are stored and define the set S̄b. In order
to improve them, we first apply the 1–splitting procedure to each S ∈ S̄b as follows.
An intermediate vertex (equidistant from both endpoints) is added to each required
edge to obtain a solution S′ of the LC K–RPP with twice the number of original
required edges. Thus, a required edge (i, j) of S is transformed in two required edges
(i, i1), (i1, j), where i1 denotes the intermediate point added, that will be traversed
consecutively in the “new” solution S′. We then apply the local search and the route
optimization procedures to S′ to try to obtain a better solution. Note that with this
splitting procedure we are allowing the drone to enter and leave any edge through its
middle point, making it possible to obtain a solution better than the starting one (prior
to the 1–splitting).

For a better understanding of this phase, Figure 3.3 shows an example of the behavior
of a solution before (Figure 3.3a) and after (Figure 3.3b) the 1–splitting procedure. For
this instance, the deadheading cost is reduced by 6.12% due to drones entering and
leaving three of the original required edges through their middle point.

3.3.5 3–splitting and 7–splitting procedures

The last phase of the matheuristic focuses on improving the intensification of the search
for good solutions. The idea is to generate a new set of intermediate vertices for each
solution considered (vertices that a drone can use to enter and leave an edge) based
on the behavior of the drones on each route of the solution. Let S̄′b denote the set
of solutions obtained after applying the 1–splitting phase to each solution in S̄b. The
K routes of any solution S′ ∈ S̄′b service 2|ER| required edges. The idea now is to
split again these required edges to give more options to the drones in order to possibly
shorten their routes. However, splitting all 2|ER| required edges would lead to apply
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(a) Deadheading cost: 1808.24 (b) Deadheading cost: 1697.51

Figure 3.3: Two solutions of a DroneRPP68 instance before and after the 1–splitting
procedure

the local search and route optimizing algorithms to a solution with 3|ER|+ |V | vertices,
4|ER| required edges and (3|ER|+ |V |)× (3|ER|+ |V |− 1)/2 non–required edges, which
would be an excessive computational effort, more so if we consider that most of the
non–required edges have a very low probability of being used by the drones.

Hence, instead of splitting all the 2|ER| required edges, in each solution we split only
those required edges incident to a non–required edge, as this creates new promising
locations for the drone to enter or leave a required edge. Thereby, for each solution
S′ ∈ S̄′b, the required edges of S′ that are incident with a non–required edge used by
any of the routes are split by introducing a new intermediate vertex on it. Furthermore,
in order to reduce the computational effort of this phase, we remove the intermediate
vertices added in the 1–splitting procedure that are not incident with non–required
edges in the solution (as these may be unlikely to be used in a near–optimal solution).
We call this 3–splitting because some of the original lines have been approximated by a
polygonal chain with three intermediate vertices (see edge (i, j) in Figure 3.4b).

Figures 3.4a and 3.4b illustrate how the 3–splitting works in a part of a solution
where two routes, T1 and T2, are involved. On these figures, white nodes i, j, and k
represent original vertices, whereas black nodes are intermediate vertices added on the
required edges (in 1–splitting). Dashed lines represent (incomplete) non–required edges.
The 3–splitting procedure (Figure 3.4b) adds vertices i′1 and i′2 in the middle of the
edges (i, i1) and (i1, j), respectively, because vertex i1 (added in the 1–splitting phase)
is incident with non–required edges. Moreover, vertex k′1 is added to edge (j1, k) and
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Figure 3.4: Illustration of 3– and 7–splitting

vertex j1 (added in the 1–splitting phase) is removed. Then we apply the local search
and the route optimization procedures. The result is shown in Figure 3.4c, where the
drone entry/exit of edge (i, j) shifts from i1 to i′1.

The 7–splitting phase is the last part of the algorithm and it works similarly to the
3–splitting. Again the idea is to add new intermediate vertices “near” to those that are
incident with non–required edges in the solution and remove the intermediate vertices
previously added that are not incident with non–required edges in the solution. The
intermediate vertices added are selected among the seven vertices obtained when the
original line is partitioned in eight segments of similar length. Figures 3.4c and 3.4d
show how the 7–splitting works. Figure 3.4d is created by adding two 7–splitting nodes
i′′1, i′′2 and removing two nodes i1 (added in 1–splitting) and i′2 (added in 3–splitting),
and also adding k′′1 and removing k′1. Local search and the route optimization algorithms
are applied and the best solution among the |S̄b| ones obtained is selected as the final
solution of the matheuristic.

3.4 Computational experiments

In this section, we present the instances used to analyze the behavior of the proposed
matheuristic and branch–and–cut algorithms, as well as the computational study per-
formed. The algorithms have been implemented in C++ and all the tests have been
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Instance Original Original
name vertices lines

DroneRPP56 22.3 21.3
DroneRPP66 27.0 23.3
DroneRPP58 34.0 29.6
DroneRPP68 36.6 35.0
DroneRPP77 38.6 41.6
DroneRPP510 41.6 42.0
DroneRPP610 50.0 46.6
DroneRPP79 50.3 53.6
DroneRPP88 56.3 51.0
DroneRPP710 58.3 56.6
DroneRPP89 60.3 56.3
DroneRPP99 66.3 65.3
DroneRPP810 68.6 67.0
DroneRPP910 78.6 74.6
DroneRPP1010 82.0 81.0

Table 3.1: Characteristics of the Campbell et al. (2018) Drone RPP instances

run on an Intel Core i7 at 3.4 GHz with 32 GB RAM. The B&C uses CPLEX 12.6
MIP Solver with a single thread. CPLEX heuristic algorithms were turned off, and
CPLEX’s own cuts were activated in automatic mode. The optimality gap tolerance
was set to zero and best bound strategy was selected. The branch–and–cut algorithm
described in Corberán et al. (2007), used for obtaining the initial optimal giant tour
and for optimizing the routes after the local search phase, was also coded in C++ and
uses CPLEX 12.6 MIP Solver too.

3.4.1 Instances

The two proposed procedures have been tested first on two sets of instances based on
the ones proposed in Campbell et al. (2018) for the Drone RPP. The first set consists of
30 randomly generated instances, and the second set consists of 15 instances generated
from the first set by replacing some required edges in order to reduce the number of
odd–degree vertices, thus obtaining harder instances, called even instances. These all
have between 22 and 83 original nodes and between 18 and 92 original lines (complete
details can be seen in Tables 2 and 3 in Campbell et al., 2018). Each row of Table
3.1 reflects three instances (two randomly generated and one even instance) and shows
the average number of vertices and original lines of the three instances defined on a
particular grid indicated by the digits at the end of the instance name. For example,
the three instances for “DroneRPP710” have been generated on a grid with 7 × 10
points, and the original graphs (before any splitting) of these three instances have 58
vertices and 51 lines, 59 vertices and 65 lines, and 58 vertices and 54 lines, respectively.

In addition, we have generated 15 new larger instances as in Campbell et al. (2018),
ten of which have been randomly generated, while the other five have been built trying
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to obtain few odd–degree vertices. The characteristics of these new instances are shown
in Table 3.2. The first block, labeled “R”, corresponds to the random instances and
the “E” block to the even instances. Column 2 shows the name of the instances. The
last digit in the name of each random instance indicates if this is the first or the second
instance generated from the same grid. Columns 3 to 5 show the number of vertices
and lines of the original instance and the number of non–required edges. Columns 6
and 7 give the number of vertices and required edges for the instance generated in the
1–splitting procedure of the matheuristic. The last five columns show the same data
for the instances generated in the 3– and 7–splitting phases, plus the number of non–
required edges in the 7–splitting case. The values in these last columns are average data,
since the size of the 3–splitting (7–splitting) instances depends on the solution provided
by the 1–splitting (3–splitting) procedure. Recall that the 3–splitting and 7–splitting
are done only on a (small) subset of required lines and that the size of the resulting
instance would be much larger if this splitting were made in all the lines. For example,
if 7–splitting were made on all the required edges, instance DroneRPP10122 would have
872 vertices, 880 required edges, and 379756 non–required edges (independently of the
number of drones used) instead of the 319.6 vertices, 327.6 required edges, and 50960.8
non–required edges on average.

The above are instances for the Drone RPP. In order to obtain instances for the LC
K–DRPP we have to define the limit L for the length of the drone routes. To do so,
several runs have been performed for each instance with different values for L in order
to obtain solutions with a number of drones ranging from 2 to 6. Hence, we have 5
LC K–DRPP instances for each one of the 60 Drone RPP instances for a total of 300
instances. These instances are available at http://www.uv.es/plani/instancias.htm.

3.4.2 Computational results

In this section, we present the results obtained with the matheuristic and the branch–
and–cut algorithms described in Sections 3.3 and 3.2, respectively, on the 300 LC K–
DRPP instances presented before. All the results shown in what follows are given with
respect to the deadheading cost of the solutions, which are the only ones that can be
minimized.

Results obtained with the branch–and–cut algorithm

Table 3.3 summarizes the computational results obtained with the exact B&C algorithm
for all the “random” (R) and “even” (E) LC K–RPP(0) instances with a time limit of
3600 seconds. The results for each type of instances are separated in two blocks by a
horizontal line, according to the instance size (with those above the line being for up to
60 original vertices and those below the line being with 60 or more). Columns 2 to 4
contain the number of drones, the number of LC K–DRPP instances, and the number
of the corresponding LC K–RPP(0) instances solved to optimality. Columns 5 and 6
show the average gaps in percentage between the cost of the optimal solution (if known)
or that of the solution provided by the matheuristic before the 1–splitting phase and
the lower bound at the end of the root node (Gap0) and the final lower bound (Gap),
respectively. Column 7 reports the average number of nodes of the branching tree and
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K ] inst ] opt Gap0 (%) Gap (%) Nodes Time UB Time

2 20 19 3.47 0.04 821.5 77.0 258.8
3 20 12 11.96 6.49 3133.5 1219.5 1651.9

R 4 20 4 21.52 16.83 7084.7 1919.9 2980.3
5 20 2 27.68 24.50 5251.2 2441.2 3339.9
6 20 3 28.74 25.40 2759.1 2744.0 3144.1

2 20 18 1.88 0.22 399.6 624.4 1258.1
3 20 1 10.16 9.38 989.1 2357.0 3429.1

R 4 20 0 22.80 22.25 547.6 2997.9 3600.0
5 20 0 30.00 29.84 321.3 3028.5 3600.0
6 20 0 36.06 35.95 182.2 3327.1 3600.0

2 10 10 4.88 0.00 629.4 79.2 192.5
3 10 5 16.95 10.17 5319.4 1858.6 2238.8

E 4 10 2 25.36 19.08 7471.6 1797.6 3183.9
5 10 1 30.49 26.32 6151.0 2136.7 3470.6
6 10 1 30.07 25.99 4034.6 2671.6 3291.6

2 10 5 10.60 7.88 1695.4 1740.1 2663.1
3 10 0 18.82 17.81 1119.1 2762.8 3600.0

E 4 10 0 27.69 27.15 620.8 3091.0 3600.0
5 10 0 33.86 33.68 363.1 3314.9 3600.0
6 10 0 36.77 36.52 216.3 3426.8 3600.0

Table 3.3: Computational results with the B&C on the LC K–RPP(0) instances

the last two columns show the average computing time, in seconds, to reach the best
feasible solution and the total time, respectively.

From Table 3.3 we can observe that the B&C is capable of solving almost all the
instances with 2 drones (52 out of 60) in very short computing times and a good number
of instances (18) with 3 drones. The average final gaps for the instances with 3 drones
are quite good if we consider that in most cases they have been obtained comparing
the lower bounds with upper bounds and not with optimal values. When the number
of drones increases, the number of instances optimally solved decreases rapidly and
becomes 0 in those instances with 60 vertices or more. Furthermore, the average gaps
are far from good, which is a consequence of the great difficulty of this problem and
a reason for the development of approximate algorithms for the LC K–DRPP, such as
the one proposed here, capable of finding good solutions in reasonable times. Finally,
as we expected, we can observe that the “even” instances present a greater difficulty
than the “random” ones.

Results obtained with the matheuristic

We present here the computational results obtained with the proposed matheuristic on
the set of LC K–DRPP instances described in Section 3.4.1.

First, in order to choose a value for the `max parameter (the maximum number of
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required edges used in the exchange moves), we tested the matheuristic on a representa-
tive subset of 30 LC K–DRPP instances with different sizes and number of drones with
`max ∈ {4, 6, 8, 10} and |S̄b| = 10. Table 3.4 shows the obtained results. In this table,
Column 2 shows the average computing time, in seconds, used by the algorithm to solve
each instance with the different values of `max reported in Column 1, and Column 3
shows the total deadheading cost on average. Column 4 reports the number of instances
out of 30 for which the respective value of `max returns the best cost. In many cases,
several values of `max get the same solution. Since the average time is not excessively
larger, we chose `max = 10. A similar test also suggested the value 10 for the parameter
rmax (number of iterations without improvement of the destroy and repair algorithm).

`max Time Deadheading cost ] best

4 31.28 3103.74 8
6 34.04 3055.06 17
8 37.46 3039.11 19
10 42.49 3026.44 26

Table 3.4: Sensitivity of the matheuristic to the parameter `max

To analyze the performance of the matheuristic, we have compared its results, using
|S̄b| = 10, with those of the branch–and–cut algorithm on the LC K–RPP(0) instances.
Note that the solutions obtained in the first phase of the matheuristic (no splitting has
been made yet) are feasible solutions of the LC K–RPP(0) instances. Therefore, the
lower bounds (or optimal values) obtained by the B&C are also lower bounds for the
solutions obtained in the first phase of the matheuristic, and the upper bounds provided
can also be compared to the matheuristic solutions. However, the solutions obtained in
phases 2 and 3 of the matheuristic may be better than those obtained with the branch
and cut, as in fact is the case in many instances.

Tables 3.5 and 3.6 show the results obtained for the “random” and “even” instances,
respectively. Both tables present the same structure and, like Table 3.3, each one is
separated into two groups by a horizontal line, according to the size of the instance.
Columns 1 to 3 contain the number of drones used by the solution, the number of
LC K–DRPP instances, and the number of the corresponding LC K–RPP(0) instances
for which an optimal solution has been obtained with the branch and cut. Column 4
(GapLB) shows the percentage average gap between the cost of the solution provided
by the matheuristic in phase 1 (0–splitting) and the lower bound (maybe the optimal
value) given by the branch–and–cut algorithm. Column 5 (GapUB) provides the average
percentage gap between the cost of the solution of the matheuristic (also before the 1–
splitting phase) and that of the best solution found by the branch and cut in one hour of
computing time. A negative value in this column means that, for that particular subset
of instances, the solutions provided by the matheuristic have, on average, lower costs
than the best feasible solutions found by the B&C. Although the solutions obtained with
the matheuristic with the 1–, 3–, and 7–splitting procedures are not feasible solutions
of the LC K–RPP(0) instances, they are also compared with the best feasible solutions
found by the B&C in the time limit. The average gaps for these comparisons are shown
in columns 6 to 8. The final column reports the average total computing time used by
the matheuristic. The idea behind the last comparisons is to highlight the difference
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0–splitting 1–splitting 3–splitting 7–splitting

K ] inst ] opt GapLB GapUB GapUB GapUB GapUB Time

2 20 19 0.92 0.88 −0.21 −1.10 −1.60 25.8
3 20 12 6.73 −1.01 −1.42 −3.00 −3.36 23.2
4 20 4 19.31 −2.76 −4.80 −6.34 −7.61 22.7
5 20 2 27.70 −5.61 −7.51 −9.24 −9.90 23.5
6 20 3 32.24 −10.10 −10.95 −13.06 −14.53 26.5

2 20 18 1.30 1.07 0.30 0.01 −0.25 131.5
3 20 1 8.08 −2.71 −4.36 −4.91 −5.16 113.3
4 20 0 16.82 −9.83 −11.35 −12.16 −12.45 98.8
5 20 0 29.46 −9.77 −11.92 −13.30 −13.86 97.2
6 20 0 42.76 −9.27 −10.94 −12.62 −13.49 92.0

Table 3.5: Results of the matheuristic for the “random” instances

0–splitting 1–splitting 3–splitting 7–splitting

K ] inst ] opt GapLB GapUB GapUB GapUB GapUB Time

2 10 10 2.10 2.10 −3.19 −4.81 −5.78 34.1
3 10 5 9.37 −2.94 −6.77 −7.64 −8.57 24.0
4 10 2 21.35 −3.92 −7.46 −9.46 −10.06 25.3
5 10 1 30.10 −6.57 −9.54 −11.04 −11.37 23.0
6 10 1 32.91 −6.49 −9.93 −11.48 −11.76 23.7

2 10 5 6.23 −2.62 −5.68 −6.52 −7.91 199.6
3 10 0 13.36 −7.24 −10.56 −12.45 −12.97 160.2
4 10 0 23.85 −10.63 −12.40 −15.26 −16.67 153.9
5 10 0 34.35 −11.76 −14.79 −16.32 −16.88 144.4
6 10 0 41.97 −10.76 −13.11 −14.46 −15.16 142.1

Table 3.6: Results of the matheuristic for the “even” instances

between the solutions for the original LC K–DRPP instances found by the matheuristic
in less than three minutes on average and those obtained by the B&C in one hour of
computing time.

We can observe in Table 3.5 that the solutions obtained by the matheuristic on the
instances with 2 and 3 drones are very good, showing an average gap before the splitting
procedures of less than 1.30% and 8.08%, respectively. With 4, 5 and 6 drones the gaps
are high, but our guess is that these values are due more to the poor quality of the
lower bound than to the quality of the solution produced by the algorithm. Note that
only 9 optimal solutions are known for the random instances using 4 or more drones,
and that all the average gaps with respect to the upper bounds are negative except for
the instances with 2 drones, in which the majority of the upper bounds are optimal
or near optimal. The 1–splitting, 3–splitting, and 7–splitting procedures improve the
solutions in all the instances and the impact of each procedure on the result of the
previous procedure is significant. For example, the values in the last row of Table 3.5
say that, for the 20 instances with 60 to 127 vertices and 6 drones, the costs of the
solutions provided by the matheuristic in 92.0 seconds on average are, without splitting
the required lines, 9.27% better than those obtained by the branch and cut in one
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GapUB

K ] opt ] opt M 0–splitting 1–splitting 3–splitting 7–splitting Time

R
2

37 25 0.86 −0.06 −0.53 −0.94 76.2
E 15 6 1.76 −2.99 −4.27 −5.20 55.8

R
3

13 7 1.35 1.07 −0.38 −0.82 22.6
E 5 4 0.86 −5.30 −6.42 −7.68 15.1

R
4

4 3 0.08 −0.23 −0.91 −4.94 14.9
E 2 0 2.55 −2.36 −2.44 −2.78 10.3

R
5

2 1 3.02 2.82 −1.48 −2.67 10.5
E 1 1 0.00 −2.72 −4.04 −4.30 7.8

R
6

3 3 0.00 −0.44 −1.33 −2.72 7.8
E 1 1 0.00 −6.40 −9.11 −9.38 11.5

Table 3.7: Results for the instances with known optimal solutions

hour, and 10.94%, 12.62%, and 13.49% better when the 1–splitting, 3–splitting, and 7–
splitting procedures, respectively, are applied. On the other hand, note that the values
in columns GapUB obtained for the larger instances are better than those obtained for
the smaller ones. This could be explained by the poorer behavior of the branch and cut
in these larger instances.

Similar comments can be made for the computational results shown in Table 3.6 for
the “even” instances. The values in columns GapLB and the computing times for the
larger instances are worse than for the “random” ones, thus supporting our proposition
that, for the matheuristic algorithm, the “even” instances are harder than the “random”
ones, as is also the case for the B&C algorithm.

Table 3.7 shows the results obtained by the matheuristic on the 83 instances for which
an optimal solution for the corresponding LC K–RPP(0) instance is known. Columns
1 and 2 contain the instance type (“random” or “even”) and the number of drones.
Column 3 shows the number of LC K–RPP(0) instances with known optimal value
and Column 4 reports the number among them for which phase 1 of the matheuristic
provided the same solution. For example, among the 40 “random” instances with two
drones, 37 have been solved to optimality by the branch and cut, while the matheuristic
found 25 of these optima. Columns 5 to 8 (GapUB) show the average percentage gap
between the cost of the solution of the corresponding phase of the matheuristic and
that of the optimal solution found by the branch and cut. The last column reports
the average computing time in seconds used by the matheuristic. From these results
it can be observed that the gaps are very good for the instances with known optimal
solution. In particular, note that the solutions provided by the 3– and 7–splitting
phases are better than the optimal solutions obtained with the branch and cut on the
LC K–RPP(0) instances.

Table 3.8 reports the effect of the local search and the exact route optimization
procedures on the performance of the matheuristic in the 0–splitting phase. The first
column gives the name associated with the three instances (two “random” and one
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LS RO

Name |V | |E| Imp (%) Time Imp (%) Time

DroneRPP56 22.3 21.3 21.57 0.2 1.37 1.2
DroneRPP66 27.0 23.3 23.95 0.7 0.87 2.6
DroneRPP58 34.0 29.6 22.80 2.6 0.89 5.7
DroneRPP68 36.6 35.0 20.65 0.2 1.88 0.9
DroneRPP77 38.6 41.6 22.58 0.9 1.08 1.8
DroneRPP510 41.6 42.0 27.94 3.0 1.06 5.5
DroneRPP610 50.0 46.6 24.08 1.3 1.67 2.6
DroneRPP79 50.3 53.6 22.70 4.4 1.70 6.6
DroneRPP88 56.3 51.0 17.07 5.5 1.57 8.8
DroneRPP710 58.3 56.6 23.86 2.3 1.62 3.4
DroneRPP89 60.3 56.3 22.31 4.7 2.60 6.5
DroneRPP99 66.3 65.3 19.25 7.9 1.59 7.7
DroneRPP810 68.6 67.0 18.68 6.6 1.58 7.6
DroneRPP910 78.6 74.6 20.22 10.1 1.69 11.3
DroneRPP1010 82.0 81.0 22.96 13.3 2.71 12.9
DroneRPP1011 89.6 80.6 23.77 14.8 2.51 12.7
DroneRPP1012 97.3 96.3 25.59 28.4 1.85 19.3
DroneRPP1111 102.3 103.6 21.73 27.2 2.24 19.1
DroneRPP1112 108.0 109.3 16.89 29.3 2.38 19.7
DroneRPP1212 110.3 117.3 21.70 36.8 2.40 24.2

Table 3.8: Impact of local search and route optimization procedures (instances grouped
by size)

“even” instance) generated in the same grid. Each of these three instances is solved
with 2, 3, 4, 5 and 6 drones and, hence, each row in Table 3.8 contains the average
data of 15 instances. The average number of vertices and original lines of each group of
instances are reported in columns 2 and 3. Column 4 shows the average improvement
(in percentage) obtained by the local search procedures (LS) in the 0–splitting phase
with respect to the cost of the initial solutions, and Column 5 reports the average
time in seconds. The last two columns show the same data corresponding to the route
optimization procedure (RO) when is applied to the solutions provided by the local
search. It can be seen that the improvement obtained with the local search, 22.02%
on average, is significant, and it does not depend on the size of the instance. However,
the results seem to show a slightly increasing improvement for the route optimization
procedure as the size of the instance increases.

Table 3.9 shows the contribution of the local search and route optimization proce-
dures when the instances are grouped by number of drones. While the improvement
obtained with the local search is similar for any number of drones, the impact of the
route optimization procedure on the improvement of the solutions clearly decreases as
the number of drones increases. This could be explained by the fact that, when the
number of drones increases, the number of required edges in each route decreases, and
there is less room for improvement.
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LS RO

K ] inst Imp (%) Time Imp (%) Time

2 60 22.32 9.2 3.40 9.6
3 60 22.71 9.7 1.99 7.9
4 60 22.52 10.6 1.59 8.4
5 60 21.82 10.4 1.01 9.1
6 60 20.71 10.2 0.82 10.0

Table 3.9: Impact of local search and route optimization procedures (instances grouped
by number of drones)

On the other hand, it is interesting to point out that if the route optimization
procedure is removed from the matheuristic, then the number of optima found decreases
from 39 to 25 in the random instances, and from 12 to 8 in the even instances. Hence,
the route optimization procedure plays an important role in our algorithm, both in
terms of the improvement of the solutions and in the number of optima found, with a
reasonable computing time.

Deactivated procedure Time Deadheading cost ] best

none 51.44 2843.59 15
0 to ` exchange 32.81 2903.04 6

`1 to `2 exchange 36.65 2897.99 8
destroy and repair 86.39 2849.48 9

Table 3.10: Analysis of the contribution of the different local search procedures

To further analyze the contribution of the different local search components of the
matheuristic, we have tested the algorithm on a subset of 30 instances of different sizes
and number of drones. Each instance is run four times. Three times deactivating each
of the three local search procedures and a fourth in which none is deactivated. Table
3.10 reports the results obtained. Column 2 shows the average time the algorithm takes
to solve each instance deactivating the local search procedure indicated in Column 1,
and Column 3 shows the deadheading cost on average for each case. Column 4 reports
the number of instances out of 30 for which the respective solution mode returns the
best deadheading cost of the four obtained. From the table we can see that the “0 to `
exchange” is the most effective procedure since when it is deactivated the algorithm
shows its worst behavior, both in terms of the quality of the solutions (deadheading
cost) and the number of best solutions found. Also the procedure “`1 to `2 exchange” is
important to improve the solutions, while it seems that “destroy and repair” provides
the least benefit in terms of deadheading cost, although disabling it makes the other
methods take longer to find good solutions. Therefore, as confirmed by the results
obtained when no local search method is deactivated, all procedures help to improve
the solutions, which justifies their use in the proposed matheuristic.



Chapter 4

On the length constrained
K–RPP and the K–RPP
polyhedron

In this chapter, we focus on a deeper theoretical study of the length constrained K–
vehicles rural postman problem (LC K–RPP), the discrete arc routing problem defined
in Chapter 3. As discussed in the previous chapter, each required line of the LC K–
DRPP instance can be considered as a chain of required edges of an undirected graph,
thus defining an LC K–RPP instance. Clearly, the greater the number of edges each line
is divided, the better approximate the LC K–RPP solution will be to the LC K–DRPP
one. However, the difficulty of solving to optimality an LC K–RPP instance increases
considerably with the size of the instance. It is convenient to reinforce a formulation
of the problem with valid inequalities (and even more so if they define a facet of the
polyhedron of solutions) that are useful for the development of a sophisticated exact
algorithm, capable of solving larger instances.

In Section 3.1, a “directed” formulation for the LC K–RPP, with two integer
variables xkij and xkji for each edge (i, j) and for each drone k, was proposed. We present
in Section 4.1 a new formulation for the LC K−RPP that inherits from the formulation
proposed in Corberán et al. (2013) for the maximum benefit Chinese postman problem
(MBCPP) the idea of considering two binary variables for each edge representing the
first and second traversal of the edge, respectively.

Throughout this chapter, we will carry out a polyhedral study of the set of solu-
tions of a relaxed formulation, namely the set of solutions of the formulation presented in
Section 4.1 but without considering the length constraint on the drone routes. We study
the dimension of that resulting polyhedron of solutions, which will be called K−RPP,
and prove some inequalities from the formulation to induce facets of it. Moreover, we
present three families of valid inequalities and some conditions for them to induce facets
of the polyhedron: parity inequalities, p–connectivity inequalities, and K–C inequali-
ties. These families of inequalities have been proposed and proved to be facet–inducing
inequalities for other polyhedra associated with arc routing problems in the literature,
and have been generalized on this work. We first study in Section 4.2.1 the special
case K = 1 (with a single drone), whose polyhedral study is necessary for adressing the
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general case K ≥ 2 in Section 4.2.2. We close this chapter by introducing in Section
4.2.3 other valid inequalities for the LC K−RPP based on the length constraint on each
drone route.

4.1 A new formulation for the length constrained K–RPP

As described in the previous chapter, the LC K−RPP is defined on an undirected
multigraph G = (V,E) = (V,ER ∪ ENR). The set of vertices V contains the endpoints
of the required edges plus the depot, denoted by 1. The set of required edges ER contains
the edges that must be serviced, while the set of non–required edges ENR contains an
edge between each pair of vertices in V , i.e., (V,ENR) is a complete graph. Each e ∈ ER
has an associated service cost cse ≥ 0 and each non–required edge e ∈ ENR has an
associated deadheading cost ce ≥ 0 given by the Euclidean distance computed from its
endpoints. Note that each e ∈ ER has a parallel non–required edge, which we denote as
e′, and it is assumed that the cost of traveling while servicing the required edge e = (i, j)
is greater than or equal to the cost of flying directly from i to j (cse ≥ ce′). E′NR represents
the set of non–required edges parallel to a required one, while E′′NR = ENR \ E′NR. The
goal of the LC K−RPP is to find K tours (closed walks starting and ending at the
depot) with length no greater than L, that jointly traverse (and service) all the required
edges with minimum total cost.

We want to point out that in the LC K−RPP instances the non–required edges form
a complete graph, whereas in classical arc routing problems the graph often corresponds
to a sparse network. To make a more general study, in the following sections we do not
assume that the edges in ENR form a complete graph, although we keep the assumption
that in E there is an edge e′ parallel to each e ∈ ER.

The formulation we present here for the LC K–RPP, which we will refer to as (F2)
to distinguish it from the one presented in Chapter 3, considers a binary variable xke
for each edge e ∈ ER and for each drone k ∈ {1, . . . ,K}, and two binary variables xke
and yke for each edge e ∈ ENR and for each k ∈ {1, . . . ,K}. Variable xke for each edge
e ∈ ER takes the value 1 if e is traversed (and serviced) by drone k, and 0 otherwise.
Variables xke and yke for each edge e ∈ ENR take the value 1 if e is traversed or traversed
twice, respectively, by drone k, and 0 otherwise. In other words, variables xke and yke
represent the first and second traversal by drone k of the non–required edge e. The use
of these variables is inspired by the work in Corberán et al. (2013) for the MBCPP, and
we keep their description in Table 4.1.

Table 4.1: Decision variables of the LC K−RPP formulation (F2)

xpe 1, if edge e ∈ ER is traversed and serviced by drone k, and 0 otherwise
xpe 1, if edge e ∈ ENR is traversed by drone k, and 0 otherwise
ype 1, if edge e ∈ ENR is traversed twice by drone k, and 0 otherwise

Note that, for each drone, there are three variables to represent the traversals between
the two endpoints i and j of a required edge e. The reason is that we need to distinguish
among traversing e while serving it (with a cost cse) and deadheading e′ once or twice
(with a cost ce′ ≤ cse). Although in all the optimal solutions the three variables will
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never be non–zero simultaneously (see Theorem 4.1.1), we need the three variables to
state the objective function of the problem formulation.

Theorem 4.1.1. For each e ∈ ER and its parallel edge e′ ∈ E′NR, and for each k ∈
{1, . . . ,K}, the inequality xke + yke′ ≤ 1 is satisfied by any optimal solution of the LC
K–RPP (if ce′ > 0).

Proof: If a solution satisfies xke + yke′ = 2 for a drone k and an edge e = (i, j) ∈ ER,
necessarily xe′ = 1 (because xe′ ≥ ye′ holds) and the drone travels three times between
i and j, so we can remove two copies and get a better feasible solution. �

The notation we use next is very similar to the one already used in the previous
chapter. Given two subsets of vertices S, S′ ⊆ V , (S : S′) denotes the edge set with one
endpoint in S and the other one in S′. Given a subset S ⊆ V , we denote δ(S) = (S : V\S)
and E(S) = (S : S). For simplicity, when S = {i}, i ∈ V , we write δ(i) instead of δ({i}).
For any subset F ⊆ E = ER ∪ENR, we denote FR = F ∩ER and FNR = F ∩ENR, and
we write δR(S) = δ(S) ∩ ER instead of δ(S)R.

The LC K–RPP can be formulated here as follows:

(F2) Minimize
K∑
k=1

∑
e∈ER

csex
k
e +

∑
e∈ENR

ce
(
xke + yke

)
s.t.∑

e∈δR(i)

xke +
∑

e∈δNR(i)

(
xke + yke

)
≡ 0 (mod 2), ∀i∈V, ∀k = 1, . . . ,K (4.1)

∑
e∈δR(S)

xke +
∑

e∈δNR(S)

(
xke + yke

)
≥ 2xkf , ∀S ⊆ V \ {1},∀f ∈ E(S), ∀k (4.2)

∑
e∈ER

csex
k
e +

∑
e∈ENR

ce
(
xke + yke

)
≤ L, ∀k = 1, . . . ,K (4.3)

K∑
k=1

xke ≥ 1, ∀e ∈ ER (4.4)

xke ≥ yke , ∀e∈ENR, ∀k = 1, . . . ,K (4.5)

xke ∈ {0, 1}, ∀e∈ER, ∀k = 1, . . . ,K (4.6)

xke , y
k
e ∈ {0, 1}, ∀e∈ENR, ∀k = 1, . . . ,K (4.7)

Constraints (4.1) force each drone to visit each vertex an even number of times,
possibly zero. Conditions (4.2) ensure each single route is connected and connected to
the depot, while constraints (4.3) guarantee that the length of each route does not exceed
L. The traversal of all the required edges is ensured by constraints (4.4). Constraints
(4.5) guarantee that a second traversal of a non required edge by a drone can only occur
when it has been traversed previously by this drone. Constraints (4.6) and (4.7) are the
binary conditions for the variables.
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Note that constraints (4.1) are not linear, although they could be linearized by
introducing additional general integer variables, zki , as follows∑

e∈δR(i)

xke +
∑

e∈δNR(i)

(
xke + yke

)
= 2zki .

Instead, as we will see in Section 4.2.2, we will introduce some linear inequalities on the
variables xke , y

k
e (parity and K–C inequalities). Note also that the previous formulation

allows “not feasible” solutions with isolated subtours of non–required edges, although
these solutions are not optimal.

4.2 Polyhedral study of the K–RPP

In this section we study a polyhedron of solutions associated with a relaxation of the
proposed formulation for the LC K–RPP. As with other routing problems with several
vehicles, determining the dimension of the polyhedron defined as the convex hull of
the LC K–RPP solutions is a very difficult task, because it depends also on the edge
costs ce and cse, the number of vehicles K, and the length limit L. Even in some cases,
the polyhedron could be empty. However, if we remove the constraints (4.3) that limit
the length of each route, the relaxed problem becomes the K−vehicles Rural Postman
Problem (K–RPP), whose polyhedron can indeed be studied. This is interesting because
some of its facets could also be facets of the original LC K–RPP polyhedron, and it is a
way of guaranteeing the strength of the constraints in the formulation and of the valid
inequalities we can find.

Since the LC K−RPP formulation (F2), and therefore the K−RPP formulation (i.e.,
formulation (F2) without constraints (4.3)), is based on the one presented in Corberán
et al. (2013) for the MBCPP, some of the inequalities proposed in that article for
the MBCPP can be transformed into valid inequalities for the K–RPP (see Theorem
4.2.1). However, to prove that these new inequalities, and the inequalities in the K–
RPP formulation, are facet inducing, we will first discuss the polyhedron associated
with the K–RPP in the special case when K = 1 in Section 4.2.1.

Let a K–RPP solution denotes any set of K tours on graph G starting and ending at
the depot and jointly servicing (traversing) all the required edges (without considering
the lenght constraints (4.3)). Associated with each K–RPP solution we can consider:

(a) K incidence vectors (xk, yk) ∈ Z2|ENR|+|ER|, one for each tour k, where variables
xke take the value 1 if edge e is traversed and variables yke take the value 1 if
non–required edge e is traversed twice, and

(b) K support graphs (V,E(xk,yk)), one for each tour, where E(xk,yk) contains one
copy of edge e ∈ E for each variable xke = 1 or yke = 1.

Note that the support graphs are even and connected. Conversely, any even and
connected subgraph of G corresponds to a tour on G. In fact, an incidence vector or
a subgraph may correspond to several different closed walks, but all of them have the
same cost and they can be easily computed (with the Hierholzer (1873) algorithm, for
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example). Hence, and for the sake of simplicity, we will let tour on G denote the closed
walk, its incidence vector, and its corresponding support graph.

In what follows, we study the K–RPP polyhedron defined as the convex hull of the
vectors

(x1, y1, x2, y2, . . . , xK , yK) ∈ ZK(2|ENR|+|ER|)

corresponding to K–RPP solutions on G, that is, each (xk, yk), for k = 1, . . . ,K, is a
tour on G starting and ending at the depot, and all the required edges are traversed
by, at least, one drone. Let K−RPP(G) denote this polyhedron. Note that we do not
consider inequalities xke + yke′ ≤ 1 from Theorem 4.1.1, and we use inequalities (4.4)

instead of using
∑K

k=1 x
k
e = 1. Although the feasible solutions that satisfy xke + yke′ = 2

or
∑K

k=1 x
k
e > 1 cannot be optimal solutions (if 0 < ce′ < cse), these will be useful in the

proofs of the results presented in Section 4.2.2.

To make this polyhedral study, we need some results presented in Corberán et al.
(2013) for the MBCPP. Given an undirected connected graph G = (V,E), where 1 ∈ V
represents the depot, with two benefits for each edge e ∈ E associated with the first and
the second traversals of e, respectively, the MBCPP consists of finding a tour starting
from the depot, traversing some of the edges in E at most twice and returning to
the depot, with maximum total benefit. The MBCPP is formulated with two binary
variables xe and ye for each edge e ∈ E representing the first and second traversal of e,
respectively. It is shown that the convex hull of all the MBCPP tours, i.e., the vectors
(x, y) satisfying∑

e∈δ(i)

(
xe + ye

)
≡ 0 (mod 2), ∀i∈V, (4.8)

∑
e∈δ(S)

(
xe + ye

)
≥ 2xf , ∀S⊂V \ {1}, ∀f ∈ E(S), (4.9)

xe ≥ ye, ∀e∈E, (4.10)

xe, ye ∈ {0, 1}, ∀e∈E, (4.11)

is a full dimensional polytope and several families of valid and facet–inducing inequalities
are described.

The formulation we present here for the K–RPP has only one variable associated
with each required edge, while, if we consider the MBCPP on the same graph, we have
two variables for each edge, including the required ones. Nevertheless, given a K–RPP
solution

(x1, y1, x2, y2, . . . , xK , yK) ∈ ZK(2|ENR|+|ER|),

each single route (xk, yk) is a closed walk starting and ending at the depot, and it can
be completed with variables ye = 0 for each e ∈ ER to obtain a MBCPP tour. Hence
we have the following theorem:

Theorem 4.2.1. Let f(x, y) ≥ α be a valid inequality for the MBCPP on graph G. By
removing all the variables ye, e ∈ ER, the resulting inequality f(xk, yk) ≥ α is valid for
the K−RPP, for each drone k ∈ {1, . . . ,K}.

For example, we obtain inequalities (4.2) from inequalities (4.9) of the MBCPP
formulation. Furthermore, from several families of valid inequalities for the MBCPP,
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namely parity, p−connectivity, and K–C inequalities, we will obtain valid inequalities
for the K−RPP in Section 4.2.2. Besides some results from the MBCPP, we need some
polyhedral results from the “1–RPP”, the version of the K–RPP with only one vehicle
(K = 1). This is an auxiliary problem which really does not make sense here since the
K–RPP is a multi–vehicle problem, but whose polyhedral study, carried out in the next
section, will be used in Section 4.2.2 for the polyhedral study of the general case with
K ≥ 2.

4.2.1 The 1–RPP polyhedron

The K–RPP for K = 1, which we will call 1–RPP, is the well known RPP but with some
special features. First, it is defined on a graph that has a non–required edge parallel to
each required one. Second, the problem is formulated with three variables associated
with the traversal of a required edge e and its parallel non–required one e′. Note that
for the 1–RPP, xe = 1 holds for each e ∈ ER and, from Theorem 4.1.1, we obtain that
ye′ = 0 for each e′ ∈ E′NR in all the optimal 1–RPP tours. Hence, these variables could
be removed from the formulation. However, since this is not true for K > 1, we will
keep these variables because they are necessary in the proofs of the polyhedral study of
the K–RPP(G) for K > 1. Hence, we will accept feasible (but not optimal) solutions
with some variables ye′ = 1.

On the other hand, although it is natural in problems with drones to assume that
all the vertices (except maybe the depot) are incident with required edges, we will not
consider here this assumption to make a more general study. Therefore, we consider
in this section an undirected and connected graph G = (V,E), with a set ER ⊂ E of
required edges, and where the set VR, formed with the vertices incident with some edge
in ER plus the depot, is not necessarily equal to V . We assume E = ER ∪E′NR ∪E′′NR,
where E′NR is the set of non–required edges parallel to an edge in ER. In the same way,
we will not assume that graph (V,ENR) is complete.

Let a 1–RPP tour denotes a closed walk on graph G starting and ending at the
depot, and servicing all the required edges. As before, we will use 1–RPP tour also to
denote its incidence vector (x, y) ∈ Z2|ENR|+|ER| and its support graph. The polyhedron
1–RPP(G) is defined as the convex hull of all the 1–RPP tours in G. Note that the set
of constraints of the K–RPP formulation, adapted to the case K = 1, is:

∑
e∈δR(i)

xe +
∑

e∈δNR(i)

(
xe + ye

)
≡ 0 (mod 2), ∀i∈V, (4.12)

∑
e∈δR(S)

xe +
∑

e∈δNR(S)

(
xe + ye

)
≥ 2xf , ∀S⊆V \{1},∀f∈E(S), (4.13)

xe = 1, ∀e ∈ ER, (4.14)

xe ≥ ye, ∀e∈ENR, (4.15)

xe, ye ∈ {0, 1}, ∀e∈ENR. (4.16)

In what follows, we will obtain the dimension of 1–RPP(G), and we will also study
some conditions under which some of the above constraints of the 1–RPP formulation,
as well as other families of valid inequalities presented, define facets of it. For this
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study, we need to build several 1–RPP tours in graph G. An example of 1–RPP tour is
given by the graph formed with two copies of each edge in ENR and then replacing one
copy of each e ∈ E′NR by the required edge parallel to e. This basic tour will be used
in the proof of Theorem 4.2.2. More specific and detailed 1–RPP tours will be built
for the proofs of other next theorems. In order to do this, we need to introduce some
definitions.

Consider the (generally disconnected) subgraph (VR, ER) of G. Each connected
component of this subgraph is called an R–connected component of G. An R–connected
component may consist only of the depot. A vertex of G that does not belong to any
R–connected component (i.e., which is not incident with any required edge) is called an
isolated vertex.

Given a subset of vertices Vo ⊆ V , with |Vo| even, a subset of edges M ⊆ E is a
T–join if the degree of a vertex v in the subgraph (V,M) is odd if, and only if, v ∈ Vo. It
is known that, if G is connected, it has a T–join for each set Vo ⊆ V , with |Vo| even (see
Nemhauser and Wolsey, 1988 for instance). Given G = (V,E) = (V,ER ∪ E′NR ∪ E′′NR),
let V R

o ⊆ V be the set of R−odd vertices, i.e., vertices incident with an odd number of
required edges. Let M ⊆ ENR be any corresponding T–join. The set of edges M ∪ ER
form an even graph, although not necessarily connected. If we add the edges in a closed
walk starting at the depot, visiting at least one node in each connected component of
M ∪ ER and ending at the depot, we obtain a 1–RPP tour.

The dimension of the polyhedron defined as the convex hull of all the 1–RPP tours
is given in the following theorem:

Theorem 4.2.2. dim(1–RPP(G)) = 2|ENR| if, and only if, (V,ENR) is a 3–edge
connected graph.

Proof: 1–RPP(G) is a polytope in R2|ENR|+|ER|. Since all its points satisfy equations
(4.14), which are linearly independent, we have dim(1–RPP(G)) ≤ 2|ENR|. If (V,ENR)
is not 3–edge connected, there is a cut–set δ(S) with at most 2 non–required edges.
If δ(S) contains exactly two edges, namely e and f , all the 1–RPP tours satisfy the
equation xe − ye = xf − yf . If δ(S) = {e}, all the 1–RPP tours satisfy xe = ye.
Given that these equations are linearly independent from equations (4.14), we have
dim(1–RPP(G)) < 2|ENR|.

On the other hand, let us now suppose that graph (V,ENR) is 3–edge connected.
We will prove that dim(1–RPP(G)) ≥ 2|ENR|. Let ax+ by = c, i.e.,∑

e∈ER

aexe +
∑

e∈ENR

aexe +
∑

e∈ENR

beye = c (4.17)

be an equation satisfied by all the 1–RPP tours. We have to prove that this equation
is a linear combination of equations (4.14), i.e., to prove that

ae = 0, ∀e ∈ ENR,
be = 0, ∀e ∈ ENR, and

c =
∑
e∈ER

ae.
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Let T = (x, y) be the 1–RPP tour formed with two copies of each edge in ENR and then
replacing one copy of each e ∈ E′NR by the required edge parallel to e. All the entries of
T are equal to 1 except for ye = 0,∀e ∈ E′NR and, by substituting it in (4.17), we obtain∑

e∈ER

ae +
∑

e∈ENR

ae +
∑

e∈E′′NR

be = c. (4.18)

Let be f ∈ E′′NR. Since (V,ENR) is a 3–edge connected graph, the tour T−2f obtained
after removing from T the two copies of f is also a 1–RPP tour. Hence, by substituting
it in (4.17), we obtain ∑

e∈ER

ae +
∑

e∈ENR\{f}

ae +
∑

e∈E′′NR\{f}

be = c,

and by subtracting this equation from (4.18), we obtain af + bf = 0 for all f ∈ E′′NR.

Let C be an arbitrary cycle on G formed by non–required edges, and let us denote
C′ = C ∩ E′NR and C′′ = C ∩ E′′NR. If we remove from T one copy of each edge in C, we
obtain another 1–RPP tour T − C. After substituting it in (4.17) and subtracting the
corresponding equation from (4.18), we obtain a(C′) + b(C′′) = 0. On the other hand, if
we add to T one copy of each edge in C and, then, we remove two copies of each edge
appearing three times, we obtain another 1–RPP tour T + C. After substituting it in
(4.17) and subtracting the corresponding equation from (4.18), we obtain b(C′)−b(C′′) =
0, and, as af+bf = 0 for all f ∈ E′′NR, b(C′)+a(C′′) = 0. Hence, for each cycle C = C′∪C′′
on G formed by non–required edges,

a(C′) + b(C′′) = 0, (4.19)

b(C′) + a(C′′) = 0. (4.20)

Let f = (i, j) ∈ E′′NR. Since (V,ENR) is a 3–edge connected graph, there are two
edge–disjoint paths P1, P2 joining vertices i and j with non–required edges different
from f . Consider the three cycles P1 ∪ {f}, P2 ∪ {f}, and P1 ∪ P2, for which equation
(4.19) holds. Hence, we have

a(P ′1) + b(P ′′1 ) + bf = 0,

a(P ′2) + b(P ′′2 ) + bf = 0,

a(P ′1) + b(P ′′1 ) + a(P ′2) + b(P ′′2 ) = 0,

and we obtain bf = 0. As af + bf = 0 holds, we have af = bf = 0 for all f ∈ E′′NR.

Let f = (i, j) ∈ E′NR. Let P1, P2 two edge–disjoint paths as above and consider the
three cycles P1 ∪ {f}, P2 ∪ {f}, and P1 ∪ P2. From equation (4.19), we have

a(P ′1) + b(P ′′1 ) + af = 0,

a(P ′2) + b(P ′′2 ) + af = 0,

a(P ′1) + b(P ′′1 ) + a(P ′2) + b(P ′′2 ) = 0,

from which we obtain af = 0, and from (4.20), we also have

b(P ′1) + a(P ′′1 ) + bf = 0,
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b(P ′2) + a(P ′′2 ) + bf = 0,

b(P ′1) + a(P ′′1 ) + b(P ′2) + a(P ′′2 ) = 0,

from which we obtain bf = 0. Hence, we have af = bf = 0 for all f ∈ E′NR, and then,
ae = be = 0 for all e ∈ ENR. By substituting in (4.18), we obtain

∑
e∈ER

ae = c and we
are done. �

We will assume in what follows that (V,ENR) is a 3–edge connected graph.

Facet–inducing inequalities obtained from the formulation

Let us first prove some inequalities from the formulation to be facet–defining of the
1–RPP polyhedron: the trivial inequalities given by the bounds of the variables, in-
equalities (4.15), and connectivity inequalities (4.13).

Theorem 4.2.3. Inequality ye ≥ 0, for each edge e ∈ ENR, is facet–inducing of 1–
RPP(G).

Proof: Let ax+ by ≥ c, i.e.,∑
f∈ER

afxf +
∑

f∈ENR

afxf +
∑

f∈ENR

bfyf ≥ c,

be a valid inequality such that

{(x, y) ∈ 1–RPP(G) : ye = 0} ⊆ {(x, y) ∈ 1–RPP(G) : ax+ by = c}.

We have to prove that this inequality is a linear combination of the equalities (4.14)
and ye ≥ 0. Note that this means to prove that

af = 0, ∀f ∈ENR,
bf = 0, ∀f ∈ENR, f 6= e, and

c =
∑
f∈ER

af .

i) We will first prove it for e ∈ E′′NR. Consider the tour T−2e of the proof of Theorem
4.2.2, which satisfies ye = 0 and, hence, ax + by = c holds. By replacing the incidence
vector in ax+ by = c, we obtain∑

f∈ER

af +
∑

f∈ENR\{e}

af +
∑

f∈E′′NR\{e}

bf = c. (4.21)

Let be g ∈ E′′NR, g 6= e. Since (V,ENR) is a 3–edge connected graph, the tour
T−2e−2g obtained after removing from T−2e the two copies of g is also a 1–RPP tour
satisfying ye = 0. Hence, by substituting it in ax + by = c and by subtracting the
corresponding equality from (4.21), we obtain that ag + bg = 0, ∀g ∈ E′′NR, g 6= e.
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Let be g ∈ E′NR. Since (V,ENR) is a 3–edge connected graph, (V,ENR \ {e, g}) is
a connected graph, and there is a T–join in (V,ENR \ {e, g}) connecting the R–odd
vertices. The 1–RPP tour T ∗ build wit this T–join does not traverse g and satisfies
ye = 0. Furthermore, the tour obtained after adding to T ∗ the two copies of g is also
a 1–RPP tour satisfying ye = 0. Hence, by substituting them in ax + by = c and by
subtracting the corresponding equalities, we obtain that ag + bg = 0, ∀g ∈ E′NR.

For each cycle C = C′ ∪ C′′ on G formed by non–required edges, the tour T−2e + C
obtained after adding to T−2e one copy of each edge in C (and, then, removing two copies
of any edge traversed three times) is also a 1–RPP tour satisfying ye = 0. Proceeding
as in the proof of Theorem 4.2.2, we obtain b(C′)− b(C′′) = 0 and, given that ag + bg =
0, ∀g ∈ E′′NR, g 6= e, we obtain that b(C′) + a(C′′ \ {e}) − be = 0 if e ∈ C, and
b(C′) + a(C′′) = 0 if e /∈ C.

Let be f = (i, j) ∈ E′′NR. Since (V,ENR) is a 3–edge connected graph, there are two
edge–disjoint paths P1, P2 joining vertices i and j with non–required edges different
from f . Let us assume, for instance, that e ∈ P1. Consider the two cycles P1 ∪{f} and
P1 ∪ P2, for which equation b(C′) + a(C′′ \ {e})− be = 0 holds, and the cycle P2 ∪ {f},
for which equation b(C′) + a(C′′) = 0 holds. Hence, we have:

b(P ′1) + a(P ′′1 \ {e})− be + af = 0,

b(P ′1) + a(P ′′1 \ {e})− be + b(P ′2) + a(P ′′2 ) = 0, and

b(P ′2) + a(P ′′2 ) + af = 0,

and we obtain af = 0. Furthermore, if f 6= e, af + bf = 0 holds, we have bf = 0 for all
f ∈ E′′NR \ {e}. The case e /∈ P1 ∪ P2 is similar.

Let be f = (i, j) ∈ E′NR. Let P1, P2 be two edge–disjoint paths as above and assume
in this case that e /∈ P1 and e /∈ P2. Consider the three cycles P1 ∪ {f}, P2 ∪ {f}, and
P1 ∪ P2. Now we have:

b(P ′1) + a(P ′′1 ) + bf = 0,

b(P ′2) + a(P ′′2 ) + bf = 0, and

b(P ′1) + a(P ′′1 ) + b(P ′2) + a(P ′′2 ) = 0,

from which we obtain bf = 0. Furthermore, as af + bf = 0, ∀f ∈ E′NR we obtain that
af = 0. Hence, af = bf = 0 for all f ∈ ENR \ {e} and ae = 0 and, by replacing them in
(4.21) we obtain

∑
f∈ER

af = c, and we are done.

ii) We will prove it now for e ∈ E′NR. The tour T of the proof of Theorem 4.2.2
satisfies ye = 0 and, hence, ax+ by = c holds, and by replacing the incidence vector, we
obtain equation: ∑

e∈ER

ae +
∑

e∈ENR

ae +
∑

e∈E′′NR

be = c. (4.22)

Let be f ∈ E′′NR. Since (V,ENR) is a 3–edge connected graph, the tour T−2f is also a 1–
RPP tour satisfying ye = 0. Hence, by substituting it in ax+ by = c and by subtracting
the corresponding equality from (4.22) we obtain that af + bf = 0, ∀f ∈ E′′NR.

Let be f ∈ E′NR, f 6= e. Since (V,ENR) is a 3–edge connected graph, (V,ENR\{e, f})
is a connected graph, and there is a T–join in (V,ENR \ {e, f}) connecting the R–odd
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vertices. The 1–RPP tour T ∗ build wit this T–join does not traverses f and satisfies
ye = 0. Furthermore, the tour obtained after adding to T ∗ the two copies of f is also a
1–RPP tour satisfying ye = 0. Hence, by subtracting the corresponding equalities, we
obtain that af + bf = 0, ∀f ∈ E′NR, f 6= e.

For each cycle C = C′∪C′′ onG formed by non–required edges, the tour T−C obtained
after subtracting from T one copy of each edge in C is also a 1–RPP tour satisfying
ye = 0. Proceeding as in the proof of Theorem 4.2.2, we obtain a(C′) + b(C′′) = 0.

Let be f = (i, j) ∈ E′′NR. Since (V,ENR) is a 3–edge connected graph, there are two
edge–disjoint paths P1, P2 joining vertices i and j with non–required edges different
from f . Considering the three cycles as in i) we obtain bf = 0 and, as af + bf = 0 holds,
we have af = bf = 0 for all f ∈ E′′NR.

Let be f = (i, j) ∈ E′NR. Proceeding as above we obtain af = 0 and, hence, also
bf = 0 ∀f ∈ E′NR \ {e}. We have af = bf = 0 for all f ∈ ENR \ {e} and ae = 0 and, by
replacing them in (4.22) we obtain

∑
f∈ER

af = c, and we are done. �

Theorem 4.2.4. Inequality xe ≤ 1, for each edge e ∈ ENR, is facet–inducing for 1–
RPP(G).

Proof: Let ax+ by ≤ c, i.e.,∑
f∈ER

afxf +
∑

f∈ENR

afxf +
∑

f∈ENR

bfyf ≤ c,

be a valid inequality such that

{(x, y) ∈ 1–RPP(G) : xe = 1} ⊆ {(x, y) ∈ 1–RPP(G) : ax+ by = c}.

We have to prove that this inequality is a linear combination of the equalities (4.14)
and xe ≤ 1. Note that this means to prove that

af = 0, ∀f ∈ENR, f 6= e,

bf = 0, ∀f ∈ENR,

c =
∑
f∈ER

af + ae.

i) We will first prove it for e ∈ E′′NR. Consider the tour T of the proof of Theorem
4.2.2, which satisfies xe = 1 and, hence, ax + by = c holds. By replacing the incidence
vector in ax+ by = c, we obtain∑

f∈ER

af +
∑

f∈ENR

af +
∑

f∈E′′NR

bf = c. (4.23)

Let be f ∈ E′′NR, f 6= e. Since (V,ENR) is a 3–edge connected graph, the tour T−2f

is also a 1–RPP tour satisfying xe = 1. Hence, by substituting it in ax+ by ≤ c and by
subtracting the corresponding equality from (4.23) we obtain that af + bf = 0, ∀f ∈
E′′NR, f 6= e.
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Let be f ∈ E′NR. Since (V,ENR) is a 3–edge connected graph, (V,ENR \ {e, f}) is
a connected graph, and there is a T–join in (V,ENR \ {e, f}) connecting the R–odd
vertices. The 1–RPP tour T ∗ build wit this T–join does not traverse f nor e. T ∗+2e is
also a 1–RPP tour and satisfies xe = 1. Furthermore, T ∗+2e+2f is also a 1–RPP tour
satisfying xe = 1. Hence, by substituting them in ax + by = c and by subtracting the
corresponding equalities we obtain that af + bf = 0, ∀f ∈ E′NR.

For each cycle C = C′∪C′′ onG formed by non–required edges, the tour T−C obtained
after removing from T one copy of each edge in C is also a 1–RPP tour satisfying xe = 1.
Proceeding as in the proof of Theorem 4.2.2 we obtain a(C′) + b(C′′) = 0.

Let be f = (i, j) ∈ E′′NR. Since (V,ENR) is a 3–edge connected graph, there are two
edge–disjoint paths P1, P2 joining vertices i and j with non–required edges different
from f . Consider the three cycles P1 ∪ {f}, P2 ∪ {f}, and P1 ∪ P2, for which equation
a(C′) + b(C′′) = 0 holds. Hence, we have:

a(P ′1) + b(P ′′1 ) + bf = 0,

a(P ′2) + b(P ′′2 ) + bf = 0, and

a(P ′1) + b(P ′′1 ) + a(P ′2) + b(P ′′2 ) = 0,

and we obtain bf = 0. Furthermore, if f 6= e, af + bf = 0 holds, we have af = 0 for all
f ∈ E′′NR \ {e}.

Let be f = (i, j) ∈ E′NR. Let P1, P2 be two edge–disjoint paths as above and con-
sider the three cycles P1 ∪ {f}, P2 ∪ {f}, and P1 ∪ P2. Now we have:

a(P ′1) + b(P ′′1 ) + af = 0,

a(P ′2) + b(P ′′2 ) + af = 0, and

a(P ′1) + b(P ′′1 ) + a(P ′2) + b(P ′′2 ) = 0,

from which we obtain af = 0. Furthermore, as af + bf = 0, ∀f ∈ E′NR we obtain that
bf = 0.

Hence, af = bf = 0 for all f ∈ ENR \ {e} and be = 0 and, by replacing them in
(4.23), we obtain

∑
f∈ER

af + ae = c and we are done.

ii) We will prove it now for e ∈ E′NR. Consider the tour T of the proof of Theorem
4.2.2, which satisfies xe = 1 and, hence, ax + by = c holds. By replacing the incidence
vector in ax+ by = c we obtain∑

f∈ER

af +
∑

f∈ENR

af +
∑

f∈E′′NR

bf = c. (4.24)

Let be f ∈ E′′NR. Since (V,ENR) is a 3–edge connected graph, the tour T−2f obtained
after removing from T the two copies of f is also a 1–RPP tour satisfying xe = 1. Hence,
by substituting it in ax + by = c and by subtracting the corresponding equality from
(4.24) we obtain that af + bf = 0, ∀f ∈ E′′NR.

Let be f ∈ E′NR, f 6= e. Since (V,ENR) is a 3–edge connected graph, (V,ENR\{e, f})
is a connected graph, and there is a T–join in (V,ENR \ {e, f}) connecting the R–odd
vertices. The 1–RPP tour T ∗ build wit this T–join does not traverse f nor e. T ∗+2e is
also a 1–RPP tour and satisfies xe = 1. Furthermore, T ∗+2e+2f is also a 1–RPP tour
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satisfying xe = 1. Hence, by substituting them in ax + by = c and by subtracting the
corresponding equalities we obtain that af + bf = 0, ∀f ∈ E′NR, f 6= e.

For each cycle C = C′∪C′′ onG formed by non–required edges, the tour T+C obtained
after adding to T one copy of each edge in C (and, then, removing two copies of any edge
traversed three times) is also a 1–RPP tour satisfying xe = 1. Proceeding as in the proof
of Theorem 4.2.2 we obtain b(C′) − b(C′′) = 0 and, given that af + bf = 0, ∀f ∈ E′′NR,
we obtain that b(C′) + a(C′′) = 0.

Let be f = (i, j) ∈ E′′NR. Since (V,ENR) is a 3–edge connected graph, there are two
edge-disjoint paths P1, P2 joining vertices i and j with non–required edges different
from f . Consider the three cycles P1 ∪ {f}, P2 ∪ {f}, and P1 ∪ P2, for which equation
b(C′) + a(C′′) = 0 holds. Hence, we have:

b(P ′1) + a(P ′′1 ) + af = 0,

b(P ′2) + a(P ′′2 ) + af = 0, and

b(P ′1) + a(P ′′1 ) + b(P ′2) + a(P ′′2 ) = 0,

and we obtain af = 0. Furthermore, as af + bf = 0 holds, we have af = 0 for all
f ∈ E′′NR.

Let be f = (i, j) ∈ E′NR. Let P1, P2 be two edge–disjoint paths as above and con-
sider the three cycles P1 ∪ {f}, P2 ∪ {f}, and P1 ∪ P2. Now we have:

b(P ′1) + a(P ′′1 ) + bf = 0,

b(P ′2) + a(P ′′2 ) + bf = 0, and

b(P ′1) + a(P ′′1 ) + b(P ′2) + a(P ′′2 ) = 0,

from which we obtain bf = 0. Furthermore, if f 6= e as af + bf = 0, ∀f ∈ E′NR \ {e}
we obtain that af = 0. Hence, af = bf = 0 for all f ∈ ENR \ {e} and be = 0 and, by
replacing them in (4.24), we obtain

∑
f∈ER

af + ae = c and we are done. �

Theorem 4.2.5. Inequalities xe ≥ ye, for each edge e ∈ ENR, are facet–inducing for
1–RPP(G) if graph (V,ENR \ {e}) is 3–edge connected.

Proof: Let ax+ by ≥ c, i.e.,∑
f∈ER

afxf +
∑

f∈ENR

afxf +
∑

f∈ENR

bfyf ≥ c,

be a valid inequality such that

{(x, y) ∈ 1–RPP(G) : xe = ye} ⊆ {(x, y) ∈ 1–RPP(G) : ax+ by = c}.

We have to prove that this inequality is a linear combination of the equalities (4.14)
and xe − ye ≥ 0. Note that this means to prove that

af = bf = 0, ∀f ∈ENR, f 6= e,

ae = −be,
c =

∑
f∈ER

af .
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i) We will first prove it for e ∈ E′′NR. Consider the tour T of the proof of Theorem
4.2.2, which satisfies xe = ye(= 1) and, hence, ax + by = c holds. By replacing the
incidence vector in ax+ by = c, we obtain∑

f∈ER

af +
∑

f∈ENR

af +
∑

f∈E′′NR

bf = c. (4.25)

Let be f ∈ E′′NR (including f = e). Since (V,ENR) is a 3–edge connected graph,
vector T−2f is also a 1–RPP tour and it satisfies xe = ye. Hence, by replacing it in
ax+by = c and then subtracting the corresponding equation from (4.25) we obtain that
af + bf = 0 for all f = (i, j) ∈ E′′NR.

Let be f ∈ E′NR. Since (V,ENR) is a 3–edge connected graph, (V,ENR \ {e, f}) is a
connected graph, and there is a T–join in (V,ENR\{e, f}) connecting the R–odd vertices.
The 1–RPP tour T ∗ build wit this T–join does not traverse f nor e and then satisfies
xe = ye. T

∗+2f is also a 1–RPP satisfying xe = ye. By substituting them in ax+ by = c
and by subtracting the corresponding equalities we obtain that af + bf = 0, ∀f ∈ E′NR.

For each cycle C = C′ ∪ C′′ on G \ {e} formed by non–required edges, the tour T −C
obtained after removing from T one copy of each edge in C is also a 1–RPP tour satisfying
xe = ye. Proceeding as in the proof of Theorem 4.2.2, we obtain a(C′) + b(C′′) = 0.

Let be f = (i, j) ∈ E′′NR, f 6= e. Since (V,ENR \ {e}) is a 3–edge connected graph,
there are two edge–disjoint paths P1, P2 joining vertices i and j with non–required
edges different from e and also different from f . Consider the three cycles P1 ∪ {f},
P2 ∪ {f}, and P1 ∪ P2, for which equation a(C′) + b(C′′) = 0 holds. Hence, we have:

a(P ′1) + b(P ′′1 ) + bf = 0,

a(P ′2) + b(P ′′2 ) + bf = 0, and

a(P ′1) + b(P ′′1 ) + a(P ′2) + b(P ′′2 ) = 0,

and we obtain bf = 0. Furthermore, as af + bf = 0 holds, we have af = 0 for all
f ∈ E′′NR \ {e}.

Let be f = (i, j) ∈ E′NR. Let P1, P2 be two edge–disjoint paths as above and con-
sider the three cycles P1 ∪ {f}, P2 ∪ {f}, and P1 ∪ P2. Now we have:

a(P ′1) + b(P ′′1 ) + af = 0,

a(P ′2) + b(P ′′2 ) + af = 0, and

a(P ′1) + b(P ′′1 ) + a(P ′2) + b(P ′′2 ) = 0,

from which we obtain af = 0 and, as af + bf = 0 holds, we have bf = 0 for all f ∈ E′NR.

Hence, af = bf = 0 for all f ∈ ENR \ {e} and ae + be = 0 and, by replacing them in
(4.25), we obtain

∑
f∈ER

af = c and we are done.

ii) We will prove it now for e ∈ E′NR. Since (V,ENR) is a 3–edge connected graph,
(V,ENR \ {e}) is a connected graph, and there is a T–join in (V,ENR \ {e}) connecting
the R–odd vertices. The 1–RPP tour T ∗ build with this T–join does not traverse e and
then satisfies xe = ye(= 0). Furthermore, T ∗+2e is also a 1–RPP satisfying xe = ye(= 1).
By substituting them in ax + by = c and by subtracting the corresponding equalities
we obtain that ae + be = 0.
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Let be f ∈ E′NR∪E′′NR, f 6= e. Since (V,ENR) is a 3–edge connected graph, (V,ENR\
{e, f}) is a connected graph, and there is a T–join in (V,ENR \ {e, f}) connecting the
R–odd vertices. The 1–RPP tour T ∗∗ build with this T–join does not traverse f nor
e and then satisfies xe = ye(= 0). Furthermore, T ∗∗+2f is also a 1–RPP satisfying
xe = ye = 0. By substituting them in ax+ by = c and by subtracting the corresponding
equalities, we obtain that af + bf = 0. Hence, we have af + bf = 0 ∀f ∈ ENR.

For each cycle C = C′ ∪ C′′ on G \ {e} formed by non–required edges, the tour
T ∗ + C obtained after adding to T ∗ one copy of each edge in C (and, then, removing
two copies of any edge traversed three times) is also a 1–RPP tour satisfying xe = ye.
Proceeding as in the proof of Theorem 4.2.2 we obtain b(C′)− b(C′′) = 0 and, given that
af + bf = 0, ∀f ∈ ENR, b(C′) + a(C′′) = 0 holds.

For each f = (i, j) ∈ ENR, f 6= e, since (V,ENR \ {e}) is a 3–edge connected graph,
there are two edge–disjoint paths P1, P2 joining vertices i and j with non–required
edges different from e and f . By considering the three cycles P1 ∪ {f}, P2 ∪ {f}, and
P1 ∪ P2, for which equation b(C′) + a(C′′) = 0 holds, we obtain bf = 0 if f ∈ E′NR and
af = 0 if f ∈ E′′NR, and, hence, af = bf = 0 for all f ∈ ENR \ {e}. By replacing this
and ae + be = 0 in (4.25), we obtain

∑
f∈ER

af = c and we are done. �

Note 4.2.5.1. Inequalities xe ≥ 0 and ye ≤ 1, for all e ∈ ENR, do not induce a facet of
1–RPP(G) because they are dominated by inequalities xe ≥ ye.

Let us describe now conditions under which connectivity inequalities (4.13) induce a
facet of the polyhedron. Note that, given that xe = 1 for all e ∈ ER, inequalities (4.13)
are obviously satisfied if δR(S) 6= ∅. Hence, we will assume δR(S) = ∅. Furthermore, if
E(S) contains some required edge f , as xf = 1 holds, inequalities (4.13) are dominated
by inequalities∑

e∈δ(S)

(
xe + ye

)
≥ 2, ∀S ⊆ V \ {1} : δR(S) = ∅, ER(S) 6= ∅,

which are studied in Theorem 4.2.7.

Theorem 4.2.6. Let S ⊆ V \ {1} such that ER(S) = δR(S) = ∅. Let f ∈ E(S)
(f ∈ E′′NR). The connectivity inequality (4.13), which now takes the form

(x+ y)(δ(S)) ≥ 2xf , (4.26)

is facet–inducing for 1–RPP(G) if subgraph (S,ENR(S)) is 3–edge connected and either
V \S = {1}, or subgraph (V \S,ENR(V \S)) is 3–edge connected.

Proof: Let ax+ by ≥ c, i.e.,∑
e∈ER

aexe +
∑

e∈ENR

aexe +
∑

e∈ENR

beye ≥ c,

be a valid inequality such that

{(x, y) ∈ 1–RPP(G) : (x+y)(δ(S))−2xf = 0} ⊆ {(x, y) ∈ 1–RPP(G) : ax+by = c}.



58 Chapter 4. On the LC K–RPP and the K–RPP polyhedron

We have to prove that this inequality is a linear combination of the equalities (4.14)
and (x+ y)(δ(S))− 2xf ≥ 0. Note that this means to prove that

ae = be = 0, ∀e∈ENR(S) \ {f} ∪ ENR(V \S),

ae = be = α, ∀e∈ δ(S),

af = −2α,

bf = 0,

c =
∑
e∈ER

ae.

Consider the 1–RPP tour T ′ formed with two copies of each edge in ENR(S)∪ENR(V\
S) and then replacing one copy of each e ∈ E′NR by the required edge parallel to e, plus
two copies of a given edge g ∈ δ(S). Since this tour satisfies (x+ y)(δ(S))− 2xf = 0, it
also satisfies ax+ by = c, and we have∑

e∈ER

ae +
∑

e∈ENR\δ(S)

ae +
∑

e∈E′′NR\δ(S)

be + ag + bg = c. (4.27)

For each edge e ∈ E′′NR\δ(S), e 6= f , consider the tour T ′−2e (it is a 1–RPP tour
because subgraphs G(S) and G(V \S) are 2–edge connected). By comparing both tours
we obtain ae + be = 0 for each edge e ∈ E′′NR\δ(S), e 6= f .

For each edge e ∈ E′NR \δ(S), necessarily e ∈ E′NR(V \S), given that graph (V \
S,ENR(V \S) \ {e}) is connected, there is a T–join M connecting its R–odd vertices.
The edges in M ∪ ER form an even subgraph in G(V \ S), although not necessarily
connected. If we add the edges in a closed walk in ENR(V \S)\{e} starting at the depot,
visiting at least one node in each connected component of M ∪ ER and ending at the
depot, we obtain a 1–RPP tour T ∗ that does not traverse e and satisfies (x+y)(δ(S)) =
0 = 2xf . The 1–RPP tour T ∗+2e also satisfies (x + y)(δ(S)) = 0 and, by subtracting
the corresponding equations, we obtain that ae + be = 0, for each edge e ∈ E′NR\δ(S).

For each cycle C = C′ ∪ C′′ either on G(V \S) or in G(S) (traversing edge f or not)
formed by non–required edges, the tour T ′−C obtained after removing from T ′ one copy
of each edge in C is also a 1–RPP tour satisfying (x + y)(δ(S)) = 2 = 2xf (note that
xf = 1 holds). Proceeding as in the proof of Theorem 4.2.2, we obtain a(C′)+b(C′′) = 0.

Let e = (i, j) ∈ E′NR(V \S) (if any). Since that (V \S,ENR(V \S)) is a 3–edge
connected graph, there are two edge–disjoint paths P1, P2 joining vertices i and j with
non–required edges different from e. Consider the three cycles P1 ∪ {e}, P2 ∪ {e}, and
P1 ∪ P2, for which equation a(C′) + b(C′′) = 0 holds. Hence, we have:

a(P ′1) + b(P ′′1 ) + ae = 0,

a(P ′2) + b(P ′′2 ) + ae = 0, and

a(P ′1) + b(P ′′1 ) + a(P ′2) + b(P ′′2 ) = 0,

and we obtain ae = 0. As ae + be = 0 holds, we have be = 0 for all e ∈ E′NR(V \S).

Let be e = (i, j) ∈ E′′NR(V \S) (if any). Let P1, P2 be two edge–disjoint paths as
above and consider the three cycles P1 ∪ {e}, P2 ∪ {e}, and P1 ∪ P2. Now we have:

a(P ′1) + b(P ′′1 ) + be = 0,
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a(P ′2) + b(P ′′2 ) + be = 0, and

a(P ′1) + b(P ′′1 ) + a(P ′2) + b(P ′′2 ) = 0,

from which we obtain be = 0 and, as ae + be = 0 holds, we have ae = 0 for all e ∈
E′′NR(V \S). Hence, ae = be = 0 for all e ∈ ENR(V \ S). In a similar way we obtain
ae = be = 0 for each edge e ∈ ENR(S), e 6= f , and bf = 0.

Let us denote the edges in δ(S) as e1, . . . , ep, where p ≥ 3 since graph G is 3–edge
connected. Now consider two edges e1, e2 ∈ δ(S). Consider the 1–RPP tour T formed
with two copies of each edge in ENR(S) ∪ ENR(V \S) and then replacing one copy of
each e ∈ E′NR by the required edge parallel to e, plus two copies of edge e1. Let T ∗

be the tour obtained from T after removing the second traversal of e1 and one copy of
each edge of two paths P1,P2 joining the endpoins of e1 and e2, and adding the first
traversal of e2. Both tours satisfy (x + y)(δ(S)) = 2xf = 2 and, after subtracting the
corresponding equalities we obtain a(P ′1) + b(P ′2) + a(P ′′1 ) + b(P ′′2 ) + be1 − ae2 = 0 and,
hence, be1 = ae2 . If we interchange the roles of the edges e1 and e2, we obtain be2 = ae1 .
Proceeding in this way with all the pairs of edges in δ(S), we obtain aei = bej for all
i 6= j ∈ {1, . . . , p} and then aei = aej = bei = bej for all i, j (because p ≥ 3 holds).

Let T ∗ be a 1–RPP tour formed with two copies of each edge in ENR(V \S) and
then replacing one copy of each e ∈ E′NR by the required edge parallel to e, plus two
copies of each edge in a given path P joining a vertex in G(V \S) to an endnode of f
traversing δ(S) once, say, with edge e ∈ δ(S), and two copies of edge f . By comparing
this tour with the one removing the two copies of the edges in P and the two copies of
f , both satisfying (x+ y)(δ(S)) = 2xf , we obtain that ae + be +af + bf = 0. Given that
bf = 0 and ae = be, we have af = −2ae for any edge e ∈ δ(S).

By replacing ae = be = 0 for each e ∈ ENR \
(
δ(S) ∪ {f}

)
, ae = be = α for each

e ∈ δ(S), and bf = 0, af = −2α, in equation (4.27) we obtain
∑

e∈ER
ae = c, and after

replacing all the previous facts in ax+ by ≥ c we obtain∑
e∈ER

aexe + α
(

(x+ y)(δ(S))− 2xf

)
≥
∑
e∈ER

ae,

which is a linear combination of the equalities (4.14) and (x+ y)(δ(S)) ≥ 2. Hence, the
connectivity inequality (4.26) is facet–inducing for 1–RPP(G). �

Theorem 4.2.7. Let S ⊆ V \{1} such that δR(S) = ∅ and ER(S) 6= ∅. The connectivity
inequality

(x+ y)(δ(S)) ≥ 2, (4.28)

is facet–inducing for 1–RPP(G) if subgraph (S,ENR(S)) is 3–edge connected and either
V \S = {1}, or subgraph (V \S,ENR(V \S)) is 3–edge connected.

Proof: Let ax+ by ≥ c, i.e.,∑
e∈ER

aexe +
∑

e∈ENR

aexe +
∑

e∈ENR

beye ≥ c,

be a valid inequality such that

{(x, y) ∈ 1–RPP(G) : (x+ y)(δ(S)) = 2} ⊆ {(x, y) ∈ 1–RPP(G) : ax+ by = c}.
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We have to prove that this inequality is a linear combination of the equalities (4.14)
and (x+ y)(δ(S)) ≥ 2. Note that this means to prove that

ae = be = 0, ∀e∈ENR(S) ∪ ENR(V \S),

ae = be = α, ∀e∈ δ(S),

c =
∑
e∈ER

ae + 2α.

Consider the 1–RPP tour T formed with two copies of each edge in ENR(S)∪ENR(V\
S) and then replacing one copy of each e ∈ E′NR by the required edge parallel to e, plus
two copies of a given edge f ∈ δ(S). Since this tour satisfies (x + y)(δ(S)) = 2, it also
satisfies ax+ by = c, and we have∑

e∈ER

ae +
∑

e∈ENR\δ(S)

ae +
∑

e∈E′′NR\δ(S)

be + af + bf = c. (4.29)

For each edge e ∈ E′′NR\δ(S), consider the tour above except for xe = ye = 0 (it is a
1–RPP tour because subgraphs G(S) and G(V\S) are 2–edge connected). By comparing
both tours, we obtain ae + be = 0 for each edge e ∈ E′′NR\δ(S).

For each edge e ∈ E′NR(S), given that (S,ENR(S)) is 2–edge connected, the graph
(S,ENR(S)\{e}) is connected and there is a T–join in it connecting its R–odd vertices
that can be completed with edges in E′′NR(S) used twice. A similar vector can be
defined in the (connected) graph (V \S,ENR(V \S)) and, after adding two copies of a
given edge f ∈ δ(S) we have a 1–RPP tour T ∗ that does not traverse e and satisfies
(x + y)(δ(S)) = 2. The 1–RPP tour T ∗+2e also satisfies (x + y)(δ(S)) = 2 and, by
subtracting the corresponding equations, we obtain that ae+be = 0. A similar argument
for each edge e ∈ E′NR(V \S) also leads to ae + be = 0. Hence, we have ae + be = 0 for
each edge e ∈ ENR\δ(S).

For each cycle C = C′ ∪ C′′ either on G(V \S) or on G(S) formed by non–required
edges, the tour T − C obtained after removing from T one copy of each edge in C is
also a 1–RPP tour satisfying (x+ y)(δ(S)) = 2. Proceeding as in the proof of Theorem
4.2.2, we obtain a(C′) + b(C′′) = 0.

Let e = (i, j) ∈ E′NR(V \S) (if any). Since that (V \S,ENR(V \S)) is a 3–edge
connected graph, there are two edge–disjoint paths P1, P2 joining vertices i and j with
non–required edges different from e. Consider the three cycles P1 ∪ {e}, P2 ∪ {e}, and
P1 ∪ P2, for which equation a(C′) + b(C′′) = 0 holds. Hence, we have:

a(P ′1) + b(P ′′1 ) + ae = 0,

a(P ′2) + b(P ′′2 ) + ae = 0, and

a(P ′1) + b(P ′′1 ) + a(P ′2) + b(P ′′2 ) = 0,

and we obtain ae = 0. Furthermore, as ae + be = 0 holds, we have be = 0 for all
e ∈ E′NR(V \S).

Let e = (i, j) ∈ E′′NR(V \S) (if any). Let P1, P2 be two edge–disjoint paths as above
and consider the three cycles P1 ∪ {e}, P2 ∪ {e}, and P1 ∪ P2. Now we have:

a(P ′1) + b(P ′′1 ) + be = 0,
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a(P ′2) + b(P ′′2 ) + be = 0, and

a(P ′1) + b(P ′′1 ) + a(P ′2) + b(P ′′2 ) = 0,

from which we obtain be = 0 and, as ae + be = 0 holds, we have ae = 0 for all e ∈
E′′NR(V \S). Hence, ae = be = 0 for all e ∈ ENR(V \ S). In a similar way, since
(S,ENR(S)) is a 3–edge connected graph, we obtain ae = be = 0 also for each edge
e ∈ ENR(S).

Let us denote the edges in δ(S) as e1, . . . , ep, where p ≥ 3 since graph G is 3–edge
connected. The same argument used in Theorem 4.2.6 leads to prove that aei = aej =
bei = bej for all ei, ej .

By replacing ae = be = 0, for each e ∈ ENR \ δ(S), and ae = be = α, for each
e ∈ δ(S), in equation (4.29), we obtain that

∑
e∈ER

ae + 2α = c, and after replacing all
the previous facts in ax+ by ≥ c, we obtain∑

e∈ER

aexe + α
(

(x+ y)(δ(S))
)
≥
∑
e∈ER

ae + 2α,

which is a linear combination of the equalities (4.14) and (x+ y)(δ(S)) ≥ 2. �

In the remaining of the section, we present several new families of valid inequalities
for the 1–RPP: parity, p−connectivity, and K–C inequalities.

Parity inequalities

In Corberán et al. (2013), the following constraints that generalize the well known co–
circuit inequalities (Barahona and Gröetschel, 1986), were proposed for the MBCPP.
They are called parity inequalities and, from Theorem 4.2.1, they are also valid for
1–RPP(G):

(x− y)(δ(S)\F ) ≥ (x− y)(F )−|F |+1, ∀S⊂V, ∀F ⊆δ(S) with |F | odd. (4.30)

The above inequality can be simplified for the 1–RPP taking into account that,
for each required edge e, we have xe = 1 and there is no variable ye. In general,
either F and δ(S)\F could contain required and non–required edges. However, it can
be seen that the parity inequalities corresponding to sets where δR(S) \F 6= ∅ are
not facet inducing. Hence, we will assume that δ(S)\F ⊂ ENR. Let us denote here
F = FR ∪ FNR = FR ∪ F ′NR ∪ F ′′NR. By substituting xe = 1 and deleting variables ye for
e ∈ FR in (4.30) we obtain

(x− y)(δ(S)\F ) ≥ x(FR) + (x− y)(FNR)−|F |+1,

⇓

(x− y)(δ(S)\F ) ≥ |FR|+ (x− y)(FNR)−|F |+1,

⇓

(x− y)(δ(S)\F ) ≥ (x− y)(FNR)− |FNR|+ 1 (4.31)



62 Chapter 4. On the LC K–RPP and the K–RPP polyhedron

This parity inequality (4.31) can be understood in the following way: the 1–RPP tours
for which (x− y)(FNR) = |FNR| (all the non–required edges in F traversed once) holds,
and given that all the edges in FR are traversed once and |F | is odd, they satisfy
(x − y)(δ(S)\F ) ≥ 1. For the other 1–RPP tours, the inequality says nothing ((x −
y)(δ(S)\F ) ≥ 0). These inequalities cut off (infeasible) solutions in which there is a
cut–set with an odd number of edges traversed exactly once (these edges define the set
F) and the other edges are traversed twice or none.

In the case δ(S)\F = ∅, and hence F = δ(S), the parity inequality (4.31) is

(x− y)(FNR) ≤ |FNR| − 1, (4.32)

while in the case FNR = ∅, the parity inequality (4.31) is

(x− y)(δ(S)\F ) ≥ 1. (4.33)

However, note that both sets, FNR and δ(S)\F , cannot be empty simultaneously, since
FNR ∪ δ(S) \ F = δNR(S) and, as we assume graph (V,ENR) is 3–edge connected,
|δNR(S)| ≥ 3 holds.

Note 4.2.7.1. Before proving if some parity inequalities (4.31) induce facets of 1–
RPP(G), we will describe two types of 1–RPP tours satisfying them with equality.
Recall that |F | is odd. We are going to build 1–RPP tours traversing δ(S) a number
|F | + 1 or |F | − 1 of times. Let us consider a cut–set δ(S) such that graphs G(S) and
G(V \ S) are connected. We select an even number of (copies of) edges in δ(S) in the
following two ways:

Type 1: → If δ(S)\F 6= ∅, we select a copy of each edge in F and one more edge in
δ(S)\F .

Type 2 → If FNR 6= ∅, we select one copy of each edge in F , except one edge in FNR.

Note that, in both cases, we have selected an even number of copies of edges in δ(S).
Let Vo ⊂ V \ S be the set of vertices incident with an odd number of these selected
edges. Given that the number of edges is even, |Vo| is also even, and there is a T–join
in (V \ S,ENR(V \ S)). This same process is done in (S,ENR(S)). Consider two copies
of each non–required edge in G(V \S) and in G(S) not belonging to the T–joins. Now,
replace a copy of each edge in E′NR by its corresponding parallel required edge. All
these edges plus the two T–joins, plus the selected edges in δ(S), define a 1–RPP tour
(it is even and connected and traverses all the required edges). It satisfies (4.31) with
equality because

(x− y)(δ(S)\F ) = 1, (x− y)(FNR) = |FNR| (Type 1), or

(x− y)(δ(S)\F ) = 0, (x− y)(FNR) = |FNR| − 1 (Type 2).

Theorem 4.2.8. Parity inequalities (4.31), for all S ⊂ V , F ⊆ δ(S) with |F | odd and
δR(S) ⊆ F (and, hence, δ(S)\F ⊂ ENR), are facet–inducing for 1–RPP(G) if subgraphs
(S,ENR(S)) and (V \S,ENR(V \S)) are 3–edge connected graphs.
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Proof: Let us denote here F = FR ∪ FNR = FR ∪ F ′NR ∪ F ′′NR. Inequalities (4.31) can
be written in the following way:

(x− y)(δ(S)\F )− (x− y)(FNR) ≥ 1− |FNR|. (4.34)

Let us suppose there is another valid inequality ax+ by ≥ c,∑
e∈ER

aexe +
∑

e∈ENR

aexe + e
∑

e∈ENR

beye ≥ c, (4.35)

such that

{(x, y)∈1–RPP(G) : (x− y)(δ(S)\F )− (x− y)(FNR) = 1− |FNR|} ⊆
⊆ {(x, y)∈1–RPP(G) : ax+ by = c}.

We have to prove that inequality (4.35) is a linear combination of equalities (4.14) and
(x− y)(δ(S)\F )− (x− y)(FNR) ≥ 1− |FNR|.

Let e ∈ ENR \ δ(S). Given that graphs (S,ENR(S)) and (V \S,ENR(V \S)) are
3–edge connected, they remain connected after deleting edge e, and there is a 1–RPP
tour T in G \ {e} that satisfies (4.34) with equality (see Note 4.2.7.1). The 1–RPP
tour T+2e, obtained from T by adding two traversals of edge e, also satisfies (4.34) with
equality. By comparing the equations ax + by = c corresponding to both tours, we
obtain ae + be = 0 for all e ∈ ENR \ δ(S).

Let T be a 1–RPP tour T build as in Note 4.2.7.1 that traverses all the non–required
edges in G(V \S) and G(S). If any edge e′ ∈ ENR is not traversed because it was in
the T–join and has been replaced by its corresponding parallel edge e ∈ ER, we add
two copies of e′ to T . For each cycle C = C′ ∪ C′′ either on G(V \S) or in G(S) formed
with non–required edges, the tour T − C obtained after removing from T one copy of
each edge in C is also a 1–RPP tour satisfying (4.34) with equality. Proceeding as in
the proof of Theorem 4.2.2, we obtain a(C′) + b(C′′) = 0.

Let e = (i, j) ∈ E′NR(V \S) (if any). Since (V \S,ENR(V \S)) is a 3–edge con-
nected graph, there are two edge–disjoint paths P1, P2 joining vertices i and j with
non–required edges different from e. Consider the three cycles P1 ∪ {e}, P2 ∪ {e}, and
P1 ∪ P2, for which equation a(C′) + b(C′′) = 0 holds. Hence, we have:

a(P ′1) + b(P ′′1 ) + ae = 0,

a(P ′2) + b(P ′′2 ) + ae = 0, and

a(P ′1) + b(P ′′1 ) + a(P ′2) + b(P ′′2 ) = 0,

and we obtain ae = 0. Furthermore, as ae + be = 0 holds, we have ae = be = 0 for all
e ∈ E′NR(V \S).

Let e = (i, j) ∈ E′′NR(V \S) (if any). Let P1, P2 be two edge–disjoint paths as above
and consider the three cycles P1 ∪ {e}, P2 ∪ {e}, and P1 ∪ P2. Now we have:

a(P ′1) + b(P ′′1 ) + be = 0,

a(P ′2) + b(P ′′2 ) + be = 0, and

a(P ′1) + b(P ′′1 ) + a(P ′2) + b(P ′′2 ) = 0,
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from which we obtain be = 0 and, as ae + be = 0 holds, we have ae = be = 0 for all
e ∈ E′′NR(V \S). In a similar way we obtain ae = be = 0 for each edge e ∈ ENR(S).
Hence, we have ae = be = 0 for all e ∈ ENR \ δ(S).

Let e = (i, j) ∈ δNR(S). If e ∈ FNR, there is a 1–RPP tour of type 2 not traversing
e. If e ∈ δ(S) \ F and FNR 6= ∅, then there is a 1–RPP tour of type 2 not traversing e.
If e ∈ δ(S)\F and FNR = ∅, then |δ(S)\F | ≥ 3 and there is a 1–RPP tour ot type 1 not
traversing e (traversing another edge in δ(S)\F ). In any case, there is a 1–RPP tour T
that satisfies (4.34) with equality and does not traverses e. The tour T+2e also satisfies
(4.34) with equality and, by comparing the equations ax+by = c corresponding to both
tours, we obtain ae + be = 0 for all e ∈ δNR(S).

Let us suppose there are e1, e2 ∈ FNR. Let T 1 be the 1–RPP tour of type 2 that
traverses once all the edges in F except e1 (see Note 4.2.7.1), and let T 2 be a similar tour
corresponding to edge e2. Both tours satisfy (4.34) with equality and, by comparing
them, and considering that ae = be = 0 for all edges e ∈ ENR \ δ(S), we obtain
ae1 = ae2 . By iterating this argument, we obtain ae = λ for all e ∈ FNR. Furthermore,
since ae + be = 0 for each e ∈ δNR(S), we have be = −λ. Hence, ae = λ and be = −λ for
all e ∈ FNR. Note that this is obviously true if FNR contains only one edge.

Let us suppose there are e1, e2 ∈ δ(S)\F . Let T 1 be the 1–RPP tour of type 1
that traverses once the edges in F ∪ {e1} (see Note 4.2.7.1), and let T 2 be the tour
that traverses once the edges in F ∪ {e2}. Both tours satisfy (4.34) with equality and,
by comparing them, and considering that ae = be = 0 for all edges e ∈ ENR\δ(S), we
obtain ae1 = ae2 . By iterating this argument, we obtain ae = µ for all e ∈ δ(S)\F and,
hence, be = −µ for all e ∈ δ(S)\F . Again, this is obviously true if δ(S)\F contains only
one edge.

If both sets FNR and δ(S)\F are non–empty, let e1 ∈ FNR and e2 ∈ δ(S)\F . Let
T 1 be the 1–RPP tour of type 1 that traverses once the edges in F ∪ {e2}, and T 2

the 1–RPP tour of type 2 that does not traverse e1 nor e2. Both tours satisfy (4.34)
with equality and, by comparing them, we obtain ae1 + ae2 = 0 and, therefore, λ = −µ.
Hence, we have ae = λ, be = −λ for all e ∈ FNR, and ae = −λ, be = λ for all e ∈ δ(S)\F .

By substituting all the previously computed coefficients ae, be in inequality (4.35),
we obtain ∑

e∈ER

aexe − λ
(

(x− y)(δ(S)\F )− (x− y)(FNR)
)
≥ c.

Given that any of the 1–RPP tours T above satisfies this inequality with equality, we
obtain ∑

e∈ER

ae − λ
(

1− |FNR|
)

= c

and, hence, inequality (4.35) reduces to∑
e∈ER

aexe − λ
(

(x− y)(δ(S)\F )− (x− y)(FNR)
)
≥
∑
e∈ER

ae − λ
(

1− |FNR|
)
,

which is a linear combination of equalities (4.14) and (x− y)(δ(S)\F )− (x− y)(FNR) ≥
1− |FNR|. �
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Note 4.2.8.1. Theorem 4.2.8 also applies if one of the two shores S or V \S is formed
only with one vertex.

p−connectivity inequalities

The constraints we describe in this section were introduced in Corberán et al. (2013)
for the MBCPP to cut off fractional solutions as the one described as follows. Con-
sider the 1–RPP instance shown in Figure 4.1a, in which the depot is represented by a
black square, each thick line represents a required edge and each thin line represents a
non–required one. Consider the fractional solution (x∗, y∗) with values x∗(1,2) = y∗(1,2) =
x∗(1,4) = y∗(1,4) = x∗(2,4) = y∗(2,4) = 0.5, and x∗(2,3) = x∗(2,3)′ = x∗(4,5) = x∗(4,5)′ = 1, and

the remaining variables equal to zero (see Figure 4.1b). It can be seen that this frac-
tional solution satisfies all the parity and connectivity inequalities presented in previous
sections, but it is cut off with the p–connectivity inequalities we present in what follows.

2 3

1

4 5

(a)

2 3

1

4 5

x∗ = 1

x∗ = 1

x∗ = 1

x∗ = 1

y∗ = 0.5

x∗ = 0.5
y∗ = 0.5

x∗ = 0.5

x∗ = 0.5
y∗ = 0.5

(b)

Figure 4.1: A 1–RPP instance and a fractional solution that violates a 2–connectivity
inequality

Let {S0, . . . , Sp} be a partition of V such that δ(Si)∩ER = ∅, for each i = 0, . . . , p.
Assume we divide the set {0, 1, . . . , p} = R ∪ N (from ‘Required’ and ‘Non–required’)
in such a way that

i) i ∈ R if either 1 ∈ Si or ER(Si) 6= ∅ (note that 1 ≤ |R| ≤ p+ 1), and

ii) i ∈ N if 1 /∈ Si and ER(Si) = ∅ (note that 0 ≤ |N | ≤ p, and |R|+ |N | = p+ 1),

and select one edge ei ∈ E(Si) for every i ∈ N . Note that ei ∈ E′′NR. The following
inequality

(x+ y)(δ(S0)) + 2
∑

1≤r<t≤p
x(Sr : St) ≥ 2

∑
i∈N

xei + 2 (|R| − 1) (4.36)

will be referred to as a p−connectivity inequality. Note that it is valid for the 1–RPP
because the following p−connectivity inequalities

(x+ y)(δ(S0)) + 2
∑

1≤r<t≤p
x(Sr : St) ≥ 2

p∑
i=0,i 6=d

xei (4.37)
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Figure 4.2: Coefficients of a 2–connectivity inequality (4.36)

are valid for the MBCPP (where it is assumed that 1 ∈ Sd), and inequalities (4.36) are
obtained from them after replacing the equalities xei = 1 for all i ∈ R (required edges).

This inequality with p = 2 and |N | = 1 is represented in Figures 4.2(b) and 4.2(c),
where for each pair (a, b) associated with an edge e, a and b represent the coefficients
of xe and ye, respectively. Regarding the fractional solution (x∗, y∗) described above
for the instance represented in Figure 4.1, the corresponding p–connectivity inequality
(4.36) with p = 2 and 1 ∈ S0,

x(1,2) + y(1,2) + x(1,4) + y(1,4) + 2(x(2,4) + x(2,5) + x(3,4) + x(3,5)) ≥ 4,

is violated by (x∗, y∗) (as 1 + 1 + 1 < 4 holds).

Theorem 4.2.9. p–connectivity inequalities (4.36) are facet–inducing for 1–RPP(G)
if subgraphs (Si, ENR(Si)), ∀i = 0, . . . , p, are 3–edge connected, |(S0 : Si)| ≥ 2, ∀i =
1, . . . , p, and the graph induced by V \ S0 is connected.

Proof: We will assume that 1 ∈ S0. The case 1 ∈ Si, i 6= 0, is similar and the proof is
omitted here for the sake of brevity. Inequality (4.36) can be written as:

(x+ y)(δ(S0)) + 2
∑

1≤r<t≤p
x(Sr : St)− 2

∑
i∈N

xei ≥ 2|R| − 2. (4.38)

Let us suppose there is another valid inequality ax+ by ≥ c,∑
e∈ER

aexe +
∑

e∈ENR

aexe +
∑

e∈ENR

beye ≥ c, (4.39)

such that

{(x, y) ∈ 1–RPP(G) : (x+ y)(δ(S0)) + 2
∑

1≤r<t≤p
x(Sr : St)− 2

∑
i∈N

xei = 2|R| − 2} ⊆

⊆ {(x, y) ∈ 1–RPP(G) : ax+ by = c}.

We have to prove that inequality (4.39) is a linear combination of the equalities (4.14)
and inequality (4.38).
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Figure 4.3: 1–RPP tours satisfying (4.38) with equality

In the 1–RPP tours used in this proof we will not describe how the edges in each
set E(Si) are traversed. It can be seen that all these tours can be completed by using
T–joins, connecting with non–required edges traversed twice and replacing a traversal
of each edge in E′NR by the traversal of its parallel required edge, as described in Note
4.2.7.1 for the parity inequalities.

Similar arguments to those used in the proof of Theorem 4.2.8 lead to prove that
ae + be = 0, for each e ∈ ENR(Si), i ∈ R and for each e ∈ ENR(Si) \ {ei}, i ∈ N .
Furthermore, using the 3–edge connectivity of graph (Si, ENR(Si)) (hence, there are
two edge–disjoint paths P1, P2 joining the ends of e with non–required edges different
from e), we obtain that be = 0. Hence, we have ae = be = 0 for all e ∈ ENR(Si), i ∈ R
and for all e ∈ ENR(Si) \ {ei}, i ∈ N .

Let Si and Sj , i, j 6= 0 be two sets such that there is an edge e ∈ (Si : Sj). Note
that e ∈ E′′NR. For the sake of simplicity, let us assume i ∈ R, j ∈ N (with the other
possibilities we would proceed similarly). Since all the sets (S0 : Sk) are non–empty,
and subgraph (Sj , ENR(Sj)) is 3–edge connected, we can construct the 1–RPP tour
that traverses twice an edge f ∈ (S0 :Sj), traverses once the edge ej , traverses all the
required edges, and visits all the sets Si, i ∈ R (see Figure 4.3a, where we assume
R = {0, . . . , |R| − 1} and N = {|R|, . . . , p}). This tour satisfies inequality (4.38) as an
equality. If we compare this tour with the one obtained after removing the two traversals
of f and all the traversals of edges in E(Sj), we obtain af + bf + aej = 0. We construct
two more 1–RPP tours satisfying (4.38) with equality such as those depicted in Figure
4.3b and 4.3c. By comparing tours (a) and (b), we obtain a0j + b0j = aij + bij = −aej ,
and by comparing (a) and (c) we obtain a0i + b0i = aij + bij = −aej , where akl (bkl)
represents the coefficient of the variable x (y) corresponding to any edge in (Sk : Sl).
Given that the graph induced by V \S0 is connected, we can iterate this argument to
conclude that ae+be = 2λ for every edge e ∈ (Si :Sj) (including (S0 :Si)), and aei = −2λ
for each ei, i ∈ N . Given that graph (Si, ENR(Si)) is 3–edge connected and be = 0 for
all edge e ∈ E(Si) \ {ei}, by comparing a 1–RPP tour traversing ei twice and the tour
obtained by replacing the second traversal of ei by the traversal of a path joining its
end–vertices, we obtain bei = 0 for each ei, i ∈ N .

For each i ∈ {1, 2, . . . , p}, let e1, e2 be two edges in (S0 : Si) (recall that |(S0 :Si)| ≥ 2
holds). We have already proved that ae1 + be1 = ae2 + be2 = 2λ. It can be seen that we
can construct four 1–RPP tours satisfying inequality (4.38) as an equality as follows.
One tour traverses e1 once and does not traverse e2. Another tour traverses e2 once
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and does not traverse e1. By comparing these tours, we obtain ae1 = ae2 and, hence,
be1 = be2 . The third tour traverses both e1 and e2 once, and the fourth one traverses
e1 twice and does not traverse e2. By comparing them, we obtain ae2 = be1 and, hence,
also ae1 = be2 , and ae1 = be1 = ae2 = be2 = λ. Hence, ae = be = λ for each edge
e ∈ (S0 :Si), i = 1, . . . , p.

As above, let Si and Sj , i, j 6= 0, be two sets such that there is an edge e = (u, v) ∈
(Si :Sj) (again with i ∈ R, j ∈ N , for example). There is a 1–RPP tour T that traverses
once edge e, an edge ei ∈ (S0 : Si), and an edge ej ∈ (S0 : Sj), and satisfies inequality
(4.38) as an equality. If we remove in T the traversal of e and add the traversal of
the edges in a path joining u and v formed with edges ei, ej plus some edges in G(S0),
G(Si) and G(Sj) \ {ej} (if any of these last edges is traversed three times, two copies
would be removed), we obtain another 1–RPP tour satisfying (4.38) as an equality. By
comparing both tours we obtain ae = bei + bej = 2λ, which implies be = 0 (recall that
ae + be = 2λ). Hence, ae = 2λ, be = 0, for each edge e ∈ (Si :Sj), i 6= j.

By substituting all the previously computed coefficients ae, be in inequality (4.39)
we obtain∑

e∈ER

aexe − 2λ
∑
i∈N

xei + λx(δ(S0)) + 2λ
∑

1≤r<t≤p
x(Sr : St) + λy(δ(S0)) ≥ c,

or equivalently,∑
e∈ER

aexe + λ(x+ y)(δ(S0)) + 2λ
∑

1≤r<t≤p
x(Sr : St)− 2λ

∑
i∈N

xei ≥ c.

Given that the 1–RPP tour in Figure 4.3a after removing the two traversals of f and all
the traversals in G(Sj), for example, satisfies this inequality with equality, we obtain∑

e∈ER

ae + 2λ (|R| − 1) + 0 + 0 = c,

and, hence, inequality (4.39) reduces to∑
e∈ER

aexe+λ(x+y)(δ(S0))+2λ
∑

1≤r<t≤p
x(Sr : St)−2λ

∑
i∈N

xei ≥
∑
e∈ER

ae+λ (2|R| − 2) ,

which is a linear combination of the equalities (4.14) and inequality (4.38). �

K–C inequalities

K–C inequalities were introduced and proved to be facet–inducing for the undirected
rural postman problem (RPP) in Corberán and Sanchis (1994). We describe here a new
version of these inequalities, which we will keep calling K–C inequalities for the sake of
simplicity, and prove them to be valid and facet–inducing for the 1–RPP polyhedron.

Let us consider the 1–RPP instance shown in Figure 4.4a, in which the depot is
represented by a square labeled 1, each thick line represents a required edge, each
thin line represents a non–required one, and each large circle represents an arbitrary
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Figure 4.4: A 1–RPP instance and a fractional solution that violates a K–C inequality

subgraph containing at least one required edge. Let (x∗, y∗) be the fractional solution
with x∗e = 1 for each required edge e and x∗e′ = y∗e′ = 0 for each of its corresponding
parallel non–required edge e′, and satisfying x∗(2,4) = y∗(2,4) = x∗(3,5) = y∗(3,5) = 0.5 and

x∗(6,7) = 1, y∗(6,7) = 0 (see Figure 4.4b). This solution is connected but is not even at
vertex 2 nor at vertex 3. Furthermore, it cannot be cut off with parity inequalities
(4.31). If we consider, for example, the cut–set δ({2}) and F = {(1, 2), (2, 3), (2, 4)}, we
have the associated parity inequality

x(1,2)′ − y(1,2)′ + x(2,3)′ − y(2,3)′ ≥ x(2,4) − y(2,4) − 1 + 1,

which is not violated by (x∗, y∗) (as 0 ≥ 0 holds). Note that the fractional solution simi-
lar to (x∗, y∗) except for x∗(2,4) = x∗(3,5) = 1 and y∗(2,4) = y∗(3,5) = 0 is indeed cut off by the

above parity inequality. It can also be seen that (x∗, y∗) satisfies all the p−connectivity
inequalities (4.36). However, (x∗, y∗) is cut with the inequalities presented in this sec-
tion.

Let {S0, . . . , SK}, with K ≥ 3, be a partition of V such that δ(Si) ∩ ER = ∅ for all
i = 1, 2, . . . ,K − 1. Assume we divide the set {1, . . . ,K − 1} = R∪N (from ‘Required’
and ‘Non–required’) in such a way that

i) i ∈ R if either 1 ∈ Si or ER(Si) 6= ∅ (note that 0 ≤ |R| ≤ K − 1), and

ii) i ∈ N if 1 /∈ Si and ER(Si) = ∅ (note that 0 ≤ |N | ≤ K−1, and |R|+|N | = K−1),

and select one edge ei ∈ E(Si) for every i ∈ N . Note that ei ∈ E′′NR. Let F ⊆ (S0 : SK)
be a set of edges, with |F | ≥ 2 and even, and (S0 : SK)R ⊆ F . Let us denote here
F = FR ∪ FNR = FR ∪ F ′NR ∪ F ′′NR. The K–C inequalities for the 1–RPP are defined as:

(K − 2)(x− y)
(

(S0 : SK) \ F
)
− (K − 2)(x− y)(FNR) +

+
∑

0≤i<j≤K

(i,j)6=(0,K)

(
(j − i)x(Si : Sj) + (2− j + i)y(Si : Sj)

)
− 2

∑
i∈N

xei ≥

≥ 2|R| − (K − 2)|FNR|. (4.40)

The coefficients and structure of these K–C inequalities are shown in Figure 4.5,
where for the sake of simplicity we assume R = {1, . . . , |R|} and N = {|R|+ 1, . . . ,K−
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Figure 4.5: Coefficients of a K–C inequality (4.40)

1}. Edges in F (required and non–required, if any) are represented by thick lines.
For each pair (a, b) associated with an edge e, a and b represent the coefficients in the
inequality of xe and ye, respectively. K–C inequalities (4.40) are valid for the 1–RPP(G)
because they are obtained from the corresponding K–C inequality for the MBCPP after
replacing each xe by one and removing the ye variables for all the required edges e. It is
easy to see that, when K=2, K–C inequality (4.40) reduces to a connectivity inequality
(4.28) when 1 ∈ R, and to a connectivity inequality (4.26) when 1 ∈ N .

Regarding the fractional solution (x∗, y∗) represented in Figure 4.4b, the corres-
ponding K–C inequality (4.40) with K = 3, F = {(1, 2), (2, 3)} and (S0 : S3) \ F =
{(1, 2)′, (2, 3)′},

x(1,2)′ − y(1,2)′ + x(2,3)′ − y(2,3)′ + x(2,4) + y(2,4) + x(6,7) + y(6,7) + x(3,5) + y(3,5) ≥ 4,

is violated by (x∗, y∗) (as 0 + 3 < 4 holds).

Note 4.2.9.1. Les us describe several types of 1–RPP tours that satisfy the K–C
inequality (4.40) with equality that will be used in the proof of Theorem 4.2.10. We
do not detail how the edges in each set E(Si) are traversed. Note that if subgraphs
(Si, ENR(Si)), i = 0, . . . ,K, are 3–edge connected, all these tours can be completed by
using T–joins as described in Note 4.2.7.1 for the parity inequalities. All of them traverse
all the required edges. Note also that, although sets (S0 : SK)\F and FNR could be empty
sets, they cannot be empty simultaneously, because FNR ∪ (S0 : SK) \ F = (S0 : SK)NR
and, as in Theorem 4.2.10 is assumed that |FR| ≥ 2, (S0 : SK) contains at least two
non–required edges.

(a) Tours traversing exactly once each edge in F , twice each edge ei, for all i ∈ N ,
and connecting sets Sj , j = 0, 1, 2, . . . ,K − 1, with either two different edges in
(Sj : Sj+1) used once or an edge used twice, as in Figure 4.6a. Additionally, these
tours could also traverse twice any edge (not drawn) in (S0 : SK)\F . These tours
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Figure 4.6: 1–RPP tours described in Note 4.2.9.1 and used in the proof of Theorem
4.2.10

satisfy (4.40) with equality:

−(K − 2)|FNR|+ 2(K − 1)− 2|N | = 2|R| − (K − 2)|FNR|.

(b) Tours traversing once each edge in F and one more edge in (S0 : SK) (this could
be a second traversal of an edge in FNR), once each edge ei, i ∈ N , and connecting
sets Sj , j = 0, 1, 2, . . . ,K − 1, with exactly an edge in each set (Sj : Sj+1), j =
0, . . . ,K − 1 (see Figure 4.6b). These tours satisfy (4.40) with equality:

(K − 2)− (K − 2)|FNR|+K − 2|N | = 2|R| − (K − 2)|FNR|.

(c) Only if FNR 6= ∅, tours traversing exactly once each edge in F except one of them
in FNR, once each edge ei, i ∈ N , and connecting sets Sj , j = 0, 1, 2, . . . ,K − 1,
with exactly an edge in each set (Sj : Sj+1), j = 0, . . . ,K − 1 (see Figure 4.6c).
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These tours satisfy (4.40) with equality:

−(K − 2)
(
|FNR| − 1

)
+K − 2|N | = 2|R| − (K − 2)|FNR|.

(d) Tours traversing exactly once each edge in F , twice each edge ei except one of
them, say ep, and connecting sets Sj , j 6= p as in Figure 4.6d. These tours satisfy
(4.40) with equality:

−(K − 2)|FNR|+ 2(K − 2)− 2
(
|N | − 1

)
= 2|R| − (K − 2)|FNR|.

(e) and (f) Tours traversing exactly once each edge in F , twice each edge ei, for all
i ∈ N , and connecting sets Sj , j = 0, 1, 2, . . . ,K − 1 as shown in Figure 4.6e and
4.6f. These tours also satisfy (4.40) with equality.

Theorem 4.2.10. K–C inequalities (4.40) are facet–inducing for 1–RPP(G) if sub-
graphs (Si, ENR(Si)), for i = 0, . . . ,K, are 3–edge connected, |(Si : Si+1)| ≥ 2 for
i ≤ K − 1, and |FR| ≥ 2.

Proof: Assume that 1 ∈ S0. The proof for the case 1 ∈ Si, i 6= 0, is similar. Let us
suppose there is another valid inequality ax+ by ≥ c,∑

e∈ER

aexe +
∑

e∈ENR

aexe +
∑

e∈ENR

beye ≥ c, (4.41)

such that

{(x, y) ∈ 1–RPP(G) : (x, y) satisfies (4.40) with equality} ⊆
⊆ {(x, y) ∈ 1–RPP(G) : ax+ by = c}.

We have to prove that inequality (4.41) is a linear combination of the equalities (4.14)
and inequality (4.40).

Let e ∈ ENR(Si), i ∈ {0, 1, . . . ,K}, different from ei if i ∈ N . Similar arguments
to those used in the proof of Theorem 4.2.8 using the 3–edge connectivity of graph
(Si, ENR(Si)) lead to prove that ae = be = 0.

Let e ∈ (S0 : SK)NR and let T be a 1–RPP tour of type (c) in Note 4.2.9.1 that
does not traverse edge e. The 1–RPP tour T+2e also satisfies (4.40) with equality,
since xe = ye = 1 and the sum of the coefficients of both variables in (4.40) is zero.
By comparing the equations ax + by = c corresponding to both tours, we obtain that
ae + be = 0, for all e ∈ (S0 : SK)NR.

For each i ∈ N , let T 1 be the 1-RPP tour of type (a) in Note 4.2.9.1 traversing
twice an edge in each set (Sj : Sj+1), j 6= i and let T 2 be the 1–RPP tour of type (d)
traversing twice the same edge in each set (Sj : Sj+1), j 6= i − 1, i. By comparing the
corresponding equations ax+ by = c of both tours, we obtain that ae+ be+aei + bei = 0
for all e ∈ (Si−1 : Si). If we consider the 1-RPP tour T 3 of type (a) traversing twice
an edge in each set (Sj : Sj+1), j 6= i− 1, by comparing the equations corresponding to
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T 2 and T 3 we conclude ae + be + aei + bei = 0 for all e ∈ (Si : Si+1). For each i ∈ R,
let T 1 and T 3 two 1–RPP tours of type (a) defined as above. By comparing them we
conclude that ae + be = af + bf for all e ∈ (Si−1 : Si) and f ∈ (Si : Si+1). By iterating
this argument, we obtain that ae + be = 2λ for all e ∈ (Si : Si+1), i = 1, . . . ,K − 1, and
aei + bei = −2λ for all i ∈ N , where λ is a certain constant value.

For each i ∈ N , let T 1 be the 1–RPP tour of type (b) in Note 4.2.9.1 traversing
edge ei = (u, v) once. Given that (Si, ENR(Si)) is 3–edge connected graph, we can find
a path connecting u and v that does not use ei. If we add this path plus one copy of ei
to T 1, we obtain a 1–RPP tour T 2 also satisfying (4.40) with equality. By comparing
both tours, and given that ae = be = 0 for all e ∈ E(Si) \ {ei}, we obtain bei = 0 and,
therefore, aei = −2λ.

For each i ∈ {0, 1, 2, . . . ,K − 1}, let e, f be two edges in E(Si : Si+1) (recall that
|(Si, Si+1)| ≥ 2 holds). There are two 1–RPP tours T 1 and T 2 of type (b) in note 4.2.9.1
traversing edges e and f once, respectively. Comparing both tours, we get ae = af . Since
we have proved that ae + be = 2λ = af + bf , we have be = bf . Furthermore, let T 3

be a tour of type (a) traversing edge e twice and T 4 a similar tour traversing e and f
once. By comparing these tours, we obtain be = af and, since af = ae, we get ae = be.
Therefore ae = be = λ for each edge e ∈ E(Si : Si+1), for all i ∈ {0, 1, 2, . . . ,K − 1}.

Let e ∈ FNR (if any). By comparing the 1–RPP tour of type (b) traversing once
all the edges in F except edge e that is traversed twice, and the 1–RPP tour of type
(c) traversing once all the edges in F except edge e that is not traversed, we obtain
that ae + be = 0. On the other hand, by comparing the 1–RPP tour of type (a)
traversing once all the edges in F and the previous 1–RPP tour of type (c) we obtain
that ae + λ(K − 1)− λ = 0. Hence, ae = −λ(K − 2) and be = λ(K − 2).

Let e ∈ E(S0 :SK)\F (if any). By comparing the 1–RPP tour of type (a) traversing
once all the edges in F and not traversing e and the same tour by adding two copies of
e we obtain that ae + be = 0. On the other hand, by comparing the 1–RPP tour of type
(a) traversing once all the edges in F and the 1–RPP tour of type (b) traversing once all
the edges in F ∪{e} we obtain that −ae+λ(K−1)−λ = 0 and, hence, ae = −λ(K−2).

Finally, for each edge e ∈ E(Si : Sj), |i − j| > 1, comparing tours of type (a) and
(e) in Figure 4.6, we obtain ae + be = 2λ. Then, comparing tours of type (e) and (f),
we obtain be + λ

(
|i− j| − 1

)
= λ. Therefore, be = λ

(
2− |i− j|

)
and ae = λ|i− j|.

By substituting all the previously computed coefficients ae, be in inequality (4.41),
we obtain∑

e∈ER

aexe + λ(K − 2)(x− y)
(

(S0 : SK) \ F
)
− λ(K − 2)(x− y)(FNR) +

+λ
∑

0≤i<j≤K

(i,j)6=(0,K)

(
(j − i)x(Si : Sj) + (2− j + i)y(Si : Sj)

)
− 2λ

∑
i∈N

xei ≥ c.

Given that the 1–RPP tour of type (a) in Note 4.2.9.1, for example, satisfies this in-
equality with equality, we obtain∑
e∈ER

ae−(K−2)|FNR|+2λ(K−1)−2λ|N | = c ⇒
∑
e∈ER

ae+λ
(

2|R|−(K−2)|FNR|
)

= c,
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and, hence, inequality (4.41) is a linear combination of equalities (4.14) and inequality
(4.40). �

4.2.2 The K–RPP polyhedron (K ≥ 2)

Once the 1–RPP polyhedron has been studied, this section focuses on the study of
the K–RPP, with K ≥ 2, on graph G = (V,E) = (VR, ER ∪ E′NR ∪ E′′NR). Re-
call that K–RPP(G) denotes the polytope defined as the convex hull of the vectors
(x1, y1, x2, y2, . . . , xK , yK) ∈ Z(2|ENR|+|ER|)K corresponding to K–RPP solutions.

Theorem 4.2.11. If (V,ENR) is a 3–edge connected graph, then K–RPP(G) is a full–
dimensional polyhedron, i.e., dim(K–RPP(G))= K(2|ENR|+ |ER|).

Proof: Consider the 1–RPP defined on G and its associated polytope 1–RPP(G). From
Theorem 4.2.2, and since (V,ENR) is 3–edge connected, we know that dim(1–RPP(G))=
2|ENR| = m. Since 0 /∈ aff(1–RPP(G)), because all its points satisfy equations (4.14),
there exist m+ 1 affinely and linearly independent 1–RPP tours z1, z2, . . . , zm+1 on G,
each zi = (xi, yi) satisfying xi(e) = 1 for all the edges in ER. We can assume that
one of them, say z1 = (x1, y1) is formed with two copies of each edge in ENR and then
replacing one copy of each e ∈ E′NR by the required edge parallel to e. Hence, it satisfies
x1(e) = 1 for all e ∈ ER, x1(e) = 1, y1(e) = 0 for all e ∈ E′NR, and x1(e) = y1(e) = 1 for
all e ∈ E′′NR. We can build (m+ 1)K K–RPP solutions in the following way. One drone
performs any 1–RPP tour zj above, while the other drones perform z1. These (m+1)K
solutions are depicted as the rows of the three first block rows in the matrix shown in
Figure 4.7, where, for the sake of simplicity, we have supposed we have K = 3 drones.

Furthermore, we can build K|ER| more K–RPP solutions in the following way.
Consider the 1–RPP solution z1 above. For each required edge e ∈ ER, we define the
vector t(e) = (x(e), y(e)) equal to z1 except for the entries x(e)(e) = x(e)(e

′) = 0, where
e′ denotes the non–required edge parallel to e. This vector represents a tour on graph
G because its support graph is even and connected. For any required edge e, one drone
performs t(e) while the other drones perform z1. These K|ER| solutions are depicted
as the rows of the three last block rows in the matrix shown in Figure 4.7, where the
required edges are {e1, e2, . . . , e|ER|}.

If we subtract the first row from all the other rows and then we remove the null rows,
we obtain the matrix in Figure 4.8, where all the non–depicted values are zero, and a
big zero in a block means that all the entries of this block are zero. Its K(2|ENR|+ |ER|)
rows are linearly independent because the first −1 entry in each pair −1,−1 in the rows
of the three last block rows is associated with each edge e ∈ ER, and since zi − z1

takes value zero in all the required edges, it is the only non–zero entry in the column
corresponding to e. Hence, we have K(2|ENR|+ |ER|) + 1 affinely independent K–RPP
solutions, and we are done. �

In the following, we will assume that (V,ENR) is a 3–edge connected graph and thus
K–RPP(G) is full–dimensional. Therefore, every facet of the polyhedron is induced by
a unique inequality (except scalar multiples). As in Theorem 4.2.11 above, in the proofs
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Figure 4.7: Matrix of K–RPP solutions appearing in the proof of Theorem 4.2.11

of the theorems in this section we will represent the K–RPP solutions that we define
only for K=3 drones, although they can be extended to any value of K.

Note 4.2.11.1. The vectors z1, z2, . . . , zm+1, from the dimension of 1–RPP(G), and
t(e), for each e ∈ ER, defined in the proof of Theorem 4.2.11, will be used also in
the proofs of the following theorems. In particular, z1 = (x̄1, ȳ1) satisfies x̄1(e) = 1
for all e ∈ ER, x̄1(e) = 1, ȳ1(e) = 0 for all e ∈ E′NR, and x̄1(e) = ȳ1(e) = 1 for all
e ∈ E′′NR. For each e ∈ ER, we define t(e) = (x(e), y(e)) equal to z1 except for the entries
x(e)(e) = x(e)(e

′) = 0, where e′ denotes the non–required edge parallel to e.

Facet–inducing inequalities obtained from the formulation

We will study here some conditions under which some trivial inequalities and inequali-
ties (4.2), (4.4), and (4.5) from the formulation induce facets of K–RPP(G).

Theorem 4.2.12. Inequality yke ≥ 0, for each edge e ∈ ENR, and for each drone
k ∈ {1, 2, . . . ,K}, is facet–inducing of K–RPP(G).

Proof: Let us suppose first that e ∈ E′NR. Consider the 1–RPP defined on G and its
associated polytope 1–RPP(G). Given that ye ≥ 0 is facet–inducing of 1–RPP(G) (The-
orem 4.2.3), there exist m = 2|ENR| affinely independent 1–RPP tours w1, w2, . . . , wm
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Figure 4.8: Matrix appearing in the proof of Theorem 4.2.11

on G, each wi = (xi, yi), satisfying xi(a) = 1 for all a ∈ ER, and yi(e) = 0. Con-
sider also the tours z1, z2, . . . , zm+1 from Note 4.2.11.1 and assume that z1 = w1, since
z1 = (x̄1, ȳ1) satisfies also ȳ1(e) = 0.

We can build K–RPP solutions in the following way. Drone k performs any 1–RPP
tour wj above, while the other drones perform z1. These m solutions are depicted as
the rows of the first block row in the matrix shown in Figure 4.9, where we assume that
drone k is the first one. Now, a drone different from k performs any tour zj above, while
the other drones do z1. These (m+ 1)(K − 1) solutions are depicted as the rows of the
second and third block rows in the matrix shown in Figure 4.9.

Furthermore, we can build K|ER| more K–RPP solutions as in the proof of Theorem
4.2.11 with the same vectors t(ej) for each required edge in ER = {e1, e2, . . . , e|ER|}.
Note that the corresponding vectors t(ej) also satisfy y(ej)(e) = 0. These solutions are
depicted in the three last block rows in the matrix in Figure 4.9. As in Theorem 4.2.11,
if we subtract the first row from all the other rows and then we remove the null rows,
we obtain a matrix similar to that in Figure 4.8 but with K(2|ENR| + |ER|) − 1 rows
LI. Hence, we have K(2|ENR| + |ER|) solutions affinely independent satisfying yke = 0,
and we are done.

Let us suppose now that e ∈ E′′NR. Given that ye ≥ 0 is facet–inducing of 1–
RPP(G) (Theorem 4.2.3), there exist m = 2|ENR| affinely independent 1–RPP tours
w1, w2, . . . , wm on G, each wi = (xi, yi), satisfying xi(a) = 1, for all a ∈ ER, and
yi(e) = 0. Since dim(1–RPP(G))= 2|ENR| = m, there exist m + 1 1–RPP tours
z1, z2, . . . , zm+1, each zi = (x̄i, ȳi) satisfying x̄i(a) = 1 for all a ∈ ER. We can assume
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Figure 4.9: Matrix appearing in the proof of Theorem 4.2.12

here that one of them, say z1, satisfies x̄1(a) = 1 for all a ∈ ER, x̄1(a) = 1, ȳ1(a) = 0
for all a ∈ E′NR, x̄1(a) = ȳ1(a) = 1 for all a ∈ E′′NR, a 6= e, and x̄1(e) = ȳ1(e) = 0.
Thereby, we can assume that z1 = w1. Furthermore, for each required edge a ∈ ER, the
corresponding vector t(a) is equal to z1 except for the entries x(a)(a) = x(a)(a

′) = 0, and
also satisfies y(a)(e) = 0. Hence, we can build the K–RPP solutions as in the matrix in
Figure 4.9 and the remainder of the proof is similar to the previous case. �

Theorem 4.2.13. Inequality xke ≤ 1, for each edge e ∈ ENR and for each drone k ∈
{1, 2, . . . ,K}, is facet–inducing of K–RPP(G).

Proof: Let us suppose first that edge e is in E′′NR. Given that xe ≤ 1 is facet–inducing
of 1–RPP(G) (Theorem 4.2.4), there exist m = 2|ENR| affinely independent 1–RPP
tours w1, w2, . . . , wm on G, each wi = (xi, yi), satisfying xi(a) = 1 for all a ∈ ER, and
xi(e) = 1. Furthermore, the 1–RPP tours z1, z2, . . . , zm+1 from Note 4.2.11.1 also satisfy
x̄i(e) = 1, and we can assume that z1 = w1. In addition, the vectors t(ej) defined as in
Note 4.2.11.1 for each required edge in ER = {e1, e2, . . . , e|ER|} also satisfy x(ej)(e) = 1.

Hence, we can build K–RPP solutions satisfying xke = 1 similar to those in the matrix
shown in Figure 4.9, where we assume that drone k is the first one, and the remaining
of the proof is similar to that of Theorem 4.2.12.

Let us suppose now that the edge is in E′NR and for simplicity is represented by e′,
while its parallel required edge is represented by e. Again, given that xe′ ≤ 1 is facet–
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Figure 4.10: Matrix appearing in the proof of Theorem 4.2.13 (case e ∈ E′NR)

inducing of 1–RPP(G) (Theorem 4.2.4), there exist m = 2|ENR| affinely independent
1–RPP tours w1, w2, . . . , wm on G, each wi = (xi, yi), satisfying xi(a) = 1 for all a ∈
ER, and xi(e

′) = 1. The 1–RPP tours z1, z2, . . . , zm+1 from Note 4.2.11.1 also satisfy
x̄i(e

′) = 1, and we can assume that z1 = w1. Hence, we can build the (m + 1)(K − 1)
solutions depicted as the rows of the following block rows in the matrix shown in Figure
4.10, where we assume that drone k is the first one.

In addition, the vectors t(a) defined as in Note 4.2.11.1 for each required edge a ∈ ER
satisfy x(a)(e) = 1 except the one corresponding to edge e. Hence, we can build the
K|ER| − 1 K–RPP solutions depicted as the rows of the following block rows in the
matrix shown in Figure 4.10, where the required edges are ER = {e1, e2, . . . , e|ER|} with
e1 = e.

Finally, consider the vector t∗ = (x∗, y∗) equal to z1 except for the entries x∗(e) = 0
and y∗(e′) = 1. Note that in t∗ we have replaced in z1 the traversal of edges e and e′

by two traversals of e′. Hence, if drone k performs t∗ and the other drones perform z1,
we have a K–RPP solution in which the edge e is traversed by a drone different from k
(last row in Figure 4.10).

By subtracting the first row from all the other rows and then removing the null
rows, we obtain the matrix in Figure 4.11 with K(2|ENR|+ |ER|)− 1 rows linearly in-
dependent, where an ‘∗’ represents any value. Note that the first entry (−1) of the last
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Figure 4.11: Matrix appearing in the proof of Theorem 4.2.13 (case e ∈ E′NR)

row, associated with edge e, is the only non zero value in its column. Hence, we have
K(2|ENR|+ |ER|) solutions affinely independent satisfying xke′ = 1, and we are done. �

Theorem 4.2.14. Inequality (4.5) xke ≥ yke , for each edge e ∈ ENR and for each drone
k, is facet–inducing of K–RPP(G) if graph (V,ENR \ {e}) is 3–edge connected.

Proof: Let us suppose first that e ∈ E′′NR. Given that xe ≥ ye is facet–inducing
of 1–RPP(G) (Theorem 4.2.5), there exist m = 2|ENR| affinely independent 1–RPP
tours w1, w2, . . . , wm on G, each wi = (xi, yi), satisfying xi(a) = 1 for all a ∈ ER, and
xi(e) = yi(e). Furthermore, the 1–RPP tours z1, z2, . . . , zm+1 from Note 4.2.11.1 also
satisfy x̄i(e) = ȳi(e)(= 1), and we can assume that z1 = w1. In addition, the vectors
t(ej) defined as in Note 4.2.11.1 for each edge ej ∈ ER also satisfy x(ej)(e) = y(ej)(e).
Hence, we can build K–RPP solutions similar to those in the matrix shown in Figure
4.9, all of them satisfying xke = yke . The remaining of the proof is similar to that of
Theorem 4.2.12.

Let us suppose now that the edge is in E′NR and for simplicity is represented by e′,
while its parallel required edge is represented by e. Again, given that xe′ ≥ ye′ is facet–
inducing of 1–RPP(G) (Theorem 4.2.5), there exist m = 2|ENR| affinely independent
1–RPP tours w1, w2, . . . , wm on G, each wi = (xi, yi), satisfying xi(a) = 1 for all a ∈
ER, and xi(e

′) = yi(e
′). The 1–RPP tours z1, z2, . . . , zm+1 from Note 4.2.11.1 satisfy

x̄i(e) = x̄i(e
′) = 1 and ȳi(e

′) = 0. We can assume that w1 = z1 except on the three
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Figure 4.12: Matrix appearing in the proof of Theorem 4.2.14 (case e ∈ E′NR)

entries corresponding to e and e′. Hence, we can build the (m + 1)(K − 1) solutions
depicted as the rows of the first three block rows in the matrix shown in Figure 4.12,
where we assume that drone k is the first one.

In addition to the vectors t(a) defined from z1 in Note 4.2.11.1 for each edge a ∈ ER,
for each edge a ∈ ER, a 6= e, we define t∗(a) equal to w1 after removing from it the

traversals of a and a′. These tours t∗(a) satisfy x(a′)(e) = y(a′)(e). Hence, we can build

the K|ER|− 1 K–RPP solutions depicted as the rows of the following block rows in the
matrix shown in Figure 4.12.

A last K–RPP tour t∗ is obtained from w1 by removing the edge e and adding all
the edges in a path joining its endpoints and, then, deleting two copies of each edge
in the path traversed three times, if any. If drone k performs t∗ and the other drones
perform z1, we have a K–RPP solution (last row in Figure 4.12).

By subtracting the first row from all the other rows and then removing the null rows,
we would obtain a matrix similar to that in Figure 4.11 except in the first entry of the
last row that is 1 in this case. The K(2|ENR|+ |ER|)− 1 rows are linearly independent
and, hence, we have K(2|ENR|+ |ER|) solutions affinely independent satisfying xke′ = 1,
and we are done. �

Theorem 4.2.15. Inequality xke ≤ 1, for each edge e ∈ ER and for each drone k ∈
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{1, . . . ,K}, is facet–inducing of K–RPP(G).

Proof: All the K–RPP solutions shown in Figure 4.7, except the first one of the fourth
row block (the one with drone k performing t(e1)), are affinely independent K–RPP

solutions satisfying xke = 1. �

Theorem 4.2.16. Inequality xke ≥ 0, for each edge e ∈ ER and for each drone k ∈
{1, . . . ,K}, is facet–inducing of K–RPP(G).

Proof: Consider the graph G∗ obtained by deleting the required edge e from G. Note
that the corresponding non–required parallel edge e′, which in graph G belongs to E′NR,
is in the set E′′NR in graph G∗. Hence, G and G∗ have the same set of non–required edges
and, from Theorem 4.2.2, dim(1–RPP(G∗))= 2|ENR| = m and there exist m+1 affinely
and linearly independent 1–RPP tours z∗1 , z

∗
2 , . . . , z

∗
m+1 on G∗, all of them traversing

the required edges a ∈ ER \ {e}. Each z∗i is transformed into a 1–RPP tour wi on G
by adding to it an extra entry xe corresponding to edge e, with value xe = 0. Each
wi = (xi, yi), satisfies xe = 0 and xi(a) = 1 for all a ∈ ER \ {e}. We can assume that
one of them, say w1, satisfies x1(a) = 1 for all a ∈ ER \{e}, x1(a′) = 1, y1(a′) = 0 for all
a′ ∈ E′NR \ {e′} and x1(a) = y1(a) = 1 for all a ∈ E′′NR ∪ {e′}. Consider also the 1–RPP
tours z1, z2, . . . , zm+1 on G from Note 4.2.11.1, each zi = (x̄i, ȳi), satisfying x̄i(a) = 1
for all a ∈ ER. We can build (m+ 1)K K–RPP solutions as those depicted in the rows
of the three block rows in the matrix shown in Figure 4.13, where we assume that drone
k is the first one.

In addition to the vectors t(a) defined from z1 in Note 4.2.11.1 for each edge a ∈ ER,
for each edge a ∈ ER, a 6= e, we define t∗(a) equal to w1 after removing from it the

traversals of a and a′. These tours t∗(a) satisfy x(a)(e) = 0. Hence, we can build the

K|ER| − 1 K–RPP solutions depicted as the rows of the last block rows in the matrix
shown in Figure 4.13.

If K ≥ 3, all the rows in the matrix in Figure 4.13 represent K–RPP solutions
satisfying xke = 0. If we subtract the first row from all the other rows and then we remove
the null rows, we would obtain a matrix, with similar structure to that in Figure 4.8,
with K(2|ENR|+ |ER|)−1 linearly independent rows. Hence, we have K(2|ENR|+ |ER|)
affinely independent solutions, and we are done.

If K = 2, the solution corresponding to the first row of the last block row of the
corresponding matrix, [w1, t(e1)], is not actually a K–RPP solution. Note that neither
drone 1, performing w1, nor drone 2, performing t(e1), traverses this edge. In this case,
we consider the solution in which drone 1 performs t∗(e2) and drone 2 performs t(e1),
which is a K–RPP solution. It can be seen that the corresponding matrix is also full
rank. �

Theorem 4.2.17. Inequalities

K∑
k=1

xke ≥ 1, for each e ∈ ER, are facet–inducing of K–

RPP(G).

Proof: Consider the 1–RPP tours z1, z2, . . . , zm+1 and t(a), a ∈ ER, from Note 4.2.11.1.
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Figure 4.13: Matrix appearing in the proof of Theorem 4.2.16

Let w1 the tour on G obtained by replacing in z1 the traversal of edge e by a second
traversal of the corresponding parallel edge e′.

We can build (m + 1)K K–RPP solutions in the following way. A drone performs
any tour zj above, while the other drones perform w1. These (m + 1)K solutions are
depicted as the rows of the three block rows in the matrix shown in Figure 4.14. Now,
for any required edge a 6= e, a drone performs t(a) while the other drones perform w1

(see Figure 4.14, where the required edges different from e are {e2, . . . , e|ER|}). All
the rows in the matrix depicted in Figure 4.14 represent K–RPP solutions satisfying∑K

k=1 x
k
e = 1.

If we subtract the first row from all the other rows we obtain the matrix in Figure
4.15. This matrix is shown in more detail in Figure 4.16, where the three leftmost
entries in each block k correspond to the variables xke , x

k
e′ , y

k
e′ , and vectors vi represent

the remaining vectors zi − z1 (and vectors zi − w1), i = 2, . . . ,m + 1. Block (1,1) has
full rank. If in blocks (2,2) and (3,3) we subtract the first row from the remaining rows,
we would obtain two blocks where rows 2 to m+ 1 are identical to those in block (1,1).
Hence, the rows in the first three block rows are linearly independent. Furthermore,
regarding the last three block rows of the matrix, the value −1 corresponding to each
required edge a 6= e is the only non–zero value in its column. Hence, any of these
rows can be obtained as a linear combination of the other rows. Therefore, all the
m+ (K− 1)(m+ 1) +K(|ER|− 1) = K(2|ENR|+ |ER|)− 1 rows of the matrix in Figure
4.16 are linearly independent and, hence, we have K(2|ENR|+ |ER|) K–RPP solutions
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Figure 4.14: Matrix appearing in the proof of Theorem 4.2.17

affinely independent satisfying
∑K

k=1 x
k
e = 1, and the proof is complete. �

Theorem 4.2.18. Connectivity inequalities (4.2), xk
(
δR(S)

)
+ (xk + yk)

(
δNR(S)

)
≥

2xkf , ∀S ⊆ V \{1}, ∀f ∈E(S), and ∀k, are facet–inducing of K–RPP(G) if subgraph
(S,ENR(S)) is 3–edge connected and either |V \S| = 1 or subgraph (V \S,ENR(V \S)) is
3–edge connected.

Proof: In some points of this proof we will distinguish the cases f ∈ENR and f ∈ER.
Let z1, z2, . . . , zm+1 and t(a), a ∈ ER, be the 1–RPP tours from Note 4.2.11.1. Consider
the graph G∗ obtained by deleting from G the required edges in δR(S)∪ER(S). Graphs
G and G∗ have the same set of non–required edges and, given that the hypotheses
of Theorem 4.2.6 are fulfilled, there are m affinely and linearly independent 1–RPP
tours z∗1 , z

∗
2 , . . . , z

∗
m on G∗, all of them traversing the required edges a ∈ ER(V \ S) and

satisfying (x+y)(δ(S)) = 2xf̄ , where, if edge f ∈ ER, f̄ = f ′, and f̄ = f otherwise. Each
z∗j is transformed into a tour onG, wj , by adding to it an extra entry xe with value xe = 0
for each removed edge e ∈ δR(S)∪ER(S). In the case f ∈ ER, we replace a traversal of
f ′ (if any) by the traversal of f . It can be seen that the resulting tours w1, w2, . . . , wm
on G are also affinely independent, satisfy x(δR(S)) + (x + y)(δNR(S)) = 2xf , and do
not traverse any edge in δR(S)∪ER(S) (except f if it is required). We can assume that
one of them, say w1, is equal to z1 in the entries corresponding to E(V \S), it traverses
the cutset δ(S) twice through a non–required edge, say ē, and x1(a) = y1(a) = 1 for all
a ∈ ENR(S), x1(a) = 0 for all a ∈ ER(S), in the case f ∈ ENR, and x1(f) = x1(f ′) = 1,
y1(f ′) = 0, and x1(a) = 0 for all a ∈ ER(S) \ {f}, in the case f ∈ ER.

As in previous theorems, we build the K–RPP solutions depicted in the first three
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Figure 4.15: Matrix appearing in the proof of Theorem 4.2.17

block rows in the matrix shown in Figure 4.17 (again is assumed k = 1) . We build also
the solutions depicted in the last two block rows in the matrix shown in Figure 4.17,
where a drone different from k performs any t(a), while drone k performs w1 and the
remaining drones perform z1.

For each required edge a ∈ ER(V \ S), we define the vector t∗(a) = (x∗(a), y
∗
(a)) equal

to w1 except for the entries x∗(a)(a) = x∗(a)(a
′) = 0. For each required edge a ∈ δR(S), we

define the vector t∗(a) = (x∗(a), y
∗
(a)) equal to w1 except for the entries x∗(a)(ē) = y∗(a)(ē) = 0

and x∗(a)(a) = x∗(a)(a
′) = 1. Note that if ē = a′, then t∗(a) is equal to w1 except for the

entries y∗(a)(a
′) = 0 and x∗(a)(a) = 1.

In the case f ∈ ENR, for each required edge a ∈ ER(S), we define the vector
t∗(a) = (x∗(a), y

∗
(a)) equal to w1 except for the entries x∗(a)(a) = 1 and y∗(a)(a

′) = 0 (we

replace the second traversal of a′ by the traversal of a). In the case f ∈ ER, for each
a ∈ ER(S) \ {f}, we define the vectors t∗(a) = (x∗(a), y

∗
(a)) as before. Moreover, we define

a new vector t∗(f) equal to w1 in E(V \ S) and zero in all the remaining entries. Note

that this vector also satisfies x(δR(S))+(x+y)(δNR(S)) = 2xf = 0. If drone k performs
t∗(a) and the remaining drones perform z1 we obtain the K–RPP solutions depicted as
the rows of the fourth block rows in the matrix shown in Figure 4.17.

If K ≥ 3 (the case K = 2 is argued at the end of this proof), all the rows in the
matrix depicted in Figure 4.17 represent K–RPP solutions satisfying the connectivity
inequality (4.2) as an equality. If we subtract the first row from all the other rows and
then remove the zero rows we obtain the matrix in Figure 4.18. It can be seen that the
rows of block B∗, associated with vectors t∗(a)−w1, have the three entries corresponding
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Figure 4.16: Matrix appearing in the proof of Theorem 4.2.17

to each a ∈ ER and its corresponding parallel edge a′ as follows: x(a) = x(a′) = −1,
y(a′) = 0, for each a ∈ ER(V \ S), x(a) = x(a′) = 1, y(a′) = 0, for each a ∈ δR(S), and
x(a) = 1, x(a′) = 0, y(a′) = −1, for each a ∈ ER(S) in the case f ∈ ENR, while in the
case f ∈ ER, x(a) = 1, x(a′) = 0, y(a′) = −1, for each a ∈ ER(S)\{f}, and x(f) = −1,
x(f ′) = −1, y(f ′) = 0.

In the case f ∈ ENR, the matrix obtained after merging blocks (1,1) and B∗ of
Figure 4.18 is detailed in Figure 4.19, with the columns and rows rearranged. Note
that, for a ∈ ER the corresponding values −1 or 1 are the only non zero entries in
its corresponding column of the matrix in Figure 4.18. In the case f ∈ ER, the entry
corresponding to edge f in the block (4,4) of this matrix, is −1 instead of 1. In both
cases, this matrix has full rank. Hence, the matrix of Figure 4.18 has full rank and its
m−1+(K−1)m+K|ER| = K(2|ENR|+|ER|)−1 rows are linearly independent. Hence,
we have K(2|ENR|+ |ER|) K–RPP solutions affinely independent satisfying inequality
(4.2) as an equality, and we are done.

If K = 2, the solutions corresponding to some rows of the last block row of the
corresponding matrix, [w1, t(ai)], are not actually K–RPP solutions. Note that, if
ai ∈ δR(S) ∪ ER(S), neither drone 1, performing w1, nor drone 2, performing t(ai),
traverses this edge. In this case, for each ai ∈ δR(S) ∪ ER(S), we consider the solution
in which drone 1 performs t∗(ai) (similar to w1 but traversing ai) and drone 2 performs
t(ai), which is a K–RPP solution. It can be seen that the corresponding matrix is also
full rank. �
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Figure 4.17: Matrix appearing in the proof of Theorem 4.2.18

ENR ER(V \S) δR(S) ER(S)
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1



Figure 4.19: A submatrix of the matrix in Figure 4.18

In what follows, we will present the parity, p–connectivity and K–C inequalities for
the K–RPP, and study conditions under which they are facet–defining of K–RPP(G).
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Figure 4.18: Matrix appearing in the proof of Theorem 4.2.18

Parity inequalities

Since parity inequalities (4.30) are valid for the MBCPP on G, from Theorem 4.2.1 we
have that the following parity inequalities

xk(δR(S)\F ) + (xk − yk)(δNR(S)\F ) ≥ xk(FR) + (xk − yk)(FNR)−|F |+1, (4.42)

for each drone k, any S⊂V , and F ⊆δ(S) with |F | odd, are valid for the K–RPP on G.

Theorem 4.2.19. Parity inequalities (4.42) are facet–inducing of K–RPP(G) if sub-
graph (S, ENR(S)) is 3–edge connected and either V\S = {1}, or subgraph (V\S,ENR(V\
S)) is 3–edge connected.

Proof: Let z1, z2, . . . , zm+1 and t(a), a ∈ ER, the 1–RPP tours from Note 4.2.11.1.
Consider the graph G∗ obtained by deleting from G the required edges in δR(S)\F (if
any). Graphs G and G∗ have the same set of non–required edges and, given that the
hypotheses of Theorem 4.2.8 are fulfilled, there are m affinely and linearly independent
1–RPP tours w∗1, w

∗
2, . . . , w

∗
m on G∗, all of them traversing the required edges in G∗

(all the edges in ER except the removed ones, in δR(S) \F , if any), and satisfying
inequalities (4.31) as equalities. These tours also satisfy xe = 1 for all e ∈ FR and, by
adding x(FR) − |FR| = 0 to the right hand side of (4.31) we obtain that the tours w∗j
satisfy

(x− y)(δNR(S)\F ) = x(FR) + (x− y)(FNR)− |F |+ 1.
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Figure 4.20: Matrix appearing in the proof of Theorem 4.2.19

Each w∗j is transformed into a tour on G, wj , by adding to it an extra entry xe for each
removed edge δR(S)\F with value xe = 0. The resulting tours w1, w2, . . . , wm on G are
also affinely independent, traverse all the required edges except those in δR(S)\F , and
satisfy

x(δR(S)\F ) + (x− y)(δNR(S)\F ) = x(FR) + (x− y)(FNR)− |F |+ 1.

Regarding the traversal of the cut–set δ(S), there are only two types of 1–RPP tours
wi that satisfy the inequality as an equality (see Note 4.2.7.1). Tours of type 1 traverse
one copy of each edge in F and one more edge in δ(S)\F (if δ(S)\F 6= ∅). Tours of
type 2 traverse one copy of each edge in F , except one edge in FNR (if FNR 6= ∅). We
can assume, for example, that FNR 6= ∅ and that one of the wi above, say w1 = (x1, y1),
traverses once each edge in F except a given edge e ∈ FNR (in the case FNR = ∅, and
hence, δ(S)\F 6= ∅, we would proceed in a similar way).

We build the K–RPP solutions depicted in the first three block rows in the matrix
shown in Figure 4.17, where vectors zi are the same but vectors wi are different but
denoted equal. We build also the solutions depicted in the last two block rows in the
matrix in Figure 4.17.

For each required edge a we define a vector t∗(a), obtained from w1, that also satisfies

the inequality as an equality (it is of one of the types 1 or 2 above) and, regarding the
required edges, only differs from w1 in the traversals of edge a in the following way (if
any edge in ENR turns to be traversed three times, we would delete two traversals of
it):

• For each a ∈ ER(S), the vector t∗(a) is obtained from w1 by replacing the traversal
of a with the traversal of a path joining its two endpoints formed with edges in
ENR(S). For each a ∈ ER(V \S) we proceed in the same way.

• For each a ∈ FR, the vector t∗(a) is obtained from w1 by replacing the traversal of

a with the traversal of edge e and two paths, formed with edges in ENR(S) and
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ENR(V \S), joining the endpoints of a and e.

• For each a ∈ δR(S)\F , the vector t∗(a) is obtained from w1 by adding the traversal

of a cycle formed with edges a and e and two paths with edges in ENR(S) and in
ENR(V \S).

If drone k performs t∗(a) and the remaining drones perform z1 we obtain the K–RPP
solutions depicted as the rows of the fourth block rows in the matrix shown in Figure
4.17, although note that vectors t∗(a) are different but share the same name.

If K ≥ 3 (for the case K = 2, the argument is similar to that in the proof of Theorem
4.2.18), all the rows in the matrix depicted in Figure 4.17 represent K–RPP solutions
satisfying the parity inequality (4.42) as an equality. If we subtract the first row from
all the other rows and then remove the zero rows we obtain the matrix in Figure 4.18.

The matrix obtained after merging blocks (1, 1) and B∗ of Figure 4.18 is detailed in
Figure 4.20, with the columns and rows rearranged. This matrix has full rank. Hence,
the matrix of Figure 4.18 has full rank and we have K(2|ENR|+ |ER|) K–RPP solutions
affinely independent satisfying inequality (4.42) as an equality. �

p−connectivity inequalities

Let {S0, . . . , Sp} be a partition of V . Assume that 1 ∈ Sd, d ∈ {0, . . . , p} and consider
one edge ej ∈ E(Sj) for every j ∈ {0, . . . , p} \ {d}. Since the p–connectivity inequality
(4.37) is valid for the MBCPP on G, from Theorem 4.2.1, the following inequality

xk(δR(S0)) + (xk + yk)(δNR(S0)) + 2
∑

1≤r<t≤p
xk(Sr : St) ≥ 2

p∑
i=0,i 6=d

xkei , (4.43)

for each drone k, is valid for the K–RPP and will be referred to as p–connectivity in-
equality.

Theorem 4.2.20. p–connectivity inequalities (4.43) are facet–inducing for K–RPP(G)
if subgraphs (Si, ENR(Si)), i = 0, . . . , p, are 3–edge connected, |(S0 : Si)| ≥ 2, ∀ i =
1, . . . , p, the graph induced by V \ S0 is connected, and all the edges ej ∈ E(Sj) are
required edges.

Proof: Let z1, z2, . . . , zm+1 and t(a), a ∈ ER, the 1–RPP tours from Note 4.2.11.1.
Consider the graph G∗ obtained by deleting from G the required edges in δR(Si) for all
i (if any). Graphs G and G∗ have the same set of non–required edges and, given that the
hypothesis of Theorem 4.2.9 are fulfilled, there are m affinely independent 1–RPP tours
w∗1, w

∗
2, . . . , w

∗
m on G∗, all of them traversing the required edges in G∗ and satisfying

(x+ y)(δ(S0)) + 2
∑

1≤r<t≤p
x(Sr : St) = 2p.

Given that all the w∗i traverse each edge ej ∈ E(Sj) because is a required edge, they
also satisfy

(x+ y)(δ(S0)) + 2
∑

1≤r<t≤p
x(Sr : St) = 2

p∑
i=0,i 6=d

xei
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Each w∗j is transformed into a tour onG, wj , by adding to it an extra entry xe for each
removed edge in δR(Si) for all i, with value xe = 0. The resulting tours w1, w2, . . . , wm
on G are also affinely independent, traverse all the required edges except those in sets
δR(Si), and satisfy

x(δR(S0)) + (x+ y)(δNR(S0)) + 2
∑

1≤r<t≤p
x(Sr : St) = 2

p∑
i=0,i 6=d

xei
(

= 2p
)
.

Furthermore, we can assume that one of the wi above, say w1 = (x1, y1), traverses twice
a given non–required edge in each set (S0 : Si).

We build the K–RPP solutions depicted in the first three and last two block rows
in the matrix shown in Figure 4.17, where vectors zi, t(a) are the same but vectors wi
are different (although denoted equal).

For each required edge a we define a vector t∗(a) obtained from w1 that also satisfies
the inequality as an equality as follows:

• For each a ∈ ER(Si), a 6= ei, the vector t∗(a) is obtained from w1 by replacing the
traversal of a with the traversal of a path joining its two endpoints formed with
edges in ENR(Si).

• For each edge ei ∈ ER(Si), the vector t∗(ei) is obtained from w1 by removing all

the traversals in (S0 : Si) and in E(Si). Note that this vector satisfies

x(δR(S0)) + (x+ y)(δNR(S0)) + 2
∑

1≤r<t≤p
x(Sr : St) = 2

p∑
i=0,i 6=d

xei
(

= 2(p−1)
)
.

• For each a ∈ (S0 : Si)R, the vector t∗(a) is obtained from w1 by replacing the

second traversal of the non–required edge in (S0 : Si) traversed twice by w1 with
the traversal of a and a path joining its two endpoints formed with edges in
ENR(S0) ∪ ENR(Si).

• For each a ∈ (Si : Sj)R, the vector t∗(a) is obtained from w1 by adding one copy

of a and removing a copy of each non–required edge in (S0 : Si) and (S0 : Sj)
traversed twice by w1 and the traversal of the non–required edges in the paths
joining their endpoints.

If drone k performs t∗(a) and the remaining drones perform z1, we obtain the K–RPP
solutions depicted as the rows of the fourth block rows in the matrix shown in Figure
4.17.

If K ≥ 3 (for the case K = 2, the argument is similar to that in the proof of Theorem
4.2.18), all the rows in the matrix depicted in Figure 4.17 represent K–RPP solutions
satisfying the p–connectivity inequality (4.43) as an equality. If we subtract the first
row from all the other rows and then remove the zero rows we obtain a matrix similar to
that in Figure 4.18. The matrix obtained after merging blocks (1, 1) and B∗ of Figure
4.18 is detailed in Figure 4.21, with the columns and rows rearranged. This matrix has
full rank and, therefore, also the matrix of Figure 4.18 has full rank. Hence, we have
K(2|ENR|+ |ER|) K–RPP solutions affinely independent satisfying inequality (4.43) as
an equality and it defines a facet of K–RPP(G). �
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ENR (Si : Sj)R ER(S0) ER(S1) . . . ER(Sp)

(w2 − w1)NR

...

(wm − w1)NR

0 0 0 . . . 0

∗
1

. . .
1

0 0 . . . 0

∗ 0
−1

. . .
− 1

0 . . . 0

∗ 0 0

−1

. . .
−1

−1 . . . − 1 − 1

. . . 0

∗ 0 0 0 . . . 0

∗ 0 0 0 . . .

−1

. . .
−1

−1 . . . − 1 − 1



Figure 4.21: A submatrix of the matrix in Figure 4.18 for p–connectivity inequalities

K–C inequalities

The name of K–C inequalities is motivated by the number of subsets into which V is
partitioned, which is usually denoted by K. In order to avoid confusion here with the
number of vehicles, we will use the letter Q to denote the number of sets in a K–C
partition. Let {S0, . . . , SQ}, with Q ≥ 3, be a partition of V . We assume that the depot
1 ∈ (S0 ∪ SQ) and E(Si) 6= ∅, for all i = 1, 2, . . . , Q− 1. We select one edge ei ∈ E(Si)
for each i. Let F ⊆ (S0 : SQ) be a set of edges, with |F | ≥ 2 and even. For each drone
k, the following inequalities

(Q− 2)xk
(

(S0 : SQ)R\F
)
− (Q− 2)xk(FR)+

+ (Q− 2) (xk − yk)
(

(S0 : SQ)NR\F
)
− (Q− 2) (xk − yk)(FNR)+

+
∑

0≤i<j≤Q

(i,j)6=(0,Q)

(j−i)xk(Si : Sj)R +
∑

0≤i<j≤Q

(i,j) 6=(0,Q)

(
(j−i)xk(Si : Sj)NR + (2−j+i) yk(Si : Sj)NR

)
≥

≥ 2

Q−1∑
i=1

xkei − (Q− 2)|F |. (4.44)
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will be referred to as K–C inequalities. If the depot 1 ∈ Sd, d ∈ {1, . . . , Q−1}, the RHS
of the K–C inequalities is:

≥ 2

Q−1∑
i=1
i 6=d

xkei + 2− (Q− 2)|F |. (4.45)

From Theorem 4.2.1, K–C inequalities (4.44) and (4.45) are valid for the K–RPP
because they are obtained from the corresponding K–C inequalities for the MBCPP
(see Corberán et al., 2013) after removing the ye variables for all the required edges e.

Theorem 4.2.21. K–C inequalities (4.44) and (4.45) are facet–inducing for K–RPP(G)
if subgraphs (Si, ENR(Si)), i = 0, . . . , Q, are 3–edge connected, |(Si : Si+1)| ≥ 2 for
i = 0, . . . , Q− 1, and |FR| ≥ 2 and ei ∈ ER(Si) for all i.

Proof: We make the proof only for inequalities (4.44) since the proof for inequalities
(4.45) is analogous. Let z1, z2, . . . , zm+1 and t(a), a ∈ ER, be the 1–RPP tours from
Note 4.2.11.1. Consider the graph G∗ obtained by deleting from G the required edges in
δR(Si), for all i = 1, . . . , Q− 1, and the required edges in (S0 : SQ) \ F . Graphs G and
G∗ have the same set of non–required edges and, given that the hypothesis of Theorem
4.2.10 are fulfilled, there are m affinely independent 1–RPP tours w∗1, w

∗
2, . . . , w

∗
m on G∗,

all of them traversing the required edges in G∗, and satisfying inequality (4.40) with
|R| = Q− 1 as an equality:

(Q− 2)(x− y)
(

(S0 : SQ) \ F
)
− (Q− 2)(x− y)(FNR) +

+
∑

0≤i<j≤Q

(i,j)6=(0,Q)

(
(j − i)x(Si : Sj) + (2− j + i) y(Si : Sj)

)
= 2(Q− 1)− (Q− 2)|FNR|.

Given that all the w∗j traverse each edge ei ∈ E(Si), they also satisfy

(Q− 2)(x− y)
(

(S0 : SQ) \ F
)
− (Q− 2)(x− y)(FNR) +

+
∑

0≤i<j≤Q

(i,j)6=(0,Q)

(
(j − i)x(Si : Sj) + (2− j + i)y(Si : Sj)

)
= 2

Q−1∑
i=1

xei − (Q− 2)|FNR|.

Each w∗j is transformed into a tour on G, wj , by adding to it an extra entry xe for
each removed edge in δR(Si), for all i = 1, . . . , Q− 1, and in (S0 : SQ)R \ F , with value
xe = 0. The resulting tours w1, w2, . . . , wm on G are also affinely independent, traverse
all the required edges except those in sets δR(Si) and in (S0 : SQ)R \ F , and satisfy

(Q− 2)x
(

(S0 : SQ)R\F
)
− (Q− 2)x(FR) +

+ (Q− 2) (x− y)
(

(S0 : SQ)NR\F
)
− (Q− 2) (x− y)(FNR) +

+
∑

0≤i<j≤Q

(i,j) 6=(0,Q)

(j − i)x(Si : Sj)R +
∑

0≤i<j≤Q

(i,j)6=(0,Q)

(
(j − i)x(Si : Sj)NR + (2− j + i) y(Si : Sj)NR

)
=

= 2

Q−1∑
i=1

xei − (Q− 2)|F |, (4.46)
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because each wj traverses each edge in FR and, hence, x(FR) = |FR|. Furthermore, we
can assume that one of the wj above, say w1 = (x1, y1), traverses once each edge in F ,
and traverses twice a given non–required edge in each set (Sj : Sj+1) for j = 0, . . . , Q−2.

We build the K–RPP solutions depicted in the first three and last two block rows
in the matrix shown in Figure 4.17, where vectors zi, t(a) are the same but vectors wi
are different (although denoted equal).

For each edge a ∈ ER we define a vector t∗(a) obtained from w1 and also satisfying

equation (4.46) as follows:

• For each a ∈ ER(Si), a 6= ei, i = 0, 1, . . . , Q, the vector t∗(a) is obtained from w1 by
replacing the traversal of a with the traversal of a path joining its two endpoints
formed with edges in ENR(Si).

• For each a = ei ∈ ER(Si), i 6= Q−1, the vector t∗(a) is obtained from w1 by remov-

ing all the traversals in E(Si), (Si−1 : Si), and (Si : Si+1), and adding two copies
of a non–required edge in (SQ−1 : SQ). For the edge a = eQ−1, the vector t∗(a) is

obtained from w1 by removing all the traversals in E(SQ−1) and in (SQ−2 : SQ−1).

• For each a ∈ (Sj : Sj+1)R, j = 0, . . . , Q − 1, the vector t∗(a) is obtained from
w1 by replacing the second traversal of the non–required edge traversed twice in
(Sj : Sj+1) with the traversal of a and a path joining its two endpoints formed
with edges in ENR(Sj) ∪ ENR(Sj+1).

• For each a ∈ (Si : Sj)R, |i−j| > 1 the vector t∗(a) is obtained from w1 by adding one
copy of a and removing the second traversal of the non–required edge traversed
twice in (Si : Si+1), . . . , (Sj−1 : Sj) and adding the traversal of the non–required
edges in some paths in E(Si), . . . , E(Sj).

• For each a ∈ FR, the vector t∗(a) is obtained from w1 by removing a and all the

second traversals of the non–required edges traversed twice in sets (Sj : Sj+1),
j = 0, . . . , Q − 2, and adding a non–required edge in (SQ−1 : SQ) and the non–
required edges in some paths in E(S0), E(S1) . . . , E(SQ).

• For each a ∈ (S0 : SQ)R \ F , the vector t∗(a) is obtained from w1 by adding a,
removing all the second traversals of the non–required edges traversed twice in
sets (Sj : Sj+1), j = 0, . . . , Q− 2, and adding a non–required edge in (SQ−1 : SQ)
and the non–required edges in some paths in E(S0), E(S1) . . . , E(SQ).

If drone k performs t∗(a) and the remaining drones perform z1 we obtain the K–RPP
solutions depicted as the rows of the fourth block rows in the matrix shown in Figure
4.17.

If K ≥ 3 (for the case K = 2, the argument is similar to that in the proof of Theorem
4.2.18), all the rows in the matrix depicted in Figure 4.17 represent K–RPP solutions
satisfying the K–C inequality as an equality. If we subtract the first row from all the
other rows and then remove the zero rows we obtain a matrix similar to that in Figure
4.18. The matrix obtained after merging blocks (1, 1) and B∗ of Figure 4.18 is detailed
in Figure 4.22, with the columns and rows rearranged. For the sake of simplicity, the
elements in the block corresponding to edges in ER(S0 ∪ SQ) are ±1, representing 1
for the edges in FR, and −1 for the edges in ER(S0), ER(SQ), and (S0 : SQ)R \ F .
This matrix has full rank. Hence, we have K(2|ENR|+ |ER|) K–RPP solutions affinely
independent satisfying the K–C inequality (4.44) as an equality. �
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ENR (Si : Sj)R ER(S0 ∪ SQ) ER(S1) . . . ER(SQ−1)

(w2 − w1)NR

...

(wm − w1)NR

0 0 0 . . . 0

∗
1

. . .
1

0 0 . . . 0

∗ 0
±1

. . .
± 1

0 . . . 0

∗ 0 0

−1

. . .
−1

−1 . . . − 1 − 1

. . . 0

∗ 0 0 0 . . . 0

∗ 0 0 0 . . .

−1

. . .
−1

−1 . . . − 1 − 1



Figure 4.22: A submatrix of the matrix in Figure 4.18 for K–C inequalities

4.2.3 Other valid inequalities for the LC K–RPP

Although we have removed the constraints (4.3), which limit the length of each route k,
to carry out the polyhedral study of the K−RPP, they have to be taken into account
when solving the LC K−RPP. Based on these constraints, we present here some sets of
valid inequalities for the LC K–RPP, called max–length inequalities.

Let F ⊆ ER be a subset of required edges. Consider the general routing problem
defined on graph G, with required edges set F and required vertex 1 (the depot), if it is
not incident with an edge in F . Recall that the GRP consists of finding a minimum cost
tour traversing the edges of F at least once and visiting the depot. Let grp(F ) be its
optimal value (or a lower bound of it). If grp(F ) > L, then the following inequalities
are valid for the LC K–RPP:

xk(F ) ≤ |F | − 1, ∀k = 1, . . . ,K, (4.47)

which indicate that a single vehicle cannot service all the edges in F .

Let S be the set of vertices incident with the edges in F , and suppose that 1 /∈ S.
If grp(F ) > L, then at least two vehicles must enter in S, and we have

K∑
k=1

(
xk(δR(S)) + (xk + yk)(δNR(S))

)
≥ 4. (4.48)
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Moreover, to force two different vehicles to enter S, instead of a single vehicle entering
S twice, we have the following inequalities:∑

k 6=k′

(
xk(δR(S)) + (xk + yk)(δNR(S))

)
≥ 2, ∀k′ = 1, . . . ,K. (4.49)

The above inequalities can be easily generalized to any value p = dgrp(F )
L e > 1 if

grp(F ) > (p− 1)L.





Chapter 5

An iterative algorithm for the
length constrained K–DRPP

The length constrained K–drones rural postman problem (LC K–DRPP) was defined
in Chapter 3, and a matheuristic algorithm was proposed for its solution. This chapter
presents a new mathematical approach to deal with the problem.

Given an LC K–DRPP instance, if the number of intermediate points into which
each line is approximated is large, the size of the resulting LC K–RPP instance is
huge and, therefore, very hard to solve. However, if we only incorporate a few of these
points, we will get an smaller (and easier to address) K–RPP instance. Hence, it is
necessary to implement a procedure that iteratively generates LC K–RPP instances
by approximating each line by a polygonal chain with few but significant points and
segments, and then solving such instances with a competitive exact procedure. This is
the idea behind the algorithm we present here.

Based on the formulation proposed in the previous chapter for the LC K–RPP and
the polyhedral study developed, we have designed a new branch–and–cut algorithm for
the LC K–RPP that incorporates the separation of the valid inequalities proposed there.
We describe this algorithm in Section 5.1. This branch–and–cut algorithm is integrated
into a solution procedure for the LC K–DRPP with a sequential scheme that iteratively
solves instances of the LC K–RPP which are generated by adding and removing some
intermediate points (adding those considered more ‘promising’ and removing the unused
ones) in a way that is a refinement of the algorithm presented in Chapter 3. This itera-
tive algorithm is described in Section 5.2. We provide in Section 5.3 some computational
results showing the effectiveness of the new algorithm, comparing its performance with
that of the matheuristic proposed in Chapter 3.

5.1 A branch–and–cut algorithm for the LC K–RPP

In this section, we describe the branch–and–cut algorithm we have designed and imple-
mented for the LC K–RPP. This method is based on a cutting–plane algorithm that
incorporates separation procedures for the inequalities presented in Chapter 4.

97
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The initial LP relaxation contains the inequalities∑
e∈ER

csex
k
e +

∑
e∈ENR

ce
(
xke + yke

)
≤ L, ∀k = 1, . . . ,K, (4.3)

K∑
k=1

xke ≥ 1, ∀e ∈ ER, (4.4)

xke ≥ yke , ∀e∈ENR, ∀k = 1, . . . ,K, (4.5)

from the formulation (F2), the bounds on the variables, and a parity inequality (4.42)
with F = δ(v) for each odd–degree vertex v and for each drone k.

Moreover, in order to avoid equivalent solutions produced by the interchange of
routes between two (or more) vehicles, the following symmetry breaking inequalities are
also added to the LP. Let us assume the required edges are ordered as e1, e2, . . . , e|ER|
(for example, in descending order according to the distances between them and the
depot). Then,

x1
e1 = 1, (5.1)

xkei ≤
i−1∑
j=1

xk−1
ej , ∀k = 2, . . . ,K, ∀i ≥ 2, and (5.2)

xkei = 0, ∀k = i+ 1, . . . ,K, ∀i = 1, . . . , |ER| − 1. (5.3)

Equality (5.1) forces vehicle 1 to traverse (and service) required edge e1. Inequalities
(5.2) state that if vehicle k services the required edge ei, then at least one required
edge in {e1, . . . , ei−1} (i.e., a previous edge in the given ordering) has to be serviced by
vehicle k − 1. Equations (5.3) prevent a required edge ei, for i = 1, . . . , |ER| − 1, from
being serviced by a vehicle whose index is larger than i.

In addition, to prune the search tree, we use a bound obtained by the first phase of
the matheuristic algorithm proposed in Section 3.3.

5.1.1 Separation algorithms

We describe here the separation algorithms used to identify violated inequalities of the
following types: connectivity inequalities (4.2), parity inequalities (4.42), p–connectivity
inequalities (4.43), K–C inequalities (4.44) and (4.45), and max–length inequalities
(4.47), (4.48) and (4.49).

Given a fractional solution (x̄k, ȳk), for a vehicle k, of the current LP and a parameter
ε ≥ 0, we will use two support graphs, denoted by Gk+(ε) and Gk−(ε), which are the
graphs induced by the edges e ∈ E such that x̄k(e) + ȳk(e) > ε and x̄k(e)− ȳk(e) > ε,
respectively, plus the depot, if necessary.

Connectivity inequalities

For each vehicle k, connectivity inequalities (4.2) can be exactly separated in polynomial
time with the following well–known algorithm. For each edge f such that x̄k(f) > 0,
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compute the minimum–weight cut in graph Gk+(0) separating edge f from the depot.
If the weight of this cut is less than 2x̄k(f), then the corresponding inequality (4.2) is
violated.

Although polynomial, this exact algorithm is very time consuming and often pro-
duces many violated inequalities that are very similar to each other. Therefore, we
avoid studying the edges close to an edge f for which a violated connectivity inequality
has already been found. Thus, the number of calculated minimum cuts and inequalities
added to the LP are reduced.

Two heuristic algorithms have also been implemented in order to find violated con-
nectivity inequalities. The first one computes the connected components of the graph
Gk+(ε). The inequality (4.2) associated with each component not containing the depot
and the edge f in it with maximum x̄k(f) is checked for violation. The second algorithm
is based on reducing the size of the graph on which the minimum cuts are computed, by
shrinking the connected components of the graph induced by edges with x̄k(e) ≥ 1− ε
into a single vertex each. Then, we compute all the minimum cuts between the vertex
corresponding to the component containing the depot and the remaining ones. The
corresponding connectivity inequalities are checked for violation.

Parity inequalities

If we replace x− y by x in the parity inequalities (4.42) for a vehicle k, we obtain

xk(δ(S)\F )≥ xk(F )−|F |+1, ∀S⊂V, ∀F ⊂δ(S) with |F | odd,

which are the well–known cocircuit inequalities presented in Ghiani and Laporte (2000).
They can be exactly separated in polynomial time with an algorithm based on the
computation of odd minimum cuts, which can be done with the classical Padberg–Rao
procedure (Padberg and Rao, 1982) or with the improved one by Letchford et al. (2008).

For the special case where S = {v}, there is an exact and simple procedure to define
the set F ⊆ δ(v) that corresponds to the most violated parity inequality (see Ghiani
and Laporte, 2000).

We also use a heuristic algorithm based on the computation of the connected com-
ponents of the support graph Gk−(ε) for each vehicle k. For each cut–set obtained from a
connected component, the set F is found by applying the same procedure as for S = {v}.

p–connectivity inequalities

For each vehicle k, we use a heuristic algorithm similar to the one proposed in Corberán
et al. (2013) for the MBCPP. The algorithm starts by searching for a cut–set (S, V \S)
corresponding to a tight connectivity inequality (4.2) among those obtained with the
connectivity separation procedures. Let us suppose that 1 ∈ V \S and let S0 = V \S.
Then we compute the connected components in the subgraph induced in G(S) by the
edges e ∈ E(S) with x̄k(e) ≥ 1− ε, where ε is a given parameter. For each pair Ci, Cj
of such components, we compute

sij = 2x̄k(Vi, Vj)− 2 min{x̄k(ei), x̄k(ej)},
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where Vr is the set of vertices in the component Cr and er is the edge in Cr with the
highest value of x̄k(e). The value sij represents the savings in the left-hand side of the
inequality obtained after shrinking components Ci and Cj . We iteratively shrink the
components that maximize sij while sij > 0. This procedure defines sets S1, . . . , Sp.
The p–connectivity inequality associated with this partition is checked for violation.

K–C inequalities

For each vehicle k, we have implemented a heuristic algorithm that is an adaptation
of the one proposed in Corberán et al. (2001) for the general routing problem. In
that problem, the required edges determine the way in which set V is partitioned in
S0, . . . , SK . Here, we partition V in the same way but considering as required edges
those with x̄k(e) ≥ 1− ε, which will define the set F .

Max–length inequalities

In order to separate the max–length inequalities proposed in Section 4.2.3, we use two
heuristic algorithms. The first heuristic looks for violated inequalities (4.47). It tries to
cut fractional solutions in which, for a vehicle k, several xke variables, for e ∈ ER, take
values close to 1 and another one takes a value close to 0.5. Let {e1, e2, . . . , em} be a set
of required edges such that x̄ke1 ≥ x̄

k
e2 ≥ . . . ≥ x̄

k
em ≥ 0.5. We define F = {e1, e2, . . . , ef},

where f is the maximal number such that x̄k(F ) > |F | − 1 + ε (initially we set ε = 0.5),
and we call “potential edges” the remaining {ef+1, . . . , em}. We check if grp(F ) is
greater than L and, therefore, the corresponding inequality (4.47) is violated. Otherwise,
for each potential edge e∗, we iteratively consider the set F ∗ = F ∪ {e∗} and check if
grp(F ∗) is greater than L. Finally, if no violated inequality has been found for any set
F ∗, we set ε = 0 and repeat the process. For each subset F (or F ∗) whose corresponding
inequality (4.47) is violated, we look for the cutset of minimum weight between the depot
and the edges in F and the corresponding max–length inequalities (4.48) and (4.49) are
checked for violation.

The second heuristic looks for inequalities (4.48). We first consider the “aggregate”
solution x̄e =

∑K
k=1 x̄

k
e and ȳe =

∑K
k=1 ȳ

k
e . The procedure starts by selecting the vertex

i 6= 1 farthest from the depot such that the maximum flow from 1 to i is less than 2K.
Let δ(S) be the corresponding minimum weight cut–set. Then, a sequence of vertices
is iteratively added to S in such a way that

∑K
k=1 x̄

k(δR(S)) +
∑K

k=1(x̄k + ȳk)(δNR(S))
is minimum for the resulting set S. For each subset S generated, we compute the
minimum number of vehicles needed to service all the edges in ER(S) by solving the
associated GRP, and the corresponding inequality (4.48) is checked for violation. If a
violated constraint (4.48) is found, at least one of the inequalities (4.49) is also violated
and it is added. Furthermore, the corresponding inequality (4.47) is also checked for
violation.

Given a set of edges F , the value of grp(F ) is computed by solving the corresponding
GRP with the branch–and–cut algorithm described in Corberán et al. (2007). To
minimize the number of GRPs solved, two lists containing the already studied sets F
are managed.
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5.1.2 The cutting–plane algorithm

The cutting–plane algorithm applies, at each iteration, the separation procedures de-
scribed above in this specific order:

1. The first heuristic algorithm for connectivity inequalities is applied with ε =
0, 0.25, 0.5. The value of ε is increased only if the previous one results in no
violated inequalities found.

2. If no violated inequalities are found so far, the second connectivity heuristic is
executed for all the values ε = 0, 0.1, 0.2, 0.3, 0.4. For each tight cut–set obtained,
the p–connectivity heuristic separation algorithm is invoked with ε ∈ {0, 0.15, 0.3}.

3. The exact parity separation procedure for single vertices is applied.

4. The heuristic procedure for parity inequalities with ε = 0, 0.25, 0.5. The different
values of ε are used only if no violated inequalities are obtained with the previous
ones.

5. If no violated connectivity nor parity inequalities have been found for a given
vehicle k, the separation algorithm for K–C inequalities for this vehicle is applied
with parameter ε = 0, 0.2.

6. Only at the root node and nodes whose depth in the search tree is a multiple of
3, we apply the max–length separation algorithms.

7. Only at the root node and if no violated connectivity, parity nor K–C inequalities
have been found, we apply the exact procedure for parity inequalities.

8. Finally, only at the root node and if no violated connectivity, parity nor K–
C inequalities have been found, we apply the exact procedure for connectivity
inequalities. Again, for each tight cut–set obtained, the p–connectivity heuristic
separation algorithm is invoked with ε ∈ {0, 0.15, 0.3}.

5.2 Iterative algorithm for the LC K–DRPP

We describe in this section the algorithm we have developed for solving the LC K–
DRPP. At each iteration, the procedure first selects some intermediate points from the
original lines and generates the corresponding LC K–RPP instance that includes these
points as vertices. Then, this instance is solved with the branch–and–cut algorithm
described in Section 5.1, and its solution is used to define another LC K–RPP instance
by adding and removing some intermediate points. It is important to point out that
although the proposed method embebes an exact algorithm at each iteration, the global
algorithm is a heuristic algorithm for the LC K–DRPP.

Let Vo denotes the set of endpoints of the original lines in the LC K–DRPP instance.
The procedure begins by applying the matheuristic algorithm described in Section 3.3
for the LC K–DRPP, and also solving with the branch–and–cut algorithm presented in
Section 5.1 the LC K–RPP(0) instance, that is, the LC K–RPP instance in which each
original line is approximated by only one (required) edge, without intermediate points.
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(a) LC K–RPP[i] solution
with K = 2 drones

(b) LC K–RPP[i+ 1] instance
with vertex set V0 ∪Wi+1

Figure 5.1: Illustration of the procedure that adds intermediate vertices

From these two solutions obtained with the matheuristic and the branch and cut, we
generate a new LC K–RPP instance in the following way. Let W0 be the set of vertices
incident with non–required edges used by any of these two solutions. Note that all the
vertices in W0 obtained from the solution of the LC K–RPP(0) instance are vertices of
Vo, while some vertices in W0 obtained from the solution provided by the matheuristic
can be intermediate points.

From W0, we define another set W1 of intermediate points to generate the next LC
K–RPP instance as follows. For each line incident with an endpoint in W0, we add
to W1 the intermediate point that splits the line in two segments of the same length.
Furthermore, all the vertices in W0 \ Vo are added to W1 to guarantee that the solution
from the heuristic is a feasible solution of the new instance.

The instance with vertex set Vo ∪W1, called LC K–RPP[1], is generated with the
segments joining vertices in Vo ∪W1 as required edges and it is solved with the branch–
and–cut algorithm.

Given the solution of instance LC K–RPP[i], i ≥ 1, with vertex set Vo ∪Wi, we
generate the instance LC K–RPP[i+1] with vertex set Vo∪Wi+1, where Wi+1 is defined
as follows. We initialize Wi+1 with the vertices of Wi incident with a non–required edge
used by the solution. Then, for each required edge of LC K–RPP[i] having at least
one endpoint incident with a non–required edge in the solution, we add to Wi+1 the
intermediate point that splits this edge into two parts of equal length. Note that the
vertices of Wi that are not used in the solution are not included in the new instance.

Figure 5.1b illustrates the LC K–RPP[i + 1] instance with vertex set V0 ∪ Wi+1

obtained from the LC K–RPP[i] optimal solution depicted in Figure 5.1a with 2 drones
and vertex set V0 ∪Wi. In both figures, the square node represents the depot, white
nodes represent set V0, and black nodes are the vertices in Wi and Wi+1. Solid lines
correspond to required edges, while dashed lines represent non–required ones.

This procedure is iteratively applied up to i = 4 and while the computing time does
not exceed two hours.

Although with this iterative procedure the size of the vertex set of each LC K–RPP
instance does not increase much, the number of non–required edges is still huge, since
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they induce a complete graph. In order to reduce the number of non–required edges,
we apply the following preprocessing procedure to each instance LC K–RPP[i], i ≥ 1:

First, all the non–required edges (i, j) such that there is a vertex k with cij ≥
0.99(cik + ckj) are removed. Moreover, if cmax is the length of the longest non–required
edge, we remove those edges (i, j) such that cij > cmax/3 and there is a vertex k with
cij ≥ 0.95(cik + ckj). However, for i ≥ 1, if a non–required edge is used in the solution
of LC K–RPP[i − 1], it is not removed in order to guarantee that the solution of the
new instance is not worse than the previous one.

Since we have removed some non–required edges in the previous preprocessing, it
is possible that the solution of an instance contains two adjacent non–required edges
(i, k), (k, j). If this happens, we replace them with the non–required edge (i, j) if the
resulting solution is not disconnected.

5.3 Computational experiments

We present here the computational experiments carried with the iterative algorithm.
The procedure has been tested on the two sets of LC K–DRPP instances presented
in Chapter 3, which were based on the ones from Campbell et al. (2018) for the
Drone RPP. The first set consists of 30 random instances, while the second one, called
even, contains 15 instances obtained by modifying the set of required edges of some
of the random instances to reduce the number of odd–degree vertices. These Drone
RPP instances have between 18 and 92 lines and between 22 and 83 nodes (see Ta-
ble 3.1). Five different values for the length limit L were generated in Chapter 3 for
each instance in such a way that the number of drones for each one ranges from 2 to
6, resulting a total of 225 instances. Recall that all these instances are available at
http://www.uv.es/plani/instancias.htm.

The algorithms have been implemented in C++ and all the tests have been run on
an Intel Core i7 at 3.4 GHz with 32 GB RAM. The B&C uses CPLEX 12.6 MIP Solver
with a single thread. CPLEX heuristic algorithms were turned off, and CPLEX’s own
cuts were activated in automatic mode. The optimality gap tolerance was set to zero
and best bound strategy was selected.

5.3.1 Computational results of the iterative algorithm

In this section we present the results obtained with the iterative algorithm on the 225 LC
K–DRPP instances with a time limit of two hours. Table 5.1 summarizes these results
organized by set of instances and number of vehicles. Columns 4, 5, 6, and 7 report
the average values obtained for all the instances of each group. The “Imp(%)” column
shows the percentage improvement of the deadheading cost of the best solution found
by the algorithm with respect to the solution provided by the matheuristic proposed
in Chapter 3, and column “TimeH” reports the average computing time in seconds
used by the heuristic. Columns “Time” and “]iter” present the average computing
time in seconds and the average number of iterations done by the iterative algorithm,
respectively. Column 8 gives the number of instances in which the new algorithm was
able to find a better solution than the one given by the matheuristic procedure. The
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All instances Improved instances

Type K ] inst Imp(%) TimeH Time ] iter ] imp Imp(%) TimeH Time ] iter ] itb

R

2 30 0.41 46.2 3815.2 4.2 13 0.87 40.4 2842.1 4.4 3.6
3 30 2.12 37.4 5253.2 3.2 22 2.65 37.2 5182.3 3.4 2.3
4 30 3.38 36.5 6310.1 2.5 19 5.33 32.2 5773.5 3.2 2.5
5 30 1.89 35.6 6959.2 1.9 14 3.77 27.0 6673.4 2.3 1.5
6 30 0.66 36.9 7130.6 1.8 8 2.47 30.2 6819.1 3.1 2.0

E

2 15 1.05 75.5 2583.2 4.3 13 1.21 42.5 1872.9 4.8 4.1
3 15 1.44 51.6 5922.3 3.1 10 2.16 26.5 4003.3 4.1 3.4
4 15 2.07 58.3 6587.9 2.5 9 3.46 22.7 5070.5 3.6 2.8
5 15 0.62 58.0 5423.2 2.0 5 1.87 19.1 3990.1 3.6 3.4
6 15 0.38 58.5 6364.0 1.9 5 1.13 12.6 5363.6 3.6 3.4

Total 225 1.50 118 2.77

Table 5.1: Improvement of the global algorithm over the matheuristic

next four columns report the same figures as columns 4 to 7, but only for those instances
for which a better solution was found. Last column “]itb” gives the average number of
iterations of the global algorithm needed to reach the best solution.

As we can see in Table 5.1, the new algorithm has improved the results provided
by the matheuristic in 118 out 225 instances and the average improvement obtained
ranges from 0.87% to 5.33%. In the case of the random instances, when the number of
vehicles is 2, our algorithm improves only 13 out of 30 instances, despite being able to
complete the 5 iterations in most of them. This is probably due to the high quality of
the solutions provided by the matheuristic algorithm for these instances. Note that with
3, 4, and 5 vehicles, the number of improved solutions increases, as well as the average
improvement. The results with 6 vehicles present lower improvements, but in this case
this may be due to the iterative algorithm not being able to complete more than 2
iterations on average. Regarding the even instances, except those with 2 vehicles, both
the number of instances in which the iterative algorithm improves the matheuristic, as
well as the percentage of improvement, are smaller. This may be due to the fact that,
as pointed out before, even instances are more difficult for branch–and–cut algorithms.
The improvements obtained by the new algorithm require a considerable running time,
but note that the number of iterations needed to reach the best solution is lower than
the total number of iterations.

In order to describe with more detail the behavior of the proposed procedure, we
present in Table 5.2 the results for a specific instance with 2 to 6 vehicles. Column
“Heur” reports the deadheading cost of the solution provided by the matheuristic.
Columns labeled 1 to 5 show the deadheading costs of the solutions obtained in the
corresponding iteration of the algorithm. All these costs correspond to optimal solu-
tions of the branch–and–cut for the LC K–RPP instances except those marked with an
“asterisk”, which are associated with the best feasible solution known when the time
limit was reached. The total computing time in seconds is reported in the last column.
In the instance with 2 vehicles, the algorithm is capable of doing 5 iterations in only
5 minutes, but no improvement is obtained. However, in the instances with 3 and 4
vehicles a better solution is found in each of the 5 iterations. When 5 and 6 vehicles
are considered, the two hour time limit is reached without the algorithm being able to
complete all 5 iterations, although the last feasible solutions found improve those of the
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iteration number

K Heur 1 2 3 4 5 Time

2 1889.37 1889.37 1889.37 1889.37 1889.37 1889.37 294.0
3 2154.41 2060.28 1989.41 1946.42 1924.66 1913.69 526.2
4 2709.32 2634.49 2459.05 2413.75 2388.51 2377.05 6888.3
5 3369.75 3348.92 3348.91 3348.91∗ 7200.0
6 4588.93 4626.03 4399.8∗ 7200.0

Table 5.2: Detailed results on random instance DroneRPP77 1

heuristic.

5.3.2 Testing the branch–and–cut algorithm for the LC K–RPP

Although the main goal of this chapter is to find good solutions for the LC K–DRPP,
we have studied in depth the LC K–RPP, for which we proposed in Chapter 4 a new
formulation and studied its associated polyhedron, and based on this, we have designed
and implemented in this chapter a branch–and–cut algorithm. Since the LC K–RPP
and its solution have an interest by themselves, we test in this section the performance
of the proposed branch and cut (bc2 in what follows). In order to do so, we compare
it with that presented in Section 3.2 (bc1 in what follows). Since that branch and cut
was run only on the LC K–RPP instances in which each original line is approximated
by only one (required) edge without intermediate points, denoted LC K–RPP(0), we
compare both branch–and–cut algorithms only on these instances, with a time limit of
two hours.

The results are reported in Table 5.3, where columns 4 and 7 show the percentage
average gaps of the lower bounds obtained with both procedures with respect to the
cost of the best solution known, while columns labeled “]opt” and “]ub” report, for
both algorithms, the number of instances for which an optimal solution or a feasible
solution has been found, respectively.

Overall, the performance of bc2 is very good and clearly superior to that of bc1. In
particular, it finds the optimal solution in 137 instances and obtains a feasible solution
in 211 out of 225, while the bc1 obtains 74 optimal solutions and 162 feasible ones.
Regarding the gaps, in most of the cases the gap obtained by bc2 is about half the
gap by bc1. Moreover, in the 53 random instances that are optimally solved by both
methods, bc2 uses 367.2 seconds on average, while bc1 needs 726.0 seconds. The
average times corresponding to the 21 even instances solved by both methods are 165.1
and 1391.0 seconds, respectively.

To assess the contribution of the valid inequalities used in the branch and cut pro-
posed in this chapter (bc2), we have compared in Table 5.4 the results obtained by this
procedure with a branch and cut using only connectivity inequalities as lazy cuts when
the LP solutions are integer and CPLEX default cuts (Basic B&C) on the total 225
instances. Column 1 reports the average percentage gap between the lower bound ob-
tained at the end of the root node and the best solution known, while column 2 reports
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BC1 BC2

Type K ] inst Gap (%) ] opt ] ub Gap (%) ] opt ] ub

R

2 30 0.02 28 30 0.01 29 30
3 30 0.95 16 30 0.23 24 30
4 30 3.21 3 24 1.48 19 30
5 30 5.85 3 16 2.98 11 27
6 30 8.51 3 8 5.09 10 25

E

2 15 0.09 13 15 0.09 13 15
3 15 1.67 5 15 0.45 11 15
4 15 4.02 1 13 1.94 9 15
5 15 6.59 1 6 3.71 6 12
6 15 8.11 1 5 4.94 5 12

Total 225 74 162 137 211

Table 5.3: Comparison of branch–and–cut procedures on the LC K–RPP(0) instances

Gap0 (%) Gap (%) Time ] opt ] ub

BC2 5.48 2.03 91.5 137 211
basic B&C 10.27 9.14 799.7 45 97

Table 5.4: Impact of the proposed valid inequalities in the performance of the B&C

the gap calculated with the final lower bound. Column “Time” shows the average time
in seconds used by each algorithm in those instances solved to optimality by both of
them, while columns 4 and 5 report the number of optimal solutions obtained and the
number of instances in which at least one feasible solution has been found, respectively.
As can be seen, the procedure using all the inequalities clearly outperforms the basic
B&C in all the reported measures, which shows the impact of using these inequalities
for solving the problem.



Chapter 6

The multi–purpose K–drones
general routing problem

Nowadays, commercial drones are deployed for a wide variety of missions, with two
broad categories being delivery and sensing. Delivery drones can be used to deliver
items to discrete locations, such as packages, medical items, and disaster relief supplies.
Another type of drone delivery in agricultural applications involves delivery of liquid
chemicals (e.g., herbicides, fertilizers) or seeds and seedlings to a field or region (see DJI
Agriculture, 2022). This type of agricultural delivery operation has more in common
with agricultural drone sensing operations, as in both a continuous region of land is
involved (e.g., a farm field) rather than discrete points for package delivery. Drones for
sensing operations such as mapping, surveillance, inspection, and search activities, are
equipped with environmental sensors (optical cameras, multispectral cameras, thermal
sensors, radars of various types, magnetometers) to collect data about ground, under-
ground or infrastructure conditions (plant health, buried objects, wildfires, flooding,
road traffic, bridge conditions). These sensing operations are accomplished by flying
the drone over a region of land or an item of infrastructure in a path that provides
coverage of the area of interest. The region to be covered may be a 2– or 3–dimensional
surface (e.g., a bounded terrain area or a bridge) or a network defined by infrastructure
(e.g., roads, power transmission lines, or pipelines). There are several benefits for drone
sensing and delivery missions compared to “manned” operations, including cost reduc-
tion and time savings, ability to access to difficult–to–reach areas, and ability to operate
in settings that are too dangerous for a person, or that require a level of accuracy that
only technology achieves.

Drone flights have typically been designed for a single purpose (e.g., either mapping
or delivery), although some drones can be reconfigured to accomplish different purposes
on different trips (Aerolab, 2022; HD Air Studio, 2022). It is important to distinguish
between a drone that can be (re)configured to perform different tasks on separate trips,
and a drone that can perform multiple tasks on the same trip. In this chapter, “multi–
purpose drones” refers to the latter case. In a typical drone delivery, the drone makes an
empty return trip after the last delivery (assuming all deliveries are successful) and this
deadheading seems inherently wasteful. If such a drone could be used for other activities
such as mapping or sensing, then the return trips would be less wasteful. Similarly, if a
drone being used for sensing was able to make a delivery close to the flight path needed
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(a) Delivery routes (b) Imaging routes (c) Multi–purpose routes

Figure 6.1: Single–purpose drones VS multi–purpose drones

for sensing, then efficiency might be gained. Optimizing the routing of drones for flights
that combine delivery and sensing in one trip is the key issue addressed here.

We present and study in this chapter the Multi–Purpose K–Drones General
Routing Problem (MP K–DGRP). This problem was originally motivated by a
UNICEF project in Malawi for multi–purpose drones that could both make deliveries of
healthcare items and perform imaging as well (UNICEF, 2019; UNICEF, 2021). In the
MP K–DGRP, K drone routes are to be determined to both provide sensing over a set
of regions (representing flooded areas, areas with a disease outbreak or any other type
of continuous areas), and also make deliveries to one or more discrete locations. Sensing
by a single drone covers a linear swath as the drone flies with the width of the swath
(and the resolution) determined by the sensor and the altitude of the drone. To cover
two–dimensional surfaces, we can replace each region of interest by a set of parallel lines
to be flown by the drones to provide a complete coverage over it. Typically, the parallel
lines are oriented to minimize the number of turns by the drone, as turns interrupt the
data collection and increase the drone flight time and the battery usage (see Torres et
al., 2016). Since we allow a region to be covered on several different drone trips, the
optimal orientation of the flights might be different for different parts of the region. We
adopt here the reasonable strategy for covering a region in which drones fly in parallel
lines oriented with the longest axis of the region (thus minimizing the turns needed
by the drones), where the spacing of the lines reflects the characteristics of the sensor
being used by the drones. Although finding the optimal way of designing these parallel
lines is an interesting and difficult problem itself, in this work we will assume that the
lines that drones have to follow in order to provide sensing over the areas are parallel,
straight and already given. Thus, given a set of lines covering the areas to be mapped
and a set of points with a certain demand, the MP K–DGRP consists of designing drone
routes of lowest total duration, jointly traversing all the lines and visiting all the points
(to make deliveries). The duration of each route cannot exceed a time limit and the
demand delivered by each route cannot exceed the capacity of the drone. As in the LC
K–DRPP addressed in previous chapters, drones can travel off the network, entering
and leaving each given line at any point of it, and therefore the MP K–DGRP is a
continuous optimization problem.
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In our problem, rather than have one trip for deliveries and a second trip for
imaging (using a reconfigured or different drone), a single drone trip might perform
both deliveries and imaging. Using multi–purpose drones instead of single–purpose
ones can lead to considerable improvements in the total duration of the trips, as can be
seen in the example illustrated in Figure 6.1. This example includes six delivery points
and four sets of parallel lines that are designed to provide mapping coverage of four
regions. Figure 6.1a shows the optimal routes performed by three drone trips deliver-
ing packages to the six customers, with a total duration of 3234.65, while Figure 6.1b
presents the optimal routes of three drone trips covering four areas to be mapped, whose
total duration is 4361.63. However, using three multi–purpose drone trips, as can be
seen in Figure 6.1c, the delivery and imaging can be carried out with a total duration of
5574.07, which is 26.6% lower than for the six drone trips using single–purpose drones.

The contributions of this chapter are arranged as follows. Section 6.1 reviews some
related works concerning coverage of regions and multi–purpose drones applications.
In Section 6.2, we formally describe the MP K–DGRP, and also define and propose a
formulation for its discrete version, the K–vehicles general routing problem (K–GRP),
and present several valid inequalities for it. In Section 6.3, a branch–and–cut algorithm
for the solution of theK–GRP is proposed, while Section 6.4 is devoted to the description
of a matheuristic for the MPK–DGRP. The computational experiments carried out with
both algorithms are presented in Section 6.5.

6.1 Literature review

There is very limited research on multi–purpose drone problems that combine delivery
with mapping or other activities in the same trip by the same drone. In Khosravi et al.
(2021), the authors study a problem in which the aim is to design drone trajectories that
perform some transportation operation, such as package delivery, while also providing
uniform coverage (over time) of a neighborhood area. They investigate the use of
multi–purpose drones in a simplified scenario where the neighborhood area is a circular
region, and in another scenario where the area is an arbitrarily shaped region. For both
scenarios, the authors propose an algorithm for uniform coverage and last–mile delivery
applications and show that both algorithms provide a uniform coverage probability for
a typical user within the neighborhood area. McCormack and Stimberis (2010) and
Silvagni et al. (2017) address avalanche scenarios. The first authors present the idea
and some evidence of using drones to detect an area likely to be avalanched over a road,
and then for accurately dropping explosive charges to trigger controlled avalanches. The
work in Silvagni et al. (2017) is a bit different in using the drone to detect (thermally)
a buried body and then drop an avalanche beacon nearby. Both articles involve a single
drone trip making a delivery after some sensing.

Other articles have studied the routing of drones to monitor (cover) one or several
areas. Xie et al. (2020) study a path planning problem consisting of finding the optimal
tour for a single drone that has to cover multiple separated convex polygonal regions. In
this paper, the authors provide a mixed integer programming formulation and propose
a procedure for covering a single convex polygonal region. Based on this method, they
develop two approaches to solve the complete problem, a dynamic programming–based
exact algorithm and a heuristic to generate high–quality tours. Puerto and Valverde
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(2021) address the problem of designing routes for drones that must visit a number of
geographical elements to deliver some good or service. They present two formulations
that are tested on a set of instances with different shapes of elements, second order
cone representable and polyhedral neighborhoods and polygonal chains. Yang et al.
(2018) studied the construction of a route for a drone that has to map an area while
minimizing the total distance. The authors split the area into squares and present an
ant colony metaheuristic to design the route that visits them. Wang et al. (2018)
consider the routing of drones that must “supervise” disjoint areas over a given time
horizon. The areas are divided into cells which must be visited several times within a
time period. A multiobjective evolutionary algorithm to solve the problem is proposed.
Vasquez–Gomez et al. (2018) propose a method for finding a path for a drone covering
several disjoint areas consisting of two steps: first determining the visiting order of the
areas and then the optimization of the flight lines orientation. In Vasquez–Gomez et
al. (2020), the authors address the same problem with only one region but taking into
account the starting and ending points of the drone.

There are some reported applications of multi–purpose drone trips in global health-
care settings. Drone provider Swoop Aero, in association with the UK Department for
International Development and UNICEF Malawi, studied the benefits of using multi-
purpose drones in Malawi to improve access to healthcare for remote communities and
improve disaster preparedness through aerial mapping (see Swoop Aero [151]). In 2020,
they undertook a 10–month sustained multi–purpose air medical logistics and disaster
relief operation in two districts of Malawi to combine daily long–range drone deliveries
with flood mapping and disaster response. A report on this project says that “Swoop
Aero successfully proved the multifunctionality of the technology–based platform to con-
duct simultaneous aerial mapping tasks as well as routine medical commodity deliveries
within the south of the country” (see Swoop Aero [152]). Another example of multi–
purpose drone trips in global health is Deloitte [153], which notes that a drone delivering
medical supplies could also be equipped with a sensor to obtain agricultural data from
farms the drone passes on the way, serving two different users at once. Another project
in Malawi is described in [154] in which a single UAV performs three separate public
services: medical supply, soil mapping for UNICEF (inspection and imaging that could
be used for agriculture, infrastructure and development projects), and aerial surveillance
for the Malawi Ranger Service to monitor endangered species and detect poaching. A
very different example of multipurpose drone trips that includes sensing and collection
(instead of delivery) is Galle et al. (2021), which describes the use of a drone for sensing
near erupting volcanes. Here, the drone has sensors to measure concentrations of vari-
ous molecules and environmental conditions in the volcanic plume, and it also collects
physical samples of the volcanic plume.

There are also applications for multi–purpose drones that focus on communication
of the data acquired in the sensing operations. In these cases, the delivery component
is downloading (or uploading) information, which is accomplished by having the drone
travel to close proximity to a base station or other drone. Kumar et al. (2020) consider
a system with one drone route that conducts video surveillance over a rectangular re-
gion using repeated parallel passes of the drone, followed by travel to a delivery location
to communicate the information collected to a base station. This research focuses on
specifics of the communication channels and communication protocols, rather than the
drone routing. Cuong et al. (2022) consider a similar problem with surveillance using a
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camera of a “long strip” as for linear infrastructure (e.g., power transmission line, road-
way or pipeline), followed by the delivery of the captured images to a base station. This
includes problems where a single drone can surveille the width of the strip in one pass,
and an extension where multiple drones fly together down the length of the strip (as
each drone’s camera can cover only part of the width of the strip). Routing for the sens-
ing component is simplified by following one linear feature, and the research focuses on
the data transmission to the base station node with data transmission rate constraints.
Combining sensing and delivery of information (communication) to a base station is a
growing area of research as “there is huge interest to perform joint communications and
sensing now” (New and Leow, 2021).

6.2 The multi–purpose K–drones general routing problem

Let us consider a finite family A of separated continuous areas, a set V of isolated
locations and a fleet of multipurpose drones located at a depot v0 (see top image in Fig.
6.2). Multipurpose drones have both imaging and delivery capability, and they have to
provide sensing over the continuous regions in A and also make a certain delivery at
each location in V, without running out of battery and without exceeding their load
capacity. We assume that each region or area A ∈ A is described (covered) by a set of
virtual parallel straight lines so that, by traversing these lines, drones cover the whole
area (see bottom image in Fig. 6.2). The separation distance between the parallel lines
depends on technical aspects of the drone and its sensing equipment (such as the size
of the camera footprint, the altitude of the flight of the drones, etc.). Moreover, drones
are capable of delivering goods to the locations of V, assuming that the load they can
transport is limited and the demand of each location must be delivered by the same
vehicle at one time.

The MP K–DGRP can be defined as follows. Let us consider a set of lines, each one
with an associated service (traversing) time, a depot v0, and a set of locations with an
associated positive demand and a service (visiting) time, and assume that the time of
deadheading between any two points is the Euclidean distance. Given two constants L
and Q, the problem consists of finding a set of drone routes starting and ending at the
depot, with duration no greater than L and load not exceeding Q, such that they jointly
traverse all the given lines and satisfy the demand of all the locations with minimum
total duration. In this problem, we consider that a drone can travel in a straight line
between any two points, and not necessarily following the links of the given network as
happens in classical routing problems with ground vehicles. Thus, a drone can enter a
line that requires service through any of its points, traverse and service part of it, exit
the line through another of its points, then travel directly to another line or to make
a delivery at a required location, and continue its route while the time limit L is not
exceeded.

The ability of drones to enter or leave each line at any of its points allows better
solutions (lower cost routes) than those obtained with traditional vehicles that cannot
travel off of a network, but it makes the optimization problem continuous and very
difficult to address. To deal with this issue, as was done for the LC K–DRPP in the
previous chapters, we select for each instance a finite number of points on each line, so
that drones can enter and leave each line only at these points. In other words, each
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Figure 6.2: A multi–purpose drone framework with |A| = 3 and |V| = 5

original line is divided into small edges that must be traversed by the drones. In this
way, for example, a single edge with two endpoints may have four added intermediate
points that transform the one original edge into five edges, each with time of traversal
equal to the proportional part of the time of traversal of the corresponding original
edge. Thus, the continuous problem is reduced to a discrete problem, the K–vehicles
General Routing Problem (K–GRP).

Obviously, the more intermediate points selected on each line, the better is the
approximation of the original continuous problem, and thus better solutions might be
obtained. However, if the number of intermediate points is very large, the size of the
instance increases so much that it cannot be addressed, and even heuristic algorithms
can fail to provide good solutions in reasonable computing time. Thus, it is necessary to
devise sophisticated strategies to generate instances of the K–GRP with a reduced but
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significant number of intermediate points that can be solved to produce good solutions
for the MP K–DGRP.

In what follows, we formally define the K–GRP and propose a formulation and some
valid inequalities for it.

6.2.1 A formulation for the K–vehicles general routing problem

Given an undirected and connected graph G = (V,E), a subset ER ⊆ E of required
edges and a subset VR ⊆ V of required vertices, the general routing problem (GRP;
Orloff, 1974) consists of finding a minimum cost tour (closed walk) on G traversing each
edge e ∈ ER and visiting each vertex v ∈ VR at least once.

In the K–GRP, the required edges ER ⊆ E correspond to the segments into which
we have split the straight lines that have to be traversed in order to completely cover the
continuous areas. Since these lines are isolated straight lines, that is, there are no lines
adjacent to each other, when they are discretized we obtain isolated chains of required
edges. Therefore, the vertices incident with edges in ER are incident with either one
required edge (we call this set of vertices VO) or with two required edges (we call this
set of vertices VE). We denote by ENR the set of non–required edges, which form a
complete graph with the node set V .

There is a time cse ≥ 0 associated with the traversal and service of each required
edge e ∈ ER, and a deadheading time ce ≥ 0 associated with the traversal of each non–
required edge e ∈ ENR. The deadheading times satisfy the triangular inequality. The
set of required vertices VR ⊆ V is formed by all the nodes in V where a drone should
make a delivery. We will assume that these vertices are only incident with non–required
edges and have to be serviced by exactly one drone. Otherwise, a simple transformation
can be applied to meet this condition. Each node i ∈ VR has an associated positive
integer demand di > 0 and a service time ci ≥ 0. Furthermore, the drone routes start
and end at a vertex (the depot, vertex v0) that, for the sake of simplicity, we will assume
is not incident with required edges. Hence, we have V = {v0} ∪ VR ∪ VO ∪ VE .

There is a fleet of K drones, each with a load capacity Q and a time limit L. The
objective of the K–GRP is to find K routes with minimum total duration, starting and
ending at the depot, that jointly traverse all the required edges and visit the required
vertices exactly once, so that the duration and the load of each route do not exceed the
values L and Q, respectively. We will call K–GRP solution to any set of K tours that
meet all the constraints of the problem.

The K–GRP can be formulated using a binary variable xke for each edge e ∈ ER and
for each drone k ∈ {1, . . .K}, and two binary variables xke and yke for each edge e ∈ ENR
and for each drone k. Variable xke takes the value 1 if the required edge e is traversed
(and serviced) by drone k and 0 otherwise, while variables xke and yke take the value 1 if
the non–required edge e is traversed or traversed twice by drone k, respectively, and 0
otherwise. In other words, variables xke and yke represent the first and second traversal
of non–required edge e by drone k. Additionally, a binary variable zki is introduced for
each vertex i ∈ VR and each drone k, taking the value 1 if the vertex i is serviced by
drone k and 0 otherwise.
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Again, we use the following notation. Given two subsets of vertices S, S′ ⊆ V ,
(S : S′) denotes the edge set with one endpoint in S and the other in S′. Given a subset
S ⊆ V , let us denote δ(S) = (S : V \S) and let E(S) = {e = (i, j) ∈ E : i, j ∈ S} be the
set of edges with both endpoints in S. For any subset F ⊆ E, we denote FR = F ∩ER,
FNR = F ∩ ENR, xk(F ) =

∑
e∈F x

k
e and (xk+ yk)(F ) =

∑
e=(i,j)∈F (xke + yke ).

We propose the following formulation for the K–GRP:

Minimize

K∑
k=1

∑
e∈ENR

ce
(
xke + yke

)
+

K∑
k=1

∑
e∈ER

csex
k
e +

K∑
k=1

∑
i∈VR

ciz
k
i (6.1)

s.t.∑
e∈δR(i)

xke +
∑

e∈δNR(i)

(
xke + yke

)
≡ 0 (mod 2), ∀i∈V \VR, ∀k (6.2)

∑
e∈δ(i)

(xke + yke ) = 2 zki , ∀i ∈ VR, ∀k (6.3)

K∑
k=1

xke = 1, ∀e ∈ ER (6.4)

K∑
k=1

zki = 1, ∀i ∈ VR (6.5)

xke ≥ yke , ∀e∈ENR, ∀k (6.6)∑
e∈δR(S)

xke +
∑

e∈δNR(S)

(
xke + yke

)
≥ 2xkf , ∀S⊆V \{v0},∀f∈E(S),∀k (6.7)

∑
e∈ER

csex
k
e +
∑

e∈ENR

ce
(
xke+ yke

)
+
∑
i∈VR

ciz
k
i ≤ L, ∀k (6.8)

∑
i∈VR

diz
k
i ≤ Q, ∀k (6.9)

zki ∈ {0, 1}, ∀i∈VR, ∀k (6.10)

xke ∈ {0, 1}, ∀e∈ER, ∀k (6.11)

xke , y
k
e ∈ {0, 1}, ∀e∈ENR, ∀k (6.12)

The objective function (6.1) minimizes the total duration of the routes. The first
term represents the deadheading time from traveling on non–required edges. The second
and third terms represent, respectively, the time of servicing the required edges and the
time of visiting the required nodes (for delivery). Due to constraints (6.4) and (6.5),
these last two terms are constant and could be removed from the objective function.
Constraints (6.2) force that the number of times a drone visits a non–required vertex is
even, possibly zero, and equalities (6.3) ensure that a drone traverses two non–required
edges incident with a required vertex i if it is serviced by this drone (and traverses
no incident edges if it is not serviced). Equations (6.4) force each required edge to
be serviced exactly once, and the visit of each required vertex by exactly one drone
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is ensured by constraints (6.5). Constraints (6.6) guarantee that a second traversal of
a non–required edge by a drone can only occur when it has been traversed previously
by this drone. Inequalities (6.7) avoid subtours and ensure that each single route is
connected and connected to the depot. Constraints (6.8) guarantee that the duration of
each route does not exceed L, while constraints (6.9) ensure that the demand serviced
on each route is not greater than the drone capacity Q. Constraints (6.10), (6.11) and
(6.12) are the binary conditions for the variables.

The following results allow us to remove some variables from the formulation, taking
into account the structure of the optimal K–GRP solutions.

Theorem 6.2.1. There is an optimal K–GRP solution in which each route satisfies:

(a) It does not deadhead two edges (i, j), (j, k) consecutively, except if j ∈ VR and it
is serviced by the route.

(b) It does not visit the vertices in {v0} ∪ VR ∪ VO more than once.

(c) It does not visit the vertices in VE more than twice.

Proof: (a) Let us suppose a tour deadheads two edges (i, j), (j, k) consecutively with
j /∈ VR. Each one of these two edges is either a non–required one or a required edge
that had already been serviced in a previous traversal. Recall that the non–required
edge (i, k) exists because ENR induces a complete graph, and that cik ≤ cij + cjk due
to the triangle inequality. The tour obtained after replacing the traversal of (i, j), (j, k)
with the traversal of (i, k) has a lower or equal duration and services the same required
edges and the same required vertices as the former tour. By iterating this argument we
obtain (a).

(b) The drone tours start and end at v0. If a tour visits v0 again, it deadheads two
edges without servicing v0, which contradicts (a). Let us suppose a tour visits a given
vertex j ∈ VR ∪ VO more than once. Note that there is only one service associated with
vertex j: the service of j, if j ∈ VR or the service of the unique required edge incident
with j, if j ∈ VO. Therefore, all visits to the vertex j, except one of them, are performed
by deadheading two edges without servicing j, which contradicts (a).

(c) Let us suppose a tour visits a given vertex j ∈ VE more than twice. Note that
there are only two services associated with vertex j: the service of the two required
edges incident with j ∈ VE . Therefore, all visits to the vertex j, except two of them,
are performed by deadheading two edges without servicing j, which contradicts (a). �

Corollary 6.2.2. For each drone k, variables yke for the following non–required edges
e can be removed from the formulation:

• e = (u, v) with u ∈ VO (or v ∈ VO), and

• e = (u, v) with u, v ∈ VR.

and the following inequalities can be added to the formulation:

xk(δ(i)) = 2xkij , ∀(i, j) ∈ ER, with i ∈ VO, ∀k (6.13)

xk(δ(i)) ≤ 2xkij + 2xkli, ∀(i, j), (l, i) ∈ ER (i ∈ VE), ∀k (6.14)
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Note: Consider the special case of the K–GRP in which the lines are not split, that
is, VE = ∅. From Corollary 6.2.2, this case can be formulated using variables yke only
for those edges joining the depot and vertices in VR (all the other yke variables can be
removed). Moreover, from Theorem 6.2.1, there is an optimal solution that does not
use any non–required edge parallel to a required one (otherwise, two consecutive edges
would be deadheaded), so no variable xke is needed for these edges.

6.2.2 Other valid inequalities for the K–GRP

In this section we present four families of valid inequalities that reinforce the above
formulation. They are based on the capacity and autonomy constraints of drones or on
known families of valid inequalities proposed in Corberán et al. (2013) for the maximum
benefit Chinese postman problem (MBCPP).

Parity inequalities

Parity inequalities are obtained from those proposed in Corberán et al. (2013) for
the MBCPP, which generalize the well known co–circuit inequalities (Barahona and
Grötschel, 1986). They rely on the fact that each drone tour traverses any edge cut–set
an even (or zero) number of times:

xk(δR(S)\FR) + (xk − yk)(δNR(S)\FNR) ≥ xk(FR) + (xk − yk)(FNR)− |F |+ 1, (6.15)

for each drone k ∈ {1, . . .K}, for all S ⊂ V , and for all F ⊆ δ(S) with |F | odd.

In order to see that parity inequalities (6.15) are valid for the K–GRP on G, note
that xk(FR)+(xk−yk)(FNR) ≤ |F |. For a drone k, the tours that satisfy xk(FR)+(xk−
yk)(FNR) = |F | traverse each edge in F once, and, since |F | is odd, they traverse at least
one edge in δ(S)\F once, thus satisfying xk(δR(S)\FR) + (xk − yk)(δNR(S)\FNR) ≥ 1.
For the drone tours satisfying xk(FR) + (xk − yk)(FNR) ≤ |F | − 1, inequality (6.15)
reduces to xk(δR(S)\FR) + (xk − yk)(δNR(S)\FNR) ≥ 0, which is obviously satisfied.

p–connectivity inequalities

p–connectivity inequalities are based on those with the same name proposed for the
MBCPP in Corberán et al. (2013) and are generalized here to also consider the existence
of required vertices.

Let {S0, . . . , Sp} be a partition of V . Assume that v0 ∈ Sd, d ∈ {0, . . . , p}, and select
either an edge ej ∈ ER(Sj) or a vertex vj ∈ Sj ∩ VR for each j ∈ {0, . . . , p}\{d}. Let
I1 and I2 be the sets of indices in {0, . . . , p}\{d} in which a required edge or a required
vertex has been selected, respectively. For each drone k, the following inequality

xk(δR(S0)) + (xk + yk)(δNR(S0)) + 2
∑

1≤r<t≤p
xk(Sr : St) ≥ 2

∑
j∈I1

xkej + 2
∑
j∈I2

zkvj (6.16)

is valid for the K–GRP and will be referred to as p–connectivity inequality.



6.2. The multi–purpose K–drones general routing problem 117

Theorem 6.2.3. p–connectivity inequalities (6.16) are valid for the K–GRP.

Proof: Let us assume that the depot belongs to S0 and let (x̄, ȳ, z̄) be a K–GRP
tour. Given a drone k, if there is an edge ej , j ∈ I1, or a vertex vj , j ∈ I2, such that
x̄kej = 0 or z̄kvj = 0, we can consider another p–connectivity inequality with p−1 subsets
by merging sets Sj and Sj+1 (or Sj−1). If the new (p − 1)–connectivity inequality is
satisfied by the solution, the original one will also be. Therefore, we can assume that
x̄kei = 1 for all i ∈ I1 and z̄kvi = 1 for all i ∈ I2.

Moreover, if x̄k(Sr : St) ≥ 1, we can also merge Sr and St, obtaining a new (p− 1)–
connectivity inequality. As before, if this inequality is satisfied, the original one also
holds. Therefore we can also assume that x̄k(Sr : St) = 0 for any pair of sets Sr, St,
with 1 ≤ r < t ≤ p.

Since each set Si, i > 0, must be connected to the depot and x̄k(Sr : St) = 0,
xk(δR(S0)) + (xk + yk)(δNR(S0)) ≥ 2(|I1|+ |I2|), and the inequality holds. �

Capacity inequalities

Capacity inequalities are widely used in node and arc routing problems when there is
a limit to the demand a vehicle can service. Given a vertex set S ⊆ V \{v0}, the edge
cut–set δ(S) has to be traversed at least twice the number of vehicles needed to service
the demand of the required vertices in S, and, therefore, the following inequality is valid:

K∑
k=1

xk(δR(S)) +
K∑
k=1

(xk+ yk)(δNR(S)) ≥ 2
⌈ ∑
i∈VR∩S

di/Q
⌉
, ∀S ⊆ V \{v0}. (6.17)

Max–time inequalities

Max–time inequalities are based on the limit L to the duration of a drone tour. Consider
two sets F ⊆ ER and S ⊆ VR such that the duration of the optimal tour (or a lower
bound to it) starting and ending at v0, traversing all the edges in F , and visiting all the
vertices in S, is greater than L. On the one hand, we have that a single drone k cannot
service all the arcs in F and all the vertices in S and, hence, inequalities

xk(F ) + zk(S) ≤ |F |+ |S| − 1, ∀k ∈ {1, . . .K}, (6.18)

are valid for the K–GRP on G. On the other hand, under the same circumstances, at
least two different drones must enter any subgraph of G that contains all edges in F
and all vertices in S but does not contain the depot. Hence, if W ⊂ V \{v0} is a set
of vertices containing S and the vertices incident with the edges in F , the following
inequalities

K∑
k=1

(
xk(δR(W )) + (xk+ yk)(δNR(W ))

)
≥ 4, (6.19)

and

K∑
k′=1

(k′ 6=k)

(
xk
′
(δR(W )) + (xk

′
+ yk

′
)(δNR(W ))

)
≥ 2, ∀k ∈ {1, . . .K} (6.20)
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are also valid for the K–GRP on G. Inequalities (6.18), (6.19), and (6.20) can be easily
generalized to the case when the number of drones needed to service the edges in a given
set F and the vertices in a given set S is greater than two.

6.3 A branch–and–cut algorithm for the K–GRP

We have implemented a branch–and–cut algorithm for the K–GRP based on the formu-
lation proposed in Section 6.2.1. The fundamental component of the branch and cut is
a cutting–plane algorithm that incorporates separation procedures for the inequalities
presented in Section 6.2.2.

6.3.1 Separation algorithms

At each iteration of the cutting–plane procedure we use some separation algorithms to
identify valid inequalities that are violated by the current LP fractional solution. Let
(x̄k, ȳk, z̄k), for k = 1, . . . ,K, denote this fractional solution, and let ε > 0 be a given
parameter. In what follows we describe the separation procedures used for each family
of valid inequalities.

Connectivity inequalities

Although connectivity inequalities (6.7) can be exactly separated in polynomial time
by means of max–flow computations, the procedure is very time consuming and may
produce many similar violated inequalities. Therefore, we decided to use heuristic al-
gorithms for separating them. The first one is a well–known method based on the
computation of the connected components of the graph induced by the edges e ∈ E
such that x̄k(e) + ȳk(e) > ε, plus the depot, if necessary. Inequality (6.7), associated
with each connected component and with the edge f in it with maximum x̄k(f), is
checked for violation.

The second heuristic works in a smaller graph in which the connected components of
the graph induced by edges with x̄k(e) ≥ 1−ε are shrunk into a single vertex each. Then,
all the minimum cuts between the vertex corresponding to the component containing the
depot and the other ones are calculated, and the corresponding connectivity inequalities
are checked for violation.

Parity inequalities

Parity inequalities can be exactly separated in polynomial time with an algorithm based
on the Padberg–Rao procedure (Padberg and Rao, 1982) for the computation of odd
minimum cuts (see also Letchford et al. (2008) for a more efficient procedure). For
the special case where S = {v}, the exact procedure described in Ghiani and Laporte
(2000) gives the set F ⊆ δ(v) associated with the most violated parity inequality.

We also use a simple and fast algorithm based on the computation of the connected
components of the graph induced by the edges e ∈ E with x̄k(e) − ȳk(e) > ε, plus the
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depot, if necessary. The same procedure as for the case S = {v} is used here to obtain
the set F corresponding to the cut–set associated with each component.

p–connectivity inequalities

To separate these inequalities, we first look for tight connectivity inequalities (6.7) by
searching among the cut–sets obtained with the connectivity separation procedures. Let
S be a set of vertices associated with such a cut–set and assume that v0 ∈ S0 = V \S. If
the connectivity inequality is tight for drone k, we compute the connected components
in the subgraph induced in G(S) by the edges e ∈ E(S) with x̄k(e) ≥ 1 − ε. For each
pair Ci, Cj of such components,

sij = 2x̄k(Vi, Vj)− 2 min{w̄k(αi), w̄k(αj)}

is calculated, where Vi and Vj denotes the set of vertices in Ci and Cj , and

w̄k(αt) = max{x̄k(e) : e ∈ E(Vt), z̄
k(v) : v ∈ Vt ∩ VR},

for each component Ct. The components that maximize sij are iteratively shrunk while
sij is positive. In this way, we obtain sets S1, . . . , Sp and the associated inequality (6.16)
is checked for violation.

Capacity inequalities

Capacity inequalities (6.17) can be separated heuristically by using the following simple
procedure. First, we build the support graph G = (V,ER∪ENR), where ENR is defined
by those non–required edges with

ce =

K∑
k=1

(x̄ke + ȳke ) > 0.

Required edges have unit capacity and edges in ENR have capacity ce. For each required
vertex i ∈ VR, we compute the max flow in G from the depot to i. Let (S : V \S) be
the associated minimum cut, with i ∈ S, and

nv =
⌈ ∑
j∈VR∩S

dj/Q
⌉
.

If the max flow is less than 2nv, this cutset defines a violated capacity inequality (6.17).
Whether the inequality is violated or not, we define K as the set of vehicles k such that
x̄k(δR(S)) + (x̄k + ȳk)(δNR(S)) < 2. Then, the inequality∑

k∈K
x̄k(δR(S)) +

∑
k∈K

(x̄k+ ȳk)(δNR(S)) ≥ 2(nv −K + |K|), (6.21)

for all S ⊆ V \{v0}, is valid for the K–GRP and can be more violated than the initial
one.
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Max–time inequalities

We separate max–time inequalities (6.18), (6.19), and (6.20) by using two heuristic
procedures based on the ones presented in Section 5.1.1 for the LC K–RPP.

The first one looks for violated inequalities (6.18). Let {e1, e2, . . . , em} be a set of
required edges such that x̄ke1 ≥ x̄ke2 ≥ . . . ≥ x̄kem ≥ 0.5, and let F = {e1, e2, . . . , ef},
where f is the maximal number such that x̄k(F ) > |F | − 0.5. Then we define S as the
set of vertices with z̄ki = 1, i ∈ VR. Now we solve the GRP with the set of required
edges F and the set of required vertices S ∪ {v0} with the branch–and–cut algorithm
described in Corberán et al. (2007). Let C(F, S) be its optimal value or a lower bound.
If C(F, S) > L, the corresponding inequality (6.18) is violated. Otherwise, for each edge
e ∈ {ef+1, . . . , em}, we consider the set F = F ∪{e} and check if C(F , S) is greater than
L. For each pair (F, S) (or (F , S)) whose corresponding inequality (6.18) is violated,
we look for the cutset of minimum weight between the depot and the edges in F and
vertices in S in the support graph G = (V,ER∪ENR) defined above for the separation of
capacity inequalities. For this cutset, we check the corresponding max–time inequalities
(6.19) and (6.20) for violation.

The second heuristic looks for inequalities (6.19). The procedure starts by defining
S = {i}, where i is the vertex farthest from the depot such that the maximum flow
from v0 to i in G is less than 2K. Then we iteratively add vertices to S in such a way
that

∑K
k=1 x̄

k(δR(S)) +
∑K

k=1(x̄k + ȳk)(δNR(S)) is minimum. For each S, we compute
the minimum number of vehicles needed to service all the edges in ER(S) and all the
required vertices in S by solving the associated GRP. The corresponding inequality
(6.19) is checked for violation. If a violated constraint (6.19) is found, at least one of
the inequalities (6.20) is also violated and it is added.

6.3.2 The cutting–plane algorithm

The initial LP relaxation contains inequalities (6.3), (6.4), (6.5), (6.6), (6.8), (6.9), and
the bounds on the variables. Moreover, as is usual in routing problems with several
vehicles, some symmetry–breaking inequalities are added to avoid equivalent solutions.

At each iteration, the cutting–plane algorithm applies the first heuristic algorithm
for connectivity inequalities with ε = 0, 0.25, 0.5, where the value of ε is increased only if
no violated inequalities are found with the previous value. If this heuristic fails in finding
violated cuts, the second connectivity heuristic is applied for ε = 0, 0.1, 0.2, 0.3, 0.4. All
the tight cut–sets obtained with the connectivity separation procedures are stored and
used by the p–connectivity heuristic to check the violation of their associated inequalities
with ε = 0, 0.15, 0.3.

Moreover, at each iteration we apply the heuristic for identifying violated capacity
inequalities, the exact parity separation procedure for single vertices, and the heuristic
procedure for parity inequalities with values 0, 0.25, and 0.5 for ε. A value of ε is used
only if the previous one results in no violated inequalities.

Max–time separation algorithms are called only at the root node. Furthermore, the
exact procedure for parity inequalities is applied only at the root node if no violated
connectivity, p–connectivity, nor parity inequalities have been found so far.
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6.4 A matheuristic for the multi–purpose K–drones GRP

In this section, we present a matheuristic algorithm for the MP K–DGRP that consists
of two parts. The first part aims to find solutions for the K–GRP considering that
each original line of the MP K–DGRP instance is represented by a single required edge
(without intermediate points). Let us call this instance K–GRP(0). In this part, we
use an order–first split–second method (see Prins et al., 2014) that initially generates
a “giant tour” traversing all the required edges and visiting all the required nodes of
G without considering the max–time and capacity constraints, and then K feasible
drone routes for the K–GRP(0) instance are obtained from it. This is described in
Section 6.4.1. Several different giant tours are generated and partitioned into K routes
to obtain a set of K–GRP(0) feasible solutions. These initial solutions are improved by
applying a variable neighborhood descent (VND) algorithm, described in Section 6.4.2,
that combines four local search procedures and a route optimization phase.

The second part of the matheuristic is focused on improving the n best K–GRP(0)
solutions obtained in the previous part by adding some intermediate points to the re-
quired edges, thus allowing drones to enter (or to exit) the lines not only at its end-
points, but also at a subset of intermediate points. First we consider the new instance
K–GRP(1) resulting from adding one intermediate vertex to each required edge, so
that each line is approximated by a polygonal chain with two segments (edges) with the
same traversal (and service) time. Each one of the n K–GRP(0) solutions previously
obtained is trivially transformed into a K–GRP(1) solution. We call this procedure
“1–splitting”. Then, we apply again the VND algorithm and the route optimization
procedure to each K–GRP(1) solution. Some of these solutions may have been now im-
proved due to drones entering or leaving some required edge through its middle point.
The most “promising” edges of each solution, those whose two halves are now serviced
by different drones (or by the same drone but not consecutively), are split again by
adding p equidistant intermediate vertices. We then try to improve the solution by
using these new vertices. This is detailed in Section 6.4.3.

Throughout this section, we will use K–GRP solution to refer to a set T = (T1, T2,
. . . , TK) of K routes, each one starting and ending at the depot, with duration no greater
than L and total demand not exceeding the drone capacity Q, such that each required
edge is traversed and each required node is visited. We will use task ti = (ti1, ti2) to
refer either to a required edge (ti1, ti2) serviced by traversing it from ti1 to ti2 or to a
required vertex ti1 = ti2. Then, a route associated with drone k can be represented by
a sequence of tasks Tk = {tki , . . . , tkj }, where it is assumed that the deadheading from
the depot to the first task, from the end of a task to the beginning of the following
one, and from the last task back to the depot, is done by traversing the corresponding
non–required edge. We will denote by d(tk` ) the demand of task tk` , for tk` ∈ VR ∩ Tk. A
route will be feasible if its duration is not greater than L and if its total demand does
not exceed Q.

6.4.1 Solutions for K–GRP(0)

As mentioned above, this first part of the matheuristic focuses on finding solutions for
the K–GRP(0) instance. The algorithm starts by finding an optimal tour on G =
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Algorithm 1 Splitting procedure for a giant tour TG
Require: G,TG

1: initialize G∗ = (V ∗, A∗): V ∗ ← {0, 1, . . . , n}; A∗ ← ∅
2: for i← 1 to n do
3: j ← i
4: arctime← 0
5: demand← d(tj)
6: while (j ≤ n) and (demand ≤ Q) and (arctime ≤ L) do
7: arctime← γ(i− 1, j)
8: if arctime ≤ L then
9: add arc (i− 1, j) to A∗ with traversal time arctime

10: j ← j + 1
11: demand← demand+ d(tj)
12: end if
13: end while
14: end for
15: compute the shortest path P from 0 to n in G∗

16: transform each arc of P into a sequence of ordered tasks

17: return a K–GRP(0) solution (a set of K drone routes)

(V,E) traversing all the required edges and visiting all the required nodes of G. This
tour, commonly called a giant tour in the literature, is generated by relaxing drone
capacity and time limit, and solving the GRP instance optimally with the branch–and–
cut algorithm described in Corberán et al. (2007). The tour returned by this procedure
has an associated sequence of tasks TG.

The giant tour is optimally partitioned into K feasible drone routes by solving a
shortest path problem over an auxiliary directed graph G∗ = (V ∗, A∗) (see Beasley,
1983; Ulusoy, 1985). This procedure was already used in Section 3.3.1 for the length
constrained K–RPP(0) and has been extended here to consider required vertices as
explained below.

The set V ∗ contains |VR| + |ER| + 1 nodes, where v0 denotes the depot and the
remaining nodes v` represent the tasks t`. The nodes are arranged from left to right
following the order in which their associated tasks are performed in the giant tour. Each
arc in A∗ represents a feasible drone route on G. An arc from node vi to node vj is
added if the route starting from the depot, performing tasks ti+1, . . . , tj in that order,
and going back to the depot, is feasible. The time associated with these arcs, denoted
γ(i, j), is the duration of the corresponding route.

In graph G∗ we compute a shortest path from node v0 to node v|VR|+|ER|, whose set
of arcs, as proved in Ulusoy (1985), defines a partition of the giant tour into K feasible
tours that is optimal regarding the ordering of the traversal of the tasks. Algorithm
1 summarizes this procedure. However, this method does not take into account that
required edges can be traversed in two possible directions. Prins et al. (2009) propose
a procedure called Split with Flips that is a generalization of the previous method
considering the two directions in which each edge can be traversed. The main difference
consists of the way the times γ(i, j) associated with the arcs in G∗ are calculated.

We have adapted this algorithm to consider required vertices as follows. For each
arc in a ∈ A∗ representing a route, a new auxiliary directed graph G∗a is created in order



6.4. A matheuristic for the multi–purpose K–drones GRP 123

to calculate its associated duration. Each task corresponding to a required edge in G is
represented now with two arcs, one for each possible direction of traversal, with times
equal to its original service time. For each task associated with a required vertex, one
vertex is created with a (visiting) time equal to its original service time in G. Then an
arc is added from the end vertex of each arc (or vertex) representing a task to the initial
vertex of the following arc (or vertex), whose time is that of the corresponding shortest
path in G. Two additional vertices representing the depot are added and connected
with the first and last task of the route, respectively, with times equal to those of the
corresponding shortest paths in G. In this graph, a shortest path between the two
copies of the depot is calculated. This shortest path determines the optimal direction
of traversal of each task and its time will be the one assigned to arc a ∈ A∗.

Figure 6.3 illustrates the graph generated for a subsequence T = {t1, t2, t3, t4, t5} of
tasks, where arc t` represents task t` traversed in the direction given by the route and arc
t−1
` corresponds to the opposite direction of traversal. The numbers next to the nodes

and edges represent their service times. Dashed lines represent the non–required edges
corresponding to the shortest paths joining the tasks. In this example, the shortest path
{t1, t2, t−1

3 , t4, t5} has value 52, while the directions given by the giant tour have a value
of 58.
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Figure 6.3: Example of an auxiliary graph used in the Split with Flips procedure

In order to obtain a larger set of initial solutions, we apply the above algorithm
with other initial giant tours on G defined by different Eulerian circuits obtained from
the optimal GRP solution. Note that a GRP solution is an Eulerian graph that can be
traversed in different ways. We try to generate different Eulerian circuits by applying
the Hierholzer algorithm (Hierholzer, 1873) |ER| + |VR| times, starting each time with
a different task. We thus obtain a set T̄ of different initial K–GRP(0) solutions, with
|T̄ | ≤ |ER|+ |VR|.

6.4.2 A variable neighborhood descent algorithm for the K–GRP(0)

Once the initial set of K–GRP(0) feasible solutions is generated, a variable neighbor-
hood descent algorithm (VND) (Mladenovic and Hansen, 1997; Duarte et al., 2018) is
applied to each solution T ∈ T̄ to try to improve it. A VND is a metaheuristic that
explores a sequence N = (N1, . . . , Nρmax) of neighborhood structures in a deterministic
way. Starting from an initial solution T and ρ = 1, each iteration of the VND explores
the neighborhood Nρ(T ) to try finding a better solution. If one improving move is
detected, it is executed and ρ is reset to 1; otherwise, ρ is incremented to browse the
next neighborhood. The algorithm stops when the exploration of the last neighbor-
hood Nρmax(T ) brings no improvement, that is, when the current solution T is a local
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Algorithm 2 Pseudocode of the VND algorithm

1: for each K–GRP(0) solution T ∈ T̄ do
2: ρ← 1
3: while ρ ≤ 4 do
4: obtain T ′ ∈ Nρ(T ) by applying the ρ–th local search method to T
5: if f(T ′) < f(T ) then
6: T ← T ′ and ρ← 1
7: else
8: ρ← ρ+ 1
9: end if

10: end while

11: end for

optimum over all the considered neighborhoods. The VND algorithm proposed here
explores ρmax = 4 different neighborhood structures (see Algorithm 2).

The first neighborhood structure N1 is defined by the intra–route move and consists
of all the permutations resulting from moving a task to another position within the
route that performs it. For each route Tk of a solution T , the intra–route procedure
removes a task t` ∈ Tk at each step and inserts it in the position of Tk that minimizes
the duration of the route.

The second neighborhood structure N2 is defined by the destroy and repair move.
Each iteration of the associated local–search procedure randomly chooses r tasks, with
2 ≤ r ≤ 8, and removes them from their corresponding routes. Then, the algorithm
tries to relocate each task one by one in the route and position that minimizes the total
time, satisfying the time limit and the capacity constraints. Note that it is possible that
a required edge can not be placed in its original position because another edge has been
previously added to its route. If an edge cannot be inserted in any route, a new route
servicing it is created. If the total time of the new solution is not better than the time
of the original one, the changes made in this iteration are discarded. This procedure
is repeated until one improving move is detected or until imax consecutive iterations
without any improvement are performed, with imax a given parameter.

The third neighborhood structure N3 is defined by the 0 to ` – exchange move.
Each iteration of this local–search procedure removes ` consecutive tasks from the route
servicing them and inserts all of them between two consecutive tasks of another route.
The algorithm considers the removal of all the possible sets of ` consecutive tasks and
their insertion in all the possible positions of other routes such that the duration and the
total demand of the resulting route do not exceed L and Q, respectively. The algorithm
starts with ` = 1, and if no exchange improves the original solution, ` is incremented
by 1 and the process is repeated. The procedure stops when an improving move is
executed, or when ` = `max and there are no moves that improve the total time, with
`max a given parameter.

The last neighborhood structure N4 is defined by the `1 to `2 – exchange move
and contains all the solutions obtained by interchanging a chain of `1 consecutive tasks
from one route with a chain of `2 consecutive tasks from another route, with `1 ≤ `2.
The local–search procedure starts with `1 = `2 = 1, and tries to interchange the tasks
between the two routes in order to find an improving move. If no exchange move reduces
the total time satisfying the route capacity and time limit constraints, `2 is incremented
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by one unit and the process is repeated. If `2 reaches `max and no improving exchanges
are found, then `1 increases by one unit and `2 is set equal to `1. The procedure stops
when an improving move is found, or if `1 = `2 = `max and there are no exchange moves
that produce a better solution.

Once the VND algorithm is terminated, a route–optimization procedure is applied
to each solution T ∈ T̄ . For each drone route T of a solution T , this procedure
defines a GRP instance on graph G formed by the required edges and the required
nodes corresponding to the tasks performed on T . This GRP instance is then optimally
solved with the branch–and–cut algorithm proposed in Corberán et al. (2007). The
resulting routes will have a total time less than or equal to that of the original ones.

6.4.3 Adding intermediate points to obtain better K–GRP solutions

Let T̄b be the subset of the n best K–GRP(0) solutions obtained in the first part of
the matheuristic. We add an intermediate vertex i1 (equidistant from both endpoints)
to each required edge (i, j) of G to obtain a new instance called K–GRP(1) with two
edges (i, i1), (i1, j) for each original required edge (i, j). Given a solution T ∈ T̄b of
K–GRP(0), it is easy to transform it into a solution T ′ of K–GRP(1) with the same
total duration that traverses edges (i, i1), (i1, j) consecutively.

Let T̄1 be the set of all the K–GRP(1) solutions obtained in this way. The VND
algorithm and the route optimization procedure are applied to each T ′ ∈ T̄1 to try to
improve their overall duration. Observe that drones can now enter and leave any line
through its middle point, which may lead to a better solution where the service of some
original lines can be shared by two drones.

Let ET
′

1 be the set of original lines whose middle point is incident to non–required
edges in solution T ′. Note that an edge in ET

′
1 is serviced by two drones (or by the

same drone but not servicing both halves consecutively). It may be possible to improve
this solution by “moving” this middle point closer to the extreme points of the edge.
To do this, we consider p, with p odd, intermediate vertices evenly spaced in the line.
Note that the middle point is one of them. Then, we study the improvement obtained
by changing the entry/leaving point for this edge to each one of the p − 1 other new
points. This procedure, which we call “p–splitting”, is applied to all the edges in ET

′
1 .
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i ji1

vj

Ti

Tj

(a) Adding p new intermediate points

vi

i j

vj
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Ti

Tj

(b) Selecting the best intermediate point

Figure 6.4: Illustration of p–splitting

Figure 6.4a illustrates how the “p–splitting” procedure improves a solution where
two (not necessarily different) routes, Ti (in orange) and Tj (in green), are involved in
servicing an original required line joining vertices i and j. Note that these routes enter
or leave the line at its middle point i1 and, thus, i1 is incident with two non–required
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(a) Deadheading time: 4341.9 (b) Deadheading time: 4116.27

Figure 6.5: Two solutions of instance MPDGRP882 before and after applying the split-
ting part of the matheuristic

edges (dashed lines) in the solution. After analyzing the total duration of the routes
obtained by replacing vertex i1 by all the p intermediate points, the best solution is the
one that uses vertex sbest, which is depicted in Figure 6.4b.

This p–splitting procedure is applied with p = 15 to each solution T ′ ∈ T̄1 and the
best solution obtained is selected as the final solution of the matheuristic.

Figures 6.5a and 6.5b illustrate an example of a solution before and after applying
the procedure described in this subsection. For this instance, the deadheading time is
reduced by 5.2% due to drones entering and leaving six of the original required edges
through some of their intermediate points.

6.5 Computational Experiments

In this section, we present the instances we have generated to analyze the behavior of
the proposed matheuristic and branch–and–cut algorithms, as well as the computational
study performed. The algorithms have been implemented in C++ and all the tests have
been run on an Intel Core i7 at 2.8 GHz with 16 GB RAM. The B&C uses CPLEX
12.10 MIP Solver with a single thread. CPLEX heuristic algorithms were turned off,
and CPLEX’s own cuts were activated in automatic mode. The optimality gap tolerance
was set to zero and best bound strategy was selected. The branch–and–cut algorithm
used for obtaining the initial optimal giant tour and for optimizing the routes after each
VND improvement phase was also coded in C++ and uses CPLEX 12.10 MIP Solver
too.
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6.5.1 Instances

As defined above, a Multi–Purpose K–Drones GRP instance is given by several sets of
parallel lines (each set covering a continuous area), some isolated vertices for delivery
(those required nodes with positive demand), and a depot. In order to evaluate the
behavior of the branch and cut and the matheuristic algorithm, we have randomly
generated two different types of instances, both differing in the way they are built,
classified as Type I or Type II instances.

First, we select values for n and m, and generate a GRP instance on a grid with
n×m points whose coordinates are multiples of 100. The graph initially contains all the
vertical and horizontal edges, as well as some random diagonals. For type I instances
generation, we divide the grid into a number of regions computed by nareas = dn3 e · d

n
3 e

and we randomly declare required an edge in each region. Each one of these required
edges gives rise to a required area later. This procedure ensures that areas are disjoint
and homogeneously distributed throughout the grid.

For type II instances generation, each edge of the original grid is considered required
(and therefore included on the instance) with probability p, thus obtaining several con-
nected components of required edges. As some of these components may contain more
than one edge, we iteratively remove required edges that are incident to vertices with
degree greater than one (at random) until we only have isolated required edges. The
idea behind this second type is to generate larger instances with a set of required areas
that are closer to each other. These type of instances can also be more difficult for our
algorithms.

Once a representative required line from each area is generated, the following steps
are identical for both types of instance. We randomly select the depot and a number
nvreq of isolated required nodes among those vertices of the grid that are not incident
with the selected required edges. The vertices, except for the depot, that are not
required nor incident with required edges are removed, and the coordinates of all the
vertices of the instance are randomly perturbed by adding a value in [−20, 20] to each
coordinate, avoiding completely horizontal and vertical edges and also slightly changing
the length of the edges. Each required area is completely defined by adding a set of
npar(e) parallel lines to each initial required edge e (separated by a distance distpar to
each other). The length and position of these new edges are then slightly perturbed in
a random way so that the represented area has a more irregular shape. The demand of
each required node v is given by a value dem(v) and the service time of each required
edge is the Euclidean distance multiplied by a parameter timefactor.

We have generated MPK–DGRP instances with different values for n,m ∈ {6, 7, 8, 9,
10, 12}, npar(e) ∈ {1, 2, 3} for each initial required edge e, distpar = 20 and timefactor
= 1.5. For type I instances, we have generated two sets with nvreq ∈ [n− 4, n+ 4]:
one with dem(v) ∈ {1, 2, 3} for each required node v (version 1), and another with unit
demands (version 2). Since the demands of the vertices represent the weight of the
delivery, and given that it seems reasonable that the total weight that can be carried by
a drone is not very large, we have not considered demands greater than 3. For type II
instances, we have also generated two different sets with unit demands: one with p = 0.4
and nvreq ∈ [n− 1, n+ 1] (version 1), and another with p = 0.3 and nvreq ∈ [2n− 1,
2n+ 1] (version 2).
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Instance name |V | |VR| D |ER| ] areas

MPDGRP661 31 6 14 12 4
MPDGRP662 37 6 6 15 4
MPDGRP681 48 7 16 20 6
MPDGRP682 50 7 7 21 6
MPDGRP771 32 5 10 13 4
MPDGRP772 34 5 5 14 4
MPDGRP861 50 7 15 21 6
MPDGRP862 55 8 8 23 6
MPDGRP881 32 5 10 13 4
MPDGRP882 39 6 6 16 4
MPDGRP8101 79 12 24 33 12
MPDGRP8102 93 10 10 41 12
MPDGRP991 61 10 22 25 9
MPDGRP992 69 10 10 29 9
MPDGRP1081 83 12 24 35 12
MPDGRP1082 85 12 12 36 12
MPDGRP10101 61 10 22 25 9
MPDGRP10102 66 11 11 27 9
MPDGRP12121 103 10 22 46 16
MPDGRP12122 111 12 12 49 16

(a) Type I instances

Instance name |V | |VR| |ER| ] areas

MPDGRP661 60 7 26 8
MPDGRP662 54 13 20 6
MPDGRP681 83 6 38 11
MPDGRP682 70 13 28 9
MPDGRP6101 114 7 53 17
MPDGRP6102 85 12 36 14
MPDGRP771 105 8 48 14
MPDGRP772 71 14 28 9
MPDGRP791 134 7 63 20
MPDGRP792 81 14 33 11
MPDGRP881 118 9 54 18
MPDGRP882 103 16 43 15
MPDGRP8101 150 9 70 24
MPDGRP8102 97 16 40 12
MPDGRP991 157 10 73 25
MPDGRP992 74 19 27 11
MPDGRP9101 163 10 76 23
MPDGRP9102 94 19 37 14
MPDGRP10101 179 10 84 28
MPDGRP10102 143 20 61 19

(b) Type II instances

Table 6.1: Characteristics of the MP K–DGRP instances

The characteristics of all the MP K–DGRP instances generated are shown in Table
6.1 and can be found in http://www.uv.es/plani/instancias.htm. Table 6.1a shows, for
each MP K–GRP instance of type I, the number of vertices, the number of required
vertices and its total demand, the number of required lines, and the number of areas.
Table 6.1b shows the type II instances characteristics and presents the same structure
except for the total demand, which is not included because its value matches the number
of required vertices. The digits in the name of each instance indicate the values of m, n
and if this is the first or the second version generated from the same grid. Examples of
a type I instance, a type II instance (version 1), and a type II instance (version 2) on a
grid with n = m = 9 are shown in Figures 6.6a, 6.6b, and 6.6c, respectively.

In order to choose the values for L, each instance has been executed several times
with different L values to guarantee that the solutions will use a number of drones
ranging from 2 to 6. The capacity Q of the drones has been chosen so that all the
demand of the required vertices can be serviced while keeping the number of packages
carried by each drone as low as possible.

6.5.2 Computational results

We present here the results obtained with the branch and cut and the matheuristic
algorithms on the MP K–DGRP instances. Note that the branch–and–cut (B&C)
algorithm is applied only on the MP K–DGRP instances without adding any additional
intermediate vertices, i.e. the so–called K–GRP(0) instances.

Each of these 40 instances, 20 of type I and 20 of type II, is solved with 2, 3, 4, 5
and 6 drones, and, hence, a total of 200 instances have been run.
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(a) Type I (b) Type II (Version 1) (c) Type II (Version 2)

Figure 6.6: MP K–DGRP instances on a grid 9× 9

Tables 6.2 and 6.3 summarize the computational results obtained with both algo-
rithms for all the instances of type I and type II, respectively. Both tables present the
same structure. The results for each type of instance are separated in two blocks by a
double horizontal line according to the instance generation characteristics (general or
unit demands in type I instances, and version 1 or version 2 in type II instances). Each
of these blocks is also separated according to the number of vertices. The number of
drones used by the solution is shown in Column 2. Each row refers to the data of 5
instances.

The results obtained with the B&C algorithm for the corresponding K–GRP(0)
instances with a time limit of 7200 seconds are reported in columns 3 to 7. Column 3
shows the number of instances out of five solved to optimality. Columns 4 and 5 show
the average percentage gaps between the value of the optimal solution (or the best upper
bound found) and the lower bound at the end of the root node (“Gap0”) and the final
lower bound (“Gap”), respectively. Column 6 reports the average number of nodes of
the branching tree and Column 7 shows the average total time, in seconds, used by the
B&C.

From Table 6.2 we observe that the B&C is capable of solving all type I instances
with up to 60 vertices and 2, 3, 4, 5, and 6 drones in less than 30 minutes on average
of computing time. Regarding the instances with more than 60 vertices, it can be seen
that most of the instances with 2, 3, and 4 drones (26 out of 30) have been solved in
less than one hour of computing time. However, the B&C has only been able to solve
3 out of 20 instances with 5 and 6 drones. On the other hand, comparing the values
of “Gap0”, “Gap”, and “Time” obtained for the instances with general demands and
unitary demands, we can observe that the latter seem a bit more difficult for the B&C
than those with general demands. This apparently small increase in difficulty could be
explained by the use of CPLEX cover inequalities in the case of general demands.

Table 6.3 reports the results obtained by the B&C and the matheuristic in Type
II instances, which are associated with larger graphs. It can be seen that only a small
number of instances have been solved to optimality. Specifically, 17 instances out of
20 with 2 drones, 12 out of 20 with 3 drones, and 6 with 4, 5, and 6 drones out of
60 instances. Note, however, that except for the largest instances with 6 drones, the
final gaps obtained are very good, showing that the inequalities in the formulation and
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Branch–and–Cut Matheuristic

|V | K ] opt Gap0 (%) Gap (%) Nodes Time ] opt ] best Gap (%) Imp (%) Time

G
e
n

e
ra

l
D

e
m

a
n

d
s

2 5 3.86 0.00 57.0 3.9 5/5 5 0.00 0.19 3.4
3 5 5.82 0.00 178.2 16.3 4/5 4 0.13 0.02 3.9

≤ 60 4 5 8.78 0.00 237.2 24.8 5/5 5 0.00 0.11 2.9
5 5 12.72 0.00 654.6 98.5 4/5 4 0.00 0.67 3.7
6 5 17.02 0.00 2590.8 427.0 3/4 3 0.13 0.65 4.4

2 5 3.00 0.00 199.0 49.1 4/5 4 0.00 0.15 30.1
3 5 5.22 0.00 705.6 349.9 2/5 2 0.09 0.02 19.9

> 60 4 3 8.80 0.82 5498.6 3828.4 2/3 4 0.98 0.26 19.9
5 2 10.07 2.46 4224.0 5501.0 1/2 3 2.67 0.57 17.8
6 0 11.24 4.50 5042.6 7200.0 0/0 3 4.97 0.20 17.4

U
n

it
D

e
m

a
n

d
s

2 5 3.17 0.00 46.2 6.3 4/5 4 0.01 0.01 4.8
3 5 6.47 0.00 206.4 25.5 5/5 5 0.00 0.01 4.1

≤ 60 4 5 10.75 0.00 348.8 60.2 3/5 3 1.28 0.10 4.2
5 5 15.17 0.00 1991.4 1511.9 5/5 5 0.00 0.26 4.5
6 5 17.74 0.00 4065.2 1736.5 4/5 4 0.02 0.83 4.4

2 5 3.95 0.00 608.8 112.7 3/5 3 0.28 0.11 43.7
3 5 5.11 0.00 381.0 148.7 3/5 3 0.21 0.02 34.4

> 60 4 3 8.34 1.02 2899.4 3211.5 1/3 3 1.04 0.08 28.0
5 1 12.01 2.73 4659.8 5692.9 1/1 4 2.83 0.28 26.9
6 0 13.18 5.03 4196.2 7200.0 0/0 5 5.03 0.24 27.5

Total 79 59/79 76

Table 6.2: Computational results with the B&C and the matheuristic on the instances
of Type I

the proposed valid inequalities provide a good description of the convex hull of the
solutions of the problem. These results reflect the great difficulty of the problem when
the instance is large and encourage the development of heuristic algorithms for solving
the multi–purpose K–drones general routing problem.

The results obtained with the matheuristic on all the instances of type I and II are
reported in columns 8 to 12 of Tables 6.2 and 6.3. To analyze its performance, we
have compared the results of the first part of the matheuristic (with no splitting) with
those of the branch and cut on the K–GRP(0) instances. Note that the final solutions
of the matheuristic (provided after the second part of the algorithm) are not feasible
solutions of the K–GRP(0) instance, but we compare them with the solutions obtained
in the first part to be able to analyze the improvement of allowing drones to use some
intermediate vertices.

Column 8 shows the number of optimal solutions of the K–GRP(0) instances found
with the matheuristic, and column 9 reports the number of times the matheuristic
reaches the optimal solution or provides the best upper bound. The “Gap” column
shows the average percentage gap between the value of the solution provided by the first
part of the matheuristic and the lower bound given by the branch–and–cut algorithm in
two hours of computing time. Column “Imp” gives the average percentage improvement
after applying the second part of the matheuristic algorithm with respect to the solution
provided in the first part. The last column reports the average total computing time,
in seconds, used by the matheuristic.

We can see that in 151 out of the 200 instances considered, the matheuristic provides
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Branch–and–Cut Matheuristic

|V | K ] opt Gap0 (%) Gap (%) Nodes Time ] opt ] best Gap (%) Imp (%) Time
V

e
rs

io
n

1

2 5 2.69 0.00 2775.2 761.6 5/5 5 0.00 0.30 68.2
3 4 4.08 0.07 5702.8 4240.7 1/4 2 0.15 0.38 58.0

≤ 120 4 2 5.00 1.48 4610.2 5792.5 2/2 5 1.48 0.48 46.0
5 0 7.35 4.56 3594.0 7200.0 0/0 5 4.56 0.69 44.3
6 0 8.58 6.02 2892.4 7200.0 0/0 5 6.02 0.66 39.7

2 2 2.01 0.33 3746.2 4750.6 1/2 2 0.51 0.26 285.0
3 0 3.03 1.66 2535.4 7200.0 0/0 2 1.83 0.41 215.4

> 120 4 0 4.02 2.80 1303.2 7200.0 0/0 5 2.80 0.18 170.0
5 0 5.45 4.51 814.2 7200.0 0/0 4 4.51 0.25 162.0
6 0 7.46 6.77 499.0 7200.0 0/0 5 6.77 0.45 154.3

V
e
rs

io
n

2

2 5 2.86 0.00 491.2 44.8 2/5 2 0.04 0.38 24.5
3 5 4.71 0.00 2947.2 1521.3 2/5 2 0.23 0.39 19.3

≤ 84 4 3 5.99 0.90 4334.0 4362.8 1/3 3 1.19 0.84 19.2
5 1 9.21 3.70 3694.6 7200.0 1/1 5 3.70 0.84 18.6
6 0 10.67 6.07 2545.0 7200.0 0/0 5 6.07 0.71 19.0

2 5 2.29 0.00 1144.6 283.9 1/5 1 0.40 0.44 130.9
3 3 4.13 0.44 4166.2 4446.0 1/3 3 0.57 0.43 82.6

> 84 4 0 6.28 3.47 2591.8 7200.0 0/0 4 3.55 0.40 89.3
5 0 9.41 6.99 1504.0 7200.0 0/0 5 6.99 0.52 71.9
6 0 11.04 8.94 1017.2 7200.0 0/0 5 8.94 0.20 70.3

Total 35 17/35 75

Table 6.3: Computational results with the B&C and the matheuristic on the instances
of Type II

a K–GRP(0) solution equal to or better than the one obtained with the B&C in a much
more reasonable computing time. Nearly 67 % of the K–GRP(0) instances optimally
solved by the B&C are also optimally solved by the matheuristic.

Table 6.4 summarizes the results obtained by the matheuristic on the 114 instances
for which an optimal solution is known for the corresponding K–GRP(0) instance.
Columns 1 and 2 contain the instance type and the number of drones. Column 3
reports the number of K–GRP(0) instances with known optimal value, and Column
4 the number among them for which the first part of the matheuristic provides the
optimal solution. The “Gap” column shows the average percentage gap between the
value of the solution of the first part of the matheuristic and the optimal solution, while
“Gap–p” represents the same gap for the solution obtained by the matheuristic after
the p–splitting phase. Note that some of these latter gaps may be negative, since the
solutions provided by the matheuristic for the instance with intermediate vertices may
be better than the optimal solution of the K–GRP(0) instance. The “Time” column
reports the average computing time in seconds.

As mentioned above, the first part of the matheuristic is able to optimally solve 76
out of the 114 instances for which the optimal solution is known. For the remaining 38,
the solutions obtained are very close to the optimal ones. In addition, the p–splitting
procedure allows us to improve them even more, obtaining solutions in many cases
better than the optimal solutions without splits in very short computing times. This
confirms that considering intermediate vertices when solving the problem can lead to
better solutions.

Finally, to get an idea of how much the cost of the solutions is improved by using
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Type K ] opt B&C ] opt M Gap (%) Gap–p (%) Time

I
2

20 16 0.07 −0.04 20.5
II 17 9 0.15 −0.23 95.9

I
3

20 14 0.11 0.09 15.6
II 12 4 0.18 −0.27 51.1

I
4

16 11 0.47 0.33 9.8
II 5 3 0.29 −0.55 24.4

I
5

13 11 0.00 −0.37 6.0
II 1 1 0.00 −0.56 9.0

I
6

10 7 0.08 −0.69 4.4
II 0 – – – –

Total 114 76

Table 6.4: Results for the instances with known optimal solutions

Single–purpose Multi–purpose
K ] inst nodes edges nodes+edges total cost Imp (%)

G
e
n

e
ra

l 2 5 3331.2 4377.4 7708.6 6146.1 20.35
3 5 3916.4 4608.9 8525.3 6764.3 20.79
4 5 4372.1 4901.2 9273.3 7362.2 20.70
5 5 4711.8 5424.9 10136.7 8269.4 18.28
6 5 4907.5 6092.0 10999.5 9203.1 15.71

U
n

it

2 5 3066.0 4359.3 7425.3 5830.9 21.63
3 5 3239.5 4667.9 7907.4 6306.9 20.24
4 5 3819.6 5022.1 8841.7 7009.1 20.47
5 5 3819.6 5512.5 9332.0 7954.6 14.41
6 5 4225.1 6130.6 10355.7 8777.8 14.87

Table 6.5: Comparison of results with single–purpose versus multi–purpose drones

multi–purpose drones versus using single–purpose drones (to service nodes or edges),
we have applied our B&C on all the K–GRP(0) instances of Type I with |V | ≤ 60, first
considering only the required vertices of the instances and then only the required edges.
We assume that two fleets of drones (K drones with delivery capability and K with
inspection capability) are available to perform each type of task (it may be the same K
drones that are reconfigured for missions of different type). The results obtained in these
50 instances are summarized in Table 6.5. Each row of this table reports the average
data for the 5 solved instances. Columns 3 and 4 provide the total cost (on average) of
the solutions if we consider drones that only service the required nodes (delivery only)
and drones that only traverse all the required edges (sensing only), respectively. The
sum of both of these costs for single purpose drones is shown in Column 5. The average
costs of the solutions obtained with multi–purpose are shown in Column 6, and the
last column gives the average percentage improvement that these costs represent with
respect to the sum of the costs provided by single–purpose drones. It can be seen that
the use of a fleet of multi–purpose drones improves the total cost between 14% and 21%
(on average) compared to the use of two fleets of single–purpose drones.



Chapter 7

The load–dependent drone
general routing problem

In this chapter, we address a new variant of the general routing problem (GRP). This
combinatorial optimization problem, introduced in Orloff (1974), aims to find the mini-
mum cost tour on a graph G = (V,E) traversing each required edge e ∈ ER and visiting
each required node v ∈ VR at least once. The extension we study here considers a
(multi–purpose) drone that needs to be routed to both provide sensing over a set of
edges and deliver goods to a set of vertices of the network. In the GRP, it is usually
assumed that the cost of traveling from a node i to a node j in the graph is a constant
cij . Nevertheless, the real cost of a vehicle which travels between any pair of nodes can
depend on many other aspects, such as the load carried by the vehicle and the fuel or
energy consumption.

In transportation systems with drones, the weight of the transported cargo represents
a significant part of the gross weight of the vehicle and can decisively influence the
battery consumption and the flight range of the drone (see Zhang et al., 2021), as well
as the travel times of the edges of the network and the takeoff and landing times. It is
therefore important to consider the weight carried by the drone at each moment of the
route. Such a variation of the load weight along the trip is taken into account in our
problem to determine the minimum duration drone route. Considering load dependency
adds considerable difficulty to modeling and solving routing problems, since costs and
travel times on the network are no longer constant.

Some routing problems that consider load–dependent costs have been studied in
the literature. Kara et al. (2007) introduce the energy minimizing vehicle routing
problem, a variant of the capacitated VRP that considers a new cost function based
on distance and load of the vehicle, and propose integer programming formulations for
both collection and delivery cases. The pollution routing problem (PRP) is introduced in
Bektaş and Laporte (2011) as an extension of the VRP aimed at reducing the greenhouse
gas emissions, which depend on the load of the truck. An exact approach for a variant of
the PRP is proposed in Dabia et al. (2017). Another variant with load–dependent costs
in the objective function is introduced in Zachariadis et al. (2015), where the VRP with
pick–ups and deliveries is generalized. Regarding arc routing problems, Corberán et al.
(2018) introduce load–dependent costs for the Chinese postman problem, providing two
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mathematical programming formulations and two metaheuristic algorithms to solve this
difficult problem.

Load–dependent costs and travel times have also been considered in vehicle routing
problems with drones and other green vehicles, such as cargo bicycles (Fontaine, 2022).
A recent survey on last–mile drone delivery research can be found in Eskandaripour and
Boldsaikhan (2023). Torabbeigi et al. (2020) address the design of a parcel delivery
system using drones, showing that there is a linear relationship between the payload
amount of the drone and the battery consumption rate. Dukkanci et al. (2021) introduce
the energy–minimizing and range–constrained drone delivery problem, in which the
speed of the drone is considered as a decision variable, motivated by its direct impact
on the range and energy consumption of the drone.

We introduce and study in this chapter the Load–Dependent drone General
Routing Problem (LDdGRP). The goal of this problem is to find a minimum duration
tour for a drone with sensing and delivering capability that, starting and ending at a
given depot, traverses a set of required edges of a network and also delivers goods at
a set of required nodes. In the LDdGRP, it is assumed that the traversal time of each
edge, as well as the takeoff and landing times, are proportional to the product of the
distance travelled and the total weight (including cargo) of the drone.

As in other arc routing problems studied in previous chapters, drones can travel in
a straight line between any two points of the network, and the optimization problem is
continuous and very difficult to solve. These problems can be discretized by approxi-
mating each original line of the network by one or several required edges and allowing
drones to enter and exit these edges only at their endpoints. The original characteristics
of drone arc routing problems that remain in the discrete problem are that the set of
non–required edges induce a complete graph (thus, each required edge has a parallel
non–required one) and that the deadheading times of the network satisfy the triangu-
lar inequality. Unlike other chapters, we will focus here on formulating the discrete
problem and proposing an exact algorithm for its solution, without addressing the issue
of including and eliminating intermediate points on the original lines to improve the
solution of the continuous problem.

The content of this chapter is organized as follows. A formal description for the
LDdGRP is presented in Section 7.1. We propose in Section 7.2 a mathematical formu-
lation for the LDdGRP. In Section 7.3, its associated polyhedron is studied, and several
families of valid inequalities are proposed. In Section 7.4, we present a branch–and–cut
algorithm for the LDdGRP that includes new separation procedures for the identifi-
cation of violated inequalities. The set of generated instances and the computational
experiments carried out to show the performance of the proposed algorithm are provided
in Section 7.6.

7.1 Problem definition and notation

The LDdGRP is defined on an undirected multigraph G = (V,E) with node set V and
edge set E = ER ∪ENR. The set of required edges ER ⊂ E contains all the edges of the
network that must be traversed (and serviced) by the drone at least once, and the set
of non–required edges ENR ⊆ E forms a complete graph with the node set V . For each
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E set of edges of the undirected network
ER set of required edges
ENR set of non–required edges
V set of nodes of the undirected network
v0 depot node
VR set of required nodes
V 0
R VR ∪ {v0}
VI set of nodes incident with required edges
di non–negative demand of node i, for i ∈ VR
Q total demand
w0 curb weight of the drone
cse time (per unit of weight) of traversing and servicing edge e ∈ ER
ce time (per unit of weight) of traversing/deadheading edge e ∈ E
cD time (per unit of weight) of landing and taking off when a vertex is serviced

Table 7.1: Notation used in this chapter

required edge e ∈ ER, there is a non–required parallel edge in ENR denoted by e′. The
vertex set V contains the depot v0, where the drone is initially located, a set VI formed
by those vertices that are incident with required edges, and a set of required vertices
VR ⊂ V , which is formed by all the nodes of V that must be visited (and serviced exactly
once) by the drone in order to make a delivery. We assume without loss of generality
that the required vertices and also the depot are not incident with required edges, and
that V = {v0} ∪ VI ∪ VR. For notation convenience, we will denote V 0

R = VR ∪ {v0}.

For each node i ∈ VR, we are given a non–negative value di that specifies the
demand at node i. We assume here that the drone has no load nor autonomy (flight
range) limitation, so that a single vehicle can perform the entire service. The total
demand is denoted by Q =

∑
i∈VR di. Each required edge e ∈ ER has an associated

value cse ≥ 0 corresponding to the time of traversing and servicing it for each unit of
total weight. Therefore, if the drone has a curb weight w0 and carries a load weighting q
at the moment of servicing edge e, the duration of traversing and servicing it is given by
(w0 + q) · cse. Similarly, each non–required edge e ∈ ENR has an associated deadheading
time ce for each unit of total weight. These deadheading times satisfy the triangular
inequality, and we assume cse ≥ ce′ for each required edge e and its corresponding parallel
edge e′ ∈ ENR. Moreover, the time taken by the drone to land and take off at a vertex
in VR (and to land or take off at v0) also depends on the total weight of the drone. This
can also be modeled as (w0 + q) · cD, where cD is a parameter representing the time
(per unit of weight) of the drone taking off and landing. We summarize the notation
employed in Table 7.1.

The objective of the LDdGRP is to find a route with minimum total duration,
starting and ending at the depot, traversing all the required edges and visiting each
required node exactly once.



136 Chapter 7. The load–dependent drone general routing problem

v2

v1

v0

e1

e2

e3
e4

e5

e6e7e8

(a) An LDdGRP tour on G

v1

v0

e1

e2

(b) Path from v0 to v1

v2

v1

v0

e1

e2

e3
e4

e5

(c) Path from v1 to v2

v2

v1

v0

e1

e2

e3
e4

e5

e6e7e8

(d) Path from v2 to v0

Figure 7.1: Example of a drone tour decomposition on |VR|+ 1 = 3 paths

7.2 A formulation for the LDdGRP

As defined above, an LDdGRP solution is a tour starting and ending at the depot,
traversing (and servicing) all the required edges and visiting all the required nodes
exactly once. Unlike classical general routing problems, the total duration of this LD-
dGRP tour depends on the weight with which the drone traverses each required or
non–required edge of the tour and visits each required vertex. We propose in this sec-
tion a formulation for the LDdGRP based on considering each solution as an ordered
set of paths in G.

To first illustrate the idea behind such a formulation, consider an LDdGRP instance
defined on a graph G with |VR| = 2 and |ER| = 8. The tour T = (v0, e1, e2, v1, e3, e4, e5,
v2, e6, e7, e8, v0) on G (see Figure 7.1a) is a feasible LDdGRP solution. In this tour, the
drone starts at the depot (represented in Figure 7.1 by a red square node v0), services
edges e1 and e2, and then visits node v1 to make the first delivery. In this part of the
tour, a path from v0 to v1, the drone travels with full load Q (Figure 7.1b). Next, the
tour contains a path from v1 to v2 with load Q − dv1 that services edges e3, e4 and e5

and visits node v2 (Figure 7.1c). Once the drone is empty, it returns to the depot after
servicing edges e6, e7 and e8 by following a path from v2 to v0 (Figure 7.1d).



7.2. A formulation for the LDdGRP 137

Hence, any feasible LDdGRP solution will be considered as an ordered set of P =
|VR|+ 1 paths. The end of each of the first P − 1 paths is determined by the service of
a (different) required vertex, while the last path of such set ends at the depot. Inside
each one of these P paths, the load carried by the drone does not change (it remains
constant from leaving a required node until visiting the next required node in the tour).
Thus, the load in the first path is equal to the total demand Q, and in the last path
the drone flies empty (all the deliveries have already been carried out). In what fol-
lows, we will call LDdGRP solution to any ordered set of P paths on graph G such that:

i) the first path starts at the depot,

ii) each path p ∈ {2, . . . , P} starts at the final vertex of path p− 1,

iii) each path p ∈ {1, 2, . . . , P − 1} ends at a different node of VR,

iv) the last path P ends at the depot, and

v) they jointly traverse all the required edges of the network.

Note that such a definition guarantees that each required vertex is visited by the
tour. In order to formulate the problem, we define the following decision variables. For
each path p ∈ {1, . . . , P} and each node i ∈ V 0

R, we define a binary variable zpi that
takes value 1 if node i is the end node of path p (and, hence, the initial node of path
p+ 1). For each path p ∈ {1, . . . , P} and each required edge e ∈ ER, we define a binary
variable xpe that takes value 1 if e is traversed in the p–th path, and 0 otherwise. We
also define for each path p ∈ {1, . . . , P} and each non–required edge e ∈ ENR two binary
variables xpe and ype representing the first and the second traversal of e in path p. Thus,
xpe takes value 1 if e ∈ ENR is deadheaded at least once in path p and ype takes value
1 if it is deadheaded twice in the p–th path. Furthermore, to represent the weight of
the load carried by the drone on each path p ∈ {1, . . . , P}, we introduce a variable qp.
Table 7.2 summarizes the above defined variables. We denote by P the set of indices
{1, ..., P} referring to the paths.

zpi 1, if node i ∈ V 0
R is the end–node of path p ∈ P, and 0, otherwise

xpe 1, if edge e ∈ ER is traversed in path p ∈ P, and 0, otherwise
xpe 1, if edge e ∈ ENR is traversed in path p ∈ P, and 0, otherwise
ype 1, if edge e ∈ ENR is traversed twice in path p ∈ P, and 0, otherwise
qp weight carried by the drone in path p ∈ P

Table 7.2: Decision variables in the LDdGRP formulation

For notational convenience we consider, for each i ∈ V 0
R, an additional parameter

z0
i that is fixed to zero except for z0

v0 = 1 to indicate that the first path (and therefore
the tour) must start at the depot. We will use the following notation. Given a subset
of vertices S ⊆ V , δ(S) = (S : V \S) denotes the edge set with one endpoint in S
and the other in V \S, and let E(S) = {e = (i, j) ∈ E : i, j ∈ S} be the set of edges
with both endpoints in S. For any subset of edges F ⊆ E, we denote FR = F ∩ ER,
FNR = F ∩ ENR, xp(F ) =

∑
e∈F x

p
e and (xp+ yp)(F ) =

∑
e∈F (xpe + ype), and write

δR(S) = δ(S) ∩ ER, instead of δ(S)R, and δNR(S) = δ(S) ∩ ENR, for any S ⊆ V .

The load–dependent drone general routing problem can be formulated as follows:
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Minimize
∑
p∈P

∑
e∈ENR

ce (w0 + qp) (xpe + ype)+
∑
p∈P

∑
e∈ER

cse (w0 + qp)xpe+
∑
p∈P

cD (w0 + qp)

(7.1)

s.t.
xp(δR(i)) + (xp+ yp)(δNR(i)) ≡ 0 (mod 2), ∀i∈VI , ∀p ∈ P, (7.2)

(xp+ yp)(δNR(i)) + zp−1
i + zpi ≡ 0 (mod 2), ∀i∈ V 0

R, ∀p ∈ P, (7.3)

xp(δR(S)) + (xp+ yp)(δNR(S)) ≥ 2xpf −
∑

i∈S∩V 0
R

(
zp−1
i + zpi

)
, ∀S⊂V, ∀f ∈E(S), (7.4)

∀p∈P,∑
p∈P

xpe ≥ 1, ∀e ∈ ER, (7.5)

∑
p∈P

zpi = 1, ∀i ∈ V 0
R, (7.6)

∑
i∈V 0

R

zpi = 1, ∀p ∈ P, (7.7)

zPv0 = 1, (7.8)

q1 = Q, (7.9)

qp = qp−1 −
∑
i∈VR

diz
p−1
i , ∀p ≥ 2, (7.10)

xpe ≥ ype , ∀e∈ENR, ∀p ∈ P, (7.11)

zpi ,∈ {0, 1}, ∀i ∈ V 0
R, ∀p ∈ P, (7.12)

xpe ∈ {0, 1}, ∀e∈ER, ∀p ∈ P, (7.13)

xpe, y
p
e ∈ {0, 1}, ∀e∈ENR, ∀p ∈ P. (7.14)

The objective function (7.1) minimizes the total duration of the paths. The first
term represents the deadheading time of traveling on non–required edges. The second
and third terms represent, respectively, the time of servicing the required edges and the
time of visiting the required nodes (for delivery).

Constraints (7.2) force that the number of times each path visits a vertex incident
with a required edge is even, possibly zero. These constraints are not linear, but we can
use instead the following parity inequalities, which are obtained from those proposed in
Corberán et al. (2013):

xp(δR(S)\FR) + (xp − yp)(δNR(S)\FNR) ≥ xp(FR) + (xp − yp)(FNR)− |F |+ 1, (7.15)

for each path p ∈ P, for each S ∈ VI , and for all F ⊆ δ(S) with |F | odd. These
inequalities ensure the parity (even degree) of every subset of vertices and, in particular,
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at every vertex in VI . Note that they impose that if a drone path traverses an odd
number of edges incident to a set S of vertices in VI , then the path uses at least one
additional traversal of some edge in the cut–set δ(S).

Constraints (7.3) force the number of edges on the global tour incident with the
depot and with each required node to be even. Note that, for any optimal solution, a
required vertex will only be visited at the beginning or end of a path. Therefore, these
constraints can be replaced by

(xp+ yp)(δNR(i)) = zp−1
i + zpi , ∀i∈ V 0

R, ∀p ∈ P, (7.16)

which are satisfied by all the optimal solutions.

Inequalities (7.4) guarantee that variables xp and yp define a connected path joining
two required vertices (or the depot). Given a subset of vertices S, if there is an edge
f ∈ E(S) traversed by path p and the beginning and ending vertices of this path do not
belong to S, the right–hand side of the constraint takes value 2, and the inequality says
that the cutset defined by S has to be traversed at least twice. If only the initial vertex
of the path (or the final one) belongs to S, the right–hand side takes value 1, and the
cutset has to be traversed at least once. Finally, if both extremes of the path are in S
or there is no edge f ∈ E(S) traversed by the path, the inequality is trivially satisfied
since there is no obligation for path p to leave set S.

The following inequalities are obtained by replacing in (7.4) the edge f ∈ E(S) by
the zpi variable corresponding to a required vertex (or the depot) in S. They are also
valid and can reinforce the formulation, although they are not necessary for it.

xp(δR(S))+(xp+yp)(δNR(S)) ≥ 2zpi −
∑

j∈S∩V 0
R

(
zp−1
j + zpj

)
, ∀S⊂V, ∀i∈V 0

R∩S, ∀p∈P (7.17)

Inequalities (7.5) force each required edge to be serviced at least once. It can be
seen that there is always an optimal solution satisfying this constraint with equality,
since for any required edge e ∈ ER there is a parallel non–required edge e′ ∈ ENR with
ce′ ≤ cse. Constraints (7.6) ensure that each required node, as well as the depot, is the
end node of exactly one path on the solution, while constraints (7.7) force each path to
end in exactly one vertex in V 0

R. Equality (7.8) guarantees the return to the depot in
the last path P , while equalities (7.9) and (7.10) determine the weight carried by the
drone on each path. Constraints (7.11) ensure that a second traversal of a non–required
edge in a path can only occur when this edge has been traversed previously in this path.
Finally, constraints (7.12), (7.13) and (7.14) are the binary conditions for the variables.

The objective function is non–linear because of the terms qp(xpe +ype). For each edge
e ∈ E and each path p ∈ P, we can define the variable qpe = qpxpe and for each edge
e ∈ ENR and each path p ∈ P, variable q̄pe = qpype , so that by adding the constraints

qpe ≥ qp + (xpe − 1)Q, ∀e ∈ E, ∀p ∈ P (7.18)

qpe ≥ 0, ∀e ∈ E, ∀p ∈ P (7.19)

q̄pe ≥ qp + (ype − 1)Q, ∀e ∈ ENR, ∀p ∈ P (7.20)

q̄pe ≥ 0, ∀e ∈ ENR, ∀p ∈ P (7.21)
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to the formulation, the first two terms of the objective function can be linearized as∑
p∈P

∑
e∈ENR

ce

(
w0

(
xpe + ype

)
+ qpe + q̄pe

)
+
∑
p∈P

∑
e∈ER

cse

(
w0x

p
e + qpe

)
.

The description of these additional decision variables is given next.

qpe weight carried by the drone when it traverses edge e in path p ∈ P, for e ∈ E
q̄pe weight carried by the drone in the second traversal of edge e in path p ∈ P, for e ∈ ENR

Table 7.3: Additional variables in the LDdGRP formulation

Some variables of this formulation can be fixed to 0. Note that zpv0 = 0, for all path
p 6= P , and zPi = 0, for all i ∈ VR, hold due to equations (7.6), (7.7) and (7.8). The
following result allows us to remove some variables from the formulation, taking into
account the structure of the optimal LDdGRP solutions.

Theorem 7.2.1. Any optimal LDdGRP solution satisfies

i) ype = 0, for each e ∈ δ(v), with v ∈ V 0
R, and for each path p ∈ P, and

ii) xpe = 0, for each (non–required) e ∈ δ(v0) and for each path p ∈ {2, . . . , P − 1}.

Proof: Let us consider a vertex v ∈ V 0
R and a path p ∈ P. Each optimal solution

satisfies (7.16), (xp + yp)(δ(v)) = zp−1
v + zpv , and from (7.6), zp−1

v + zpv ≤ 1. Hence,
ype = 0 for all edge e ∈ δ(v) and we obtain i). Moreover, if v = v0 and p 6= 1, p 6= P ,
then zp−1

v0 = zpv0 = 0 and (xp + yp)(δ(v0)) = 0 holds. Therefore, xpe = 0 for each edge
e ∈ δ(v0) and we obtain ii). �

7.3 Polyhedral study of the LDdGRP

In this section, we study the polyhedron associated with the LDdGRP solutions, which
are considered as a set of P = |VR|+1 paths as described above. Each LDdGRP solution
is represented by an incidence vector

(x,y, z) ∈ ZP (|ER|+2|ENR|+|VR|+1),

where variable xpe takes the value 1 if edge e ∈ E is traversed once in path p ∈ {1, . . . , P},
variable ype takes the value 1 if edge e ∈ ENR is traversed twice, and variable zpi takes
value 1 if vertex i ∈ V 0

R is the last node visited in path p. Note that knowing the load
carried by the drone when traversing an edge is not necessary to determine the feasibility
of the solution. Therefore, we do not need the q variables to define the polyhedron of
solutions.

We keep here the assumption that the LDdGRP is defined on a graph G with a non–
required edge e′ parallel to each required edge e. These non–required edges parallel to
required ones form the set E′NR ⊂ ENR, while E′′NR = ENR\E′NR. However, in order to
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make a more general study, we do not assume that (V,ENR) forms a complete graph,
although we assume graph (V 0

R, ENR) is complete.

Before studying the dimension of the polyhedron of solutions, we need some previous
results about the vectors z ∈ ZP (|VR|+1) and (x,y) ∈ ZP (|ER|+2|ENR|) associated with the
LDdGRP solutions.

Lemma 7.3.1. All the vectors z ∈ ZP (|VR|+1) associated with LDdGRP solutions satisfy
4|VR| linear independent equations.

Proof: The following 4|VR|+ 1 equalities

zPv0 = 1,

zPi = 0, ∀i∈VR
zpv0 = 0, ∀p ≤ P − 1

P−1∑
p=1

zpi = 1, ∀i∈VR (7.22)

∑
i∈VR

zpi = 1, ∀p ≤ P − 1 (7.23)

are satisfied by all the vectors z associated with LDdGRP solutions. The first 1 + 2|VR|
are obviously linearly independent. It can be seen that 2|VR|−1 of the last |VR|+P−1 =
2|VR| equations are linearly independent. �

Note that equations (7.22) and (7.23) correspond to the constraints of an assignment
problem in which each vertex i ∈ VR has to be assigned to a path p ∈ {1, . . . , P − 1}. It
is known that these equations totally define the polyhedron of the assignment problem
(see Balinski and Russakoff, 1974), and therefore the dimension of such a polyhedron is
|VR|2 − (2|VR| − 1). Hence, there exist |VR|2 − 2|VR|+ 2 = (|VR| − 1)2 + 1 affinely inde-
pendent vectors corresponding to solutions of the assignment problem. These solutions
can be completed with variables zPv0 = 1, zPi = 0, ∀i ∈ VR and zpv0 = 0, ∀p ≤ P − 1 to
obtain z vectors associated with LDdGRP solutions, and then the following result holds:

Theorem 7.3.2. There are (|VR| − 1)2 + 1 affinely independent vectors z ∈ ZP (|VR|+1)

associated with LDdGRP solutions.

In Section 4.2.1, the 1–RPP was defined on an undirected and connected graph
G = (V,ER ∪ ENR), with ENR = E′NR ∪ E′′NR, where E′NR is the set of non–required
edges parallel to an edge in ER, and where the set VR formed with the vertices incident
with some edge in ER plus the depot is not necessarily equal to V . The 1–RPP was
formulated in Chapter 4 with a binary variable xe for each edge e ∈ ER representing
the service of required edge e, and two binary variables xe and ye for each edge e ∈ ENR
representing the first and second traversal of non–required edge e, respectively. It was
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shown in Theorem 4.2.2 that the convex hull of all the 1–RPP tours, i.e., the vectors
(x, y) satisfying∑

e∈δR(i)

xe +
∑

e∈δNR(i)

(
xe + ye

)
≡ 0 (mod 2), ∀i∈V (7.24)

∑
e∈δR(S)

xe +
∑

e∈δNR(S)

(
xe + ye

)
≥ 2xf , ∀S⊆V \{1}, ∀f∈E(S), (7.25)

xe = 1, ∀e ∈ ER (7.26)

xe ≥ ye, ∀e∈ENR (7.27)

xe, ye ∈ {0, 1}, ∀e∈ENR. (7.28)

is a polytope in Z|ER|+2|ENR|, denoted 1–RPP(G), of dimension 2|ENR| (if graph (V,ENR)
is 3–edge connected) and several families of valid and facet–inducing inequalities were
described.

Let us consider now the graph G = (V,ER ∪ ENR) where the LDdGRP is defined.
Given two nodes vi, vf ∈ V 0

R, we define the Open Rural Postman Problem (ORPP)
on graph G as the problem of finding a minimum cost walk starting at vertex vi, ser-
vicing each required edge of the graph exactly once, and ending at vertex vf . We can
build a new graph Ḡ = (V, ĒR ∪ ENR), with ĒR = ER ∪ {(vi, vf )}, in such a way that
solving the ORPP on graph G is equivalent to solving the 1–RPP on graph Ḡ and, then,
removing a copy of edge (vi, vf ). Note that for each ORPP solution on G we have a
1–RPP solution on Ḡ, and viceversa, and therefore it can be seen that both polyhedron
have the same dimension. Since (V 0

R, ENR) is a complete graph, Ḡ already contains a
non–required edge parallel to edge (vi, vf ), and the dimension of 1–RPP(Ḡ) is 2|ENR|.
Then, the following result holds:

Theorem 7.3.3. If graph (V,ENR) is 3–edge connected, then dim(ORPP(G)) = 2|ENR|.

Note 7.3.3.1. Given f(x, y) ≥ α a facet–inducing inequality of 1–RPP(Ḡ), it can
be seen that by replacing the variable x(vi,vf ) by 1, the resulting inequality is valid
and facet–inducing of ORPP(G). In particular, if graph (V,ENR) is 3–edge connected,
inequalities ye ≥ 0 and xe ≤ 1 are facet–inducing of ORPP(G), for each e ∈ ENR,
and inequalities xe ≥ ye for each e ∈ ENR are facet–inducing of ORPP(G) if graph
(V,ENR \ {e}) is 3–edge connected (see Theorems 4.2.3, 4.2.4, and 4.2.5).

Let LDdGRP(G) denotes the polytope defined as the convex hull of all the vectors

(x,y, z) ∈ ZP (|ER|+2|ENR|+|VR|+1)

corresponding to LDdGRP tours on G. In order to study conditions under which the
inequalities deduced from the above formulation induce facets of LDdGRP(G), it is
necessary to first know the dimension of the polyhedron.

Theorem 7.3.4. If (V,ENR) is a 3–edge connected graph, then

dim(LDdGRP(G)) = P (|ER|+ 2|ENR|) + (|VR| − 1)2.
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∗ ∗ ... ∗
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Figure 7.2: Matrix of LDdGRP solutions appearing in the proof of Theorem 7.3.4

Proof: Since all the points of LDdGRP(G) satisfy 4|VR| linearly independent equations
(Lemma 7.3.1), we have that dim(LDdGRP(G)) ≤ P (|ER|+2|ENR|+|VR|+1)−4|VR| =
P (|ER|+ 2|ENR|) + (|VR| − 1)2. In order to prove that dim(LDdGRP(G)) ≥ P (|ER|+
2|ENR|) + (|VR| − 1)2, we have to find P (|ER| + 2|ENR|) + (|VR| − 1)2 + 1 affinely
independent LDdGRP tours.

From Theorem 7.3.2, there are w + 1 affinely independent vectors z1, z2, . . . , zw+1,
where w = (|VR| − 1)2. In order to obtain LDdGRP tours, we have to complete these
vectors z with vectors (x,y) ∈ ZP (|ER|+2|ENR|).

Let us consider z1 one of the previous vectors. This vector provides an order in
which vertices in VR are serviced in the corresponding LDdGRP solution: each path
p, with p = 1, . . . , P , starts at the vertex u ∈ V 0

R such that (z1)p−1
u = 1 and ends at

the vertex v ∈ V 0
R such that (z1)pv = 1. Consider the ORPP defined on graph G with

initial vertex vi = u and final vertex vf = v. From Theorem 7.3.3, and since (V,ENR)
is 3–edge connected, there are m + 1 vectors tp = (xp, yp) affinely independent, say
tp1, . . . , t

p
m+1, where m = 2|ENR|, each of them starting at u, ending at v, and satisfying

xi(e) = 1 for all the edges in ER. Note that (t1j1 , . . . , t
P
jP
, z1) is an LDdGRP solution,
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Path 1 Path 2 Path P z

T 1 − t11 0 ... 0 0

0 T 2 − t21
... 0 0

... ... ... ... ...

0 0 ... T P − tP1 0

−1 − 1

. . .
−1 − 1

0 ... 0 0

0

−1 − 1

. . .
−1 − 1

... 0 0

... ... ... ... ...

0 0 ...

−1 − 1

. . .
−1 − 1

0

∗ ∗ ... ∗
z2 − z1

...

zw+1 − z1



Figure 7.3: Matrix appearing in the proof of Theorem 7.3.4

for all j1, . . . , jP ∈ {1, 2, . . . ,m+ 1}. It can be assumed that each tp1, for each path p, is
formed with two copies of each edge in ENR incident with vertices in VI∪{u, v}, and then
replacing one copy of each e ∈ E′NR by the required edge parallel to e and removing a
copy of (u, v). For each required e ∈ ER, we can build a vector tp1(e) from tp1 by removing
the traversal of edges e and e′, where e′ denotes the non–required edge parallel to e.
Note that, for example, (t11(e1), t2j2 , . . . , t

P
jP
, z1), is also an LDdGRP solution.

We can build P (m + 1) LDdGRP solutions in the following way. For each i ∈
{1, . . . , P}, let T i be the matrix formed by all the affinely independent ORPP solutions
ti1, . . . , t

i
m+1 as rows. Path p = i performs any ORPP walk tij above, while the other

paths perform tp1, p 6= i. These solutions are depicted as the rows of the P first block
rows in the matrix shown in Figure 7.2. Note that the first row of each block rows are
equal to (t11, t

2
1, . . . , t

P
1 , z

1). Furthermore, we can build P |ER| more LDdGRP solutions
as follows. For each i ∈ {1, . . . , P} and for each required edge ej ∈ ER = {e1, . . . , e|ER|},
path p = i performs ti1(ej) while the other paths perform tp1, p 6= i. These solutions
are depicted as the rows of the next P block rows in the matrix of Figure 7.2. The
last block row of Figure 7.2 is formed by w LDdGRP solutions, each generated from a
different vector z2, . . . , zP .

After substracting the first row from all the other rows (and then removing the null
ones), we obtain the matrix in Figure 7.3. A big zero in a block of the matrix means
that all the entries of this block are zero. Each T j − tj1 block has full rank because the
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vectors tj1, . . . , t
j
m+1 are affinely independent. Furthermore, in the first P block rows,

all the tpj − t
p
1 vectors take value zero in all the entries corresponding to the required

edges, whereas the first −1 entry in each pair −1,−1 in the rows of the next P block
rows is associated with each edge e ∈ ER, and then it is the only non–zero entry in
the column corresponding to e. Hence, the first P (m + |ER|) rows of the matrix are
linearly independent. The bottom–right block of the matrix has full rank because vec-
tors z1, . . . , zP are affinely independent, and the matrix in Figure 7.3 is a full rank
matrix with P (m + |ER|) + w linearly independent rows. Therefore, we have found
P (|ER|+ 2|ENR|) + (|VR| − 1)2 + 1 affinely independent LDdGRP solutions, and we are
done. �

In what follows, we will assume that (V,ENR) is a 3–edge connected graph and,
hence, dim(LDdGRP(G)) = P (|ER|+ 2|ENR|) + (|VR| − 1)2.

7.3.1 Facet–inducing inequalities from the formulation

Let us prove in this section that some inequalities from the formulation induce facets of
the LDdGRP polyhedron.

Theorem 7.3.5. Inequality xpe ≥ 0, for each e ∈ ER and for each path p ∈ {1, . . . , P},
is facet–inducing for LDdGRP(G).

Proof: We will prove it for p = 1 and for a required edge e1, where ER = {e1, . . . , e|ER|}.
We have to find dim(LDdGRP(G)) affinely independent LDdGRP solutions satisfying
x1
e1 = 0. Let z1, z2, . . . , zw+1 be the w + 1 affinely independent vectors from Theorem

7.3.2 and let us consider the vector z1. Recall that this vector provides an order in which
vertices in VR are serviced in the corresponding LDdGRP solution. We assume that path
p = 1 starts at vertex u ∈ V 0

R and ends at vertex v ∈ V 0
R. Consider the ORPP defined on

graph G \ {e1} with initial vertex vi = u and final vertex vf = v. From Theorem 7.3.3,
and since (V,ENR) is 3–edge connected, there are m + 1 affinely independent ORPP
vectors on G \ {e1}, with m = 2|ENR|. By adding to those vectors a new component
xe1 = 0, we obtain m+ 1 affinely independent vectors t̄11, . . . , t̄

1
m+1 starting at u, ending

at v and traversing all the required edges of G but e1, thus satisfying x1
e1 = 0. It can be

assumed that t̄11 is formed with two copies of each edge in ENR incident with vertices in
VI ∪ {u, v}, and then replacing one copy of each e ∈ E′NR, e 6= e′1, by the required edge
parallel to e and removing a copy of (u, v). For each required e ∈ ER \ {e1}, we can
build a vector t̄11(e) from t̄11 by removing the edges e and e′.

On the other hand, let t2i , . . . , t
P
i , for i = 1, . . . ,m + 1, and t21(ej), . . . , t

P
1 (ej), for

ej ∈ ER, be the vectors built as in Theorem 7.3.4. With all these vectors, we can
build LDdGRP solutions as in the proof of Theorem 7.3.4 that can be arranged in a
matrix with (m+ 1)P + |ER|P − 1 +w rows similar to the matrix in Figure 7.2. After
substracting the first row from all the other rows (and then removing the null ones),
we obtain a full–rank matrix with mP + |ER|P − 1 + w rows and, hence, we have
P (m + |ER|) + w = dim(LDdGRP(G)) affinely independent LDdGRP tours satisfying
x1
e1 = 0, and we are done. �
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Theorem 7.3.6. Inequality xpe ≤ 1, for each edge e ∈ ER ∪ E′NR and for each path
p ∈ {1, . . . , P}, is facet–inducing for LDdGRP(G).

Proof: We will prove it for p = 1. For a required edge e1, where ER = {e1, . . . , e|ER|},
all the LDdGRP solutions in the matrix of Figure 7.2 but one of them (t11(e1)) satisfy
x1
e1 = 1, and we are done.

For an edge e′1 ∈ E′NR, the non–required edge parallel to a required edge e1, all the
LDdGRP solutions in the matrix of Figure 7.2 satisfy x1

e′1
= 1 except t11(e1) and some

rows of the matrix block T 1. Recall that all the rows in the matrix of Figure 7.2 satisfy
x1
e1 = 1 except the one corresponding to t11(e1). If we permute in that matrix the values

of the columns corresponding to the x1
e1 and x1

e′1
variables, we obtain a new matrix with

the same rank as before and with all the rows (but one) satisfying x1
e′1

= 1. Note that

all the rows of this matrix are LDdGRP solutions because each path p ≥ 2 services all
the required edges. Hence, we have dim(LDdGRP(G)) affinely independent LDdGRP
solutions satisfying x1

e′1
= 1. �

Theorem 7.3.7. Inequality xpe ≤ 1, for each edge e ∈ E′′NR and for each path p ∈
{1, . . . , P}, is facet–inducing for LDdGRP(G) if (V,ENR \{e}) is a 3–edge connected
graph.

Proof: We will prove it for p = 1. Since (V,ENR \ {e}) is 3–edge connected, we have
dim(ORPP(G \ {e})) = 2(|ENR|− 1) = m− 2, and there are m− 1 affinely independent
ORPP solutions on graph G\{e}. Let T ∗ be the corresponding incidence matrix of these
vectors expressed as rows. We can assume that t11 is the path as defined in the proof
of Theorem 7.3.4. We complete these solutions with x1

e = y1
e = 1 and we obtain m− 1

ORPP solutions in G satisfying x1
e = 1. Moreover, we can build another ORPP solution

on G by completing t11 with x1
e = 1 and y1

e = 0, and deleting the second traversal of
the edges in a path pij joining the two endpoints of e = (i, j). This last ORPP solution
also satisfies x1

e = 1. Let T̄ 1 be the incidence matrix of these m ORPP solutions on G
expressed as rows, depicted in Figure 7.4a. By substracting the first row from all the
other rows, we obtain the matrix in Figure 7.4b, whose m−1 non–zero rows are linearly
independent. As in the previous proofs, we can build a matrix as the one depicted in
Figure 7.2 with T̄ 1 instead of T 1. After substracting the first row from all the other
rows, we obtain a matrix similar to that in Figure 7.3 with m−1+m(P−1)+ |ER|P+w
linearly independent rows, and we are done. �

Theorem 7.3.8. Inequality ype ≥ 0, for each e ∈ E′NR and for each path p ∈ {1, . . . , P},
is facet–inducing for LDdGRP(G).

Proof: We will prove it for p = 1 and for a non–required edge e′1 parallel to e1, where
ER = {e1, . . . , e|ER|}. We have to find dim(LDdGRP(G)) affinely independent LDdGRP
solutions satisfying y1

e′1
= 0. Let z1, z2, . . . , zw+1 be the w+1 affinely independent vectors

from Theorem 7.3.2 and let us consider the vector z1, that provides an order in which
vertices in VR are serviced in the corresponding LDdGRP solution. We assume that
path p = 1 starts at vertex u ∈ V 0

R and ends at vertex v ∈ V 0
R. Consider the ORPP

defined on graph G with initial vertex vi = u and final vertex vf = v. From Note 7.3.3.1,
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x1e y1e

t11

T ∗

1 1

...

1 1

t11 − pij 1 0


(a)

x1e y1e
T ∗ − t11

0 0

...

0 0

pij 0 1


(b)

Figure 7.4: Matrices appearing in the proof of Theorem 7.3.7

inequality ye′1 ≥ 0 is facet–inducing of ORPP(G) and, therefore, there are m affinely

independent ORPP vectors on G satisfying ye′1 = 0, say t̄11, t̄
1
2, . . . , t̄

1
m. We assume that

t̄11 is built as in Theorem 7.3.4. For each required e ∈ ER, we can build a vector t̄11(e)
from t̄11 by removing the traversal of edges e and e′.

On the other hand, let t2i , . . . , t
P
i , for i = 1, . . . ,m + 1, and t21(e), . . . , tP1 (e), for

e ∈ ER, be the vectors built as in Theorem 7.3.4. With all these vectors t̄ and t, we can
build LDdGRP solutions as in the proof of Theorem 7.3.4 satisfying y1

e′1
= 0 that can

be arranged in a matrix with (m+ 1)P − 1 + |ER|P + w rows similar to the matrix in
Figure 7.2. After substracting the first row from all the other rows (and then removing
the null ones), we obtain a full–rank matrix with mP − 1 + |ER|P +w rows and, hence,
we have dim(LDdGRP(G)) affinely independent LDdGRP tours satisfying y1

e′1
= 0, and

we are done. �

Theorem 7.3.9. Inequality ype ≥ 0, for each e ∈ E′′NR and for each path p ∈ {1, . . . , P},
is facet–inducing for LDdGRP(G) if (V,ENR \ {e}) is a 3–edge connected graph.

Proof: We will prove it for p = 1. Since (V,ENR \ {e}) is 3–edge connected, we have
dim(ORPP(G \ {e})) = 2(|ENR|− 1) = m− 2, and there are m− 1 affinely independent
ORPP solutions on graph G \ {e}. Let T ∗ be the corresponding incidence matrix of
these vectors expressed as rows. We can assume that t11 is the path as defined in the
proof of Theorem 7.3.4. We complete these solutions with x1

e = y1
e = 0 and we obtain

m− 1 ORPP solutions in G satisfying y1
e = 0. Moreover, we can build another ORPP

solution on G by completing t11 with x1
e = 1, y1

e = 0, and deleting a traversal of the
edges in a path pij joining the two endpoints of e = (i, j). This last ORPP solution also
satisfies y1

e = 0. The remaining of the proof is similar to that of Theorem 7.3.7. �

Theorem 7.3.10. Inequality xpe ≥ ype , for each e ∈ E′NR and for each path p ∈
{1, . . . , P}, is facet–inducing for LDdGRP(G) if graph (V,ENR \{e}) is 3–edge con-
nected.

Proof: We will prove it for p = 1 and for a non–required edge e′1 parallel to e1, where
ER = {e1, . . . , e|ER|}. Let us consider the graph Ḡ = G \ {e1}. Note that, in Ḡ, edge
e′1 is now in E′′NR. Given that (V,ENR \ {e′1}) is 3–edge connected, inequality xe′1 ≥ ye′1
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is facet–inducing of ORPP(Ḡ) and there are m affinely independent ORPP solutions
in Ḡ satisfying xe′1 = ye′1 , say t̄11, t̄

1
2, . . . , t̄

1
m. We can assume that t̄11 is built in Ḡ as in

Theorem 7.3.4. If we complete these vectors with a component xe1 = 0, we obtain m
affinely independent ORPP solutions in G. For each required edge e ∈ ER, with e 6= e1,
we can build a vector t̄11(e) from t̄11 by removing the edges e and e′. For the required
edge e1, we can build the vector t̄11(e1) from t̄11 by adding the edge e1 and removing a
traversal of the non–required edges in a path pij joining the two endpoints of e1. The
remaining of the proof is similar to that of Theorem 7.3.7. �

Theorem 7.3.11. Inequality xpe ≥ ype , for each e ∈ E′′NR and for each path p ∈
{1, . . . , P}, is facet–inducing for LDdGRP(G) if graph (V,ENR \ {e}) is 3–edge con-
nected.

Proof: We will prove it for p = 1 and for a non–required edge e ∈ E′′NR. We have to
find dim(LDdGRP(G)) affinely independent LDdGRP solutions satisfying x1

e = y1
e . Let

z1, z2, . . . , zw+1 be the w + 1 affinely independent vectors from Theorem 7.3.2 and let
us consider the vector z1, that provides an order in which vertices in VR are serviced
in the corresponding LDGRP solution. We assume that path p = 1 starts at vertex
u ∈ V 0

R and ends at vertex v ∈ V 0
R. Consider the ORPP defined on graph G with

initial vertex vi = u and final vertex vf = v. From Note 7.3.3.1, and given that graph
(V,ENR \ {e}) is 3–edge connected, inequality xe ≥ ye is facet–inducing of ORPP(G)
and therefore there are m affinely independent ORPP vectors on G satisfying xe = ye,
say t̄11, t̄

1
2, . . . , t̄

1
m. We can assume that t̄11 is built as in Theorem 7.3.4, which satisfies

xe = ye = 1. For each required e ∈ ER, we can build a vector t̄11(e) from t̄11 by remov-
ing the edges e and e′. The remaining of the proof is similar to that of Theorem 7.3.8. �

Note 7.3.11.1. Inequalities xe ≥ 0 and ye ≤ 1, for each e ∈ ENR, are not facet–
inducing of LDdGRP(G) since they are dominated by inequalities xe ≥ ye.

Theorem 7.3.12. Inequality

P∑
p=1

xpe ≥ 1, for each e ∈ ER, is facet–inducing for

LDdGRP(G).

Proof: For a required edge e1 ∈ ER, where ER = {e1, . . . , e|ER|}, we have to find

dim(LDdGRP(G)) affinely independent LDdGRP solutions satisfying
∑P

p=1 x
p
e1 = 1.

Let z1, z2, . . . , zw+1 be the w+1 affinely independent vectors z from Theorem 7.3.2 and
let us consider the vector z1, that provides an order in which vertices in VR are serviced
in the corresponding LDdGRP solution.

For each path p ∈ {1, . . . , P}, we can consider an ORPP defined on graph G starting
and ending at the corresponding vertices provided by z1. From Theorem 7.3.3, and since
(V,ENR) is 3–edge connected, there are m+ 1 affinely independent ORPP vectors, say
tp1, . . . , t

p
m+1, where m = 2|ENR|, satisfying xpe1 = 1. It can be assumed that the first

of them, tp1, is defined as in the proof of Theorem 7.3.4, which satisfies xpe1 = xp
e′1

= 1

and yp
e′1

= 0. We can build a vector t̄p1 from tp1 by replacing the traversal of edge e1 by

a second traversal of the corresponding parallel edge e′1, thus satisfying xp
e′1

= yp
e′1

= 1
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t̄11
...

t̄11

t̄21
...

t̄21

... T P

z1

...

z1

t11(e2)

...

t11(e|ER|)

t̄21
...

t̄21

...
t̄P1
...

t̄P1

z1

...

z1

t11

t̄11
...

t̄11

t21(e1)

t21(e2)

...

t21(e|ER|)

...

t̄P1

t̄P1
...

t̄P1

z1

z1

...

z1

... ... ... ... ...

t11

t̄11
...

t̄11

t̄21

t̄21
...

t̄21

...

tP1 (e1)

tP1 (e2)

...

tP1 (e|ER|)

z1

z1

...

z1

∗ ∗ ... ∗
z2

...

zw+1



Figure 7.5: Matrix of LDdGRP solutions appearing in the proof of Theorem 7.3.12

and xpe1 = 0. Moreover, for each required e ∈ ER, e 6= e1, we can build a vector tp1(e)
from tp1 by removing the traversal of the edge e and its corresponding parallel e′.

We can build P (m + 1) LDdGRP solutions in the following way. As in Theorem
7.3.4, let T i be the matrix formed by all the affinely independent ORPP solutions
ti1, . . . , t

i
m+1 as rows, for each path i ∈ {1, . . . , P}. A path i performs any tour tij from

T i, while the other paths perform t̄p1, p 6= i. These P (m+ 1) LDdGRP solutions satisfy∑P
p=1 x

p
e1 = 1 and can be depicted as the rows of the P first block rows in the matrix in

Figure 7.5. The block row P + 1 of this matrix contains the solutions in which the first
path performs t11(ej), for each j = 2, . . . , |ER|, while the other paths perform t̄p1. The
block row P + 2 contains a first solution in which the first path performs t11, the second
path performs t21(e1), and the others paths perform t̄p1, and |ER| − 1 solutions more in
which path 2 performs a vector t11(ej), with j = 2, . . . , |ER|, while the others perform
t̄p1, for p 6= 2. Block rows P + 3, . . . , 2P are built in a similar way. Note that all these

LDdGRP solutions also satisfy
∑P

p=1 x
p
e1 = 1. A last block row formed by w LDdGRP
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Path 1 Path 2 Path P z

T 1 − t11 0 ... 0 0

t̄11 − t11 T 2 − t̄21
... 0 0

... ... ... ... ...

t̄11 − t11 0 ... T P − t̄P1 0

−1 − 1

. . .
−1 − 1

0 ... 0 0

t̄11 − t11

−1 − 1

. . .
−1 − 1

... 0 0

... ... ... ... ...

t̄11 − t11 0 ...

−1 − 1

. . .
−1 − 1

0

∗ ∗ ... ∗
z2 − z1

...

zw+1 − z1



Figure 7.6: Matrix appearing in the proof of Theorem 7.3.12

solutions, each generated from a different vector z2, . . . , zP , is added to the matrix in
Figure 7.5.

If we subtract the first row from all the other rows in the matrix in Figure 7.5, we
obtain the matrix in Figure 7.6. The top–left block of this matrix contains m linearly
independent rows. The next P − 1 diagonal blocks, T i − t̄i1, contain m + 1 affinely
independent rows, since the m+ 1 rows of T i are affinely independent, and then there
are at least m linearly independent rows on each of these blocks. Therefore, there
are at least Pm linearly independent rows in the first P block rows of the matrix.
Furthermore, each row in the next P block rows contains an entry with value −1 as-
sociated with a variable xp

e′j
, for some path p and j ∈ {1, . . . , |ER|}, and this entry

is the only one in its column taking non–zero value. Hence, the P |ER| − 1 rows in
this blocks are linearly independent. In addition, the bottom–right block of the matrix
has full range because vectors z1, . . . , zP are affinely independent. Therefore, we have
P (m + |ER|) − 1 + (|VR|2 − 1)2 linearly independent rows in the matrix in Figure 7.5,
we have found P (|ER|+ 2|ENR|) + (|VR| − 1)2 affinely independent LDdGRP solutions
satisfying

∑P
p=1 x

p
e1 = 1, and we are done. �
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Theorem 7.3.13. Connectivity inequalities (7.4),

xp(δR(S)) + (xp+ yp)(δNR(S)) ≥ 2xpf −
∑

i∈S∩V 0
R

(
zp−1
i + zpi

)
,

∀S⊂V, ∀f ∈E(S), ∀p∈{1, . . . , P}, are facet–inducing for LDdGRP(G) if graphs G(S)
and G(V \ S) are 3–edge connected and |(V \S) ∩ V 0

R| ≥ 2.

Proof: We will prove it for p = 1. Note that if (V \S)∩V 0
R = ∅, then

∑
i∈S∩V 0

R
(zp−1
i +zpi )

= 2 holds, and the inequality (7.4) is dominated by xp(δR(S)) + (xp+ yp)(δNR(S)) ≥ 0,
which can not induce a facet.

In some points of this proof we will distinguish the cases f ∈ ENR and f ∈ ER.
We have to find dim(LDdGRP(G)) affinely independent LDdGRP solutions satisfying
inequality (7.4) as an equality. Let z1, z2, . . . , zw+1 be the w + 1 affinely independent
vectors from Theorem 7.3.2 and let us consider the vector z1, that provides an order
in which vertices in VR are serviced in the corresponding LDdGRP solution. Since
|(V \S) ∩ V 0

R| ≥ 2, we can assume that path p = 1 starts at vertex u ∈ (V \S) ∩ V 0
R and

ends at vertex v ∈ (V \S) ∩ V 0
R. Consider the graph G∗ obtained by deleting from G

the required edges in δR(S)∪ER(S) and consider the ORPP defined on G∗ with initial
vertex vi = u and final vertex vf = v. From Note 7.3.3.1 and Theorem 4.2.6, and given
that ER(S) = δR(S) = ∅ in G∗, and graphs G∗(S) and G∗(V \S) are 3–edge connected,
inequality x(δR(S)) + (x+ y)(δNR(S)) ≥ 2xf̄ is facet–inducing of ORPP(G∗), where, if
edge f ∈ER, f̄ = f ′, and f̄ = f otherwise. Therefore, as graphs G and G∗ have the same
set of non–required edges, there are m = 2|ENR| affinely independent ORPP vectors
t̄∗1, t̄

∗
2, . . . , t̄

∗
m on G∗, all of them traversing the required edges a ∈ ER(V\S) and satisfying

x(δR(S)) + (x+ y)(δNR(S)) = 2xf̄ . Each t̄∗j is transformed into an ORPP vector on G,

say t̄1j , by adding to it an extra entry xe with value xe = 0 for each previously removed
edge e ∈ δR(S) ∪ ER(S). In the case f ∈ ER, we replace a traversal of f ′ (if any) by
the traversal of f . It can be seen that the resulting ORPP vectors on G, t̄11, t̄

1
2, . . . , t̄

1
m,

are also affinely independent, satisfy x(δR(S)) + (x+ y)(δNR(S)) = 2xf , traverse all the
required edges in ER(V \S), and do not traverse any edge in δR(S) ∪ ER(S) (except f
if it is required). By the consideration about vector z1, vectors (t̄1j , z

1), j = 1, . . . ,m,
satisfy inequality (7.4) as an equality.

We can assume that one of these ORPP vectors, say t̄11, traverses all the edges in
E(V \S) twice, traverses the cutset δ(S) twice through a non–required edge, say ē, and
satisfies x1(a) = y1(a) = 1 for all a ∈ ENR(S), x1(a) = 0 for all a ∈ ER(S), in the case
f ∈ ENR, and x1(f) = x1(f ′) = 1, y1(f ′) = 0, and x1(a) = 0 for all a ∈ ER(S) \ {f}, in
the case f ∈ ER.

On the other hand, let t2i , . . . , t
P
i , for i = 1, . . . ,m + 1, and t21(e), . . . , tP1 (e), for

e ∈ ER, be the vectors built as in Theorem 7.3.4. With all these vectors t̄ and t, we can
build LDdGRP solutions satisfying inequality (7.4) as an equality: path p = 1 performs
any ORPP vector t̄1j above, while the other paths p > 1 perform tpi . These LDdGRP
solutions can be arranged in a matrix whose first P block rows are similar to the matrix
in Figure 7.5 but using vectors t̄ in path p = 1.

For the path p = 1 and for each required edge in {e1, e2, . . . , e|ER|}, we define the
vectors t̄11(ei) as follows. For each required edge a ∈ ER(V \S), we define the vector
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Path 1 Path 2 Path P z

T̄ 1

t21
...

t21

...
tP1
...

tP1

z1

...

z1

t̄11
...

t̄11

T 2 ...
tP1
...

tP1

z1

...

z1

... ... ... ... ...

t̄11
...

t̄11

t21
...

t21

... T P

z1

...

z1

t̄11(e1)

...

t̄11(e|ER|)

t21
...

t21

...
tP1
...

tP1

z1

...

z1

t̄11
...

t̄11

t21(e1)

...

t21(e|ER|)

...
tP1
...

tP1

z1

...

z1

... ... ... ... ...

t̄11
...

t̄11

t21
...

t21

...

tP1 (e1)

...

tP1 (e|ER|)

z1

...

z1

∗ ∗ ... ∗
z2

...

zw+1



Figure 7.7: Matrix of LDdGRP solutions appearing in the proof of Theorem 7.3.13

t̄11(a) equal to t̄11 after removing the traversal of the edges a and a′. For each required
edge a ∈ δR(S), we define the vector t̄11(a) equal to t̄11 after removing the two traversals
of edge ē and adding the traversals of edges a and a′. Note that if ē = a′ then t̄11(a) is
equal to t̄11 after replacing the second traversal of ē by a traversal of edge a.

In the case f ∈ ENR, for each required edge a ∈ ER(S), we define the vector t̄11(a)
equal to t̄11 after replacing the second traversal of a′ by the traversal of a. In the case
f ∈ ER, for each a ∈ ER(S)\{f}, we define the vectors t̄11(a) as before. Moreover,
for edge f we define the vector t̄11(f) equal to t̄11 in those entries corresponding to
edges in E(V \S), and zero in the remaining ones. Note that this vector also satisfies
x(δR(S)) + (x+ y)(δNR(S)) = 2xf = 0.

If P ≥ 3, using these vectors t̄ji , t̄
1
1(a), tji and t11(a), and also z1, we can built the

LDdGRP solutions represented in the following P block rows of the matrix in Figure
7.7, which satisfy inequality (7.4) as an equality. If we subtract the first row from all
the other rows and then remove the zero rows we obtain the matrix in Figure 7.8. It
can be seen that the rows of block B∗, associated with vectors t̄11(a)− t̄11, have the three
entries corresponding to each a ∈ ER and its corresponding parallel edge a′ as follows:
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Path 1 Path 2 Path P z

T̄ 1 − t̄11 0 ... 0 0

0 T 2 − t21
... 0 0

... ... ... ... ...

0 0 ... T P − tP1 0

B∗ 0 ... 0 0

0

−1 − 1

. . .
−1 − 1

... 0 0

... ... ... ... ...

0 0 ...

−1 − 1

. . .
−1 − 1

0

∗ ∗ ... ∗
z2 − z1

...

zw+1 − z1



Figure 7.8: Matrix appearing in the proof of Theorem 7.3.13

• x(a) = x(a′) = −1, y(a′) = 0, for each a ∈ ER(V \ S),

• x(a) = x(a′) = 1, y(a′) = 0, for each a ∈ δR(S), and

• x(a) = 1, x(a′) = 0, y(a′) = −1, for each a ∈ ER(S) in the case f ∈ ENR, while,

• in the case f ∈ ER, x(a) = 1, x(a′) = 0, y(a′) = −1, for each a ∈ ER(S) \ {f},
and x(f) = −1, x(f ′) = −1, y(f ′) = 0.

In the case f ∈ ENR, the matrix obtained after merging blocks (1,1) and B∗ of
Figure 7.8 is detailed in Figure 7.9, with the columns and rows rearranged. Note
that, for a ∈ ER the corresponding values −1 or 1 are the only nonzero entries in
its corresponding column of the matrix in Figure 7.8. In the case f ∈ ER, the entry
corresponding to edge f in the block (4,4) of this matrix, is −1 instead of 1. In both
cases, this matrix has full rank. Hence, the matrix of Figure 7.8 has full rank and its
Pm−1+P |ER|+w = P (2|ENR|+ |ER|)+(|VR|2−1)2−1 rows are linearly independent.
Hence, we have (|VR| + 1)(2|ENR| + |ER|) + (|VR|2 − 1)2 LDdGRP solutions affinely
independent satisfying inequality (7.4) as an equality and we are done.

If P = 2, the solutions corresponding to some rows of the last block row of the
corresponding matrix, [t̄11, t

2
1(ai)], are not actually LDdGRP solutions. Note that, if

ai ∈ δR(S) ∪ ER(S), neither path 1, performing t̄11, nor path 2, performing t21(ai), tra-
verse this edge. In this case, for each ai ∈ δR(S) ∪ ER(S) we consider the solution in
which path 1 performs a vector similar to t̄11 but traversing ai, and path 2 performs
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ENR ER(V \S) δR(S) ER(S)

(t̄12 − t̄11)NR

...

(t̄1m − t̄11)NR

0 0 0

∗
−1

. . .
− 1

0 0

∗ 0
1

. . .
1

0

∗ 0 0
1

. . .
1



Figure 7.9: Submatrix B∗ of the matrix in Figure 7.8

t21(ai), which is a LDdGRP solution. It can be seen that the corresponding matrix is
also full rank. �

Note 7.3.13.1. In the case |(V\S)∩V 0
R| = 1, we do not know if connectivity inequalities

(7.4) induce a facet of LDdGRP(G) or not.

In what follows, several families of valid inequalities for the LDdGRP are presented,
namely parity, aggregate parity and q–connectivity inequalities.

7.3.2 Parity inequalities

Given a set S ⊂ V , any closed walk traverses an even (maybe zero) number of times
the cut–set δ(S). In the formulation we have proposed for the LDdGRP, each solution
is formed by a set of “open” paths. If a path starts and ends in the same shore of the
cut–set, it has to traverse the cut–set an even number of times (maybe zero). However,
if a path starts at one shore of the cut–set and ends at the other one, it necessarily has
to traverse the cut–set an odd number of times. This is the idea behind the following
parity inequalities.

Let us consider a set S ⊂ V of vertices and an edge subset F ⊆δ(S). For each path
p, the inequalities

xp(δR(S) \ F ) + (xp − yp)(δNR(S) \ F ) ≥ xp(FR) + (xp − yp)(FNR)− |F |+

+zp−1(S ∩ V 0
R) + zp(S ∩ V 0

R)− 1, (7.29)

if |F | is odd, and

xp(δR(S) \ F ) + (xp − yp)(δNR(S) \ F ) ≥ xp(FR) + (xp − yp)(FNR)− |F |+
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+zp−1(S ∩ V 0
R)− zp(S ∩ V 0

R), (7.30)

if |F | is even (maybe zero), are called parity inequalities for the LDdGRP.

Inequalities (7.29) cut infeasible solutions in which a path p starts and ends at S,
and traverses the cut–set δ(S) an odd number of times. The set F is defined by the set
of edges in δ(S) traversed exactly once, and then, xp(FR) + (xp − yp)(FNR) − |F | = 0
holds. Moreover, xp(δR(S) \ F ) + (xp − yp)(δNR(S) \ F ) is also equal to zero, while
zp−1(S ∩ V 0

R) + zp(S ∩ V 0
R) − 1 = 1. Hence, the solution does not satisfy the parity

inequality (7.29).

Inequalities (7.30) cut infeasible solutions in which a path p starts at S, ends at V\S,
and traverses the cut–set δ(S) an even number of times. The set F is defined again by
the set of edges in δ(S) traversed exactly once. Note that F can now be empty due to
all the edges e ∈ δ(S) being traversed twice (or non traversed). Anyway, the left–hand
side (LHS) of the inequality is 0, while the right–hand side (RHS) is 1, and the solution
does not satisfy the parity inequality (7.30).

Theorem 7.3.14. Parity inequalities (7.29) and (7.30) are valid for the LDdGRP.

Proof: Let S ⊂ V be a set of vertices and let F ⊆ δ(S) be an edge subset. We have
to prove that, for any LDdGRP solution, the path p satisfies the corresponding parity
inequality.

Let us first consider |F | odd. The LDdGRP solutions (x̄, ȳ, z̄) satisfying either
x̄p(FR) + (x̄p − ȳp)(FNR) ≤ |F | − 1 or z̄p−1(S ∩ V 0

R) + z̄p(S ∩ V 0
R) ≤ 1, trivially satisfy

inequality (7.29). The remaining LDdGRP solutions (x̄, ȳ, z̄) satisfy x̄p(FR) + (x̄p −
ȳp)(FNR) = |F | (path p traverses each edge in F once) and z̄p−1(S∩V 0

R)+z̄p(S∩V 0
R) = 2

(path p starts and ends in S), and the corresponding RHS of (7.29) is equal to 1. Given
that |F | is odd, the path p of (x̄, ȳ, z̄) must traverse the cut–set at least once more
and x̄p(δR(S) \ F ) + (x̄p − ȳp)(δNR(S)\F ) ≥ 1 holds. Therefore, the solution satisfies
inequality (7.29).

Let us consider now |F | even. The LDdGRP solutions (x̄, ȳ, z̄) satisfying either
x̄p(FR) + (x̄p − ȳp)(FNR) ≤ |F | − 1 or zp−1(S ∩ V 0

R) − zp(S ∩ V 0
R) ≤ 0, trivially sat-

isfy inequality (7.30). The remaining LDdGRP solutions (x̄, ȳ, z̄) satisfy x̄p(FR)+(x̄p−
ȳp)(FNR) = |F | (path p traverses each edge in F once) and zp−1(S∩V 0

R)−zp(S∩V 0
R) = 1

(path p starts at S and ends at V \S), and the RHS of (7.30) is equal to 1. Given
that |F | is even, the path p of (x̄, ȳ, z̄) traverses the cut–set at least once again and
x̄p(δR(S) \ F ) + (x̄p − ȳp)(δNR(S) \ F ) ≥ 1 holds. Therefore, the solution satisfies in-
equality (7.30). �

Ω–Aggregate parity inequalities

The parity inequalities (7.29) and (7.30) considered above involve a single path p ∈ P.
In this section we present a generalization of these inequalities to a subset of paths
Ω ⊆ P, in which the variables x and y that appear in inequalities (7.29) or (7.30) are
added for all paths in Ω (see (7.31)). These new “aggregate” inequalities would separate
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fractional solutions in which a subset of paths do not jointly satisfy the parity conditions
in a given cut–set δ(S).

Aggregate inequalities for two or more paths are not satisfied by all LDdGRP solu-
tions we have considered so far. Note that the validity of inequalities (7.29) and (7.30)
is based on the fact that all the LDdGRP solutions (x̄, ȳ, z̄) satisfy

x̄p(FR) + (x̄p − ȳp)(FNR) ≤ |F |

and, hence, the RHS of (7.29) and (7.30) is at most 1. However, if we add the variables
x and y for all the paths in a set Ω, with |Ω| ≥ 2, the condition∑

p∈Ω

x̄p(FR) +
∑
p∈Ω

(x̄p − ȳp)(FNR) ≤ |F |

does not hold because
∑

p∈Ω x̄
p
e can take a value up to |Ω|. In order for the “aggregate”

parity inequality to be satisfied,
∑

p∈Ω x̄
p
e ≤ 1 is needed for all the edges in F . Then,

we will assume that

1) the set F does not contain non–required edges, and

2) for the (required) edges in F ,
∑

p∈Ω x̄
p
e ≤ 1 holds.

Thus, in this section we will assume that all the LDdGRP solutions satisfy
∑

p∈P x̄
p
e = 1,

for all e ∈ ER, instead of
∑

p∈P x̄
p
e ≤ 1. Note that there is always an optimal LDdGRP

solution in which each required edge is traversed in exactly one path (because each
required edge e has a parallel non–required edge e′, with cse ≥ ce′ , and one path can
traverse e and the remaining paths traverse e′).

Let us consider a set S ⊂ V of vertices, an edge subset F ⊆δR(S), and a non–empty
subset Ω of paths. Let us consider a partition of Ω into four (maybe empty) subsets,
Ω = Ω1 ∪ Ω2 ∪ Ω3 ∪ Ω4, in such a way that |F | + |Ω1 ∪ Ω2| is an odd number. If we
denote SR = S ∩ V 0

R and S̄ = V \ S, we will call Ω–aggregate parity inequality to∑
p∈Ω

xp(δR(S) \ F ) +
∑
p∈Ω

(xp − yp)(δNR(S)) ≥
∑
p∈Ω

xp(F )− |F |+

+
∑
p∈Ω1

(
zp−1(SR)− zp(SR)

)
+
∑
p∈Ω2

(zp−1
(
S̄R)− zp(S̄R)

)
+

+
∑
p∈Ω3

(
zp−1(SR)− zp(S̄R)

)
+
∑
p∈Ω4

(
zp−1(S̄R)− zp(SR)

)
− |Ω|+ 1 (7.31)

The idea behind the definition of the Ωi subsets is to group the paths depending on
their starting and ending shores. Specifically,

• Paths in Ω1 are considered as starting at S and ending at S̄ paths,

• Ω2 is formed by paths starting at S̄ and ending at S,

• Ω3 is formed by paths starting and ending at S, and

• Ω4 is formed by paths starting and ending at S̄.

Theorem 7.3.15. Ω−aggregate parity inequalities (7.31) are satisfied by all the LD-
dGRP solutions such that

∑
p∈P x

p
e = 1 for all e ∈ ER.
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Proof: Let (x̄, ȳ, z̄) be an LDdGRP solution such that
∑

p∈P x̄
p
e = 1 for all e ∈ ER.

Since F ⊆ ER,
∑

p∈Ω x̄
p(F ) ≤ |F |. Furthermore, each term

∑
p∈Ωi

(
z̄p−1(·) − z̄p(·)

)
is less than or equal to |Ωi| and, hence, the RHS of inequality (7.31) is, at most,
0 + |Ω| − |Ω|+ 1 = 1.

The LDdGRP solutions (x̄, ȳ, z̄) for which the RHS of (7.31) is less than or equal
to zero trivially satisfy the inequality. The RHS of (7.31) is 1 only for the LDdGRP
solutions (x̄, ȳ, z̄) that satisfy:

•
∑

p∈Ω x̄
p(F ) = |F |,

• z̄p−1(SR) = 1 and z̄p(SR) = 0, for all p ∈ Ω1,

• z̄p−1(S̄R) = 1 and z̄p(S̄R) = 0, for all p ∈ Ω2,

• z̄p−1(SR) = 1 and z̄p(S̄R) = 0, for all p ∈ Ω3,

• z̄p−1(S̄R) = 1 and z̄p(SR) = 0, for all p ∈ Ω4.

These solutions traverse each edge e ∈ F once, the paths in Ω1 start in S and end in S̄,
the paths in Ω2 start in S̄ and end in S, and the paths in Ω3 and Ω4 start and end in S
and S̄, respectively. Given that |F |+|Ω1∪Ω2| is odd, these solutions have to traverse the
cut–set δ(S) at least once more, and

∑
p∈Ω x̄

p(δR(S) \F ) +
∑

p∈Ω(x̄p− ȳp)(δNR(S)) ≥ 1
holds. �

The Ω–aggregate parity inequalities (7.31) consider a subset of paths jointly. If this
subset contains only one path, we obtain the parity inequalities (7.29) and (7.30), but
with F ⊆ ER. If |F | is odd, then |Ω1 ∪ Ω2| has to be even (or zero). Let Ω1 = Ω2 =
Ω4 = ∅ and Ω3 = {p}. The corresponding inequality (7.31) is

xp(δR(S) \ F ) + (xp − yp)(δNR(S)) ≥ xp(FR)− |F |+ zp−1(SR)− zp(S̄R),

which is inequality (7.29) with F ⊆ ER and |F | odd, and with −zp(S̄R) = zp(SR) − 1
(since zp(SR) + zp(S̄R) = 1 holds for each path p).

On the other hand, if |F | is even, then |Ω1 ∪ Ω2| has to be odd, and by considering
Ω1 = {p} and Ω2 = Ω3 = Ω4 = ∅, the corresponding inequality (7.31) is

xp(δR(S) \ F ) + (xp − yp)(δNR(S)) ≥ xp(FR)− |F |+ zp−1(SR)− zp(SR),

which is inequality (7.30) with F ⊆ ER and |F | even.

On the other hand, in the case that set Ω includes all the paths, Ω = P, if we
consider F = δR(S) and |F | is odd, we have the following “aggregate” parity inequality :

∑
p∈P

(xp − yp)(δNR(S)) ≥ 1, (7.32)

which is obviously satisfied by all the LDdGRP solutions such that
∑

p∈P x
p
e = 1 for all

e ∈ ER.
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7.3.3 q−connectivity inequalities

p–connectivity inequalities were presented in Sections 4.2.1 and 4.2.2 for the K–RPP,
based on those with the same name proposed for the MBCPP in Corberán et al. (2013).
Here we present a version of such inequalities for the LDdGRP. We will use here the
letter q instead of p to avoid confusion with the path indices.

Let {S0, . . . , Sq} be a partition of V . The following inequality∑
p∈P

xp(δR(S0)) +
∑
p∈P

(xp + yp)(δNR(S0)) + 2
∑
p∈P

∑
1≤r<t≤q

xp(Sr : St) ≥ 2q (7.33)

will be referred to as aggregate q–connectivity inequality for the LDdGRP.

Theorem 7.3.16. Aggregate q–connectivity inequalities (7.33) are valid for the LD-
dGRP.

Proof: Let (x̄, ȳ, z̄) be an LDdGRP tour. If
∑

p∈P x̄
p(Sr : St) ≥ 1 for certain sets

Sr, St, with 1 ≤ r < t ≤ q, we can merge Sr and St, obtaining a new q–connectivity
configuration with q − 1 sets. It can be seen that if its associated (q − 1)–connectivity
inequality is satisfied by (x̄, ȳ, z̄), also is the original one. Therefore, we can assume that∑

p∈P x̄
p(Sr : St) = 0 for any pair of sets Sr, St, with r, t 6= 0. Note that, in this case,

each set Si contains either a vertex in V 0
R, a required edge, or a vertex in VI incident with

a required edge in (S0 : Si). Thus, the tour (x̄, ȳ, z̄) has to visit each set Si and, then,∑
p∈P(x̄p+ ȳp)(S0 : Si) ≥ 2 holds and

∑
p∈P x̄

p(δR(S0))+
∑

p∈P(x̄p+ ȳp)(δNR(S0)) ≥ 2q.
�

The above inequalities consider the “whole” LDdGRP tour, the sum of the P paths.
However, they can also be defined for each single path p. Let {S0, . . . , Sq} be a partition
of V and let us consider an edge ej ∈ E(Sj) for each j = 1, . . . , q. Assume that there
are al least two required vertices in S0, |S0 ∩ V 0

R| ≥ 2. For each p ∈ P, the inequality

xp(δR(S0)) + (xp + yp)(δNR(S0)) + 2
∑

1≤r<t≤q
xp(Sr : St) ≥ 2

q∑
j=1

xpej

zp−1(V 0
R ∩ S0) + zp(V 0

R ∩ S0)− 2 (7.34)

will be referred to as q–connectivity inequality for the LDdGRP.

Theorem 7.3.17. q–connectivity inequalities (7.34) are valid for the LDdGRP.

Proof: We have to prove that, for any LDdGRP solution (x̄, ȳ, z̄), the path p satisfies
the inequality.

For the LDdGRP solutions (x̄, ȳ, z̄) satisfying x̄pej = 1 for all j = 1, . . . , q, we distin-
guish three cases depending on the values of z̄p−1(S0 ∩ V 0

R) and z̄p(S0 ∩ V 0
R):
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a) If z̄p−1(S0 ∩ V 0
R) = z̄p(S0 ∩ V 0

R) = 1, the RHS of (7.34) for these solutions is 2q,
and the path p starts and ends at S0 and visits all the remaining sets Si. As can
be seen in the proof of Theorem 7.3.16, the LHS of (7.34) for these solutions is at
least 2q and, hence, they satisfy (7.34).

b) If z̄p−1(S0∩V 0
R) = z̄p(S0∩V 0

R) = 0, the RHS of (7.34) for these solutions is 2q−2,
and the path p starts and ends at vertices in V \S0, and visits all the sets Sj , j > 0.
The LHS of (7.34) for these solutions is at least 2q − 2 because, otherwise, after
adding two edges in any set (S0 : Si), with coefficient 1 in the inequality, we would
have a closed walk on the sets S0, . . . , Sq for which the LHS of a q–connectivity
inequality would be less than 2q, and this would contradict a).

c) If z̄p−1(S0 ∩ V 0
R) = 1 and z̄p(S0 ∩ V 0

R) = 0 (or viceversa), the RHS of (7.34) for
these solutions is 2q − 1, and the path p starts at S0, visits all the sets Sj , j > 0,
and ends at a given Si, i > 0. The LHS of (7.34) for these solutions is at least
2q−1 because, otherwise, after adding an edge in the set (S0 : Si), with coefficient
1 in the inequality, we would have a closed walk on the sets S0, . . . , Sq for which
the LHS of a q–connectivity inequality would be less than 2q.

For the LDdGRP solutions (x̄, ȳ, z̄) satisfying x̄pej = 1 for all j = 1, . . . , q except
one of them, we distinguish the same three cases as above. If both z̄p−1(S0 ∩ V 0

R) and
z̄p(S0 ∩ V 0

R) are equal to 1, the RHS of (7.34) for these solutions is 2q− 2 and the path
p has to visit all the sets Sj except one of them, so the LHS of (7.34) for these solutions
is at least 2q − 2. The same happens for the cases b) and c), where the RHS of (7.34)
for these solutions is two units less than the RHS in b) and c) above, while the LHS
also decreases by two units. For the remaining LDdGRP solutions (x̄, ȳ, z̄) satisfying
xpej = 1 for all j = 1, . . . , q except two or more of them, a similar reasoning proves that
they also satisfy (7.34). �

7.4 A branch–and–cut algorithm for the LDdGRP

We present in this section the branch–and–cut algorithm we have implemented using the
families of inequalities described in the polyhedral study of the previous section. For the
cutting–plane algorithm embeded in the branch–and–cut method, we have considered
separation procedures for connectivity inequalities (7.4) and (7.17), parity inequalities
(7.29) and (7.30), aggregate parity inequalities (7.32), aggregate q–connectivity inequal-
ities (7.33), and q–connectivity inequalities (7.34).

The initial LP relaxation includes inequalities (7.5)–(7.11) from the formulation,
equations (7.16), inequalities (7.19)–(7.21) needed to linearize the objective function,
and the bounds on the variables. Furthermore, we removed from the formulation the
variables from Theorem 7.2.1.

At each node of the search tree, the cutting–plane procedure is applied, the violated
cuts found are added to the relaxation, and the LP is solved again until no more vio-
lated cuts are found by the cutting–plane. Then we branch using the strong branching
strategy implemented in Cplex but giving higher priority to the variables zpi .
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7.4.1 Separation algorithms

We describe here the separation algorithms that have been used to identify violated
inequalities at each iteration of the cutting–plane algorithm.

Connectivity inequalities

For each path p, we compute the connected components of the graph induced by those
edges e ∈ E such that x̄pe + ȳpe > ε, where ε is a given parameter. For each one of these
connected components, say S, we find the edge f ∈ E(S) and the vertex v ∈ S such
that x̄pf and z̄pv are maximal, respectively. Now, if x̄pf > z̄pv , we check the corresponding
connectivity inequality (7.4) for violation. Otherwise, we check connectivity inequality
(7.17).

Parity inequalities

Given a path p and a subset of vertices S ⊂ V , we have adapted the procedure described
in Ghiani and Laporte (2000) for the so–called co–circuit inequalities to obtain the set
F ⊆ δ(S) that corresponds to the most violated parity inequality (7.2) and (7.15)
associated with this subset. We create set F as the set containing those edges e ∈ δ(S)
such that x̄pe − ȳpe ≥ 0.5.

If |F | is odd, we check parity inequality (7.2) for violation. Moreover, let

e1 = arg min
e∈F

{x̄pe − ȳpe} , e2 = arg max
e∈δ(S)\F

{x̄pe − ȳpe} .

If x̄pe1 − ȳ
p
e1 − 0.5 ≥ 0.5 − (x̄pe2 − ȳ

p
e2), we also try adding edge e1 to F and checking

inequality (7.15) for violation. Otherwise, we try removing edge e2 from F .

In the case that the obtained set F is even, we check parity inequality (7.15) for
violation and try adding to or removing one edge from F as before in order to look for
violated inequalities (7.2).

For each path p, we look for violated parity inequalities (7.2) and (7.15) by applying
the above procedure for all the subsets formed by one single vertex in VI (incident with
at least one required edge) and for the subsets S ⊂ V generated as follows. For each
edge e ∈ E, we define the weight

we = min {1− (x̄pe − ȳpe), x̄pe − ȳpe}

and compute the connected components induced by those edges with we > ε, where ε is
a given parameter. Each connected component defines a subset S that will be studied.

We also look for violated aggregated parity inequalities (7.32). For each edge e ∈ E,
we define the weight

wagg
e = min

1−
∑
p∈P

(x̄pe − ȳpe),
∑
p∈P

(x̄pe − ȳpe)
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and obtain the connected components induced by the edges with wagg
e > ε. Then, the

same procedure as above is used to find the set F ⊆ δ(S) with the difference that now
we only look for sets F with |F | odd.

q–connectivity inequalities

We have implemented heuristic separation algorithms for both q–connectivity (7.34)
and aggregate q–connectivity (7.33) inequalities.

Given an LP solution (x̄, ȳ, z̄) and a path p, we calculate the connected components
C1, . . . , Ct of the graph induced by the edges with x̄pe + ȳpe > 0. Now we shrink any
pair of components Ci, Cj such that (x̄p + ȳp)(Ci : Cj) ≥ 2. Let S0 be the union of the
components Ci such that z̄p(Ci) ≥ εz or z̄p−1(Ci) ≥ εz and S1, . . . , Sq the remaining
components Cj , where εz ≥ 0 is a parameter.

Now we merge every set Si, i 6= 0, containing no edges, i.e. E(Si) = ∅, with another
one in the following way. We look for the set Sr, r /∈ {0, i}, that maximizes x̄p(Si : Sr).
If (x̄p + ȳp)(S0 : Si) + z̄p(Si) + z̄p−1(Si) > (x̄p + ȳp)(Si : Sr), we do S0 = S0 ∪ Si.
Otherwise, we merge Si and Sr.

For each set Si, i 6= 0, we choose ei = arg maxe∈E(Si){x̄
p
e}.

Now, while q > 2, we try to continue merging sets as follows:

• If 2x̄p(Si : Sj) > min{x̄pei , x̄
p
ej}, with i, j 6= 0, we merge Si and Sj and choose

as representative edge of the resulting merged set the edge among ei and ej with
maximum value of x̄pe.

• If
∑

r 6=i,0
(
(x̄p − ȳp)(Si : Sr)

)
+ x̄p(Si : S0) + z̄p−1(Si) + z̄p(Si) > 2x̄pei , i 6= 0, we

do S0 = S0 ∪ Si.

Finally, we check the q–connectivity inequality (7.34) corresponding to the resulting
sets S0, S1, . . . , Sq and their associated edges e1, . . . , eq for violation.

In order to find violated aggregated q–connectivity inequalities (7.33), we apply
the following procedure. Given an LP solution (x̄, ȳ, z̄), let us call x̄agge =

∑
p∈P x̄

p
e

and ȳagge =
∑

p∈P ȳ
p
e , i.e. the result of adding all the paths of the solution. First we

calculate the connected components C1, C2, . . . , Ct induced by the required edges and
the required nodes of G. Now we iteratively merge all the pairs of components Ci,Cj
such that (x̄agg + ȳagg)(Ci : Cj) ≥ 2.

For each resulting set Ci, we proceed as follows. We choose S0 = Ci, while S1, . . . Sq
will be the remaining sets Cj . While q > 2, we will try to merge pairs of sets Si, Sj
according to the following rules:

• If i, j 6= 0 and x̄agg(Si : Sj) ≥ 1, we merge Si and Sj .

• If i = 0 (or j = 0) and
∑

r 6=i,0
(
(x̄agg − ȳagg)(Si : Sr)

)
+ (x̄agg + ȳagg)(S0 : Si) > 2

we do S0 = S0 ∪ Si.

We check the aggregated q–connectivity inequality (7.33) corresponding to the re-
sulting sets S0, S1, . . . , Sq for violation.
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Instance name |ER| |V |

LDdGRP441 10.0 [12, 17 ]

LDdGRP442 11.2 [14, 21 ]

LDdGRP551 17.0 [19, 24 ]

LDdGRP552 21.3 [24, 31 ]

LDdGRP661 21.0 [28, 33 ]

LDdGRP662 25.2 [31, 38 ]

LDdGRP771 30.0 [40, 45 ]

LDdGRP772 43.5 [45, 53 ]

LDdGRP881 46.0 [57, 62 ]

LDdGRP882 63.0 [58, 63 ]

LDdGRP991 56.0 [66, 71 ]

LDdGRP992 79.0 [71, 82 ]

LDdGRP10101 67.0 [82, 87 ]

LDdGRP10102 95.5 [86, 95 ]

Table 7.4: Characteristics of the LDdGRP instances

7.5 Instances

In order to evaluate the behaviour of the proposed branch–and–cut algorithm, we have
randomly generated a set of LDdGRP instances as follows. Initially, we generate a GRP
instance on a grid with n × n points whose coordinates are multiples of 100. All the
vertical and horizontal edges, as well as some diagonals, are contained in the original
graph. Then, each edge of such a graph is considered required (and therefore included
in the instance) with probability p. Moreover, we randomly select the depot among
the vertices of the grid, and the coordinates of all the vertices are slightly perturbed
to avoid completely horizontal or vertical edges. Those vertices that are not incident
with required edges are removed from the graph. A set of nvreq required vertices with
random coordinates is generated and added to the instance. Deadheading times per
unit of weight between any pair of vertices of the graph are considered equal to the
Euclidean distances between these two points in the grid, while the servicing time (per
unit of weight) of a required edge is equal to the deadheading time multiplied by 1.5.

A total of 7 different grid sizes, ranging from 4× 4 to 10× 10, have been considered.
For each grid size, 12 instances have been generated, half of them classified as version
1 (with p = 0.3) and the other half as version 2 (with p = 0.4). For each version on the
same grid, we generate one instance for each value of nvreq in {2, 3, 4, 5, 6, 7}. Thus, we
have a total of 84 instances, whose characteristics are summarized in Table 7.4. Each
row of the table corresponds to a set of six different instances, each one with a different
number of required vertices. The digits at the end of the name on the first column
indicate the grid size and whether the instances have been generated as version 1 or
2. Column 2 reports the average number of required edges, while column 3 shows the
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minimum and maximum total number of vertices among the considered instances in the
row.

The demand di of each required vertex i is chosen randomly in {1, 2}. The total
demand of an instance will then be between 2 and 14. Since for many delivery drones
the ratio of its curb weight and its maximum payload ranges between 1 : 1 and 1 : 5, we
have considered three possible values for the curb weight w0 of the drone: 15, 30 and
45. Each one of these values has been randomly assigned to 28 of the instances. Given
that the average value of cse for the required edges of the graphs is aproximately 150,
we have considered the times (per unit of weight) cD of servicing (landing and taking
off) a required vertex in {100, 125, 150}. Again, we assign each value to one third of the
instances in a random way.

The characteristics of the 84 LDdGRP instances generated, as well as the results ob-
tained in the experiments explained in what follows, can be found in http://www.uv.es/
plani/instancias.htm.

7.6 Computational experiments

In this Section we first present the experiments carried out on a reduced set of instances
in order to assess the contribution of each family of valid inequalities. The results
obtained are used to decide the configuration of the cutting-plane procedure we will use
in our final implementation of the branch–and–cut algorithm. This final algorithm is
then tested on the complete set of instances and the results discussed.

All the algorithms have been coded in C++ and the tests have been run on an
Intel Core i7 at 3.4 GHz with 16 GB RAM. The B&C uses CPLEX 20.1 MIP Solver
with a single thread. CPLEX heuristic algorithms were turned off, as well as CPLEX’s
own cuts. The optimality gap tolerance was set to zero and best bound strategy was
selected.

7.6.1 Configuration of the cutting–plane algorithm

In order to get an idea of the impact of using each family of inequalities, we have designed
the following experiments. A subset of 15 instances of the collection described in Section
7.5 has been randomly selected. We have first implemented a barebones version of the
branch–and–cut algorithm in which only the connectivity separation algorithm and the
separation procedure for parity inequalities defined on sets of one single vertex are used
to find violated inequalities when the solution of the LP relaxation is integer (they are
added as lazy constraints in Cplex). This guarantees that any integer solution for which
no violated cuts are found will be a feasible LDdGRP solution. We call this version of
the branch and cut “Base” version.

Now we run the reduced set of instances several times, using each time the Base
version plus only one of the separation algorithms listed here (applied to the fractional
solutions of the LP relaxation, i.e. as user cuts in Cplex):

1 Connectivity inequalities (7.4) and (7.17)
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Cutting–plane version 1 2 3 4 5 6

Base 7 7 7 9 8 6 7

Base + 3 9 9 9 – 11 9 9

Base + 3 + 4 11 13 12 – – 11 12

Base + 1 + 3 + 4 13 – 14 – – 12 14

Base + 1 + 3 + 4 + 6 14 – 14 – – 12 –

Base + all inequalities 12 – – – – – –

Table 7.5: Number of optimal solutions found

Cutting–plane version 1 2 3 4 5 6

Base 9.70 3.83 10.07 2.16 13.78 29.03 7.05

Base + 3 2.16 1.48 2.52 – 0.88 3.41 2.19

Base + 3 + 4 0.88 0.18 0.41 – – 0.95 0.36

Base + 1 + 3 + 4 0.18 – 0.18 – – 0.71 0.05

Base + 1 + 3 + 4 + 6 0.05 – 0.06 – – 0.23 –

Base + all inequalities 0.31 – – – – – –

Table 7.6: Average percentage gap

2 Parity inequalities (7.15) for sets of one single vertex

3 Parity inequalities (7.29) and (7.30)

4 aggregate parity inequalities (7.32)

5 q–connectivity inequalities (7.34)

6 aggregate q–connectivity inequalities (7.33)

Once all the six versions (plus the base version) have been run, we select the one that
provides the best results. For the next batch of runs, we use the version that provides the
best results and try adding each one of the remaining separation algorithms to it. We
continue selecting the best version of each batch and adding the separation algorithms
that contribute the most to the performance of the branch–and–cut procedure until no
significant improvement is observed.

The results obtained in these experiments are reported in Tables 7.5 to 7.8. Each one
of these tables presents the performance of the procedure in what refers to one specific
measure: number of instances solved to optimality (Table 7.5), average percentage
gap between the final upper and lower bounds (Table 7.6), average computing time in
seconds (Table 7.7), and average value of the final lower bound (Table 7.8). The first
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Cutting–plane version 1 2 3 4 5 6

Base 3881.5 3867.6 3896.6 3249.4 3556.1 4503.6 3893.5

Base + 3 3249.4 3119.9 3111.7 – 2386.5 3161.5 3161.3

Base + 3 + 4 2386.5 1908.7 2363.5 – – 2523.8 2313.8

Base + 1 + 3 + 4 1908.7 – 1768.1 – – 2070.0 1796.9

Base + 1 + 3 + 4 + 6 1796.9 – 1858.2 – – 2256.3 –

Base + all inequalities 1958.8 – – – – – –

Table 7.7: Average time (seconds)

Cutting–plane version 1 2 3 4 5 6

Base 188945.7 198012.9 197918.8 201891.0 199566.2 189324.5 194434.5

Base + 3 201891.0 202675.1 201836.4 – 204795.6 201349.5 202140.9

Base + 3 + 4 204795.6 206019.5 205398.0 – – 204534.0 205327.6

Base + 1 + 3 + 4 206019.5 – 205972.9 – – 205683.2 206354.2

Base + 1 + 3 + 4 + 6 206354.2 – 206238.3 – – 205826.9 –

Base + all inequalities 205734.9 – – – – – –

Table 7.8: Average lower bound

column of the tables describes the initial configuration used for each batch of runs.
The second column reports the results obtained with this inital configuration, while
the following ones show the results after adding each one of the remaining separation
procedures. As can be seen in these tables, the best overall configuration is the one
including all the separation algorithms except for the parity inequalities for sets of one
single vertex and the q-connectivity inequalities. Regarding the single vertex parity
inequalities, the results are not surprising, since these inequalities are already used in
the base version as lazy constraints and, moreover, they can also be found by the more
general parity separation algorithm. As for the disappointing performance of the (non-
aggregate) q-connectivity inequalities, this can be due to the large number of inequalities
of this type found and added by the separation algorithm, which can increase the size
of the LP relaxations dramatically. This makes the LP problems harder and prevent
the overall algorithm from exploring more nodes of the branch–and–cut tree.

For the final experiments in the next section, we use the configuration providing the
best results, that is, the one containing connectivity, general parity, aggregate parity,
and aggregate q–connectivity inequalities.

7.6.2 Performance of the branch–and–cut algorithm

Now we present the results obtained with the branch–and–cut algorithm on all the
instances described in Section 7.5 with a time limit of 2 hours. These results are
reported in Tables 7.9 and 7.10. The first one shows the results grouped by the number
of required vertices of the instances, while in the second one the instances are grouped
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|VR| ] Opt Gap0 (%) Gap (%) Nodes Time

2 14/14 1.11 0.00 64.9 14.6
3 14/14 1.41 0.00 156.8 52.2
4 13/14 1.98 0.04 1234.7 738.7
5 10/14 5.64 1.51 3467.1 3113.9
6 9/14 5.86 1.27 5009.7 3595.0
7 6/14 9.68 5.40 5488.8 4442.3

66/84 1.28

Table 7.9: Computational results (instances grouped by number of required vertices)

Grid size ] Opt Gap0 (%) Gap (%) Nodes Time

4× 4 12/12 4.17 0.00 317.1 8.2
5× 5 12/12 3.82 0.00 2094.8 206.0
6× 6 11/12 4.31 0.51 3069.7 895.1
7× 7 10/12 3.86 1.02 3737.2 1756.3
8× 8 8/12 5.03 2.51 4566.5 3519.3
9× 9 8/12 3.05 1.36 2042.1 3161.8

10× 10 5/12 4.94 3.56 2125.0 4332.3

66/84 1.28

Table 7.10: Computational results (instances grouped by size)

according to the size of the grid, since both parameters affect the number of variables in
the model directly. In both tables, column ‘] Opt’ gives the number of instances solved
to optimality within the time limit. Column ‘Gap0 (%)’ shows the average percentage
gap between the final upper bound and the lower bound at the end of the root node,
while ‘Gap (%)’ presents the average percentage gap between the final upper and lower
bounds. The last two columns, ‘Nodes’ and ‘Time’, present the average number of
nodes explored in the branch–and–cut tree and the average computing time in seconds,
respectively. The last row of the tables gives the total number of instances solved and
the overall average gap.

Overall, it can be concluded that the performance of the algorithm is outstanding.
It is able to solve 66 out of 84 instances, with an average gap of 1.28%. If we look at
table 7.9, all of the instances with 2 and 3 required vertices are solved, as well as all but
one of the instances with 4 required vertices. Instances seem to become a bit harder
with 5 or more required vertices, but still 25 out 42 of these instances have been solved
optimally. A similar behavior can be observed with respect to the size of the grids. 45
out of 48 instances with sizes from 4× 4 to 7× 7 have been solved, compared to 31 out
of 48 for the larger ones.
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Although both the number of required vertices and the size of the grid seem to
have a similar impact on the overall difficulty of the instance, both in terms of number
of instances solved and average final gap, it is interesting to note the difference with
respect to the gap at the end of the root node, ‘Gap0’. While this gap clearly increases
as the number of required vertices grows, it seems that it remains more or less constant
with the grid size. This seems to indicate that the quality of the lower bound obtained
at the root node does not depend on the size of the graph as much as on the number of
paths.





Conclusions

Throughout this thesis, we have studied three mathematical optimization problems that
arise as an extension of arc routing problems in which drones are used to perform a given
service. Arc routing problems with drones differ from classical ARPs in that drones can
fly directly between any two points of the network without following the edges of the
graph. This enables Drone ARPs to have lower cost solutions than Postman ARPs, but
also makes them more difficult to solve since they are continuous optimization problems
with an uncountable number of feasible solutions.

The first two chapters of this thesis have introduced the reader to some basic concepts
of graph theory, polyhedral combinatorics, and linear and integer programming, as well
as offered an overview of some important routing problems that have been studied in
depth in the literature.

In Chapter 3, we have introduced and studied the length constrained K–drones
rural postman problem (LC K–DRPP), an extension of the Drone RPP introduced in
Campbell et al. (2018), in which the limited capacity of the drones makes it impossible
to service all the lines requiring service with a single drone and, therefore, we have to
find a set of drone routes, each of limited length. We have presented a mathemati-
cal formulation for its discrete approximation, the length constrained K–vehicles rural
postman problem (LC K–RPP), and two solution methods, a branch–and–cut algo-
rithm for the LC K–RPP and a matheuristic for the original continuous problem. The
B&C algorithm is based on the proposed formulation and on the strengthening of its
linear relaxation through the separation of several families of valid inequalities that are
exponential in number. The matheuristic consists of several features, including edge
splitting to increase flexibility in the service, local search to improve solutions, and an
optimization procedure that exactly solves RPP instances associated with each single
drone route. Both algorithms have been tested on a large set of instances from the
literature and on a new set of larger instances with up to 137 lines and with 2 to 6
drones.

In Chapter 4, we have presented a new formulation for the LC K–RPP with two
binary variables for each edge and each drone representing the first and second traversals
of the edge, respectively. We have studied the polyhedron associated with the set of
solutions of a relaxed formulation and proved that several families of inequalities induce
facets of this polyhedron. Based on this new formulation and the families of valid
inequalities presented, we have designed and implemented in Chapter 5 a branch–and–
cut algorithm for the LC K–RPP that incorporates the separation of these inequalities.
This branch and cut is the main routine of an iterative algorithm that, by solving an
LC K–RPP instance at each step, finds good solutions for the original LC K–DRPP.
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Figure 7.10: Solution of an even DroneRPP66 instance with L = 1300 (6 drones)

The computational results obtained show the efficiency of the proposed method.

Figure 7.10 shows an LCK–DRPP solution provided by the matheuristic for the even
instance DroneRPP66 with six drones, in which solid lines represent the traversal and
service of the required lines and dashed lines are associated with deadheading traversals.
This solution has a deadheading cost of 3411, while the cost of the solution obtained for
the same instance without splitting is 3751.85. Note that sometimes drones enter some
required lines through intermediate points, and that the service of some lines is shared
by two drones. The drone routes illustrated in Figure 7.10 show some of the complexity
of these problems and solutions, as well as the benefits the drones get from being able
to fly directly between two points. Observe that the green route in Figure 7.10 includes
parts of two required lines and all of two other required lines, which are in two separate
components of the network. These solutions also reflect the strategy of splitting the arcs
in equidistant segments, while a different set of intermediate points may lead to (likely
small) improvements. Future research in this line could include exploring some post–
processing local improvements to selectively add more intermediate nodes to certain
edges. Some interesting nodes to consider could be the interior points on a required
edge that are closest to the endpoints of other required edges, or/and the points on a
required edge that are closest to any point on other required edges.

In chapter 6, we have addressed the multi–purpose K–drones general routing prob-
lem (MP K–DGRP), where a fleet of multi–purpose drones are used to jointly provide
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Figure 7.11: Solution of an instance with 8 required vertices and 6 connected components
induced by 37 required edges corresponding to a real network.

sensing over a region along with deliveries to discrete nodes. The continuous areas for
sensing coverage can be modeled as a set of parallel lines so that each area is completely
serviced if all its lines are traversed. For this problem, we have presented a matheuristic
algorithm, and we also have proposed a formulation for its discretized version, the K–
vehicles GRP, and presented a branch–and–cut procedure for its solution. The results
obtained with the branch–and–cut show that the formulation and the valid inequalities
are useful for optimally solving small and medium–size K–GRP instances, and provide
good lower bounds for larger instances that allow us to measure the quality of the fea-
sible solutions provided by the matheuristic. The matheuristic algorithm is capable of
finding very good MP K–DGRP solutions in short computing times.

The solution methods described in chapter 6 can be adapted to deal with general
networks associated with required vertices and connected components induced by the
required edges (rather than sets of parallel required lines). An example of such a net-
work and a solution to it with three multi–purpose drones can be seen in Figure 7.11.
This includes a connected component with 20 required edges serviced by the three
drones. We can extend the work by developing versions of both methods that exploit
the particularities of these general networks.

Future research in this line could consider a variety of practical extensions for multi–
purpose drones. One area that applies for some delivery settings is to prioritize either
deliveries or sensing. Thus, one could enforce a requirement to complete deliveries first
(before sensing activities) or vice versa. One might also enforce a time constraint on the
last delivery, as can be important for medical supplies or perishable products. Another
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extension could be to allow drone recharging, so the drone does not need to return to
the base, but could be recharged (or reloaded for more deliveries) in the field, or to
consider several depots from which to launch the drones to joinly perform the service.
Research could also explore the optimal orientation of lines to cover a region, or explore
other drone flight paths for covering a region. From an algorithmic perspective, future
research can address other ways of identifying intermediate points where drones can
enter and exit lines, and other heuristic solution approaches for very large problems.

In chapter 7, we have introduced a new combinatorial optimization problem, the
load–dependent drone general routing problem (LDdGRP). This problem is a variant
of the classical GRP, in which a drone has to traverse some required edges of a graph
and also visit a set of nodes that require a delivery. In our problem, the time of
traversing each edge of the network is given by the product of the distance travelled
and the total weight carried by the drone. For this difficult problem, we have proposed
a mathematical formulation and studied its associated polyhedron, and several families
of valid inequalities have also been presented. We have designed a branch and cut to
solve the LDdGRP that incorporates separation procedures for all these inequalities.
The computational experiments carried out reflect the efficiency of our exact approach
on a set of instances with up to 7 deliveries and up to 96 required edges.

Regarding this problem, we have approached it from a theoretical point of view,
developing an exact procedure for its solution. Given the great difficulty of the problem,
we could design and implement heuristic algorithms to solve large LDdGRP instances
in reasonable computational times. We could also extend our research to consider a fleet
of multi–purpose drones with limited capacity and autonomy to jointly perform all the
service. The issue of considering intermediate points on the lines to improve solutions,
as done for the LC K–DRPP and the MP K–DGRP, remains open to be studied.



Appendix A

Resumen extendido

La tecnoloǵıa emergente de veh́ıculos aéreos no tripulados, comúnmente conocidos como
drones, ha brindado nuevas oportunidades para los profesionales de la loǵıstica urbana
en la última década. El transporte ha jugado siempre un papel crucial en la sociedad y en
la economı́a, y un motor fundamental del desarrollo económico en los últimos tiempos ha
sido la inversión en sistemas de transporte cada vez más eficientes. Los drones presentan
ventajas atractivas en comparación con los veh́ıculos terrestres estándar, como evitar la
congestión en las redes viales, eliminar el riesgo del personal en operaciones de dif́ıcil
acceso u obtener una mayor precisión de medición en la inspección de infraestructuras.
Muchas empresas comerciales han mostrado recientemente interés en utilizar drones
para realizar entregas de última milla más rentables y rápidas. Amazon anunció a
finales de 2013 que entregaŕıa paquetes directamente en cada puerta a través de Prime
Air usando pequeños drones 30 minutos después de que los clientes presionaran el botón
“comprar”. Unos años más tarde, lanzaŕıa una versión de su dron de entrega Prime Air
que era una aeronave h́ıbrida robusta capaz de despegar y aterrizar verticalmente que
pod́ıa volar hasta 15 millas y entregar paquetes de menos de cinco libras a los clientes en
menos de 30 minutos. Junto con Amazon, otros servicios de entrega como UPS o Google
han estado probando el uso potencial de drones para la entrega de paquetes. Dado que
los drones aéreos no están restringidos por la infraestructura local, también se pueden
utilizar de manera rentable en la distribución rural, la vigilancia y la intraloǵıstica, aśı
como en el mapeo geológico y ambiental en 3D para la recopilación de datos. El uso de
drones dentro de todos estos escenarios enfrenta múltiples problemas (y desaf́ıos) que
pueden ser abordados mediante problemas de rutas, cuyos modelos de solución apuntan
a encontrar la ruta (o rutas) más eficiente relacionada con un recurso expĺıcito como la
distancia, el tiempo o la enerǵıa.

Los problemas de rutas de veh́ıculos se encuentran entre los problemas más estudi-
ados dentro del área de la optimización combinatoria. Dado un veh́ıculo (o una flota
de veh́ıculos) y un conjunto de demandas de transporte, el objetivo de estos problemas
es determinar una ruta (o conjunto de rutas) de coste mı́nimo que satisfaga todas las
solicitudes o demandas requeridas y cumpla ciertas condiciones adicionales. Muchas
situaciones del mundo real se pueden modelar como problemas de rutas. Por ejemplo,
la distribución de productos o bienes a clientes, la recolección de basura en las calles,
o la inspección y el mantenimiento de carreteras o infraestructuras eléctricas. Todos
estos problemas de rutas se modelan matemáticamente representando la red de trans-
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porte en un grafo, donde cada uno de sus arcos o aristas representa una conexión (calle,
camino, frontera, ĺınea de costa) de la red real y tiene un peso asociado que representa
la distancia o el coste de recorrerlo.

Los problemas de rutas clásicos se pueden clasificar de forma natural en dos grupos,
problemas de rutas por nodos y problemas de rutas por arcos, según en qué parte del
grafo se encuentre el servicio a realizar. En los problemas de rutas por nodos, el servicio
se ubica en los vértices del grafo. Estos problemas representaŕıan, por ejemplo, una
situación real en la que un viajero debe visitar una serie de ciudades de tal manera que
se minimice la distancia recorrida. Entre los problemas de rutas por nodos más conocidos
se encuentran el problema del viajante de comercio (traveling salesman problem, TSP),
cuyo objetivo es encontrar una ruta para un único veh́ıculo que visite todos los nodos de
un grafo completo dado, y el problema de rutas de veh́ıculos (vehicle routing problem,
VRP), donde se dispone de flota de veh́ıculos situados en un depósito y se pretende
encontrar una ruta para cada veh́ıculo que satisfaga ciertas limitaciones y de manera
que conjuntamente se sirva a un conjunto de clientes dado. Si consideramos, en cambio,
la situación en la que un cartero sale de su oficina, entrega el correo por las calles, y
luego regresa a su oficina, el diseño de una ruta de longitud mı́nima para dicho cartero
es equivalente en este caso a encontrar un recorrido en un grafo donde algunos arcos
(carreteras) tienen una cierta demanda que debe ser satisfecha. A estos problemas de
rutas en los que la solución debe atravesar un conjunto de aristas y/o arcos del grafo los
llamamos problemas de rutas por arcos (ARPs). En esta tesis, vamos a enfocar nuestro
estudio en esta segunda familia de problemas.

El origen de los problemas de rutas por arcos se atribuye al conocido problema de
los puentes de Königsberg. En el siglo XVIII, el ŕıo Pregel divid́ıa la ciudad prusiana de
Königsberg en cuatro partes que estaban conectadas por siete puentes, y popularmente
se preguntaba si era posible encontrar una ruta que cruzara cada puente exactamente
una vez y luego regresara al punto de partida. Euler argumentó en 1736 que no era
posible encontrar dicho recorrido, y el estudio que realizó para abordar este problema
sentaŕıa las bases de la teoŕıa de grafos moderna. No fue hasta 1960 que apareció
la primera publicación relacionada con un problema de rutas por arcos, el conocido
problema del cartero chino. Guan planteó en 1962 el problema de diseñar la ruta de
menor distancia para un cartero que teńıa que caminar por todas las calles de un bar-
rio determinado para entregar el correo, y propuso un algoritmo (no polinómico) para
resolverlo. Unos años más tarde, se demostró que este problema se pod́ıa resolver en
tiempo polinómico en algunos tipos de grafo. A principios de la década de 1980, aparece
una primera descripción general de los problemas de rutas por arcos y se ofrece una clasi-
ficación más detallada de estos problemas. Desde entonces, el estudio de problemas de
rutas por arcos ha evolucionado mucho dentro del área de la optimización combinato-
ria, y se han desarrollado una gran variedad de algoritmos exactos y heuŕısticos que
alcanzan un alto nivel de sofisticación, permitiendo la solución de instancias cada vez
más grandes en tiempos computacionales muy razonables. El creciente interés por el
estudio de este tipo de problemas ha venido motivado, además de por su gran atractivo
teórico, por la gran cantidad de situaciones de la vida real que modelan, como la lectura
de contadores, el reparto de periódicos, la limpieza de nieve y esparcimiento de sal para
el mantenimiento de las carreteras en invierno, la gestión y recogida de residuos en las
calles, la inspección de infraestructuras, etc.

Entre los problemas de rutas por arcos más conocidos se encuentran el problema



Conclusions 175

del cartero chino (Chinese postman problem, CPP) y el problema del cartero rural
(rural postman problem, RPP), donde un único veh́ıculo tiene que atravesar todos o
algunos de los enlaces del grafo, respectivamente, y el problema de rutas por arcos
con capacidades (capacitated arc routing problem, CARP), donde se dispone de una
flota de veh́ıculos con capacidad limitada para dar servicio conjunto a todos los enlaces
requeridos. Todos estos problemas se pueden formular como problemas de optimización
combinatoria, donde el objetivo es encontrar, entre un conjunto contable (pero enorme)
de soluciones factibles, una que minimice (o maximice) una función de coste, llamada
función objetivo. Desafortunadamente, a excepción de algunos de los problemas más
simples, no es razonable esperar encontrar algoritmos capaces de resolver cualquier
instancia de un problema en un número de operaciones que crece de forma polinómica
con el tamaño de la instancia.

El uso de drones para realizar el servicio en los problemas de rutas por arcos implica
cambios significativos en la forma tradicional de modelar y resolver estos problemas. En
los problemas de rutas por arcos clásicos con veh́ıculos terrestres, las calles que requieren
recolección de residuos, los caminos en los que se debe quitar la nieve o las tubeŕıas que
se deben inspeccionar, por ejemplo, están representados por aristas o arcos de una red
que ignoran la forma geométrica de la infraestructura modelada (aunque no su coste o
distancia), ya que estos veh́ıculos tienen que recorrer un arco o arista (un camino) de un
extremo al otro. Además, los veh́ıculos en problemas de rutas por arcos tradicionales no
pueden viajar fuera de la red. En cambio, los drones aéreos tienen la capacidad de viajar
directamente entre dos puntos cualquiera de la red, no necesariamente entre los vértices
del grafo. Ellos pueden iniciar el servicio de una arista en el punto más adecuado de
la misma según la trayectoria del dron y la forma de cada ĺınea a dar servicio. Esta
consideración hace que los problemas de rutas por de arcos con drones sean problemas de
optimización continua con un número infinito e incontable de soluciones factibles. Una
manera de enfocar estos problemas para poder utilizar la metodoloǵıa de los problemas
de optimización combinatoria se basa en aproximar cada ĺınea o curva en el plano por
una cadena poligonal con un número finito de segmentos, y resolver el problema como
un problema de optimización discreta, donde se permite a los veh́ıculos entrar y salir
de cada ĺınea curva sólo en los puntos de la cadena poligonal. Una vez discretizado, el
conjunto de aristas no requeridas de la instancia resultante forma un grafo completo, y
el coste de viajar entre cualquier par de puntos de esta red viene dado por la distancia
eucĺıdea.

Entre las aplicaciones de problemas de rutas por arcos con drones se incluyen la in-
spección y el monitoreo de infraestructuras e instalaciones que pueden modelarse como
redes o conjuntos de ĺıneas. Dos áreas de aplicación relevantes son los sistemas de
transmisión de enerǵıa y el transporte. Podemos encontrar ejemplos de aplicaciones de
inspección con drones en una amplia variedad de áreas, incluidas ĺıneas eléctricas, v́ıas
férreas, alcantarillas, caracteŕısticas geográficas, edificios, puentes y turbinas eólicas. En
algunas áreas, como las ĺıneas eléctricas, el uso de drones proporciona un coste efectivo,
inspecciones más rápidas y seguras. La investigación académica sobre la inspección de
ĺıneas eléctricas con drones aún es limitada. Algunos autores modelan la inspección de
ĺıneas eléctricas, representadas como segmentos de ĺınea recta, por varios drones que se
lanzan desde veh́ıculos terrestres en un conjunto de nodos en la red vial, proponiendo
heuŕısticas constructivas y de mejora para diseñar la planificación de rutas de dicho
sistema cooperativo. Otros temas de inspección de drones relacionados con la enerǵıa
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que reciben atención son la supervisión de turbinas eólicas, especialmente para parques
eólicos marinos costosos y de dif́ıcil acceso, y el monitoreo de instalaciones de petróleo y
gas en alta mar y tubeŕıas. En los sistemas de transporte, los ejemplos de problemas de
rutas por arcos drones surgen en áreas como el monitoreo del tráfico vial, la inspección
de v́ıas férreas y de tránsito, la inspección de puentes o carreteras y la gestión de la
vegetación. El monitoreo del tráfico urbano y los sistemas viales proporcionan aplica-
ciones importantes para las rutas por arco de drones a lo largo de infraestructuras que,
naturalmente, se pueden modelar con ĺıneas curvas. Los puentes y otros edificios asocia-
dos con los sistemas de transporte también brindan oportunidades para el enrutamiento
por arco de drones para garantizar inspecciones eficientes. Otras aplicaciones con vue-
los de drones que cubren caracteŕısticas lineales incluyen la vigilancia a lo largo de las
fronteras y la vigilancia para evitar el ingreso marino cerca de las plantas de enerǵıa
nuclear, en cuyo caso el área a inspeccionar por los drones se puede representar como
una red formada por un conjunto de ĺıneas (que proporcionan cobertura de sensor de
las áreas deseadas).

A lo largo de esta tesis, vamos a estudiar tres variantes de problemas de rutas por
arcos con drones, que serán modelados como problemas de optimización combinatoria y
abordados con procedimientos exactos y heuŕısticos. La tesis está estructurada en siete
caṕıtulos. Los dos primeros son caṕıtulos introductorios destinados a acercar al lector a
conceptos y resultados esenciales relacionados con el contenido de la tesis. En el Caṕıtulo
1, se presentan varias definiciones básicas y resultados de teoŕıa de grafos, programación
lineal y entera, combinatoria poliédrica y optimización combinatoria, mientras que el
Caṕıtulo 2 ofrece una descripción general de los principales problemas de rutas que se
han estudiado en la literatura académica.

En los tres caṕıtulos siguientes se aborda el length constrained K–drones rural post-
man problem, o problema del cartero rural con K drones de autonomı́a restringida (LC
K–DRPP). Este problema de optimización continua es una extensión del problema del
cartero rural con un dron (o Drone RPP) ya estudiado en la literatura, en el que la
autonomı́a limitada de los drones imposibilita atravesar todas las ĺıneas que requieren
servicio con un solo dron y, por lo tanto, tenemos que encontrar un conjunto de rutas
para una flota de K drones, cada una de longitud limitada, que conjuntamente sirvan
(atraviesen) el conjunto de ĺıneas (curvas o rectas) requeridas de una red.

En el caṕıtulo 3, se definen tanto el LC K–DRPP como su aproximación discreta, el
length constrained K–vehicles rural postman problem (LC K–RPP). Para este problema
de optimización combinatoria presentamos una formulación y algunas desigualdades
válidas, aśı como un algoritmo de ramificación y corte (branch and cut) para resolver el
problema. También describimos un algoritmo matheuŕıstico para resolver el problema
continuo original. El algoritmo de ramificación y corte se basa en la formulación prop-
uesta y en el fortalecimiento de su relajación lineal mediante la separación de varias
familias de desigualdades. El algoritmo matheuŕıstico consta de varios procedimien-
tos, que incluyen la división de las ĺıneas de la red en pequeños segmentos para ofrecer
más flexibilidad en el servicio de cada ĺınea, varios métodos de búsqueda local para
mejorar las soluciones y un procedimiento de optimización que resuelve exactamente las
instancias de un problema del cartero rural asociadas con cada ruta de drones. Ambos
algoritmos se prueban en un gran conjunto de instancias de la literatura y en un nuevo
conjunto de instancias más grandes generado para este trabajo con hasta 137 ĺıneas y
con 2 a 6 drones.
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El Caṕıtulo 4 profundiza en el estudio del LC K–RPP. En este caṕıtulo proponemos
una nueva formulación para este problema de rutas por arcos discreto que considera dos
variables binarias para cada arista representando la primera y segunda vez, respectiva-
mente, que ésta es atravesada por el dron en la solución. A lo largo de este caṕıtulo se
desarrolla un estudio poliédrico del conjunto de soluciones de una formulación relajada,
demostrando que algunas desigualdades de la formulación definen facetas de su poliedro
asociado. Se presentan además varias familias de desigualdades válidas y se estudian
algunas condiciones bajo las cuales tales desigualdades inducen facetas del poliedro. En
el Caṕıtulo 5, se propone un nuevo algoritmo para resolver el LC K–DRPP. Por un lado,
presentamos un nuevo algoritmo de ramificación y corte para el LC K–RPP basado en
la formulación introducida en el caṕıtulo anterior, que incorpora la separación de las
desigualdades válidas propuestas. Por otro lado, este algoritmo de ramificación y corte
es la rutina principal de un algoritmo iterativo que resuelve en cada paso una instan-
cia del LC K–RPP para encontrar buenas soluciones para la instancia del problema
continuo original. Los resultados computacionales obtenidos muestran la efectividad de
este nuevo algoritmo.

Las soluciones obtenidas para el LC K–DRPP con los procedimientos detallados en
los caṕıtulos anteriores reflejan que la estrategia de dividir las ĺıneas originales de las in-
stancias en segmentos equidistantes a ser servidos por los drones claramente proporciona
costes más reducidos. Un conjunto diferente de puntos intermedios puede conducir a
mejoras (probablemente pequeñas). La investigación futura en esta ĺınea podŕıa incluir
la exploración de algunas mejoras locales de post–procesamiento para agregar selectiva-
mente más nodos intermedios a ciertas ĺıneas. Algunos nodos interesantes a considerar
podŕıan ser los puntos interiores en un borde requerido que están más cerca de los pun-
tos finales de otros bordes requeridos o/y los puntos en un borde requerido que están
más cerca de cualquier punto en otros bordes requeridos.

Los problemas de rutas por arcos y los problemas de rutas por nodos se pueden
unificar en los llamados problemas generales de rutas, que son aquellos en los que la
demanda de servicio se encuentra tanto en los enlaces como en los nodos del grafo. En
los caṕıtulos 6 y 7 de la tesis abordamos dos extensiones del problema general de rutas
introducido por Orloff en 1974, donde los veh́ıculos que realicen el servicio van a ser
drones multipropósito. Hoy en d́ıa, los drones comerciales se implementan para una
amplia variedad de misiones, siendo dos grandes e importantes categoŕıas la entrega
de bienes a determinados clientes y la detección e inspección. La obtención de rutas
óptimas para drones cuyos vuelos combinen entrega de paquetes y detección (mapeo)
en un solo viaje es el tema clave que abordamos aqúı.

En el Caṕıtulo 6, presentamos y estudiamos el problema general de rutas para K
drones multipropósito (MP K–DGRP). En este problema de optimización continua, una
flota de drones multipropósito, veh́ıculos aéreos que pueden realizar entregas y realizar
actividades de inspección, deben visitar conjuntamente un conjunto de nodos para re-
alizar entregas y también mapear una o varias áreas más continuas. Una manera de
cubrir superficies bidimensionales es reemplazar cada región de interés por un conjunto
de ĺıneas paralelas que seguirán los drones para proporcionar una cobertura completa
del área. Por lo general, las ĺıneas paralelas están orientadas para minimizar la cantidad
de giros del dron, ya que los giros interrumpen la recopilación de datos y aumentan el
tiempo de vuelo del dron y el uso de la bateŕıa. Dado que permitimos que se cubra una
región en varios viajes diferentes de drones, la orientación óptima de los vuelos puede
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ser diferente para diferentes partes de la región. Adoptamos aqúı la estrategia razonable
para cubrir una región en la que los drones vuelan siguiendo ĺıneas paralelas orientadas
con el eje más largo de la región (minimizando aśı los giros que necesitan los drones),
donde el espaciado de las ĺıneas refleja las caracteŕısticas del sensor que están utilizando
los drones. Aunque encontrar la forma óptima de diseñar estas ĺıneas paralelas es un
problema interesante y dif́ıcil en śı mismo, en este trabajo suponemos que las ĺıneas que
deben seguir los drones para proporcionar detección sobre las áreas son paralelas, rectas
y ya dadas.

Dado aśı un conjunto de ĺıneas que cubren las áreas a mapear y un conjunto de
puntos con una determinada demanda, el problema que estudiamos consiste en diseñar
rutas de drones de duración total mı́nima, recorriendo conjuntamente todas las ĺıneas
y visitando todos los puntos (para hacer entregas). La duración de cada ruta no puede
exceder un ĺımite de tiempo y la demanda entregada por cada ruta no puede exceder la
capacidad del dron. Como en el LC K–DRPP estudiado en caṕıtulos previos, los drones
pueden viajar fuera de la red, entrando y saliendo de cada ĺınea dada en cualquier punto
de la misma, por lo que el MP K–DGRP es un problema de optimización continua. En el
caṕıtulo 6 proponemos un algoritmo matemático para resolver dicho problema. Además,
definimos el problema general de rutas para K veh́ıculos multipropósito (MP K–GRP),
un problema de optimización discreto cuya solución proporciona un ĺımite superior de
la solución óptima del problema original. Para este problema de optimización combina-
toria, presentamos una formulación matemática con variables binarias y varias familias
de desigualdades válidas, y proponemos un algoritmo de ramificación y corte para re-
solverlo. Los extensos experimentos computacionales realizados en dos conjuntos de
instancias generadas de manera aleatoria para probar el rendimiento de los algoritmos
propuestos se muestran al final del caṕıtulo.

En el problema general de rutas se asume que el coste de viajar desde un nodo i a un
nodo j en el grafo es una constante cij . No obstante, el coste real de un veh́ıculo que se
desplaza entre cualquier par de nodos puede depender de muchos otros aspectos, como
la carga que lleva el veh́ıculo y el consumo de combustible o enerǵıa. En los sistemas de
transporte con drones, el peso de la carga transportada representa una parte significativa
del peso bruto del veh́ıculo y puede influir decisivamente en el consumo de bateŕıa y la
autonomı́a de vuelo del dron, aśı como en los tiempos de recorrido de las aristas de la red
y los tiempos de despegue y aterrizaje del dron. Por ello es importante tener en cuenta
el peso que lleva el dron en cada momento del recorrido. Tal variación del peso de la
carga a lo largo del viaje se tiene en cuenta en el problema que estudiamos en el caṕıtulo
7 para determinar la duración mı́nima de la ruta del dron. Considerar la dependencia
de la carga agrega una dificultad considerable para modelar y resolver problemas de
rutas, ya que los costos y los tiempos de viaje en la red ya no son constantes.

En el caṕıtulo 7, introducimos y estudiamos el problema general de rutas con un
dron con costes dependientes de la carga (LDdGRP). El objetivo de este problema es
encontrar un recorrido de duración mı́nima para un dron con capacidad de detección
y entrega que, comenzando y terminando en un depósito determinado, atraviesa un
conjunto de aristas requeridas de una red y también entrega mercanćıas en un conjunto
de nodos requeridos. En el LDdGRP se asume que el tiempo de recorrido de cada arista,
aśı como los tiempos de despegue y aterrizaje, son proporcionales al producto de la
distancia recorrida y el peso total (incluida la carga) del dron. Como en otros problemas
de rutas por arcos estudiados en caṕıtulos anteriores, los drones pueden viajar en ĺınea
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recta entre dos puntos cualesquiera de la red, y el problema de optimización es continuo
y muy dif́ıcil de resolver. Estos problemas se pueden discretizar aproximando cada ĺınea
original de la red por uno o varios segmentos (aristas) requeridos y permitiendo que los
drones entren y salgan de estos bordes solo en sus puntos finales. Las caracteŕısticas
originales de los problemas de enrutamiento de arco de drones que permanecen en el
problema discreto son que el conjunto de aristas no requeridas induce un grafo completo
(por lo tanto, cada arista requerida tiene una paralela no requerida) y que los tiempos
de atravesar cada arista no requerida de la red satisfacen la desigualdad triangular. A
diferencia de otros caṕıtulos, aqúı nos centramos en formular el problema discreto y
proponemos un algoritmo exacto de ramificación y corte para su solución, sin abordar
el problema de incluir y eliminar puntos intermedios sobre las rectas originales para
mejorar la solución del problema continuo.

Finalmente, la tesis incluye una sección de conclusiones que sirve de recapitulación de
todo el trabajo desarrollado, donde se marcan además algunas ĺıneas de trabajo futuro.
Parte del contenido de esta tesis ha sido publicado o enviado para su publicación a
revistas internacionales bien posicionadas del área. El contenido del caṕıtulo 3 se basa
en el siguiente art́ıculo publicado:

B J. F. Campbell, Á. Corberán, I. Plana, J. M. Sanchis, and P. Segura (2021).
Solving the length constrained K–drones rural postman problem. European
Journal of Operational Research 292, 60–72.

Parte del estudio poliédrico desarrollado en el caṕıtulo 4 para el problema del cartero
rural con K drones con autonomı́a limitada (el caso especial K = 1) se puede encontrar
en

B Á. Corberán, I. Plana, J. M. Sanchis, and P. Segura (2021). Polyhedral
study of a new formulation for the Rural Postman Problem. Technical report,
http://www.uv.es/plani/reports.html

y una versión más compacta del contenido de los caṕıtulos 4 y 5 está publicado en el
siguiente art́ıculo:

B J. F. Campbell, Á. Corberán, I. Plana, J. M. Sanchis, and P. Segura (2022).
Polyhedral analysis and a new algorithm for the length constrained K–drones
rural postman problem. Computational Optimization and Applications 83,
67–109.

El caṕıtulo 6 está basado en el siguiente art́ıculo que ya ha sido enviado a una revista
internacional para su publicación

B J. F. Campbell, Á. Corberán, I. Plana, J. M. Sanchis, and P. Segura (2023).
The multi–purpose K drones general routing problem. Under revision.

El contenido del caṕıtulo 7 será enviado pronto a una revista reconocida también en el
área.
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[40] Corberán, Á., Mota, E., and Sanchis, J. M. (2006). A comparison of two different
formulations for arc routing problems on mixed graphs. Computers & Operations
Research 33, 3384–3402.
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[77] Gómez–Cabrero, D., Belenguer, J. M., and Benavent, E. (2005). Cutting plane
and column generation for the capacitated arc routing problem. Proceedings of the
ORP3 2005 (Operational Research Peripathetic Postgraduate Programme), Valen-
cia, Spain, 259–266.

[78] Gouveia, L., Mourao, M. C., and Pinto, S. L. (2010). Lower bounds for the mixed
capacitated arc routing problem. Computers & Operations Research 37, 692–699.

[79] Groves, G. W. and Van Vuuren, J. H. (2005). Efficient heuristics for the rural
postman problem. ORiON 21, 33–51.

[80] Guan, M. (1962). Graphic programming using odd and even points. Chinese Math-
ematics 1, 273–277.

[81] Guan, M. (1984). On the windy postman problem. Discrete Applied Mathematics
9, 41–46.

[82] Harary, F. (1969). Graph theory. Addison Wesley, Reading, MA.

[83] HD Air Studio (2022). Sonda X8 UAS, Foldable multi–mission octocopter,
https://www.unmannedsystemstechnology.com/company/hd-air-studio/sonda-x8-
uas/.

[84] Hertz, A., Laporte, G., and Nanchen Hugo, P. (1999). Improvement procedures
for the undirected rural postman problem. INFORMS Journal on Computing 11,
53–62.
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