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No hi ha camı́. Més enllà de l’abast de la llum, més enllà dels confins de la

foscor... I tot i això, el cerquem, insaciablement... Doncs eixe és el nostre dest́ı.
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Abstract

Quantum Field Theory in Curved Spacetimes has proven to be a very useful

semiclassical theory for studying physical phenomena that combine gravity

and quantum effects. In particular, it predicts that the dynamics of a

background gravitational field can spontaneously excite particles out of

the quantum vacuum. The process of particle production is of particular

importance in the study of the very early universe in Cosmology, and it

is the basis of Hawking radiation in black hole physics. Physically, this

quantum effect is analogous to the well-known Schwinger effect in quantum

electrodynamics. The goal of this Thesis is to study this general phenomenon

of particle production, as well as other related fundamental aspects, such as

backreaction effects, quantum anomalies, and renormalization techniques.

One of the main contributions of this Thesis is the development and

transfer of techniques typically used in QFT in curved spacetimes to quantum

fields coupled to strong electrodynamics backgrounds. For instance, the

study includes the exploration of whether the gravitational anomaly for

Weyl fields is also present for electric backgrounds. Moreover, this Thesis

also addresses if the fundamental property of the adiabatic invariance of

the number of created particles in an expanding universe is maintained in

the case of a pure electric background. Finally, the method of adiabatic

renormalization, which is particularly useful for quantum fields in expanding
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universes, is developed here for 4-dimensional Dirac fields that are coupled

to a general, electric background.

This Thesis also provides relevant contributions in the area of Gravitation.

On the one hand, we extend a successful regularization and renormalization

method recently communicated in the literature, called pragmatic mode-

sum regularization. This method was originally developed for black holes,

and in this Thesis we adapted it for expanding universes. On the other

hand, the Thesis includes a detailed study of quantum corrections to the

Schwarzschild metric, originated from the back-reaction effects of quantum

fields living in this black hole background. As we will see in more detail

below, the driving argument in the analysis is the conformal anomaly and

the assumption of staticity. The geometrical properties and applications of

the new (horizonless) spacetime are also analyzed.

All these results improve considerably our understanding of the behavior

of quantum fields coupled to external gravitational and electromagnetic

backgrounds. The role of quantum anomalies has been fundamental to

achieve this.
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durant d’esta etapa. Podria dir moltes coses bones de tu com a director de
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A més, la passió que transmets quan parles de f́ısica sempre ens ha contagiat

a tots. En definitiva, has sigut per a mi una inspiració, com a professor
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Resum de la Tesi

Introducció i motivació

Dos són les teories més fonamentals que vertebren la f́ısica moderna hui en

dia, la Relativitat General (GR), que explica la f́ısica de l’univers, i la Teoria

Quàntica de Camps (QFT), en la que es fonamenta la f́ısica de part́ıcules.

Les dos teories estan àmpliament acceptades per la comunitat cient́ıfica, tot

i que estan lluny de resoldre tots els problemes de la f́ısica actual. I el més

fonamental d’estos problemes és precisament com encaixar estes dos teories

per tal d’explicar els fenòmens f́ısics que involucren f́ısica de part́ıcules com

efectes gravitatoris. Una teoria unificada podria donar llum a problemes que

els f́ısics tracten de resoldre des de fa dècades. Els dos més importants en

este sentit són: D’una banda descobrir l’autèntica natura dels forats negres

(i la f́ısica en les regions properes a estos), i d’altra banda, els processos

f́ısics que van tindre lloc en els oŕıgens de l’univers i que van donar pas a la

creació de la matèria.

Estem lluny de trobar una teoria unificada, però això no implica que

estos problemes siguen una completa incògnita. Hi ha moltes maneres

d’apropar-se a eixos problemes, com són teories que van més enllà del

Model Estàndard o teories de Gravetat Modificada, les quals i proposen

correccions a la Relativitat General clàssica. Hi ha també teories recents que
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tracten d’apropar-se a una teoria unificada de gravetat i mecànica Quàntica,

com són teories de Loop Quantum Gravity o Teoria de Cordes. Però hi

ha una teoria que destaca per la seua capacitat per a estudiar i donar

resultats sobre els fenòmens f́ısics que inclouen gravetat i camps quàntics,

que és la Teoria Quàntica de Camps en espais corbats. Un dels principals

descobriments d’esta teoria és el fet que part́ıcules elementals poden ser

creades per un camp gravitatori depenent del temps. Açò va ser descobert

en [1, 2, 3, 4], donant lloc a un nou i fruct́ıfer camp d’investigació. Aquest va

ser posteriorment analitzat i estés per molts autors, i recopilat en diversos

monogràfics [5, 6, 7, 8]. Esta teoria parteix d’una idea ben coneguda en

Teoria quàntica de Camps, l’aproximació semi-clàssica. Consisteix en acoblar

un camp quàntic a un camp extern molt intens, que pot ser aproximat

a un camp clàssic, sense necessitat de quantitzar-lo. Esta aproximació

és àmpliament utilitzada, i ha donat interessants resultats per exemple

en l’àmbit de l’òptica quàntica [9]. Gravetat semi-clàssica consisteix en

traslladar esta idea al camp gravitatori. Si assumim que este camp actua

com a un camp extern intens, que és el que ocorre per exemple en l’entorn

d’un forat negres o en un univers en expansió, es pot tractar el camp

gravitatori com un camp clàssic, sense necessitat de passar pel problema no

resolt de quantitzar la gravetat. La teoria consisteix en acoblar este camp a

camps de matèria quantitzats, com ara camps escalars, camps de Dirac o

camps vectorials.

Aix́ı, esta és una teoria efectiva que no unifica la Gravetat i la F́ısica

Quàntica, ja que no proposa un mètode per a quantitzar la gravetat, però

tot i això ha demostrat ser molt útil per a explicar fenòmens que abans no

havia hagut manera d’abordar. Un d’ells és la ben coneguda radiació de

Hawking [10, 11], que mostra com, a diferència del que durant dècades s’ha

assumit, els forats negres no són simplement embornals de matèria que no

deixen passar cap tipus de part́ıcula més enllà de les seues fronteres. Els
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forats negres radien matèria, i açò és un efecte que només es pot explicar

si es tenen en compte els efectes quàntics generats al voltant de l’horitzó.

Altra important efecte que fusiona gravetat i quàntica i que la teoria semi-

clàssica és capaç d’explicar està emmarcada en el context de Cosmologia.

Consisteix en la creació espontània de part́ıcules com a conseqüència de

l’expansió de l’univers, un efecte que va ser per primera vegada descobert

per L. Parker [1]. Este fenomen és conseqüència de que en un espai-temps

no estàtic el buit quàntic no pot definir-se de manera uńıvoca, ja que un

estat buit per a un observador pot no ser-ho per a un altre. Això provoca un

resultat diferent en la mesura del nombre de part́ıcules en diferents instants.

Este efecte adquireix especial importància en l’estudi dels primers instants

de l’univers posteriors al Big Bang i en la creació de la matèria. [12, 13]

D’altra banda, el fenomen de creació espontània de part́ıcules no és només

propi d’espai-temps corbats, també pot donar-se en espai-temps plans. En

particular, un camp elèctric intens pot generar també creació espontània de

parells part́ıcula-antipart́ıcula a partir del buit quàntic. És el que es coneix

com efecte Schwinger [14, 15], un efecte no pertorbatiu que només es pot

obtenir mitjançant l’enfocament semi-clàssic (és a dir, la one-loop effective

action).

En definitiva, en tots estos escenaris (Electrodinàmica, Cosmologia i

Forats negres) veiem que els camps quàntics en presència de camps intensos

externs tenen propietats interessants que s’han d’estudiar mitjançant teories

semi-clàssiques. Este és el context teòric en què esta tesi està emmarcada.

Els articles que conformen la tesi (mostrats en la part III) consisteixen en

l’estudi, desenvolupament i aplicacions de la teoria semi-clàssica en estos

escenaris f́ısics (anomalies, renormalització, efectes de backreaction...).

Pel que fa al cas d’Electrodinàmica, la nostra aportació es pot resumir

amb que hem estudiat com es traslladen al context d’un background elec-

tromagnètic certs fenòmens ben coneguts en el context de QFT en espais
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corbats. D’una banda, en l’Article 1 d’esta tesi, estudiem si la coneguda com

anomalia gravitatòria, que es dona per a un fermió de Weyl 2-dimensionals

acoblat a gravetat, es trasllada al cas d’un background elèctric. Veurem que

efectivament en este segon cas també sorgeix una anomalia en la conservació

del moment. D’altra banda, en l’Article 2, estudiem si el cas electromagnètic

manté la invariància adiabàtica del número de part́ıcules, que consisteix

en la no creació de part́ıcules en el ĺımit d’un univers expandint-se infini-

tament lent. Veurem que, en certes condicions, esta invariància es trenca

en este segon cas. Este fenomen està ı́ntimament relacionat amb la ben

coneguda anomalia axial. I per últim, en l’Article 3, estenem el mètode de

renormalització adiabàtica (de gran utilitat en el context cosmològic) al cas

d’un camp de Dirac 4-dimensional acoblat a un background elèctric.

Pel que fa a l’àmbit de Cosmologia, en l’Article 4, estenem al context

cosmològic un recent mètode de renormalització (pragmatic mode-sum) que

fins ara només s’havia aplicat al context de forats negres, on ha demostrat ser

molt eficient. I per últim, ja en l’àmbit de Forats negres, estudiem correccions

quàntiques de buit a la mètrica de Schwarzschild, concretament en l’Article

5. Estes correccions provenen dels efectes de backreaction que generen

els camps quàntics sobre el propi background gravitatori. Veurem que la

geometria del nou espaitemps generat presenta diferències significatives

respecte de la dels forats negres. Este resultat pot contribuir a l’estudi de la

formació d’objectes ultra-compactes que imiten la f́ısica dels forats negres.

Estructura i convencions

La tesi està organitzada de la següent manera. En la part I es fa un

repàs sobre els principals conceptes que conformen el marc teòric d’esta

tesi (situant-los històricament), els quals convé introduir per a facilitar

la comprensió dels articles. En la part II es fa un resum dels resultats i

conclusions que s’han obtingut al llarg del doctorat. I finalment, en la part
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III incloem els articles que conformen la tesi.

Respecte a les convencions, al llarg de tota la tesi es treballa en unitats

naturals, és a dir, G = c = ℏ = 1, excepte si resulta convenient introduir

les constants. Per a la signatura de les mètriques s’utilitza (+,−,−,−),
excepte en l’Article 5 on s’utilitza la signatura contrària (i es mostra ℏ
expĺıcitament). Per als tensors de curvatura es segueixen les convencions de

[5].

Metodologia

Per a la realització dels articles s’ha consultat bibliografia actualitzada de les

diferents àrees teòriques involucrades en el treball. Pel que fa a la realització

dels càlculs necessaris per al desenvolupament dels articles, cal destacar

principalment l’ús de Mathematica per als càlculs anaĺıtics (i en especial del

paquet x-Act de càlcul tensorial), aix́ı com l’ús de Matlab per als càlculs

numèrics més complicats.

Els articles s’han realitzat en col·laboració d’altres membres del grup

d’investigació i cient́ıfics externs, mitjançant reunions i repartiment de

tasques. Per tant, l’autoria dels articles està repartida equitativament (els

noms dels autors als articles estan ordenats alfabèticament, com és habitual

en este les publicacions en este camp). I per últim, també s’ha assistit a

congressos per a posar en comú els resultats obtinguts amb altres grups

d’investigació, aix́ı com per a aprendre del treball d’altres autors en matèries

semblants.

Anomalia translacional en backgrounds elèctrics

Les anomalies quàntiques són el trencament de simetries clàssiques prodüıt

al quantitzar el camp, com expliquem en detall en el caṕıtol 6. És ben

conegut que acoblar camps quàntics a backgrounds gravitacionals pot generar



xvi

el que es coneixen com anomalies gravitacionals [16]. Estes anomalies

consisteixen en el trencament de la covariància general, i per tant impliquen

una no conservació del valor esperat del tensor energia-moment, és a dir

⟨∇µT
µν⟩ ≠ 0. Estes anomalies són un tipus de gauge anomalies, les quals

indiquen que la teoria no està ben constrüıda. En concret, les anomalies

gravitacionals apareixen en teories amb fermions de Weyl (o quirals) acoblats

a gravetat per a espaitemps de dimensió 2, 6, 10... En particular per al cas

2-dimensional s’obté l’anomalia

⟨∇µT
µ
ν ⟩ =

1

96π
√
−g

ϵαβ∂β∂ρΓ
ρ
να . (1)

En l’Article 1 de la tesi (mostrat en la part III) demostrem que també

es genera una anomalia de tipus “gravitacional” en este mateix cas però

considerant un background elèctric en lloc d’un gravitacional. En concret

ho demostrem per al cas d’un camp de Weyl en dos dimensions acoblat a un

camp elèctric homogeni i depenent del temps E(t). Des d’un punt de vista

clàssic, este sistema es invariant baix translacions en la direcció espacial, la

qual cosa implica la conservació de moment, és a dir, ∂µT
µ1 = 0. Però, com

veurem en breu, en quantitzar el camp de Weyl trobem que esta simetria es

trenca.

Per a obtenir esta anomalia cal trobar l’expressió renormalitzada del

tensor energia-moment. Per a fer-ho hem aplicat la ben coneguda renormal-

ització adiabàtica [5] que expliquem en detall en la secció 5.2. Amb ajuda

d’este mètode arribem al següent resultat

∂µ

〈
Tµ1
R,L

〉
= ∓q

2AȦ

2π
, (2)

on R i L indiquen la quiralitat (dretana o esquerrana) del fermió considerat,

i A(t) és el potencial vector, definit com E(t) = −Ȧ(t). Este resultat no

havia sigut indicat en la bibliografia previa. Com que esta anomalia trenca

la simetria translacional, l’hem anomenada anomalia translacional.
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L’aparició d’esta tipus d’anomalia és una senyal de que la teoria no

està completa. De fet és ben conegut que este sistema f́ısic presenta també

una altra anomalia gauge en la conservació de la corrent elèctrica. Totes

dues anomalies es cancel·len en considerar la teoria completa: el camp de

Dirac. Per a un fermió de Dirac (Ψ = ΨR + ΨL) sense massa el tensor

energia-moment és la suma de les dos components quirals, de manera que

s’obté

∂µ

(〈
Tµ1
R

〉
ren

+
〈
Tµ1
L

〉
ren

)
= 0 . (3)

D’altra banda, a l’article mostrem també la relació d’esta anomalia amb

el fenomen de creació espontània de part́ıcules per camps elèctrics intensos

(que expliquem en el caṕıtol 3). Per a un camp de Weyl les part́ıcules

creades es mouen totes en la mateixa direcció i sentit de la direcció espacial,

generant una quantitat de moment total que coincideix amb el resultat de

l’anomalia. En canvi si considerem un camp de Dirac, veiem que el que es

creen són parells part́ıcula-antipart́ıcula que viatgen en direccions oposades,

mantenint la conservació total del moment.

Finalment, a l’article resolem l’equació de Maxwell semi-clàssica del sis-

tema per tal d’estudiar els efectes de backreaction que generen les part́ıcules

creades sobre el camp elèctric. Comprovem que la creació de moment en

cada sector quiral oscil·la amb freqüència igual a la d’E(t). Aix́ı mateix

veiem que la suma de les oscil·lacions dels dos sectors quirals es cancel·len
perfectament.

Trencament de la invariància adiabàtica en

backgrounds electromagnètics

El fenomen de creació de part́ıcules en un univers en expansió (que expliquem

en la secció 2.2) posseeix una propietat interessant. En el ĺımit d’una

expansió de l’univers infinitament lenta (ĺımit adiabàtic) no es produeix
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creació de part́ıcules a partir del buit. És per això que es diu que el

número de part́ıcules és un invariant adiabàtic [17]. En l’Article 2 d’esta tesi

(mostrat en la part III) estudiem si esta propietat es manté per al cas d’un

background electromagnètic. Analitzem primerament el cas 2-dimensional

per la seua simplicitat, i posteriorment estenem al cas 4-dimensional. Aix́ı

mateix estudiem tant el cas d’un camp escalar carregat acoblat al camp

electromagnètic (QED escalar) com el cas d’un camp de Dirac (QED).

Considerem un camp elèctric homogeni i depenent del temps actu-

ant en la direcció espacial, E(t). El seu potencial 2-vector associat serà

Aµ = (0,−A(t)), on E(t) = Ȧ(t). El potencial vector juga el rol anàleg

al factor d’escala en el cas gravitatori, aix́ı que convé considerar una ex-

pansió asimptòtica per a A(t) i aix́ı poder definir el número de part́ıcules

en t → ±∞. Per tal de poder estudiar el problema anaĺıticament, hem

considerat una forma concreta per al camp elèctric que és ben coneguda:

un pols elèctric de Sauter [18]. En este cas el potencial vector ve donat per

A(t) =
1

2
A0(tanh(ρt) + 1) , (4)

on A0 i ρ són constants. Es pot veure que el potencial tendeix a 0 en el

ĺımit t → ∞ i a A0 en t → ∞. El paràmetre ρ estableix la velocitat amb

que creix el potencial, de manera que es pot considerar com el paràmetre

d’adiabaticitat. El ĺımit adiabàtic (creixement extremadament lent) ve

donat per ρ→ 0. L’objectiu en l’article és estudiar si en este ĺımit el número

de part́ıcules tendeix o no a 0.

En l’article obtenim que per a bosons (b) i per a fermions (f) el valor

esperat del número de part́ıcules creades per un camp elèctric extern ve

donat per

⟨Nb/f ⟩ =
1

π

∫ ∞

−∞
dk

cosh
(
2π ω−

ρ

)
± cosh

(
2π

κb/f

ρ

)
2 sinh

(
π ωin

ρ

)
sinh

(
π ωout

ρ

) , (5)
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on ωin =
√
k2 +m2, ωout =

√
(k − qA0)

2 +m2, ω± = 1
2 (ωout ± ωin ),

κb =
1
2

√
(qA0)

2 − ρ2, i κf = qA0/2.

Estudiant el ĺımit ρ → 0 en estes expressions extraiem les següents

conclusions. Per al cas amb massa (m ̸= 0) ⟨Nb/f ⟩ → 0 en el ĺımit adiabàtic,

és a dir per a un creixement infinitament lent d’A(t) no es creen bosons ni

fermions massius, mantenint-se aix́ı la invariància adiabàtica del número de

part́ıcules. Però la situació és diferent en el cas sense massa (m = 0). En

este cas s’obté que ⟨Nb/f ⟩ ≠ 0 quan ρ→ 0, en concret

⟨Nb/f ⟩ =
|qA0|
π

. (6)

Per tant concloem que per a un potencial vector creixent infinitament lent

śı que es creen part́ıcules sense massa, i la invariància adiabàtica es trenca.

També hem comprovat que l’espectre de moments d’estes part́ıcules sense

massa creades es troba en l’interval k ∈ [−|qA0|, |qA0|]. Cal remarcar que

hi ha una diferencia clara entre el cas de bosons i el de fermions que es

pot extraure de l’expressió (5). Els bosons sense massa creats tendeixen a

acumular-se en els valors k = 0 i k = ±qA0, mentre que els fermions sense

massa es creen en la mateixa proporció per a tot k. Açò és pot interpretar

en termes del principi d’exclusió de Pauli, que no permet que els fermions

s’acumulen en un mateix estat. A més a més, a diferència del cas escalar, el

número de fermions sense massa creats (aix́ı com el seu espectre de moments)

no depèn del paràmetre ρ, és a dir no depèn de la història d’A(t), sinó només

del seu valor inicial i final.

D’altra banda, per tal de donar consistència a este resultat, hem calculat

també mitjançant el mètode de renormalització adiabàtica (explicat en la

secció 5.2) el valor esperat de la corrent elèctrica i de la densitat d’energia

del camp quàntic. De manera anàloga al número de part́ıcules, s’obté

que estos observables tendeixen a 0 en el ĺımit adiabàtic, excepte en el
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cas sense massa. Eixe romanent d’energia i corrent correspon al generat

per les part́ıcules sense massa creades. A més a més, la simplicitat del

cas de fermions sense massa permet donar una expressió anaĺıtica de la

corrent elèctrica renormalitzada en funció del temps, que ve donada per

⟨jx⟩ren = − q2A(t)
π . Aquesta expressió permet obtenir l’equació semi-clàssica

de Maxwell, que ve donada per Ä+ q2

π A. Esta equació de tipus oscil·lador
armònic te en compte els efectes de backreaction de les part́ıcules creades

sobre el camp elèctric. En concret s’obté que el camp elèctric oscil·la amb

freqüència |q|/
√
π, aix́ı com ho fa el número de part́ıcules. Es pot veure

fàcilment que l’energia associada al camp elèctric i l’energia de les part́ıcules

creades es cancel·len per a tot t, mantenint-se la conservació d’energia. El

valor obtingut per a la freqüència és consistent amb el fet ben conegut de

que les correccions radiatives al model de Schwinger indueixen una massa

al fotó de valor m2
γ = q2/π [19].

Per últim hem estes el càlcul al cas 4-dimensional, considerant un camp

elèctric E⃗(t) en la direcció z per conveniència. En este cas trobem que

⟨Nb/f ⟩ → 0 en el ĺımit adiabàtic (independentment de m). Aix́ı, en 4

dimensions es manté la invariància adiabàtica per a un background elèctric.

Però la situació canvia si afegim un camp magnètic. Hem considerat per

simplicitat un camp magnètic constant B⃗ en direcció paral·lela a E⃗(t). La

presència del camp magnètic genera una discretització del moment en la

direcció perpendicular als camps, en els coneguts com nivells de Landau,

la qual cosa canvia dràsticament el resultat. Trobem que, mentre per a

bosons amb qualsevol massa la invariància adiabàtica es respecta, per a

fermions sense massa en presència de camps elèctric i magnètic la invariància

adiabàtica es perd. Este resultat es manté per a altres direccions de B⃗,

excepte quan és perpendicular al camp elèctric. En eixe cas la invariància

adiabàtica és preservada.

En resum, hem obtingut que la invariància adiabàtica de les part́ıcules
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creades es manté per al cas d’un background electromagnètic exceptuant

alguns casos concrets. Eixos casos són: bosons i fermions sense massa en 2

dimensions, i fermions sense massa en 4 dimensions en presència de camps

elèctric i magnètic no perpendiculars. Açò indica que hi ha una relació entre

el fenomen del trencament de la invariància adiabàtica i la ben coneguda

anomalia axial [14], ja que aquesta està present precisament en els casos

esmentats. Esta anomalia consisteix en el trencament de la simetria axial,

pròpia del camp de Dirac sense massa clàssic, que es produeix al quantitzar

el camp (a la secció 6.1 expliquem amb més detall esta anomalia). En 2

dimensions l’anomalia axial ve donada per l’expressió

⟨∂µjµ5 ⟩ren = − q

2π
ϵµνFµν , (7)

que en el cas d’un camp homogeni és equivalent a dir que la densitat

de càrrega quiral j0A no és conservada. En 2 dimensions esta càrrega és

proporcional a la corrent elèctrica. En l’article hem comparat l’expressió de

l’anomalia amb la corrent generada per les part́ıcules sense massa creades en

el ĺımit adiabàtic, i hem comprovat que efectivament la creació de càrrega

quiral coincideix amb la causada per l’anomalia axial. Esta idea es pot

visualitzar fàcilment en el cas 2-dimensional. El camp elèctric crea les

part́ıcules en parells part́ıcula-antipart́ıcula de carrega elèctrica i moment

oposats. La quiralitat per a part́ıcules sense massa en 2 dimensions està

relacionada amb el sentit de moviment i canvia el criteri entre part́ıcules

i antipart́ıcules. De manera que, per exemple, una part́ıcula sense massa

movent-se cap a la dreta tindria quiralitat dretana, i una antipart́ıcula sense

massa movent-se cap a l’esquerra també. Aix́ı, la creació de parells sense

massa implica una creació de càrrega quiral. Eixa no conservació de la

càrrega quiral és consistent amb l’anomalia axial. Esta anomalia es manté

independentment de la velocitat a la que canvie el camp background, fins i

tot en el ĺımit adiabàtic, i per això en eixe ĺımit ha de quedar sempre un

romanent de creació de parells sense massa.
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Pel que fa al cas 4-dimensional, l’anomalia només sorgeix per a fermions

sense massa, i ve donada per〈
∂µj

µ
A

〉
= − q2

16π2
ϵµναβFµνFαβ . (8)

En el cas d’un camp elèctric depenent del temps i un camp magnètic constant

està expressió és equivalent a〈
j05
〉
ren

= − q2

2π2

∫ t

−∞
dt′E⃗

(
t′
)
B⃗ . (9)

Podem veure que només es crea càrrega axial quan els camps E⃗ i B⃗ no són

perpendiculars, el mateix cas en què es dona el trencament de la invariància

adiabàtica. A més a més, també en este cas hem comprovat que la creació

de càrrega quiral dels fermions sense massa en el ĺımit adiabàtic coincideix

amb l’expressió de l’anomalia.

En definitiva concloem que el trencament de la invariància adiabàtica

es dona en els casos on sorgeix l’anomalia axial, de manera que estos dos

fenòmens estan ı́ntimament relacionats. En altres paraules, el trencament

de la invariància adiabàtica és una condició necessària per al compliment de

l’anomalia axial.

Mètode de renormalització adiabàtica per a camps

de Dirac en un background elèctric

El mètode de renormalització adiabàtica va ser introdüıt per L. Parker

i S. A. Fulling per a renormalitzar observables f́ısics, com és el tensor

energia-moment, en el context de QFT en espais corbats [20, 21]. En la

secció 5.2 fem un repàs d’este mètode per al cas d’un camp escalar en un

univers en expansió. Tot i que este mètode s’aplica habitualment en el

context d’un background cosmològic, es pot estendre també a altres teories
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semi-clàssiques on el background clàssic és un camp homogeni que depèn del

temps. El cas concret d’un background elèctric va ser estudiat primerament

per Cooper et.al. [22, 23, 24], qui van proposar una extensió del mètode

adiabàtic a este cas. Tot i això, estudis recents han demostrat que hi ha un

inconvenient en estos treballs [25, 26]. El potencial vector Aµ es considera

d’ordre adiabàtic 0, de manera anàloga al factor d’escala a(t) en el cas

cosmològic. Açò és consistent en el cas de (només) un background elèctric,

però si afegim la presència d’un background gravitatori s’obtenen expressions

renormalitzades que són inconsistents amb la conservació covariant del tensor

energia-moment, aix́ı com amb l’anomalia axial i de traça. En estos treballs

s’ha demostrat que per a recuperar la consistència del mètode cal imposar

que Aµ siga d’ordre adiabàtic 1 (la primera derivada seria d’ordre 2, la

segona d’ordre 3...). Aix́ı mateix, es proposa una nova reformulació del

mètode amb aquesta assumpció per al cas de camps escalars carregats i per

a camps de Dirac en 2 dimensions. L’extensió de 2 a 4 dimensions per camps

de Dirac (amb la nova assumpció) resulta no ser trivial, i requerix d’un

anàlisi en profunditat. Eixe és l’objectiu de l’Article 3 d’esta tesi (mostrat

en la secció III).

El primer resultat que obtenim en l’article és un nou argument que

fonamente l’elecció d’Aµ com a ordre adiabàtic 1. És sabut que el mètode de

renormalització adiabàtica per a un background gravitatori és consistent amb

el mètode de DeWitt-Schwinger point-splitting [27, 28] (el qual expliquem

breument en la secció 5.1). En l’article comprovem que en presència de

backgrounds elèctric i gravitatori esta consistència només es manté amb

l’assumpció de que Aµ és d’ordre adiabàtic 1. En concret provem que, tant

per al camp escalar com per al de Dirac en 2 dimensions, l’expansió adiabàtica

de la funció de dos punts ⟨ϕ2⟩ coincideix exactament amb la de DeWitt-

Schwinger si considerem esta assumpció (ho comprovem expĺıcitament fins

a ordre adiabàtic 6). Este argument, junt amb els explicats prèviament,
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motiven a una reformulació del mètode adiabàtic, aplicant la nova assumpció,

per a camps de Dirac en 4 dimensions acoblats a un background elèctric.

El principal problema que sorgeix en este cas és que l’ansatz habitual de

tipus WKB per als modes del camp no funciona a l’hora de desenvolupar

l’expansió adiabàtica. És per això que en este article proposem un nou

ansatz, el qual comprovem que és consistent i permet procedir amb la

regularització adiabàtica.

Vegem breument en què consisteix el nostre mètode. Considerem un

camp de Dirac ψ en 4 dimensions, de massa m i càrrega q, acoblat a un

background elèctric amb potencial vector de la forma Aµ = (0, 0, 0,−A(t)).
L’equació de Dirac d’este sistema ve donada per

(iγµDµ −m)ψ = 0 , (10)

on Dµ ≡ ∂µ− iqAµ i γµ són les matrius de Dirac. Per tal de poder construir

l’ansatz convé aplicar una transformació unitària al camp de la forma

ψ′ = Uψ, on

U =
1√
2
γ0

(
I − γ3

)
. (11)

Açò ens ha permés expressar el camp de Dirac en termes de només dos

funcions dependents del temps, hI
k⃗
(t) i hII

k⃗
(t), que es poden considerat com

els modes del camp amb moment k⃗ = (k1, k2, k3). Cal destacar que la idea

d’aplicar esta transformació ha sigut crucial per a poder desenvolupar el

mètode, i considerem que cal remarcar-la. Finalment obtenim que l’equació

de Dirac es redueix a les següents equacions diferencials per als modes del

camp

ḣI
k⃗
− i (k3 + qA)hI

k⃗
− iκhII

k⃗
= 0 , (12)

ḣII
k⃗

+ i (k3 + qA)hII
k⃗
− iκhI

k⃗
= 0 , (13)

on κ ≡
√
k21 + k22 +m2. La principal avantatja d’este procediment és que ens

ha permès escriure l’equació de Dirac en termes de dos equacions diferencials
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molt semblants a les del mateix cas en 2 dimensions (veure [26]). L’única

diferència és que ara κ juga el paper de m. Finalment, a parir d’estes

expressions, es pot quantitzar el camp en termes dels operadors creació i

destrucció (veure l’article per a més detalls). Les relacions d’anticommutació

dels operadors estan garantides si es compleix la condició de normalització∣∣∣hI
k⃗

∣∣∣2 + ∣∣∣hII
k⃗

∣∣∣2 = 1 . (14)

Amb tots estos ingredients ja es pot desenvolupar l’expansió adiabàtica.

Aćı és on entra el nostre ansatz. Seguint la idea de l’analogia amb el cas

2-dimensional, constrüım el mateix ansatz proposat en eixe cas (veure [26])

però aplicant el canvi m→ κ, és a dir

hI
k⃗

=

√
ω − k3
2ω

F (t)e−i
∫ t Ω(t′)dt′ , (15)

hII
k⃗

= −
√
ω + k3
2ω

G(t)e−i
∫ t Ω(t′)dt′ , (16)

on ω =
√
k23 + κ2, F i G són funcions complexes i Ω és una funció real. Ex-

pressant estes funcions com una expansió adiabàtica i resolent les equacions

diferencials ordre a ordre s’obté l’expansió adiabàtica dels modes, de manera

anàloga a com es fa en el cas d’un background gravitatori [5]. En l’article

donem expressions de recurrència que serveixen com a algoritme per a

obtenir els ordres adiabàtics d’estes funcions fins a qualsevol ordre. A partir

d’esta expansió es poden expandir també els valors esperats d’observables

en ordres adiabàtics. Aix́ı es poden identificar i sostraure els ordres que

generen les divergències, és a dir, aplicar la renormalització adiabàtica. En

l’article hem aplicat este mètode per a calcular el valor esperat renormalitzat

de la corrent elèctrica, definida per ⟨jµ⟩ = −q
〈
ψ̄γµψ

〉
. Per a la component

rellevant (j3) s’obté l’expressió〈
j3
〉
ren

=
q

2π2

∫ ∞

0
k⊥dk⊥

∫ ∞

−∞
dk3

[(∣∣∣hII
k⃗

∣∣∣2 − ∣∣∣hI
k⃗

∣∣∣2)− k3
ω
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− κ2qA

ω3
+

3κ2k3q
2A2

2ω5
+

(
κ2 − 4k23

)
κ2q3A3

2ω7
+
κ2qÄ

4ω5

]
, (17)

on k⊥ =
√
k21 + k22.

Aix́ı mateix, a l’article incloem dos tests d’este mètode. D’una banda

calculem l’expressió renormalitzada de la traça del tensor energia-moment,

que ve donada per ⟨Tµ
µ ⟩ = m⟨ψ̄ψ⟩, i comprovem que en el ĺımit m→ 0 s’obté

l’expressió de l’anomalia de traça. En el cas de camps de Dirac sense massa

en presència d’un background electromagnètic esta anomalia ve donada

per ⟨Tµ
µ ⟩ren = q2

24π2FµνF
µν [29]. [En la secció 6.2 expliquem en detall esta

anomalia]. D’altra banda, comprovem també que, de la mateixa manera que

ocorre en tota la resta de casos on s’aplica el mètode adiabàtic, l’expansió

adiabàtica coincideix amb l’expansió de DeWitt-Schwinger, provant aix́ı

l’equivalència entre els dos mètodes. Finalment comprovem també, en un

apèndix, l’equivalència amb el mètode de renormalització de Hadamard [30].

El formalisme adiabàtic usual assumeix impĺıcitament que l’escala de

renormalizació µ és igual a la massa del camp. En el nostre treball estenem

el mètode per a una escala de renormalització arbitrària. Per a fer-ho fem

servir, com ja s’ha fet en treballs previs [31], l’ambigüitat intŕınseca que

hi ha en el mètode adiabàtic en l’elecció de l’ordre adiabàtic zero quan es

solucionen les equacions de recurrència. En lloc de
√
k⃗2 +m2 és possible

definir ω(0) ≡ ω =

√
k⃗2 + µ2, on µ és una escala de massa arbitrària. Aix́ı,

obtenim una nova expansió dels modes en termes de l’escala de massa. A

més a més, l’apliquem per a renormalitzar la corrent elèctrica amb esta

extensió, obtenint una expressió que depèn de µ. Este tipus d’ambigüitats en

la renormalització poden ser absorbides en la renormalització de la constant

d’acoblament, en este cas q. Seguint esta idea obtenim l’expressió de la

càrrega efectiva en funció de l’escala: q−2(µ)− q−2 (µ0) = −
(
12π2

)−1
ln µ2

µ2
0
.

Esta expressió coincideix amb l’obtinguda en QED pertorbativa per mig de

regularització dimensional [19].
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Per últim, per tal de provar la utilitat pràctica del mètode, l’hem aplicat

a un background elèctric concret. Hem considerat un pols de tipus Sauter

donat per E(t) = E0 cosh
−2(t/τ), on E0 indica l’altura del pols i τ l’amplària.

Això ens ha permès també estudiar propietats f́ısiques del fenomen de creació

de part́ıcules. Hem calculat numèricament la corrent renormalitzada en

funció del temps per a este cas a partir de l’expressió obtinguda amb el

nostre mètode (17). A l’article es poden trobar representacions del resultat

per a diferents valors dels paràmetres. Comprovem que la corrent tendeix

a fer-se constant en el ĺımit t→∞, com és esperat per a este background.

Este ĺımit es pot calcular anaĺıticament, en concret obtenim

〈
j3
〉
ren
∼ − q

π2

∫ ∞

0
k⊥dk⊥

∫ ∞

−∞
dk3

k3 + qA0

ωout

∣∣β
k⃗

∣∣2 , (18)

on ωout =
√

(k3 + qA0)
2 + κ2 i

∣∣β
k⃗

∣∣2 és el coeficient de Bogoliubov que

dona la densitat de part́ıcules creades amb moment k en t → ∞. Noteu

que esta expressió és vàlida per a qualsevol background que tendisca a un

valor constant. Aplicant l’expressió de
∣∣β

k⃗

∣∣2 corresponent al pols de Sauter

(obtinguda en la secció anterior) obtenim el resultat per a eixe cas. A més

a més, hem utilitzat este resultat per a fer una estimació del valor de la

corrent elèctrica en el ĺımit d’un camp elèctric molt intens (E0 >> 0). En

este ĺımit obtenim l’expressió

〈
j3
〉
ren
∼ 2

3π3
q3E2

0τ . (19)

Aix́ı mateix, hem obtingut l’expressió de la densitat de part́ıcules en este

mateix ĺımit, obtenint ⟨N⟩ ∼ 2
3π3 q

2E2
0τ .
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Mètode de regularització pragmatic mode-sum en un

background cosmològic

El mètode de renormalització de DeWitt-Schwinger point-splitting (que

expliquem en la secció 5.1) proposa un procediment per a renormalitzar

observables f́ısic en el context de QFT en espais corbats. Este mètode

està àmpliament acceptat, però no és fàcilment aplicable en molts escenaris

on els modes dels camps es tenen només en forma numèrica, com és el

cas dels forats negres. Recentment, A. Levi i A. Or han proposat un

mètode que ha demostrat ser molt eficient per a implementar numèricament

el procediment de point-splitting, conegut com mètode de regularització

pragmatic mode-sum [32, 33, 34]. Pot aplicar-se en mètriques que posseeixen

algun tipus de simetria (com ara forats negres estàtics, estacionaris) i es pot

entendre com un mètode que completa l’inicialment proposat per Candelas

en els anys 80 [35]. [En la secció 5.3 fem un repàs històric dels mètodes

proposats per a tractar d’implementar el point-splitting en forats negres.]

En l’Article 4 d’esta tesi (mostrat en la part III) fem un repàs d’este mètode

i l’estenem al cas d’espai-temps amb simetria respecte de translacions en les

3 direccions espacials (homogeni), en concret al context cosmològic. Aix́ı

mateix demostrem que en este context el mètode de Levi i Ori és consistent

amb mètode de renormalització adiabàtica.

En particular hem considerat un camp escalar acoblat a una mètrica

FLRW, ds2 = dt2 − a2(t)dx⃗2, i ens hem centrat en la renormalització de

⟨ϕ2⟩. Seguint el mètode de point-splitting, l’expressió renormalitzada d’este

observable ve donada per

〈
ϕ2(x)

〉
ren

= lim
x′→x

[〈{
ϕ(x), ϕ

(
x′
)}〉
−G(1)

DS

(
x, x′

)]
. (20)

G
(1)
DS és el terme de sostracció de DeWitt-Schwinger per a la funció de dos
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punts, que ve donat per

G
(1)
DS

(
x, x′

)
=

1

8π2

[
− 1

σ
+
(
m2 + (ξ − 1/6)R

)(
γ +

1

2
log

(
m2|σ|
2

))
− m2

2
+

1

12
Rαβ

σ;ασ;β

σ

]
, (21)

on R és l’escalar de curvatura, Rαβ el tensor de Ricci, γ la constant d’Euler

i σ un mig del quadrat de la distància geodèsica que connecta x i x′. Seguint

la guia del mètode de Candelas, posteriorment completat per Levi i Ori,

escollim els punts en base a la simetria del sistema. En este cas la simetria

translacional de l’espaitemps ens indica que convé escollir punts separats

espacialment, és a dir, x ≡ (t, x⃗) i x′ ≡ (t, x⃗+ ϵ⃗). Aix́ı, obtenim que el valor

esperat de la funció de dos punts per a estos punts ve donat per

〈{
ϕ(x), ϕ

(
x′
)}〉

=
1

4π2a(t)3

∫ ∞

0
dkk2 |hk(t)|2

sin kϵ

kϵ
. (22)

on ϵ = |⃗ϵ| i hk(t) són els modes del camp.

El terme G
(1)
DS es pot expandir en potències d’ϵ com

G
(1)
DS

(
x, x′

)
=

1

4π2

[
1

a2ϵ2
+

1

2

(
m2 + (ξ − 1/6)R

) (
γ + log

(ma
2
ϵ
))

− m2

4
+
R

72

]
+O(ϵ) . (23)

Aplicant identitats integrals del tipus
∫∞
0 dkk sin kϵ

kϵ = 1
ϵ2
, podem expressar

(23) com una integral en k i sostraure-la en (22). La divergència en ϵ→ 0

és cancel·lada, de manera que podem prendre el ĺımit de punts coincidents

abans de la integració. L’expressió final obtinguda és

〈
ϕ2

〉
ren

=
1

4π2a3

∫ ∞

0
dkk2

[
|hk|2 −

1

ω
−

(
1
6 − ξ

)
R

2ω3

]
− R

288π2
. (24)
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Esta expressió coincideix exactament amb l’obtinguda mitjançant el mètode

de renormalització adiabàtica (veure l’equació (5.24) de la secció 5.2). Aix́ı,

concloem que l’extensió del mètode de Levi i Ori per a un background

homogeni depenent del temps és compatible amb el mètode adiabàtic. En

l’article donem també un argument per a provar que l’equivalència entre

el mètode pragmatic mode-sum i l’adiabàtic es manté també per al cas del

tensor energia-moment.

Per últim, també en este cas, hem estès el mètode incloent una escala de

massa arbitrària µ. Esta extensió és necessària per tal de poder aplicar el

mètode al cas m = 0, ja que el terme de sostracció (21) no està ben definit

en eixe cas. Seguint la tècnica proposada en [36], apliquem un canvi del

tipus m2 → m2 + µ2 en un punt espećıfic del mètode de point-splitting.

Aix́ı, arribem a la següent expressió per al terme de sostracció que s’ha

d’aplicar a la integral de la funció de dos punts

G
(1)
DS

(
x, x′

)
=

1

4π2a3

∫ ∞

0
dkk2

sin(kϵ)

kϵ

[
1

ωeff
+

(
1
6 − ξ

)
R

2ω3
eff

+
µ2

2ω3
eff

]

+
R

288π2
+O(ϵ) , (25)

on ω2
eff = k2

a2
+m2 + µ2. Aix́ı mateix, obtenim el terme de sostracció d’ordre

2 de la renormalització adiabàtica, afegint el mateix tipus d’escala µ, i

comprovem que efectivament coincideix amb (25), reforçant la consistència

entre els dos mètodes.

Correccions quàntiques de buit a la mètrica de

Schwarzschild

Els recents progressos en la detecció d’ones gravitacionals [37] aix́ı com en

interferometria de molt llarga base [38] han obert la porta a la possibilitat de
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demostrar experimentalment l’existència d’horitzons de forats negres. Això

ha despertat en els últims anys un creixent interés en l’estudi d’objectes

exòtics compactes (ECOs) que imiten la f́ısica dels forats negres, aix́ı com

dels processos f́ısics que permetrien diferenciar-los dels forats negres [39].

[En la secció 4.2 donem una breu explicació sobre els tipus d’ECOs proposats

fins ara.] La Relativitat General clàssica no permet l’existència d’este tipus

d’objectes a causa del teorema de Buchdahl, però la introducció d’efectes

quàntics pot permetre la violació d’este teorema, obrint la porta a la possible

formació d’ECOs. Existeixen diverses maneres de constrüır estos objectes,

i una d’elles és considerant els efectes semi-clàssics generats pels camps

quàntics. Eixa és la via que explorem en l’Article 5 d’esta tesi (mostrat en

la part III). En particular, estudiem els efectes de backreaction prodüıts per

la polarització del buit quàntic al voltant d’un forat negres estàtic i sense

rotació, obtenint aix́ı correccions quàntiques a la mètrica de Schwarzschild.

Per a tal objectiu, busquem solucions de les equacions semi-clàssiques

d’einstein sense matèria

Gab = 8π ⟨Tab⟩ . (26)

El principal problema a l’hora d’afrontar este problema és que en 4 di-

mensions no tenim una expressió anaĺıtica renormalizada de ⟨Tab⟩ per a

una mètrica general. Però en el cas de dimensions 1 + 1 śı que es coneix

l’expressió exacta del tensor energia-moment renormalitzat. És per això

que en [40, 41, 42] es va proposar una aproximació per a resoldre les equa-

cions semi-clàssiques d’Einsten mitjançant la integració de les components

angulars, traslladant el problema a un espai 2-dimensional. Açò va ser

posteriorment analitzat en més detall i estudiat per a diferents casos per

altres autors [43, 44, 45, 46, 47]. En canvi, en este article proposem una

via alternativa per a resoldre este problema directament en 4 dimensions.

En particular, considerem només els efectes quàntics generats per camps

conformes (en concret un camp escalar conforme), ja que per la seua sime-
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tria es simplifica considerablement el problema. És raonable pensar que els

resultats per a altres tipus de camps seran qualitativament similars. Per

a camps conformes la ben coneguda anomalia de traça (que expliquem en

detall en la secció 6.2) defineix uńıvocament una relació entre les components

del tensor energia-moment, que ve donada per

−⟨ρ⟩+ ⟨pr⟩+ 2 ⟨pt⟩ = ⟨T a
a ⟩ , (27)

on ⟨ρ⟩ és la densitat del buit quàntic, ⟨pr⟩ i ⟨pt⟩ les pressions radial i tangen-
cials, i ⟨T a

a ⟩ és l’expressió de l’anomalia de traça, que depèn de la mètrica.

[Com que busquem solucions estàtiques i esfèricament simètriques, hem

escollit també un estat de buit amb estes simetries, la qual cosa dona lloc a

un tensor energia-moment diagonal i independent del temps.] Aix́ı, la nos-

tra proposta consisteix en resoldre les equacions semi-clàssiques d’Einstein

afegint (27) com a equació d’estat. Noteu que amb este procediment no és

necessari donar una expressió del tensor energia-moment en termes d’una

mètrica general (que era el principal problema), ja que ara les seues compo-

nents s’introdueixen com a incògnites del sistema d’equacions diferencials.

Per últim fem una última assumpció per tal de fer el sistema resoluble,

que consisteix en considerar la pressió radial igual a la tangencial (⟨pr⟩ =
⟨pt⟩). Esta simplificació està inspirada en el resultat del tensor energia-

moment per a un background de Schwarzschild fixat [35], on s’obté que prop

de l’horitzó les pressions tendeixen a igualar-se. És raonable esperar que

la solució exacta, afegint backreaction, es comporte de manera semblant

(⟨pr⟩ ≈ ⟨pt⟩) prop de r = 2M . En qualsevol cas, posteriorment hem

comprovat que els resultats per a altres assumpcions per a les pressions són

qualitativament similars.

Busquem solucions estàtiques i amb simmetria esfèrica, per tant el

sistema d’equacions a resoldre és anàleg a les equacions de TOV (amb la

densitat i la pressió quàntiques), afegint l’equació d’estat esmentada abans.
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Com a primera aproximació a la solució resolem el sistema pertorbativament

en ℏ. Restringint-nos a la regió propera a l’horitzó (on més pes tenen els

efectes quàntics), obtenim la següent correcció a primer ordre en ℏ de la

mètrica de Schwarzschild

ds2 = −
(
f(r)− ℏ

(
1

13440πM2f(r)
+O(log f(r))

)
+O

(
ℏ2
))

dt2

+
dr2

f(r)− ℏ
(

1
4480πM2f(r)

+O(log f(r))
)
+O (ℏ2)

+ r2dΩ2 , (28)

on f(r) = 1−2M/r. D’este resultat podem extraure una conclusió principal:

l’horitzó clàssic de la mètrica de Schwarzschild desapareix. Per al valor de r

per al qual g−1
rr (r) = 0, que ve donat per

r0 = 2M +

√
ℏ

4
√
70π

+O(ℏ) , (29)

la component gtt(r) no s’anul·la (gtt(r0) ̸= 0), a diferència del que ocorre

en la mètrica de Schwarzschild clàssica. S’obté aix́ı una mètrica de tipus

forat de cuc (veure secció 4.2 per a més detalls sobre estos objectes). Tot

i això, este resultat no és totalment fiable, ja que la densitat i pressió

quàntiques resulten ser són d’ordre ℏ/f2, que prop de la gola del forat de

cuc (r = r0) tendeixen a ser d’ordre ℏ0. Per tant en la regió propera a la

gola la hipòtesi pertorbativa falla, i cal estudiar el problema de manera

exacta numèricament. A l’article mostrem la representació obtinguda de la

solució exacta, i obtenim que és qualitativament semblant a la pertorbativa,

llevat de factors numèrics. En concret obtenim que la gola està situada en

r0 ≈ 2M + 0.01947
√
ℏ, que difereix lleugerament del resultat anterior.

En resum, hem obtingut una singularitat coordenada per a un valor

de r separat del valor clàssic (r = 2M) per una distància de l’ordre de la

longitud de Planck (
√
ℏ). La singularitat representa la gola d’un forat de

cuc. El següent pas lògic és estendre la mètrica més enllà d’esta singularitat
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coordenada, com es fa en el cas clàssic. En l’article proposem una extensió de

tipus Morris-Thorne, convenient per a una mètrica de forat de cuc, definida

pel canvi l(r) ≡
∫ r
r0

√
grr(r′)dr

′. La gola del forat de cuc està situada

en l = 0. L’extensió de la mètrica a la regió l < 0 dona com a resultat

un forat de cuc asimètric. A més a més, trobem una nova singularitat

situada en ls ∼ −0.278ℏ1/4
√
M . A l’article provem que esta singularitat

és de curvatura i està situada sobre una hiper-superf́ıcie de tipus nul. En

la Figura 0.1 mostrem un diagrama de Penrose qualitatiu d’esta solució.

Aix́ı mateix demostrem que esta singularitat està situada a una distància

geodèsica d’ordre O(
√
ℏ) respecte de la gola, de manera que un observador

travessant el forat de cuc trobaria quasi immediatament la singularitat.

La forma d’esta solució (forat de cuc asimètric amb una singularitat de

curvatura nul·la) coincideix qualitativament amb l’obtinguda mitjançant

l’aproximació 2-dimensional [41], la qual cosa reforça la validesa d’esta

aproximació.

Esta solució de forat de cuc és l’extensió maximal de la solució de les

equacions semi-clàssiques d’Einstein de buit (quàntic) pur. Però u es pot

plantejar empalmar esta mètrica amb l’interior d’una estrela estàtica i amb

simetria esfèrica. La inclusió de matèria pot generar objectes estel·lars
ultra-compactes [48, 44, 45, 46, 47]. Si empalmem estes solucions a la nostra

mètrica per a l’exterior de l’estrela, el nostre resultat imposa un valor màxim

per a la compacitat d’estos objectes, que ve donat pel mı́nim de la funció

radial (la gola del forat de cuc). En concret obtenim que el màxim de

compacitat (mesurat com 2M/r) seria

2M

r0
∼ 1− 0.01686

√
ℏ

2M
. (30)

Esta és una important restricció per als ECOs, que considerem com un dels

principals resultats de l’article.
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Figure 0.1: Diagrama de Penrose mostrant la gola del forat de cuc (l = 0) i
la singularitat de curvatura nul·la (l = ls).

Per últim, comprovem que les implicacions f́ısiques de les correccions

quàntiques lluny de r = 2M són menyspreables i no serien detectables amb

els interferòmetres actuals. En particular, a mode d’exemple, obtenim la

correcció quàntica (a primer ordre en ℏ) de les freqüències dels modes del

light-ring generat per pertorbacions escalars i electromagnètiques. Per a

fer-ho utilitzem l’aproximació anaĺıtica WKB [49, 50]. Obtenim resultats

de la forma ω2 = ω2
Sch + O(ℏ), on ω2

Sch són les freqüències per al cas de

Schwarzschild. Per exemple, en el cas de pertorbacions electromagnètiques

obtenim

ω2 = ω2
Sch +

ℏ
17010πM2

(
−13Re

[
ω2
Sch

]
+ 11i Im

[
ω2
Sch

])
. (31)

Podem veure que les correccions quàntiques a estos observables són menyspre-

ables. Açò és el que esperàvem, ja que el light-ring es troba entorn a r = 3M
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que està suficientment allunyat de la regió de la gola, on s’espera que les

correccions quàntiques tinguen més pes. Concloem per tant que, tot i que

els efectes quàntics impliquen canvis dràstics en la geometria del forat negre

prop de l’horitzó, no sembla que impliquen correccions significatives en

l’exterior. És a dir, des del punt de vista d’un observador distant, esta

solució semi-clàssica és indistingible d’un forat negre sense rotació.



Contents

1 Introduction and motivation 3

1.1 Structure and conventions . . . . . . . . . . . . . . . . . . . 7

1.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 7

I Theoretical framework 9

2 Review on Quantum Field Theory in curved spacetimes 11

2.1 Scalar field . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Particle creation in an expanding universe . . . . . . . . . . 16

3 Semiclassical Electrodynamics and the Schwinger Effect 21

4 Black Holes in the presence of Quantum Fields 27

4.1 Hawking Radiation . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Exotic Compact Objects (ECOs) . . . . . . . . . . . . . . . 33

5 Renormalization in Curved Spacetimes 39

5.1 Point-Splitting regularization . . . . . . . . . . . . . . . . . 40

5.2 Adiabatic renormalization . . . . . . . . . . . . . . . . . . . 44

5.3 Renormalization in Black Holes . . . . . . . . . . . . . . . . 49

1



2 CONTENTS

6 Anomalies in QFT and Gravitation 55

6.1 Axial anomaly in QED . . . . . . . . . . . . . . . . . . . . . 57

6.2 Trace Anomaly in QFT in curved spacetimes . . . . . . . . 59

II Results and Conclusions 67

7 Results and Conclusions 69

7.1 Article 1: Translational anomaly in electric backgrounds . . 69

7.2 Article 2: Breaking of adiabatic invariance in electromagnetic

backgrounds . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.3 Article 3: Adiabatic renormalization method to Dirac fields

in an electric background . . . . . . . . . . . . . . . . . . . 76

7.4 Article 4: Pragmatic mode-sum regularization method in a

cosmological background . . . . . . . . . . . . . . . . . . . . 81

7.5 Article 5: Quantum vacuum corrections to the Schwarzschild

metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

III Articles 91

Bibliography 157



Chapter 1

Introduction and motivation

There are two fundamental theories that underpin modern physics today:

General Relativity (GR), which explains gravitation and the physics of the

universe; and Quantum Field Theory, which is able to describe a wide range

of quantum phenomena, ranging from condensed matter to the physics of

particle interactions. Both theories have been tested experimentally and

are widely accepted by the scientific community, although they are far from

solving all the problems of current physics. One of the most fundamental

problems remaining nowadays is precisely how to fit these two theories

together in order to explain physical phenomena involving both quantum

and gravitational effects. A unified theory may shed light on problems that

physicists have been trying to solve for decades. The two most important in

this regard are: discovering the true nature of black holes and the physics

around their curvature singularity, as well as the physical processes that

took place at the origins of the universe and led to the creation of matter.

We are far from finding a unified theory, but that does not mean

that these problems are a complete mystery. Theories that go beyond

the Standard Model [51], modified theories of gravity that review and

3
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provide corrections to classical General Relativity [52], quantum theories

for gravity [53], etc, have their own proposal. However, all of them require

additional hypoThesis that need to be confirmed by experiments. If there

is a theory that stands out for its reliability, as well as for its practicality

to study and to produce results of physical interest involving both gravity

and quantum fields, this is Quantum Field Theory in curved spacetimes.

This approach was originally started by Leonard Parker in 1966 [1, 2, 3, 4],

where it was discovered that elementary particles can be created by a time-

dependent gravitational field. These works launched a new and fruitful

field in physics, which was subsequently analyzed and extended by many

authors and summarized in standard monographs [5, 6, 7, 8]. This theory

is a semiclassical approximation, in which quantum fields describing matter

and/or radiation are coupled to an external, background gravitational field,

which is approximated by a classical field in the weak-field regime. The

semiclassical approximation is widely used and has historically paved the

way for significative advances in our understanding of physical interactions,

for example, in the early years of the quantum electrodynamics during the

past century. The basic idea of semiclassical gravity is to apply this idea to

the gravitational field. If gravity plays an important role in the dynamics

of a quantum field (this happens, for example, in the vicinity of a black

hole or in the early universe), but in such a way that quantum gravitational

fluctuations are still negligible, then the gravitational field can be treated as

a classical, external field. This avoids dealing with the unresolved problem

of quantizing gravity in those situations where quantum fluctuations of the

spacetime metric are expected to be negligible.

Quantum field theory in curved spacetimes is, in this sense, an effective

theory that does not unify gravity and quantum physics, as it does not

propose a method to quantize gravity, but it has nevertheless proven to be

very useful in explaining phenomena that could not be tackled otherwise.
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One of these is the well-known Hawking radiation [10, 11], which shows how,

contrary to what has been assumed for decades, black holes are not simply

sinks of matter that do not allow any kind of particle to pass beyond their

boundaries. Black holes radiate matter, and this is an effect that can only

be explained if the quantum fluctuations excited around the horizon are

taken into account. Another important effect that the semiclassical theory

is able to explain arises in cosmology. This is the spontaneous creation of

particles that results from the expansion of the universe, an effect that was

first discovered by L. Parker [1]. This phenomenon reveals the fundamental

property that in a non-static spacetime there is no unique or preferred choice

for a vacuum state in quantum field theory: observers at both early and

late times differ in their “natural” notions of vacuum state. This results

in a different measurement of the number of particles at different instants.

This effect becomes particularly important during the first instants of time

of the universe after the Big Bang and to explain the creation of matter

[12, 13]. In fact, the phenomenon of spontaneous particle creation is not

only present in curved spacetimes, but it can also occur in flat spacetimes.

More precisely, an intense electric field can also generate particle-antiparticle

pairs out of the quantum vacuum. This is known as the Schwinger effect

[14, 15], a non-perturbative effect that can only be obtained through the

semiclassical approach (via the one-loop effective action).

In conclusion, in all these scenarios (Electrodynamics, Cosmology, and

Black holes), we see that quantum fields in the presence of external classical

fields exhibit interesting properties that must be explored using semiclassical

theories. This is the theoretical framework of this Thesis. The articles

that make up this Thesis (shown in part III) are focused on the study,

development, and application of the semiclassical theory in these physical

scenarios (anomalies, renormalization, backreaction effects...).

Regarding Electrodynamics, we examined how certain well-known phe-
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nomena in the context of QFT in curved spacetimes can also be recovered in

the context of an electromagnetic background. For instance, in the Article 1

of this Thesis we study whether the so-called gravitational anomaly, which is

known to occur for a 2-dimensional Weyl fermion coupled to gravity, arises

when the background is an electric field. We will see that in this second case,

an anomaly also arises in the conservation of momentum. On the other hand,

in the Article 2, we study whether the electromagnetic case maintains the

adiabatic invariance of the number of particles, which consists of no particle

creation in the limit of an infinitely slowly expanding universe. We will

see that, under certain conditions, this invariance is broken in this second

case. In fact, this phenomenon is intimately related to the well-known

axial anomaly. Finally, in the Article 3, we extend the method of adiabatic

renormalization (which is very useful in the cosmological context) to the

case of a 4-dimensional Dirac field coupled to an electric background.

Regarding the field of Cosmology, in the Article 4, we extend to the

cosmological context a recent and successful regularization method (prag-

matic mode-sum regularization) that had only been applied in the context

of black holes up to now. Finally, in the context of black holes, we study

quantum corrections to the Schwarzschild metric, specifically in the Article

5. These corrections come from the effects of backreaction generated by the

quantum fields on the gravitational background itself. We will see that the

geometry of the newly generated spacetime presents significant differences

compared to that of black holes. This result may contribute to the study

of the formation of ultra-compact objects that mimic the physics of black

holes.
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1.1 Structure and conventions

The Thesis is organized as follows. In Part I we review the main concepts that

make up the theoretical framework of this Thesis (placing them historically),

which are necessary to facilitate the understanding of the articles. In

Part II, we summarize the results and conclusions that have been obtained

throughout the PhD. Finally, in Part III, we include the articles that support

the Thesis.

Regarding conventions, throughout the Thesis we work in natural units,

i.e., G = c = ℏ = 1, unless otherwise stated. For the signature of the metric

we use (+,−,−,−), except in the Article 5 where we use the opposite

signature (and where we leave ℏ explicitly). For curvature tensors, we follow

the conventions of [5].

1.2 Methodology

For the development of the articles, it has been consulted updated literature

from the different theoretical areas involved in the work. Regarding the

calculations that were necessary for the development of the articles, it should

be noted mainly the use of Mathematica for analytical calculations (including

the x-Act package for tensorial calculations), as well as the use of Matlab

for more involved numerical calculations.

The articles have been developed in collaboration with other members

of the research group and external scientists, through meetings and task

distribution. Therefore, the authorship of the articles is distributed equally

(the names of the authors in the articles are listed alphabetically, as is

customary in publications in this field). Lastly, conferences have also been

attended to communicate the results obtained with other research groups,

as well as to learn the work of other authors in related subjects.
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Theoretical framework
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Chapter 2

Review on Quantum Field

Theory in curved spacetimes

All the articles that comprise this Thesis are, to a greater or lesser extent,

based on Quantum Field Theory in curved spacetimes, as well as on semi-

classical electrodynamics. The underlying idea in both theories is the same:

to consider the gravitational/electromagnetic field as a classical background

and to couple them to quantized fields. This approach allows the analysis

of non-perturbative effects such as the spontaneous creation of particles.

In this first section we will briefly explain the basic concepts of Quantum

Field Theory in curved spacetimes, as well as a proof of the phenomenon of

particle production in the cosmological context. [A more detailed derivation

can be found in [5]]. In the next section we will introduce its electromagnetic

analogue.

Let us consider a set of scalar fields ϕi(x) propagating in a n-dimensional,

globally hyperbolic spacetime background (M, gab), where the manifold

can be decomposed as M ≃ R × σ, for some n − 1-dimensional spacelike

hypersurface σ. Global hyperbolicity is required to guarantee that the

11
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time evolution of the fields is mathematically well-posed. In coordinates

the metric can be expressed as ds2 = gµν(x)dx
µdxν , where we will denote

x0 = t as the time coordinate, and (x1, ...xn−1) = x⃗ as the spatial ones.

The classical field theory is described by an action functional, which in

curved spacetime also depends on the metric, so it must have the form

S(ϕi(x),∇ϕi(x), gµν(x)). Such action can be constructed by following the

minimal coupling prescription, which is consistent with the Einstein principle

of equivalence. Starting from the usual action for the field in Minkowski

spacetime, the prescription consists in replacing the flat Minkowski metric

ηab by the curved metric gab, the flat covariant derivative ∇a[η] by the non-

flat connection ∇a[g], and the measure dnx
√
−η by the invariant volume

element dnx
√
−g, where g = det (gµν). As we will see later, one can add

additional terms involving higher derivatives of the metric, but for now we

will only consider the simplest case of minimal coupling.

The resulting action in curved spacetime can then be expressed in terms

of a lagrangian density L, as

S =

∫
dnxL(ϕi,∇µϕi, gµν) , (2.1)

This functional must be invariant under general coordinate transformations.

Requiring invariance of the action under variations of gµν induced by an

infinitesimal coordinate transformation leads to the conservation law

∇µT
µν = 0 , (2.2)

where Tµν is the symmetric stress-energy tensor, defined by

Tµν = − 2

|g|1/2
δS

δgµν
. (2.3)

On the other hand, requiring invariance of the action under variations of

the fields ϕi yields the Euler-Lagrangian equations

∂µ

(
∂L

∂ (∂µϕi)

)
− ∂L
∂ϕi

= 0 . (2.4)
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Similarly to QFT in Minkowski spacetime, the fields ϕi are quantized

by following the canonical procedure. More precisely, we impose the usual

commutation relations[
ϕi(t, x⃗), πj

(
t, x⃗′

)]
= δijδ

(
x⃗− x⃗′

)
,[

ϕi(t, x⃗), ϕj
(
t, x⃗′

)]
=

[
πi(t, x⃗), πj

(
t, x⃗′

)]
= 0 , (2.5)

for bosonic fields, and{
ϕi(t, x⃗), πj

(
t, x⃗′

)}
= δijδ

(
x⃗− x⃗′

)
,{

ϕi(t, x⃗), ϕj
(
t, x⃗′

)}
=

{
πi(t, x⃗), πj

(
t, x⃗′

)}
= 0 , (2.6)

for fermionic fields. Here πi are the canonical conjugated momentum

defined by πi =
∂L

∂(∂0ϕi)
, δij is the Kronecker delta, and δ (x⃗− x⃗′) is the

Dirac delta. These relations are covariant under transformations of the

spatial coordinates, and they remain valid for any t = constant hypersurface.

2.1 Scalar field

In this section we briefly explain how this theory can be applied to the

simplest case, a scalar field (spin 0) coupled to a gravitational background.

We will then restrict to cosmological spacetime backgrounds, consisting of

expanding universes. This is a particularly useful arena for understanding

the phenomenon of particle creation.

For Minkowski spacetime the Lagrangian density of a real scalar field

with mass m is given by L = 1
2(η

µν∂µϕ∂νϕ−m2ϕ2). Therefore, following

the minimal coupling prescription described in the previous section, the

Lagrangian density in a curved spacetime becomes

L =
1

2
|g|1/2

(
gµν∂µϕ∂νϕ−m2ϕ2

)
. (2.7)
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(the factor |g|1/2 comes from the change of the volume element in (2.1),

and the covariant derivatives reduce to partial derivatives for scalar fields).

Besides the minimal coupling prescription, there is also the freedom of

adding a coupling with curvature in the following form

L =
1

2
|g|1/2

(
gµν∂µϕ∂νϕ−m2ϕ2 − ξRϕ2

)
, (2.8)

where ξ is a dimensionless real number known as coupling constant between

the field and the background, and R is the scalar curvature. This extra term

is needed to ensure the renormalizability of the theory when interaction

terms are included in the Lagrangian (see section 6.7 of [5]). Note that

the case ξ = 0 corresponds to the minimal coupling prescription. On the

other hand, when ξ = 1/6 and m = 0 the Lagrangian density is invariant

under conformal transformations of the spacetime. For this reason the value

ξ = 1/6 is known as conformal coupling. As we will explain in more detail in

section 6.2, conformal symmetry implies that the trace of the stress-energy

tensor (2.3) is 0 for solutions of the equation of motion, but in the quantum

theory this is no longer true (and it is known as the Trace Anomaly).

The Euler-Lagrange equation of the Lagrangian density (2.8) produces

the Klein-Gordon equation for curved spacetimes(
□+m2 + ξR

)
ϕ = 0 . (2.9)

The operator □ in curved spacetimes acts as □ϕ = |g|−1/2∂µ
(
|g|1/2∂µϕ

)
.

Since the field equations are linear, the space of solutions has the structure

of a vector space. This vector space can be endowed with a symplectic

structure. Consider two functions f1 and f2 that are solutions of the above

equation. We define the Klein-Gordon inner product

(f1, f2) := i

∫
σ
dσ|g|1/2nµf∗1

←→
∂µf2 , (2.10)
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where σ is an arbitrary spacelike hypersurface, and nµ is the future-pointing,

unit normal vector. It can be proven that this product is independent of the

choice of σ. In particular, if one considers a {t = constant} hypersurface of

dimension n− 1, this product becomes

(f1, f2) = i

∫
σ
dn−1x|g|1/2nνgνµf∗1

↔
∂µf2 (2.11)

and using the field equations it is not difficult to find that this quantity is

conserved in time. Throughout this text the notation (, ) will refer to this

product.

At this point, one can proceed to do the quantization of the scalar field by

following the same procedure as in Minkowski spacetime. For convenience,

let us consider finite spacelike hypersurfaces σ consisting of a cube of side

length L (this length will be taken to infinity at the end of the analysis),

and impose periodic boundary conditions on the field. Given a complete

basis for the space of solutions of the field equation (2.9), f
k⃗
, labelled by

n− 1 real numbers k⃗, the quantum field can be expanded in terms of the

usual annihilation and creation operators (A
k⃗
, A†

k⃗
) as

ϕ(t, x⃗) =
∑
k⃗

(
A

k⃗
f
k⃗
(t, x⃗) +A†

k⃗
f∗
k⃗
(t, x⃗)

)
. (2.12)

The mode functions f
k⃗
are orthonormal with respect to the symplectic inner

product

(f
k⃗
, f

k⃗′) = δ
k⃗,⃗k′ , (f

k⃗
, f∗

k⃗′
) = 0 . (2.13)

Since this product is conserved in time, these conditions will be valid for all

t. Using these relations and the properties of the δ distribution, one can

prove that the usual commutation relations (2.5) are equivalent to

[A
k⃗
, A†

k⃗′
] = δk,k′ , [A

k⃗
, A

k⃗′ ] = [A†
k⃗
, A†

k⃗′
] = 0 , (2.14)
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which are the same relations as in QFT in Minkowski spacetime. As we will

see in the next subsection, if the spacetime evolves from an asymptotically

flat region at early times, one can assign {A
k⃗
, A†

k⃗
} a notion of annihilation /

creation operators of particles with momentum k⃗ with respect to observers

that remain static at early times, i.e. with respect to the integral curves

of the asymptotic Killing vector field ∂/∂t. However, at later times when

spacetime is dynamical (non-vanishing curvature) this statement is no longer

true. This is the origin of the phenomenon of spontaneous particle creation

by the curvature of the spacetime, that we will introduce in the following

section.

2.2 Particle creation in an expanding universe

To analyze the phenomenon of particle creation it is convenient to consider a

particular cosmological model: an expanding universe that is asymptotically

flat at early and late times. This configuration is illustrative because the

annihilation and creation operators (and therefore the concept of vacuum

state, and in turn the notion of particle) can be given a clear physical

meaning at both early and late times. Therefore, in this model one can

obtain a rigorous calculation of the number of particles created by the

spacetime expansion by comparing how the two notions of vacuum state

relate to each other.

Let us then consider an isotropical and homogeneous spacetime in four di-

mensions, given by the well-known Friedmann–Lemâıtre–Robertson–Walker

(FLRW) metric

ds2 = dt2 − a(t)2dx⃗2 , (2.15)

where a(t) is a real function, known as scale factor. The asymptotically
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flatness condition requires that the scale factor behaves as

a(t)→

{
ain as t→ −∞
aout as t→∞

, (2.16)

where ain and aout are positive constants. Since the background metric is

spatially homogeneous, the field will be propagated spatially as a free wave,

so we can consider the following ansatz for the mode functions in (2.12)

f
k⃗
(t, x⃗) =

1√
2L3a(t)3

h
k⃗
(t)eik⃗x⃗ . (2.17)

(The factor 1/
√
2L3a(t)3 is introduced for simplicity in the following calcu-

lations). Therefore, the Klein-Gordon equation (2.9) with these assumptions

is reduced to the differential equation

d2h
k⃗

dt2
+
(
ω2
k + σ

)
h
k⃗
= 0 , (2.18)

where ωk =

√
m2 +

(
k
a

)2
, and

σ =

(
6ξ − 3

4

)
ȧ2

a2
+

(
6ξ − 3

2

)
ä

a
. (2.19)

This last term is called the frequency scale of the background. Notice that

when the spacetime tends to a flat region (a→ const.) then σ → 0 and the

solution of this equation is just a free oscillating mode propagating with

frequency ωk. Then, at early and late times the modes h
k⃗
tend to be a

linear combination of the Minkowskian positive (e−iωkt) and negative (eiωkt)

frequency solutions.

On the other hand, the normalization relations (2.13) imply the following

normalization condition

h
k⃗
ḣ∗
k⃗
− h∗

k⃗
ḣ
k⃗
= 2i . (2.20)
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Since the inner product is conserved in time, this equation will also be pre-

served. Therefore if we impose initial conditions which verify this condition,

it will be ensured for all times. In fact, h
k⃗
ḣ∗
k⃗
− h∗

k⃗
ḣ
k⃗
is a Wronskian of

the equation (2.18), which is a conserved quantity. This equation fixes an

integration constant of the differential equation (2.18), while the other one

must be fixed by choosing the vacuum state |0⟩ of the theory. For instance

we can choose the vacuum state to be fixed at early times, i.e., no particles

are present in the early universe. This is equivalent to fix that when t→ −∞
the modes behave as positive frequency solutions with respect to the Killing

vector ∂/∂t, i.e.,

h
k⃗
(t→ −∞) ∼ 1√

ωin
k

e−iωin
k t , (2.21)

where ωin
k =

√
( k
ain

)2 +m2. Therefore, Ak and A†
k in (2.12) are the annihi-

lation/creation operators of particles in the early universe, and it is verified

A
k⃗
|0⟩ = 0.

However, at late times the solution will be a combination of positive and

negative frequency solutions, as a consequence of the time evolution of the

differential equation, i.e.

h
k⃗
(t→∞) ∼ 1√

ωout
k

(αke
−iωout

k t + βke
iωout

k t) , (2.22)

where ωout
k =

√
( k
aout )

2 +m2 and αk, βk are dimensionless integration con-

stants. As we will see later, this fact is the reason behind the particle

production effect. The normalization equation (2.20) implies the relation

|αk|2 − |βk|2 = 1 . (2.23)

Since in general βk ̸= 0, the operators Ak, A
†
k are no longer the standard

annihilation and creation operators in the late universe. Introducing (2.22)
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into the field expansion (2.12) and regrouping terms one can find the

expression for the annihilation/creation operators at late times in terms of

the corresponding operators at early times

Aout
k⃗

= αkAk⃗
+ β∗kA

†
−k⃗
. (2.24)

These relations are known as Bogoliubov transformations, and have their

origin in condensed matter physics [54, 55]. Using (2.23) it can be proved

that these new operators verify the usual commutation relations (2.14).

We have all the elements now to prove the production of particles by the

expanding universe. The particle number operator at late times for modes

with momentum k⃗ is defined by A†out
k Aout

k . The vacuum expectation value

of this operator can be easily computed using the commutation relations,

and yields

⟨Nout
k ⟩ = ⟨0|A

†out
k Aout

k |0⟩ = |βk|2 . (2.25)

For a general changing scale factor a(t), the coefficients β
k⃗
are different from

zero. Therefore, particles can be created during the expansion because of

the curvature of the spacetime. The momentum distribution of the created

particles is given by the Bogoliubov coefficients |βk|2. Its expression depends

on the particular form of a(t), and for some simple cases it can be obtained

in closed analytical form. Summing this distribution for all the possible

momenta and dividing by the comoving volume of the universe at late times

(Laout)3, we obtain the average density of created particles

⟨nout⟩ = 1

(Laout)3

∑
k⃗

|βk|2 . (2.26)

In the continuum limit (L→∞) one obtains:

⟨nout⟩ = 1

(2π2aout)3

∫ ∞

0
dkk2|βoutk |2 . (2.27)



20
CHAPTER 2. REVIEW ON QUANTUM FIELD THEORY IN CURVED

SPACETIMES

This is the total number of particles created by the dynamics of the spacetime

between the two asymptotically flat limits at early and late times. It can

be proved that |βk|2 decreases faster than any negative power of k when

k → +∞, so this integral converges (see, for instance, [7]).

A very important property of the number of particles created is that it

is an adiabatic invariant. This means that in the limit of an infinitely slow

expanding universe, no particles would be created (see [17] for a historical

review). In the Article 2 of this Thesis (shown in part III) we explain this

phenomenon in detail, and we analyze whether this property holds when the

background is not a gravitational field but an electromagnetic one. We prove

that, in certain cases, this adiabatic invariance is broken in the presence of

electromagnetic fields.



Chapter 3

Semiclassical

Electrodynamics and the

Schwinger Effect

As explained in Chapter 1, the semiclassical approach (i.e. coupling a

quantum field to a classical background field) is very useful to study quantum

effects in gravity because Einstein’s equations are highly non-linear and the

quantization of the full theory is far from obvious. But this is not the only

case where this approach works. It is well-known that in Quantum Field

Theory (in flat space), the semiclassical prescription gives interesting results.

For instance, in Quantum Electrodynamics (QED) this method allows the

analysis of non-perturbative effects that arise when the background is very

strong (yet, classical) and are difficult to examine in the full theory. This is

the case of the well-known Schwinger effect, which involves the spontaneous

creation of particle-antiparticle pairs generated by the effect of a strong

electric field. Note that this is analogous to the particle creation by the

expansion of the universe that we explained above, but in this case, the

21
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strong background field is an electric field, instead of a gravitational one. The

instability of the vacuum caused by an electric field was, however, discovered

much earlier. It was predicted for the first time in 1936 by W. Heisenberg

and H. Euler [56], inspired by the work of F. Sauter on the Klein paradox [18].

Some years later, it was formalized in Quantum Electrodynamics (QED) by

J. Schwinger [14, 57, 58]. This phenomenon is of particular interest from an

experimental point of view, as it may soon be possible to detect it in high

intensity lasers [59] and beam-beam collisions [60]. Additionally, this effect

holds significant importance in some scenarios in astrophysics [61, 62] and

cosmology [63, 64, 65, 66, 67], as well as in non-equilibrium processes that

are induced by strong fields [68, 69, 70]. On the other hand, recent works

have resumed the study of semiclassical electrodynamics and the Schwinger

effect to analyze technical aspects, such as the renormalization of physical

observables associated with this effect [25, 26] (and also the Article 3 of this

Thesis). Other works have also analyzed the ambiguities in defining the

vacuum state at times when the electric field is acting, and have proposed

criteria for selecting vacuum states that allow estimating the number of

particles at these instants [71, 72, 73, 74, 75].

In this section we will introduce this phenomenon for the case of a

constant electric background and will make some comments on its extension

to the time-dependent case, which can be studied in a very analogous way

to the particle creation in expanding universes. This will be useful for

understanding the first three articles of the Thesis (shown in part III), which

are based on semiclassical electrodynamics and are closely related to the

Schwinger effect. We will show how this effect was derived for the first

time, i.e., by using the Euler-Heisenberg effective Lagrangians [56]. These

Lagrangians take into account the effect of vacuum polarization to one

loop and describe the dynamics of a quantum field coupled to a strong and

slowly varying electromagnetic field that is considered classical. Before the
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development of renormalization theory, these Lagrangians were employed

to describe the nonlinear dynamics of electromagnetic fields in the vacuum,

obtaining significant results, such as the Schwinger effect, as we will see

briefly next (for a more detailed analysis see [76]).

Let us consider the case of charged bosons (spin 0) and Dirac fermions

(spin 1/2). Note that, unlike the gravitational case, this effect can only

produce charged particles, since the electromagnetic field couples only with

charged fields. The effective Lagrangian densities for bosons and fermions

(respectively), with massm and charge q, coupled to a strong electromagnetic

background field Fµν , can be written as [56, 15]

Lb = −
1

16π2

∫ ∞

0

ds
e−

m2s
ℏ

s3

(
q2abs2

sinh (qbs) sin (qas)
+
q2s2

6
(b2 − a2)− 1

)
, (3.1)

Lf = − 1

8π2

∫ ∞

0

ds
e−

m2s
ℏ

s3

(
q2abs2

tanh (qbs) tan (qas)
− q2s2

3
(b2 − a2)− 1

)
, (3.2)

where

a =

√√
F2 + G2 −F , b =

√√
F2 + G2 + F , (3.3)

F =
1

4
FµνF

µν = −1

2
(E⃗2 − B⃗2) , G =

1

4
Fµν

∼
F µν = −E⃗ · B⃗ , (3.4)

and E⃗ and B⃗ are the electric and magnetic fields respectively. Note that if

E⃗ and B⃗ are parallel then a = |E⃗| and b = |B⃗|. For simplicity, we consider

the case of a purely electric background (B⃗ = 0), which is enough to produce

the creation of particles. Then the Lagrangian densities become

Lb = − 1

16π2

∫ ∞

0
ds
e−

m2s
ℏ

s3

(
qEs

sin (qEs)
− (qEs)2

6
− 1

)
, (3.5)

Lf = − 1

8π2

∫ ∞

0
ds
e−

m2s
ℏ

s3

(
qEs

tan (qEs)
+

(qEs)2

3
− 1

)
, (3.6)

where we denoted E = |E⃗|.
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As a first approach to the problem, let us consider a constant electric

field E. In this case, the Lagrangians above are just constants, and so is the

effective action S =
∫
d4xL (L can be either Lb or Lf ). This implies that

the scattering matrix of this theory is just eiS . Therefore, the probability

that no particles are created, i.e., that the vacuum state |0⟩ remains the

vacuum, is given by

P (|0⟩ → |0⟩) = | ⟨0| eiS |0⟩ |2 = |eiS |2 . (3.7)

Since the Lagrangians are constants, we have S = V TL, where V and T

are the volume and time scales of the experiment. Then |eiS |2 = e−2V T Im[L].

As a result, assuming 2Im[L] is small, the quantity 2Im[L] can be regarded

as the probability per unit time and volume that any number of pairs are

created. By using contour integration over the poles of the integrals (3.5)

and (3.6), one can calculate the imaginary part of the lagrangians, yielding

2Im(Lb) =
q2E2

8π3

∞∑
n=1

(−1)n+1

n2
e
−nπm2

ℏqE , (3.8)

2Im(Lf ) =
q2E2

4π3

∞∑
n=1

1

n2
e
−nπm2

ℏqE . (3.9)

These expressions give the rates for Schwinger pair production by a constant

electric field.

One can see the non-perturbative nature of the Schwinger effect, as the

argument of the exponential is proportional to the inverse of the charge,

making it impossible to expand the expressions in power series of q, as

typically done in perturbative QED. Consequently, pair production cannot

be observed at any fixed order in perturbative QED.

According to equations (3.8) and (3.9), these rates are insignificant for

low values of E, but become relevant when E ≳ Ec =
m2

ℏq . This is known

as the Schwinger limit, beyond which the electric field becomes nonlinear.
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For instance, in the case of electrons, Ec ≈ 1018V/m, indicating that the

Schwinger effect can only be produced by highly powerful electric fields,

that are otherwise incredibly challenging to generate in laboratories. This

is why the Schwinger effect has yet to be observed experimentally. However,

with current laser technology, it may be possible to observe the Schwinger

effect in laser experiments in the near future [59, 77, 78, 79].

We have analyzed this effect in the ideal scenario of constant electric

fields, but it can be extended to the case in which the background is time-

dependent. One possible approach to address this problem is through

Bogoliubov transformations (see, for example, [15]). As mentioned before,

particle production by electric fields is closely analogous to particle cre-

ation in expanding universes. The method described in section 2.2 can be

straightforwardly extended to the case of an electromagnetic background.

For example, consider a scalar field ϕ with mass m and charge q coupled to

a time-dependent electric background (semiclassical scalar QED). The field

equation is given by

(DµD
µ +m2)ϕ = 0 , (3.10)

where Dµ = (∂µ + iqAµ) is a covariant derivative and Aµ is the 4-vector

potential associated with the electric field. Expanding the scalar field in

Fourier modes, one obtains harmonic oscillator-type differential equations

with time-dependent frequencies, similarly to the gravitational case. Now

the frequencies of the equations depend on the vector potential Aµ, which

plays the role of the scale factor a(t) in gravity. If we consider a configuration

where the electric field is asymptotically vanishing at both early and late

times, then the vacuum states at early and late times will in general differ,

and as a consequence the creation and annihilation operators associated

with early and late times can be related through Bogoliubov transformations.

By calculating the expectation value of the number of particles at late times,

one can find that particles have been spontaneously created by the dynamics
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of the electric background.

In the Article 2 of this Thesis (shown in part III) we perform this

calculation in 2 dimensions, for both scalar and Dirac fields. [A 4-dimensional

approach can be found, for instance, in [15].] In addition, we obtain the

momentum spectrum of the number of particles created for a specific form

of the electric field (a Sauter pulse), which allows us to solve the problem

in closed analytical form. Furthermore, we analyze how this observable

behaves in the limit in which the electric field varies adiabatically, and

prove that the well-known adiabatic invariance of the particle number in

expanding universes is not preserved in certain cases for an electromagnetic

background. On the other hand, in the Article 3, we study the extension

of the adiabatic renormalization method in the context of semiclassical

electrodynamics. Finally, in the Article 1, we study the emergence of a

momentum conservation anomaly associated with this effect in the case of

Weyl fermions.



Chapter 4

Black Holes in the presence

of Quantum Fields

As we have seen in previous sections, even without having a complete theory

of quantum gravity at our disposal there are ways to deal with scenarios

that combine gravity and quantum physics, that give rise to phenomena

of great interest. In addition to cosmology, in this Thesis we have also

addressed one of the most important frameworks that combine these two

branches of physics: black holes. The prediction of black holes in General

Relativity dates back to the early 20th century. However, it is worth noting

that the first indication of objects of this type dates back to the late 18th

century. J. Michel and P. S. Laplace independently proposed, based on

Newtonian gravitation, that a very massive star could gravitationally attract

light, turning it into an invisible object to our eyes [80, 81]. In Laplace’s

words, “The gravitation attraction of a star with a diameter 250 times that

of the Sun and comparable in density to the earth would be so great no light

could escape from its surface. The largest bodies in the universe may thus

be invisible by reason of their magnitude”. Much later, the development

27
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of Albert Einstein’s theory of General Relativity gave rise to the modern

concept of a black hole. Although the metric that describes the gravitational

field of a non-rotating black hole was first obtained by K. Schwarzschild

already in 1916 (what we now call the Schwarzschild metric [82], it was not

until 1939 when the physical meaning of this vacuum solution of Einstein’s

equations was fully understood. This was the seminal paper by Oppenheimer

and Snyder that describes the process of gravitational collapse of stars [83]

(see [84] for a historical review).

The notion of black hole horizons is one of the most fascinating predic-

tions of the theory of General Relativity. By definition, a black hole consists

in a region of spacetime that concentrates a strong gravitational field, so

strong that no particle can escape its influence, not even light. The boundary

of this region is what we call the horizon. The formation of these objects

is a consequence of the accumulation of matter in small regions of space,

which inevitably collapses to a singular point when it exceeds a certain limit.

For instance, for spherically symmetric spacetimes the Buchdahl theorem

imposes a limit to the compacity of a star. Specifically, a star with a mass

and radius such that M/R < 4/9 is unstable and will collapse inevitably in

a black hole [85].

In the last decades the analysis of quantum fluctuations of fields around

black holes has provided fundamental insights in our understanding of

quantum gravity. In fact, the inclusion of quantum fields in the physics of

black holes has called into question various basic properties that General

Relativity predicted about these objects. On the one hand, the presence

of quantum fields around black hole horizons leads to the emission of the

well-known Hawking radiation, an effect that challenges the old statement

that nothing can escape from black holes. This is perhaps the cornerstone of

Quantum Field Theory in curved spacetimes. On the other hand, quantum

effects also allow to bypass the assumptions of Buchdahl’s theorem, thus
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opening up the possibility of forming exotic compact objects (ECOs) in

astrophysics that may mimic the physics of black holes. This second question

has been addressed in this Thesis, in particular in the Article 5 (shown in

part III). In the following sections we will go through all these topics.

4.1 Hawking Radiation

The phenomenon of Hawking radiation, discovered by S. Hawking in 1974

[10, 11] refutes the idea that black holes are really “black”. Instead, they

emit thermal radiation composed of particles of any quantum field, which

are excited by the gravitational collapse during the formation of the black

hole. In Chapter 2 we have already seen how an intense and time varying

gravitational background, like an expanding universe, can generate the

spontaneous creation of particles that emerge from the quantum vacuum.

The gravitational collapse of a star is physically a similar process and

particles can be created in a similar fashion. Let us briefly see how this

effect can be derived, as originally calculated by Hawking.

Consider for definiteness a spherically symmetric spacetime that de-

scribes a non-rotating, collapsing star into a black hole. This spacetime can

be represented by the Penrose diagram in Fig. 4.1. In the region outside

the star the metric is given by the Schwarzschild metric (Birkhoff’s theorem

[86]:

ds2 =

(
1− 2M

r

)
dt2 −

(
1− 2M

r

)−1

dr2 − r2
(
dθ2 + sin2 θdϕ2

)
, (4.1)

where M is the mass of the black hole. Now we couple this background to

a quantum field propagating along the spacetime. For simplicity, consider a

massless, minimally coupled (ξ = 0) scalar field ϕ, which evolves according

to the Klein-Gordon equation □ϕ = 0. Following the exposition given
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Figure 4.1: Penrose diagram of a spherically symmetric collapsing body into a
black hole. I− and I+ are past and future null infinities respectively, i− and i+

are past and future time-like infinities respectively, and i0 is space-like infinity.
The red arrows represent a field mode that propagates from I−, goes through the
collapsing star and reaches I+.

in Chapter 2, we can expand the quantum field in terms of the usual

creation/annihilation operators as

ϕ(x) =
∑
i

(
fi(x)Ai + f∗i (x)A

†
i

)
, (4.2)

where the set of functions fi(x) form an orthonormal family of solutions of

the Klein-Gordon equation (the subindex i labels the quantum numbers of

each mode). fi(x) are solutions of positive frequency at past null infinity I−



4.1. HAWKING RADIATION 31

with respect to the affine parameter v, which is the Eddington-Finkelstein

coordinate defined by v = t+ r + 2M log
∣∣ r
2M − 1

∣∣. This positive-frequency
condition is equivalent to say that the field modes behave as e−iωv, where ω

is the frequency of the modes. On the other hand, Ai and A
†
i represent the

annihilation and creation operators of particles at I− (ingoing particles).

We can also express the field in terms of a different orthonormal family

of solutions gi(x), that is,

ϕ(x) =
∑
i

(
gi(x)Bi + g∗i (x)B

†
i

)
, (4.3)

such that Bi and B
†
i are the annihilation and creation operators of particles

at future null infinity I+. gi form a family of positive frequency solutions

at future null infinity I+ with respect to the affine parameter u (outgoing

particles), which is the outgoing Eddington-Finkelstein coordinate defined by

u = t− r− 2M log
∣∣ r
2M − 1

∣∣. That is, they behave as e−iωu. It is important

to note that this is not completely accurate, since I+ is not by itself a

Cauchy surface, the event horizon must be taken into account. Therefore, to

have a complete family of solutions we would need to add the contribution

of the operators of particles that cross the event horizon. Nevertheless,

this contribution will not play any crucial role in the calculation of particle

emission to I+, so we will ignore it here.

Having defined the two families of solutions, we can write one as a linear

combination of the other. [We are ignoring incoming modes at the horizon

at late times.] In other words, the early and late time operators are related

by a Bogoliubov transformation of the form

Bi =
∑
j

(
α∗
ijAj − β∗ijA

†
j

)
. (4.4)

The vacuum state at I− is defined by Ai|0⟩ = 0. However, due to the

dynamics (curvature) of the spacetime, this state will not be observed as a
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vacuum state to an observer at I+. In fact, if we calculate the expectation

value of the number of particles (for a particular i) at I+, we will obtain

⟨Ni⟩ = ⟨0|b†ibi|0⟩ =
∑
j

|βij |2 , (4.5)

which is generally different from zero. The calculation of the coefficients βij

depends on the details of the collapse, but its asymptotic expression for late

times turns out to be independent of this. As we will see shortly, it only

depends on the mass of the black hole.

Consider a positive frequency mode fω ∼ e−iωv of the field propagating

from I−. If v is below the threshold v0 indicated in Fig. 4.1, this mode will

pass through the collapsing star and reach I+ as a combination of positive

and negative frequency solutions, fω ∼ αωe
−iωu + βωe

iωu. This distortion

of the modes implies the spontaneous creation of particles, as explained in

Section 2.2. But not all modes that leave I− generate this effect. Those

that start with v > v0 will inevitably fall into the horizon. Therefore, we

are only interested in the modes that start with v < v0. In addition, there is

a cumulative effect that causes more particles to be generated as the initial

value of v approaches v0. Therefore, the coefficient β can be estimated

by considering only the modes that start from a value of v close to (and

less than) v0. A detailed computation shows that the expectation value of

the number of particles created with frequency ω (see [11] or [40] for more

details in the calculation, including grey-body factors) is

⟨Nω⟩ ≈
1

e8πMω − 1
. (4.6)

Note that this expression is equivalent to the Planck distribution for

bosons that describes the thermal radiation of a black body. This is given by

1/(eℏω/(kBT )−1), where kB is the Boltzmann constant. Therefore, comparing

both expressions, one can identify a temperature for a Schwarzschild black
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hole

TH =
ℏ

8πkBM
, (4.7)

which is known as the Hawking temperature. This is one of the most

prominent results in QFT in curved spacetimes. Although the analysis given

here was restricted to a scalar field, this effect holds for any quantum field.

4.2 Exotic Compact Objects (ECOs)

In the last years some researchers have given strong indications supporting

the idea that the dark, compact, massive objects that are observed in astro-

physics may not be necessarily black holes, in the sense that they may not

possess an actual event horizon. The advent of gravitational-wave astronomy

has triggered a lot of interest in this direction. Different phenomenological

models propose the existence of ultra-compact dark massive objects, named

as Exotic Compact Objects (ECOs), that can mimic the physics of black

holes in observations. However, they all require physics beyond the standard

model. The possibility offered by gravitational wave interferometers to shed

light on this matter has sparked special interest in recent years in studying

possible types of ECOs, as well as in ways to distinguish them from classical

black holes through several mechanisms [39, 87]. An interesting question is

whether quantum fluctuations of fields may be capable of preventing the

formation of black holes in situations where, from a classical point of view,

collapse would be inevitable, leaving as a result the formation of an ECO.

The problem that arises when trying to construct such objects is that

General Relativity establishes a limit on the compactness of self-gravitating

objects, meaning that if this limit is exceeded, the object inevitably collapses

into a black hole. This limit is given by the well-known Buchdahl theorem

[85]: Let there be a static, spherically symmetric star composed of a perfect,

isotropic fluid with total mass M and radius R. Assuming that its radial
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pressure is positive and its energy density is positive and decreasing with

radius, then the object can only be stable if R
2M ≥

9
8 . This theorem can

be proved just using the Tolman-Oppenheimer-Volkoff (TOV) equations,

which are the Einstein’s equations for a static and spherically symmetric

configuration. For a long time, this theorem has maintained the idea that

stable stars with similar compactness to a black hole cannot exist, but in

recent years this idea has been called into question. Various groups have

proposed scenarios in which the assumptions of the theorem are not met,

opening up the possibility of the existence of ECOs. In [39] one can find a

compendium of the types of ECOs that can be constructed depending on

the assumptions of the theorem that are relaxed.

The presence of quantum fields can imply the violation of some of

the assumptions of the theorem. To give an example, quantum fields can

generate anisotropies in the stress-energy tensor, and/or negative pressures

and densities. Thus, a negative pressure may counteract the gravitational

attraction and generate stable configurations of high compactness. The idea

that quantum effects may play a crucial role in the formation of astrophysical

objects dates back to Chandrasekhar in 1931 [88], who showed that the

quantum degeneracy pressure of fermions due to the Pauli exclusion principle

can counterbalance the gravitational force and prevent collapse into a black

hole, forming as a result a White Dwarf. Three years later, W. Baade and

F. Zwicky proposed the existence of what is known as neutron stars [89],

which are based on the Chandrasekhar’s idea. Unfortunately such stars

do not reach sufficiently high values of compactness so as to be able to

mimic black holes in gravitational-wave observations, and in fact they can

be identified with other techniques in astrophysics. Other types of fermion

star configurations based on the same idea were subsequently proposed in

[90, 87]. Most of these models consider a polytropic equation of state for

the fluid instead of a pure perfect fluid, which violates the assumptions of
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the Buchdahl theorem. However they also have not found stable solutions

with compactness similar to that of black holes.

In parallel, various groups have worked on extending this idea to the

case of bosonic fields, leading to what is known as boson stars (see for

instance [90, 91, 92, 93, 94]). Depending on how the interaction between the

bosons is defined, the maximum mass and compactness of these stars varies.

Additionally, the stress-energy tensor of these objects presents anisotropies,

which bypasses the assumptions of Buchdahl’s theorem. However, the

compactness of this type of star is around R/(2M) ≈ 1.4, still not surpassing

the Buchdahl’s limit [95].

The type of ultra-compact stars that allows for the highest compact-

ness, even violating Buchdahl’s theorem, are anisotropic stars, which are

configurations of matter that exhibit high anisotropies in their pressures

[96]. There are many types of anisotropic stars, depending on the origin

of these anisotropies (see for instance [97, 98, 99, 100, 101, 102]). Some of

these models reach compactness very close to r = 2M . Many other ECO

models have been proposed that accept compactness similar to that of black

holes, most of which are based on quantum effects. This is the case for

Gravastars (based on one-loop QFT in curved spacetimes [103]), Fuzzballs

(based on String Theory [104, 105, 106, 107, 108]), or Firewalls (black holes

surrounded by some hard structure made of quantum matter that behaves

as a compact horizonless object [109, 110, 111]).

Wormholes

Ultra-compact stars are not the only type of horizonless objects that can

mimic the behavior of black holes. Wormholes are an interesting candidate

in this regard. They can be defined as astrophysical objects that connect two

regions of spacetime, so that matter could pass through the wormhole and

go from one zone to another. This idea was firstly introduced by A. Einstein
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and N. Rosen [112], who constructed a spacetime formed by coupling two

Schwarzschild exteriors, which is known as Einstein-Rosen bridge. Several

decades later, wormholes regained interest as possible exotic objects that

mimic the physics of black holes [113, 114]. There are different ways to

construct wormholes, but exotic matter is usually required. For instance,

the Einstein-Rosen bridge can be obtained as the solution of Einstein’s

equations for a thin shell of matter located at the throat of the wormhole

[113].

Another, more complex way of constructing a wormhole is by means

of some type of matter distribution that generates a decoupling between

the components of the metric, so that, the tt-component does not vanish in

the region where the rr-component diverges (as it happens in black holes).

This implies that this region is not a horizon, but the throat of a wormhole.

The simplest example would be a spacetime given by [115]

ds2 =

(
1− 2M

r
+ λ2

)
dt2 −

(
1− 2M

r

)−1

dr2 − r2dΩ2 , (4.8)

where λ is a constant that is usually taken to be very small. These types

of objects can be extremely compact, but it is not yet clear what process

could lead to their formation, nor is it clear whether the required matter

configuration can be stable. In the Article 5 of this Thesis (shown in part

III) we obtain a wormhole of this kind by considering the quantum vacuum

as the matter source. We will explain in the following subsection how to

address this type of problems.

It is important to remark that exotic matter is not the only way to

construct wormholes. There are several works in different Modified Gravity

theories that have recently proposed vacuum solutions which give rise to

wormhole-like spacetimes [116, 117, 118, 119, 120].
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Possibility of ECOs via Semiclassical Gravity

We have seen several proposals, in different theoretical frameworks, to

construct ECOs or wormholes that mimic black hole physics. QFT in

curved spacetimes is no exception. Several works framed in this theory have

proposed the possibility that semiclassical effects can prevent the formation

of black holes. Likewise, these effects could facilitate the formation of ultra-

compact stars known as dark stars [121, 48, 122], as well as wormhole-type

spacetimes [41, 42]. This is the idea that we explore in this Thesis.

To study the quantum effects in the context of semiclassical gravity, it is

necessary to analyze the expectation value of the stress-energy tensor ⟨Tµν⟩.
This calculation is considerably complex due to the renormalization process

(we will see it in detail in the following section). The methods applied to

calculate this observable usually assume a fixed background metric. This

is a good approximation in general, but it has its limitations and does not

give a complete picture of the problem. To thoroughly study the quantum

effects in black holes and obtain the quantum corrections to the metric, the

complete semiclassical Einstein equations should be solved

Gµν = 8π(T classical
µν + ⟨Tµν⟩) . (4.9)

That is, it is necessary to include the backreaction effects generated by quan-

tum fields on the metric itself. To solve these equations, the stress-energy

tensor is required as a function of a general metric, which unfortunately we

do not have. The main problem in obtaining a general expression lies in

the complexity of the renormalization process. As we will see in the next

section, there are methods to obtain the renormalized stress-energy tensor

for given a metric [123, 33], but they are highly complicated to implement

in terms of a general metric, since they require very involved numerical

calculations.
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However, there is a particular case in which the semiclassical equations

can be solved exactly and analytically. This consists in freezing the angular

degrees of freedom and working in an effective two-dimensional spacetime

(the t− r plane). Several groups have studied the semiclassical Einstein’s

equations with backreaction in this 2-dimensional context, and have explored

the possibility of constructing ECOs or wormholes from semiclassical effects

[40, 41, 42, 43, 44, 45, 46, 47]. In the Article 5 of this Thesis (shown in

part III), we propose a novel way to solve the equations directly in the

4-dimensional spacetime. The main idea is to treat the components of

the quantum stress-energy tensor as variables, to be determined by the

differential equations. By considering one mild assumption on the quantum

state, and using the trace anomaly (which we will introduce in detail in the

section 6), we manage to solve the full problem in closed form. In particular,

we obtain the quantum corrections to the Schwarzschild metric generated

by the quantum vacuum, and we study which role these corrections play in

the construction of ECOs or wormholes.



Chapter 5

Renormalization in Curved

Spacetimes

To explore quantum effects that arise in the extreme universe, it is helpful

to calculate relevant physical observables, such as the expectation value

of the stress-energy tensor ⟨Tµν⟩. However, the direct evaluation of the

expectation value ⟨Tµν⟩ by expanding the quantum field in modes leads to

integrals that present ultraviolet (UV) divergences. These divergences are

not physical and, as usual in QFT, renormalization is required to obtain

physical results.

The usual renormalization techniques in QFT employed in Minkowski

space do not work in curved spacetimes, because the presence of curvature

reveals new UV divergences that are absent in flat space. As a result, an

important field of research started in the 70’s to develop local, covariant

renormalization techniques that manage to get physically sensible results,

and that reduce to the usual expressions in the flat limit. The widely accepted

method to renormalize expectation values of quadratic operators is based on

the covariant point-splitting regularization technique [124, 125, 126, 127],

39
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which we explain in detail in the following section. The applicability of

this method to specific cases is not straightforward, so different variants

have been developed (depending on the type of spacetime background). In

this chapter, we will introduce some of them, in particular the adiabatic

renormalization method [5, 6], useful in the context of cosmology and

electrodynamics, as well as methods for the case of black holes and stellar

configurations [128, 123, 33].

The different problems addressed in this Thesis have required one or

another renormalization method. Moreover, in some articles we have focused

on studying and extending these methods. This is the case in Article 3 of this

Thesis (shown in part III), where we extend the adiabatic renormalization

method to the case of spin 1/2 fields with an electric background (which had

only been studied in two dimensions). Furthermore, in Article 4 we analyze

a recent renormalization method of increasing interest in the context of

black holes and extend it to the case of an expanding universe.

5.1 Point-Splitting regularization

In [125] B.S. DeWitt outlined a method, known as geodesic point separation

or point-splitting regularization, to regularize the divergences in the vacuum

expectation values of the stress-energy tensor in a manifestly covariant

way. The method is supplemented with the DeWitt-Schwinger proper time

algorithm [14, 124]. The overall procedure resulted in the development

of a successful regularization and renormalization framework to deal with

divergences in quantum field theory in curved spacetimes [126, 127].

To give an overview of the point-splitting method, consider the vacuum

expectation value of a quadratic observable, for example ⟨ϕ(x)2⟩, where ϕ is

a scalar field. As commented above, this quantity is ill-defined. We replace

then one of the ϕ(x) by ϕ(x′), with x′ a point in a normal neighborhood of
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x, and define the two-point function G(1)(x, x′) = ⟨{ϕ(x), ϕ(x′)}⟩, which is

also known as the Hadamard elementary function. This is a well-defined

bi-distribution in the spacetime. The UV divergence arises in the limit when

the two points merge x′ → x, in which G(1)(x, x) fails to be well-defined

even in a distributional sense. Thus, this splitting of points allows us to

regularize the UV divergences. The potentially divergent part that has to be

subtracted is known as the DeWitt-Schwinger counter-term, which we will

denote as G
(1)
DS(x, x

′). This term completely captures the singular structure

of the two-point function, maintaining the covariance of the full observable.

To obtain the renormalized observable we subtract this bi-distribution and

take the limit x′ → x,〈
ϕ2(x)

〉
ren

= lim
x′→x

[
G(1)

(
x, x′

)
−G(1)

DS

(
x, x′

)]
. (5.1)

Instead of G(1), it is generally more useful to work with the Feynman

Green’s function, defined by

G
(
x, x′

)
= Ḡ

(
x, x′

)
− 1

2
iG(1)

(
x, x′

)
, (5.2)

where Ḡ (x, x′) is the principal-value function (one-half the sum of the

advanced and retarded Green’s functions). Either G (x, x′) or G(1) (x, x′)

are calculated by expanding the quantum field in field modes, which have

to be obtained by solving the corresponding equations of motion. The only

remaining question is then getting an expression for G
(1)
DS (x, x′).

The method for calculating G
(1)
DS (x, x′) must be completely covariant.

DeWitt proposed to extend the Schwinger’s proper-time technique to curved

spaces. The Feynman Green’s function for a scalar field (with mass m and

coupling constant ξ) in a curved spacetime gµν satisfies the equation(
□+m2 + ξR

)
G
(
x, x′

)
= g−1/2(x)δ

(
x− x′

)
, (5.3)
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where R is the scalar curvature and g = |det(gµν)|. The solution to this

equation admits the following asymptotic expansion (see [126] for more

details of the calculation)

G(x, x′) ∼ ∆1/2(x, x′)

(4π)2

∫ ∞

0

ds

(is)2
e−i(m2s+ σ

2s
)

∞∑
n=0

an(x, x
′)(is)n , (5.4)

where σ is the geodesic distance squared associated with the geodesic con-

necting x and x′ (which is unique if x′ is in a normal neighborhood of x

[129]), and ∆ is the Van Vleck-Morette determinant defined by ∆(x, x′) =

−|g(x)|−1/2det [−∂µ∂ν′σ(x, x′)] |g(x′)|−1/2. The functions an(x, x
′) are ob-

tained through the recurrence relations

(∂µσ)(∂µan+1) + (n+ 1)an+1 = ∆−1/2□
(
∆1/2an

)
− ξRan , (5.5)

starting with a0 = 1. The integration can be solved in terms of second-order

Hankel functions, and expanding these in a power series of σ yields the

following expression for G(1)

G(1)
(
x, x′

)
∼ ∆1/2

8π2

[
a0

(
− 1

σ
+m2

(
γ +

1

2
log

(
m2|σ|
2

))
− m2

2

)
−a1

(
γ +

1

2
log

(
m2|σ|
2

))]
+ · · · , (5.6)

where γ is the Euler constant. The terms shown in (5.6) capture the full

singular structure of the two-point function, since these divergences arise

when taking the limit x′ → x, i.e., σ → 0.

To proceed further, it is convenient to expand the bi-scalars (dependent

on x and x′) as functions of x and the tangent vector ∂µσ. By definition σ

can be expressed as σ = 1
2(∂µσ)(∂

µσ). Likewise, ∆ (x, x′) is expanded as

[126]

∆1/2 = 1 +
1

12
Rµν∂

µσ∂νσ + · · · . (5.7)



5.1. POINT-SPLITTING REGULARIZATION 43

With these expressions and using the recurrent relation (5.5), the expansions

of an can be obtained. In particular we have that the leading order of a1

(the only one necessary to renormalize the two-point function) is

a1(x, x
′) =

(
1

6
− ξ

)
R+ · · · . (5.8)

Using these results, the covariant expansion of G(1) up to order O(σ0) can
finally be obtained. This is what is identified as the DeWitt-Schwinger

counter-term for the two point function, G
(1)
DS , and it is given by

G
(1)
DS

(
x, x′

)
=

1

8π2

[
− 1

σ
+

(
m2 +

(
ξ − 1

6

)
R

)(
γ +

1

2
log

(
m2|σ|
2

))
−m

2

2
+

1

12
Rµν

∂µσ∂νσ

σ

]
.(5.9)

This expression capture all the divergences of the two-point function. To

obtain the renormalized expression of ⟨ϕ(x)2⟩ in a given spacetime, the pro-

cedure is to select a point-splitting direction, calculate σ(x, x′), evaluate the

previous expression, and then compute the subtraction and limit described

in (5.1).

The procedure to follow for any other observable is the same. For

instance, ⟨Tµν⟩ can be expressed in terms of G(1) and its second order

derivatives, as [5]

⟨Tµν⟩ = lim
x′→x

[(
1

2
− ξ

)(
∇µ∇ν′G(1) +∇µ′∇νG

(1)
)
+

(
2ξ − 1

2

)
gµν∇α∇α′

G(1)

−ξ
(
∇µ∇νG

(1) +∇µ′∇ν′G(1)
)
+ ξgµν

(
∇α∇αG(1) +∇α′∇α′

G(1)
)

+

(
−ξRµν +

1

2
(ξR+m2)gµν

)
G(1)

]
,(5.10)

where the primes refer to derivatives respect to x′. Applying the procedure

explained above to each component of ⟨Tµν⟩, one can obtain the renormalized

expression for the stress tensor (see [126] for more details).
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The point-splitting renormalization method is widely accepted today,

but its practical implementation faces some challenges in many cases due

to the complexity of its expressions. The main disadvantage is that, since

the solution for the field modes is only available numerically for most space-

times, it is not possible to take the limit x′ → x directly. As a result, other

methods equivalent to point-splitting renormalization were developed, valid

under special circumstances, but otherwise easy to implement. In the fol-

lowing subsections, we briefly summarize the most accepted renormalization

methods in the fields of cosmology and black holes.

5.2 Adiabatic renormalization

In the field of cosmology, the method of adiabatic renormalization is well-

known and has produced fruitful results. It was introduced by L. Parker and

S. Fulling in 1974 [20, 21] to renormalize the stress-energy tensor of scalar

fields in an expanding universe. It was further analyzed in [130, 131, 132,

133], and extended to the case of spin 1/2 fields [134, 135, 136, 137, 138, 139].

Moreover, it was applied to study inflationary cosmology [140, 141], to

analyze preferred vacuum states in cosmology [142, 143, 144, 145] and to

obtain running coupling constants [31, 146].

This renormalization method is equivalent to the DeWitt point-splitting

procedure [27, 28] (and also to the Hadamard’s renormalization method

[147]), but much more manageable, since it writes the subtraction terms

as integrals over momenta so that the subtraction can be performed under

the integral of modes, obtaining finite integrals that can be calculated

numerically. The method works in homogeneous spacetime backgrounds,

as for instance in FLRW metrics. But this is not the only case where the

adiabatic method has shown its usefulness. Recent works have shown that

it can also be applied to a homogeneous, time dependent electromagnetic
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background [25, 26, 148, 149]. Despite this, there is still considerable work

to do in this field. In particular, for Dirac fields coupled to external, classical

electric fields the adiabatic method was only known in 2 dimensions due to

the difficulty of finding a suitable ansatz in 4 dimensions. In the Article 3

of this Thesis (shown in part III) we solved this problem.

The adiabatic renormalization method is based on the adiabatic expan-

sion of the field modes [5]. This is an asymptotic expansion of the solutions

of the field equations in which the n-th adiabatic order in the expansion

involves n time derivatives of the metric. To be more precise, let us consider

a scalar field propagating on a FLRW metric ds2 = dt2−a2(t)dx⃗2. By using

an appropriate ansatz for the field modes in the Klein-Gordon equation

(based on the WKB approximation), one can solve the differential equation

for the modes order by order in the number of derivatives of a(t). Thus, the

zero adiabatic order will only involve the scale factor a(t), the first order

includes the first derivative ȧ(t), the second order includes ä(t) and ȧ(t)2,

and so on. Since higher order terms in the adiabatic expansion involve more

and more derivatives, the leading order terms recover the usual modes in

Minkowski spacetime (in which the scale factor is strictly constant). The

idea is that higher order adiabatic terms capture, or sense, the dependence

of the field modes on the curvature of the spacetime.

Given the vacuum expectation value of a quadratic operator expanded

in field modes, we can use the adiabatic expansion of the modes to produce

an adiabatic expansion of this observable. It turns out that the leading

order terms in the expansion contain all the UV divergences. We can then

do the renormalization by subtracting (inside the formal integrals or sums

of modes) a truncated expansion to a given adiabatic order. The specific

order of truncation depends on the observable to work.

For example, consider the stress-energy tensor of a given field in a FLRW

metric. Because the background is homogeneous the field modes admit a
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Fourier expansion in momenta k⃗. The stress-energy tensor can be formally

expressed in the form

⟨Tµν(x)⟩ =
∫
d3k Tµν(k⃗, x) , (5.11)

and the renormalized expression takes the form

⟨Tµν(x)⟩ren =

∫
d3k

[
Tµν(k⃗, x)− TN

µν(k⃗, x)
]
, (5.12)

where TN
µν is the adiabatic expansion of Tµν(k⃗, x) truncated at order N ,

which is chosen to be the minimum order required to cancel the divergences

of the integral. It is crucial to note that even if the last adiabatic order that

we subtract contains both divergent and convergent terms, we must subtract

all of them. This condition is a requirement to ensure the covariance of the

method. In particular, the subtractions constructed this way preserve the

covariant conservation law, ∇µTN
µν = 0, thereby ensuring the conservation

of the renormalized stress-energy tensor.

There exists also a specific rule based on dimensional grounds to identify

the adiabatic orders that need to be subtracted. The highest adiabatic

order that can potentially contain divergences corresponds to the scaling

dimension of the observable in question. For instance, the dimensions of the

stress-energy tensor in a 4-dimensional spacetime are k4, and therefore, the

term Tµν(k⃗, x) in (5.11) has dimensions of k1. Consequently, in the general

case, the 0th adiabatic order of Tµν(k⃗, x) behaves (at large k) as k1, the

first one as k0, the second one as k−1, and so on. To ensure convergence

of the integral, it is necessary to subtract up to the 4th adiabatic order in

such a way that all the possible terms kn≤3 are cancelled. This coincidence

between the scaling dimension of the observable and the adiabatic orders

that must be substracted can be used as a general rule for any observable.

It is important to apply this rule consistently in all cases, even when

some of the adiabatic orders are convergent. Sometimes, specific parameter
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selections of the theory may result in the convergence of some terms, which

would otherwise diverge. For instance, in the scalar theory, choosing the

minimal coupling ξ = 0 causes the fourth adiabatic order of the stress-energy

tensor to converge, whereas for a generic value of ξ, it diverges. However,

the renormalization method cannot depend on the value of the parameters,

and hence, the rule must be applied uniformly for all values of ξ.

As mentioned above, the adiabatic renormalization method is not re-

stricted to cosmological scenarios and can be applied to cases involving an

electric homogeneous background as well. In such cases, it is crucial to take

into account an important consideration. Recent studies have demonstrated

that when applying the adiabatic regularization method simultaneously to

gravitational and electric fields, it is necessary to consider the potential

vector as first adiabatic order, in order to ensure the local conservation of

energy and the consistency with the trace and chiral anomalies [25, 26]. For

instance, consider the case of a FLRW spacetime and a potential 4-vector

of the form Aµ = (0, 0, 0,−A(t)). While the scale factor a(t) would be

considered as zeroth adiabatic order, A(t) must be treated as first order.

Scalar field in an expanding universe

It is illustrative to show this method applied to a specific case. Let us

consider a real scalar field in a FLRW background. As shown in section 2.2,

the equation for the field modes is given by

d2h
k⃗

dt2
+

[
ω2 +

(
6ξ − 3

4

)
ȧ2

a2
+

(
6ξ − 3

2

)
ä

a

]
h
k⃗
= 0 , (5.13)

where ω =

√
m2 +

(
k
a

)2
, with k = |⃗k|. The modes must also satisfy the

normalization condition

h
k⃗
ḣ∗
k⃗
− h∗

k⃗
ḣ
k⃗
= 2i . (5.14)
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To address this problem it is convenient to consider a Wentzel-Kramers-

Brillouin (WKB) ansatz for the modes of the field

hk =
1√
Wk(t)

e−i
∫ t Wk(t

′)dt′ , (5.15)

where Wk(t) is a real function that can be expanded in adiabatic orders as

Wk(t) = ω
(0)
k + ω

(1)
k + ω

(2)
k + ... Inserting this ansatz into the differential

equation for the field, one obtains an algebraic equation for each order.

Solving the equation order by order, we find

ω
(0)
k = ω , (5.16)

ω
(1)
k = 0 , (5.17)

ω
(2)
k = − 3ȧ2

8a2ω
− 3ä

4aω
− 3k2ȧ2

4a4ω3
+

k2ä

4a3ω3
+

5k4ȧ2

8a6ω5
+

3ξȧ2

a2ω
+

3ξä

aω
, (5.18)

· · ·

It is worth noting that the solution at the zeroth adiabatic order, corre-

sponding to a slow expansion (ȧ(t) ∼ 0, ä(t) ∼ 0 , ...), coincides with the

solution in flat (Minkowski) spacetime, confirming that the ansatz in (5.15)

is appropriate. It is also convenient to expand adiabatically the term W−1
k(

W−1
k

)(0)
= ω−1

k , (5.19)(
W−1

k

)(1)
= 0 , (5.20)(

W−1
k

)(2)
=

m2ȧ2

2a2ω5
+
m2ä

4aω5
− 5m4ȧ2

8a2ω7
− (ξ − 1

6
)

(
3ȧ2

a2ω3
+

3ä

aω3

)
(5.21)

· · ·

We can use this expansion to renormalize, for example, the vacuum

polarization, which is given by

⟨0|ϕ(x)2 |0⟩ = 1

4π2a3

∫ ∞

0
dkk2|h

k⃗
|2 = 1

4π2a3

∫ ∞

0
dkk2

1

Wk
. (5.22)
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Since this observable has dimensions of k2, one must subtract up to the

second adiabatic order. The expression for the renormalized vacuum polar-

ization is then〈
0
∣∣ϕ(x)2∣∣ 0〉

ren
=

1

4π2a3

∫ ∞

0
dkk2

[
|hk|2 −

1

ω
−
(
W−1

k

)(2)]
, (5.23)

where Wk(t)
−1 is given by (5.21). By integrating the finite terms and using

the expression of the scalar curvature for a FLRW metric, R = 6
(
ä
a + ȧ2

a2

)
,

we can rewrite (5.23) as

〈
0
∣∣ϕ(x)2∣∣ 0〉

ren
=

1

4π2a3

∫ ∞

0
dkk2

[
|hk|2 −

1

ω
−

(
1
6 − ξ

)
R

2ω3

]
− R

288π2
.

(5.24)

This integral is convergent, and can be computed numerically for a given

function a(t).

In a similar manner, one can also apply the adiabatic renormalization

method to obtain the vacuum expectation value of the stress-energy tensor.

The procedure is the same, the only difference is that the subtractions must

include up to fourth adiabatic order, since the stress-energy tensor has

dimensions of k4.

5.3 Renormalization in Black Holes

For black holes, Candelas was the first to implement the point-splitting

method in a Schwarzschild metric [35]. Let us see how it would be applied,

for example, to renormalize ⟨ϕ2⟩ for a massless scalar field. The spherical

symmetry and static nature of the spacetime allows us to express the formal

two-point function as

〈
ϕ(x)2

〉
=

∫ ∞

0
dω

∞∑
l=0

l∑
m=−l

|Ylm(θ, φ)|2
∣∣ψ̄ωl(r)

∣∣2 , (5.25)
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where Ylm(θ, φ) are the spherical harmonics and ψ̄ωl is the field mode of

frequency ω and angular momentum l. This integral is divergent and must be

renormalized. Following the point-splitting method, the quadratic operator

must be evaluated at two different points. Since it is a static spacetime,

it is convenient (for simplicity of the calculation) to choose two points

located in the same place and time-like separated, i.e., x = (t, r, θ, ϕ) and

x′ = (t+ ϵ, r, θ, ϕ). For this case, the two-point function is simply

〈
{ϕ(x), ϕ(x′)}

〉
=

∫ ∞

0
dω

∞∑
l=0

l∑
m=−l

cos (ωϵ) |Ylm(θ, φ)|2
∣∣ψ̄ωl(r)

∣∣2 . (5.26)

On the other hand, the DeWitt counter-term (5.9) reduces to G
(1)
DS =

1
8π2σ

for a massless field and Schwarszchild spacetime (where Rab = 0), and

the geodesic distance squared σ between these points is given by

1

σ
=

2

(1− 2M/r)ϵ2
+

M2

6r4(1− 2M/r)
+O(ϵ) . (5.27)

As we can see the divergence is captured by the term 1/ϵ2, but in order

to obtain a manifestly finite quantity after subtracting this contribution in

(5.26), it is convenient to find first an integral representation. To do this,

Candelas proposed the Laplace transform∫ ∞

0
dωω cos (ωϵ) = − 1

ϵ2
. (5.28)

Therefore, from (5.1), the renormalized expression of the two-point function

can be written as

〈
ϕ(x)2

〉
ren

= lim
ϵ→0

∫ ∞

0
dω

∞∑
l=0

l∑
m=−l

cos (ωϵ)
[
|Ylm(θ, φ)|2

∣∣ψ̄ωl(r)
∣∣2

− ω

4π2(1− 2M/r)

]
− M2

48π2r4(1− 2M/r)
. (5.29)
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Similarly, Candelas obtained a renormalized expression for the stress-energy

tensor.

These integrals require numerical calculations because the field modes

ψ̄ωl(r) cannot be solved analytically. Still, the numerical computation of

these integrals for any r > 2M is not easy at all. [In particular, Candelas did

not evaluate the integrals for all r, but focused only on the limits r → 2M

and r → ∞, for which he could infer analytical expressions using some

tricks.] As a consequence, Candelas and Howard proposed an alternative

strategy to obtain an analytical estimation of the renormalized two-point

function (valid only for the Hartle-Hawking vacuum) [150, 128]. The method

requires some knowledge from the field modes, in particular, they proposed

a WKB expansion. By expanding the modes for large ω and l, one can

construct an analytical approximation for ⟨{ϕ(x), ϕ(x′)}⟩, which we will

denote as ⟨{ϕ(x), ϕ(x′)}⟩WKB, that captures the full singular structure of

the two-point function. Next, we add and subtract this expression from

⟨ϕ2(x)⟩ren, obtaining〈
ϕ2(x)

〉
ren

= limϵ→0 [⟨{ϕ(x), ϕ (x′)}⟩ − ⟨{ϕ(x), ϕ (x′)}⟩WKB]

+ limϵ→0

[
⟨{ϕ(x), ϕ (x′)}⟩WKB −G

(1)
DS (x, x′)

]
. (5.30)

Thus, the expression is divided into a part that must be analyzed numerically

(the first limit) and a completely analytical part (the second limit). They

also showed that the analytical part gives much larger values, so it can

be used as a first approximation for ⟨ϕ2⟩ren. To be more precise, for the

Hartle-Hawking vacuum they obtained

⟨ϕ2(x)⟩ren =
1

12(8πM)2
1− (2M/r)4

1− 2M/r
+ numerical part , (5.31)

which coincides with a previous result obtained with a different approach

[151]. Howard extended the method to the case of the stress-energy tensor
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[152], and later Anderson et. al. extended it to the case of a general static

and spherically symmetric spacetime [153].

Despite these advances, the calculation of the numerical contribution

above continues to be difficult. In view of this, Candelas and Howard

proposed to go higher order in the WKB expansion of the field modes. This

analysis is however a daunting task and requires several approximations.

In particular, the main problem was the presence of a turning point. To

overcome this difficulty, they proposed the idea of analytically continue

the background metric to the Euclidean space through a Wick rotation

(t → −iτ). In this Euclidean space there are no turning points and the

WKB expansion works well.

The extension to the Euclidean space can be applied to any static metric,

and in particular Anderson et al. applied it to solve the numerical part in a

general static and spherically symmetric background [123]. However, time-

dependent spacetimes generally do not admit an extension to the Euclidean

space, so this method cannot be extended, for example, to analyze the

evaporation process of black holes. Additionally, the WKB expansion is

considerably complicated if the modes depend on two variables (t, r), which

greatly hinders the resolution of the numerical part. In this context, a

new and more general renormalization method has been recently developed

by A. Levi and A. Ori [32, 33, 34]. It was called pragmatic mode-sum

method of regularization. This method addresses the numerical problem

from scratch, and it does not require any approximation nor analytical

continuation to the Euclidean space. It only demands that the spacetime

presents a symmetry so as to take the splitting of points in the corresponding

spacetime direction. Roughly speaking, the method takes up the path

originally proposed by Candelas [35], and solves the integral (5.29) using

accurate numerical techniques. Therefore, for the Schwarzschild black hole

this method can be understood as a completion of what Candelas initially
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started. Subsequently, this numerical method has been applied to obtain

renormalized observables in different types of black hole frameworks, thus

showing the power of the new technique [154, 155, 156, 157].

In the Article 4 of this Thesis (shown in part III) we provide a brief

summary of this method, and extend it to a scenario where it had not yet

been applied: cosmology. We show how the translational symmetry of the

FLRW metric allows the implementation of these ideas, and we will prove

that the final expressions for the renormalized observables are equivalent

to those provided by the well-known adiabatic renormalization method

explained in the previous section.





Chapter 6

Anomalies in QFT and

Gravitation

In this section we introduce a concept that will be present in all the articles

that comprise this Thesis: quantum anomalies. As is well known symme-

tries play a fundamental role in Physics. In particular, Noether’s theorem

establishes that they are in one-to-one correspondence with conservation

laws. However, since the late 60’s it is known that some symmetries of

classical fields are broken when the fields are quantized. When this happens,

we say that there is an anomaly. A quick way to understand this is by using

the path integral framework. In classical field theory, one says that a certain

transformation of a field ϕ is a symmetry if the transformation leaves the

action S[ϕ] invariant. But in QFT what must remain invariant is the full

quantum effective action, given by the path integral
∫
D[ϕ]eiS[ϕ]. The mea-

sure D[ϕ] may not be necessarily invariant under the above transformation,

and therefore the symmetry can be broken in the quantum theory. For a

detailed study on anomalies in QFT see for instance [158] or [76].

There are several types of anomalies. On the one hand, there are

55
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anomalies that break global symmetries (global anomalies). This is the case

of the well-known axial anomaly in QED, that we will explain in the next

section. The Standard Model contains anomalies of this type, which leads

for instance to the anomalous non-conservation of baryon number (which

is important in studies of the asymmetry between matter and antimatter

observed in the universe [159]). On the other hand, there are anomalies

that break gauge symmetries (gauge anomalies). Many important theories

in physics are gauge theories, that is, their Lagrangians are invariant under

certain local transformations. The presence of a gauge anomaly in one of

these theories indicates that the theory is inconsistent. For example, if we

consider the theory of a single charged and massless fermion (Weyl fermion

or chiral fermion) we obtain a gauge anomaly, since the gauge current is

not conserved when the field is quantized. To make the theory consistent, a

charged Weyl fermion of opposite chirality must be added so that the gauge

symmetry is preserved [76].

Another type of anomalies are known as gravitational anomalies, which

were discovered in 1984 by L. Álvarez-Gaumé and E. Witten [16]. As the

name suggests, they appear in the context of gravity, and consist of a

violation of the principle of general covariance. These anomalies can also be

understood as gauge anomalies, since General Relativity can be understood

as a gauge theory, where transformations from one coordinate system

to another (diffeomorphisms) would be the gauge transformations. The

principle of general covariance requires that physical laws must be invariant

under these types of transformations. When quantum fields (in particular

chiral fields) are coupled to the gravitational field, these anomalies arise,

implying the non-conservation of the stress-energy tensor (⟨∇µT
µν⟩ ̸= 0).

Fortunately, this does not occur in the 4-dimensional case, but rather it

occurs in spacetimes of dimension 2, 6, 10... In the Article 1 of this Thesis

(shown in part III) we point out the existence of an anomaly of this type in



6.1. AXIAL ANOMALY IN QED 57

flat spacetimes. In particular, in the case of a Weyl fermion coupled to a

time-varying homogeneous electric field in two dimensions.

Finally, there is another type of anomalies, the ones that break the scale

invariance, which are known as trace anomalies (or conformal anomalies,

or Weyl anomalies) [160]. [See [29] for a historical review.] In Minkowski

spacetime the anomalous trace of the stress-energy tensor in massless theories

is related to the well-known beta functions and the renormalization group

flow. For instance, there is an anomaly of this kind in massless quantum

electrodynamics, which has scale invariance in the classical theory, but it is

broken when the theory is quantized. Trace anomalies also appear in the

context of free field theories in curved spacetimes. In certain cases, such as

the electromagnetic field or the massless Dirac field coupled to gravitational

backgrounds, the action is invariant under conformal transformations of the

metric. However, this symmetry is lost when quantizing the matter field,

generating a trace anomaly (see, for instance, [5] for more details). At the

end of this chapter we will further explore this topic.

Next, we will explain briefly the two anomalies that are most relevant

to understand the articles of this Thesis: the axial anomaly in QED and

the trace anomaly in QFT in curved spacetimes.

6.1 Axial anomaly in QED

Studying the decay π0 → γγ, in 1949 J. Steinberger [161], and independently

H. Fukuda and Y. Miyamoto [162], found an inconsistency between the

theoretical prediction for the decay rate and the experimental results. The

confusion persisted for some years and this question was known as the pion

decay puzzle. It was not until 1969 when J. Bell and R. Jackiv [163], and

independently S. L. Adler [164], solved the problem of the pion decay. By

noting that the axial symmetry in QED fails in the quantum theory, they
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obtained theoretical predictions that matched perfectly with the experiments.

This was the first discovery of an anomaly in quantum field theory.

The QED action for a Dirac field ψ of mass m and charge q, and an

electromagnetic field given by the potential 4-vector Aµ, reads

S =

∫
dx4

[
ψ̄ (iγµDµ −m)ψ − 1

4
FµνFµν

]
, (6.1)

where Dµ ≡ ∂µ − iqAµ, Fµν = ∂µAν − ∂νAµ, and γ
µ are the Dirac matrices.

One can easily see that, in the massless case (m = 0), this action is invariant

under the transformation ψ → e−iϵγ5
ψ (chiral transformation), where γ5 ≡

iγ0γ1γ2γ3. The Noether’s current associated with this transformation (axial

current) is given by jµA = ψ̄γµγ5ψ. It can be verified that, for solutions of

the Dirac equation,

∂µj
µ
A = 2imψ̄γ5ψ . (6.2)

Therefore, in the case m = 0 one obtains ∂µj
µ
A = 0, that is, the axial current

is conserved in the massless case.

But this is no longer true when quantizing the Dirac field. The formal

vacuum expectation value of the divergence of the axial current would be

⟨∂µjµA⟩ = 2im⟨ψ̄γ5ψ⟩ . (6.3)

When trying to compute the right-hand side one finds that it diverges. To

obtain the physical result, a renormalization method must be applied. There

are different ways to perform this calculation with different renormalization

methods. For example, in [76] a derivation of the axial anomaly can be

found using the proper-time Schwinger method of regularization. Similarly,

the adiabatic regularization method explained in 5.2, which can be applied

in the case of electromagnetic backgrounds, is also a useful tool for obtaining

this anomaly. In [26], the anomaly is recovered using the adiabatic method

in two dimensions. In the Article 3 of this Thesis (shown in part III), the
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adiabatic method is extended to 4 dimensions and could be easily applied

to obtain the axial anomaly.

After renormalization ⟨ψ̄γ5ψ⟩ contains residual poles in the mass go-

ing like 1/m. As a consequenece, the massless limit in (6.3) produces

⟨∂µjµA⟩ren ̸= 0. In particular, one obtains

〈
∂µj

µ
A

〉
ren

= − q2

16π2
ϵµναβFµνFαβ , (6.4)

where ϵµναβ is the Levi-Civita symbol. This is the well-known expression of

the axial anomaly in QED. In the Article 2 of this Thesis (shown in part

III) we explain the relationship between this anomaly and the phenomenon

of spontaneous particle creation by an electric field (Schwinger effect), as

well as its relation with the breaking of adiabatic invariance that occurs in

this context.

6.2 Trace Anomaly in QFT in curved spacetimes

As we have previously mentioned, trace anomalies (or conformal anomalies)

occur when the scale symmetry (or conformal invariance) of a theory is bro-

ken upon quantization. This type of anomaly was discovered by D. Capper

and M. J. Duff in 1974 [160]. This discovery was of great relevance in the

field of Gravitation, and in the following years it found multiple applications,

as for example in cosmology [165, 166, 167, 168], supersymmetry [169, 170],

or string theory [171, 172].

Let us see what this anomaly consists of in the context of QFT in curved

spacetimes. A field theory is said to be conformally invariant if it remains

invariant under a conformal transformation, i.e., under a rescaling of the

metric gµν of the form

g̃µν(x) = Ω2(x)gµν(x), (6.5)
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where Ω(x) is an arbitrary function. For example, both the electromagnetic

and massless Dirac fields are conformally invariant. Likewise, the scalar

field can also be conformally invariant, but only under certain conditions,

as we will see shortly. It is possible to prove that, as a consequence of

this symmetry, particle creation does not occur for conformally invariant

fields propagating in conformally flat spacetimes (as for instance in FLRW

metrics). In particular, the expansion of the universe does not produce

particles associated to conformal fields, like massless neutrinos or photons

[5].

What is the conserved current associated to this symmetry? Consider

the action S of a scalar field ϕ in a background gµν . If it is invariant under

conformal transformations, then

0 = δS =

∫
dnx

{
δS

δϕ
δ0ϕ+

δS

δgµν
δ0gµν

}
, (6.6)

where δ0ϕ and δ0gµν are the infinitesimal variations associated to the con-

formal transformation. The first term vanishes if the field satisfies the

Euler-Lagrange equation, which is equivalent to δS/δϕ = 0. On the other

hand, δ0gµν can be obtained by considering an infinitesimal variation of

the metric, i.e., Ω2(x) = 1 + δΩ2(x), where |δΩ2(x)| << 1. Therefore,

δ0gµν = gµνδΩ
2. We finally obtain∫

dnx
δS

δgµν
gµνδΩ

2 = 0 . (6.7)

For this to hold for any δΩ2, we must impose

δS

δgµν(x)
gµν(x) = 0 . (6.8)

On the other hand, recall that the stress-energy tensor of the theory is given

by (2.3), i.e.

Tµν ≡ −2|g|−1/2 δS

δgµν(x)
. (6.9)
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Combining the last two equations, it is straightforward to get

Tµ
µ = 0 . (6.10)

In summary, in the classical theory the trace of the stress-energy tensor of

a conformally invariant theory vanishes for solutions of the field equations.

But as we will see later, upon quantization this is no longer true.

As we advanced before, there are some conditions upon which a scalar

field theory can be conformally invariant. Let us consider a scalar field with

mass m and coupling constant ξ. Its Lagrangian is given by

L =
1

2
|g|1/2

(
gµν∂µϕ∂νϕ−m2ϕ2 − ξRϕ2

)
. (6.11)

Under a conformal transformation as in (6.5), we have g̃µν = Ω−2gµν and

g̃1/2 = Ω4g1/2. Therefore, from the first term one can see that for the

Lagrangian to be invariant, the field must transform as ϕ̃ = Ω−1ϕ. On

the other hand, under a conformal transformation, the scalar curvature

transforms as

R̃ = Ω−2(R− 6Ω−1□Ω) , (6.12)

where □Ω = g−1/2∂µ(g
1/2∂µΩ). If we now consider the case m = 0 and

ξ = 1/6 (which, recall from section 2.1, is known as conformal coupling),

we deduce that the Lagrangian transforms as (see [5] for more details in the

calculation)

L̃ = L − ∂µ
(
1

2
|g|1/2Ω−1(∂µΩ)ϕ2

)
. (6.13)

The Lagrangian is therefore conserved except for a total derivative that

cancels in the integration of the action S. Only for the case m = 0 and.

ξ = 1/6 can the Lagrangian be expressed in this way. Therefore, massless,

conformally coupled (ξ = 1/6) scalar fields are conformally invariant. In

fact, for solutions of the Klein-Gordon equation the trace of the stress-energy



62 CHAPTER 6. ANOMALIES IN QFT AND GRAVITATION

tensor of a scalar field is

Tµ
µ = (6ξ − 1) ((∂µϕ)(∂

µϕ)− ξR) + 2(1− 3ξ)m2ϕ2 , (6.14)

which vanishes in the case m = 0 and ξ = 1/6, as expected from the

conformal symmetry.

But what happens if we quantize the field? As we mentioned several

times earlier in this Thesis, quantization breaks conformal symmetry, giving

rise to a non-zero trace of the stress-energy tensor, known as the trace

anomaly. There are different ways to obtain the expression for this anomaly,

for example, using the DeWitt-Schwinger renormalization method [126] or

via the one-loop effective action [173, 174]. For a FLRW spacetime there is

a much simpler way to derive it using the adiabatic renormalization method

introduced in section 5.2, which is particularly illustrative. In fact, this

is the method we have used in some articles of this Thesis to calculate

anomalies. Therefore, it is convenient to detail this calculation here as an

introduction, as it will be useful for understanding analogous calculations

in the articles of the Thesis.

Let us take ξ = 1/6. The vacuum expectation value of the trace of the

stress-energy tensor (6.14) reads

⟨Tµ
µ⟩ = m2

〈
ϕ2

〉
. (6.15)

This expression is divergent and must be renormalized. In section 5.2, we

already renormalized the vacuum polarization using the adiabatic method,

but the procedure now is not as simple as imposing ⟨Tµ
µ⟩ren = m2

〈
ϕ2

〉
ren

.

Recall that to renormalize the stress-energy tensor consistently in such a

way that covariance is respected, one must subtract an adiabatic expansion

truncated up to fourth order (in contrast to the vacuum polarization, where

it is enough to truncate at second adiabatic order). Therefore, following the

adiabatic procedure, we must calculate the adiabatic expansion of ⟨ϕ2⟩ up
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to fourth order, and then we arrive to

⟨Tµ
µ⟩ren = m2

〈
ϕ2

〉
ren
− m2

4π2a3

∫ ∞

0
dkk2

(
W−1

k

)(4)
, (6.16)

where
〈
ϕ2

〉
ren

is obtained in section 5.2 (Eq. (5.24)) and
(
W−1

k

)(4)
is the

fourth order in the adiabatic expansion of W−1
k (defined in (5.15)).

The conformal symmetry occurs classically in the massless case, so let us

see what happens when taking the limit m→ 0. The expression for ⟨ϕ2⟩ren
does not contain any subtraction term of the form 1/mn, and there is no

reason to expect that the contribution from the modes becomes divergent

in the massless limit, so we can assert that in the limit m → 0 we have

m2⟨ϕ2⟩ren → 0. But the same is not true for the fourth-order adiabatic

subtraction. Following the adiabatic expansion procedure one can find its

expression, which is

(
W−1

k

)(4)
= −m

2ȧ4

2a4ω7
− 7m2ä2

16a2ω7
− m2 ...a

16aω7
− 33m2ȧ2ä

16a3ω7
− 11m2ȧ

...
a

16a2ω7
+

49m4ȧ4

8a4ω9

+
21m4ä2

32a2ω9
+

35m4ȧ2ä

4a2ω9
+

7m4ȧ
...
a

8a2ω9
− 231m6ȧ4

16a4ω11
− 231m6ȧ2ä

32a3ω11
+

1155m8ȧ4

128a4ω13
.(6.17)

By integrating this expression in (6.16) and making a change of variable of

the form k → k/(ma), one can infer that
∫∞
0 dkk2

(
W−1

k

)(4)
is proportional

to m−2. Therefore, the massless limit m → 0 of (6.16) does not vanish.

Moreover, this integral is convergent and can be evaluated analytically,

resulting in

⟨Tµ
µ⟩ren =

1

480π2

(
ä2

a2
+

...
a

a
− 3

ȧ2ä

a3
+ 3

ȧ
...
a

a2

)
. (6.18)

Overall, we have shown that upon quantization of the scalar field, the trace

is no longer zero, even in the case m = 0 and ξ = 1/6. Quantization breaks

conformal symmetry.
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As a last remark, it is convenient to express (6.18) in terms of covariant

geometric scalars. In a FLRW universe, we have the following identities

RµνσρRµνσρ = 12

(
ȧ4

a4
+
ä2

a2

)
, (6.19)

RµνRµν = 12

(
ȧ4

a4
+
ä2

a2
+
ȧ2ä

a3

)
, (6.20)

□R = 6

(
ä2

a2
+

...
a

a
− 5ȧ2ä

a3
+

3ȧ
...
a

a2

)
. (6.21)

With a bit of algebra, we can finally express (6.18) as

⟨Tµ
µ⟩ren =

1

2880π2
(−RµνσρRµνσρ +RµνRµν +□R) , (6.22)

in agreement with the general expression for the trace anomaly for a scalar

field in a general curved spacetime [5].

The conformal anomaly also appears in other quantum fields, as men-

tioned earlier. The result is similar, except for changes in the numerical

coefficients. The general expression for the trace anomaly for any quantum

field has the form

⟨Tµ
µ⟩ =

1

2880π2
(aCµνσρCµνσρ + bRµνRµν + cR2 + d□R) , (6.23)

where Cµνσρ is the Weyl tensor, which can be related to the other scalars

via

CµνσρC
µνσρ = RµνσρR

µνσρ − 2RµνR
µν +

1

3
R2 . (6.24)

And a, b, c and d are constants that depend on the specific field. For

instance, for conformal scalar fields they are a = b = −1 and c = −1/3; for
massless Dirac fermions a = −7/4, b = −11/2 and c = 11/6; and for photons

a = 13, b = −62 and c = 62/3 [6]. The coefficient d can take different values

depending on the chosen renormalization method. This is because it is

subject to an ambiguity related to the choice of the renormalization scheme,



6.2. TRACE ANOMALY IN QFT IN CURVED SPACETIMES 65

and then it can be chosen arbitrarily by adding a local counter-term in the

Lagrangian [175]. In the Article 5 of this Thesis (shown in part III) we use

this anomaly as an effective equation of state that allows us to solve the

semiclassical TOV equations.

It is worth noting that there exists an analogous trace anomaly for

quantum fields coupled to electromagnetic backgrounds [29]. For instance,

in the case of a massless Dirac field, this is given by

⟨Tµ
µ⟩ren =

q2

24π2
FµνF

µν . (6.25)

In the Article 3 of this Thesis (see part III) we perform a test of the proposed

method by computing this anomaly and verifying that we obtain (6.25).
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Chapter 7

Results and Conclusions

7.1 Article 1: Translational anomaly in electric

backgrounds

Quantum anomalies are the failure of classical symmetries to survive quan-

tization, as explained in detail in chapter 6. In addition to the well-known

chiral anomalies, which entail the non-conservation of the axial current,

gravitational anomalies imply the non-conservation of the expected value

of the stress-energy tensor, i.e. ⟨∇µT
µν⟩ ̸= 0. Gravitational anomalies are

somewhat similar to gauge anomalies, signaling the inconsistency of the

theory. They arise in theories with Weyl (or chiral) fermions coupled to

gravity for spacetimes of dimension 2, 6, 10, ... In particular, a chiral field in

two spacetime dimensions displays the following gravitational anomaly

⟨∇µT
µ
ν ⟩ =

1

96π
√
−g

ϵαβ∂β∂ρΓ
ρ
να . (7.1)

In the Article 1 of the Thesis (shown in section III), we show that a

gravitational-type anomaly can also appear in flat space, provided the Weyl

fermion is coupled to an electric background. To be more concrete, we

69
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consider a Weyl field in two dimensions coupled to a homogeneous and

time-dependent electric field E(t). From a classical point of view, this

system is invariant under translations in the spatial direction, which implies

the conservation of momentum, i.e. ∂µT
µ1 = 0. However, upon quantization

of the Weyl field, this symmetry is broken. To obtain this anomaly, we

need to find the renormalized expression of the stress-energy tensor. To do

this, we have applied the adiabatic renormalization method [5], which we

explain in detail in section 5.2. With the help of this method, we arrive at

the following result

∂µ

〈
Tµ1
R,L

〉
= ∓q

2AȦ

2π
, (7.2)

where R and L indicate the chirality (right-handed or left-handed) of the

fermion under consideration, and A(t) is the potential vector, defined by

E(t) = −Ȧ(t). This result was unknown in the literature. As this anomaly

breaks translational symmetry, we have named it translational anomaly.

The appearance of this type of anomaly is an indication that the theory

is incomplete. In fact, this physical system also exhibits a gauge anomaly

(the electric current is not conserved). We show that both anomalies cancel

out when a Weyl fermion of the opposite chirality is added. For a massless

Dirac fermion (Ψ = ΨR +ΨL), the stress-energy tensor is the sum of the

two chiral components, so we obtain:

∂µ

(〈
Tµ1
R

〉
ren

+
〈
Tµ1
L

〉
ren

)
= 0 . (7.3)

On top of this, in the mentioned article we also show the relationship

of this anomaly with the phenomenon of spontaneous particle creation by

intense electric fields (which we explain in Chapter 3). For a Weyl field the

created particles all move in the same direction, generating a total amount

of momentum that coincides with the result of the anomaly. Instead, if we

consider a Dirac field, we see that what is created are particle-antiparticle
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pairs. Particles and antiparticles travel in opposite directions, maintaining

the conservation of the total momentum.

Finally, we also solve the full semiclassical Maxwell equation of the

system to explore the backreaction effects generated by the created particles

on the electric field. We verify that the amount of linear moment created by

each chiral sector oscillates with the same frequency as E(t). Likewise, we

see that the sum of the oscillations of the two chiral sectors cancels perfectly.

7.2 Article 2: Breaking of adiabatic invariance in

electromagnetic backgrounds

The phenomenon of particle creation in an expanding universe (which

we explain in Section 2.2) has a fundamental property. In the limit of

an infinitely slow expansion of the universe (adiabatic limit), no particle

creation occurs. More precisely, the density of created particles tends to

zero at each instant of time in the limit in which the Hubble rate approaches

zero, even if the net change in the scale factor is large. This is why it is said

that the particle number is an adiabatic invariant. This property was of

major relevance in the pioneer papers on cosmological particle creation (for

an historical review see [17]). In the Article 2 of this Thesis (shown in Part

III), we study whether this property holds for the case of an electromagnetic

background. We first analyze the 2-dimensional case for its simplicity and

then extend it to the 4-dimensional case. We also study both the case of a

charged scalar field coupled to the electromagnetic field (scalar QED) and

the case of a Dirac field (QED).

Let us consider a homogeneous, time-dependent electric field acting in the

spatial direction, E(t). Its associated 2-vector potential is Aµ = (0,−A(t)),
where E(t) = Ȧ(t). The vector potential plays a similar role as the scale

factor a(t) in cosmology, so it is convenient to consider a similar adiabatic
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expansion for A(t) which may allow us to define the number of particles in

t→ ±∞. In order to study the problem analytically, we have considered a

specific form for the electric field that is well known: a Sauter electric pulse

[18]. In this case, the potential vector reads

A(t) =
1

2
A0(tanh(ρt) + 1) , (7.4)

where A0 and ρ are real-valued constants. It is not difficult to see that

the potential tends to 0 in the limit t → −∞, and to A0 as t → ∞. The

parameter ρ sets the rate at which the potential grows, so it can be considered

as the adiabaticity parameter. The adiabatic limit (extremely slow growth)

is given by ρ → 0. The goal in the article is to examine whether in this

limit the number of particles tends to 0 or not.

In the article we obtain that for bosons (b) and for fermions (f) the

expected number of particles created by the external electric field reads

⟨Nb/f ⟩ =
1

π

∫ ∞

−∞
dk

cosh
(
2π ω−

ρ

)
± cosh

(
2π

κb/f

ρ

)
2 sinh

(
π ωin

ρ

)
sinh

(
π ωout

ρ

) , (7.5)

where ωin =
√
k2 +m2, ωout =

√
(k − qA0)

2 +m2, ω± = 1
2 (ωout ± ωin ),

κb =
1
2

√
(qA0)

2 − ρ2, and κf = qA0/2.

By studying the limit ρ→ 0 in these expressions we draw the following

conclusions. For the massive case (m ̸= 0), ⟨Nb/f ⟩ → 0 in the adiabatic limit.

That is, for an infinitely slow growth of A(t) no massive bosons or fermions

are created, thus maintaining the adiabatic invariance of the number of

particles. However, the situation is different in the massless case (m = 0).

Namely, we obtain that ⟨Nb/f ⟩ ≠ 0 as ρ→ 0, or to be more precise,

⟨Nb/f ⟩ =
|qA0|
π

. (7.6)
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Therefore, we conclude that for a potential vector growing infinitely slowly,

massless particles are indeed created, and adiabatic invariance is broken.

We have also found that the moment spectrum of these massless particles

created lies in the interval k ∈ [−|qA0|, |qA0|]. It should be noted that there

is a clear difference between bosons and fermions that can be extracted

from equation (7.5). Massless bosons tend to accumulate at k = 0 and

k = ±qA0, while massless fermions are created in the same proportion for

all k. This can be interpreted in terms of Pauli’s exclusion principle, which

does not allow fermions to accumulate in the same state. Moreover, and

unlike the scalar case, the number of created massless fermions (as well

as their spectrum in momenta) does not depend on the parameter ρ, i.e.,

it does not depend on the history of A(t) but only on its initial and final

values.

This is a remarkable outcome. In order to give consistency to this

result, we have also calculated the expected value of the electric current

and energy density of the quantum field using the adiabatic renormalization

method (explained in section 5.2). Just like the number of particles, we

observe that these quantities tend to 0 in the adiabatic limit, except in the

case of massless particles. This residual energy and current correspond to

the energy generated by the massless particles created. Furthermore, the

simplicity of the theory of massless fermions allows getting an analytical

expression of the renormalized electric current as a function of time, which

we find as ⟨jx⟩ren = − q2A(t)
π . The semiclassical Maxwell equation then reads

Ä + q2

π A = 0. This harmonic oscillator equation takes into account the

backreaction effects of the created particles on the electric field. The electric

field that solves this semiclassical equation oscillates with a frequency of

|q|/
√
π, as does the number of particles. It can be easily seen that the energy

associated with the electric field and the energy of the created particles

cancel out for all t, maintaining energy conservation. As a final remark, the
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value obtained for the frequency is consistent with the well-known fact that

radiative corrections to the Schwinger model induce a photon mass of value

m2
γ = q2/π [19].

We have also performed the above calculation in the 4-dimensional case,

taking the electric field E⃗(t) in the z direction for convenience. In this case

we find ⟨Nb/f ⟩ → 0 in the adiabatic limit, independently of m. Thus, the

adiabatic invariance for an electric background does hold in 4 dimensions.

However, the situation changes if we add a magnetic field. Let us consider,

for simplicity, a constant magnetic field B⃗ acting in the direction parallel to

E⃗(t). The presence of the magnetic field generates a discretization of the

momentum in the direction perpendicular to the fields, known as Landau

levels, which drastically changes the picture. We find that, while for bosons

of any mass the adiabatic invariance is respected, for massless fermions in

presence of both electric and magnetic fields the adiabatic invariance is lost.

This result holds for other directions of B⃗, except when it is perpendicular

to the electric field. In that case, adiabatic invariance is preserved.

Overall, we have shown that the adiabatic invariance of the particle

number is maintained for electromagnetic backgrounds except for some

specific cases. These cases are: massless bosons and fermions in 2 dimen-

sions, and massless fermions in 4 dimensions in the presence of electric and

magnetic fields not perpendicular to each other. This indicates that there

is a relationship between the phenomenon of breaking adiabatic invariance

and the well-known axial anomaly [14], since it is present precisely in the

mentioned cases. This is the anomaly associated to the classical axial sym-

metry of massless Dirac fields, resulting from the quantization of the theory

(in section 6.1 we explain this anomaly in more detail). In 2 dimensions, the

axial anomaly is given by the expression

⟨∂µjµ5 ⟩ren = − q

2π
ϵµνFµν , (7.7)

which, for homogeneous fields, is equivalent to the statement that the
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chiral charge density j0A is not conserved. In 2 dimensions this charge is

proportional to the electric current. In the article, we compare the expression

for the anomaly with the current generated by massless particles created

in the adiabatic limit, and we verify that the creation of chiral charge

indeed agrees with the source of the axial anomaly. In fact, this idea can

be easily visualized in the 2-dimensional case since the chirality is related

to the direction of motion, and changes the criterion between particles and

antiparticles. Thus, for example, a massless particle moving to the right

would have right-handed chirality, and a massless antiparticle moving to the

left would also have right-handed chirality. Since the electric field creates

particle-antiparticle pairs with opposite electric charge and momentum, it

implies a net creation of chiral charge. This non-conservation of chiral charge

is consistent with the axial anomaly. This anomaly persists regardless of the

speed at which the background field changes, even in the adiabatic limit,

and therefore, in that limit, there must always be a remnant creation of

massless pairs.

Regarding the 4-dimensional case, the anomaly only arises for massless

fermions and is given by〈
∂µj

µ
A

〉
ren

= − q2

16π2
ϵµναβFµνFαβ . (7.8)

For a time-dependent electric field and a constant magnetic field, this

expression reduces to〈
j05
〉
ren

= − q2

2π2

∫ t

−∞
dt′E⃗

(
t′
)
B⃗ . (7.9)

We can see that the chiral charge is only created when the fields E⃗ and B⃗ are

not perpendicular, which occurs, precisely, when the adiabatic invariance is

broken. Furthermore, we have also verified that the creation of chiral charge

of massless fermions in the adiabatic limit coincides with the expression for

the anomaly.
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In conclusion, we infer that the breaking of adiabatic invariance occurs in

those cases where axial anomaly emerges, meaning that these two phenomena

are closely related. In other words, the breaking of adiabatic invariance is a

necessary condition for the existence of the axial anomaly.

7.3 Article 3: Adiabatic renormalization method

to Dirac fields in an electric background

The adiabatic renormalization method was introduced by L. Parker and S.A.

Fulling to renormalize the stress-energy tensor in cosmological backgrounds

[20, 21]. In Section 5.2, we reviewed this method for the case of a scalar

field in an expanding universe. Although this method is usually applied

in cosmology, it can also be used for a classical electric field background

[22, 23, 24]. However, recent studies have shown that there is a drawback in

these works [25, 26]. The vector potential Aµ is considered in [22, 23, 24] to

be of adiabatic order 0, in analogy to the scale factor a(t) in the cosmological

case. This is consistent in the case of having (only) an electric background,

but if we also add a gravitational field, the renormalized expressions that one

obtains are inconsistent with the covariant conservation of the stress-energy

tensor, as well as with the axial and trace anomalies. As shown in [25, 26],

to recover the overall consistency of the method it is necessary to impose

that Aµ is of adiabatic order 1 (the first derivative would be of order 2,

the second of order 3...). Likewise, a new reformulation of the method is

proposed with this assumption for the case of charged scalar fields and for

Dirac fields in 2 dimensions. The extension from 2 to 4 dimensions for Dirac

fields (with the new assumption) turns out to be non-trivial and requires

a thorough analysis. This is the aim of Article 3 of this Thesis (shown in

Section III).

The first result we obtain in Article 3 is a new argument that justifies
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the choice of Aµ as a quantity of adiabatic order 1. It is known that

the adiabatic renormalization method for a gravitational background is

consistent/equivalent with the well-known DeWitt-Schwinger point-splitting

method [27, 28] (which we briefly explain in section 5.1). In the article

we show that, in the presence of electric and gravitational backgrounds,

this consistency is only maintained under the assumption that Aµ is of

adiabatic order 1. Namely, we prove that, for both scalar and Dirac fields

in 2 dimensions, the adiabatic expansion of the vacuum polarization ⟨ϕ2⟩
agrees exactly with the DeWitt-Schwinger expansion if we consider this

assignment (we explicitly verify this up to adiabatic order 6).

Armed with those results in 2 dimensions we then face the main aim

of Article 3: the extension of the adiabatic method for Dirac fields in 4

dimensions in presence of an electric background. The main problem that

arises in this case is that the usual WKB ansatz for the field modes is not

consistent. For this reason we propose a new ansatz, which we show to be

fully consistent and allows us to proceed with the adiabatic regularization

method.

Let us briefly see what our method consists of. We consider a Dirac

field ψ in 4 dimensions, with mass m and charge q, coupled to an electric

background with potential vector of the form Aµ = (0, 0, 0,−A(t)). The

Dirac equation for this system is given by

(iγµDµ −m)ψ = 0 , (7.10)

where Dµ ≡ ∂µ− iqAµ and γµ are the Dirac matrices. In order to construct

the ansatz, it is necessary to apply a unitary transformation to the field of

the form ψ′ = Uψ, where

U =
1√
2
γ0

(
I − γ3

)
. (7.11)

This has allowed us to express the Dirac field in terms of only two functions

dependent on time, hI
k⃗
(t) and hII

k⃗
(t), which can be regarded as the field
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modes with momentum k⃗ = (k1, k2, k3). It should be emphasized that the

idea of applying this transformation has been crucial and it is important to

point this out. We finally obtain that the Dirac equation is reduced to the

following differential equations for the field modes

ḣI
k⃗
− i (k3 + qA)hI

k⃗
− iκhII

k⃗
= 0 , (7.12)

ḣII
k⃗

+ i (k3 + qA)hII
k⃗
− iκhI

k⃗
= 0 , (7.13)

where κ ≡
√
k21 + k22 +m2. The main advantage of this procedure is that

it has allowed us to write the Dirac equation in terms of two differential

equations very similar to those of the same problem in 2 dimensions (see [26]).

The only difference is that now κ plays the role of m. Finally, using these

expressions, the field can be quantized in terms of creation and annihilation

operators (see the article for more details). The anticommutation relations

of those operators are guaranteed if the normalization condition∣∣∣hI
k⃗

∣∣∣2 + ∣∣∣hII
k⃗

∣∣∣2 = 1 , (7.14)

is satisfied.

With all these ingredients, the adiabatic expansion can be proposed. This

is where our ansatz comes in. Inspired by the solution in two dimensions,

we propose a similar ansatz, with the natural replacement m→ κ,

hI
k⃗

=

√
ω − k3
2ω

F (t)e−i
∫ t Ω(t′)dt′ , (7.15)

hII
k⃗

= −
√
ω + k3
2ω

G(t)e−i
∫ t Ω(t′)dt′ , (7.16)

where ω =
√
k23 + κ2, F and G are complex functions and Ω is a real

function. These functions are assumed to admit an adiabatic expansion,

which is obtained by enforcing the field equations and the normalization
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condition order by order. In the Article 3 we give a set of recurrence relations

that can be solved iteratively to determine the adiabatic expansion to any

order. Using this expansion the expectation values of any other observable

can also be expanded in adiabatic series. This allows us to identify and

subtract the terms that generate UV divergences, that is, to apply adiabatic

renormalization. To illustrate the power of this new method, we apply it to

calculate the renormalized expectation value of the electric current, defined

by ⟨jµ⟩ = −q
〈
ψ̄γµψ

〉
. For the relevant spacetime component, we obtain

the expression〈
j3
〉
ren

=
q

2π2

∫ ∞

0
k⊥dk⊥

∫ ∞

−∞
dk3

[(∣∣∣hII
k⃗

∣∣∣2 − ∣∣∣hI
k⃗

∣∣∣2)− k3
ω

− κ2qA

ω3
+

3κ2k3q
2A2

2ω5
+

(
κ2 − 4k23

)
κ2q3A3

2ω7
+
κ2qÄ

4ω5

]
(7.17)

where k⊥ =
√
k21 + k22.

To check the robustness of this new proposed method we verify two

non-trivial sanity checks. On the one hand, we calculate the renormalized

trace of the stress-energy tensor, which is given by ⟨Tµ
µ ⟩ = m⟨ψ̄ψ⟩, and we

verify that in the limit m → 0 we recover the usual trace anomaly. For

massless Dirac fields in the presence of an electromagnetic background, this

anomaly is given by ⟨Tµ
µ ⟩ren = q2

24π2FµνF
µν [29]. [In section 6.2 we explain

this anomaly in detail]. On the other hand, we also verify that, as it occurs

in all other cases where the adiabatic method is applied, the adiabatic

expansion agrees with the DeWitt-Schwinger expansion, thus proving the

equivalence between both methods. Finally, we also verify the equivalence

with the Hadamard renormalization method [30].

The usual adiabatic formalism implicitly assumes that the renormaliza-

tion scale µ equals the mass of the field. In our work we further extend the

method for an arbitrary renormalization scale by noticing, as previous works

did [31], that in the adiabatic method there is an intrinsic ambiguity in
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the choice for the zero adiabatic order when solving the recurrence relation.

Instead of
√
k⃗2 +m2, it is possible to define ω(0) ≡ ω =

√
k⃗2 + µ2, where µ

is an arbitrary mass scale. The method can be developed in a more or less

straightforward manner and we eventually get a new expansion of the modes

in terms of the mass scale µ. We applied this extension to renormalize

again the electric current, obtaining an expression that depends on µ. The

ambiguity in µ can be absorbed in the renormalized coupling constants in

the effective action, in this case the elecric charge q. Following usual ideas

in effective field theories, we obtain the effective charge as a function of the

scale: q−2(µ) − q−2 (µ0) = −
(
12π2

)−1
ln µ2

µ2
0
. This result agrees with that

obtained in perturbative QED using dimensional regularization [19].

Finally, in order to test the practical usefulness of the method, we applied

it to a specific electric background. We considered a Sauter-type pulse given

by E(t) = E0 cosh
−2(t/τ), where E0 indicates the height of the pulse and τ

the width. This also allowed us to study physical properties of the particle

creation phenomenon. We numerically calculated the renormalized current

as a function of time from the general expression obtained with our method

(7.17). In the article, representations of the result can be found for different

values of the parameters. We verify that the current tends to become

constant in the limit t→∞, as expected for this background. This limit

can be calculated analytically, specifically we obtain

〈
j3
〉
ren
∼ − q

π2

∫ ∞

0
k⊥dk⊥

∫ ∞

−∞
dk3

k3 + qA0

ωout

∣∣β
k⃗

∣∣2 , (7.18)

where ωout =
√
(k3 + qA0)

2 + κ2 and
∣∣β

k⃗

∣∣2 is the Bogoliubov coefficient that

gives the density of particles created with momentum k at t→∞. Applying

the expression for
∣∣β

k⃗

∣∣2 corresponding to the Sauter pulse we obtain the

result of the current. In addition, we have used this result to estimate

the value of the electric current in the limit of a very intense electric field
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(E0 >> 0). In this limit, we obtain the expression

〈
j3
〉
ren
∼ 2

3π3
q3E2

0τ . (7.19)

Likewise, we have obtained the expression for the particle density in this

same limit, obtaining ⟨N⟩ ∼ 2
3π3 q

2E2
0τ .

7.4 Article 4: Pragmatic mode-sum

regularization method in a cosmological

background

The covariant DeWitt-Schwinger point-splitting renormalization method

[124, 125] (which we explain in section 5.1), although fully satisfactory from

a theoretical viewpoint, is not easy to implement in practical situations.

This is specially problematic in physically important scenarios where the

field modes are only available numerically, as for black holes. Recently,

A. Levi and A. Ori have proposed a method that has proved to be very

efficient for numerically implementing the DeWitt-Schwinger point-splitting

procedure in different black hole frameworks, known as the pragmatic mode-

sum regularization method [32, 33, 34]. It can be applied to spacetimes that

possess some type of symmetry (such as static or stationary black holes) and

can be understood as a method that completes what was initially proposed

by Candelas in the 1980s [35]. [In section 5.3 we review the historical

methods proposed for implementing point-splitting in black holes.] In the

Article 4 of this Thesis (shown in part III), we review this method and

extend it to accommodate spacetimes that have three-dimensional spatial

symmetries, like FLRW metrics in cosmology. We show that the pragmatic

mode-sum regularization method reduces to the conventional adiabatic

regularization method.
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In particular, we consider a scalar field coupled to a FLRW metric,

ds2 = dt2 − a2(t)dx⃗2, and focus on the renormalization of the vacuum

polarization ⟨ϕ2⟩. Following the point-splitting method, the renormalized

vacuum polarization is given by〈
ϕ2(x)

〉
ren

= lim
x′→x

[〈{
ϕ(x), ϕ

(
x′
)}〉
−G(1)

DS

(
x, x′

)]
. (7.20)

G
(1)
DS is the DeWitt-Schwinger counter-term for the two-point function (see

Eq. (5.9)). Following the initial idea of Candelas, further developed by

Levi and Ori, we separate the points based on the symmetry of the system.

In this case, the translational symmetry of the spacetime suggests that

it is convenient to choose spatially separated points, i.e., x ≡ (t, x⃗) and

x′ ≡ (t, x⃗+ ϵ⃗). Thus, the expectation value of the (symmetric) two-point

function for these points is given by

〈{
ϕ(x), ϕ

(
x′
)}〉

=
1

4π2a(t)3

∫ ∞

0
dkk2 |hk(t)|2

sin kϵ

kϵ
, (7.21)

where ϵ = |⃗ϵ| and hk(t) are the field modes.

The counter-terms G
(1)
DS can be expanded in powers of ϵ as

G
(1)
DS

(
x, x′

)
=

1

4π2

[
1

a2ϵ2
+

1

2

(
m2 + (ξ − 1/6)R

) (
γ + log

(ma
2
ϵ
))

− m2

4
+
R

72

]
+O(ϵ) . (7.22)

Applying integral identities of the form
∫∞
0 dkk sin kϵ

kϵ = 1
ϵ2
, we can express

(7.22) as an integral in k and subtract it in (7.21). The divergence at ϵ→ 0

is canceled, so we can take the coincident limit under the integral, obtaining

〈
ϕ2

〉
ren

=
1

4π2a3

∫ ∞

0
dkk2

[
|hk|2 −

1

ω
−

(
1
6 − ξ

)
R

2ω3

]
− R

288π2
. (7.23)
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This is exactly the same result that one can obtain by using the adiabatic

renormalization method (see equation (5.24) in section 5.2). Thus, we

conclude that the extension of the Levi-Ori renormalization method for a

time-dependent homogeneous background reduces to the adiabatic method.

In the article, we also prove that the equivalence between the pragmatic

mode-sum method and the adiabatic method also holds when computing

the renormalized stress-energy tensor.

Finally, we have extended the pragmatic mode-sum renormalization

method in this framework by including an arbitrary mass scale µ. This

is necessary for the m = 0 case, since the subtraction term (7.22) is not

well defined in this case. Following the technique proposed in [36], we

apply a change of the form m2 → m2 + µ2 at a specific point of the point-

splitting method, and we eventually arrive at the following expression for

the subtraction term (up to order O(ϵ0))

G
(1)
DS (x, x

′) =
1

4π2a3

∫ ∞

0

dkk2
sin(kϵ)

kϵ

[
1

ωeff
+

(
1
6 − ξ

)
R

2ω3
eff

+
µ2

2ω3
eff

]
+

R

288π2
(7.24)

where ω2
eff = k2

a2
+m2 + µ2. Moreover, doing a similar analysis with the

scale µ for the second-order subtraction term in adiabatic renormalization,

we verify that it agrees with (7.24), manifesting the consistency between

the two methods.

7.5 Article 5: Quantum vacuum corrections to

the Schwarzschild metric

Recent progress in gravitational wave detections [37] as well as in very long

baseline interferometry [38] are opening the door to the possibility of testing

the existence of black hole horizons experimentally. In recent years this has

sparked a growing interest in the study of exotic compact objects (ECOs)

that mimic the physics of black holes, as well as the physical processes that
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would allow to distinguish them from black holes [39]. [In section 4.2, we

provide a brief explanation of the types of ECOs proposed so far.] Classical

General Relativity does not allow the existence of such objects due to the

Buchdahl theorem, but the introduction of quantum effects may allow for

the violation of this theorem, opening the possibility of formation channels

of ECOs. There are several ways to construct these objects, and one of them

may be through semiclassical effects generated by quantum fields. This is

the path we explore in the Article 5 of this Thesis (shown in part III). In

particular, we study the backreaction effects produced by the polarization

of the quantum vacuum around a static, non-rotating black hole, obtaining

quantum corrections to the Schwarzschild metric.

To achieve this, we looked for solutions of the semiclassical Einstein

equations without matter

Gab = 8π ⟨Tab⟩ . (7.25)

The main issue that arises when facing this problem is that in 4 dimensions

we do not have a renormalized expression of ⟨Tab⟩ in closed analytical

form for a general metric. But since the renormalized stress-energy tensor

is known in exact form in 1 + 1 dimensions, the authors of [40, 41, 42]

proposed an approximation to solve the semiclassical Einstein’s equations by

freezing the angular degrees of freedom of the quantized field, and thereby

reducing the problem to a 2-dimensional effective spacetime. This was later

analyzed in more detail and studied for different cases by other authors

[43, 44, 45, 46, 47]. In sharp contrast, in this article we propose an alternative

approach to face this problem directly in 4 dimensions. One simplification

will consist in restricting to quantum effects generated by conformal fields

(more precisely, to a conformal scalar field). It is reasonable to think

that the results for other types of fields will be qualitatively similar. For

conformal fields, the well-known trace anomaly (which we explain in detail
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,in section 6.2) univocally defines a relationship between the components of

the stress-energy tensor, given by

−⟨ρ⟩+ ⟨pr⟩+ 2 ⟨pt⟩ = ⟨T a
a ⟩ , (7.26)

where ⟨ρ⟩ is the density of the quantum vacuum, ⟨pr⟩ and ⟨pt⟩ are the

radial and tangential pressures, and ⟨T a
a ⟩ is the expression of the trace

anomaly, which depends on the metric. [Since we are looking for static and

spherically symmetric solutions, we have also chosen a vacuum state with

these symmetries, leading to a diagonal, time-independent renormalized

stress-energy tensor.] Thus, our proposal consists of solving the semiclassical

Einstein equations by adding (7.26) as an equation of state. Note that, with

this procedure, it is not necessary to give an explicit expression for the stress-

energy tensor as a functional of the metric (which was the main problem

of the conventional approach), since now its components are introduced as

unknowns of the system of differential equations.

To make the system fully solvable we need one last assumption, which

consists in considering the radial pressure equal to the tangential pres-

sure (⟨pr⟩ = ⟨pt⟩). This simplification is inspired from the result of the

stress-energy tensor in a fixed Schwarzschild background [35]. Near the

Schwarzschild horizon the pressures tend to equalize. It is reasonable to

expect that the exact solution, including backreaction, behaves similarly

(⟨pr⟩ ≈ ⟨pt⟩) near r = 2M . In any case, we have subsequently verified that

the results for other assumptions regarding the pressures are qualitatively

similar.

For static and spherically symmetric solutions, the system of equations

to be solved is analogous to the well-known TOV equations (but now with

quantum density and pressure), adding the aforementioned equation of state

(7.26). As a first approximation, we solve the system perturbatively in ℏ.
Restricting ourselves to the region near the horizon (where quantum effects
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are more important), we obtain the following first-order correction in ℏ to

the Schwarzschild metric

ds2 = −
(
f(r)− ℏ

(
1

13440πM2f(r)
+O(log f(r))

)
+O

(
ℏ2
))

dt2

+
dr2

f(r)− ℏ
(

1
4480πM2f(r)

+O(log f(r))
)
+O (ℏ2)

+ r2dΩ2 , (7.27)

where f(r) = 1− 2M/r. From this result, we can draw a main conclusion:

the classical horizon of the Schwarzschild metric disappears. Indeed, for the

value that makes g−1
rr (r) = 0, which is

r0 = 2M +

√
ℏ

4
√
70π

+O(ℏ) , (7.28)

the gtt(r) component does not vanish, i.e. gtt(r0) ̸= 0, unlike the classical

Scharzschild metric. Thus, a wormhole-type metric is obtained (see section

4.2 for more details on these objects). However, this result may not be

entirely reliable since the quantum pressure and density turn out to be

of order ℏ/f2, which near the throat of the wormhole (r = r0) tends to

be of order ℏ0. Therefore, in the region near the throat, the perturbative

assumption fails, and the problem must be studied exactly by numerical

methods. After analyzing the exact numerical solution in great detail,

we found results qualitatively similar to the perturbative case, except for

numerical factors of order one. Specifically, we obtain that the throat is

located at r0 ≈ 2M + 0.01947
√
ℏ, which differs slightly from the previous

result.

In summary, we have obtained a coordinate singularity for a value

of r separated from the classical value (r = 2M) by a distance of the

order of the Planck length (
√
ℏ). The singularity represents the throat of

a wormhole. The next logical step is to extend the metric beyond this

coordinate singularity, as is done in the classical case. In the article, we
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propose a Morris-Thorne-type extension, suitable for a wormhole metric,

defined by the change l(r) ≡
∫ r
r0

√
grr(r′)dr

′. The throat of the wormhole

is located at l = 0. The extension of the metric to the region l < 0 results

in an asymmetric wormhole. Additionally, we find a new singularity located

at ls ∼ −0.278ℏ1/4
√
M . In the article we prove that this is a curvature

singularity, and it is located on a null hypersurface. Figure 7.1 shows a

qualitative Penrose diagram of this solution. We also demonstrate that

this singularity is located at a geodesic distance of order O(
√
ℏ) from the

throat, so that an observer passing through the wormhole would encounter

the singularity almost immediately. The shape of this solution (asymmetric

wormhole with a null curvature singularity) agrees qualitatively with the

conclusions obtained using the 2-dimensional approximation in [41], which

reinforces the validity of this 2-dimensional approximation.

Figure 7.1: Penrose diagram showing the throat of the wormhole (l = 0)
and the null curvature singularity (l = ls).
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This wormhole solution is the maximal extension of a purely (quantum)

vacuum solution of the semiclassical Einstein’s equations. Alternatively, one

may think of matching the semiclassical solution with the metric describing

the interior of a static, spherically symmetric star. The inclusion of matter

may generate ultra-compact stellar objects [48, 44, 45, 46, 47]. If we match

these solutions to our quantum vacuum Schwarzschild metric for the exterior

of the star, our result imposes a maximum value for the compactness of

these objects, given by the minimum of the radial function (the throat of

the wormhole). To be more precise, we get that the maximum compactness

(measured as 2M/r) would be given by

2M

r0
∼ 1− 0.01686

√
ℏ

2M
. (7.29)

This is an important constraint for any exotic compact object that may be

proposed in the literature.

On the other hand, we find that quantum corrections well away from the

classical Schwarschild horizon are very much suppressed to be observed with

current interferometers. In particular, as an example, we calculated the

quantum correction (at first order in ℏ) to the frequencies of the so-called

light-ring modes of scalar and electromagnetic perturbations. To do so we

used the WKB analytical approximation [49, 50]. We obtained results of

the form ω2 = ω2
Sch +O(ℏ), where ω2

Sch are the frequencies for the classical

Schwarzschild geometry. For instance, in the case of the electromagnetic

perturbation we get

ω2 = ω2
Sch +

ℏ
17010πM2

(
−13Re

[
ω2
Sch

]
+ 11i Im

[
ω2
Sch

])
. (7.30)

We can see that quantum corrections to the frequencies of light-ring modes

are negligible. This is what we expected, since the light-ring is located at

around r = 3M , which is far enough away from the throat region where
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quantum corrections are expected to play a more important role. We

therefore conclude that, although quantum effects imply drastic changes in

the geometry of the black hole near the horizon, they do not seem to imply

significant corrections in the exterior. As seen by distant exterior observers,

these semiclassical solutions mimic a non-rotating black hole.
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It is well known that a quantized two-dimensional Weyl fermion coupled to gravity spoils general
covariance and breaks the covariant conservation of the energy-momentum tensor. In this brief article, we
point out that the quantum conservation of the momentum can also fail in flat spacetime, provided the Weyl
fermion is coupled to a time-varying homogeneous electric field. This signals a quantum anomaly of the
space-translation symmetry, which has not been highlighted in the literature so far.
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I. INTRODUCTION

Symmetries and their corresponding Noether conserva-
tion laws play a major role in classical physics. It was long
thought that symmetries and conservation laws are pre-
served in the quantization of the classical system. For
example, the momentum of a classical system possessing
the space-translation invariance is a conserved quantity, and
it is expected to be also conserved in the quantum theory. In
the same way, invariance under phase transformations
implies charge conservation, and it is also expected that,
after quantization, the charge operator is conserved in time.
In some special situations, a classical symmetry cannot be
maintained in the procedure of quantization. This happens
most frequently in field theory, in which one encounters
intrinsic ultraviolet divergences. The removal of these
infinities, through the process of renormalization, might
produce finite and unambiguous results that may imply an
unavoidable conflict with the symmetry of the classical
theory.
This was first discovered in the analysis of a quantized

Dirac field ψ in the presence of an electromagnetic back-
ground [1,2]. The classical action for a massless Dirac field
is invariant under chiral transformations ψ → e−iϵγ

5

ψ . This
implies, via Noether’s theorem, that the axial current jμA ¼
ψ̄γμγ5ψ is a conserved current ∂μj

μ
A ¼ 0. However, in the

quantized theory, this is no longer true. One finds the
nonzero vacuum expectation value

h∂μj
μ
Ai ¼ −

q2

16π2
ϵμναβFμνFαβ; ð1Þ

where Fμν is the electromagnetic field strength. This is a
quantum breaking of the original symmetry, and it is
usually referred to as an anomaly.
Equation (1) reflects an anomaly in a global symmetry,

and it allows us to better understand the underlying physics.
However, anomalies in currents coupled to gauge fields
make the theory ill defined. They imply an unavoidable
obstruction to constructing the quantized theory, and only
their exact cancellation can restore the physical consis-
tency. For example, in quantum electrodynamics with a
single charged Weyl fermion, we have h∂μjμi ≠ 0, and
hence the theory is inconsistent. However, by adding a
charged Weyl fermion of opposite chirality, consistency is
restored. This type of anomaly can only occur in even-
dimensional spacetimes.
A different class of gauge anomalies involves the break-

ing of general covariance, reflected in the nonzero expect-
ation values in the divergence of the energy-momentum
tensor h∇μTμνi ≠ 0. They are called gravitational anoma-
lies [3]. These anomalies can occur in theories with chiral
fields coupled to gravity and in spacetimes of dimension
4kþ 2 ¼ 2; 6;…, where k is an integer (for a review on
anomalies, see Ref. [4]).
In two dimensions, one can construct very simple

examples of quantum anomalies. A Dirac field interacting
with an external electromagnetic field has a chiral anomaly,

h∂μj
μ
Ai ¼ −

q
2π

ϵμνFμν: ð2Þ

This implies that a (right-handed) Weyl field interacting
with an external electromagnetic field possesses a harmful
anomaly in the source current to which the gauge field
is coupled. The classical Uð1Þ local gauge symmetry
is broken at the quantum level. A chiral field in two
dimensions also possesses a gravitational anomaly [3–5],
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h∇μT
μ
νi ¼ 1

96π
ffiffiffiffiffiffi−gp ϵαβ∂β∂ρΓ

ρ
να: ð3Þ

It signals the breaking of the spacetime coordinate repar-
ametrization group.
The purpose of this paper is to point out that the breaking

of a relevant spacetime symmetry could also happen in the
quantization of a two-dimensional Weyl field, not in the
presence of gravity but in the presence of a homogeneous
electric background E ¼ EðtÞ. In this case, a charged
Weyl field possesses translation invariance in the spatial
direction. In the classical theory, one has conservation of
the 01 component of the canonical stress-energy tensor
∂μTμ1 ¼ 0. However, in the quantized theory, we find the
anomalous result

∂μhTμ1
R;Li ¼∓ q2A _A

2π
; ð4Þ

for right-/left-handed Weyl fields, respectively, where AðtÞ
is the vector potential for the electric field EðtÞ ¼ − _AðtÞ.
The result (4) has not been stressed in the previous

literature, and it can be easily obtained using the method of
adiabatic regularization. The adiabatic subtraction method
was originally introduced to deal with ultraviolet diver-
gences of quantized scalar fields in a homogeneous
expanding universe [6–8]. It has been extended to quan-
tized Dirac fields in the presence of a homogenous
electromagnetic background in Refs. [9–11].

II. TRANSLATIONAL ANOMALIES AND
ADIABATIC REGULARIZATION

Let us consider a quantized Dirac field interacting with
an external homogeneous electric field EðtÞ. The classical
action for the Dirac field is given by

S ¼
Z

d2x

�

1

2
ψ̄ iγμD

↔

μψ −mψ̄ψ

�

; ð5Þ

where Dμ ≡ ∂μ − iqAμ and γμ are the Dirac matrices
satisfying the anticommutation relations fγμ; γνg ¼ 2ημν.
The corresponding Dirac equation reads

ðiγμDμ −mÞψ ¼ 0: ð6Þ

For our purposes, it is very convenient to express
the electric field in terms of a homogeneous vector
potential EðtÞ ¼ − _AðtÞ. The Dirac equation (6), with Aμ ¼
ð0;−AðtÞÞ, becomes (we follow here Refs. [9,10])

ðiγ0∂0 þ ði∂x − qAÞγ1 −mÞψ ¼ 0: ð7Þ

From now on, we will use the Weyl representation (with
γ5 ≡ γ0γ1)

γ0 ¼
�

0 1

1 0

�

; γ1 ¼
�

0 1

−1 0

�

; γ5 ¼
�−1 0

0 1

�

:

We expand the field in momentum modes

ψðt; xÞ ¼
Z

∞

−∞

dk½Bkukðt; xÞ þD†
kvkðt; xÞ�; ð8Þ

where the two independent spinor solutions are

ukðt; xÞ ¼
eikx
ffiffiffiffiffiffi

2π
p

�

hIkðtÞ
−hIIk ðtÞ

�

vkðt; xÞ ¼
e−ikx
ffiffiffiffiffiffi

2π
p

�

hII�−k ðtÞ
hI�−kðtÞ

�

:

Bk and Dk are the creation and annihilation operators,
which fulfill the usual anticommutation relations.
Equation (7) is converted into

_hIk − iðkþ qAÞhIk − imhIIk ¼ 0 ð9Þ

_hIIk þ iðkþ qAÞhIIk − imhIk ¼ 0; ð10Þ

where we assume the normalization condition jhIkj2þ
jhIIk j2 ¼ 1, ensuring the usual anticommutation relation
between creation and annihilation operators. In the mass-
less case, we have a decoupled system, and it can be solved
analytically.
In the presence of an external homogeneous electric

field, the theory (5) possesses the translational invariance in
the space coordinate: x1 → x1 þ ϵ. Therefore, Noether’s
theorem ensures that the classical energy-momentum tensor
Tμν obeys the conservation law ∂μTμ1 ¼ 0. This happens
for every value of the mass. For the study of chiral
conservation laws, we can use the simplest (canonical)
form of the energy-momentum tensor

Tμν ¼ i
2
ψ̄γμ∂ν

↔
ψ ð11Þ

and split it into the two chiral components
Tμν ¼ Tμν

R þ Tμν
L :

Tμν
R ¼ i

2
ψ̄γμ∂ν

↔ I þ γ5

2
ψ ð12Þ

Tμν
L ¼ i

2
ψ̄γμ∂ν

↔ I − γ5

2
ψ : ð13Þ

We note that, for a massless theory and as a consequence of
the underlying symmetry, the μ1 component of each chiral
Weyl sector is separately conserved,
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∂μT
μ1
R;L ¼ 0: ð14Þ

We will show that this is no longer true in the quantum

theory. We recall that, when A ¼ 0, the chiral fields ψR;L ¼
I�γ5

2
ψ obey the equations ∂þψR ¼ 0 ¼ ∂−ψL, with

x� ¼ x0 � x1. The quantized fields ψR;L describe particles
and antiparticles traveling to the right/left, with positive/
negative spatial momentum, respectively.
The formal vacuum expectation values of these currents,

for a generic value of the mass, take the form

hT01
R i ¼ 1

2π

Z

∞

−∞

dkkjhIkj2; ð15Þ

hT01
L i ¼ 1

2π

Z

∞

−∞

dkkjhIIk j2: ð16Þ

These expressions are divergent, and we have to add
appropriate subtractions. Since we are working with a
homogeneous background, it is very convenient to use the
adiabatic regularization method. The method works with
subtractions derived from the adiabatic expansion of the
modes [6,7]. Following Refs. [9–11], one can univocally
determine the subtractions required in the renormalization
of the above chiral currents. AðtÞ is considered of adiabatic
order 1, as explained in Refs. [9,11]. For an arbitrary mass,
and assuming that at early times AðtÞ vanishes, the
renormalized expression for hT01

R;Liren is given by

hT01
R;Liren ¼

1

2π

Z

∞

−∞
dkk

�

jhI;IIk j2 − ω ∓ k
2ω

∓ 3km2q2A2

4ω5

�

;

ð17Þ

with ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þm2
p

. We can now evaluate the time
derivative of the above expressions,

∂thT01
R;Liren ¼ �m

π

Z

∞

−∞
kImðhIkhII�k Þdk ∓ q2A _A

2π
; ð18Þ

where we have used the equations for the modes (9) and
(10). In the massless limit, the first term in (18) vanishes,
and we are left with

∂μhTμ1
R;Liren ¼∓ q2A _A

2π
: ð19Þ

This nonvanishing result shows the existence of an
anomaly in the classical translational symmetry for each
chiral sector. Furthermore, this anomaly is accompanied by
the well-known anomaly for the R/L currents,

∂μhjμR;Liren ¼ � q _A
2π

¼∓ q
4π

ϵμνFμν; ð20Þ

where jμR;L ¼ ψ̄R;Lγ
μψR;L, which can also be derived in a

similar way from the adiabatic subtractions. For a massless
Dirac field, the anomalies cancel out, and one restores the
translational invariance ∂μðhTμ1

R iren þ hTμ1
L irenÞ ¼ 0, as

well as the phase invariance ∂μðhjμRiren þ hjμLirenÞ ¼ 0.

A. Symmetric stress-energy tensor and
translational anomaly

The anomaly (19) in the translational symmetry can also
be realized in terms of the (symmetric) Belinfante stress-
energy tensor Θμν, constructed as

Θμν ¼ i
4
ðψ̄γμDν

↔
ψ þ ψ̄γνDμ

↔
ψÞ: ð21Þ

We have to remark that, although the canonical stress-
energy tensor is more appropriate to show the existence of
the translational anomaly, it is the Belinfante stress-energy
tensor the right one to understand the anomaly in terms of
the underlying process of particle creation.
The symmetric tensor Θμν is related to the canonical one

Tμν by

Θμν ¼ Tμν þ ∂αBαμν þ qψ̄γμψAν; ð22Þ
where the antisymmetric tensor Bαμν is defined as
Bαμν ¼ 1

8
ψ̄fγα; σμνgψ , and σμν ¼ i

2
½γμ; γν�. The divergence

of the vacuum expectation values hΘμ1
R;Li can be read

from (22)

∂μhΘμ1
R;Li ¼ ∂μhTμ1

R;Li þ qð∂μA1ÞhjμR;Li þ qA1∂μhjμR;Li:
ð23Þ

Now, taking into account (20), and the facts that A1 ¼ AðtÞ
and Aðt ¼ −∞Þ ¼ 0, we obtain

hj0R;Liren ¼ � qA
2π

: ð24Þ

Using the result for the translational anomaly (19), the
anomalies for the R/L currents, and Eq. (24), we get
immediately

∂μhΘμ1
R;Liren ¼ � q2A _A

2π
¼ � q2

2π
EðtÞ

Z

t

−∞
Eðt0Þdt0; ð25Þ

which can be regarded as parallel to the result (19). Note,
however, the important change of sign, as compared to (19).
It is also interesting to evaluate the rate of the 00

component of the stress-energy tensor. Using adiabatic
regularization we find
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∂μhΘμ0iren ¼
q2A _A
π

¼ −qF0
1hj1iren: ð26Þ

The above results can be re-expressed in null coordinates
x� maintaining locality, Lorentz-covariance, and gauge-
invariance. It is not difficult to get

∂þhΘ−−iren ¼ −qF−þhj−iren ð27Þ

∂−hΘþþiren ¼ −qFþ−hjþiren: ð28Þ

To visualize the anomalous behavior we have to take
second derivatives of the stress-energy tensor. We find

∂2þhΘ−−iren ¼ −q∂þF−þhj−iren þ q2

2πF
2
−þ and a similar

relation for hΘþþiren. The anomalous c-number terms in
the second derivatives of the stress-energy tensor compo-
nents are linked to the standard anomalous behavior of the
chiral currents ∂�hj∓iren ¼ �qð2πÞ−1Fþ−. Note that Θþþ
and Θ−− are related to the energy flux of the left and right
moving sectors, respectively, of the Dirac field. Note also
that, in flat space, the trace of the two-dimensional stress
tensor is zero, hΘþ−iren ¼ 0. Summing up the second-order
equations, one also gets

∂μ∂νhΘμνiren ¼ −q∂νFν
ρhjρiren −

q2

2π
FμνFμν: ð29Þ

The quantum theory, mainly due to the above c-number
terms, breaks the conservation of the chiral fluxes of
momenta in a way compatible with the anomalous behavior
of the chiral currents. The underlying reason for all the
above anomalies finds its origin in a particle creation
phenomenon.

B. Relation to particle creation

The result (25) can be understood in terms of the well-
known process of particle creation. Following the
Bogoliubov transformation method [7], the field modes
hIk and hIIk for a pulsed electric field can be related, at late
times, to the number density of created particles nk. After
some calculations, one obtains the following relations in
the massless limit:

hΘ01
R iren ¼

Z

∞

0

dkknk; hΘ01
L iren ¼

Z

0

−∞
dkknk: ð30Þ

It is clear that the R(L) part of the symmetric tensor gives
the total momentum of the created quanta with positive
(negative) momentum. Assuming A ¼ 0 at early times, the
number density nk in the massless case is ð2πÞ−1 into the
interval ð−qAðtÞ; qAðtÞÞ and 0 for any other k [2,12].
Integrating (30) between these limits, one obtains a result in
full agreement with (25).

The physical picture of the underlying particle produc-
tion process is significantly modified by the mass. Let us
consider a positive electric pulse EðtÞ > 0. Massless
particles with positive charge are always created with
positive momentum in the interval ð0; jqAðtÞjÞ, while
antiparticles with negative charge are created with momen-
tum in the interval ð−jqAðtÞj; 0Þ. For massive fermions, a
fraction of particles with positive charge can be created
with negative momentum, while antiparticles with negative
charge can also be created with positive momentum.
Finally, we remark that a somewhat similar result can

also be obtained for each chiral sector of quantized
massless scalar fields. However, the result (25) is only
valid in the adiabatic limit, for an infinitely slow evolution
of AðtÞ. In contrast, the result for fermions is completely
general, valid for arbitrary AðtÞ.

C. Relation to backreaction equations

Another way to illustrate the translational anomaly (19)
is by solving the semiclassical backreaction equations for
the quantized Dirac field ψ ¼ ψR þ ψL obeying the
Maxwell equation _E ¼ −qhj1iren. According to the adia-
batic subtraction method, we have

hj1iren ¼
1

2π

Z

∞

−∞
dk

�

jhIkj2 − jhIIk j2 −
k
ω
þ qm2

ω3
A

�

: ð31Þ

In the massless limit, the system can be solved analyti-

cally, finding harmonic oscillations with frequency jqj
ffiffi

π
p . In

Fig. 1(a), we show the solution for the electric field.

FIG. 1. Solution for the electric field (a) and the chiral
projections of hΘ01

R iren (light blue line) and hΘ01
L iren (dark orange

line) (b) for m ¼ 0. We have chosen E0 ¼ 4q as the initial
condition for the electric field. The initial state for the matter field
is the vacuum. The solution for the classical limit is also plotted
(yellow line).
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It is very illuminating to see the time evolution of the
fluxes hΘ01

R;Liren, since they represent the created chiral
momentum in the massless case. As we can see in Fig. 1(b),
for each set of massless right-handed fermions/antifermions
created with total momentum PR > 0, there is a set of
massless left-handed antifermions/fermions with momen-
tum PL ¼ −PR. The required energy to create particles is
extracted from the electric field, generating a continuous
energy exchange between the electric and the fermionic
fields. Particles can also be destroyed, returning energy to
the electric field.
In the massive case m ≠ 0, the backreaction equations

also induce electric oscillations, which can be regarded as
perturbations of the oscillations at m ¼ 0.

III. CONCLUSIONS

In this brief article, we have pointed out that quantized
chiral fields in two dimensions coupled to a homogeneous
time-varying electric field break the classical conservation

of the canonical stress-energy tensor ∂μhTμ1
R;Liren ¼∓ q2A _A

2π .
This quantum anomaly has not been stressed in the
previous literature. This result can be reexpressed in terms
of the symmetric stress-energy tensor of the left- or right-

moving sectors of the Dirac field ∂μhΘμ1
R;Liren ¼ � q2A _A

2π .
Furthermore, our results have a direct physical interpreta-
tion in terms of particle creation in a way compatible with
the axial anomaly.
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Particles are spontaneously created from the vacuum by time-varying gravitational or electromagnetic
backgrounds. It has been proven that the particle number operator in an expanding universe is an adiabatic
invariant. In this paper we show that, in some special cases, the expected adiabatic invariance of the particle
number fails in presence of electromagnetic backgrounds. In order to do this, we consider as a prototype a
Sauter-type electric pulse. Furthermore, we also show a close relation between the breaking of the adiabatic
invariance and the emergence of the axial anomaly.
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I. INTRODUCTION

The understanding of particle creation phenomena in
terms of Bogolubov transformations was pioneered in the
analysis of quantized fields in an isotropically expanding
universe [1–3] (for a retrospective analysis see [4]).
A fundamental issue in the study of particle creation in
an expanding universe was the adiabatic invariance of the
number of created particles. The particle number of a
quantized field, in the limit of an infinitely slow and smooth
expansion of the universe, that is, an adiabatic expansion,
does not change with time [4], even if the quantized field is
massless. In other words, the density of created particles by
the cosmic expansion approaches zero when the Hubble
rate _a=a is each time negligible even if the final amount of
expansion aðtfinalÞ=aðtinitialÞ is large. Hence, we say that the
particle number is an adiabatic invariant. Moreover, pair
production can also take place in time-varying electric [5,6]
or scalar backgrounds, and it can be regarded as a very
important nonperturbative process in quantum field theory
[7]. It is also fundamental to understand the reheating epoch
in cosmology [8], nonequilibrium processes induced by
strong fields [9,10], and astrophysical phenomena [11].
The main purpose of this work is to analyze the adi-

abatic invariance of the particle number observable in the

presence of an electromagnetic background. We find that
for massive fields adiabatic invariance is, as expected,
preserved. For slowly varying electromagnetic potentials
no quanta is being produced, even if the change in the
electromagnetic potential over a long period is very large.
However, in some cases and only for massless fields, the
particle number is not an adiabatic invariant. In other
words, particles are still created in the adiabatic limit.
We analyze the problem in detail in a two-dimensional
scenario, for both scalar and Dirac fields. As a by-product
of our analysis, we point out a connection between the
(anomalous) breaking of the adiabatic invariance of the
particle number operator and the emergence of a quantum
anomaly in the chiral symmetry. We will show that the
breaking of adiabatic invariance and its connection to the
axial anomaly can be easily translated to four dimensions.
Conservation laws and symmetries play a fundamental

role in the understanding of a physical system. Anomalies
are symmetries of a classical theory that fail to survive upon
quantization. This happens, typically, in field theory
because of the need for regularization and renormalization
of ultraviolet divergences. A very illustrative example
occurs in quantum electrodynamics in the limit of massless
Dirac fermions. The classical theory is invariant under
chiral transformations, and this implies the conservation of
the axial current jμ5. However, this symmetry is broken in
the quantum theory. The chiral anomaly opens the pos-
sibility of having processes violating the conservation of
chirality. Nevertheless, all elementary processes of quan-
tum electrodynamics, based on the perturbative expansion
of the S-matrix, preserve chirality [12]. One has to resort to
a nonperturbative phenomena, i.e., the spontaneous pair
production by electromagnetic fields, to unveil conserva-
tion-law violation of chirality of massless fermions.
The nonconservation of chirality seems to be directly
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related to the breaking of adiabaticity in the particle number
observable.
The paper is organized as follows. Section II is devoted

to briefly illustrate the problem within the conventional
cosmological scenario, as described in [3,4]. In Sec. III we
will analyze the case of a two-dimensional complex scalar
field coupled to an external electric pulse. The role of the
mass is analyzed in detail, and we will show explicitly that
adiabatic invariance of the particle number is broken for
massless fields. In Sec. IV we generalize the result to Dirac
fields, showing a connection between the breaking of
adiabatic invariance and the emergence of the chiral
anomaly. The next step is to extend our result to four
dimensions. This will be done in Sec. V. We will find again
that adiabatic invariance requires a nonvanishing effective
mass, as happens for two-dimensional quantized fields
coupled to an electric field. However, a zero effective mass
can only be achieved for Dirac (not for scalar) fields
coupled to both electric and magnetic fields. The breaking
of adiabatic invariance also emerges in parallel to the
emergence of the chiral anomaly. In Sec. VI we summarize
the main conclusions.

II. A BRIEF ORIENTATION: ADIABATIC
INVARIANCE IN THE EXPANDING UNIVERSE

The adiabatic invariance of the particle number operator
in an expanding universe can be easily illustrated with the
simple example (borrowed from [3]) of a scalar field with
mass m in the presence of a two-dimensional bounded
expanding universe. This example, although well-known,
will serve to better clarify the main idea of the next sections.
Consider the following metric:

ds2 ¼ dt2 − a2ðtÞdx2 ¼ CðηÞðdη2 − dx2Þ; ð1Þ

where dη ¼ a−1ðtÞdt and the conformal scale factor is
given by the function CðηÞ ¼ 1þ Bð1þ tanh ρηÞ, with B a

positive constant. This represents a smooth expansion
bounded by asymptotically static and flat spacetime
regions. The expansion factor has smoothly shifted from
ain ≡ að−∞Þ ¼ 1 to aout ≡ aðþ∞Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2B
p

. In Fig. 1
it is shown the behavior of the conformal scale factor CðηÞ
as well as the Hubble rate HðηÞ ¼ C0ðηÞ

2C3=2 for different values
of the adiabatic parameter ρ in terms of dimensionless
variables.
The equation for the modes of the scalar field in the

background metric (1) is given by

d2

dη2
hkðηÞ þ ðm2CðηÞ þ k2ÞhkðηÞ ¼ 0: ð2Þ

In the remote past the normalized modes are assumed to
behave as the positive frequency modes in Minkowski
space,

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2πÞωin

p eikxe−iωint; ð3Þ

with ωin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
. As time evolves these modes

behave, in the remote future, as a mixture of positive
and negative frequency modes of the form,

αkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2πÞωout

p eikxe−iωoutt þ βkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2πÞωout

p eikxeþiωoutt; ð4Þ

with ωout ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð k
aout

Þ2 þm2
q

. αk and βk are the so-called

Bogolubov coefficients. The annihilation operators for
physical particles at late times ak are related to the
annihilation and creation operators at early times (Ak

and A†
k) by the relations,

ak ¼ αkAk þ β�kA
†
−k: ð5Þ

FIG. 1. Conformal scale factor for B ¼ 2. Figure (a) shows the Hubble rate H=m for different values of the dimensionless “slowness”
parameter ρ=m. Figure (b) shows the dependence of the conformal scale factor CðηÞ on ρ=m. The adiabatic limit corresponds to ρ → 0.
Note that the area defined by the curves HðηÞ in Fig. 1(a) does not depend on ρ=m.
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The average density number of created particles nk, with
momentum k, is given by

nk ¼ jβkj2 ¼
sinh2ðπ ω−

ρ Þ
sinhðπ ωin

ρ Þ sinhðπ aoutωout
ρ Þ ; ð6Þ

where ω− ¼ 1
2
ðaoutωout − ωinÞ. It is very easy to check that

in the adiabatic limit, that is, for an extremely slow
expansion ρ → 0, the density number of created particles
goes to nk ∼ e−2πωin=ρ → 0. This shows the fact that the
particle number is an adiabatic invariant. This behavior of
the particle number observable is generic, and it can be
extended to isotropically expanding universes in four
dimensions, irrespective of the value of the mass [1,4].
Furthermore, one can reinforce this idea by looking at a

gravitational collapse producing a black hole. An adiabatic
collapse can be thought as the (physically inaccessible)
limit of a collapse approaching to a black hole with a very
large massM → ∞ (and zero surface gravity) in an infinite
amount of advanced time [13]. It is well-known that the
late-time particle creation of a gravitational collapse is
encapsulated by the surface gravity parameter. The pro-
duced radiation is thermal [2,3,14,15], with a temperature
proportional to the surface gravity. In the adiabatic limit the
production of scalar particles is expected to vanish, in
agreement with Hawking’s result.

III. BREAKING OF ADIABATIC INVARIANCE IN
SCALAR PAIR PRODUCTION BY ELECTRIC

FIELDS IN TWO DIMENSIONS

We will now analyze the same question for the phenom-
ena of particle creation in electric fields. We will consider a
classical and homogeneous electric field EðtÞ interacting
with a quantum, two-dimensional charged scalar field ϕ
obeying the field equation,

ðDμDμ þm2Þϕ ¼ 0; ð7Þ

where Dμϕ ¼ ð∂μ þ iqAμÞϕ. We can expand the field in
Fourier modes as

ϕðt;xÞ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
2ð2πÞp Z

dk½AkeikxhkðtÞþB†
ke

−ikxh�−kðtÞ�; ð8Þ

where A†
k; B

†
k, and Ak, Bk are the usual creation and

annihilation operators. The mode functions hkðtÞ must
obey the Wronskian consistency condition,

hk _h
�
k − h�k _hk ¼ 2i; ð9Þ

to ensure the usual commutation relations. Substituting (8)
into (7) we get the equation,

ḧkðtÞ þ ðm2 þ ðk − qAðtÞÞ2ÞhkðtÞ ¼ 0; ð10Þ

where we have chosen an homogeneous time dependent
potential Aμ ¼ ð0;−AðtÞÞ in the appropriate gauge. In order
to study the adiabatic limit for the electric pair production,
in a way similar to the gravitational case explained above,
we need to consider a bounded potential AðtÞ. At an
heuristic level, AðtÞ will play a somewhat similar role to the
conformal factor CðηÞ for the expanding spacetime. Note
by comparing (2) and (10) that the time dependence of the
mode equation is encoded in CðηÞ for the gravitational
example and, analogously, it is in AðtÞ in the electric case
(see, for instance, [5] for a general discussion). We choose
for convenience a Sauter-type electric pulse [16] of the
form,

EðtÞ ¼ −
ρA0

2
cosh−2ðρtÞ; ð11Þ

which can be described by the potential [EðtÞ ¼ − _AðtÞ],

AðtÞ ¼ 1

2
A0ðtanhðρtÞ þ 1Þ: ð12Þ

This potential is bounded both at early and late times, as
shown explicitly in Fig. 2(b). Note that ρ plays the role of a
slowness parameter. It is very illustrative to compare Fig. 2
with Fig. 1.
We have chosen the above Sauter-type pulse [16] for

convenience. Note that this potential is bounded both
at early and late times (see Fig. 2). Note also that for
all the figures we work with dimensionless variables.
The adiabatic limit is an extremely slow evolution of the
potential, obtained when ρ → 0. We have to remark that
the adiabatic limit is not the limit of a vanishing electric
field. If the electric field had support in a bounded
period of time, there would not be production of
particles when EðtÞ → 0. But the adiabatic limit is a
more subtle limit, in which the electric field varies very
slowly. Although E → 0 when ρ → 0, the width of the
pulse is also very large maintaining constant and non-
vanishing the integral,Z þ∞

−∞
Eρ1ðtÞdt¼

Z þ∞

−∞
Eρ2ðtÞdt¼ constant¼−qA0: ð13Þ

To clarify things we remark that a different scenario is
given by the alternative choice EðtÞ ¼ −E0 cosh−2ðρtÞ,
with E0 a constant value, independent of ρ. The limit
ρ → 0 corresponds then to a constant electric field, with an
unbounded potential AðtÞ. This produces, as expected, the
Schwinger-type rate of pair creation by a constant electric
field [17]. In this paper we focus our analysis in the
adiabatic limit ρ → 0 in (11) and (12), as it produces a
bounded potential and a completely analogous situation to
that considered in the cosmological scenario. As we will
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show later on, in this case, it is indeed possible to produce
particles by the electric field if extra conditions are met (i.e.,
a massless field or the presence of magnetic fields in the
four-dimensional case with fermions).
Inserting the potential (12) in (10) we obtain the physical

solution in terms of the usual hypergeometric functions,

hkðtÞ ¼
1ffiffiffiffiffiffiffi
ωin

p e−iωintð1þ e2ρtÞð12−iκρÞF
�
1

2
− i

ωþ þ κ

ρ
;

1

2
þ i

ω− − κ

ρ
; 1 − i

ωin

ρ
;−e2ρt

�
; ð14Þ

where κ ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqA0Þ2 − ρ2

p
, ωin ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
, ωout ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðk − qA0Þ2 þm2
p

, and ω� ¼ 1
2
ðωout � ωinÞ. We have

fixed this solution by demanding that at early times the
modes behave as the Minkowskian modes for a free scalar
field,

hkðtÞ ∼
1ffiffiffiffiffiffiffi
ωin

p e−iωint: ð15Þ

At late times the modes behave as

hkðtÞ ∼
αkffiffiffiffiffiffiffiffi
ωout

p e−iωoutt þ βkffiffiffiffiffiffiffiffi
ωout

p eþiωoutt; ð16Þ

where αk and βk are the Bogoliubov coefficients. They
satisfy the relation jαkj2 − jβkj2 ¼ 1 according to the
normalization condition (9). These coefficients serve to
relate the early time creation and annihilation operators Ak,
Bk, defining the initial Fock space, with the late time
operators ak, bk,

ak ¼ αkAk þ β�kB
†
−k ð17Þ

bk ¼ α−kBk þ β�−kA
†
−k: ð18Þ

Therefore, we can define the number operator as

hNi ¼ 1

2π

Z
∞

−∞
dkNk ¼

1

2π

Z
∞

−∞
dkðjβkj2 þ jβ−kj2Þ; ð19Þ

where Nk ¼ nk þ n̄k ¼ h0ja†kakj0i þ h0jb†kbkj0i is the
number density of quanta (i.e., nk ¼ jβkj2 particles and
n̄k ¼ jβ−kj2 antiparticles). Taking the late time limit t → ∞
in (14) and matching with (16) we obtain

αk ¼
ffiffiffiffiffiffiffiffi
ωout

ωin

r Γð1 − i ωin
ρ ÞΓð−i ωout

ρ Þ
Γð1

2
− i ωþþκ

ρ ÞΓð1
2
− i ωþ−κ

ρ Þ ð20Þ

βk ¼
ffiffiffiffiffiffiffiffi
ωout

ωin

r Γð1 − i ωin
ρ ÞΓði ωout

ρ Þ
Γð1

2
þ i ω−þκ

ρ ÞΓð1
2
þ i ω−−κ

ρ Þ ; ð21Þ

where we have used the usual properties of the hyper-
geometric function [18]. Finally we get

jβkj2 ¼
cosh ð2π ω−

ρ Þ þ cosh ð2π κ
ρÞ

2 sinh ðπ ωin
ρ Þ sinh ðπ ωout

ρ Þ : ð22Þ

Figure 3 shows a representation of this expression for
different values of m and ρ, which can be interpreted as the
momentum distribution of the created particles (the spectra
of antiparticles would be obtained by making the shift
k → −k). We easily observe that jβkj2 decreases as ρ → 0,
for fixed m ≠ 0. In the same way, the particle density also
decreases for largemwith ρ fixed. Note in passing that for a
sudden electric pulse (ρ ≫ 0) the momentum distribution
of the particles is concentrated in the characteristic values
k ¼ 0 and k ¼ qA0.
To see whether jβkj2 vanishes in the adiabatic limit we

analyze in detail the behavior ρ → 0 on (22). We get

jβkj2 ∼ e−2πωin=ρ þ e−2πωout=ρ þ e−
π
ρδ; ð23Þ

FIG. 2. Sauter-type electric pulse for A0 ¼ 5. Figure (a) shows the electric field E=q for different values of ρ=q. Figure (b) shows the
dependence of the potential AðtÞ on the dimensionless “slowness” parameter ρ=q. The adiabatic limit corresponds to ρ → 0. Note that
the area defined by the curves −EðtÞ=q in Fig. 2(a) is A0, irrespective of the value of ρ=q.
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where δ ¼ 2ðωþ − κÞ and κ → jqA0j
2
. Since ωin;ωout > 0,

the first two terms vanish as ρ → 0. For m ≠ 0, the func-
tion δðkÞ has a minimum at k ¼ qA0

2
, with a value

δmin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqA0Þ2 þ 4m2

p
− jqA0j > 0. It means that δ > 0,

and hence jβkj2 → 0 when ρ → 0, as in the case of a
gravitational field. According with that, in Fig. 3(a) one can
realize how the number of particles decreases with the
adiabatic parameter ρ, vanishing in the limit ρ → 0.
However, for m ¼ 0 this is no longer valid since δ ¼ 0

for k ∈ ð0; qA0Þ, and hence jβkj2 → 1, meaning that par-
ticles are being produced even in the adiabatic limit. In
short, we have obtained, when ρ → 0,

Nk →

�
0 for m ≠ 0 or m ¼ 0 and k∈ð−qA0; qA0Þ
1 for m ¼ 0 and k ∈ ð−qA0; qA0Þ:

ð24Þ

In order to visualize this behavior, we represent in Fig. 4 the
dependence of the total density of created particles hNi
[given by (19)] on the parameter ρ. One can see how in the
adiabatic limit the density of quanta tends to vanish, except
in the case m ¼ 0, for which it tends to a nonzero value.
This value is given by

hNi ¼ 1

2π

Z jqA0j

−jqA0j
dk Nk ¼

jqA0j
π

: ð25Þ

This implies that the particle number is not an adiabatic
invariant for the massless case. Furthermore, as we will see
in the next section, the above result for the density number
of created particles in the adiabatic limit coincides exactly
with the analogous result for massless Dirac particles.
For completeness we will study now the vacuum expect-

ation values of the electric current and the energy density
induced by the underlying particle creation process. This
will also serve to test the adiabatic invariance, or the
breaking of it, in terms of the current and the energy
density.

A. Electric current

For a two-dimensional charged scalar field, the electric
current is given by jμ ¼ iq½ϕ†Dμϕ − ðDμϕÞ†ϕ�. The vac-
uum expectation of this observable is UV-divergent and has
to be renormalized. In the context of an homogeneous and
time dependent background it is very convenient to use the
adiabatic regularization/renormalization method described
in [17,19]. After performing the appropriated subtractions,
one obtains

hjxiren ¼ q
Z

∞

−∞

dk
2π

�
ðk − qAÞjhkj2 −

k
ω
þm2qA

ω3

�
; ð26Þ

where hkðtÞ are the mode functions of the scalar field
satisfying the equation of motion (10) and ω ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
.

For more details on the original adiabatic method for scalar
fields see [20].
Let us focus on the late-time behavior of the electric

current, for which we can relate (26) to the Bogoliubov
coefficients computed in the last section. We restrict
again the analysis to an electric-pulse configuration (12)
with bounded asymptotic states. Introducing (16) in (26)
we have

FIG. 4. Number of late-time created scalar particles as a
function of the dimensionless adiabaticity parameter ρ=q, for
A0 ¼ 5 and for different values of the mass.

FIG. 3. Momentum distribution of the created scalar particles with positive charge at late times (jβkj2) by an electric pulse with A0 ¼ 5
and different values ofm=q and ρ=q. In Fig. 3(a) the mass is fixed, while in (b) the dimensionless parameter of adiabaticity ρ=q is fixed.
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hjxiren ∼ q
Z

∞

−∞

dk
2π

�
k − qA0

ωout
ð2jβkj2 þ 2Reðαkβ�ke−i2ωouttÞÞ

þ k − qA0

ωout
−
k
ω
þm2qA0

ω3

�
: ð27Þ

It is easy to see that the terms which are independent of the
Bogoliubov coefficients do not contribute to the electric
current. One can derive this result by realizing that the first
two terms correspond to linearly divergent integrals, differ-
ing by a constant shift,

q
Z

∞

−∞

dk
2π

�
k − qA0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðk − qA0Þ2 þm2
p −

kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
�
¼ −

q2A0

π
;

ð28Þ
while the last term in (27) is a finite integral, which cancels
with (28). The second term in (27) depends on time and
produces oscillations of the form cos ð2ωouttÞ. In the limit
t → ∞ the Riemann-Lebesgue lemma ensures that the
integral in dk of this term vanishes. With the above
considerations, and using the symmetry properties of
jβkj2 [reflection under k → −ðk − qA0Þ], one can rewrite
the expression of the electric current as follows:

hjxiren ∼ −q
Z

∞

−∞

dk
2π

k
ω
ðjβkj2 − jβ−kj2Þ: ð29Þ

This equation shows explicitly the close relation between
the density of created quanta and the electric current. The
first term accounts for particles and the second one for
antiparticles. In the adiabatic limit, and for massive
particles, the renormalized electric current also vanishes
since jβkj2 → 0. However, the last result changes com-
pletely if m ¼ 0. As we have shown, in the adiabatic
limitjβkj2 → 1 for k ∈ ð0; qA0Þ. Therefore, the current at
late times for massless particles in the adiabatic limit is
given by

hjxiren ∼ −
q2A0

π
: ð30Þ

As expected, a nonvanishing particle number hNi, even in
the adiabatic limit, induces an electric current different
from zero.

B. Energy density

The renormalized vacuum expectation value of the
energy density of a two-dimensional scalar field interacting
with an electric field is given by

hT00iren ¼
Z

∞

−∞

dk
4π

�
j _hkj2 þ ðm2 þ ðk − qAÞ2Þjhkj2

− 2ωþ 2kqA
ω

−
m2q2A2

ω3

�
; ð31Þ

where hkðtÞ are again the mode functions of the scalar field
and the three last terms account for the adiabatic sub-
tractions required by renormalization [19]. As for the
electric current, we will we focus on the late time behavior.
Plugging (16) in (31) and using the asymptotic expansion
for the functions _hðtÞ,

_hkðtÞ ∼ −i
ffiffiffiffiffiffiffiffi
ωout

p
αke−iωoutt þ i

ffiffiffiffiffiffiffiffi
ωout

p
βkeþiωoutt; ð32Þ

we finally obtain

hT00iren ∼
Z

∞

−∞

dk
4π

�
4ωoutjβkj2 þ 2ωout − 2ω

þ 2kqA0

ω
−
m2q2A2

0

ω3

�
: ð33Þ

Using the same arguments as in Sec. III A, it is easy to
see that the only term contributing to the energy density is
the one proportional to jβkj2. After some simplifications,
we get the relation between the energy density and the
particle number,

hT00iren ∼
Z

∞

−∞

dk
2π

ωNk; ð34Þ

where Nk ¼ jβ−kj2 þ jβkj2. In the adiabatic limit, we get
jβkj2 → 0, and therefore hT00iren → 0. Nevertheless, for
m ¼ 0 there is indeed creation of energy. As we said, the
adiabatic limit for the massless case gives us a nonvanish-
ing jβkj2 for k ∈ ð0; qA0Þ. In this region, jβkj2 ¼ 1, and
therefore the created energy density is

hT00iren ∼
q2A2

0

2π
: ð35Þ

IV. BREAKING OF ADIABATIC INVARIANCE IN
FERMIONIC PAIR PRODUCTION BY ELECTRIC

FIELDS IN TWO DIMENSIONS

Let us consider now a two-dimensional charged Dirac
field ψ interacting with an homogeneous, time-dependent
electric field. The corresponding Dirac equation is

ðiγμDμ −mÞψ ¼ 0; ð36Þ

where γμ are the Dirac matrices satisfying the anticommu-
tation relations fγμ; γνg ¼ 2ημν and Dμ ≡ ∂μ − iqAμ. [We
follow here the convention that the electric charge of the
fermion is −q]. The electromagnetic field is assumed to be
an external classical field, while ψ is a quantized field
interacting with the classical electric background.
Assuming also that the electric field is described by the
potential Aμ ¼ ð0;−AðtÞÞ in the appropriate gauge, the
Dirac equation (36) becomes
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ðiγ0∂0 þ ði∂x − qAÞγ1 −mÞψ ¼ 0: ð37Þ

From now on we will use the Weyl representation (with
γ5 ≡ γ0γ1),

γ0 ¼
�
0 1

1 0

�
; γ1 ¼

�
0 1

−1 0

�
; γ5 ¼

�−1 0

0 1

�
:

We expand the field in momentum modes,

ψðt; xÞ ¼
Z

∞

−∞
dk½Bkukðt; xÞ þD†

kvkðt; xÞ�; ð38Þ

where the two independent and normalized spinor solutions
are

ukðt; xÞ ¼
eikxffiffiffiffiffiffi
2π

p
�

hIkðtÞ
−hIIk ðtÞ

�
ð39Þ

vkðt; xÞ ¼
e−ikxffiffiffiffiffiffi
2π

p
�
hII�−k ðtÞ
hI�−kðtÞ

�
: ð40Þ

Bk andDk are the creation and annihilation operators which
fulfill the usual anticommutation relations. The field
equation (37) is converted into

_hIk − iðkþ qAÞhIk − imhIIk ¼ 0 ð41Þ
_hIIk þ iðkþ qAÞhIIk − imhIk ¼ 0; ð42Þ

and we have assumed the normalization condition
jhIkj2 þ jhIIk j2 ¼ 1. Let us consider, as in the scalar case,
the electric pulse AðtÞ ¼ 1

2
A0ðtanhðρtÞ þ 1Þ. With this

input the mode equations (41) and (42) can be solved
exactly in terms of hypergeometric functions,

hIkðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωin − k
2ωin

s �
AðtÞ
A0

�
−iωin

2ρ

�
1 −

AðtÞ
A0

�
iωout
2ρ

× F

�
i
ω− þ qA0=2

ρ
; 1þ i

ω− − qA0=2
ρ

;

1 − i
ωin

ρ
;
AðtÞ
A0

�
ð43Þ

hIIk ðtÞ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωin þ k
2ωin

s �
AðtÞ
A0

�
−iωin

2ρ

�
1 −

AðtÞ
A0

�
iωout
2ρ

× F

�
i
ω− − qA0=2

ρ
; 1þ i

ω− þ qA0=2
ρ

;

1 − i
ωin

ρ
;
AðtÞ
A0

�
; ð44Þ

where ωin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
, ωout ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþ qA0Þ2 þm2

p
and

ω� ¼ 1
2
ðωout � ωinÞ. We have fixed the initial condition

in order to recover the positive frequency solution for a free
field at early times t → −∞,

hI=IIk ðtÞ ∼�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωin ∓ k
2ωin

s
e−iωint: ð45Þ

At late times t → þ∞ the modes can be written as

hI=IIk ðtÞ ∼�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωout ∓ ðkþ qA0Þ

2ωout

s
αke−iωoutt

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωout � ðkþ qA0Þ

2ωout

s
βkeiωoutt: ð46Þ

αk and βk are the Bogoliubov coefficients satisfying the
relation jαkj2 þ jβkj2 ¼ 1. These coefficients relate the
early time creation and annihilation operators Bk, Dk with
the late time operators bk, dk as follows:

bk ¼ αkBk þ β�kD
†
−k ð47Þ

dk ¼ α−kDk − β�−kB
†
−k: ð48Þ

The density of created quanta is given by Nk ¼
h0jb†kbkj0i þ h0jd†kdkj0i≡ nk þ n̄k, where nk ¼ jβkj2 and
n̄k ¼ jβ−kj2. Therefore, the particle number is also

hNi ¼ 1

2π

Z
∞

−∞
dk Nk ¼

1

2π

Z
∞

−∞
dkðjβkj2 þ jβ−kj2Þ: ð49Þ

The matching of (43)–(44) with (46) at late times deter-
mines the Bogoliubov coefficients. For the beta coefficients
we get

βk¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωout

ωin

ωin−k
ωoutþkþqA0

s
Γð1− iωin

ρ ÞΓð−iωout
ρ Þ

Γð1þ iω−þqA0=2
ρ ÞΓð1þ iω−−qA0=2

ρ Þ :

ð50Þ

And after simplifying, we obtain

jβkj2 ¼
cosh ð2π ω−

ρ Þ − cosh ðπ qA0

ρ Þ
2 sinh ðπ ωin

ρ Þ sinh ðπ ωout
ρ Þ : ð51Þ

Some representations of this expression are shown in
Fig. 5. As in the scalar case, the number of particles
decreases as ρ → 0 and increases as m → 0. For fermions,
the relation jαkj2 þ jβkj2 ¼ 1 implies that jβkj2 ≤ 1 for any
value of k, according to Pauli’s exclusion principle.
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In the massless case, irrespective of the value of ρ, one
obtains [see Fig. 5(b)]

lim
m→0

jβkj2 ¼ 1 ð52Þ

for k ∈ ð0; qA0Þ, and hence,

Nk ¼
�
0 for k ∉ ð−qA0; qA0Þ
1 for k ∈ ð−qA0; qA0Þ

: ð53Þ

The total density of created quanta is

hNi ¼ 1

2π

Z jqA0j

−jqA0j
dk Nk ¼

jqA0j
π

: ð54Þ

Note that the same result is obtained by performing the
adiabatic limit ρ → 0 in the scalar case. In contrast, this
result is valid for any value of ρ, which means that the
number of created massless fermions does not depend on
the history of AðtÞ, but only on its final value. This
nonvanishing result of the particle number implies again
the breaking of the adiabatic invariance.
For massive fermions and in the limit ρ → 0, expression

(51) behaves essentially as

jβkj2 ∼ e−
π
ρδ; ð55Þ

where δ ¼ 2ωþ − jqA0j. For m ≠ 0, the former has a
minimum at k ¼ − qA0

2
, with a value δmin ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðqA0Þ2 þ 4m2
p

− jqA0j > 0. Hence, δ>0 and jβkj2→0,
as we can see in Fig. 5(a). Therefore we can conclude that
the particle number is an adiabatic invariant for massive
fermions, as in the scalar case. To visualize this behavior,
we have depicted in Fig. 6 the dependence of the total
density of created particles on the parameter ρ. We can also
observe that the density of quanta in the massless case does

not vanish and, in contrast to the scalar case, it remains
constant, according to the above calculations.

A. Electric current

Using the renormalization method described in
[17,21,22] for a Dirac field interacting with an homo-
geneous time-dependent electric field, the vacuum expect-
ation value of the electric current jμ ¼ −qψ̄γμψ is given by

hjxiren ¼
q
2π

Z
dk

�
jhIIk j2 − jhIkj2 −

k
ω
−
qm2

ω3
A

�
: ð56Þ

To study the explicit dependence of the electric current hjxi
with the mass, we can compute their time derivative,

∂thjxiren ¼
2qm
π

�Z
ImðhIIk hI�k Þdk

�
−
q2

π
_A: ð57Þ

It is immediate to see that in the massless limit the first term
vanishes, and the equation below can be easily integrated.
With Að−∞Þ ¼ 0 as initial condition one obtains

FIG. 5. Momentum distribution of the created fermions with positive charge at late times jβkj2 by an electric pulse with A0 ¼ 5 and
different values of m=q and ρ=q. In Fig. 5(a) the mass is fixed, while in (b) the parameter of adiabaticity is fixed. Note that the relative
position of the of the curves jβkj2 with respect to the vertical axis is different to the scalar plots because of the opposite convention for the
electric charge, as explained in the main text.

FIG. 6. Number of late-time created fermions as a function of
the dimensionless adiabaticity parameter ρ=q, for A0 ¼ 5 and for
different values of the mass.
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hjxiren ¼ −
q2AðtÞ

π
: ð58Þ

Note again that at each instant t, the value of the electric
current depends only on the value of the potential vector
AðtÞ at t, and not on its history. This contrasts with the
behavior of the created current for a massive field, since hIk
and hIIk depend on the particular shape of the electric pulse.
In the latter case, and assuming the electric pulse configu-
ration given in (12), it can be proven by using the
Bogoliubov coefficient (51) and repeating the same calcu-
lations done in Sec. III A that the electric current vanishes
in the adiabatic limit. The analysis of the renormalized
energy density can be carried out analogously, and it leads
to a similar physical conclusion.
As a final comment, and for completeness, we remark

that in the massless case, one can directly solve the
semiclassical Maxwell equations for the electric field
_E ¼ −hjxiren. Assuming, for instance, the initial conditions
Að0Þ ¼ 0 and _Að0Þ ¼ −E0 the previous equation can be
easily integrated, with solution EðtÞ ¼ E0 cosð jqjffiffiπp tÞ. We

find harmonic oscillations with frequency jqjffiffi
π

p . This is

consistent with the well-known fact that radiative correc-
tions to the Schwinger model induce a mass for the
“photon”, with a value m2

γ ¼ q2=π [12,23].

B. Relation with the axial anomaly

We have found that the expected adiabatic invariance of
the particle number observable fails for a massless Dirac
field. This is accompanied with a nonvanishing electric
current, even in the adiabatic limit, as can be read from (58).
Furthermore, this result brings about a creation of chirality
as a consequence of the fact that, in two-dimensions, the
axial current jμ5 ¼ ψ̄γμγ5ψ is related by duality to the
electric current hjμiren ¼ qϵμνhjν5iren. Hence, the result (58)
implies the axial anomaly [24],

∂μhjμ5iren ¼ −
q
2π

ϵμνFμν: ð59Þ

In fact, one can also interpret the breaking of the
adiabatic invariance as a natural and necessary consequence
required by the axial anomaly. We remark that the loss of
the adiabatic invariance of the particle number for a scalar
field in two-dimensions, which coincides quantitatively
with the result for fermions, can also be naturally inter-
preted in the language of anomalies. In two-dimensions, a
massless scalar field inherits a classical chiral-type sym-
metry, in the sense that the classical wave equation splits
into two disconnected sectors: right and left-moving
degrees of freedom, as the fermionic two-dimensional
field. The corresponding right and left electric currents
are, in the adiabatic limit, separately conserved in the
classical theory. However, in the quantum theory these

currents also cease to be conserved. The creation of right
and left electric currents in the quantum theory is exactly
the same for massless scalar and Dirac fields in the
adiabatic limit, as can be easily observed from (58)
and (30).

V. GENERALIZATION OF PREVIOUS
RESULTS TO 4D

In the previous sections we have shown that the particle
number operator is not an adiabatic invariant for two-
dimensional massless fields. Here, we extend our analysis
to four dimensions for both scalar and fermionic fields. We
briefly study whether the breaking of the adiabatic invari-
ance could also happen in electric and magnetic back-
grounds.

A. Scalar field

Consider now a charged scalar field obeying the wave
equation ðDμDμ þm2Þϕ ¼ 0, where we assume an homo-
geneous electric pulse defined by the vector potential Aμ ¼
ð0; 0; 0;−AðtÞÞ with AðtÞ given again by (12). The Fourier
expansion of the quantized field is

ϕðt; x⃗Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2πÞ3

p Z
d3k½Ak⃗e

ik⃗ x⃗hk⃗ðtÞ þ B†
k⃗
e−ik⃗ x⃗h�

−k⃗
ðtÞ�:

ð60Þ

The mode functions hk⃗ðtÞ satisfy the normalization

condition hk⃗
_h�
k⃗
− h�

k⃗
_hk⃗ ¼ 2i, and their time evolution is

given by

ḧk⃗ðtÞ þ ðm2 þ k21 þ k22 þ ðk3 − qAðtÞÞ2Þhk⃗ðtÞ ¼ 0: ð61Þ

This equation is very similar to the one found in the two-
dimensional case (10). It allows us to partially reduce the
four-dimensional problem to a two-dimensional one, by
introducing an effective mass m2

eff ¼ m2 þ k21 þ k22.
Therefore, the beta coefficients can be obtained from
Eq. (22) replacing k by k3 and m by meff.
According to our previous results for scalar fields, only

for m ¼ 0 and k1 ¼ 0 ¼ k2 one can have a nonvanishing
jβkj2 in the adiabatic limit. However, since k1 and k2 are
continuous quantum numbers characterizing the modes, the
amount of created particles hNi ∼ R

d3kðjβkj2 þ jβ−kj2Þ is
diluted into the infinite-volume of the unbounded three-
dimensional space. Therefore, the total number density of
produced particles turns out to be an adiabatic invariant.
This result cannot be altered by the introduction of a

magnetic field. Adding a constant magnetic field B⃗ in the
z-direction and choosing Aμ ¼ ð0; 0;−Bx1;−AðtÞÞ, the
Fourier expansion for the scalar field is
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ϕðt; x⃗Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2πÞ2

p X
n

Z Z
dk2dk3½An;k2;k3e

iðk2x2þk3x3ÞΦn;k2ðx1Þhn;k3ðtÞ þ B†
n;k2;k3

e−iðk2x2þk3x3ÞΦn;−k2ðx1Þh�n;−k3ðtÞ�; ð62Þ

where

Φn;k2ðx1Þ ¼
�
qB
π

�
1=4 1

2
n
2

ffiffiffiffiffi
n!

p e−ξ
2=2HnðξÞ; ð63Þ

ξ ¼ ffiffiffiffiffiffi
qB

p ðx1 − k2=qBÞ, and HnðξÞ are the Hermite poly-
nomials with n ¼ 0; 1; 2;…. For simplicity, and without
loss of generality, we have assumed qB > 0. The time
evolution is given by

ḧn;k3 þ ðm2 þ ð2nþ 1ÞqBþ ðk3 − qAðtÞÞ2ÞhkðtÞ ¼ 0:

ð64Þ

From the two-dimensional viewpoint, the effective value of
the mass, given now by m2

eff ¼ m2 þ ð2nþ 1ÞqB, is a
positive quantity, even for m ¼ 0 and n ¼ 0. Using again
the result of Sec. III we can similarly conclude that the
particle number, defined now as

hNi ¼ qB
4π2

X∞
n¼0

Z
∞

−∞
dk3Nn;k3

¼ qB
4π2

X∞
n¼0

Z
∞

−∞
dk3ðjβn;k3 j2 þ jβn;−k3 j2Þ; ð65Þ

is also an adiabatic invariant for a scalar field in four
dimensions, regardless of the value of the mass, given that
jβn;k3 j2 → 0. This is in sharp contrast with the result
obtained for a massless scalar field in two dimensions.
Note that for a scalar field in four dimensions there is no
analog of the axial anomaly.

B. Dirac field

We can repeat the analysis for Dirac fermions. For
massive fermions adiabatic invariance is preserved.
Therefore we will focus on the massless case. In the latter,
one can split the Dirac spinor in two independent chiral
parts ψ ¼ ðψL

ψR
Þ. For the left sector the Weyl equation reads

∂0ψL − σ⃗ D⃗ψL ¼ 0. Considering an homogeneous electric
pulse with vector potential Aμ ¼ ð0; 0; 0;−AðtÞÞ given by
(12), the Fourier expansion of the quantized field is

ψLðt; x⃗Þ ¼
Z

d3k½Bk⃗uk⃗ðt; x⃗Þ þD†
k⃗
vk⃗ðt; x⃗Þ�: ð66Þ

The two independent and normalized spinor solutions
can be expressed as

uk⃗ðt; x⃗Þ ¼
eik⃗ x⃗

ð2πÞ3=2k⊥

� ðk1 − ik2ÞhIk⃗ðtÞ
k⊥hIIk⃗ ðtÞ

�
ð67Þ

vk⃗ðt; x⃗Þ ¼
e−ik⃗ x⃗

ð2πÞ3=2k⊥

� ðk1 − ik2ÞhII�−k⃗
ðtÞ

k⊥hI�−k⃗ðtÞ

�
; ð68Þ

where k⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ k22

p
. The equations for the modes are

_hI
k⃗
− iðk3 þ qAÞhI

k⃗
− ik⊥hIIk⃗ ¼ 0

_hII
k⃗
þ iðk3 þ qAÞhII

k⃗
− ik⊥hIk⃗ ¼ 0: ð69Þ

These equations are similar to the ones found in the two-
dimensional case (41) and (42), with an effective mass
meff ¼ k⊥. Hence, the beta coefficients are given by
Eq. (51) with the obvious replacements. As in the scalar
case, only for k1 ¼ k2 ¼ 0 one can have a nonvanishing
beta coefficient in the adiabatic limit; therefore the amount
of created particles is diluted and the total number density
of produced particles is an adiabatic invariant. However,
this is no longer true in the presence of a magnetic field.
Adding a constant magnetic field B⃗ in the z-direction and
choosing Aμ ¼ ð0; 0; Bx1;−AðtÞÞ, the generic form of the
modes for a massless field is

un;k2;k3ðt; x⃗Þ ¼
eiðk2x2þk3x3Þ

2π

� hIn;k3ðtÞΦn;k2ðx1Þ
−ihIIn;k3ðtÞΦn−1;k2ðx1Þ

�
ð70Þ

vn;k2;k3ðt; x⃗Þ ¼
e−iðk2x2þk3x3Þ

2π

� hII�n;−k3ðtÞΦn;−k2ðx1Þ
ihI�n;−k3ðtÞΦn−1;−k2ðx1Þ

�
;

ð71Þ

where Φn;k2 is defined as in the scalar case (63). The time
evolution of the modes is given by

_hIn;k3 − iðk3 þ qAÞhIn;k3 − i
ffiffiffiffiffiffiffiffiffiffiffi
2nqB

p
hIIn;k3 ¼ 0

_hIIn;k3 þ iðk3 þ qAÞhIIn;k3 − i
ffiffiffiffiffiffiffiffiffiffiffi
2nqB

p
hIn;k3 ¼ 0: ð72Þ

In this case, we can identify the effective mass as
m2

eff ¼ 2nqB, which vanishes at n ¼ 0. Therefore, in the
adiabatic limit, the beta coefficients jβn;k3 j2 [we recall they
can also be obtained from the two-dimensional analog (51)]
vanish for any value of n except for n ¼ 0. Since
hNi ∼P

n

R
dk3ðjβn;k3 j2 þ jβn;−k3 j2Þ, the particle number

tends to a nonzero value because the discrete state n ¼ 0
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survives after summation. This contrasts with the previous
case in which the mode k1 ¼ k2 ¼ 0 was diluted after
integration. Hence, the particle number hNi is no longer
adiabatic invariant.
This result is also linked to the axial anomaly, as happens

in two dimensions. Note that in four dimensions the
anomaly is only nonzero when both electric and magnetic
fields are present. As in the two-dimensional case, the
adiabatic anomaly must be reflected in the electric current
hjzi ¼ −qhψ̄γ3ψi and also in the chiral charge density
hj05i ¼ hψ̄γ0γ5ψi. Repeating the previous analysis for the
right part ψR and computing the formal vacuum expectation
value hjzi one finds

hjzi ¼ q2B
4π2

Z
∞

−∞
dk3ðjhII0;k3 j2 − jhI0;k3 j2Þ

þ q2B
2π2

X∞
n¼1

Z
∞

−∞
dk3ðjhIIn;k3 j2 − jhIn;k3 j2Þ: ð73Þ

From this result one can easily see the special role of the
n ¼ 0 modes, which are the only ones contributing to the
breaking of the adiabatic invariance. Although in the most
general case all the modes contribute to the electric current,
in the adiabatic limit the contribution of the modes with
n > 0, for which meff ≠ 0, will vanish, as happens in the
two-dimensional case. This gives us a lower bound for the
current. On the other hand, by looking at the chiral charge,

hj05i ¼
qB
4π2

Z
∞

−∞
dk3ðjhI0;k3 j2 − jhII0;k3 j2Þ; ð74Þ

one realizes that only the mode with n ¼ 0 creates chirality,
even in a nonadiabatic regime. Furthermore, it is immediate
to see that the lower bound of the electric current is given
by hjzimin ¼ −qhj05i.

Note that (74) can be renormalized using the adiabatic
prescription in two dimensions [see Eq. (56)] and the
result is compatible with the axial anomaly hj05irenðtÞ ¼
− q2

2π2

R
t
−∞ dt0E⃗ðt0ÞB⃗. It can be easily argued that a similar

result can also be obtained for a time-dependent mag-
netic field.

VI. CONCLUSIONS

We have reexamined the adiabatic invariance of the
particle number operator of quantized fields in two dimen-
sions coupled to a background electric field with bounded
vector potential. We have pointed out that, for massless
fields, the expected adiabatic invariance fails. This fact is
accompanied by the emergence of the axial anomaly in two
dimensions. In other words, the breaking of the adiabatic
invariance (pair creation even in the limit ρ → 0) is required
to keep physical consistency with the axial anomaly. We
have also shown that the breaking of the adiabatic invari-
ance is also reproduced for a massless Dirac field in four
dimensions, but requiring the presence of electric and
magnetic fields, showing up again a deep connection with
the axial anomaly.
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The adiabatic regularization method was originally proposed by Parker and Fulling to renormalize the
energy-momentum tensor of scalar fields in expanding universes. It can be extended to renormalize the
electric current induced by quantized scalar fields in a time-varying electric background. This can be done
in a way consistent with gravity if the vector potential is considered as a variable of adiabatic order one.
Assuming this, we further extend the method to deal with Dirac fields in four spacetime dimensions. This
requires a self-consistent ansatz for the adiabatic expansion, in presence of a prescribed time-dependent
electric field, which is different from the conventional expansion used for scalar fields. Our proposal is
consistent, in the massless limit, with the conformal anomaly. We also provide evidence that our proposed
adiabatic expansion for the fermionic modes parallels the Schwinger-DeWitt adiabatic expansion of the
two-point function. We give the renormalized expression of the electric current and analyze, using
numerical and analytical tools, the pair production induced by a Sauter-type electric pulse. We also analyze
the scaling properties of the current for a large field strength.

DOI: 10.1103/PhysRevD.101.105014

I. INTRODUCTION

The landmark work of Heisenberg and Euler [1], moti-
vated by earlierwork of Sauter [2], established the instability
of the quantum vacuum under the influence of a prescribed
(slowly varying) electric field. If the field is sufficiently
strong, real electron-positron pairs can be created. This
result was reobtained by Schwinger in the modern language
of quantum electrodynamics by finding a positive imaginary
contribution to the effective actionW. The quantity e−2ImW

represents then the probability that no actual pair creation
occurs during the history of the field [3].
The quantum mechanism driving the spontaneous cre-

ation of particles by a gravitational field was discovered by
Parker in the early sixties by studying quantized fields in an
expanding universe. The crucial fact is as follows [4]:
creation and annihilation operators evolve, under the
influence of the expansion of the universe (or a generic
time-varying gravitational field), into a superposition of
creation and annihilation operators. During a cosmic period

when the expansion factor is almost constant one can
interpret the effect of the gravitational field on the particle
number and unambiguously establish the spontaneous
creation of real particles by the evolving gravitational field.
Major applications of this remarkable phenomena occurs
in the very early universe [5,6] and in the vicinity of a
collapsing star forming a black hole [7]. These pioneer
works on particle creation launched the theory of quantum
fields in curved spacetime, as a first step to merge gravity
and quantum mechanics within a self-consistent and
successful framework [8–11]. The underlying machinery
was also employed to study time-varying electromagnetic
fields [12,13]. In the limit of a slowly varying electric field
the Schwinger result can be recovered.
In the gravitational scenario, the most relevant physical

observable is the energy-momentum tensor. Its vacuum
expectation value hTμνi possesses ultraviolet (UV) diver-
gences and has to be regularized and renormalized. In the
seventies many methods were proposed to this end, as
explained in the monographs [8–11]. For homogeneous,
time-dependent spacetimes a generic expression for hTμνi
was obtained for scalar fields within the so-called adiabatic
regularization scheme [14–18]. The adiabatic method uses a
mode by mode subtraction process, naturally suggested by
the definition of a single-particle state in an expanding
universe, and in such a way that preserves the basic
symmetries of the theory. Furthermore, the adiabaticmethod
has been proved to be equivalent to the point-splitting
Schwinger-DeWitt renormalization scheme [15,16,18].

*pau.beltran@uv.es
†jnavarro@ific.uv.es
‡silvia.pla@uv.es

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 101, 105014 (2020)

2470-0010=2020=101(10)=105014(15) 105014-1 Published by the American Physical Society



The adiabatic expansion of the field modes parallels the
Schwinger-DeWitt adiabatic expansion of the Feynman
propagator in Friedmann-Lemaitre-Robertson-Walker
(FLRW) spacetimes. The advantage of the adiabatic regu-
larization method is that it very efficient to implement
numerical computations, and it is widely used in cosmology.
It has been recently extended to spin-1=2 fields in FLRW
universes [19,20].
As mentioned above, the analysis of particle creation by

time-varying electric fields can be carried out using the
techniques first proposed to treat curved backgrounds. The
electromagnetic field is considered as an external, unquan-
tized background, while the created particles are excitations
of the quantized matter field. From the experimental side,
this particle production effect is also of special interest
since it may not be far from being experimentally detected
in high intensity lasers [21], and in beam-beam collisions
[22]. This effect is also very important in astrophysical
[23,24] and cosmological scenarios [25–27], and in non-
equilibrium processes induced by strong fields [28]. In this
context, the most important physical local expectation
value is the electric current hjμi, which also possesses
ultraviolet divergences and has to be renormalized in a
proper way. Recent discussions on foundational issues
related to the particle number density of the created
particles, adiabatic invariance, and unitary evolution can
be seen in [29–31].
Due to the similarities with the gravitational case, it is a

good strategy to readapt the adiabatic regularization scheme
to the case in which the external background is an electric
field. This program was initiated in [32,33] to study back-
reaction problems when the matter field is a charged scalar
field. It was further extended to treat chargedDirac fermions
[34]. It was assumed that the adiabatic order of the vector
potential Aμ is 0. The problem was reconsidered for a
charged scalar field in [35] by assuming that the adiabatic
order ofAμ is 1, instead of zero. This new reassignment of the
adiabatic order for Aμ is an unavoidable requirement in
presence of a gravitational background. The argument was
reinforced in [36,37] on the basis of the covariant con-
servation of the energy-momentum tensor. The adiabatic
regularization of two-dimensional fermions incorporating
the adiabatic order assignment 1 for Aμ has been further
reanalyzed in [31,35,38]. Other renormalization methods
have been generalized to incorporate an electromagnetic
background, as for instance the Hadamard point-splitting
method for complex scalar fields [39,40], with results in
agreement with [35].
Within the above context, it seems natural to extend the

adiabatic regularization/renormalization method, with the
assumption that Aμ is of adiabatic order 1, to Dirac fields in
presence of an electric field background in four spacetime
dimensions. This is the main aim of this work. As stressed
above, previous studies in the literature on this problem
[34] assumed that Aμ is of adiabatic order 0. This extension

requires a self-consistent ansatz for the adiabatic expansion
of the field modes. We give a proper ansatz, which cannot
be fitted within the Wentzel-Kramers-Brillouin (WKB)-
type expansion used for scalar fields [8,10,11]. Our
extension of the adiabatic method is in agreement with
the trace anomaly. Even more, we provide strong evidence
that our adiabatic expansion of the field modes parallels the
adiabatic Schwinger-DeWitt expansion of the propagator.
In addition to the trace anomaly, our adiabatic expansion
also reproduces the DeWitt coefficient E3, at sixth adiabatic
order. We carry out the adiabatic renormalization and
provide a general expression for the renormalized electric
current. We illustrate the power of the method by studying
with detail a Sauter-type electric pulse.
The paper is organized as follows. In Sec. II we will

describe the status of adiabatic regularization when a time-
varying electric field is part of the background. Wewill give
strong reasons for adopting a new viewpoint and reprehend
the problem of the adiabatic regularization of charged 4d
fermions in time-dependent electric fields. In Sec. III we
introduce the basic ingredients of our ansatz to construct
the adiabatic expansion of the four-dimensional fermionic
modes coupled to a prescribed time-dependent electric
field. Section IV is devoted to explain the details of the
adiabatic renormalization procedure in this context. In
particular, we give a generic and explicit expression of
the renormalized electric current. We also test the consis-
tency of the method and discuss some intrinsic renormal-
ization ambiguities. In Sec. V we study the particular case
in which the background field is a Sauter-type electric
pulse. We analyze the particle production phenomena in
terms of the renormalized electric current. We also discuss
the scaling properties of the created current. In Sec. VI we
state our main conclusions. Our work is complemented
with a series of appendices where we give technical details.
We also discuss in the Appendix B the connection between
the adiabatic method and the Hadamard renormalization
scheme for charged scalar fields.

II. BACKGROUND AND MOTIVATION

To motivate the main idea of this work it is very
convenient to present the status of the adiabatic regulari-
zation method for a charged 4-dimensional scalar field
interacting with a classical, homogeneous, time-dependent
electric background. We will assume that the electric
field is of the form E⃗ ¼ ð0; 0; EðtÞÞ with potential vector
Aμ ¼ ð0; 0; 0;−AðtÞÞ. We will also assume that the
spacetime is described by a FLRW metric of the form
ds2 ¼ dt2 − a2ðtÞdx⃗2. The Klein Gordon equation reads

ðDμDμ þm2 þ ξRÞϕ ¼ 0; ð1Þ

where Dμϕ ¼ ð∇μ þ iqAμÞϕ and R is the Ricci scalar.
Since the potential vector Aμ is homogeneous, one
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can expand the scalar field in modes as ϕ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

2ð2πaÞ3
p R

d3kðAk⃗e
ik⃗ x⃗hk⃗ þ Bk⃗e

−ik⃗ x⃗h�
−k⃗
Þ, where the mode

functions hk⃗ðtÞ satisfy

ḧk⃗ þ ða−2ðk3 þ qAÞ2 þ a−2k2⊥ þm2 þ σÞhk⃗ ¼ 0; ð2Þ

with σ¼ð6ξ−3=4Þ _a2=a2þð6ξ−3=2Þä=a. Once we have
obtained the mode equation (2), we can make an adiabatic
expansion of the field modes. To this end, one can propose
the usual WKB ansatz

hk⃗ ¼
1ffiffiffiffiffiffi
Ωk⃗

p e−i
R

Ωk⃗ðtÞdt; ð3Þ

where Wk can be expanded adiabatically, in powers of
derivatives of aðtÞ and AðtÞ, as Ωk⃗ ¼

P∞
n¼0 ω

ðnÞ.
The choice of the leading termsωð0Þ is a crucial ingredient

to define the adiabatic expansion. For A ¼ 0 the proper

choice forωð0Þ isωð0Þ ¼ ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k⃗2=a2 þm2

q
. This defines the

conventional adiabatic expansion for a scalar field, as first
introduced in the pioneer works [14]. When the background
spacetime is Minkowski a ¼ 1, the choice proposed in [32]

wasωð0Þ ¼ ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk⃗ − qA⃗Þ2 þm2

q
. This choice assumes that

AðtÞ should be treated as a variable of zero adiabatic order,
like aðtÞ. As noted in [35,36], this choice runs into
difficulties in presence of a gravitational background. It
was proposed in [35,36] that the leading term should be

maintained as ωð0Þ ¼ ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k⃗2=a2 þm2

q
, even in the pres-

ence of an electromagnetic field. This means that AðtÞmust
be considered as a variable of adiabatic order 1, like _a. Hence
_A is of adiabatic order 2, etc.
Next to leading order terms can be obtained recursively

from (2). The adiabatic expansion allows us to regularize
the observables performing adiabatic subtractions. Since
the first terms of the adiabatic expansion capture all
potential ultraviolet divergences, one can subtract them,
obtaining finite and meaningful results. With this method,
we obtain the following vacuum expectation value of the
two point function

hϕ†ϕiren ¼
1

2ð2πaðtÞÞ3
Z

d3k½jhk⃗j2 − hϕ†ϕið0−2Þ
k⃗

�; ð4Þ

where hϕ†ϕið0−2Þ
k⃗

¼P2
n¼0ðΩ−1

k⃗
ÞðnÞ.

As stressed in the introduction, the adiabatic expansion
of the field modes translates into an adiabatic expansion of
the two-point function. The latter turns out to be equivalent
to the Schwinger-DeWitt expansion of the Feynman
propagator hTϕ†ðxÞϕðx0Þi. We will show this explicitly
at the coincident limit x0 → x at fourth and sixth adiabatic
orders. At fourth adiabatic order the corresponding momen-
tum integral is finite and we get

hϕ†ϕið4Þ ¼ 1

2ð2πaÞ3
Z

d3khϕ†ϕið4Þ
k⃗

¼ 1

16π2m2

�
36_a2ξ2ä

a3
−
17_a2ξä
a3

þ29_a2ä
15a3

þ18ξ2ä2

a2
−
5ξä2

a2
þ 3ä2

10a2
þ18_a4ξ2

a4
−
6_a4ξ
a4

það4Þξ
a

þ _a4

2a4
−
að4Þ

5a
þ

_A2q2

6a2
þ3að3Þ _aξ

a2
−
3að3Þ _a
5a2

�
:

ð5Þ

It is not difficult to check that the above result can be
reexpressed in the following covariant form

hϕ†ϕið4Þ ¼ E2

16π2m2
; ð6Þ

where E2 matches exactly the DeWitt coefficient [41]

E2 ¼ −
1

30
□Rþ 1

72
R2 −

1

180
RμνRμν þ

1

180
RμνρσRμνρσ

−
q2

12
FμνFμν þ

1

2
Q2 −

1

6
RQþ 1

6
□Q: ð7Þ

In the above expression Q is given by Q ¼ ξR. We note
that, to obtain equivalence with the Schwinger-DeWitt
proper-time method it has been essential to assume that
Aμ is of adiabatic order 1, Fμν of adiabatic order 2, etc.
With the zero adiabatic order assignment for Aμ one obtains
a noncovariant and ill-defined expression for hϕ†ϕið4Þ.
With our proposed leading order choice for ωð0Þ ¼ ω ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k⃗2=a2 þm2

q
we find equivalence with the Schwinger-

DeWitt expansion at very nontrivial higher orders. For
instance, our calculation for hϕ†ϕið6Þ gives
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hϕ†ϕið6Þ ¼ 1

2ð2πaÞ3
Z

d3khϕ†ϕið6Þ
k⃗

¼ −
108_a4ξ3ä

a5
þ 96_a4ξ2ä

a5
−
217_a4ξä
10a5

þ 197_a4ä
140a5

−
108_a2ξ3ä2

a4
þ 75_a2ξ2ä2

a4
−
221_a2ξä2

10a4
þ 159_a2ä2

70a4
−

_A2ξq2ä
a3

þ _a _Aq2ä
90a3

þ 23 _A2q2ä
90a3

−
36ξ3ä3

a3
−
24að3Þ _aξ2ä

a3
þ 12ξ2ä3

a3
þ 133að3Þ _aξä

10a3
þ 3ξä3

5a3
−
103að3Þ _a ä

60a3
−
14ä3

45a3
−
q2ä2

20a2

−
6að4Þξ2ä

a2
þ 17að4Þξä

10a2
−
43að4Þä
420a2

−
36_a6ξ3

a6
þ 6_a6ξ2

a6
þ _a6ξ

a6
−
að6Þξ
10a

−
_a6

6a6
þ 3að6Þ

140a
−

_a2 _A2ξq2

a4
þ 37_a2 _A2q2

180a4

−
_AAð3Þq2

15a2
−
2að5Þ _aξ
5a2

þ 3að5Þ _a
35a2

−
6að3Þ _a3ξ2

a4
−
6að4Þ _a2ξ2

a3
þ 7að3Þ _a3ξ

10a4
þ 31að4Þ _a2ξ

10a3
þ 13að3Þ _a3

140a4
−
23að4Þ _a2

60a3

−
3ðað3ÞÞ2ξ2

a2
þ 7ðað3ÞÞ2ξ

10a2
−
ðað3ÞÞ2
42a2

; ð8Þ

where aðnÞ refers to dna=dtn. The result turns out to be
proportional to the corresponding DeWitt coefficient of
sixth adiabatic order E3 [42,43]. The covariant expression
is given in the Appendix A.
We stress again that it has been crucial for obtaining the

above results the choice ωð0Þ ¼ω¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k⃗ 2=a2þm2

q
, instead

of ωð0Þ ¼ ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk⃗ − qA⃗Þ2=a2 þm2

q
. For completeness, a

comparison of the above formulation of the adiabatic
regularization with the Hadamard renormalization scheme
is given in the Appendix B.

A. Adiabatic regularization for fermions
in two-dimensions

To reinforce the previous analysis, and prior to face the
adiabatic regularization of charged fermions in four space-
time dimensions, it is also convenient to consider the
problem for a charged Dirac field in two-dimensions.
We will follow [35,36] and compare the results with the
pioneer analysis in [34]. The comparison will allow us to
understand why it has been necessary to reprehend the
problem, as already stressed above.
The quantum field satisfies the Dirac equation

ðiγμDμ −mÞψ ¼ 0, where Dμ ≡∇μ − Γμ − iqAμ and Γμ

is the spin connection. The curved space Dirac matrices
satisfy the anticommutation relations fγμ; γμg ¼ 2gμν.
We assume a homogeneous, time-dependent electric
background EðtÞ, with associated potential vector Aμ ¼
ð0;−AðtÞÞ. The metric is also assumed of the FLRW form
ds2 ¼ dt2 − a2ðtÞdx2. One can expand the Dirac field as
ψ ¼ R∞−∞ dk½Bkukðt; xÞ þD†vkðx; tÞ�, where the two inde-
pendent spinor solutions can be written as

ukðt;xÞ¼
eikxffiffiffiffiffiffiffiffi
2πa

p
�

hIkðtÞ
−hIIk ðtÞ

�
; vkðt;xÞ¼

e−ikxffiffiffiffiffiffiffiffi
2πa

p
�
hII�−k ðtÞ
hI�−kðtÞ

�
:

ð9Þ

The classical electric field satisfies the semiclassical
Maxwell equations ∇μFμν¼−qhψ̄γνψiren¼hjνiren, which
in our system turns out to be a single equation
_E ¼ −hjxiren. In this scenario the adiabatic rules are
univocally fixed: aðtÞ has to be considered of adiabatic
order 0, the energy-momentum tensor must be regularized
up to the second adiabatic order and the electric current
must to be regularized up to the first adiabatic order. The
adiabatic subtractions required to regularize the electric
current hjxi will be different depending on the adiabatic
order that we choose for the background field AðtÞ, i.e.,

hjxiA∼Oð0Þ
ren ¼ q

Z
dk
2πa

�
jhIIk j2 − jhIkj2

−
kþ qA

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþ qAÞ2=a2 þm2

p �
; ð10Þ

hjxiA∼Oð1Þ
ren ¼q

Z
dk
2πa

�
jhIIk j2− jhIkj2−

k
aω

−
m2qA
aω3

�
; ð11Þ

where ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2=a2 þm2

p
. In (10) we have considered A of

adiabatic order zero, while in (11) we have considered it of
adiabatic order one. One can check that the subtractions
obtained in the first case are the same to the ones obtained
in [34] for a ¼ 1. Although it can be proven [37] that these
two choices are equivalent when a ¼ 1, in the sense that

△hjxiren ¼ hjxiA∼Oð0Þ
ren − hjxiA∼Oð1Þ

ren ¼ 0, they are in general
nonequivalent. We can see how gravity breaks this equiv-
alence. In the second case we can easily see that the energy
density is covariantly conserved

∇μhTμ0iren þ∇μT
μ0
elec ¼ Eð _Eþ hjxirenÞ ¼ 0: ð12Þ

But, when we consider AðtÞ of adiabatic order 0, the
conservation does not hold any more, and one finds
∇μhTμ0iren þ∇μT

μ0
elec ∼ EðtÞhjxið2Þ, where hjxið2Þ is the
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subtraction term of adiabatic order two, which cannot be
properly absorbed into the definition of the electric current.
Moreover, only when A is considered of adiabatic order

1 the adiabatic expansion of the field modes turns out to be
equivalent to the Schwinger-DeWitt expansion of the two-
point function. For instance, the adiabatic expansion of the
two-point function at coincidence is found to be (at second
and fourth adiabatic order)

hψ̄ψið2Þ ¼ 1

4πm

�
ä
3a

�
¼ −

trE1

4πm
; ð13Þ

hψ̄ψið4Þ ¼ 1

4πm3

�
−

_a2ä
30a3

þ ä2

15a2
−
að4Þ

30a
þ 2 _A2q2

3a2
þ að3Þ _a

30a2

�

¼ −
trE2

4πm3
; ð14Þ

where E1 and E2 are the corresponding DeWitt coefficients.
They are given, in the covariant form, by [8,42,43]

E1 ¼
1

6
RI −Q; ð15Þ

E2 ¼
�
−

1

30
□Rþ 1

72
R2 −

1

180
RμνRμν þ

1

180
RμνρσRμνρσ

�
I

þ 1

12
WμνWμν þ

1

2
Q2 −

1

6
RQþ 1

6
□Q; ð16Þ

whereQ¼1
4
RI− i

2
qFμνγ

μγν andWμν¼−iqFμνI−1
4
Rμνρσγ

ργσ.
The above arguments make it necessary to reconsider the

problem of adiabatic regularization for fermions in time-
varying electric backgrounds in four dimensions. We will
adopt the view of considering Aμ of adiabatic order 1, as
advocated in [31,35,36,38], and in contrast to the view
adopted in [34]. The main reasons, as exposed above, are
(i) expected agreement with the Schwinger-DeWitt adia-
batic expansion of the two-point function at coincidence;
(ii) consistency with the covariant conservation of the
energy-momentum tensor when gravity is turned on. We
think these are convincing arguments to go further with our
proposed approach. For simplicity we will restrict our
analysis to Minkowski spacetime.

III. 4D DIRAC FIELDS: MODE EQUATIONS,
ANSATZ AND ADIABATIC EXPANSION

Let us consider a massive 4-dimensional spinor field ψ
interacting with a prescribed electric field. The correspond-
ing Dirac equation reads

ðiγμDμ −mÞψ ¼ 0; ð17Þ

where Dμ ≡ ∂μ − iqAμ and γμ are the (flat-space) Dirac
matrices satisfying the anticommutation relations fγμ; γνg ¼
2ημν. We consider ψ as a quantized Dirac field, while the

electromagnetic field is assumed to be a classical and
spatially homogeneous field E⃗ðtÞ ¼ ð0; 0; EðtÞÞ. It is very
convenient to choose a gauge such that only the z-component
of the vector potential is nonvanishing: Aμ¼ð0;0;0;−AðtÞÞ,
where EðtÞ ¼ − _AðtÞ.
To prepare things to propose a consistent ansatz for

the adiabatic expansion of the field modes it is very
important to transform the Dirac field as ψ 0 ¼ Uψ , where
U is the unitary operator U ¼ 1ffiffi

2
p γ0ðI − γ3Þ, which verifies

U ¼ U† ¼ U−1. This transformation will allow us to
express the Dirac field in terms of only two time-dependent
functions [see (20)]. The field ψ 0 obeys the Dirac equation
for the transformed matrices γ0μ ¼ UγμU†, namely: γ00 ¼
γ3γ0, γ01 ¼ −γ3γ1, γ02 ¼ −γ3γ2, γ03 ¼ −γ3. Substituting
them in the Dirac equation we easily get

½γ0∂0 − γ1∂1 − γ2∂2 − ∂3 − iqAðtÞ − imγ3�ψ 0 ¼ 0: ð18Þ

Expanding the field in Fourier modes, ψ 0ðt; x⃗Þ ¼R
d3k⃗

ð2πÞ3=2 ψ
0
k⃗
ðtÞeik⃗ x⃗, we obtain the following equation

½∂0− iγ0ðk1γ1þk2γ2þmγ3Þ− iðk3þqAðtÞÞγ0�ψ 0
k⃗
ðtÞ¼0;

ð19Þ

where k⃗≡ ðk1; k2; k3Þ. The form of the above equation
allows us to reexpress the field in terms of two-component
spinors as follows

ψ 0
k⃗;λ
ðtÞ ¼

 
hI
k⃗
ðtÞηλðk⃗Þ

hII
k⃗
ðtÞληλðk⃗Þ

!
; ð20Þ

where ηλ with λ ¼ �1 form an orthonormal basis of

two-spinors (η†ληλ0 ¼δλ;λ0) verifying k1σ1þk2σ2þmσ3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
1
þk2

2
þm2

p ηλ ¼ ληλ.

Their explicit expressions are

ηþ1ðk⃗Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2κðκ þmÞp �
κ þm

k1 þ ik2

�
;

η−1ðk⃗Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2κðκ þmÞp �−k1 þ ik2
κ þm

�
; ð21Þ

where κ ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ k22 þm2

p
. Substituting (20) in (19) and

using the Dirac representation for the matrices γμ, one
obtains the following differential equations for the func-
tions hI

k⃗
and hII

k⃗

_hI
k⃗
− iðk3 þ qAÞhI

k⃗
− iκhII

k⃗
¼ 0; ð22Þ

_hII
k⃗
þ iðk3 þ qAÞhII

k⃗
− iκhI

k⃗
¼ 0: ð23Þ

These equations are exactly the same as those obtained in
the two-dimensional case [35], where κ plays here the role
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of the mass. With the solutions of these equations we can
construct the u-type field modes (assumed to be of positive
frequency at early times) as follows

uk⃗;λðxÞ ¼
eik⃗ x⃗

ð2πÞ3=2
 

hI
k⃗
ðtÞηλðk⃗Þ

hII
k⃗
ðtÞληλðk⃗Þ

!
: ð24Þ

Similarly, one can construct the orthogonal v-type field
modes (of negative frequency at early times) as

vk⃗;λðxÞ ¼
e−ik⃗ x⃗

ð2πÞ3=2
 

−hII�
−k⃗
ðtÞη−λð−k⃗Þ

−hI�
−k⃗
ðtÞλη−λð−k⃗Þ

!
: ð25Þ

The normalization conditions for this set of spinors,
ðuk⃗;λ;vk⃗0;λ0 Þ¼0, ðuk⃗;λ;uk⃗0;λ0 Þ¼ðvk⃗;λ;vk⃗0;λ0 Þ¼δð3Þðk⃗− k⃗0Þδλλ0 ,
where (,) is the Dirac inner product, are ensured with
the normalization condition

jhI
k⃗
j2 þ jhII

k⃗
j2 ¼ 1; ð26Þ

which will be preserved on time. With this set of basic
spinor solutions one can construct the Fourier expansion of
the Dirac field operator

ψ 0ðxÞ ¼
X
λ

Z
d3k⃗½Bk⃗;λuk⃗;λðxÞ þD†

k⃗;λ
vk⃗;λðxÞ�; ð27Þ

where Bk⃗λ and Dk⃗λ are the annihilation operators for
particles and antiparticles respectively. The normalization
condition (26) guaranties the usual anticommutation rela-
tions for these operators: fBk⃗;λ; B

†
k⃗0;λ0

g ¼ fDk⃗;λ; D
†
k⃗0;λ0

g ¼
δ3ðk⃗ − k⃗0Þδλ;λ0 , and all other combinations are 0.

A. Adiabatic expansion

Armed with the above results we can determine a
consistent adiabatic expansion of the four dimensional
Dirac field modes interacting with the prescribed electric
background. Based on the two dimensional expansion
given in [35], and taking into account that the positive-
frequency solution with vanishing electric field, in the
representation associated to ψ 0, is given by

hIð0Þ
k⃗

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ω − k3
2ω

r
e−iωt; ð28Þ

hIIð0Þ
k⃗

¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωþ k3
2ω

r
e−iωt; ð29Þ

with ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k23 þ κ2

p
, we propose the following ansatz for

the field modes:

hI
k⃗
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ω − k3
2ω

r
FðtÞe−i

R
t Ωðt0Þdt0 ;

hII
k⃗
¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωþ k3
2ω

r
GðtÞe−i

R
t Ωðt0Þdt0 ; ð30Þ

where the complex functions FðtÞ and GðtÞ and the real
function ΩðtÞ are expanded adiabatically

ΩðtÞ ¼
X∞
n¼0

ωðnÞðtÞ; FðtÞ ¼
X∞
n¼0

FðnÞðtÞ;

GðtÞ ¼
X∞
n¼0

GðnÞðtÞ: ð31Þ

Here, ΩðnÞ, FðnÞ and GðnÞ are functions of adiabatic order n.
The adiabatic order of a given function will be determined
by its dependence on the potential vector AðtÞ and its
derivatives. In order to recover at leading order the exact
solution with vanishing electric field AðtÞ ¼ 0 we demand
Fð0Þ ¼ Gð0Þ ¼ 1 and ωð0Þ ¼ ω. With this condition we are
implicitly fixing the adiabatic order of the potential vector
AðtÞ to 1, hence, _AðtÞ and AðtÞ2 will be of order 2, ÄðtÞ,
AðtÞ _AðtÞ and AðtÞ3 of order three and so on. For a detailed
discussion on the adiabatic order assignment see [36].
Plugging the ansatz (30) in the mode equations (22)

and (23) and also in the normalization condition (26)
we get a system of equations for the functions FðtÞ, GðtÞ
and ΩðtÞ

ðω − k3Þð _F − iΩF − iðk3 þ qAÞFÞ þ iκ2G ¼ 0; ð32Þ

ðωþk3Þð _G− iΩGþ iðk3þqAÞGÞþ iκ2F¼ 0; ð33Þ

ω−k3
2ω

jFj2þωþk3
2ω

jGj2¼ 1: ð34Þ

In order to obtain the expressions of the adiabatic terms
ωðnÞ, FðnÞ and GðnÞ, we introduce the expansion (31) into
Eqs. (32), (33) and (34) and solve them recursively, order
by order. Note that Gðk3; qAÞ satisfies the same equations
as Fð−k3;−qAÞ, hence we takeGðk3; qAÞ ¼ Fð−k3;−qAÞ.
The system can be solved algebraically by iteration and the
general solution is given by

ωðnÞ ¼ ðω − k3Þ
2ω

�
_Fðn−1Þ
y −

Xn−1
i¼1

ωðn−iÞFðiÞ
x − qAFðn−1Þ

x

�

þ ðωþ k3Þ
2ω

�
_Gðn−1Þ
y −

Xn−1
i¼1

ωðn−iÞGðiÞ
x þ qAGðn−1Þ

x

�
;

ð35Þ
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FðnÞ
x ¼ ðωþ k3Þ

4ω2

�
_Fðn−1Þ
y −

Xn−1
i¼1

ωðn−iÞFðiÞ
x − qAFðn−1Þ

x

− _Gðn−1Þ
y þ

Xn−1
i¼1

ωðn−iÞGðiÞ
x − qAGðn−1Þ

x

�

−
ðω − k3Þ

4ω

Xn−1
i¼1

ðFðiÞ
x Fðn−iÞ

x þ FðiÞ
y Fðn−iÞ

y Þ

−
ðωþ k3Þ

4ω

Xn−1
i¼1

ðGðiÞ
x Gðn−iÞ

x þGðiÞ
y Gðn−iÞ

y Þ; ð36Þ

FðnÞ
y ¼GðnÞ

y −
ðω−k3Þ

κ2

�
_Fðn−1Þ
x þ

Xn−1
i¼1

ωðn−iÞFðiÞ
y þqAFðn−1Þ

y

�
;

ð37Þ
where we have parametrized F and G in terms of real
functions as F ¼ Fx þ iFy and G ¼ Gx þ iGy. Note that
there is an ambiguity in the imaginary part (37). However, it
disappears when computing physical observables. Further
discussions on this issue are given in [20]. For simplicity
we choose

FðnÞ
y ¼ −GðnÞ

y

¼ −
ðω − k3Þ

2κ2

�
_Fðn−1Þ
x þ

Xn−1
i¼1

ωðn−iÞFðiÞ
y þ qAFðn−1Þ

y

�
:

ð38Þ

With the initial conditions Fð0Þ
x ¼Gð0Þ

x ¼1, Fð0Þ
y ¼ Gð0Þ

y ¼ 0

and ωð0Þ ¼ ω and by fixing the ambiguity according to
(38), the solutions for the adiabatic functions FðnÞ, GðnÞ and
ωðnÞ are univocally determined. In Appendix C we give the
four first terms of the adiabatic expansion.

IV. 4D DIRAC FIELDS: ADIABATIC
REGULARIZATION/RENORMALIZATION

In this section we will carry out the detailed renormal-
ization of the vacuum expectation value of the electric
current hjμi ¼ −qhψ̄γμψi, which constitutes the most
important physical quantity in the context of strong
electrodynamics [44]. The only non-vanishing component
of the electric current is the one parallel to the electric field.
With the results of Sec. III A we can obtain the formal
expression of the z-component of the mean electric current

hj3i¼ 2q
ð2πÞ3

Z
d3kðjhII

k⃗
j2− jhI

k⃗
j2Þ

¼ q
2π2

Z
∞

0

k⊥dk⊥
Z

∞

−∞
dk3ðjhIIk⃗ j2− jhI

k⃗
j2Þ; ð39Þ

where k⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ k22

p
. This expression is UV divergent

and we have to renormalize it. The current has scaling
dimension 3, meaning that the divergences could appear up
to third adiabatic order, so we have to perform adiabatic
subtractions until and including the third order (note that
the energy-momentum tensor requires adiabatic subtrac-
tions of order 4) [8]. Therefore, the renormalized form of
the electric current is

hj3iren¼
q
2π2

Z
∞

0

k⊥dk⊥
Z

∞

−∞
dk3ðjhIIk⃗ j2− jhI

k⃗
j2− hj3ið0−3Þ

k⃗
Þ;

ð40Þ

with hj3iðnÞ
k⃗

¼ðjhII
k⃗
j2− jhI

k⃗
j2ÞðnÞ ¼−ω−k3

2ω

P
n
i¼0F

ðiÞF�ðn−iÞþ
ωþk3
2ω

P
n
i¼0G

ðiÞG�ðn−iÞ. These subtraction terms contain all
the divergences of the electric current, giving us a finite and
meaningful result for hj3iren. The other components give a
vanishing result. After computing the subtraction terms, we
finally obtain

hj3iren¼
q
2π2

Z
∞

0

k⊥dk⊥
Z

∞

−∞
dk3

�
ðjhII

k⃗
j2− jhI

k⃗
j2Þ−k3

ω

−
κ2qA
ω3

þ3κ2k3q2A2

2ω5
þðκ2−4k23Þκ2q3A3

2ω7
þ κ2qÄ

4ω5

�
:

ð41Þ

A. Conformal anomaly

An important test of any proposed renormalization
method is the necessary agreement with the conformal
anomaly. Here we compute the trace anomaly with our
proposed extended adiabatic method. The trace of the
energy-momentum tensor is proportional to the mass of
the field hTμ

μi ¼ mhψ̄ψi. Although the two point function
has to be renormalized until the third adiabatic order, the
trace of the energy momentum tensor must be regularized
up to fourth order, i.e.,

hTμ
μiren ¼ mðhψ̄ψiren − hψ̄ψið4ÞÞ: ð42Þ

In the massless limit the first term vanishes, so the
anomaly should appear in the subtractions of adiabatic
order 4, that is

hTμ
μiren ¼ − lim

m→0
mhψ̄ψið4Þ: ð43Þ

The vacuum expectation value of the two-point function
hψ̄ψi is given by

hψ̄ψi¼ 1

2π2

Z
∞

0

k⊥dk⊥
Z

∞

−∞
dk3

m
κ
ðhI�

k⃗
hII
k⃗
þhII�

k⃗
hI
k⃗
Þ: ð44Þ
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By using the adiabatic regularization method, one can find
the 4th order subtraction terms. Hence, in the massless limit
we get

hTμ
μiren ¼ lim

m→0

m2

2π2

Z
∞

0

k⊥dk⊥
Z

∞

−∞
dk3

1

κ
ðhI�

k⃗
hII
k⃗
þhII�

k⃗
hI
k⃗
Þð4Þ

¼−
q2 _A2

12π2
: ð45Þ

One can easily rewrite this result in a covariant way,
obtaining the result

hTμ
μiren ¼

q2

24π2
FμνFμν: ð46Þ

It fully agrees with the well-known result for the trace
anomaly induced by an electromagnetic field for a Dirac
field [45].

B. Relation with the DeWitt coefficients

Wewill briefly see that the proposed adiabatic expansion
for the fermionic modes agrees with the Schwinger-DeWitt
adiabatic expansion for the Feynman propagator. We
have proved this for the adiabatic expansion of the two-
dimensional theory in Sec. II. In the previous subsection we
have implicitly obtained the 4th adiabatic order, given by

hψ̄ψið4Þ ¼ −
1

16π2m

�
2

3
q2FμνFμν

�
¼ −

trE2

16π2m
ð47Þ

where E2 coincides with the corresponding DeWitt coef-
ficient at coincidence. Note that the numerical coefficient in
the denominator is ð4πÞd=2, where d is the spacetime
dimension. Moreover, at 6th adiabatic order we obtain

hψ̄ψið6Þ ¼ −
1

16π2m

�
2q2Ä2

15a2
þ 2q2Að3Þ _A

5a2

�
ð48Þ

We can rewrite the above expression in a covariant form.
It can be checked that it also fits with the DeWitt
coefficient E3

hψ̄ψið6Þ ¼ −
trE3

16π2m3
ð49Þ

The general expression for E3 is given in Appendix A. Here
only the flat space terms are relevant

E3 ¼ −
1

360
ð8Wμν;ρWμν;ρ þ 2Wμν

;νW;ρ
μρ þ 12Wμν;ρ

ρWμν

− 12WμνWνρWρ
μ þ 6Q;μ

μ
ν
ν þ 60QQ;μ

μ þ 30Q;μQ;μ

þ 60Q3 þ 30QWμνWμνÞ ð50Þ

where Q¼− i
2
qFμνγ

μγν and Wμν ¼ −iqFμνI. We reinforce
that the adiabatic order assignment 1 for Aμ is a basic
ingredient for achieving the above equivalence.

C. Introduction of a mass scale and
renormalization ambiguities

Acrucial point in the adiabatic regularizationmethod is to
fix the leading order of the adiabatic expansion, namelyωð0Þ.

It seems very natural to define it as ωð0Þ ≡ ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k⃗2 þm2

p
,

as we did in Sec. III A. However, there exist an inherent
ambiguity in the method [46]. It is possible to choose
a slightly different expression for the leading term

ωð0Þ ≡ ωμ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k⃗2 þ μ2

q
, where μ corresponds to an arbitrary

mass scale. In order to obtain the new adiabatic subtractions
with this new choice of the leading order, one has to rewrite
the mode equations as

i∂thIk⃗ ¼ −ðk3 þ qAðtÞÞhI
k⃗
− ðκμ þ σÞhII

k⃗

i∂thIIk⃗ ¼ ðk3 þ qAðtÞÞhII
k⃗
− ðκμ þ σÞhI

k⃗
; ð51Þ

where σ ¼ κ − κμ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ k22 þm2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ k22 þ μ2

p
is

assumed of adiabatic order 1. Note that we recover the
original adiabatic subtraction method by choosing μ ¼ m,
and hence σ ¼ 0.
In this context, the ansatz of the adiabatic expansion will

take the form

hI
k⃗
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωμ − k3
2ωμ

s
FμðtÞe−i

R
t Ωμðt0Þdt0 ;

hII
k⃗
¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωμ þ k3
2ωμ

s
GμðtÞe−i

R
t Ωμðt0Þdt0 ; ð52Þ

where the functions FμðtÞ, GμðtÞ and ΩμðtÞ are expanded
adiabatically as in (31). In order to recover at order 0 the
limit of vanishing electric field (and also the limit σ → 0,
since σ is now assumed of adiabatic order 1) we demand as

initial conditions Fð0Þ
μ ¼ 1, Gð0Þ

μ ¼ 1 and ωð0Þ
μ ¼ ωμ. With

this new choice we can obtain the expressions of the

adiabatic terms ωðnÞ
μ , FðnÞ

μ and GðnÞ
μ as before: introducing

the ansatz (52) in the mode equations (51) and in the
normalization condition (26), expanding the functions
FμðtÞ, GμðtÞ and ΩμðtÞ adiabatically, and finally, solving
them recursively, order by order. In Appendix D we give
the details of the computation and also the expression of the
adiabatic renormalization subtractions for the electric
current. We remark that the introduction of a mass scale
μ causes an unavoidable ambiguity in the renormalization
procedure: it allows us to perform different adiabatic
subtractions to render finite the physical observables,
depending on the scale μ we choose. For instance, con-
cerning the renormalized current hψ̄γνψi one can compare
it at two different scales. Using the results given in the
Appendix D we easily obtain
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hψ̄γνψirenðμÞ−hψ̄γνψirenðμ0Þ¼
q

12π2
ln

�
μ2

μ20

�
∇σFσν: ð53Þ

This ambiguity can be absorbed in the renormalization
of the coupling constant. To this end it is convenient to
scale the field as Ãν ≡ qAν and rewrite the semiclassical
Maxwell equations as

1

q2
∇αF̃αβ ¼ −hψ̄γνψiren: ð54Þ

The above relation for the current (53), reexpressed in
terms of F̃αβ, translates into the well-known shift:

q−2ðμÞ − q−2ðμ0Þ ¼ −ð12π2Þ−1 ln μ2

μ2
0

, obtained within per-

turbative QED using minimal subtraction in dimensional
regularization [47]. The renormalized current given in (41)
should be understood as defined at the natural scale of the
problem, defined by the physical mass of the charged field,
i.e., μ ¼ m and hence q≡ qðmÞ.

V. PHYSICAL APPLICATION: THE
SAUTER ELECTRIC PULSE

As mentioned in the Introduction, one of the main
advantages of the adiabatic renormalization method is its
proficiency to perform numerical computations and ana-
lytical approximations. We will devote this section to study
the properties of the renormalized expression of the current
(41) for the case of a pulsed electric field in a 1þ 3
dimensional setting.
Let us consider the well-known Sauter-type pulse EðtÞ ¼

E0cosh−2ðt=τÞ with τ > 0, and its corresponding potential
AðtÞ ¼ −E0τ tanh ðt=τÞ, which is bounded at early and late
times, Að�∞Þ ¼∓ E0τ. This kind of pulse produces a

number of particles, and then also a current, which tends to
be constant when t → ∞. In Fig. 1 we represent the
evolution of the current induced by this pulse for different
values of E0 and τ. These figures have been obtained by
solving numerically the differential equations for the modes
and integrating the expression of the renormalized cur-
rent (41).

A. Late times behavior of the electric current

We can obtain an expression of the current at late times
for an electric background that vanishes at early and late
times. Let us consider a pulse such that in the early and late
time limits the potential is bounded as Að−∞Þ ¼ −A0,
Að∞Þ ¼ A0, and its derivatives vanish. From Eqs. (22) and
(23), one can see that at late times t → þ∞ the modes
behave as [31]

hI=II
k⃗

ðtÞ ∼�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωout ∓ ðk3 þ qA0Þ

2ωout

s
αk⃗e

−iωoutt

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωout � ðk3 þ qA0Þ

2ωout

s
βk⃗e

iωoutt; ð55Þ

where ωin=out ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk3 ∓ qA0Þ2 þ κ2

p
, and αk⃗ and βk⃗ are

the usual Bogoliubov coefficients satisfying the relation
jαk⃗j2 þ jβk⃗j2 ¼ 1, that ensures the normalization condition
(26). The coefficient jβk⃗j2 gives the density number of

created particles at any value of k⃗.
The renormalized electric current at late times induced

by an electric pulse in terms of the coefficient jβk⃗j2 can be
obtained by introducing the expression of the modes at late

FIG. 1. Evolution of the renormalized current induced by a Sauter-type electric pulse for different values of the parameters. In figure
(a) the field strength is fixed (E0 ¼ 2Ec), where Ec ¼ m2=q is the critical electric field (or Schwinger limit), that is the scale above which
the electric field can produce particles. In figure (b) the width of the pulse is fixed (τ ¼ 1=m). We have used dimensionless variables, in
terms of the mass and the charge.
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times (55) in the expression of the current (41). We obtain,
for large t,

hj3iren∼−
q
π2

Z
∞

0

k⊥dk⊥
Z

∞

−∞
dk3

k3þqA0

ωout
jβk⃗j2

þ q
2π2

Z
∞

0

k⊥dk⊥
Z

∞

−∞
dk3

�
k3þqA0

ωout
−
k3
ω

−
κ2qA0

ω3
þ3κ2k3q2A2

0

2ω5
þðκ2−4k23Þκ2q3A3

0

2ω7

�
: ð56Þ

In Appendix E we prove that the second integral of this
expression vanishes, so the current at late times is given by
the simple expression

hj3iren ∼ −
q
π2

Z
∞

0

k⊥dk⊥
Z

∞

−∞
dk3

k3 þ qA0

ωout
jβk⃗j2: ð57Þ

As expected, the final current is related to the number
density of particles. The analytic expression of jβk⃗j2
depends on the form of the background.

B. Scaling behavior for large field strength

It is interesting to study the behavior of the current in the
limit of large field strength. To this end, we consider again
the example of the Sauter pulse, for which the coefficient
jβk⃗j2 is given by (see [31] for more details)

jβk⃗j2 ¼
cosh ð2πqE0τ

2Þ − cosh ðπðωout − ωinÞτÞ
2 sinh ðπωinτÞ sinh ðπωoutτÞ

: ð58Þ

Plugging it into (57) we can obtain the current at late times
induced by the pulse. As a test, one can compare the results
given by (57) with the ones given by the exact expression
(41) for large t, which are represented in Fig. 1.
For this pulse, assuming qE0 > 0, the large field strength

limit corresponds to qE0 ≫ 0. A numerical analysis of the
expression (58) shows that the relevant values of κ and k3
are of the order of

ffiffiffiffiffiffiffiffi
qE0

p
and qE0τ, respectively. Therefore,

in order to study properly the limit of large E0, it is
convenient to introduce the following set of dimensionless
variables

k̃3 ¼
k3

qE0τ
; κ̃ ¼ κffiffiffiffiffiffiffiffi

qE0

p ; x ¼ qE0τ
2; ð59Þ

and study the limit x → ∞ maintaining k̃3 and κ̃ constant.
Then, we rewrite jβk⃗j2 as

jβk⃗j2 ¼
cosh ð2πxÞ − cosh ðπðω̃outðxÞ − ω̃inðxÞÞÞ

2 sinh ðπω̃outðxÞÞ sinh ðπω̃inðxÞÞ
; ð60Þ

where ω̃in=outðxÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2ðk̃3�1Þ2þxκ̃2

q
. In the limit x → ∞

the above expression for jβk⃗j2 is independent of x, and it is
given by

jβk⃗j2 ∼ e
−π κ̃2

1−k̃2
3Θð1 − jk̃3jÞ

¼ e
−π

k2⊥þm2

qE0

�
1

1−ð k3
qE0τ

Þ2

�
ΘðqE0τ − jk3jÞ: ð61Þ

Substituting the expression (61) into (57) and taking
into account that k3−qE0τ

ωout
∼ −1 for large E0, we obtain the

behavior of the current at late times created by a high
intensity pulse

hj3iren ∼
q3E2

0τ

2π3

Z
1

−1
dsð1 − s2Þe−π m2

qE0
ð 1

1−s2
Þ: ð62Þ

Assuming now that qE0 ≫ m2, the above integral (62)
can be done exactly and we finally obtain

hj3iren ∼
2

3π3
q3E2

0τ; ð63Þ

which is the predicted expression of the current in the limit
of large field strength E0. We can also obtain the total
number density of created quanta for the Sauter pulse in this
limit

hNi ¼
X
λ

Z
d3k
ð2πÞ3 ðjβk⃗j

2 þ jβ−k⃗j2Þ ∼
2

3π3
q2E2

0τ: ð64Þ

It is interesting to compare the result (63) with the one
obtained for a scalar field. The coefficient jβk⃗j2 in this case
has a different expression, but it tends to the same limit for
large E0 (61). Therefore the scaling behavior of the current
at late times (hj3iscalarren ∼ 1

3π3
q3E2

0τ) will be the same as in
the fermionic case, except for the factor 2, on account of the
absence of the spin degree of freedom.
For completeness, it is worth to see how the above results

can also serve to describe the Schwinger limit, i.e, a
constant electric field. Note that the expression (61) has
been obtained for the limit E0τ

2 ≫ 0, so it should also be
valid for the limit of large τ, keeping E0 constant, which
describes a pulse with a large width. Bringing this limit to

the extreme case τ → ∞, we get jβk⃗j2 ∼ exp ð−π k2⊥þm2

qE0
Þ,

which is the well-known expression for the beta coeffi-
cients of a constant electric field [12] leading to the
Schwinger formula for the vacuum persistence amplitude.

VI. CONCLUSIONS

In this work we have extended the adiabatic regulari-
zation method for 4-dimensional Dirac fields interacting
with a time-varying electric background. Our approach
can be distinguished from previous analysis in the
literature in the adiabatic order assignment for the vector
potential, which is chosen to be of order 1. This choice is
required to fit it with the expected equivalence with the

BELTRÁN-PALAU, NAVARRO-SALAS, and PLA PHYS. REV. D 101, 105014 (2020)

105014-10



Schwinger-DeWitt adiabatic expansion. Our proposal
has required to introduce a nontrivial ansatz, Eq. (30),
to generate a self-consistent adiabatic expansion of the
fermionic modes. The given expansion turns out to
be different from the WKB-type expansion used for
scalar fields. With this extension we have obtained a
well-defined prediction, Eq. (41), for the renormalized
electric current induced by the created particles. Our
proposal is consistent, in the massless limit, with the
conformal anomaly. The expected equivalence with the
Schwinger-DeWitt expansion is explicitly realized. In
parallel we have also explored the physical consequen-
ces of the introduction of an arbitrary mass scale on
the adiabatic regularization scheme, finding consistency
with the behavior of the effective scaling of the elec-
tric coupling constant. To illustrate the power of the
method we have analyzed the pair production phenome-
non in the particular case of a Sauter-type electric pulse.

In particular, we have obtained the scaling behavior of
the current in the strong field regime [Eq. (63)].
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APPENDIX A: DEWITT COEFFICIENT E3

The expression for the DeWitt coefficient of sixth
adiabatic order is [42,43]

E3 ¼ −
1

7!

�
−18R;μ

μ
ν
ν þ 17R;μR;μ − 2Rμν;ρRμν;ρ − 4Rμν;ρRμρ;ν þ 9Rμνρσ;αRμνρσ;α þ 28RR;μ

μ − 8RμνRμν
;ρ
ρ

þ 24RμνRμρ;ν
ρ þ 12RμνρσRμνρσ;α

α −
35

9
R3 þ 14

3
RRμνRμν −

14

3
RRμνρσRμνρσ þ 208

9
RμνRμρRν

ρ

−
64

3
RμνRρσRμρνσ þ 16

3
Rμ

νRμρσαRνρσα −
44

9
RμνρσRμναβRρσ

αβ −
80

9
RμνρσRμαρβRν

α
σ
β

�
I

−
1

360

�
8Wμν;ρWμν;ρ þ 2Wμν

;νWμρ
;ρ þ 12Wμν;ρ

ρWμν − 12WμνWνρWρ
μ − 6RμνρσWμνWρσ þ 4RμνWμρWν

ρ

− 5RWμνWμν þ 6Q;μ
μ
ν
ν þ 60QQ;μ

μ þ 30Q;μQ;μ þ 60Q3 þ 30QWμνWμν − 10RQ;μ
μ − 4RμνQ;μν − 12R;μQ;μ

− 30Q2R − 12QR;μ
μ þ 5QR2 − 2QRμνRμν þ 2QRμνρσRμνρσ

�
ðA1Þ

where, for scalar fields Q ¼ ξR, Wμν ¼ iqFμν and I ¼ 1,
while for Dirac fields Q ¼ 1

4
RI − i

2
qFμνγ

μγν, Wμν ¼
−iqFμνI − 1

4
Rμνρσγ

ργσ and I is the identity matrix.

APPENDIX B: MATCHING HADAMARD
COEFFICIENTS WITH SCALAR
ADIABATIC REGULARIZATION

In this appendix, we relate the adiabatic regularization
method with Hadamard renormalization for charged
scalar fields. To simplify the comparison we will
restrict the analysis to Minkowski spacetime. In Sec. II
we have introduced the basics of the adiabatic regulariza-
tion method for 4-dimensional charged scalar fields
interacting with an electromagnetic background. The
renormalized vacuum expectation value on the two point
function was given in (4). For the electric current, defined
as jμ ¼ iq½ϕ†Dμϕ − ðDμϕÞ†ϕ�, we obtain

hj3iren ¼
q

ð2πÞ3
Z

d3k½ðk3 − qAÞjhk⃗j2 − hj3ið0−3Þ
k⃗

�; ðB1Þ

with hj3ið0−3Þ
k⃗

¼P3
n¼0k3ðΩ−1

k⃗
ÞðnÞ−qAhϕ†ϕið0−2Þ

k⃗
. To com-

pute these subtraction terms, we usually fix the leading

order of the adiabatic expansion as ωð0Þ ¼ ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k⃗2 þm2

p
.

As explained in the main text, the choice of the leading
term is crucial to define the adiabatic expansion. We have
argued that to properly fix the leading therm we have to
choose the vector potential A of adiabatic order 1. However,
the choice of the leading term ωð0Þ is not yet completely
fixed, and one can make a more general choice defining

ωð0Þ ¼ ωμ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k⃗2 þ μ2

q
, where μ is an arbitrary mass scale.

With this new choice the adiabatic expansion can be re-
calculated, giving us slightly different subtraction terms.
An exhaustive analysis of this ambiguity can be found in
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[46]. The ambiguity on the subtractions, leads to an
ambiguity on the physical observables. For the two point
function the ambiguity manifests as

hϕ†ϕirenðμÞ ¼ hϕ†ϕirenðμ0Þ −
α

2

�
m2 ln

�
μ2

μ20

�
− μ2 þ μ20

�
;

ðB2Þ

where α ¼ 1
2ð2πÞ2, and for the electric current we find

hj3irenðμÞ ¼ hj3irenðμ0Þ −
α

6
ln

�
μ2

μ20

�
q2Ä: ðB3Þ

Rewriting the equation above in a covariant way, we get

hjνirenðμÞ ¼ hjνirenðμ0Þ −
q2α
6

ln

�
μ2

μ20

�
∇σFσν: ðB4Þ

1. Matching with Hadamard renormalization

We can compare the results summarized in Sec. II with
the results given by Hadamard renormalization, particular-
izing for the case in which Aμ ¼ ð0; 0; 0;−AðtÞÞ. Adopting
the notation given in [39], the expectation value of the two
point function can be expressed as

hϕϕ†iren ¼ αw0ðxÞ; ðB5Þ

and the electric current is given by

hjμi ¼ −2qαðqAμw0ðxÞ þ ℑ½w1μðxÞ�Þ; ðB6Þ

where α ¼ 1
2ð2πÞ2 and the functions w0 and w1μ are the first

terms of the covariant Taylor series expansion of the
Hadamard biscalar Wðx; x0Þ.
Comparing (B5) with (4) we immediately get

αw0 ¼
1

2ð2πÞ3
Z

d3k

�
jhk⃗j2 −

X2
n¼0

ðΩ−1
k⃗
ÞðnÞ
�
; ðB7Þ

and hence, by using the previous result and Eqs. (B1) and
(B6) we directly find

αℑðw13Þ¼
q

2ð2πÞ3
Z

d3k
�
k3jhk⃗j2−

X3
n¼0

k3ðΩ−1
k⃗
ÞðnÞ
�
: ðB8Þ

Hadamard renormalization scheme also presents a renorm-
alization ambiguity in even space-time dimensions, due to
the choice of the renormalization lenght scale l. The
ambiguity is manifested in the physical observables as

hϕϕ†iren → hϕϕ†iren þ
α

2
m2 lnl2; ðB9Þ

hjμiren → hjμiren þ
αq2

6
ð∇ρFρμÞ lnl2: ðB10Þ

Note that the length scale l is inversely proportional to
the mass scale μ. Comparing these results with the ones
obtained with adiabatic regularization [Eqs. (B2) and (B4)]
we find that the logarithmic part of the ambiguity is exactly
the same. However, with adiabatic regularization we also
find a quadratic term in the ambiguity of the two point
function.

APPENDIX C: SUBTRACTION TERMS

In this appendix we give the explicit expressions of
the adiabatic expansion of the fermionic field modes up to
and including the fourth adiabatic order. We remind that
GðnÞðk3; qAÞ ¼ FðnÞð−k3;−qAÞ.
Order 0

ωð0Þ ¼ω; Fð0Þ
x ¼Gð0Þ

x ¼1; Fð0Þ
y ¼Gð0Þ

y ¼0: ðC1Þ

Order 1

ωð1Þ ¼ qAk3
ω

; Fð1Þ
x ¼−

qAðωþ k3Þ
2ω2

; Fð1Þ
y ¼Gð1Þ

y ¼ 0:

ðC2Þ

Order 2

ωð2Þ ¼ q2A2κ2

2ω4
; Fð2Þ

x ¼ −
5q2A2κ2

8ω4
þ q2A2ðωþ k3Þ

2ω3
;

Fð2Þ
y ¼ −Gð2Þ

y ¼ q _A
4ω2

: ðC3Þ

Order 3

ωð3Þ ¼ −
q3A3κ2k3

2ω5
−
qÄk3
4ω3

; ðC4Þ

Fð3Þ
x ¼ 11q3A3κ2

16ω5
−
q3A3

2ω3
þ 15q3A3κ2k3

16ω6

−
q3A3k3
2ω4

þ qÄðωþ k3Þ
8ω4

; ðC5Þ

Fð3Þ
y ¼ −Gð3Þ

y ¼ −
5q2A _Ak3

8ω4
: ðC6Þ

Order 4

ωð4Þ ¼ −
5q4A4κ4

8ω7
þ q4A4κ2

2ω5
−
3κ2q2AÄ
4ω5

þ 5q2AÄ
8ω3

þ 5k23q
2 _A2

8ω5
; ðC7Þ
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Fð4Þ
x ¼ −

17A4κ2k3q4

16ω7
þ A4k3q4

2ω5
þ 195A4κ4q4

128ω8
−
31A4κ2q4

16ω6

þ A4q4

2ω4
−
Ak3q2Ä
2ω5

−
5 _A2k3q2

16ω5
þ 9Aκ2q2Ä

16ω6

þ 5 _A2κ2q2

16ω6
−
Aq2Ä
2ω4

−
11 _A2q2

32ω4
; ðC8Þ

Fð4Þ
y ¼ −Gð4Þ

y ¼ q3A2 _Að34ω2 − 45κ2Þ
32ω6

−
qAð3Þ

16ω4
: ðC9Þ

APPENDIX D: μ-PARAMETER
ADIABATIC EXPANSION

The general solution for FðnÞ
μ , GðnÞ

μ and ωðnÞ
μ is given by

ωðnÞ
μ ¼ ωðnÞðωμ; κμ; Fμ; GμÞ þ

σκμ
ωμ

½ðGμÞðn−1Þx þ ðFμÞðn−1Þx �

þ σ2

2ωμ
½ðGμÞðn−2Þx þ ðFμÞðn−2Þx �; ðD1Þ

ðFμÞðnÞx ¼ FðnÞ
x ðωμ; κμ; Fμ; GμÞ

þ 1

4ω2
μ

	
ωμ þ k3
ωμ − k3

½2σκμðGμÞðn−1Þx þ σ2ðGμÞðn−2Þx �

− 2σκμðFμÞðn−1Þx − σ2ðFμÞðn−2Þx



; ðD2Þ

ðFμÞðnÞy ¼ FðnÞ
y ðωμ; κμ; Fμ; GμÞ

þ 1

κ2μ
½2σκμðGμÞðn−1Þy þ σ2ðGμÞðn−2Þy �; ðD3Þ

where ωðnÞ=FðnÞ=GðnÞðωμ; κμ; Fμ; GμÞ are given by the
expressions (35), (36) and (37) with the changes
ðω;κ;F;GÞ→ðωμ;κμ;Fμ;GμÞ. Note again that Gμðk3; qAÞ
satisfies the same equations than Fμð−k3;−qAÞ, and hence
GðnÞ

μ ðk3; qAÞ ¼ FðnÞ
μ ð−k3;−qAÞ. We also find an ambiguity

in the imaginary part (D1). For simplicity we choose

ðFμÞðnÞy ¼−ðGμÞðnÞy

¼−
ðωμ−k3Þ

2κ2μ

�
ð _FμÞðn−1Þx þ

Xn−1
i¼1

ωðn−iÞ
μ ðFμÞðiÞy

þqAðFμÞðn−1Þy

−
1

ωμ−k3
ð2σκμðGμÞðn−1Þy þσ2ðGμÞðn−2Þy Þ

�
ðD4Þ

With the initial conditions ðFμÞð0Þx ¼ ðGμÞð0Þx ¼ 1,

ðFμÞð0Þy ¼ ðGμÞð0Þy ¼ 0 and ωð0Þ
μ ¼ ωμ and by fixing the

ambiguity (D4), the solutions for the adiabatic functions

FðnÞ
μ , GðnÞ

μ and ωðnÞ
μ are univocally determined.

The renormalized electric current for an arbitrary mass
scale is given by

hj3iren ¼
q
2π2

Z
∞

0

k⊥dk⊥
Z

∞

−∞
dk3½ðjhIIk⃗ j2 − jhI

k⃗
j2Þ

− hj3ið0−3Þ
k⃗

ðμÞ�; ðD5Þ

with

hj3ið0Þ
k⃗
ðμÞ ¼ k3

ωμ
; ðD6Þ

hj3ið1Þ
k⃗
ðμÞ ¼ κ2μqA

ω3
μ

−
2k3κμσ

ω3
μ

; ðD7Þ

hj3ið2Þ
k⃗
ðμÞ ¼ −

3κ2k3q2A2

2ω5
μ

−
2qAκμσð3κ2μ − 2ω2

μÞ
ω5
μ

þ 3k3σ2ð2κ2μ − ω2
μÞ

ω5
μ

; ðD8Þ

hj3ið3Þ
k⃗
ðμÞ ¼ þ κ2μq3A3ð4ω2

μ − 5κ2μÞ
2ω7

μ

−
2k3σ3ð10κ4μ − 9κ2μω

2
μ þ ω4

μÞ
κω7

μ

þ 3k3q2A2σκμð5κ2μ − 2ω2
μÞ

ω7
μ

þ 3qAσ2ð10κ4μ − 11κ2μω
2
μ þ 2ω4

μÞ
ω7
μ

−
κ2μqÄ

4ω5
μ
:

ðD9Þ

APPENDIX E: SIMPLIFICATION OF THE
EXPRESSION OF THE CURRENT

AT LATE TIMES

In this appendix we prove that the second integral in the
expression of the current at late times [see Eq. (56)],

I ¼
Z

∞

0

k⊥dk⊥
Z

∞

−∞
dk3

�
k3 þ qA0

ωout
−
k3
ω

−
κ2qA0

ω3

þ 3κ2k3q2A2
0

2ω5
þ ðκ2 − 4k23Þκ2q3A3

0

2ω7

�
; ðE1Þ

vanishes. Taking into account the property ð1þ 2xyþ
y2Þ−1=2 ¼P∞

n¼0 Pnð−xÞyn, where PnðxÞ are the Legendre
polynomials, we can expand the first term of the integral
around A0 ¼ 0 as follows
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k3 þ qA0

ωout
¼
X∞
n¼0

cnðk⃗ÞðqA0Þn;

where

c0ðk⃗Þ¼
k3
ω
;

cnðk⃗Þ¼
1

ωn

�
Pn−1

�
−
k3
ω

�
þk3
ω
Pn

�
−
k3
ω

��
forn>0: ðE2Þ

One can see that the first four terms of this expansion give
exactly the rest of the terms of the integral (E1) (the
subtraction terms) with a global change of sign. Therefore
they are cancelled and the integral can be written as

I ¼
Z

∞

0

k⊥dk⊥
X∞
n¼4

�
ðqA0Þn

Z
∞

−∞
dk3cnðk⃗Þ

�
: ðE3Þ

Under the change of variable x ¼ −k3=ω, the integral in k3
can be rewritten as

Z
∞

−∞
dk3cnðk⃗Þ ¼

1

κn−1

�Z
1

−1
dxð1 − x2Þn−32 Pn−1ðxÞ

−
Z

1

−1
dx xð1 − x2Þn−32 PnðxÞ

�
: ðE4Þ

The Legendre polynomials satisfy the property Pnð−xÞ ¼
ð−1ÞnPnðxÞ, so it is trivial to see that for any even
n these integrals vanish. For odd values of n and n ≥ 3

the function ð1 − x2Þn−32 is a polynomial of order n − 3.
Using the property

R
1
−1 dxPolaðxÞPbðxÞ ¼ 0 for a < b,

where PolaðxÞ is a polynomial of order a, we get that
the integrals in (E4) vanish for n ≥ 3. This last property can
be easily proven taking into account that PnðxÞ form a
basis, and any function can be expanded as fðxÞ ¼P∞

b¼0 cbPbðxÞ where cb ¼ ðbþ 1=2Þ R 1−1 dxfðxÞPbðxÞ,
and if the function is a polynomial fðxÞ ¼ PolaðxÞ,
for consistency cb ¼ 0 for any b > a. Therefore, for all
values of n involved in (E3) the integral vanishes, and then
I ¼ 0, as we wanted to prove.
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The point-splitting renormalization method offers a prescription to calculate finite expectation values of
quadratic operators constructed from quantum fields in a general curved spacetime. It has been recently
shown by Levi and Ori that when the background metric possesses an isometry, like stationary or
spherically symmetric black holes, the method can be upgraded into a pragmatic procedure of
renormalization that produces efficient numerical calculations. In this paper we show that when the
background enjoys three-dimensional spatial symmetries, like homogeneous expanding universes, the
above pragmatic regularization technique reduces to the well-established adiabatic regularization method.

DOI: 10.1103/PhysRevD.103.105002

I. INTRODUCTION

Obtaining accurate theoretical predictions from quantum
field theory has become a topic of great interest nowadays
for studies of the early universe and black holes. The naive
calculation of physical observables associated with a
quantum field ϕ, such as hϕ2ðxÞi or hTμνðxÞi, typically
leads to divergent sums or integrals of field modes, thereby
requiring the study of renormalization. While the system-
atics of renormalization in a general curved spacetime has
been known for several decades now [1–5], the imple-
mentation of the standard prescription to get specific results
is still difficult to put in practice even for the most simple
spacetime backgrounds. This is because the regularization
of ultraviolet divergences in a covariant way, and the
construction of the subtraction terms, are based on the
point-splitting technique [6–8], a purely analytical pro-
cedure that involves taking limits of points along geodesics.
However, getting the field modes in a given spacetime
background requires solving complicated differential equa-
tions, which can only be addressed numerically but in
exceptional cases. A procedure to transform the covariant
point-splitting technique into a numerically implementable
method is thus almost mandatory if quantum field theory
aims to produce results of practical interest for most
gravitational scenarios.
The numerical implementation of the point-splitting

regularization method is however a nontrivial task,

specially for black hole backgrounds. In a Schwarzschild
metric, the first important insight was introduced by
Candelas in [9] by proposing an integral representation
of the subtraction terms of point-splitting, allowing the
possibility of subtracting the ultraviolet divergences within
the integral of field modes, thereby yielding a formally
finite result upon which the limit of points could be taken in
advance. However, the numerical implementation of these
integrals was still a difficult task and this idea was not
pursued further. An alternative way to address the problem
was proposed in [10], which did not involve the numerical
evaluation of integrals, but which required an analytic
WKB-type approximation of the field and a Wick rotation
to analytically extend the metric to the Euclidean space.
This method was successful in the Schwarzschild back-
ground and it was later extended for a general static and
spherically symmetric metric in [11].
Unfortunately, these analytical techniques are not avail-

able for time-dependent backgrounds, as for instance in
gravitational collapse, and thus this approach could not be
extended to dynamical settings, that are of great interest in
astrophysics. This problem recently motivated Levi and Ori
[12,13] to develop what they called the pragmatic mode-
sum method of regularization, which bypasses any analytic
approximation, and that can be applied to any background
metric as long as it displays an isometry. Their approach
recovers the first insight proposed by Candelas of finding
integral representations of the point-splitting subtraction
terms, and proposes a successful method to implement
numerically the integration over the field modes, based on
the concept of generalized integrals. The technique has
been proven to be useful in computing numerically hϕ2ðxÞi
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and hTμνðxÞi in black hole backgrounds in different
complementary ways [14–20].
The importance of this new approach is that it can be

applied to any metric provided that it has some symmetry.
For instance, in order to calculate hϕ2ðxÞi one splits the
points as hϕðxÞϕðx0Þi, which is well defined, and then,
after subtracting the necessary DeWitt-Schwinger term
GDSðx; x0Þ, one takes the limit in which the two points
x, x0 merge: hϕ2ðxÞi ¼ limx0→xðhϕðxÞϕðx0Þi −GDSðx; x0ÞÞ.
Following the proposal in [12], in a stationary background
there is a preferred direction for which this splitting
could be taken, which is the direction of the time-
translational Killing vector field, i.e., x ¼ ðt; r; θ;φÞ and
x0 ¼ ðtþ ϵ; r; θ;φÞ in the usual Boyer-Lindquist coordi-
nates. Furthermore, the field ϕðxÞ can be expanded in
modes of well-defined frequency. Then, the point-splitting
in the symmetric direction allow us to write the subtraction
term GDSðx; x0Þ as integrals in the field-mode frequencies,
by Fourier-transforming each term with respect to the
splitting parameter ϵ. The resulting expression for the
difference hϕðxÞϕðx0Þi −GDSðx; x0Þ is an integral in
frequencies which is formally finite in the limit x0 → x,
so this limit can be safely taken inside the integral. This is
specially appropriate for numerical implementation, since
only an integration is required to get the desired final
result. It is important to stress that for the whole procedure
to be well defined the time-translational symmetry is
fundamental. Similar reasonings can be applied with
spherical symmetry (implemented via angular splitting),
or only axial symmetry (implemented via azimuthal point-
splitting) [12–16].
So far the pragmatic mode-sum regularization method

has been only applied for stationary black hole space-
times. Can one implement this procedure for other, possibly
dynamical, symmetric spacetimes? Friedmann-Lemaitre-
Robertson-Walker (FLRW) spacetimes, which are of interest
in studies of cosmology, have three spatial Killing vector
fields associated with spatial translations. Consequently, it is
natural to use those symmetries to upgrade the point-splitting
method and rewrite the subtraction term GDSðx; x0Þ as an
integral in modes of momentum k⃗ (i.e., the constants of
motion associated with the spatial translation symmetries).
The goal of this work is to carry out this simple idea. As a
result, we shall find that the subtraction integrals match
the expressions offered by the method of adiabatic regulari-
zation [21].
The paper is organized in the following way. In Sec. II

we outline the main idea of the pragmatic mode-sum
regularization method. To this end we restrict the presen-
tation to a stationary background and evaluate the renor-
malized two-point function hϕ2ðxÞi by splitting the points
in the associated timelike direction. In Sec. III we extend
the method to provide a numerically implementable for-
mula for hϕ2ðxÞi in a spatially flat FLRW spacetime using
the spatial translational symmetry of the metric. We end the

section generalizing the method by considering an arbitrary
renormalization point μ. In this work we follow the
conventions in [4]; in particular we use the metric signature
ðþ;−;−;−Þ.

II. PRAGMATIC MODE-SUM REGULARIZATION
METHOD IN A STATIONARY BACKGROUND:

t-SPLITTING

In this section we outline the idea underlying the
pragmatic mode-sum regularization method introduced in
[12], emphasizing those aspects that are relevant for our
purposes. The method takes advantage of the symmetries of
the spacetime metric to rewrite the renormalization sub-
tractions in the point-splitting method into a numerically
efficient way. In order to illustrate the procedure, let us
focus on the computation of the two-point function of a
scalar field by exploiting the stationary symmetry.
Let ϕðxÞ be a scalar field of massm living in a stationary

spacetime of metric gμν that obeys the field equation
ð□þm2 þ ξRÞϕ ¼ 0, where ξ is the coupling constant
to the scalar curvature R. To formulate a quantum descrip-
tion of this field, one must construct a Hilbert space of
states. As is well known, in a general curved spacetime
there is no preferred prescription to do this. However, if the
spacetime is stationary one can define creation and anni-
hilation operators, A†

ω and Aω, by decomposing the field
operator into positive and negative frequency parts,

ϕðxÞ ¼
Z

∞

m
dω½AωfωðxÞ þ A†

ωf�ωðxÞ�; ð1Þ

and define the vacuum state using the annihilation oper-
ators. The notion of field modes fω, f�ω of positive and
negative frequency ω can be introduced in a natural way by
the conditions LKfω ¼ −iωfω, LKf�ω ¼ iωf�ω, where K is
the infinitesimal generator of the isometry (i.e., the Killing
vector field) [5]. Then, using this set of field modes there is
a preferred prescription to decompose the field operator as
above [22]. We have omitted the additional quantum
numbers required to specify a basis of modes, since they
do not play any fundamental role in the following dis-
cussion. Choosing now a natural coordinate system ft; xkg
such that K ¼ ∂=∂t, the above conditions imply

fωðxÞ ¼ e−iωtψωðx⃗Þ; ð2Þ

where x⃗ is a shorthand for the three spatial coordinates xk.
The determination of the spatial functions ψωðx⃗Þ is achieved
by solving numerically the Klein-Gordon equation.
The naive calculation of hϕ2ðxÞiwill produce a divergent

expression, as expected, so a renormalization method is
needed at this point. The DeWitt-Schwinger point-splitting
method consists in taking the product of the field operator
at two separated points x, x0; subtracting to this two-point
function the corresponding asymptotic DeWitt-Schwinger
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proper-time expansion up to the last divergent term; and
finally taking the coincident limit x → x0 along a geodesic
that connects the two points. The result of this procedure is
what defines the renormalized two-point function:

hϕ2ðxÞiren ¼ lim
x0→x

½hfϕðxÞ;ϕðx0Þgi −Gð1Þ
DSðx; x0Þ�; ð3Þ

where fϕðxÞ; ϕðx0Þg ≡ 1
2
½ϕðxÞϕðx0Þ þ ϕðx0ÞϕðxÞ�, and

Gð1Þ
DSðx; x0Þ is the symmetric part of the DeWitt-Schwinger

subtraction term (Hadamard function). Following [7], it is
possible to obtain an expansion for the symmetric two-point
function in terms of covariant quantities evaluated at x and
the geodesic distance between x and x0. Including only the
relevant terms needed in the calculation of the renormalized
two-point function (i.e., up to second-order derivatives of the
metric), the subtraction term yields

Gð1Þ
DSðx; x0Þ ¼

1

8π2

�
−
1

σ
þ ðm2

þ ðξ − 1=6ÞRÞ
�
γ þ 1

2
log

�
m2jσj
2

��

−
m2

2
þ 1

12
Rαβ

σ;ασ;β

σ

�
; ð4Þ

whereR is the scalar curvature andRαβ is theRicci tensor. γ is
the Euler constant and σðx; x0Þ ¼ 1

2
τðx; x0Þ2, τðx; x0Þ being

the proper distance along the geodesic connecting x to x0
(for sufficiently close points this geodesic is unique [23]).
The expansion (4) contains all the divergences of the two-
point function. As a remark, expression (4) finds its origin in
the integral expression for the Feynman Green function

GDSðx; x0Þ ¼
Δ1=2ðx; x0Þ

ð4πÞ2
Z

∞

0

ds
ðisÞ2 e

−iðm2sþ σ
2sÞ

×
X∞
n¼0

anðx; x0ÞðisÞn; ð5Þ

where anðx; x0Þ are the DeWitt coefficients, which can be
solved recursively from the field equations using the input
a0ðx; x0Þ ¼ 1 [5], and Δðx; x0Þ is the Van Vleck-Morette
determinant defined as

Δðx; x0Þ ¼ −jgðxÞj−1=2 det½−∂μ∂ν0σðx; x0Þ�jgðx0Þj−1=2: ð6Þ

The above expression can be written in terms of Hankel
functions which, after expanding in an asymptotic series,
give rise to (4). Aswewill see in Sec. III A, Eq. (5) will be the
key starting point to generalize the subtraction terms in order
to deal with the infrared divergence whenm → 0 (by means
of the introduction of an arbitrary renormalization point μ).
To implement the renormalization prescription with the

pragmatic mode-sum regularization we just need (4), so
we will forget about (5) for the moment.
At this point it becomes evident that, if the mode

functions in (2) are to be solved numerically, the explicit
calculation of (3) with (4) using numerical methods is far
from obvious. Here is where the pragmatic mode-sum
method comes into play. Following [12], we have to split
the points x and x0 in the direction associated with the
symmetry, i.e., such that the metric has the same value in
both points. Choosing x ¼ ðt; x⃗Þ and x0 ¼ ðtþ ϵ; x⃗Þ with
ϵ > 0 an infinitesimal parameter, the mode expansion of the
symmetric two-point function formally reads

hfϕðxÞ;ϕðx0Þgi ¼
Z

∞

m
dω cos ðωϵÞjψωðx⃗Þj2: ð7Þ

On the other hand, expanding σ in a Taylor series around

ϵ ¼ 0 one finds that the general form of Gð1Þ
DSðx; x0Þ has the

form

Gð1Þ
DSðx; x0Þ ¼ aðx⃗Þ 1

ϵ2
þ cðx⃗Þðlog ðmϵÞ þ γÞ þ dðx⃗Þ þOðϵÞ;

ð8Þ

where aðx⃗Þ, cðx⃗Þ, and dðx⃗Þ are real functionals of the
metric. The key point now is to express the ϵ-dependent
terms as integrals in ω by using the following integral
transforms:

Z
∞

m
dωω cosðωϵÞ ¼ −

1

ϵ2
−
m2

2
þOðϵÞ; ð9Þ

Z
∞

m

dω
ωþm

cosðωϵÞ ¼ −ðlogðmϵÞ þ γÞ − log 2þOðϵÞ:

ð10Þ

These integrals have to be understood as generalized
integrals in the distributional sense. Inserting all these
expressions in (3) one finds the following expression for the
renormalized two-point function:

hϕ2ðxÞiren ¼ lim
ϵ→0

Z
∞

m
dω

�
jψωðx⃗Þj2 þ aðx⃗Þω

þ cðx⃗Þ 1

ωþm

�
cos ðωϵÞ − d̄ðx⃗Þ; ð11Þ

where d̄ðx⃗Þ ¼ dðx⃗Þ − aðx⃗Þ m2

2
− cðx⃗Þ log 2. The integral is

now expected to be convergent since the original point-
splitting subtraction terms have been designed to cancel
the divergences of the two-point function. Then, the limit
and the integration can be interchanged and we finally
obtain the following result for the renormalized two-point
function:
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hϕ2ðxÞiren ¼
Z

∞

m
dω

�
jψωðx⃗Þj2 þ aðx⃗Þωþ cðx⃗Þ 1

ωþm

�

− d̄ðx⃗Þ: ð12Þ

Thus, with these manipulations the quantity hϕ2ðxÞiren
can, at least in principle, be computed using ordinary
numerical techniques.1 In practice, however, there is
one last issue that must be addressed, at least in
some cases. To give an example, in a Schwarzschild
background and for a massless field m ¼ 0 one
gets [12] a ¼ −ð4π2ð1 − 2M=rÞÞ−1, c ¼ 0, d ¼ M2 ×
ð48π2r4ð1 − 2M=rÞÞ−1, which agrees with the result origi-
nally introduced in [9]. The point is that, when trying to
implement the above integration numerically, one finds that
it fails to converge. This is because when performing the
integration between 0 and ω, increasing oscillations in ω
appear. As pointed out in [12], the origin of these
oscillations comes from the fact that black holes admit
null geodesics connecting x and x0, i.e., geodesics that start
at some spatial point and after making one or several round
trips around the black hole return to the same point with a
delay time given by ϵ. At the values of ϵ corresponding to
these geodesics the term hϕðxÞϕðx0Þi presents singularities,
which in Fourier domain is equivalent to oscillations in
jψωðx⃗Þj2 [see Eq. (7)]. The wavelengths of the oscillations
are related to the values of ϵ of these geodesics, that can be
obtained through a straightforward analysis of the geodesic
equation in Schwarzschild spacetime. To solve the issue of
the divergent integration, one can apply a “self-cancella-
tion” numerical method, explained in detail in [12], in order
to cancel the oscillations and obtain the physical finite
value of the renormalized two-point function. Fortunately,
in the case we will study in this work these kinds of
geodesics do not exist, so there will not be any convergence
problem, and then the self-cancellation method will not be
necessary.
As a final remark, for massless fields the term

log ðm2jσj=2Þ in (4) is ill defined. This infrared problem
is usually bypassed by replacing the mass by a new
arbitrary parameter μ in the logarithm. Therefore, in the
massless case (12) actually reads

hϕ2ðxÞiren ¼
Z

∞

0

dω

�
jψωðx⃗Þj2 þ aðx⃗Þωþ cðx⃗Þ 1

ωþ μ

�

− dðx⃗Þ: ð13Þ

We will reconsider this point later on, specially in the
quantization of the field in the FLRW background.

III. PRAGMATIC MODE-SUM REGULARIZATION
METHOD IN A FLRW BACKGROUND:

TRANSLATIONAL-SPLITTING

As pointed out in the Introduction, our aim is to extend
the pragmatic mode-sum method to a cosmological
setting. We shall work out the case of a scalar field in a
FLRW spacetime, and consider a spatially flat universe
with metric ds2 ¼ dt2 − a2ðtÞdx⃗2, for simplicity. This
spacetime is dynamical and t-splitting is no longer useful.
On the contrary, since the background we are considering
now is spatially homogeneous, it is natural to use the
translational symmetry when applying the point-splitting
prescription.
Given the spatial homogeneity of the spacetime back-

ground, the field operator ϕ can now be naturally expanded
in the form

ϕðxÞ ¼
Z

d3k½Ak⃗fk⃗ðxÞ þ A†
k⃗
f�
k⃗
ðxÞ�; ð14Þ

where, again, Ak⃗ and A†
k⃗
are annihilation and creation

operators satisfying canonical commutation relations, and
fk⃗ðxÞ denote a complete orthonormal family of solutions
to the field equation satisfying LKjfk⃗ ¼ ikjfk⃗, where
fKjgj¼1;2;3 denote the three Killing vector fields associated
with spatial translations. Thus, in a canonical coordinate
chart ft; x⃗g where Kj ¼ ∂=∂xj the field modes take the
general form

fk⃗ðxÞ ¼
eik⃗·x⃗ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð2πÞ3aðtÞ3
p hkðtÞ: ð15Þ

These modes are assumed to obey the normalization
condition with respect to the conserved Klein-Gordon
product ðfk⃗; fk⃗0 Þ ¼ δ3ðk⃗ − k⃗0Þ, ðfk⃗; f�k⃗0 Þ ¼ 0. This condition

translates into a Wronskian-type condition for the modes:
h�k _hk − _h�khk ¼ −2i, where the dot means derivative with
respect to time t. The complete specification of the modes
usually requires assuming boundary conditions at early
times. This is however not relevant for renormalization.
Let us now proceed to the regularization of the two-point

function via the point-splitting method. As explained in the
previous section the renormalized two-point function is
defined as

hϕ2ðxÞiren ¼ lim
x0→x

½hfϕðxÞ;ϕðx0Þgi −Gð1Þ
DSðx; x0Þ�; ð16Þ

where the DeWitt-Schwinger subtraction term is given by
(4), now with R ¼ 6ðäa þ _a2

a2Þ; R00 ¼ 3 ä
a ; Rii ¼ −a2ðäa þ 2_a2

a2 Þ
for a FLRW metric.
As illustrated in the previous section the point-splitting

regularization scheme becomes particularly useful when we

1Notice though that the existence of an isometry was funda-
mental. Had the coordinate t failed to be associated with a Killing
vector field, the above procedure could not have been carried out.
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evaluate the two-point function in two points where the
metric has the same value. Therefore, taking advantage of
the translational symmetry of the FLRW spacetime, we
consider equal-time points x≡ ðt; x⃗Þ and x0 ≡ ðt; x⃗þ ϵ⃗Þ to
do the splitting. Then, the equal-time two-point function
reads

hfϕðxÞ;ϕðx0Þgi ¼ 1

2ð2πaðtÞÞ3
Z

d3kjhkðtÞj2 cos ðk⃗ · ϵ⃗Þ:

ð17Þ
One can now express the cosine in terms of exponentials
and easily perform angular integration to reduce it to

hfϕðxÞ;ϕðx0Þgi ¼ 1

4π2aðtÞ3
Z

∞

0

dkk2jhkðtÞj2
sin kϵ
kϵ

; ð18Þ

where k ¼ jk⃗j and ϵ ¼ jϵ⃗j. To achieve an efficient numeri-
cal method of renormalization, the goal now is to rewrite

the DeWitt-Schwinger term Gð1Þ
DSðx; x0Þ in (4) as an integral

in momentum space so that it can be fitted with the previous
expression for the field modes. As in the previous section,
we have to evaluate σ. To this end, it is useful to use the
Riemann normal coordinates yμ with origin at x. In these
coordinates we have σðx; x0Þ ¼ 1

2
yμyμ. Following [24], yμ

can be expanded in terms of Δxμ ¼ x0μ − xμ, and we obtain
(for the first orders)

σ ¼ 1

2
Δt2 −

a2

2
Δx⃗2 −

a _a
2
Δx⃗2Δt −

aä
6
Δx⃗2Δt2

−
a2 _a2

24
Δx⃗4 þ � � � : ð19Þ

Therefore in our case we can write

σ ¼ −
a2

2
ϵ2 −

a2 _a2

24
ϵ4 −

ða2 _a4 þ 3a3 _a2äÞ
720

ϵ6 þOðϵ8Þ:
ð20Þ

The terms involving σ in (4) can be now expanded as
follows [note that σ;α must be calculated from (19)]

1

σ
¼ −

2

a2ϵ2
þ _a2

6a2
þOðϵ2Þ; ð21Þ

Rαβ
σ;ασ;β

σ
¼ 2

ä
a
þ 4

_a2

a2
þOðϵ2Þ: ð22Þ

Introducing these results in (4) we get

Gð1Þ
DSðx; x0Þ ¼

1

4π2

�
1

a2ϵ2
þ 1

2
ðm2 þ ðξ − 1=6ÞRÞ

�
γ

þ log

�
ma
2

ϵ

��
−
m2

4
þ R
72

�
þOðϵÞ; ð23Þ

which turns out to be a function depending on ϵ⃗ only
through its modulus ϵ (this is due to the underlying isotropy
of the FLRW metric). Now we have to rewrite the potential
divergences of this expression as ϵ → 0 in terms of one-
dimensional integrals in momentum space involving sin kϵ

kϵ .
To this end we consider the following integral transforms,
which have to be understood as generalized integrals:

Z
∞

0

dkk
sin kϵ
kϵ

¼ 1

ϵ2
; ð24Þ

Z
∞

0

dk
k2

ω3

sin kϵ
kϵ

¼ −a3
�
γ þ log

�
ma
2

ϵ

��
þOðϵÞ; ð25Þ

where ωðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2=a2ðtÞ þm2

p
. Substituting in (23) the

terms depending on ϵ by these integrals we get

Gð1Þ
DSðx; x0Þ ¼

1

4π2a3

Z
∞

0

dk
sinðkϵÞ
kϵ

×

�
ka −

k2m2

2ω3
þ k2ð1

6
− ξÞR

2ω3

�

−
m2

16π2
þ R
288π2

þOðϵÞ: ð26Þ

Using now the identity

1

4π2a3

Z
∞

0

dk
sinðkϵÞ
kϵ

�
ka −

k2m2

2ω3
−
k2

ω

�
¼ m2

16π2
þOðϵÞ;

ð27Þ

we can simplify the expression of Gð1Þ
DS. Introducing it into

(16) we can finally write

hϕ2iren ¼ lim
ϵ→0

1

4π2a3

Z
∞

0

dkk2
sin kϵ
kϵ

�
jhkj2 −

1

ω
−
ð1
6
− ξÞR
2ω3

�

−
R

288π2
: ð28Þ

The sum of terms inside the parentheses has no ultraviolet
divergences even for ϵ ¼ 0, so we can interchange the
integral and the limit ϵ → 0 to find

hϕ2iren ¼
1

4π2a3

Z
∞

0

dkk2
�
jhkj2 −

1

ω
−
ð1
6
− ξÞR
2ω3

�
−

R
288π2

:

ð29Þ
Note that the above expression can be naturally expressed
in terms of a three-dimensional integral in the k⃗ modes
associated with the three-dimensional translation symmetry

hϕ2iren ¼
1

2ð2πaÞ3
Z

d3k

�
jhkj2 −

1

ω
−
ð1
6
− ξÞR
2ω3

�
−

R
288π2

:

ð30Þ
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This result agrees exactly with the renormalized two-
point function obtained by using the so-called adiabatic
regularization method developed by Parker and Fulling
in the early 1970s for cosmological backgrounds and
scalar fields [21] (see [25] for spin-1=2 fields). One can
check the result with Eq. (A9) in Appendix A. As
explained before, the problem of frequency oscillations
in the Schwarzschild black hole context, pointed out in
[12], does not emerge for FLRW metrics. Therefore,

after solving numerically the Klein-Gordon equation for
the modes hkðtÞ, ordinary numerical integration tech-
niques can be applied directly to calculate the final
expression (29).
It is also straightforward to see that the result can be

extended to the renormalized stress-energy tensor in a
FLRW background. To this end one needs a more complete
form of the DeWitt-Schwinger expansion of the two-point
function [7,26]

Gð1Þ
DSðx; x0Þ ¼

Δ1=2

8π2

�
−
1

σ
þm2

�
γ þ 1

2
ln

���� 12m2σ

����
��

1 −
1

4
m2σ

�
−
1

2
m2 þ 5

16
m4σ

− a1

��
γ þ 1

2
ln

���� 12m2σ

����
��

1 −
1

2
m2σ

�
þ 1

2
m2σ

�
−
1

2
a2σ

�
γ þ 1

2
ln

���� 12m2σ

���� − 1

2

�
þ a2
2m2

	
; ð31Þ

where a1 and a2 are the first DeWitt coefficients. The
renormalized vacuum expectation value of the stress-
energy tensor can be obtained by acting with a nonlocal
operator to the renormalized symmetric part of the two-
point function

hTμνi ¼ lim
x→x0

Dμνðx; x0Þ½hfϕðxÞ;ϕðx0Þgi − Gð1Þ
DSðx; x0Þ�:

ð32Þ

This differential operator Dμνðx; x0Þ contains different
quadratic terms of covariant derivatives [7,26]; therefore,
we need to expand (31) up to and including the orderOðϵ2Þ
because terms proportional to ϵ2 can give rise to finite terms
in hTμνi. Proceeding as before and expanding (31) to order
Oðϵ2Þ we arrive at the expression (B4) (see Appendix B for
details) which contains terms with four derivatives of the
metric. This expression agrees with the subtraction terms of
the two-point function obtained by adiabatic regularization
at fourth adiabatic order (B5). Therefore, the pragmatic
form of the subtraction terms for the stress-energy tensor,
when the translational symmetry is considered, reduces to
the renormalization terms of adiabatic regularization. The
explicit formulas of interest required to do the direct
numerical implementation can be seen, for instance, in
[27]. These results explain the great versatility of the
adiabatic method with numerical calculations [28–31].

A. Massless case and the renormalization scale μ

For massless fields expression (4) is ill defined due to a
logarithmic divergence. The usual approach to bypass this
infrared divergence is to introduce an upper cutoff in the
proper-time integral (5) [5], or to replacem2 by an arbitrary
mass scale μ2 in the problematic logarithmic term. Here we
will follow an alternative strategy based on [32] that
consists in replacing m2 by m2 þ μ2 in the exponent of

the DeWitt-Schwinger integral form (5). The advantage of
this approach is that it leads to a natural decoupling
mechanism of heavy massive fields. Following this idea,
we have

GDSðx; x0Þ ¼
Δ1=2

ð4πÞ2
Z

∞

0

ds
ðisÞ2 e

−iððm2þμ2Þsþ σ
2sÞ
X∞
n¼0

ānðisÞn:

ð33Þ

In order to be consistent with (5), the first DeWitt
coefficients need to be modified in the following way:
ā0ðx;x0Þ¼1;ā1ðx;x0Þ¼a1ðx;x0Þþμ2;ā2ðx;x0Þ¼a2ðx;x0Þ þ
a1ðx;x0Þμ2þ1

2
μ4. Now one can proceed as in the case in

which μ ¼ 0. We can write (33) in terms of Hankel
functions and later expand them in asymptotic series to
finally get the following expression for the subtraction term
of the two-point function in the point-splitting renormal-
ization method:

Gð1Þ
DSðx; x0Þ ¼

1

8π2

�
−
1

σ
þ ðm2 þ ðξ − 1=6ÞRÞ

×

�
γ þ 1

2
log

�
m2 þ μ2

2
jσj

��

−
m2 þ μ2

2
þ 1

12
Rαβ

σ;ασ;β

σ

�
: ð34Þ

Note that the parameter μ2 appears nontrivially in this
expression. Not only does it appear in the logarithmic term
but it also emerges in the constant term, and not in the usual
combination m2 þ ðξ − 1=6ÞR multiplying the logarithm.
This effect is responsible of the decoupling of heavy
particles in the computations of the renormalized energy-
momentum tensor [32].
Considering a FLRW spatially flat spacetime we can

write the generalized subtraction term with integrals in
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modes of k by using again the translational symmetry. To
do so, we just have to replacem2 bym2

eff ¼ m2 þ μ2 in (25)
and using the integral representations of the divergent terms
[Eqs. (24) and (25)] in (34) we get

Gð1Þ
DSðx; x0Þ ¼

1

4π2a3

Z
∞

0

dk
sinðkϵÞ
kϵ

×

�
ka −

k2m2

2ω3
eff

þ k2ð1
6
− ξÞR

2ω3
eff

�

−
m2

eff

16π2
þ R
288π2

þOðϵÞ; ð35Þ

where ω2
eff ¼ k2

a2 þm2 þ μ2. If we consider the identity (27)
with m2 replaced by m2

eff we can rewrite the expression
above as follows:

Gð1Þ
DSðx; x0Þ ¼

1

4π2a3

Z
∞

0

dkk2
sinðkϵÞ
kϵ

×

�
1

ωeff
þ ð1

6
− ξÞR
2ω3

eff

þ μ2

2ω3
eff

�
þ R
288π2

þOðϵÞ:

ð36Þ

This is the generalized subtraction term for the two-point
function written as an integral in modes of the momentum
k. Note that a new term proportional to μ2 appears. This
result agrees with adiabatic regularization when we intro-
duce the arbitrary parameter μ requiring the same con-
ditions (see Appendix A for details).

IV. CONCLUSIONS

In this work we have applied the pragmatic mode-sum
regularization method proposed by Levi and Ori to study
the numerical implementability of renormalization for
quantum fields in FLRW spacetime backgrounds. This
was possible thanks to the isometry under spatial trans-
lations of the underlying metric. The results obtained are in
agreement with the well-known prescription of adiabatic
regularization, developed by Parker and Fulling in the early
1970s. Adiabatic regularization can now be understood as
the natural renormalization procedure that emerges when
the point-splitting technique is applied using the spatial
isometries of the FLRW metric.

ACKNOWLEDGMENTS

This work has been supported by research Grants
No. FIS2017-84440-C2-1-P; No. FIS2017-91161-EXP
and the project PROMETEO/2020/079 (Generalitat
Valenciana). A. d. R. acknowledges support under NSF
Grant No. PHY-1806356 and the Eberly Chair funds of
Penn State. P. B. is supported by the Ministerio de Ciencia,
Innovación y Universidades, Ph.D. fellowship No. FPU17/
03712. S. N. is supported by the Universidad de Valencia,

within the Atracció de Talent Ph.D fellowship No. UV-
INV- 506 PREDOC19F1-1005367.

APPENDIX A: ADIABATIC REGULARIZATION
WITH AN ARBITRARY μ

In this Appendix we provide a very concise presentation
of the adiabatic regularization method. Furthermore we also
introduce the adiabatic procedure in a generalized way
so as to account for the introduction of a renormalization
scale μ. It was first sketched in [33] by replacing m2 by μ2

in the zeroth adiabatic order. However, following [32] a
better, and physically motivated procedure, is to replace
m2 → m2 þ μ2. The underlying reason is to guarantee the
decoupling of heavy massive fields.
Adiabatic renormalization is based on a generalized

WKB-type asymptotic expansion of the modes (15) accord-
ing to the ansatz

hkðtÞ ∼
1ffiffiffiffiffiffiffiffiffiffiffiffi
WkðtÞ

p e−i
R

t Wkðt0Þdt0 ; ðA1Þ

which guarantees the Wronskian condition hk _h
�
k − h�k _hk ¼

−2i. One then expands Wk in an adiabatic series, in which
each contribution is determined by the number of time
derivatives of the expansion factor aðtÞ

WkðtÞ ¼ ωð0ÞðtÞ þ ωð2ÞðtÞ þ ωð4ÞðtÞ þ � � � ; ðA2Þ

where the leading term ωð0ÞðtÞ≡ ωðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2=a2ðtÞ þm2

p
is the usual physical frequency. Higher order contributions
can be univocally obtained by iteration (for details, see [4]),
which come from introducing (A1) into the equation of
motion for the modes. The adiabatic expansion of the
modes can be easily translated to an expansion of the
two-point function hϕðxÞϕðx0Þi≡ Gðx; x0Þ at coincidence
x ¼ x0:

GAdðx; xÞ ¼
1

2ð2πÞ3a3

×
Z

d3k½ω−1 þ ðW−1Þð2Þ þ ðW−1Þð4Þ þ � � ��:

ðA3Þ
As remarked above, the expansion must be truncated to the
minimal adiabatic order necessary to cancel all ultraviolet
divergences that appear in the formal expression of the
vacuum expectation value that one wishes to compute. The
calculation of the renormalized variance hϕ2i requires only
second adiabatic order.
The above process can be repeated now by replacing m2

by m2 þ μ2 in the zeroth adiabatic order ω. Therefore the
expansion for Wk depends now on μ

WkðtÞ ¼ ωð0Þ
eff ðt; μÞ þ ωð2Þ

eff ðt; μÞ þ ωð4Þ
eff ðt; μÞ þ � � � ; ðA4Þ
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where the leading term is ωð0Þ
eff ðtÞ≡ ωeffðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2=a2ðtÞ þm2 þ μ2

p
. The higher orders are univocally recalculated. For the

second order ωð2Þ
eff ðt; μÞ which is enough to renormalize the two-point function, we have

ωð2Þ
eff ¼

5k4 _a2

8ω5
effa

6
−

3k2 _a2

4ω3
effa

4
þ k2a
4ω3

effa
3
þ 3ξ _a2

ωeffa2
þ 3ξä
ωeffa

−
3_a2

8ωeffa2
−

3ä
4ωeffa

−
μ2

2ωeff
: ðA5Þ

The new terms proportional to μ2 serve to remove the divergences, in accordance with the new definition of ωð0Þ
eff ðt; μÞ while

maintaining locality and general covariance. Note that μ2 should be regarded as a parameter of adiabatic order 2.
Therefore, the subtraction term for the two-point function is given by

ð2ÞGAdðx; xÞ ¼
1

2ð2πÞ3a3
Z

d3k

�
1

ωeff
−
ωð2Þ
eff

ω2
eff

�
: ðA6Þ

After a little bit of algebra the terms in the integral can be written like

ð2ÞGAdðx; xÞ ¼
1

4π2a3

Z
k2dk

�
1

ωeff
þ μ2

2ω3
eff

þ ð1
6
− ξÞR
2ω3

eff

þ
�
m2

eff _a
2

2a2ω5
eff

þ m2
eff ä

4aω5
eff

−
5m4

eff _a
2

8a2ω7
eff

��
: ðA7Þ

The last terms in the parentheses are finite and can be integrated to give

1

4π2a3

Z
k2dk

�
m2

eff _a
2

2a2ω5
eff

þ m2
eff ä

4aω5
eff

−
5m4

eff _a
2

8a2ω7
eff

�
¼ R

288π2
: ðA8Þ

Finally we obtain the same subtraction term as in the pragmatic mode-sum regularization method

ð2ÞGAdðx; xÞ ¼
1

4π2a3

Z
∞

0

dkk2
�

1

ωeff
þ ð1

6
− ξÞR
2ω3

eff

þ μ2

2ω3
eff

�
þ R
288π2

: ðA9Þ

Notice that this result agrees with (36) in the coincidence
limit, ϵ → 0, and both agree with (29) when μ ¼ 0.

APPENDIX B: HIGHER ORDER EXPANSION

In this Appendix we expand the two-point function
GDSðx; x0Þ to order ϵ2. This expansion is enough to compute
the vacuum expectation value of the stress-energy tensor
hTμνi by acting with a nonlocal operator to the symmetric

part of the renormalized two-point function, hTμνi ¼
limx→x0 Dμνðx; x0Þ½hfϕðxÞ;ϕðx0Þgi − Gð1Þ

DSðx; x0Þ� [7,26].
We begin by expanding (5) to linear order in σ and up to

and including four derivatives of the metric, which leads us
to (31). For simplicity we will deal with the case ξ ¼ 1

6
. The

following expansions are enough to build the renormalized
stress-energy tensor (σα ≡ σ;α):

Δ1=2 ¼ 1 −
1

12
Rαβσ

ασβ −
1

24
Rαβ;γσ

ασβσγ þ
�

1

288
RαβRγδ þ

1

360
Rρ

α
τ
βRργτδ −

1

80
Rαβ;γδ

�
σασβσγσδ þ � � � ; ðB1Þ

a1 ¼
�
1

90
RαρRρ

β −
1

180
RρτRρατβ −

1

180
RρτκαRρτκ

β þ
1

120
Rαβ;ρ

ρ −
1

360
R;αβ

�
σασβ þ � � � ; ðB2Þ

a2 ¼ −
1

180
RρτRρτ þ

1

180
RρτκιRρτκι −

1

180
R;ρ

ρ þ � � � ; ðB3Þ

where σα is computed up to order ϵ5 using the expansion (19). Expanding (31) with (B1), (B2), and (B3) we arrive at the
following expansion for the two-point function up to and including the order Oðϵ2Þ:
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Gð1Þ
DSðx; x0Þ ¼

1

4π2ϵ2a2
þ 1

480π2m2

�
10m2

�
ä
a
þ _a2

a2

�
−
�
að4Þ

a
þ ä2

a2

�
þ 3

�
_a2ä
a3

−
að3Þ

a2
_a

�
þ 60m4

�
γ −

1

2
þ log

�
mϵ

2
a

���

þ ϵ2

2880π2

��
3

2
að4Þaþ 6ä2 −

_a4

a2
þ 21

2
að3Þ _aþ 23

2

_a2ä
a

�
þ 30m2ðaäþ 2_a2Þ

�
γ −

1

2
þ log

�
mϵ

2
a

��

þ 45m4a2
�
γ −

5

4
þ log

�
mϵ

2
a

���
þOðϵ3Þ; ðB4Þ

where að4Þ ≡ a⃜ and að3Þ ≡ ⃛a. This expression contains terms with four derivatives of the metric (að4Þ; _a4; _aað3Þ; � � �).
On the other hand, (B4) agrees with

ð4ÞGð1Þ
Adðx; x0Þ ¼

1

4π2a3

Z
∞

0

k2dk
sin kϵ
kϵ

�
1

ω
þ ð1

6
− ξÞR
2ω3

þ m2 _a2

2a2ω5
þ m2ä
4aω5

−
5m4 _a2

8a2ω7
þ ðW−1Þð4Þ

�
; ðB5Þ

when it is expanded at order Oðϵ2Þ. Equation (B5) is the expansion of adiabatic regularization at fourth adiabatic order [4].
The integral on ðW−1Þð4Þ is finite and contains terms with four derivatives of the metric.
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We explore static and spherically symmetric solutions of the 4-dimensional semiclassical Einstein’s
equations using the quantum vacuum polarization of a conformal field as a source. These solutions may be
of interest for the study of exotic compact objects (ECOs). The full backreaction problem is addressed
by solving the semiclassical Tolman-Oppenheimer-Volkoff (TOV) equations making use of effective
equations of state inspired by the trace anomaly and an extra simplifying and reasonable assumption.
We combine analytical and numerical techniques to solve the resulting differential equations, both
perturbatively and nonperturbatively in ℏ. In all cases the solution is similar to the Schwarzschild metric up

to the vicinity of the classical horizon r ¼ 2M. However, at r ¼ 2M þ ε, with ε ∼Oð ffiffiffi
ℏ

p Þ, we find a
coordinate singularity. In the case of matching with a static star, this leads to an upper bound in the
compactness, and sets a constraint on the family of stable ECOs. We also study the corrections that
the quantum-vacuum polarization induces on the propagation of waves, and discuss the implications. For
the pure vacuum case, we can further extend the solution by using appropriate coordinates until we reach
another singular point, where this time a null curvature singularity arises and prevents extending beyond.
This picture qualitatively agrees with the results obtained in the effective two-dimensional approach, and
reinforces the latter as a reasonable method.

DOI: 10.1103/PhysRevD.107.085023

I. INTRODUCTION

Advances in gravitational wave (GW) astronomy to
detect and analyze GWs in the last years [1], as well as
the recent progress in very long baseline interferometry [2],
are opening new avenues to study strong-field gravity and
the physics of black holes. In particular, with the advent
of large amounts of data from GW and electromagnetic
observations in the future, it will become possible to test
and to quantify in precise terms the existence of horizons.
As a result, there is a growing interest in studying models of
dark, compact horizonless astrophysical objects that may
mimic very closely the behavior of black holes in the GW
data, and in examining different physical mechanisms that
could be used to uncover these exotic compact objects
(ECOs) with observations [3].
While there exists a large class of different models that

manage to simulate black holes, most of them require going
beyond the Standard Model of particles and/or general
relativity (GR) [4–10]. This is because similar values of BH
compactness are required to mimic GW observations, but

stable astrophysical objects with such compactness are
forbidden within GR by Buchdahl’s theorem and the
classical energy conditions. An appealing possibility is
to consider quantum effects (while preserving classical
gravity as described by conventional GR), as they can
potentially avoid the assumptions of this theorem without
requiring exotic assumptions. This involves facing the
difficulties of the renormalized stress-energy tensor
hTabi, describing the gravitational vacuum polarization
of quantum fields, and also solving the corresponding
semiclassical backreaction equations. So far all methods
developed to compute hTabi in quantum field theory in
curved spacetime, either analytical or numerical, assume a
fixed background metric. Even fixing the background, the
explicit computation of hTabi is complicated and only a few
examples are known, mainly in cosmology [11–13] and for
stationary configurations [14–16]. As a consequence, the
problem of solving the full semiclassical Einstein’s equa-
tions is terribly complicated, even approximately. Since the
nontrivial (t − r) part of a spherically symmetric metric is
two-dimensional, a popular approach in the past has been to
consider the analogous problem in effective 1þ 1 dimen-
sions. A first attempt in this direction is to truncate the
theory to the s-wave sector of the matter field and imple-
ment dimensional reduction by integrating the angular
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degrees of freedom. One ends up with an effective two-
dimensional theory (i.e., a particular dilaton-gravity theory
[17]), which, after further simplifying assumptions (near-
horizon approximation), has a semiclassical description
univocally determined by the two-dimensional trace
anomaly hTi ¼ ℏ

24πR
ð2Þ (this is usually referred to as the

Polyakov theory approximation [17]). In two-dimensions
the trace anomaly is sufficient to fix the quantum stress-
energy tensor, which in turn can be used to produce a
reasonable approximation for evaluating static quantum
corrections to the Schwarzschild geometry in vacuum.
The semiclassical solution is similar to the classical
Schwarzschild solution until very close to the event
horizon, but the near-horizon geometry is replaced by a
bouncing surface for the radial coordinate, mimicking the
throat of a nonsymmetric wormhole. A curvature singu-
larity is found beyond the throat [18]. This picture has been
confirmed with more analytical details in [19] and also
in [20] (using a natural deformation of the Polyakov theory
approximation), and very interesting extensions for stellar
configurations have been analyzed in [21–23].
The above two-dimensional effective method is expected

to provide important insights, but since the problem is very
relevant and it is not entirely clear to what extent the two-
dimensional approach is really a good approximation, an
intrinsic four-dimensional approach is demanded. This is
one of the aims of this work. Our strategy here will be to
solve the full semiclassical Einstein’s equations but without
explicitly calculating hTabi. Instead, we shall approach the
problem as in classical general relativity, by simply giving
equations of state and some appropriate boundary condi-
tions. One of the equations of statewill be determined by the
four-dimensional trace anomaly, which is independent of the
choice of quantum state. More specifically, wewill consider
a conformal quantum field, in which the trace of hTabi is
entirely determined by the anomaly. Then, wewill assume a
natural condition on the tangential pressurewhichwe expect
to capture the main qualitative aspects of the actual solution
(we differ here from the assumptions given in [24]). Thiswill
make the problemmanageable andwill allow us to approach
the problem directly in four dimensions.
In this new framework we will also be interested in

investigating whether there exists physically reasonable,
horizonless “vacuum” geometries which may mimic black
holes (e.g., wormholes), as well as analyzing what impli-
cations the quantum vacuum-polarization from the exterior
geometrymay have on static ECOs. Uniqueness theorems in
classical GR tell us that the exterior vacuum solution of any
ECO must be described by the Schwarzschild metric, and
this is widely taken for granted in the literature. However,
quantum fields exist all around, and their presence may
break this degeneracy with respect to black holes.
Even though semiclassical gravity may provide a

conservative framework for studying the formation
and/or exterior geometry of exotic astrophysical objects,

for solar-mass scales it is often expected that quantum
effects should only lead to extremely low corrections of the
classical solutions, in such a way that from an observational
point of view the difference is totally negligible.
Remarkably, recent works developed by different indepen-
dent groups have shown that even tiny corrections to the
metric may significantly alter the quasinormal mode
(QNM) frequency spectrum of black holes [25–28], open-
ing the possibility of constraining these quantum correc-
tions with GW spectroscopy. Incidentally, this provides a
fantastic opportunity to test quantum field theory in
astrophysics and adds further motivation to address the
historical difficulties encountered when solving the semi-
classical Einstein’s equations.
The paper is organized as follows. In Sec. II we provide

the setup of the calculation by writing down the central
equations, as well as by specifying and motivating the
assumptions in our problem. Then in Sec. III we solve
the differential equations, combining both analytical and
numerical techniques, and highlight the main features of
the solution obtained, as well as the implications for ECOs.
In Sec. IV we obtain the maximal extension and describe
the curvature singularity that arises. Section V is devoted to
physical applications of the obtained semiclassical metric.
In particular we derive the dynamical equations governing
scalar and electromagnetic waves, estimate the associated
light-ring frequencies using the WKB approximation, and
compare them with the Schwarzschild case. Finally, in
Sec. VI we present our conclusions.
Our conventions are as follows. We work in geometrized

units G ¼ c ¼ 1 and keep ℏ explicit throughout. The
metric signature has signature ð−;þ;þ;þÞ, ∇a will denote
the associated Levi-Civita connection, the Riemann tensor
is defined by 2∇½a∇b�vc ≕Rabc

dvd for any 1-form vd; the
Ricci tensor is defined by Rab ≔ Racb

c; and the scalar
curvature is R ≔ gabRab. All tensors and functions are
assumed to be smooth, unless otherwise stated.

II. SEMICLASSICAL TOV EQUATIONS
IN QUANTUM VACUUM

Our aim in this work is to study solutions of the
semiclassical Einstein’s equations

Gab ¼ 8πðhTabi þ Tclassical
ab Þ; ð1Þ

in order to find an effective metric that may describe
quantum corrections to classical black hole spacetimes
induced by the quantum vacuum, or even a new family of
solutions. Here Tclassical

ab represents some classical gravita-
tional source, while hTabi denotes the expectation value of
the stress-energy tensor, evaluated for some vacuum state
j0i of some given quantum field living on the background
metric gab that solves the above equations. For Tclassical

ab ¼ 0

and in the absence of quantum fields the spherically

BELTRÁN-PALAU, DEL RÍO, and NAVARRO-SALAS PHYS. REV. D 107, 085023 (2023)

085023-2



symmetric solution is a Schwarzschild black hole due to
Birkhoff’s theorem. But if a quantum field is included,
hTabi ≠ 0, and we expect to get a Schwarzschild-type
deformed metric due to quantum vacuum effects ascribed to
that field. Solving this problem requires finding a vacuum
state j0i and a metric gab that together solve (1). For reasons
that we will discuss in more detail below, this is an
extraordinary problem and there are currently no systematic
techniques available to address the full question. Our
strategy will consist in fixing some desirable properties
for the vacuum state and solving the resulting PDE for gab.
More precisely, we will demand the vacuum state to be
static and invariant under the group of rotations. This may
be thought of as the most immediate quantum generaliza-
tion of the classical Schwarzschild vacuum. The solution to
(1) will then correspond to a spherically symmetric and
static metric, which in global coordinates ft; r; θ;ϕg can be
written as [29]

ds2 ¼ −e−2ϕðrÞdt2 þ dr2

1 − 2mðrÞ
r

þ r2dΩ2: ð2Þ

Physically, the assumption of staticity is fundamental for
studying the exterior vacuum region of exotic compact
objects (ECOs) that are stable. For black holes, on the other
hand, it is well-known that the assumption of staticity leads
to the Boulware state, which gives rise to divergences in the
stress-energy tensor at the classical horizon [30]. However,
this conclusion holds only when the renormalized stress-
energy tensor is computed for a test quantum field on a
fixed Schwarzschild background. In this work we will
evaluate the implications of staticity when considering the
whole problem, including the backreaction effect that the
quantum vacuum may produce in the metric.
To get the specific values of the metric components in

(2) we have to solve (1) for Tclassical
ab ¼ 0. For a static and

spherically symmetric vacuum state the most general
expression for the renormalized stress-energy tensor
hTabi is

hTabi ¼ −hρðrÞiuaub þ hprðrÞirarb þ hptðrÞiqab; ð3Þ

where ua ¼ e−ϕ∇at is a timelike vector normalized as

u2 ¼ −1, ra ¼ ð1 − 2mðrÞ
r Þ−1=2∇ar is a unit spacelike vector,

and qab is the metric on the unit 2-sphere. The metric can be
written covariantly as gab ¼ −uaub þ rarb þ qab. There
are only three independent equations from the semiclassical
Einstein equations. On the other hand, there is one non-
trivial Bianchi identity. Collecting the tt and rr Einstein’s
equations and this Bianchi identity we get the following
equations

dmðrÞ
dr

¼ 4πr2hρðrÞi; ð4Þ

dϕðrÞ
dr

¼ −
mðrÞ þ 4πr3hprðrÞi

r2ð1 − 2mðrÞ
r Þ

; ð5Þ

dhprðrÞi
dr

¼ −
mðrÞ þ 4πr3hprðrÞi

r2ð1 − 2mðrÞ
r Þ

ðhρðrÞi þ hprðrÞiÞ

−
2

r
ðhprðrÞi − hptðrÞiÞ: ð6Þ

When hpri ≠ hpti, there are anisotropic pressures. In the
isotropic case this system of equations reduces to the usual
Tolman-Oppenheimer-Volkoff (TOV) equations. In the rest
of the work we will refer to this system of equations as the
semiclassical TOV equations.
In this system there are 5 unknowns (3 from the stress-

energy tensor and 2 from the metric) for 3 equations.
Normally one would compute hTabi and express the result
in terms of ϕðrÞ and mðrÞ in order to get the system above
solved. Instead, we will impose two functional relations
between the components of the stress-energy tensor, in
order to avoid such a difficult (or unattainable) calculation.
First, we will consider the case of a massless quantum field
conformally coupled to the spacetime. The advantage of
doing this is that the relation between the three independent
components of the stress energy tensor is univocally fixed
by the trace anomaly hTa

ai as

−hρi þ hpri þ 2hpti ¼ hTa
ai; ð7Þ

and the trace anomaly is uniquely determined by the
geometry of the spacetime

hTa
ai ¼

ℏ
2880π2

ðαCabcdCabcd þ βRabRab þ γR2 þ δ□RÞ:
ð8Þ

In this expression Cabcd is the Weyl tensor, Rab the Ricci
tensor, R the Ricci scalar and α, β, γ, δ are real numbers.
Most importantly, this result is independent of the choice of
the quantum state. The idea of exploiting the trace anomaly
goes back to [31]. The constant coefficients depend on the
particular field under consideration. It should be noted
though that there exits an intrinsic ambiguity in the trace
anomaly for the coefficient δ [32]. This ambiguity is related
to the choice of the renormalization scheme. The term with
□R can always be removed by adding a local counterterm
in the Lagrangian so, from now on we set δ ¼ 0. This
simplifies the problem considerably, since it will avoid
derivatives of second and third order of the metric in the
field equations.
By evaluating (8) with our metric and using the semi-

classical TOV equations written above one can obtain a
simplified expression for the trace anomaly in terms of hρi,
hpri and hpti. This leads to the following equation of state
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−hρi þ hpri þ 2hpti ¼
ℏ
270

�
α

�
3m
4πr3

− hρi þ hpri − hpti
�

2

þ 6βðhρi2 þ hpri2 þ 2hpti2Þ þ 6γð−hρi þ hpri þ 2hptiÞ2
�
:

ð9Þ

For definiteness in this work we restrict to scalar fields, for which the coefficients are α ¼ β ¼ 1 and γ ¼ −1=3. For these
values the above expression can be further simplified to

−hρiþhpriþ2hpti¼
ℏ
180

�
m
πr3

�
3
m
πr3

þ8ð−hρiþhpri− hptiÞ
�
þ8hρiðhρi− hpriþ2hptiÞþ8ðhpri− hptiÞ2

�
: ð10Þ

We need another restriction to make our system of
equations solvable. Unfortunately there are no other uni-
versal geometric properties of the stress-energy tensor that
may allow us to fix a similar relation between the different
components of the stress-energy tensor. To proceed further
we need to impose a condition on hTabi based on what we
may expect from the quantum state. We will consider here
that hpri ¼ hpti. This simplifying assumption is inspired
by the “zero-order” result that one gets when calculating
hTabi in a fixed Schwarzschild background when r → 2M,
and we expect this near-horizon approximation to capture
the qualitative behavior of the actual solution. Indeed, in a
Schwarzschild spacetime background the vacuum expect-
ation value hTabi of a conformal scalar field in the static
spherically symmetric state behaves, in the vicinity of the
horizon, as [30]

hTν
μi∼−

ℏ
2π2ð1− 2M=rÞ2

Z
∞

0

dωω3

e8πMω − 1

2
6664
−1 0 0 0

0 1
3

0 0

0 0 1
3

0

0 0 0 1
3

3
7775:

ð11Þ

Both hTθ
θi≡ hpti and hpri≡ hTr

ri merge for r → 2M, but
as one moves away from the vicinity of the horizon, the
tangential and radial pressures start to differ. In fact, for
r → ∞ one has hpri ¼ − 1

3
hpti ∼Oðr−5Þ [33]. Therefore,

our assumption is expected to work only qualitatively as an
approximation to the actual relationship, whose knowledge
requires computing hTabi in detail. This simplification is
expected to capture the main physical ingredients of our
field theory (the results obtained will be exact at least in a
neighborhood of the classical horizon).
Our approach can be easily compared with other works

by fixing this free condition with different assumptions. For
instance, the effective two-dimensional Polyakov approxi-
mation [18,19,21,22] can be regarded as fixing trivially the
tangential pressure hpti ¼ 0 (or with additional extra
deformations [20,23]) and restricting the trace anomaly

to its two-dimensional value. Instead, we are trying to solve
the 4D problem directly without assuming a priori that it is
similar to the 2-dimensional case. On the other hand, the
approach of [24] also quantizes the matter field in four
dimensions, but assumes that hpti is regular as r → 2M,
even in the Schwarzschild background. Instead, our
assumption is compatible with Eq. (11).

III. SEMICLASSICAL METRIC SOLUTION

A. Perturbative analytical solution

The leading order contributions of the stress-energy
tensor are expected to behave as hρi ∼Oðℏ1Þ, hpi ∼
Oðℏ1Þ [where hpi ¼ hpri ¼ hpti]. We can thus look for
perturbative solutions of the semiclassical TOV equations,
solving the system order by order in powers of ℏ. In this
subsection we will obtain the first order correction using
analytical techniques, and in the next subsection we will
analyze the validity of this approach by solving the system
of equations numerically.
Solving the TOV equations at order ℏ0 gives mðrÞ ¼

M þOðℏÞ and ϕ ∼ − 1
2
logð1 − 2M=rÞ þOðℏÞ, whereM is

an arbitrary constant of integration, which can be identified
with the ADM mass. This is the Schwarzschild metric, as
expected at order ℏ0. To get something interesting we have
to solve the equations at first order in ℏ. Let us define
m ¼ M þm1ℏþOðℏ2Þ, ϕ ∼ − 1

2
logð1 − 2M=rÞ þ ϕ1ℏþ

Oðℏ2Þ, hρi ¼ ρ1ℏþOðℏ2Þ, hpi ¼ p1ℏþOðℏ2Þ. Then the
system of equations at first order in ℏ is given by

dm1

dr
¼ 4πr2ρ1; ð12Þ

dϕ1

dr
¼ −

m1

r2f2
−
4πrp1

f
; ð13Þ

dp1

dr
¼ −

M
r2f

ðρ1 þ p1Þ; ð14Þ

−ρ1 þ 3p1 ¼
M2

60π2r6
; ð15Þ
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where f ¼ 1 − 2M
r . This system can be solved analytically,

obtaining the following expressions for the pressure and
density1

hpi ¼ −
ℏM3

480π2r7f2

�
1

7
þ f

�
þOðℏ2Þ; ð16Þ

hρi¼ℏ

�
−

M3

160π2r7f2

�
1

7
þf

�
−

M2

60π2r6

�
þOðℏ2Þ; ð17Þ

and the following ones for the metric components

m ¼ M þ ℏ
40320πMf

ð9 − 36f logðfÞ þ 10f − 174f2

þ 246f3 − 91f4Þ þOðℏ2Þ; ð18Þ

ϕ¼ −
1

2
logfþ ℏ

80640πM2f2
ð3þ 36ð−1þ 3fÞf logðfÞ

− 35fþ 152f2 − 132f3 þ 5f4 þ 7f5Þ þOðℏ2Þ: ð19Þ
To fix the constants of integration we have assumed
the natural boundary conditions hpiðr → ∞Þ ¼ 0,
hρiðr → ∞Þ ¼ 0 and the metric tending to the
Schwarzschild one as r → ∞. For pedagogical purposes,
we display the asymptotic form of themetric around r ¼ 2M

ds2¼−
�
fðrÞ−ℏ

�
1

13440πM2fðrÞþOðlogfÞ
�
þOðℏ2Þ

�
dt2þ dr2

fðrÞ−ℏð 1
4480πM2fðrÞþOðlogfÞÞþOðℏ2Þþ r2dΩ2: ð20Þ

In the Appendix we prove that the curvature at this singular
point is finite, so this is just a coordinate singularity. In
fact, this is just the classical Schwarzschild coordinate
singularity at r ¼ 2M shifted to the value r0 defined by
g−1rr ðr0Þ ¼ 0. Using the expression (18) and imposing
2mðr0Þ ¼ r0, we easily obtain

r0 ¼ 2M þ
ffiffiffi
ℏ

p

4
ffiffiffiffiffiffiffiffi
70π

p þOðℏÞ: ð21Þ

In geometrized units
ffiffiffi
ℏ

p ¼ lp is the Planck length. This
singular, limiting point defines the end of validity of our
coordinate system, which would traditionally indicate the
location of a “horizon” at r ¼ r0. However, note that,
unlike the Schwarzschild case, in this point the component
gtt of the metric (the so called redshift function) does not
vanish, but takes the value

gttðr0Þ ¼ −
ffiffiffi
ℏ

p

12
ffiffiffiffiffiffiffiffi
70π

p
M

þOðℏÞ: ð22Þ

This implies that the static spacetime that we have obtained
does not contain a horizon, i.e. it is not defining a black
hole [34]. We check this in the Appendix.
Note that, even though (16) and (17) are generally very

small (because of the prefactor ℏ), they become relevant
around r ∼ r0, since in this limit the factor fðrÞ in the
denominator can compensate ℏ. In other words, quantum
effects are quite important near the location of what was
classically the horizon. The Krechtmann scalar is also
found to be significantly corrected at the singular point

(see Appendix). These observations lead us to the follow-
ing subsection.

B. Nonperturbative numerical solution

As we can see the results obtained above at first order in ℏ
also depend on fðrÞ, which takes values of order ffiffiffi

ℏ
p

near the
singular point r ¼ r0. This dependence compensates the
small value ofℏ in some expressions above.Becauseof this, a
natural question is whether the perturbativemethod is a good
approximation near to the singular point. To answer this we
can solve the TOVequations at second order inℏ and analyze
whether near the singular point the solution is consistentwith
the perturbative hypothesis (i.e. that theorderℏ1 is larger than
the order ℏ2, etc.). The analysis is tedious and we avoid
showing the details. What we obtain is that the ℏ2 contri-
bution to the pressure and the density is proportional to
ℏ2=fðrÞ4. Near to the singular point fðrÞ4 is of order ℏ2, so
this term competes with the first order contribution (16),
which is proportional to ℏ=fðrÞ2. Therefore we find that,
near the singular point, the higher order contributions inℏ are
not necessarily smaller than the first one and perturbation
theory actually breaks down. Therefore, we cannot rely on
the perturbative series in the vicinity of r0 and we are forced
to solve the differential TOV equations exactly, which can
only be done numerically. Still, we shall find that the
perturbative approach presented in the previous subsection
is a good approximation to the problem, and it qualitatively
predicts well the behavior of the nonperturbative solution.2

1The negative sign and the dependence on 1=f2 obtained in
these expressions are in agreement with the exact results obtained
on the fixed (Schwarzschild) background near the horizon for the
Boulware vacuum state [see (11)].

2In this paper we work in the semiclassical regime in which
fluctuations of the stress-energy tensor are negligible compared to
its mean value. Going beyond this framework would require
working with techniques in stochastic gravity [13], which is out
of the scope of the present paper. By nonperturbative we mean the
exact solution of the TOV equations within the semiclassical
framework.
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We now turn to solve numerically the TOV equations
(4)–(6) using the equation of state (10) and hpri ¼ hpti. We
place the boundary conditions at r ¼ 1000M, and demand
that at this location the solution is approximately the
Schwarzschild metric.3 An important issue that one faces
when solving the equations numerically is that the value ofℏ
is much smaller than M. To be able to distinguish the
implications of a nonzero but tiny value of ℏ from the
numerical error, one needs a huge computer accuracy. To
avoid this issue, a useful strategy is to use first some artificial
high values of ℏ (between 10−5M2 and 10−15M2), study the
dependence of the results on ℏ, and then extrapolate the
relevant quantities to the actual value of ℏ. By solving
numerically the equations for different values of ℏ and
calculating for each case thevalue of r0weobtain results that
approximately fit the expression r0 ≈ 2M þ 0.01947

ffiffiffi
ℏ

p
.

This shift differs from the one estimated by the perturbative
method (r0 ≈ 2M þ 0.01686

ffiffiffi
ℏ

p
) but the functional depend-

ence on ℏ remains the same.
In Fig. 1 we plot the components of the metric obtained

numerically, normalized by the factor fðrÞ ¼ 1–2M=r, as
well as the renormalized energy density and pressure. They
are plotted as a function of ϵ ¼ r−2Mffiffi

ℏ
p . With this new radial

variable the singular point r0 does not depend on the
specific value of ℏ. These plots are taken for ℏ=M2 ¼ 10−5,
but we have analyzed them for other values and have seen
that they do not significantly depend on the chosen value of
ℏ near the singular point. From these plots one can see that,
as in the perturbative solution, the component g−1rr tends to 0
at the singular point r ¼ r0, while gtt tends to a nonzero
value. The energy density and pressure differ from 0 as they
approach the singular point, as expected. More precisely
gtt ∼Oð ffiffiffi

ℏ
p

=MÞ, g−1rr ∼ ðr − r0Þ=M, ρ ∼Oðℏ0Þ, and p ∼
Oðℏ0Þ as r → r0. This is the same dependence on

ffiffiffi
ℏ

p
=M as

that obtained by the perturbative approach, although the
numerical coefficients are different. This allows us to

consider the perturbative solution as a qualitatively good
approximation.
We can summarize the above numerical result in terms of

the following generic expression for the metric

ds2 ¼ gttdt2 þ grrdr2 þ r2dΩ2; ð23Þ

where g−1rr → 0, as r → r0 > 2M and gttðr0Þ ≠ 0.
Furthermore, g−1rr ∼ ðr − r0Þ=M and gttðrÞ ∼Oð ffiffiffi

ℏ
p

=MÞ
in a neighborhood of r0.

IV. EXTENSION BEYOND THE
COORDINATE SINGULARITY

The metric (23) [or (20)] is only meaningful when r > r0
because of the coordinate singularity at r ¼ r0. We recall
(see Appendix) that the curvature scalars are finite at
r ¼ r0. Physically this effective metric can be used to
describe the exterior spacetime of a static, spherically
symmetric star, including the vacuum polarization effects
of quantum fields around. But in close analogy to the
classical Schwarzschild case when expressed in ft; r; θ;ϕg
coordinates, one may attempt to extend the spacetime
across the r ¼ r0 point and examine if there exists a purely
(quantum) vacuum solution. As remarked at the end of
Sec. III. A, the usual Eddington-Finkelstein coordinates fail
to provide a regular metric, which prevents the usual
analytical extension beyond r ¼ r0.
By looking at the specific form of the metrics (23) or (20)

one realizes that they can be used to construct a portion
of a static, traversable (and Lorentzian) wormhole [35,36].
By introducing the usual proper-length coordinate lðrÞ≡R
r
r0
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2mðr0Þ=r0p

dr0 ≥ 0 the metric can be rewritten to
fit the Morris-Thorne ansatz

ds2 ¼ −e−2ϕðlÞdt2 þ dl2 þ rðlÞ2dΩ2: ð24Þ

Therefore, one can extend the spacetime beyond the critical
point r ¼ r0 or l ¼ 0 (which physically represents the
throat of the wormhole) by analytically extending to
negative values of l. The function r ¼ rðlÞ is determined

FIG. 1. Numerical results obtained for the metric components and the renormalized energy density and pressure near the singular point
ϵ ¼ 0.01949 (where r ¼ 2M þ ϵ

ffiffiffi
ℏ

p
). We have chosen ℏ=M2 ¼ 10−5, but the plots do not change significantly for other values. We

compare them with the perturbative solution (dashed curves), for which the singular point is ϵ ¼ 0.01686.

3To get more precision we can choose the corrected solution at
first order in ℏ obtained above, but the results near the singular
point are numerically indistinguishable.
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by inverting the equation l ¼ lðrÞ given above, but only
when l > 0. For l < 0 the function r ¼ rðlÞ must be
determined by other means.

A. Setup

Instead of working with the metric ansatz (2) and then
transforming to (24) by a change of variables, we can
alternatively solve the problem from scratch using the latter
metric directly and explore if there exist wormhole solu-
tions. The equivalent system of TOV equations now reads
(we find convenient to introduce the defining relation
gðlÞ≡ dr

dl )

dr
dl

¼ g; ð25Þ

dg
dl

¼ 1 − 8πr2hρi þ g2

2r
; ð26Þ

dϕ
dl

¼ −1 − 8πr2hpri þ g2

2rg
; ð27Þ

dhpri
dl

¼ ð−1 − 8πr2hpri þ g2Þðhpri þ hρiÞ
2rg

þ 2gðhpti − hpriÞ
r

: ð28Þ

There are six unknowns for four equations. Again, we can
impose two equations of state to get a solvable model. As
before, we shall take hpti ¼ hpri (notice that the contribu-
tion of hpti − hpri is negligible near the throat, where as we
will see gð0Þ ¼ 0) and hTa

ai given by the trace anomaly:

− hρi þ 3hpi

¼ ℏ
180

�
1 − g2

2πr2

�
3
1 − g2

2πr2
− 8hρi

�
þ 8hρiðhpi þ hρiÞ

�
:

ð29Þ

To get wormhole solutions we must impose several
conditions. Without loss of generality, we can locate the
throat at l ¼ 0. One of the sectors of the throat (that
would represent the universe we live in) must be asymp-
totically flat, and inertial observers at infinity must measure
time with t. We choose that sector corresponding to
l > 0. Then the previous condition requires ϕð∞Þ ¼ 0,
hprið∞Þ ¼ hρið∞Þ ¼ 0. On the other hand, the coordinate
l should agree with the radial function rðlÞ at infinity, i.e.
rðlÞ → l as l → ∞. Furthermore, for sufficiently large
distances away from the throat, g must be given by the
Morris-Thorne coordinate transformation (the solution
should mimic a hole at large distances), i.e. gðlÞ ∼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2mðlÞ=lp

and therefore gð∞Þ ¼ 1.
This set of boundary conditions, together with the two

equations of state specified above, can be used to obtain a
unique solution to the above system of differential equa-
tions, integrating all the way down from l ¼ þ∞ until
negative values of l. Notice that in general there will be no
mirror-reflection symmetry at the throat. The results are
shown in the next subsection. For the solution to represent a
wormhole, note that (i) the throat must have a finite,
nonvanishing radius, so rð0Þ ¼ r0 > 0, and (ii) the throat
area must correspond to a minimum, therefore gð0Þ ¼ 0.
Before discussing the results, we remark an important

issue. It may seem that the above system of equations is not
well defined at the throat l ¼ 0 because of gð0Þ ¼ 0 in the
denominator of some equations. But notice that, according
to Einstein’s equation,

hprðrÞi ¼ −
1

8π

�
2m
r3

− 2

�
1 −

2m
r

�
∂rϕ

r

�
; ð30Þ

so at the throat (where 2mðrÞ ¼ r) we also have
prð0Þ ¼ −1=ð8πr20Þ, provided that ∂rϕð0Þ is well-defined
at the throat or that it does not blow up as quickly as
ð1 − 2m=rÞ−1 (this is verified in this case, using the
numerical solution obtained in the previous section one
can see that ∂rϕ ∼ ð1 − 2mðrÞ=rÞ−1=2 when r → r0).

FIG. 2. Numerical results obtained for the components of the metric (24) and gðlÞ ¼ r0ðlÞ in terms of l̃ ¼ lℏ−1=4M−1=2. The
represented interval of l̃ includes the throat (l̃ ¼ 0) and the curvature singularity (l̃ ≈ −0.278). We have defined the quantities
r̃ ¼ ðr − 2MÞℏ−1=2 and g̃tt ¼ gttℏ−1=2M, in such a way that their values at the throat do not depend on the chosen value of ℏ. We have
chosen ℏ=M2 ¼ 10−3 for these plots, but they have a similar form for other values.
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Therefore, the numerator of (27) and (28) also vanishes
whenever the denominator does, and we have a 0=0
ambiguity. To ensure that we can extend the metric across
the throat one needs to check first that the limit l → 0
tends to a finite value under the boundary conditions
specified above. Numerically we find that near the throat
1þ 8πr2p ∼OðlÞ and g ∼OðlÞ, so we can conclude that
the limit of the quotient will be finite.

B. Results

In Fig. 2 we show the result of solving numerically the
system of equations (25), (26), (27), (28) and (29) under the
conditions specified in the previous subsection. As in
Sec. III. B, to capture the implications of a nonvanishing
but tiny value of ℏ on the equations, we do the calculation
for several high values of ℏ (so that their effect is
numerically distinguishable), then we perform a fit of
the results to be able to extrapolate the value of interest
with the actual value of Planck’s constant. In our calcu-
lation the throat is located at l ¼ 0, note how at this point
there is a bounce in the function rðlÞ (its derivative gðlÞ
changes sign).
Furthermore, we find that in the interior region, l < 0,

a new singular point appears at ls ∼ −0.278ℏ1=4
ffiffiffiffiffi
M

p
. It is

a singular point because the redshift function vanishes
there, gttðlsÞ ¼ 0. As we approach to ls we find that the
renormalized density, the pressure and the scalar of
curvature R ¼ 8πð−ρþ 3pÞ all tend to diverge. This
signals the existence of a curvature singularity. To confirm
the existence of this singularity from an analytical view-
point we can examine the expression of the scalar curvature
in terms of the metric components:

RðlÞ ¼ g0ttðlÞ2
2gttðlÞ2

−
g00ttðlÞrðlÞ þ 2g0ttðlÞr0ðlÞ

gttðlÞrðlÞ

−
2ð2rðlÞr00ðlÞ þ r0ðlÞ2 − 1Þ

rðlÞ2 : ð31Þ

Since at the singular point gttðlsÞ ¼ 0 (see Fig. 2) some
terms of this expression diverge at this point. Although
g0ttðlÞ also vanishes at l ¼ ls, numerical computations show
that it decreases slower than gttðlÞ. To see the causal
character of this curvature singularity, let us consider the
induced metric on a l ¼ constant three-dimensional hyper-
surface: ds̄2 ¼ gttðlÞdt2 þ rðlÞ2dΩ2. At the singularity
l ¼ ls we have gttðlsÞ ¼ 0, so the metric becomes degen-
erate: ds̄2 ¼ 0þ rðlsÞ2dΩ2. Therefore, the surface l ¼ ls
becomes a null hypersurface [37], and this curvature
singularity is null. Figure 3 provides a Penrose diagram
that shows all these features.
An important question is how long it would take for an

observer crossing the throat to reach this curvature singu-
larity. To study this let us consider a radial and time-like
geodesic starting at l ¼ 0 (throat) and ending at the singular

point l ¼ ls. The relevant geodesic equation for a static and
spherically symmetric metric ds2 ¼ gttðlÞdt2 þ gllðlÞdl2 þ
rðlÞ2dΩ2 is given by

dl
dτ

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−g−1ll

�
E2g−1tt þ L2

r2
þ μ

�s
ð32Þ

where τ is the proper time, μ ¼ þ1; 0;−1 for timelike, null
and spacelike geodesics respectively, and E and L are
constants of motion given by E ¼ −gtt dtdτ and L ¼ r2 dϕ

dτ .
In our case gll ¼ 1, μ ¼ 1, L ¼ 0, and dl=dτ < 0 (the
geodesic is approaching the singularity), so

dl
dτ

¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2gttðlÞ−1 − 1

q
: ð33Þ

The proper time needed to reach the curvature singularity
from the throat is then given by

Δτ ¼ −
Z

ls

0

dlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2gttðlÞ−1 − 1

p : ð34Þ

(the condition that the geodesic propagates into the future,
∂τt > 0, implies E2gttðlÞ−1 > 1 and guarantees that the
integral is real). The order of magnitude of this quantity
can be estimated as follows. From (22) we know that
gttð0Þ ∼

ffiffiffi
ℏ

p
=M. Assuming E ∼ 1, we have E2g−1tt ðlÞ ≫ 1

in the region of the integration. Since jlsj ∼ ℏ1=4
ffiffiffiffiffi
M

p
≪ 1

we can also Taylor expand the integral to finally get

FIG. 3. Penrose diagram showing the wormhole throat (l ¼ 0)
and the null curvature singularity (l ¼ ls).
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Δτ ∼ −
Z

ls

0

ffiffiffiffiffiffiffiffiffiffi
gttðlÞ

p
dl ∼

ffiffiffiffiffiffiffiffiffiffiffi
gttð0Þ

p
jlsj þOðl2sÞ ∼

ffiffiffi
ℏ

p
ð35Þ

So an observer crossing the throat will almost immediately
see the presence of the curvature singularity.
Finally, we want to stress that the occurrence of the

curvature singularity has been obtained for a purely
vacuum semiclassical solution. The presence of matter
producing very compact stellar objects (ECOs) makes only
the outer part of the solution physically relevant. Moreover,
these results also suggest a maximum in the compactness of
ECOs. This maximum would be given by the minimum of
the radial function rðlÞ, i.e. the throat (r ¼ r0). Therefore
this maximum of compactness [measured as 2M=rðlÞ] is of
order

2M
r0

∼ 1 − 0.01686

ffiffiffi
ℏ

p

2M
: ð36Þ

We regard (36) as one of the main results of this work.
Probing the exterior of the semiclassical metric via scalar
and vector perturbations will be the topic of the next
section.
Remark: Another way to extend the metric beyond the

coordinate singularity r ¼ r0 consists in defining a coor-

dinate r̄ by dr̄
dr ¼ e−ϕðrÞð1 − 2mðrÞ

r Þ−1=2. In this case the metric
has the form

ds2 ¼ −Gðr̄Þdt2 þ dr2

Gðr̄Þ þ Rðr̄Þ2dΩ2: ð37Þ

Using this metric as an ansatz for solving the semiclassical
TOVequations we found that the functions G and R can be
analytically extended beyond the coordinate singularity
r̄ ¼ r̄0. In particular Rðr̄Þ reaches a minimum at r̄0 and
starts increasing for lower values, as expected for a
wormhole metric. On the other hand Gðr̄Þ continues to
decrease until it reaches the value r̄ ¼ r̄s, whereGðr̄sÞ ¼ 0.
At this point we again find a curvature singularity, which is
equivalent to the one found in the other extension explained
above. Therefore, with this alternative extension, we
obtain the same conclusions. However the approach
described above allows a higher accuracy in the numerical
calculations.

V. PROPAGATION OF WAVES IN THE
SEMICLASSICAL METRIC

The propagation of waves on a given spacetime back-
ground provides a way to test some features of this metric
by studying the scattering properties of the wave.
Furthermore, they provide a means to test the stability of
the metric under linear perturbations, which is a necessary
condition for any semiclassical metric that aims to describe
acceptable astrophysical systems. In this section we will

study scalar and electromagnetic perturbations around the
semiclassical metric constructed in Sec. III. In particular,
we will compute the leading order corrections to the light-
ring frequency modes. These frequencies depend only on
the geometry around the light-ring of the classical black
hole, and describe the early ringdown stage in gravitational
wave observations of binary mergers. While the late ring-
down stage is expected to be described by the proper QNM
frequencies [38,39], the calculation of these is out of the
scope of the present paper.

A. Scalar perturbations

Let us study the behavior of a massless scalar field
coupled to a general static and spherically symmetric
background, ds2 ¼ gttdt2 þ grrdr2 þ r2dΩ2. The field sat-
isfies the Klein-Gordon equation

ð□þ ξRÞϕ ¼ 0: ð38Þ

Since the metric is static and spherically symmetric, we can
look for solutions of the following form

ϕωlm ¼ 1

r
e−iωtYlmðθ;ψÞΨωlðrÞ: ð39Þ

For a curved spacetime the D’Alembert operator is given by
□ϕ ¼ 1ffiffiffiffi−gp ∂μð ffiffiffiffiffiffi−gp

gμν∂νϕÞ. The Klein-Gordon equation

decouples and, after some calculations one obtains the
following equation for the radial function

F2Ψ00
ωl þ FF0Ψ0

ωl þ ðω2 − VlÞΨωl ¼ 0; ð40Þ

where

FðrÞ ¼
ffiffiffiffiffiffiffiffiffiffi
−
gtt
grr

r
; ð41Þ

VðrÞ ¼ −gttðrÞ
�
lðlþ 1Þ

r2
− ξRðrÞ

�
þ FðrÞF0ðrÞ

r
: ð42Þ

If we define a generalized tortoise coordinate as ∂r� ¼
FðrÞ∂r, then Eq. (40) can be rewritten in the usual Regge-
Wheeler form ∂

2
r�Ψlm þ ðω2 − VÞΨlm ¼ 0. In particular,

for a Schwarzschild background we recover the usual
expression.
Now let us study this potential for our particular case,

given by gtt ¼ −e−2ϕðrÞ and grr ¼ 1 − 2mðrÞ
r , where ϕðrÞ

and mðrÞ have been obtained in Sec. III. Using the
semiclassical TOVequations we can rewrite the potential as

VðrÞ ¼ e−2ϕðrÞ
�
lðlþ 1Þ

r2
þ 2mðrÞ

r3
þ 4πðð1 − 6ξÞhpðrÞi

þ ð−1þ 2ξÞhρðrÞiÞ
�
: ð43Þ
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It is easy to see that in the Schwarzschild limit ℏ → 0 this
expression reduces to the usual effective potential for scalar
fields. We can now use the perturbative solution of the
corrected Schwarzschild metric to obtain the correction
of the Regge-Wheeler potential at first order in ℏ. The
resulting expression, at first order in ℏ, yields

VðrÞ ¼ V0ðrÞ þ
ℏ

20160πM2r6f
½−2688M4ξf2

þMr3ð−3λþ ð53þ 32λÞf − 40ð1þ 3λÞf2
þ 12ð−36þ λÞf3 þ ð664þ 7λÞf4 − 245f5Þ
þ 18r4ðð1þ λÞ − ð5þ 3λÞf þ 4fÞf logðfÞ�
þOðℏ2Þ; ð44Þ

where f ¼ 1 − 2M
r , λ ¼ lðlþ 1Þ and V0ðrÞ ¼ fð λr2 þ 2M

r3 Þ,
which is the effective potential for scalar fields on a
Schwarzschild background. Note that this expression does
not depend on ξ. This is because the scalar curvature is
given by R ¼ 8πð−ρþ 3pÞ, and expanding around
r ¼ 2M we have ρ ≈ 3p at leading order [see (17) and
(16)], so the term ξR is subleading. On the other hand, near
the throat fðr0Þ ∼Oð ffiffiffi

ℏ
p

=MÞ so the quantum correction of
the effective potential is of order Oð ffiffiffi

ℏ
p

=M3Þ near the
throat, while it is of order Oðℏ=M4Þ in general.

Using this expression for the corrected effective poten-
tial, we can now obtain the quantum corrections at first
order in ℏ to the light ring frequencies. The computation of
these frequencies requires numerical methods. However,
one can obtain a reasonable estimation by using the WKB
approximation [40].
Let us briefly review the calculation for a Schwarzschild

metric. In this framework the light ring frequencies at 0th
adiabatic order are given by

ω2
n ¼ Vðr�mÞ − i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2V 00ðr�mÞ

p �
nþ 1

2

�
; ð45Þ

where r�m is the value of the tortoise coordinate at which the
potential is maximum, and the primes mean derivatives
with respect to r�. In the case of a Schwarzschild back-
ground the maximum of the potential is located at

rm ¼ 3ðλ − 1Þ þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið9λþ 14Þλþ 9
p
2λ

M; ð46Þ

which for large l tends to rm ∼ 3M. [The case λ ¼ 0 (l ¼ 0)
has to be studied separately, we analyze it at the end of this
section]. Using this expression, we can obtain the fre-
quency of the light-ring modes for a scalar perturbation in a
classical black hole

ω2
Sch ¼

1

M2

�
1 −

2

r̃m

��
λ

r̃2m
þ 2

r̃3m

�
− i

�
nþ 1

2

�
2

M2r̃4m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

2

r̃m

�
ð−96r̃m − 10ð3λ − 7Þr̃2m þ 4ð5λ − 3Þr̃3m − 3λr̃4mÞ

s
; ð47Þ

where r̃m ¼ rm=M.
Now let us see how this expression changes if we add quantum corrections at first order in ℏ. The corrected effective

potential (44) has its maximum at r ¼ rm þ ℏ
M ϵþOðℏ2Þ, where

ϵ ¼ 1

5040π
r̃−4m ð40þ 12ðλ − 1Þr̃m − 3λr̃2mÞ−1

�
1 −

2

r̃m

�
−2
�
−392ð48ξ − 35Þ þ 8ð21λþ 3360ξ − 2663Þr̃m

− 2ð249λþ 6384ξ − 5057Þr̃2m þ 12ð6λþ 168ξ − 59Þr̃3m þ 3ð89λ − 177Þr̃4m þ 27ð3 − 5λÞr̃5m þ 18λr̃6m

þ 9

2
r̃5mð−32 − 9ðλ − 1Þr̃m þ 2λr̃2mÞ

�
1 −

2

r̃m

�
2

log

�
1 −

2

r̃m

��
: ð48Þ

Using the equation (45) we obtain the following expression for the corrected frequencies at first order in ℏ

Re½ω2� ¼ Re½ω2
Sch� þ

ℏ
630πM4

336ðλþ 2Þξ − 201λ − 560þ r̃mð−84ðλþ 3Þξþ 13λ2 þ 42λþ 210Þ
λr̃8mð1 − 2

r̃m
Þ þOðℏ2Þ: ð49Þ
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Im½ω2� ¼ Im½ω2
Sch� −

ℏ
2520πM4

�
nþ 1

2

�
r̃−8m

�
1 −

2

r̃m

�
−3=2

ð−96r̃m − 10ð3λ − 7Þr̃2m þ 4ð5λ − 3Þr̃3m − 3λr̃4mÞ−1=2

·

�
1176ð144ξ − 125Þ þ 12r̃mð−749λ − 25760ξþ 645120πr̃mϵþ 23011Þ

þ 4r̃2mð3977λþ 52584ξþ 25200πð21λ − 121Þr̃mϵ − 45476Þ
− 2r̃3mð3468λþ 31584ξþ 25200πð63λ − 139Þr̃mϵ − 20771Þ
þ 2r̃4mð−1069λþ 3528ξþ 5040πð170λ − 171Þr̃mϵþ 1956Þ − 9r̃5mð−271λþ 560πð77λ − 30Þr̃mϵþ 312Þ

þ 9r̃6mð−71λþ 3360πλr̃mϵþ 30Þ þ 54λr̃7m þ 9

2
r̃4mð−768 − 14ð15λ − 59Þr̃m − 6ð47 − 35λÞr̃2m − 5ð13λ − 6Þr̃3m

þ 6λr̃4mÞ
�
1 −

2

r̃m

�
log

�
1 −

2

r̃m

��
þOðℏ2Þ: ð50Þ

As mentioned above, the case l ¼ 0 requires special attention. In this case the effective potential has its maximum at

r ¼ 8M
3

þ ℏ
430080πM

ð1008ξ − 1767þ 2048 logð2ÞÞ þOðℏ2Þ: ð51Þ

Therefore, the corrected frequency at first order in ℏ for l ¼ 0 is given by

ω2 ¼ ω2
Sch þ

3ℏ
286720πM2

ðð336ξ − 241ÞRe½ω2
Sch� − 2ið336ξ − 5ÞIm½ω2

Sch�Þ ð52Þ

One can see that, even if the geometry of the spacetime is
drastically changed by quantum effects near to the horizon,
they do not imply significant corrections to the physical
observables in the exterior region.

B. Electromagnetic perturbations

Let us now study the propagation of electromagnetic
waves on a general static and spherically symmetric
metric given by ds2 ¼ gttðrÞdt2 þ grrðrÞdr2 þ r2dΩ2.
The electromagnetic field Fab satisfies the source-free
Maxwell equations:

∇aFab ¼ 0; ∇a
�Fab ¼ 0; ð53Þ

where �F is the Hodge dual of F. The second equation is
solved with Fab ¼ Aa;b − Ab;a, where Aa is the electro-
magnetic potential, and the problem is reduced to solve the
first equation above for the vector field Aa. For a spherically
symmetric background spacetime we can search for sol-
utions by expanding Aa in the basis of 4-dimensional vector
spherical harmonics ðYaÞlm. Elements of this basis are
classified according to their behavior under parity trans-
formations. For axial/odd modes, which have parity
ð−1Þlþ1, the electromagnetic potential can be expanded as

A−
a ðt; r; θ;ϕÞ ¼

X
l;m

2
6664

0

0
almðt;rÞ
sin θ ∂ϕYlm

−almðt; rÞ sin θ∂θYlm

3
7775; ð54Þ

for some (gauge-invariant) coefficients almðt; rÞ. Using this
ansatz one can check that there is only one nontrivial
independent equation from ∇aFab ¼ 0. For a static space-
time we can further separate alm ¼ e−iωtΨ−

lmðrÞ, and the
resulting equation can be written as

F2Ψ−00
lm þ FF0Ψ−0

lm þ ðω2 − VlÞΨ−
lm ¼ 0; ð55Þ

where

FðrÞ ¼
ffiffiffiffiffiffiffiffiffiffi
−
gtt
grr

r
; ð56Þ

VlðrÞ ¼ −gttðrÞ
lðlþ 1Þ

r2
: ð57Þ

Again, introducing the tortoise coordinate by ∂r� ¼ FðrÞ∂r,
one recovers the usual Regge-Wheeler form of the
equation, ∂

2
r�Ψ

−
lm þ ðω2 − VlÞΨ−

lm ¼ 0. In particular,
for a Schwarzschild background we recover the usual
expression.
For polar/even modes, which have parity ð−1Þl, the

electromagnetic potential can be expanded as

Aþ
a ðt; r; θ;ϕÞ ¼

X
l;m

2
6664

flmðt; rÞYlm

hlmðt; rÞYlm

klmðt; rÞ∂θYlm

klmðt; rÞ∂ϕYlm

3
7775; ð58Þ
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for some coefficients flm, hlm, klm. However, these coef-
ficients are gauge-dependent. Let us introduce the three
gauge-invariant combinations Ψþ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi−gttgrr

p r2
lðlþ1Þ×

ð∂thlm − ∂rflmÞ, Ψ1;lm ¼ flm − ∂tklm and Ψ2;lm ¼ hlm −
∂rklm (these combinations are essentially the field compo-
nents Ftr, Ftϕ, Frϕ, respectively; the rest of the field
components are redundant). Using Maxwell equations
one can conclude, after some work, that Ψþ

lm satisfies
the same equation (55) as the axial solution Ψ−

lm, and the
rest of the field variables are determined from it:

Ψ1 ¼ − ∂rΨþ
grr

þ ∂rðgttgrrÞ
2gttg2rr

Ψþ and Ψ2 ¼ ∂tΨþ
gtt

. One can easily

check that these results fully solve the system of equations
∇aFab ¼ 0, and the whole problem reduces to solve (55)
with suitable boundary conditions.
The fieldsΨ�

lm constitute the two fundamental degrees of
freedom per spacetime point of the electromagnetic field.
Notice that both fields satisfy exactly the same dynamical
equation even when the quantum corrections considered in
this paper are included, leading in particular to the usual
phenomenon of isospectrality [41]. This could have been
guessed in advance from the electric-magnetic duality
symmetry of the source-free Maxwell equations [42], since
Ψþ plays the role of the electric field while Ψ− represents
the magnetic degree of freedom.
For the perturbative corrected Schwarzschild metric

provided in Sec. III, the first order correction in ℏ to the
potential yields

VðrÞ ¼ V1ðrÞ−
ℏlðlþ 1Þ

5040πM2r7

�
2M
fðrÞ ð21M

2r2 þ 40M3r

− 14M4 − 36Mr3 þ 9r4Þ þ 9r4ðr− 3MÞ logðfðrÞÞ
�

þOðℏ2Þ; ð59Þ

where V1 ¼ fðrÞ lðlþ1Þ
r2 is the potential for electromagnetic

perturbations on the Schwarzschild metric, and fðrÞ ¼
1 − 2M

r . As in the scalar case, for r → r0 the effective
potential acquires a nonzero residual value of orderffiffiffi
ℏ

p ¼ lp, which is not present in the classical case.
Finally, let us analyze the quantum corrections to the

light ring frequencies of electromagnetic perturbations,
again using the WKB approximation described above.
For the Schwarzschild metric the maximum of the
Regge-Wheeler potential is located at r ¼ 3M, and there-
fore using the expression (45) one obtains

ω2
Sch ¼

lðlþ 1Þ
27M2

− i
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp
27M2

�
nþ 1

2

�
: ð60Þ

For our (perturbatively) corrected spacetime, at first order
in ℏ we obtain the maximum of the potential (59) at
r ¼ 3M þ ℏ

90720πM ð243 logð3Þ − 20Þ. Substituting in (45)

and expanding in Taylor series we obtain the following
expression for the quantum correction to the light ring
frequencies:

ω2¼ω2
Schþ

ℏ
17010πM2

ð−13Re½ω2
Sch�þ11iIm½ω2

Sch�Þ: ð61Þ

Again, the quantum effects of vacuum polarization do not
lead to significant, observable corrections.

VI. SUMMARY AND FINAL COMMENTS

The theory of test quantum fields in a given gravitational
background is widely regarded as a useful and fruitful
framework for exploring quantum fluctuations enhanced
by gravity. This theory can be further used to analyze the
backreaction of these quantum effects on the spacetime
background by looking at the semiclassical Einstein’s
equations (1). Solving these equations is, however, a very
elusive problem and only in very highly symmetric
situations one can carry out the computation in a manage-
able way. A good example are conformally flat spacetimes
with conformal matter fields. In this case hTabi is essen-
tially characterized by the conformal anomaly. Another
relevant example emerges in two-dimensional dilaton-
gravity models coupled to conformal matter. The conformal
anomaly in two dimensions fully determines the quantum
stress tensor for a given choice of the vacuum state, thus
allowing us to solve analytically the semiclassical back-
reaction equations for a relevant class of two-dimensional
models [17].
In this paper we have reanalyzed the four-dimensional

problem from scratch, focusing on static and spherically-
symmetric backgrounds. The general expressions given
in [14] for the renormalized stress tensor, when the quantum
field lives in static and spherically symmetric spacetimes,
represent a very significant progress, but they are still quite
involved andunpractical to solve the semiclassical equations.
One way to simplify the problem is to restrict ourselves to
conformal matter and take advantage of the trace anomaly.
However, those assumptions (spherical symmetry, staticity
and conformal matter) are still not sufficient to reduce the
problem to a manageable form, in sharp contrast with the
effective two-dimensional case [18–20]. To overcome
this difficulty we have introduced an extra simplifying
assumption, suggested by well-known results in the fixed
Schwarzschild background. Since we are mainly interested
in the behavior of the geometry in the very near horizon
region r ∼ 2M (in the macroscopic vicinity of 2M one does
not expect any significant modification of the classical
Schwarzschild geometry)wehave assumed the exact relation
between hpti and hpri in the vicinity of the classical horizon
(suggested by the results in the fixed background approach).
Our findings appear to be essentially insensitive of this
assumption. More precisely, we have numerically checked
that the (nonperturbative) backreaction solution obtained

BELTRÁN-PALAU, DEL RÍO, and NAVARRO-SALAS PHYS. REV. D 107, 085023 (2023)

085023-12



with other restrictions (such as hpti ¼ 0) are qualitatively
similar to those described in Sec. III. Furthermore, our results
do not depend on the particular form of the conformal matter
either (for a massless Dirac field we have obtained results
similar to those for a scalar field).
One remarkable property of the semiclassical backreac-

tion solution obtained in Secs. III and IV is that the radial
function can never reach 0 (where the classical curvature
singularity is located), but rather it has a minimum on a
time-like surface. This mimics the throat of an (asymmet-
ric) wormhole, and it is located at r0 ≈ 2M þOð ffiffiffi

ℏ
p Þ,

where the red-shift function reaches a very small but
nonzero value.4 Beyond this bouncing surface for the
radial function we have found a null curvature singularity
at a finite proper-time distance (of order Oð ffiffiffi

ℏ
p Þ from

the throat). The overall physical picture qualitatively
agrees with the results obtained from the purely two-
dimensional approach. This indicates that the two-dimen-
sional approach could be more accurate than it could be
expected.
The global picture obtained from this semiclassical

framework differs drastically from its counterpart in
classical general relativity, specially regarding the black
hole interior region. Strictly speaking, here the classical
horizon disappears and it is replaced by a bouncing timelike
surface, beyond which a null curvature singularity emerges
immediately. The underlying reason for this seems to be
rooted in the singular behavior of the renormalized stress
tensor at the classical horizon obtained in the fixed back-
ground approach. In light of these results, it looks as if the
original singular behavior of the stress-tensor in the
classical horizon manifests itself in the metric in the form
of a curvature singularity as a result of the backreaction. We
regard this singularity as a side effect of the assumption of a
pure vacuum solution. The presence of matter could tame
the singularity if vacuum polarization effects continue to be
relevant (as suggested by the results in [23]) and allow the
formation of ECO’s. However in this case the maximum
compactness of these objects is bounded by 2M=r0 ∼
1 − 0.01686

ffiffiffi
ℏ

p
=ð2MÞ. This bound is a direct consequence

of the fact that the exterior geometry of ECOs has to be
described by the external portion of our semiclassical
solution, and not by the classical Schwarzschild metric.
We have also analyzed potential physical implications of

the quantum corrected geometry in the exterior region. In
Sec. V we have analyzed in detail the scalar and electro-
magnetic perturbations, paying special attention to the
so-called “light ring frequencies,” which are the relevant
observables in the ringdown of binary black holes. We have
evaluated the corrected light ring frequencies using our

predictions for the semiclassical metric, and they differ
from their classical counterpart by corrections of order
Oðℏ=M2Þ. Somewhat not surprising, the drastic modifica-
tion of the metric around the classical horizon does not
lead to observable corrections on these observables, since
these frequencies are determined by the spacetime curva-
ture around the light-ring. To really probe the quantum
corrections around the classical horizon geometry one
would need to compute the proper BH quasinormal
mode frequencies of the system, which would most likely
differ nonperturbatively from the classical BH QNMs.
However these observables require the specification of
boundary conditions at the center or surface of the quantum
object in question, and this is out of the scope of the
present paper.
We plan to extend this work in several directions. Apart

from computing the QNM frequencies above, our goal is to
analyze the inclusion of collapsing matter and the impact of
the time-dependent phase on the backreaction effects. This
is indeed a very difficult problem in the four-dimensional
arena and requires a separate study.
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Note added.—After the communication of this paper
another work appeared [43] which confirms some of our
conclusions, giving further support to our results.

APPENDIX: NATURE OF THE SINGULAR
POINT r= r0

In this appendix will analyze in detail the nature of the
singular point r ¼ r0 obtained in Sec. III and will prove that
it is a coordinate singularity. We will also see why this
singular point does not define a classical horizon.
Let us consider a general metric of the form

ds2 ¼ −GðrÞdt2 þ dr2

FðrÞ þ r2dΩ2; ðA1Þ

with GðrÞ > 0 and FðrÞ > 0. Its corresponding curvature
scalar is given by

4We note that the power in the dependence on ℏ is different
from that obtained in the approach of Ref. [24], for which
r0 ≈ 2M þOðℏÞ. Furthermore, we also have discrepancies in the
analytic form of the metric components.
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R ¼ 4G2ðrF0 þ F − 1Þ þ rGðG0ðrF0 þ 4FÞ þ 2rFG00Þ − r2FðG0Þ2
2r2G2

: ðA2Þ

In our case Fðr0Þ ¼ 0 at the singular point, but Gðr0Þ ≠ 0
and their derivatives are not divergent, so the scalar
curvature is finite at this point, and therefore r ¼ r0 is a
coordinate singularity. This statement can also be inferred
from a perturbative analysis of the semiclassical Einstein’s
equations R ¼ 8πhTa

ai, since at first order the trace does not
diverge [hTa

ai ¼ ℏM2

60π2r6
þOðℏ2Þ].

Another way to confirm this, and to assess the impact
of the quantum-vacuum polarization on the classical
Schwarzschild geometry, is by analyzing the Kretschmann
curvature scalar. For a static and spherically symmetric
metric, the explicit expression can be simplified considerably
if we use the TOV equations. It reads

KðrÞ ¼ 16

�
−
8πmðrÞhρðrÞi

r3
þ 3mðrÞ2

r6
þ 4π2½2hpðrÞihρðrÞi þ 3hpðrÞi2 þ 3hρðrÞi2�

�
ðA3Þ

Since the renormalized pressure and density are of order ℏ=f2 near the singular point (i.e. numerically of order ∼1 since
fðr0Þ ∼

ffiffiffi
ℏ

p
), we can see that the Kretschmann scalar does not diverge. In particular, by substituting the perturbative

solution at first order in ℏ into this expression we obtain

KðrÞ¼ 48M2

r6
þ ℏ
105πr9

�
2M

r2fðrÞ2
�
728M4−818M3rþ212M2r2þ27Mr3−9r4

�
−9r3 log

�
1−

2M
r

��
þOðℏ2Þ: ðA4Þ

As mentioned above, near the singular point the leading
correction to the Kretschmann scalar behaves as ℏ=f2,
which tends to Oð1Þ at this point. Notice that, as compared
to the classical Schwarzschild value, the Kretschmann
scalar is expected to receive corrections that are of order
Oðℏ0Þ in a neighborhood of the singular point, meaning
that quantum corrections may be significant for the nearby
geometry despite the tiny value of ℏ.
If we substitute the equation of state (10) in (A3), we see

that the terms that include the trace anomaly are of order ℏ
near the singular point, so for a conformal quantum field we
can further approximate the Kretschmann scalar as

KðrÞ ∼ 16

�
−
8πmðrÞhρðrÞi

r3
þ 3mðrÞ2

r6
þ 16π2hρðrÞi2

�
ðA5Þ

As mentioned above, this coordinate singularity does not
define a classical horizon. To check this explicitly, it is useful
to switch to Eddington-Finkelstein coordinates. Defining

the generalized tortoise coordinate as dr2� ¼ G−1F−1dr2

and the advanced time as v ≔ tþ r�, the metric (A1) can be
expressed as

ds2¼−GðrÞdv2þ2F−1=2ðrÞG1=2ðrÞdvdrþ r2dΩ2: ðA6Þ

Notice that 2F−1=2G1=2dvdr ¼ −ð−ds2 −Gdv2 þ r2dΩ2Þ.
Therefore for causal (ds2 ≤ 0) and future-directed (dv > 0)
curves, dr < 0 is only possible if GðrÞ < 0. If there were a
critical point where GðrÞ ¼ 0, it would define a one-way
membrane for radial (dΩ ¼ 0) null geodesics, i.e. a horizon.
But in our caseGðrÞ > 0 for all r ≥ r0, so there is no horizon
in this spacetime.
As a side remark, notice that in sharp contrast to the

Schwarzschild metric where FðrÞ ¼ GðrÞ, the Eddington-
Finkelstein coordinates are not useful to penetrate across
the coordinate singularity r ¼ r0, because the metric in
these coordinates is not regular. We discuss the question of
how to extend the metric across r ¼ r0 in Sec. IV.
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[141] I. Agulló, J. Navarro-Salas, G. J. Olmo, and L. Parker, “Revising the

observable consequences of slow-roll inflation,” Physical Review D

81 (2010), no. 4, 043514.

[142] I. Agullo, W. Nelson, and A. Ashtekar, “Preferred instantaneous

vacuum for linear scalar fields in cosmological space-times,”

Physical Review D 91 (2015), no. 6, 064051.

[143] A. Ferreiro and S. Pla, “Adiabatic regularization and preferred

vacuum state for the λϕ4 field theory in cosmological spacetimes,”

Physical Review D 106 (2022), no. 6, 065015.

[144] A. Ferreiro and S. Pla, “Instantaneous vacuum and States of Low

Energy for a scalar field in cosmological backgrounds,”

arXiv:2303.18074 (2023).

[145] S. Nadal-Gisbert, J. Navarro-Salas, and S. Pla, “Low-energy states

and CPT invariance at the big bang,” Physical Review D 107

(2023), no. 8, 085018.

[146] A. Ferreiro, S. Nadal-Gisbert, and J. Navarro-Salas,

“Renormalization, running couplings, and decoupling for the

Yukawa model in a curved spacetime,” Physical Review D 104

(2021), no. 2, 025003.

[147] S. Pla and E. Winstanley, “Equivalence of the adiabatic expansion

and Hadamard renormalization for a charged scalar field,”

Physical Review D 107 (2023), no. 2, 025004.

[148] S. Pla, I. M. Newsome, R. S. Link, P. R. Anderson, and

J. Navarro-Salas, “Pair production due to an electric field in 1+1



BIBLIOGRAPHY 173

,dimensions and the validity of the semiclassical approximation,”

Physical Review D 103 (2021), no. 10, 105003.

[149] J. Navarro-Salas and S. Pla, “(F, G)-summed form of the QED

effective action,” Physical Review D 103 (2021), no. 8, L081702.

[150] P. Candelas and K. Howard, “Vacuum ⟨φ2⟩ in Schwarzschild

spacetime,” Physical Review D 29 (1984), no. 8, 1618.

[151] D. N. Page, “Thermal stress tensors in static Einstein spaces,”

Physical Review D 25 (1982), no. 6, 1499.

[152] K. W. Howard, “Vacuum ⟨Tµν⟩ in Schwarzschild spacetime,” Physical

Review D 30 (1984), no. 12, 2532.

[153] P. R. Anderson, “A method to compute ⟨φ2⟩ in asymptotically flat,

static, spherically symmetric spacetimes,” Physical Review D 41

(1990), no. 4, 1152.

[154] A. Levi, E. Eilon, A. Ori, and M. van de Meent, “Renormalized

stress-energy tensor of an evaporating spinning black hole,”

Physical Review Letters 118 (2017), no. 14, 141102.

[155] A. Levi, “Renormalized stress-energy tensor for stationary black

holes,” Physical Review D 95 (2017), no. 2, 025007.

[156] A. Lanir, A. Levi, A. Ori, and O. Sela, “Two-point function of a

quantum scalar field in the interior region of a Reissner-Nordstrom

black hole,” Physical Review D 97 (2018), no. 2, 024033.

[157] A. Lanir, A. Levi, and A. Ori, “Mode-sum renormalization of ⟨Φ2⟩
for a quantum scalar field inside a Schwarzschild black hole,”

Physical Review D 98 (2018), no. 8, 084017.

[158] R. A. Bertlmann, Anomalies in quantum field theory, vol. 91.

Oxford university press, 2000.



174 BIBLIOGRAPHY

[159] A. D. Sakharov, “Violation of CP-invariance, C-asymmetry, and

baryon asymmetry of the Universe,” in In The Intermissions...:

Collected Works on Research into the Essentials of Theoretical

Physics in Russian Federal Nuclear Center, Arzamas-16,

pp. 84–87.

World Scientific, 1998.

[160] D. M. Capper and M. J. Duff, “Trace anomalies in dimensional

regularization,” Nuovo Cimento A 23 (1974), no. 1, 173–183.

[161] J. Steinberger, “On the use of subtraction fields and the lifetimes of

some types of meson decay,” Physical Review 76 (1949), no. 8,

1180.

[162] H. Fukuda and Y. Miyamoto, “On the γ-decay of neutral meson,”

Progress of Theoretical Physics 4 (1949), no. 3, 347–357.

[163] J. S. Bell and R. W. Jackiw, “A PCAC puzzle: π0 → γγ in the

σ-model,” Nuovo Cimento 60 (1969) 47–61.

[164] S. L. Adler, “Axial-vector vertex in spinor electrodynamics,” Physical

Review 177 (1969), no. 5, 2426.

[165] M. J. Duff and C. J. Isham, Quantum structure of space and time.

Cambridge University Press, 1982.

[166] S. M. Christensen and M. J. Duff, “Quantizing gravity with a

cosmological constant,” Nuclear Physics B 170 (1980), no. 3,

480–506.

[167] F. Del Aguila and G. Coughlan, “The cosmological constant,

non-compact symmetries and Weyl invariance,” Phys. Lett. B 180

(1986) 25–28.



BIBLIOGRAPHY 175

[168] E. Tomboulis, “Dynamically adjusted cosmological constant and

conformal anomalies,” Nuclear Physics B 329 (1990), no. 2,

410–444.

[169] S. Ferrara and J. G. Taylor, Supergravity 1981, vol. 1.

CUP Archive, 1982.

[170] E. Fradkin and A. A. Tseytlin, “Conformal anomaly in Weyl theory

and anomaly free superconformal theories,” Physics Letters B 134

(1984), no. 3-4, 187–193.

[171] A. M. Polyakov, “Quantum geometry of bosonic strings,” Physics

Letters B 103 (1981), no. 3, 207–210.

[172] A. M. Polyakov, “Quantum geometry of fermionic strings,” Physics

Letters B 103 (1981), no. 3, 211–213.

[173] K. Fujikawa, “Comment on chiral and conformal anomalies,”

Physical Review Letters 44 (1980), no. 26, 1733.

[174] K. Fujikawa, “Energy-momentum tensor in quantum field theory,”

Physical Review D 23 (1981), no. 10, 2262.

[175] R. M. Wald, “Trace anomaly of a conformally invariant quantum field

in curved spacetime,” Physical Review D 17 (1978), no. 6, 1477.


	Introduction and motivation
	Structure and conventions
	Methodology

	Theoretical framework
	Review on Quantum Field Theory in curved spacetimes
	Scalar field
	Particle creation in an expanding universe

	Semiclassical Electrodynamics and the Schwinger Effect
	Black Holes in the presence of Quantum Fields
	Hawking Radiation
	Exotic Compact Objects (ECOs)

	Renormalization in Curved Spacetimes
	Point-Splitting regularization
	Adiabatic renormalization
	Renormalization in Black Holes

	Anomalies in QFT and Gravitation
	Axial anomaly in QED
	Trace Anomaly in QFT in curved spacetimes


	Results and Conclusions
	Results and Conclusions
	Article 1: Translational anomaly in electric backgrounds
	Article 2: Breaking of adiabatic invariance in electromagnetic backgrounds
	Article 3: Adiabatic renormalization method to Dirac fields in an electric background
	Article 4: Pragmatic mode-sum regularization method in a cosmological background
	Article 5: Quantum vacuum corrections to the Schwarzschild metric


	Articles
	Bibliography


