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Extrapolation in Theoretical Chemistry:  
Approximating Reality from Matters‑of‑fact

A. J. C. Varandas*

RESUMO

The use of extrapolation methods in Quantum Chemistry is overviewed. Two topics are addressed, 
both lying at the heart of chemistry: electronic structure and quantum reaction dynamics. In the first, we 
address the problem of extrapolating the energy obtained by solving the SchrÖdinger equation to the 
limit of a complete one‑electron basis set. With the uniform‑singlet‑and‑triplet‑extrapolation (USTE) 
scheme at the focal point, the emphasis is on recent updates. Secondly, we address the extrapolation of 
quantum mechanical reactive scattering probabilities from zero total angular momentum to all J values 
by running quasiclassical trajectories, QCT/QM‑αJ. Some implications and prospects for future work 
conclude the overview.

Analiza‑se o uso de métodos de extrapolação em Química Quântica focando em duas áreas funda‑ 
mentais: estructura electrónica e dinâmica quântica. Sobre a primeira, tal necessidade advém do facto 
dos valores próprios da energia serem obtidos por solução da equação de SchrÖdinger com bases finitas, 
requerendo por isso extrapolação para o limite da base completa (infinita). Com ênfase no método USTE 
(Uniform‑Singlet‑and‑Triplet‑Extrapolation), limita‑se por brevidade a análise aos estudos mais recentes. 
Sobre a segunda, discute‑se o método QCT/QM‑αJ com vista ao cálculo de secções eficazes e constantes 
de velocidade, i.e. extrapolação pelo método das trajectórias quasi‑clássicas (QCT) para qualquer valor 
do momento angular total das probabilidades de reacção calculadas para momento angular total nulo J 
= 0 por métodos mais elaborados (e por isso dispendiosos) da mecânica quântica (QM). Sumariam‑se as 
implicações e linhas de actuação futura.

I. INTRODUCTION

It is well known that no problem in physics and chemistry can ever be solved exactly. Approximations 
are unavoidable, with the adiabatic approximation due to Born and Oppenheimer1 (BO) being most 
fundamental. Owing to the disparity of masses (nuclei are at least 1837 times heavier than electrons), BO 
proposed that their motions could be disentangled and considered separately: the nuclei are said to move 
adiabatically governed by the potential energy surface (PES) created by the electrons. In fact, even a 
smaller disparity of masses than the one encountered between a proton and an electron may suffice to 
justify such an approximation. By considering four equally charged fermions, two positive and two 
negative, we have shown2 that a mass ratio of 200 (which is approximately the muon to electron mass 
ratio) validates the separation of their motions up to ~ 80 %.
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As an outcome of the BO approximation, the electronuclear SchrÖdinger equation splits into two: one 
for the electrons moving in a fixed arrangement of the nuclei (electronic SchrÖdinger equation: eSE), the 
other for the nuclei moving in the PES created by the electrons (nSE). In this adiabatic formulation of 
molecular quantum mechanics, one solves pointwise the eSE to get the PES, and then the nSE to obtain 
the ro‑vibrational energy levels of the supermolecule (thence any observable of the system depending 
on them: bulk properties, cross sections in molecular scattering, and rate constants in chemical kinetics 
just to mention a few). Because the nuclei have commonly heavy masses, their motion is also often 
approximated by solving the fundamental laws of classical mechanics, i.e., Hamilton’s equations.3

Two major difficulties (known as “explosions”) arise in theoretical and computational chemistry.4

Fig. 1: “Explosions” in molecular computational chemistry. The formulas illustrate the cost scaling with physical variables such as the 
total angular momentum (J), number of points np calculated per degree of freedom (DOF), and hierarchical number of the one‑electron 
basis set (X).

As shown in Figure 1, the so‑called np
3N−6 explosion indicates how many points need to be calculated 

to represent the PES of a N‑atom system if np points are required per dimension. In turn, the X12 explosion 
tells how the cost/point raises with basis set enhancement which is commonly implied by its cardinal 
number X.5 Added to such “explosions” is the fact that reliable results in reaction dynamics demand 
PESs with chemical accuracy (< 1 kcal mol−1), which implies the use of large basis sets (typically quad-
ruple-zeta, QZ, or larger). If the aim is accurate vibrational calculations, then a PES with spectroscopic 
accuracy (≤ 1 cm−1) is needed, which is an even more difficult task. Ideally, both require PESs calculated 
at the one‑electron complete basis set (CBS) level. Extrapolation methods are then mandatory as sche-
matized in Figure 2. Embedding in principle no empiricism, this can be done at a pure mathematical 
level (using polynomials and rational fractions) or, preferably, guided by physically motivated asymptotic 
theories as here endorsed.

As Figure 2 indicates, extrapolation is also key in reaction dynamics6, a topic at the core of chemical 
kinetics which is discussed in section III. Because the correspondence principle states that for very large 
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quantum numbers the laws of quantum theory merge with those of classical physics7, classical mechan-
ics is shown to be of help on this endeavour. In the following, we provide a brief survey of our progress 
in both such topics.

II. EXTRAPOLATION IN ELECTRONIC STRUCTURE

Methods for solving the eSE have long been of utmost importance in computational molecular sci-
ence.8,9 Without any attempt to completeness, the most popular ones are sketched in Figure 3, including 
valence‑bond (VB) type and semi‑empirical. The simplest is Hartree‑Fock (HF), a mean‑field theory 
where electron correlation is ignored. The error due to its disregard is significant, with other more sophis-
ticated single‑reference (SR) MO‑based approaches being of variational (configuration interaction, CI), 
perturbative Møller‑Plesset (or many‑body perturbation theory type assumed at second‑order, MP2), 
and couple‑cluster (CC) types. Among them, the CC singles and doubles with perturbative triples 
method, CCSD(T), is commonly viewed as the golden rule of quantum chemists due to its accuracy and 
affordability even for moderate‑sized systems. Yet, SR methods miss the static (nondynamical) correla-
tion, which can only be recovered with multireference (MR) methods. These may use complete‑active
‑space‑self‑consistent‑field (CASSCF or CAS) or MRCI wave functions, the latter commonly accounting 
for the dynamical correlation by inclusion of single and double excitations (MRCISD). Because integra-
tion of the eSE with accuracy at demand is unreachable, extrapolation of raw energies to converged 
values will then be key and the focal point here.

As noted above, the need for going beyond HF arises from the correlated motion of the electrons. 
Because the electron‑electron repulsion operator shows a singularity at r12=0, the exact wave function 
must have a discontinuous derivative as implied by Kato’s10 cusp condition. However, conventional 

Fig. 2: Extrapolation in electronic structure calculations and quantum reaction dynamics. The arrow in dashed indicates what is 
traditionally done in electronic structure.
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methods expand the wave function in terms of Slater determinants built from orbitals, and hence fail to 
obey such a condition. This may explain the extremely slow convergence of the conventional correlated 
methods. Although the purist approach to solve this problem would be to make the many‑electron wave 
function depend explicitly on r12

9,11, the alternative is to systematize the error made by conventional 
methods and seek an extrapolation to predict the inherent error.

From a partial‑wave expansion for two‑electron atoms, Kutzelnigg and Morgan12 established the 
following: a) for natural‑parity singlet states, the leading contribution to the energy at second‑order of 
perturbation theory is ∝ (ℓ+ 1

2 )−4 with no odd‑terms either ∝ (ℓ+ 1
2 )−5 or ∝ (ℓ+ 1

2 ) −7; b) for triplet states, the 
leading term is ∝ (ℓ+ 1

2 )−6. The above results were also shown to be valid for the MP2 energy of atoms 
with any number of electrons.12,13 Such findings followed Schwartz’ pioneering work14 who analyzed the 
partial‑wave expansion of the second‑order energy expression and obtained only the coefficients of 
powers −4 and −6, since the (l + 1/2)‑5 term vanishes. If ∆El ∝ ∑

m=4 am(l + 1/2)−m, the convergence error 
when all the terms with l ≥ L are omitted will then assume the form:

where the first two leading asymptotic terms are A3(L + 1)−3 and A5(L + 1)−5. Considering just the first may 
be accuracy‑limiting,13 an issue recently dissected through MP2 calculations on He and Ne using basis 

Fig. 3: Some popular methods in electronic structure theory. For acronyms, see text and references therein.
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sets with converged radial extent and values of l up to 1415. While the form (L + 1)‑3 was reached for Ne, 
higher‑order terms were normally important in molecular calculations.

Largely motivated by the above, modern basis sets16−22 are commonly built according to a principal 
expansion (thus by systematic inclusion of all ~ n2 functions in the next shell), with each shell contribut-
ing an amount of energy ∝ n−4. An example are the popular correlation‑consisted basis sets cc‑pVXZ (or 
VXZ), aug‑cc‑pVXZ (AVXZ) when augmented with diffuse functions, etc., of the Dunning family.16,17,23 

Because the cardinal number (X=2:D, 3:T, 4:Q…) is identifiable with L + 1, the popular X −3 power‑law 
error24,25 arises. Its slow convergence compounds with the time required for MP2, CCSD, and CCSD(T) 
calculations which scale as26 N5N4

b, N
6N4

b, and N7N4
b; Nb is the number of basis functions per atom, which 

for a VXZ basis is Nb  X3.5,25 Note that correlated calculations beyond QZ become unaffordable for many 
interesting systems, which leave the raw energies far from a safe point for extrapolation with some 
popular CBS schemes.

We focus on the current work on the correlation energy, with the reader being addressed elsewhere 
for extrapolation of the Hartree‑Fock component.4 Suffice it to note here that the Hartree‑Fock energy is 
found numerically and analytically to converge exponentially.27 In fact, CBS extrapolation from many 
basis sets beyond the minimal is feasible,4,28 with direct convergence of the raw ab initio energy being also 
affordable in many cases.

A. The USTE scheme: update 2018
Two ways stand to obtain accurate energies: solution of the eSE after explicit introduction of correla-

tion in the wave function,9 and exploitation of the convergence of hierarchized correlation consistent 
basis sets toward the CBS limit. Despite the fast convergence of the former (believed to be as high as ∝ 
X −7 but also noted as ∝ X −3.8), such R12/F12 methods appear to perform inefficiently with small basis 
sets.9 Besides, both conventional and the so‑called R12/F12 methods converge to the same asymptotic 
energy, with CBS extrapolation doing well and often outperforming, a merit recognized29 by the number 
of CBS schemes (see elsewhere30 for an extrapolation calculator with some popular ones) vying the above 
purist techniques.

CBS extrapolation of the electronic energy is best performed by first splitting the total energy into its 
Hartree‑Fock and correlation components. The latter varies asymptotically as an inverse cubic power of 
X for opposite spin electron pairs and as an inverse quintic power for pairs with the same spin. The USTE 
scheme31 accounts for both as

here τ53 =(Ao 
5 / A3) + cA5

m−1; α, Ao 
5, and c are parameters to be determined from ab initio data. Thus, it is an 

empirical‑free dual‑level scheme which shows the correct asymptotic behavior.4 Besides allowing to 
determine the CBS energy from only two raw energies for distinct cardinal numbers, it allows a predic-
tion of the (mostly unknown) ratio τ53=A5/A3. When based on the highest affordable cardinal numbers, 
it allows an accuracy for the CBS extrapolated energy as high as one possibly can get. Because use of the 
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(5, 6) pair is affordable only for few electron systems, a CBS scheme using at most (D, T) is key for larger 
systems. This was the goal of GUSTE,32 where τ53 is kept invariant over the configuration space once 
determined from raw data calculated with X ≥ Q. Although only one extra raw point is required, the task 
gets out of reach for large molecules.

Eq. (2) may be rewritten33,34 as

where the hierarchical number x= X̃ is defined by

and η is a tolerance factor to be defined later, also from the raw ab initio data. The concept is then to 
“educate” the basis such as to account for its deficiencies in composition according to the recovered 
correlation energy. Stated differently, a hierarchical staircase as straight as possible in X −3 will enhance 
the reliability in extrapolating from any step(s) of the ladder. Although various possibilities exist for the 
above hierarchical reassignment,33,35 we have determined35 the new hierarchical numbers as statistical 
averages of the values obtained from the condition that the X ≤ 6 values fall on the straight line obtained 
by fitting USTE(5, 6) correlation energies.31 The method has kept the same acronym35 but specifies the 
hierarchical number‑pair used for the extrapolation: USTE(x1, x2); typically, x1 = x2−1. The hierarchical 
numbers so obtained, x = d, t, q, p, h…, are real positive but still universal as they apply equally well to 
any correlation‑consistent‑type basis sets.36 For subminimal (sM) basis sets [smaller than VDZ or AV DZ, 
which are minimal (M), with larger ones called extended (E)], such hierarchical numbers may not be 
easy to identify (they are X = D for minimal and x ≥ T for extended), the basis may alternatively be indi-
cated. The average deviations X – x so obtained are well mimicked by4

where ∆χ = X − x and X0 = 1.75; with p0 constrained at −0.2057, one gets p1 = 1.7816 for MP2 and p1 = 0.3678 
for CC. Note that the cardinal number always exceeds the hierarchical number for the CC method, but 
is smaller for MP2 with the DZ basis (and for MP2 and CC with even smaller X values). Equivalently 
stated, the DZ basis is statistically better than a true double‑zeta for MP2, with a corresponding impli-
cation applying to sM basis sets at both MP2 and CC levels of theory. Conversely, larger basis sets perform 
poorer than the bases they represent. Furthermore, the above results show that x tends to a value ∼0.26 
smaller than X, both for CC and MP2. Indeed, both methods tend to show the same X −x asymptotic 
deviation. Thus, Eq. (5) entails the concept that ∆χ should not vary with the method (Møller‑Plesset vs 
couple‑cluster) at the CBS limit.
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The most recent version of USTE includes the η tolerance factor.34 Named USTEα(x−1, x), where α 
stands for “analytic”, the protocol yields high quality predictions while allowing to CBS extrapolate from 
any pair of hierarchical numbers. Its reliability has actually been checked by comparing predictions with 
the best available estimates, also often employed as reference to scrutinize raw energies obtained from 
MP2‑F12 and CCSD(T)‑F12 calculations.37 To enhance further the agreement and delve into subchemical 
accuracy (< 1 kcal mol−1), the correlation versus x −3 straight lines were allowed to slide down by 1.5‰ 
for MP2 and up by 1.0‰ for CCSD(T) in E∞

cor (i.e.: η≈1.0015, and 0.999). Such a slight scaling not only 
helps to level off the effect of having used CBS(V5Z, V6Z) energies as reference, but also the fact that the 
calculations were not performed at optimized geometries but at all‑electron CCSD(T)/CVTZ ones.35 
Clearly, they enhance the USTEα agreement with the reference raw F12 energies:37 rmsd of 0.180 and 0.086 
cal mol−1 for MP2/CBS and CCSD(T)/CBS. To go beyond this (i.e., to attain spectroscopic accuracy: cm−1) 
would imply including many other corrections (core and core‑valence effects, perturbative contributions 
for connected quadruple excitations, relativistic effects, etc) which lies outside the scope of model. Because 
it is highly reliable, the USTEα(x−1, x) scheme may itself be used to assign a cardinal number to any basis, 
a key capability just recently explored.34 With it, basis sets from Huzinaga’s MINI to the most advanced 
extended VXZ‑F12 anstazes have been ranked from their ability to capture correlation energy. USTE has 
also been extensively applied, and much of the early work has been recently reviewed.4 Most recently, it 
has been used38 to assess how correlated MO calculations can perform vs Kohn‑Sham density functional 
theory (DFT) by testing the performance of both methods on the calculation of 38 hydrogen transfer 
barrier heights and 38 non‑hydrogen transfer barrier heights/isomerizations extracted from extensive 
databases, in addition to four 2p isomerization reactions and six others for large organic molecules.

Fig. 4: Energy separation of C8 H8 isomers. Shown in solid black is the accurate, yet expensive, CCSD(T)/CBS(VDZ‑F12,VT Z‑F12) 
data;45 see reference for names of all 45 C8H8 isomers and their geometries. Adapted from the literature.34
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All Kohn‑Sham DFT calculations employed the popular M06‑2X functional, while the correlated 
MO‑based ones used single‑reference MP2 and CCSD(T) methods with the raw MO energies subse-
quently CBS (d, t) extrapolated. It was found38 that MP2/CBS(d, t) is as cost effective as DFT/M06‑2X 
and often slightly more while showing a satisfactory accuracy when compared with the reference data. 
A similar performance has been demonstrated39 in the study of even‑numbered carbon clusters (Cn; 
n=4−10). Moreover, once such MP2/CBS(d, t) calculations were combined with variable‑scaling opposite 
spin40 (VOS) theory, the results approximated couple cluster quality at no additional cost.39

As a case study, we consider here an organic molecule with multiple isomers since these are known 
to pose a challenging problem to DFT.41–44 Specifically, we consider the full set of 45 isomers of C8H8 for 
which accurate isomerization energies have been reported45 by means of accurate high‑level ab initio 
methods and the W1‑F12 thermochemical protocol.46 Besides covering a whole range of hydrocarbon 
functional groups [which include (linear and cyclic) polyacetylene, polyyne, and cumulene moieties, as 
well as aromatic, anti‑aromatic, and highly‑strained rings] they have been studied by a variety of com-
posite semiempirical procedures, and a panoply of DFT functionals. Figure 4 compares some of our CBS 
extrapolated correlation energies34 with the most accurate results thus far reported. Suffice it to note that 
the trends observed with MP2 are similar to the ones found in CCSD(T) calculations, but obviously at a 
much lower cost. Specifically, we highlight the following:34 (a) use of a (sM,M) basis‑set pair is enough 
to mimic the CCSD(T) reference data46 with high accuracy [rmsd of 3.01, 0.42, and 0.64 kcal mol−1, respec-
tively from (MIN,VDZ), (MINI,VDZ‑F12), and (STO‑2G,VDZ‑F12) pairs], which compares with the value 
0.49 kcal mol−1 from our recently38 recommended CBS(VDZ,VTZ) scheme; (b) the wall‑times for the first 
three pairs [in the same order: (761±103), (17357±1783) and (11803 ± 1294) s] are much smaller than the 
references,45 and are essentially the time spent with the extended basis set calculation, which is a fiftyfold 
factor less expensive than CCSD(T)/CBS(VDZ‑F12,VTZ‑F12) for the cheapest combination; (c) the CBS 
results slightly outperform in one case the CCSD(T)/CBS(VDZ,VTZ) ones, although they are far less 
expensive and outperform DFT/M06‑2X by 2.8 kcal mol−1, which performs itself similarly to MP2/
CBS(MINI,VDZ‑F12); (c) CBS(sM,M) schemes are general and pseudo‑single‑level type, thus extending 
and probably outperforming genuine single level4,47 ones; (d) CBS(sM,sM) extrapolation schemes show 
somewhat modest performances, but at a drastically smaller cost while occasionally performing at levels 
of accuracy comparable to some DFT functionals. Such a performance is partly expected from the exces-
sive proximity of the involved hierarchical numbers, which tend to spoil the accuracy of the CBS extrap-
olation. Yet, a reliable prediction is observed for the ups and downs observed in the evolution of the 
isomers’ energy from styrene (isomer #1) to ethynyl-bicyclo [3.1.0] hex‑2‑ene45 (#45). Such “educated” 
prediction contrasts with the highly mismatched pattern that is observed at raw ab initio level with sM 
bases, whose correct ordering is judged difficult to get also at DFT level of theory.45

III. EXTRAPOLATION IN REACTION DYNAMICS

Despite all progress made in performing quantum reactive scattering calculations, many practical 
difficulties persist. The most prominent concerns the calculation of the cross‑section which requires 
converged quantum mechanical (QM) reaction probabilities for all contributing total angular momenta 
partial waves, thence a large number of total angular momenta J with Coriolis coupling taken into 
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account. This is extremely computationally intensive due to the proliferation of angular momentum 
states as J increases. It implies therefore a huge labor, particularly in obtaining the thermal rate coefficient,

where E is the total energy, ћ the Planck constant, kB the Boltzmann constant, and Ƶ(T) the total partition 
function (translational, rotational and vibrational). Since there are no J = 0 experimental rate constants, 
it is desirable to be able to obtain accurate rate constants without having to carry out explicit quantum 
dynamics calculations for many total angular momentum partial waves. A common approach is to 
employ the so‑called sudden approximations48,49 for dynamics calculations at high J values which signi-
ficantly reduces the amount of computational effort. An even simpler approach is to use the so called 
J‑shifting method.50 This enables to evaluate cross‑sections and rate constants using only the accurate 
results for J = 0. It consists of assuming that non‑zero total angular momentum probabilities can be deri-
ved from J = 0 ones using the approximation

where vi (vf) and ji (jf) are the reactant (product) vibrational and rotational quantum numbers, and

In principle, the energy shift should be estimated from the rotational energy of the intermediate com-
plex, and hence B† should be the rotational constant at the transition state. A more rational J‑shifting 
approach is to compute the reaction probabilities at a number of nonzero total angular momentum values 
of J. By comparing the reaction probabilities computed explicitly at these nonzero values of J with those 
obtained by applying the J‑shifting method, one may obtain more realistic values for the shifting constant(s) 
B. However, if the reactions are not dominated by a simple transition state51, it is not obvious which geom-
etry should be used. Moreover, for nonlinear molecules, there are generally three distinct rotational con-
stants, and it is not easy to decide which (if any) is the most appropriate. The shifting constant so obtained 
can therefore produce large errors in the calculated rate constant and it is generally difficult to ascertain 
its accuracy without knowing the exact result. This is the case particularly for reactions governed by deep 
potential wells, an example being the prototypical H + O2 reaction. For such reactions, time‑independent 
methods require large basis sets representing the open and closed states to solve accurately the dynamical 
problem while the time‑dependent ones need long integration times for propagation of the wave packet 
until the reaction is complete. An alternative idea that we have long suggested52 is whether the higher‑J 
reaction probabilities can be extrapolated from PJ=0 to values as large as they are necessary at high energies 
(these are predicted to reach Jc ∼ 50 for the reaction H + O2 → OH + O) such as to attain full convergence. 
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Classical mechanics is deemed ideal as the extrapolation tool, since the QM and CM results should approach 
each other at high energies by the correspondence principle, which states that quantum mechanics repro-
duces classical physics in the limit of large quantum numbers.

A. Extrapolation with QCT/QM‑αJ method
Consider the quantum mechanical reactive cross section for the transition from the initial (v, j) state 

to v′ (i.e., over all final j′ states)

where k¯2 = (2j + 1)k2
vj = 2μEtr, 1/g is the electronic degeneracy factor, and μ is the reactants reduced mass. 

By summing over all final vibrational states, one gets

where

with the summation in this equation being over all energetically open channels; Ω (or Ω′) is the projection 
of J on the body‑fixed z axis for the reactant (product), and its range is –min (j<, J) to min(j<, J) where j< 
is the lesser of j and j′.48,53

Consider next the following approximation

where Ƒ(J) is some distribution of the reaction probability with J at a given value of the energy Etr. The 
simplest approximation is to assume it uniform, QM‑UJ, thence unit probability for all values of J below 
a critical value Jc (which approximately mimics the maximum impact parameter in the trajectory 
approach). Indeed, a more flexible expression is a distribution such as
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where α is some power to be specified by the user. Possible shapes are illustrated in Figure 5 for various 
integer powers, including the uniform α = ∞ distribution.

Fig. 5: The model distribution Ƒ(J) in Eq. (14).

Although some vj → v′ partial reactive probabilities may display a maximum at some intermediate 
value of J,54,55 such details more likely average out during the summation procedure, and may therefore 
be of no great concern. By using the Euler‑MacLaurin summation formula,

where Bp is a Bernoulli number, a prime denotes a derivative of ƒ with respect to ℓ, and ƒ(2p−1)(n) its (2p−1)
‑th derivative. The general extrapolation scheme is then denoted QCT/QM‑αJ, which for α=2 (Q from 
quadratic) assumes the form:
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The results for this case (α = 2) and ∞ should perhaps bracket most expectations and give essentially 
the same results, even if necessarily predicting different Jc values.

The above extrapolation scheme has been originally utilized52 for the H + O2 reaction using the DMBE 
IV PES,56 and the cut‑off total angular momentum Jc obtained from the requirement that the PJ

01
= 0 QCT 

reactive probabilities when replaced in Eq. (16) should mimic the corresponding calculated total reactive 
cross‑sections. As the results suggest, the simplest assumption of an Etr‑independent α appears justified 
for this reaction. For example, the well known semiclassical result J ~ (2μEtr)

1/2 b/ћ, suggests that Jc and 
the maximum impact parameter used for the trajectory calculations (bmax) should have a related depend-
ence on Etr, which was actually verified numerically to be the case.52 In fact, for such a reaction,57 and 
probably others,54,58,59 a value α ∼ 2 turns out to be satisfactory, although some vj → v′ partial reactive 
probabilities54,59 may call for the use a form of Ƒ(J) showing a peak at some intermediate value of J. Suffice 
it to emphasize that the value of α is not decisive for predicting the cross‑section. Of course, it has influ-
ence on the cut‑off total angular momentum Jc but this may not be so relevant in the context of the pro-
posed extrapolation technique.

The performance of the J‑shifting50 and extrapolation60 schemes in calculating integral cross sections 
and rate constants has been recently revisited61 for the H + O2 reaction using the DMBE IV and CHIPR 
PESs.62 The QD J = 0 calculations where performed using a three‑dimensional time‑dependent wave 
packet formalism based on hyperspherical coordinates approach developed by Billing and Markovic63 
for J = 0, 1, and extended to arbitrary J by Adhikari and Varandas.64 Figure 6 depicts the results obtained 
when using J‑shifting50 versus extrapolation with the help of QCT calculations for specific J values.60 As 
shown, the integral cross sections calculated on the CHIPR PES by J‑shifting are in excellent agreement 
with the integral cross sections obtained via extrapolation. Moreover, Figure 6 shows that the cross 
sections calculated by those two approaches on the DMBE IV PES are also in close agreement with each 
other, except for the fact that the J‑shifted cross sections slightly overestimate the extrapolated results 
for Etr values beyond 1.5 eV. In fact, we are led to believe that the extrapolation scheme is probably 
more reliable for high collision energies, since the correspondence principle tells that quantum results 
should approach their classical counterparts. Of course, it should not be surprising that unlike J‑shift-
ing, the extrapolated cross section curve exhibits a marked oscillatory pattern, which originates from 
the rich resonance structure of the PJ=0(v = 0, j = 1) profile. Thence, it should be viewed on an averaged 
sense.

Once obtained the reaction probability for J=0, one can easily calculate the integral cross section. The 
results are displayed in Figure 7 for the v=0, j=1 rovibrational state of O2 on both the CHIPR and DMBE 
PESs over the collision energy range 0.0−2.5eV. Other calculations by the author60 on the DMBE IV PES65, 
Quéméner et al. on the DIMKP PES66 as well as XXZLG PES67 are also shown together with the experi-
mental findings by Keβler et al.68, Abu Bajeh et al.69 and Seeger et al.70. Generally, there is good agreement 
between the calculated profile on the most recent and likely accurate CHIPR PES which shows a broad 
maximum around ∼1.7 eV, and the experimental measurements by Keβler et al.68 and Seeger et al.70. 
Notably, the present profile calculated on the CHIPR PES overestimates previous theoretical calculations 
by Quéméner et al., who had performed time‑dependent quantum mechanical scattering calculations 
based on hyperspherical coordinates and the J‑shifting approximation to calculate integral cross‑sections. 
On the other hand, the calculated integral cross section on the DMBE IV PES are in reasonably good 
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agreement with the most recent results. In addition, the calculations on CHIPR seem to be in good agree-
ment with the experimental measurements of Keβler et al. and Seeger et al., specifically in the lower 
collision energy range, whereas the profile for DMBE IV case matches well with the same experimental 
profiles68,70 in the higher energy regime. Interestingly, it also agrees in shape with our earlier results,60 
with any quantitative differences attributable both to the methodology and PESs that have been utilized. 
The reader is addressed to the original papers for further details as well as for thermal rate coefficient 
calculations.

Expectedly, a more rigorous approach could be to obtain v‑specific values of Jc as a function of the 
translational energy. This could be done by choosing at each value of Etr the value of Jc that once replaced 
in Eq. (16) could mimic the value of σvj calculated at the QCT level of theory. From this, a sequence of Jc 

v 
(Etr) would be obtained that could be used together with the QM values of Pv

J = 0 to predict the corre-
sponding QM vibrational specific cross sections. Boltzmann‑averaging would then yield a prediction of 
the total QM cross section and subsequently the thermal rate coefficient. Such a procedure might have 
the further advantage of more effectively washing out some of the rotational structure inherent to the 
calculated Pv1

J = 0 quantum reaction probabilities, thus yielding a more realistic representation of the 
excitation function prior to any data smoothing. Of course, the values of Jc may show some dependence 
on Etr, although the results obtained thus far show that they vary little with the type of quasiclassical 
trajectory approach that has been employed in the calculations. Thus, the dependence of Jc on Etr has 
been neglected, although this is not a model requirement.

IV. CONCLUDING REMARKS

Saturating a basis of functions is key to achieve chemical accuracy in electronic structure calculations 
but unaffordable for medium and large molecules. CBS extrapolation offers a cost‑effective and reliable 

Fig. 6: Total integral cross section for H + O2(v = 0, j = 1) reaction as a function of the collision energy computed on the CHIPR PES by 
utilizing both the J‑shifting approximation and the extrapolation method. Adapted from the literature.61
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way out, and we have recently4,34 shown how correlated calculations with cost‑effective sM and M basis 
sets can help on the endeavour. This has been made easier with our novel USTEα scheme,34 which allows 
to hierarchize any available basis sets from the recovered correlation energy. Because the joint use of a 
SM and M or E basis sets costs about as much as the calculation of a single‑point with the latter, USTEα 
has become as efficient (and likely more reliable) than true single‑level schemes despite being dual 
level.4 The same reasoning applies to the Hartree‑Fock energy component although in a less severe 
manner, since CBS extrapolation from larger basis sets may be feasible4,28 and even affordable a direct 
convergence to satisfactory accuracy of the raw ab initio energy. Due to their low‑cost and reliability, 
MO‑based MP2/CBS(sM,M) and MP2/CBS(M,M) methods get comparable if not less expensive than 
KS DFT calculations with popular functionals. This opens a wealth of research topics to revisitation, 
ranging from CBS extrapolations in large‑sized systems to on‑the‑fly dynamics calculations. They may 
then, per se or jointly with cost‑free MP2‑VOS40 theory, have a broad impact in chemistry and even 
materials science.

Regarding reaction dynamics, QCT calculations have been suggested to offer a convenient way to 
extrapolate QM reactivities. This is not unexpected given the good agreement found (away from the 
threshold regions where tunneling dominates) between the QCT and QM results even in the most unfa-
vorable case of the H + H2 reaction. In fact, such an expectation bears a solid ground on the correspond-
ence principle, with applications of the method to polyatomic reactions6 being highly desirable.

Fig. 7: Integral cross section for H + O2(v = 0, j = 1) reaction as a function of collision energy in comparison with previous theoretical 
results and experimental measurements. Adapted from the literature.61
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