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Abstract
Purpose Tailings are generally characterized by severe physicochemical conditions that limit the establishment of vegetation. 
The present study aimed to select suitable combinations of organo-mineral amendments to improve the physicochemical, 
biochemical, and biological properties of spolic technosols, highly contaminated with metals.
Materials and methods Several substrates were prepared by mixing mine tailings (MT) of an abandoned mining area with 
non-contaminated agricultural soil (anthrosol), green waste compost, lime, and rock phosphate at different rates: S1 — 50% 
of MT + 50% of agricultural soil; S2 — S1 + 3% of lime  (CaCO3); S3 — S1 + 6% of rock phosphate; S4 — S1 + 10% of 
compost; S5 — S1 + 10% of compost + 3% of lime; S6 — S1 + 10% of compost + 6% of rock phosphate. Untreated MT and 
agricultural soil were analyzed immediately, and 8 months after incorporating the amendments.
Results and discussion Heterotrophic microorganisms were not recovered from untreated MT due to the highly acidic pH 
and available metal concentrations. However, the addition of organo-mineral amendments ameliorated the tailings’ charac-
teristics by increasing pH, conductivity, total organic carbon, and available P levels. Moreover, after 8 months, heterotrophic 
microorganisms were recovered from those substrates and dehydrogenase activity was enhanced. The incorporation of agri-
cultural soil and green waste compost mixed either with lime (S5) or rock phosphate (S6) was the most effective treatment.
Conclusions Both S5 and S6 mixtures successfully reduced the environmental risk posed by tailings, suggesting the potential 
use of these amendments for the remediation of pyrite mines.
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1 Introduction

Located northwest of Marrakech, Kettara mine was exten-
sively exploited from 1938 to 1982. It constitutes the main 
abandoned deposit of pyrrhotite and copper within the Jebi-
lets massive (Hibti et al. 1999). After mine closure, tailings 
were deposited open air in the adjacent areas, exposed to 
weather events, including wind erosion. Moreover, the oxi-
dation of metal sulfide in tailings ponds has contributed to 
the contamination of the surrounding environment, mainly 
through leaching (Boularbah et al. 2006a, b; El Khalil et al. 
2008; El Hamiani et al. 2010). Indeed, according to previ-
ous studies, this abandoned mine constitutes a problematic 
source of toxic elements, namely Cu and Zn, which can be 
transferred to the vegetation and surface and ground water 
(Boularbah et al. 2006a, b; El Khalil et al. 2008; El Hamiani 
et al. 2010). This poses a real health risk to populations, 
especially for children, residing in the vicinity of this mine 
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due to the biomagnification of metals through the consump-
tion of contaminated vegetables and/or direct ingestion and 
inhalation of dust and soil particles (Zheng et al. 2007; 
Zhuang et al. 2009; El Hamiani et al. 2015).

In addition to the high concentration of metals, sulfide 
mine wastes are often characterized by low organic mat-
ter and nutrient content, highly acidic pH, and poor physi-
cal structure (Wong 2003; Mendez et al. 2008), which may 
hinder plant growth (Boularbah et al. 2006a; Sheoran et al. 
2010; Benidire et al. 2021) and negatively impact biological 
processes in soils (Benidire et al. 2020, 2021; Tembo et al. 
2006; Navarro et al. 2008). Therefore, lack of vegetation 
cover is frequent in mining sites, which explains why these 
areas are highly prone to erosion, leading to an increase in 
the dispersion of pollutants and a decrease of the natural 
resilience of contaminated ecosystems (Nicolau and Asensio 
2000; Singh et al. 2016).

The development of sustainable strategies for pollu-
tion control in abandoned mines is of utmost importance 
to reduce harmful impacts on the neighboring environment 
and on human health. The most commonly used strategies 
for the remediation of anthropogenically contaminated areas 
are those related to physical and chemical techniques, since 
they require less time for treatment. Nevertheless, these 
methods are expensive and generally environmentally dis-
ruptive, damaging soil structure and biodiversity (Pérez-de-
Mora et al. 2006; Burges et al. 2018; Lacalle et al. 2020). In 
contrast, alternative in situ remediation techniques, such as 
the application of organic and/or mineral amendments, are 
gaining momentum (Lwin et al. 2018; Nejad et al. 2018; Liu 
et al. 2018). Amelioration of soil conditions by the addition 
of amendments results from a decrease of the mobility and 
bioavailability of metallic pollutants (Gao et al. 2020; Lwin 
et al. 2018; Palansooriya et al. 2020; Pardo et al. 2014), 
which occurs through the increase of pH and several adsorp-
tion, precipitation, and complexation reactions (Lwin et al. 
2018; Peng et al. 2009; Palansooriya et al. 2020). In addi-
tion, amendments may facilitate the settlement of a stable 
vegetative cover on such degraded areas by enhancing the 
chemical and biological processes that occur in the soils 
(Lwin et al. 2018; Pérez-de-Mora et al. 2006; Madejón 
et al. 2006; Benidire et al. 2021). The most frequently used 
amendments to ameliorate physicochemical properties of 
mining soils can be either organic materials such as com-
post, manure, biosolids, sewage sludge, and biochar (Ahmad 
et al. 2017; Beesley et al. 2014) and/or inorganic substrates 
such as lime and mineral rock phosphate (Holland et al. 
2018; Bade et al. 2012). For instance, Al-Lami et al. (2019) 
showed that the addition of biosolids contributed to neutral-
izing the pH and increasing the levels of organic carbon and 
nutrients, as well as the cation exchange and water retention 
capacity of Pb/Zn/Cu-contaminated mine tailings. Likewise, 
Gao et al. (2020) reported that the incorporation of a mixture 

of biochar, non-contaminated soil, peat, and manure signifi-
cantly increased the pH and fertility of Pb/Zn ore tailings, 
and reduced the bioavailability of Zn, Pb, Cd, and As.

Nevertheless, the success of this strategy is often depend-
ent on the composition of amendments (raw materials), on 
type and severity of the contamination, and ultimately on 
soil properties (Lwin et al. 2018; Palansooriya et al. 2020), 
and it is extremely important to define the best combina-
tion of amendments for each particular case. The aim of 
this work was to evaluate the suitability of organo-mineral 
amendments, applied singly or in combination, to improve 
the physicochemical, biochemical, and biological properties 
of tailings from the Kettara pyrrhotite mine to foster in situ 
soil remediation and, ultimately, the revegetation of such 
highly contaminated areas.

2  Material and methods

2.1  Mine tailings, amendments, and substrates

Mine tailings (MT) were collected from an abandoned 
sulfide mine located in  Kettara village (31°52′25.2″N 
8°10′42.0″W Fig. 1), near Marrakech (Morocco). Accord-
ing to the World Reference Base (WBR) for Soil Resources, 
these tailings can be classified as spolic technosols (IUSS 
WG WRB 2015). The extraction of pyrrhotite from Ket-
tara mine resulted in huge amounts of residues, which were 
deposited over an area of 16 ha (Boularbah et al. 2006a; 
El Hamiani et al. 2010). This mine was abandoned many 
years, no barriers implemented to prevent the dispersion of 
contaminants to the surrounding areas, and no remediation 
strategies have been applied.

Due to the high acidity, low fertility, and poor physi-
cal structure (absence of aggregates and low organic 
matter) of mine tailings (Boularbah et al. 2006a), they 
were firstly mixed with an agricultural soil (1:1 w/w) 
in order to obtain a substrate which could support plant 
growth and development. The agricultural soil used in 
this experiment is an anthrosol (IUSS WG WRB 2015), 
sampled from three randomly selected points in a non-
contaminated area (metal concentration within Euro-
pean standards) located at Souihla, near Marrakech (El 
Khalil et al. 2013) (Fig. 1). The physicochemical prop-
erties were as follows: pH 7.5 ± 0.080; electrical con-
ductivity (mS  cm−1) 0.46 ± 0.056; total organic carbon 
(%) 1.3 ± 0.19; available P (mg  g−1) 0.26 ± 0.036. The 
agricultural soil and tailings used in this study were air 
dried for 2 weeks and sieved to 2 mm. Then, substrate 
S1 (MT + agricultural soil) was mixed in different pro-
portions with organic (green waste compost) and/or 
mineral (lime-CaCO3, rock phosphate) amendments in 
order to improve structure, decrease metals’ availability,  
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and increase soil organic matter and nutrient content 
(Benidire et al. 2021; Holland et al. 2018; Xiao et al. 
2017). As shown in Table 1, five different treatments were 
tested: S1 — 50% of MT + 50% of agricultural soil; S2 — 
S1 + 3% of lime; S3 — S1 + 6% of rock phosphate; S4 — 
S1 + 10% of compost; S5 — S1 + 10% of compost + 3% of 
lime; S6 — S1 + 10% of compost + 6% of rock phosphate. 
The compost was provided by the Laboratory of Micro-
bial Biotechnologies, Agrosciences and Environment 
of the Science Faculty of University Cadi-Ayyad, while 
rock phosphate was obtained from wastes of a phosphate 

mine. Physicochemical properties of both amendments 
are described in Appendix 1 – supplementary material.

2.2  Experimental design

Experiments were conducted in pots containing 300 g of 
substrates for 8 months under controlled temperature (30 °C) 
in a randomized design, with three replicates per treatment. 
All substrates were watered with deionized water and main-
tained at 50% of water holding capacity. Composite substrate 
samples were collected at the beginning, immediately after 
the incorporation of amendments (T0), and at the end of the 
experiment, 8 months latter (T8), and divided into two frac-
tions; the first one was stored at 4 °C for biological analysis, 
while the other was air-dried for physicochemical analysis.

2.3  Substrate analysis

2.3.1  Physicochemical analysis

The pH and electrical conductivity (EC) were determined in 
substrate/water suspensions (1:2.5 and 1:5 (w/v) for pH and 
EC, respectively) by the glass electrode method (NF ISO 
10390). Total nitrogen (TN) was determined by the Kjeldahl 
method (NF ISO 11261, AFNOR 1995), while total organic 

Fig. 1  Location of sampling sites of mine tailings and agricultural soil

Table 1  Composition of subtracts obtained by the incorporation of 
organo-mineral amendments to mine tailings

Substrates Composition

Control (C) 100% of agricultural soil
MT 100% of mine tailings
S1 50% of mine tailings + 50% of agricultural soil
S2 S1 + 3% of lime  (CaCO3)
S3 S1 + 6% of rock phosphate
S4 S1 + 10% of compost
S5 S1 + 10% of compost + 3% of lime  (CaCO3)
S6 S1 + 10% of compost + 6% of rock phosphate
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carbon (TOC) was analyzed by dichromate oxidation and 
titration with ferrous ammonium sulfate (Blakemore et al. 
1972). Available P was measured on bicarbonate extracts 
by the molybdenum blue method as described by Olsen and 
Sommers (1982). Pseudo-total and extractable metal (Cu, 
Zn, Pb) concentrations were determined by atomic absorp-
tion spectrometry (AAS) (Model Perkin Elmer 400, USA) 
following digestion of samples with aqua regia, and extrac-
tion with 0.01 M  CaCl2 (1:25 (w/v)), respectively, accord-
ing to standard methods (NF EN ISO 11 466). The Pollu-
tion Index (PI) was calculated for each metal i as the ratio 
between the metal concentration  (Ci) in a soil sample and its 
reference value  (Si) according to Wu et al. (2015):

The  Si values for Cu, Zn, and Pb were based on the Canadian 
Soil Quality Guidelines for the Protection of Environmen-
tal and Human Health for residential/parkland land use (mg 
 kg−1): Cu = 63; Zn = 200; Pb = 140. Contamination classes: 
PI ≤ 1 = no contamination; 1 < PI ≤ 3 = slight contamina-
tion; 3 < PI ≤ 5 = moderate contamination; PI > 5 = severe 
contamination.

2.3.2  Germination toxicity test

The phytotoxicity of substrates was estimated using a ger-
mination inhibition test according to the AFNOR X 31–201 
protocol. Seeds of three plant species, namely, alfalfa (Med-
icago sativa L.), barley (Hordeum vulgare L.), and soft 
wheat (Triticum aestivum L.), were used. Germination tests 
were prepared by placing 50 seeds in Petri dishes (10 cm) 
containing 40 g of each substrate. A control was prepared by 
placing 50 seeds in Petri dishes containing Whatman paper 
moistened with deionized water instead of substrate. Petri 
dishes were incubated at 28 °C for 7 days in darkness and 
50% relative humidity. All trials were conducted in tripli-
cate. Germination inhibition (GI) was calculated according 
to the following formula:

where A is the mean seed germination in the control and B 
is the mean seed germination in the substrates.

2.3.3  Enzymatic activities

Two soil enzymes were analyzed as biochemical parameters 
to evaluate the efficiency of the remediation process. Dehy-
drogenase (DHA) was used as an index of overall micro-
bial activity, while acid phosphatase (AP) was analyzed due 
to its strong relationship with the P cycle. DHA activity  

PI
i
=

C
i

S
i

GI =

[

(A − B)

A

]

∗ 100 %

was determined according to Alef (1995) by using 2,3,5-tri-
phenyltetrazoliumchloride (TTC) as the electron accep-
tor. The reduction of TTC to triphenyl formazan (TPF) 
was measured spectrophotometrically at 490 nm, and the 
enzyme activity expressed as µg TPF g dry  soil−1 24  h−1. 
AP activity was measured according to a modified method 
of Tabatabai and Bremner (1969), after incubation of sub-
strate samples with p-nitrophenyl phosphate disodium 
(27 g  l−1) in a 0.5 M modified universal buffer (pH 4.5) 
at 37 °C for 60 min. The formation p-nitrophenol (PNP) 
was determined spectrophotometrically at 405 nm and the 
enzyme activity expressed as µg PNP g dry  soil−1  h−1.

2.3.4  Enumeration of culturable heterotrophic 
microorganisms

To evaluate the effects of organo-mineral amendments on 
the abundance of microorganisms in the different substrates, 
the total counts of heterotrophic bacteria (HB), fungi, and 
actinomycetes were determined by spread-plating serial 
dilutions on media: Tryptic Soy Agar (TSA, Fluka) plus 
cycloheximide (50 mg  l−1), Potato Dextrose Agar (PDA, 
Difco) plus chlortetracycline (30 mg  l−1), and International 
Streptomyces Project 2 (ISP2) supplemented with nalidixic 
acid (100 mg  l−1) and cycloheximide (50 mg  l−1), respec-
tively. Three replicates were made for each sample and 
media. Plates were incubated at 30 °C and bacterial and 
fungi colonies were counted after 3 and 7 days, respectively. 
For actinomycetes enumeration, plates were incubated at 
25 °C for 7–14 days. Data were expressed as colony-forming 
units (CFU) per g of dry weight of substrate.

2.4  Statistical analysis

All statistical analyses were carried out with the statistical 
program SPSS (IBM, Armonk, NY, USA, version 26.0.) 
Results were analyzed through analysis of variance (one-
way and two-way ANOVA), and the statistical significance 
of differences (P < 0.05) between means was determined by 
Tukey’s post hoc test. A correlation matrix between physico-
chemical, biochemical, and biological parameters was calcu-
lated. The significance level reported (P < 0.01 and P < 0.05) 
is based on Pearson’s correlation coefficients.

3  Results

3.1  Substrate physicochemical analyses

Physicochemical properties of mine tailings changed signifi-
cantly (P < 0.001) after the addition of different amendments 
(Table 2). Mine tailings showed a very low pH (2.7) which 
was significantly (P < 0.001) increased by the addition of the 
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agricultural soil (S1), the rise being even more pronounced 
with the application of organo-mineral amendments, reach-
ing pH values up to 6.4 and 7.3 at T0 and T8, respectively. 
Mine tailings amended with a combination of agricultural 
soil, compost and lime (S5) or agricultural soil, compost 
and rock phosphate (S6) showed the highest pH increases. 
Indeed, after 8 months, both substrates showed pH values 
similar to those found in the control (non-contaminated agri-
cultural soil). The incorporation of organo-mineral amend-
ments significantly (P < 0.001) decreased EC of mine tail-
ings. However, no significant (P > 0.05) differences were 
observed between sampling times (T0 and T8). For all sub-
strates, mean values of TOC at the second sampling (T8) 

were significantly (P < 0.001) higher than at the beginning 
(T0), except for untreated mine tailings. However, the high-
est increases (up to 105%) were observed at T0 in all sub-
strates supplemented with compost (S4, S5, S6). Available 
P levels determined in all amended substrates were signifi-
cantly (P < 0.001) higher than in mine tailings. The incor-
poration of both compost and rock phosphate (S6) proved 
to be most effective treatment to increase the concentrations 
of available P, especially at the end of the experiment (T8).

In both sampling periods, pseudo-total Cu, Zn, and Pb 
concentrations were very high in untreated mine tailings, 
but tended to decrease by an average of about 70%, 40%, and 
50%, respectively, in all amended substrates (Table 3). This 

Table 2  Physicochemical 
properties of different substrates 
immediately  (T0) and 8 months 
(T8) after the incorporation of 
amendments

Results are expressed as mean ± SD (n = 3). A two-way ANOVA was performed to determine the influence 
of time (T0, immediately after the incorporation of amendments; T8, 8 months after the incorporation of 
amendments) and amendments (control (C), 100% of agricultural soil; MT, 100% of mine tailings; S1, 50% 
of mine tailings + 50% of agricultural soil; S2, S1 + 3% of lime  (CaCO3); S3, S1 + 6% of rock phosphate; 
S4, S1 + 10% of compost; S5, S1 + 10% of compost + 3% of lime  (CaCO3); S6, S1 + 10% of compost + 6% 
of rock phosphate) on physicochemical properties of substrates (pH; EC, electrical conductivity; TOC, total 
organic carbon; P Olsen, available phosphorous). Results are shown with the test statistic for each case (T, 
time; A, amendments; TxA, time x amendments) and as: NS, non-significant at the level P > 0.05; *sig-
nificant at the level P < 0.05; ** significant at the level P < 0.01; *** significant at the level P < 0.001. A 
one-way ANOVA was performed to determine the influence of amendments on physicochemical proper-
ties of substrates for each time. Means for different treatments in each column with different letters are 
significantly different from each other according to Tukey test. The test results are shown with the test 
statistic and as: NS, non-significant at the level P > 0.05; *significant at the level P < 0.05; ** significant 
at the level P < 0.01; *** significant at the level P < 0.001. For pH, the F values of one-way ANOVA are 
F = 274.663 (P < 0.001) and F = 106.171 (P < 0.001) for T0 and T8, respectively. For EC, the F values of 
one-way ANOVA are F = 48.763 (P < 0.001) and F = 217.716 (P < 0.001) for T0 and T8, respectively. For 
TOC, the F values of one-way ANOVA are F = 560.343 (P < 0.001) and F = 661.989 (P < 0.001) for T0 and 
T8, respectively. For P Olsen, the F values of one-way ANOVA are F = 17.036 (P < 0.001) and F = 39.951 
(P < 0.001) for T0 and T8, respectively

Time Substrate pH EC (mS cm−1) TOC (%) P Olsen (mg g−1)

C 7.5 ± 0.08a 0.46 ± 0.056b 1.28 ± 0.193b 0.26 ± 0.036ab

MT 2.7 ± 0.04f 2.14 ± 0.416a 0.26 ± 0.021d 0.06 ± 0.012d

S1 4.7 ± 0.03e 0.59 ± 0.042b 0.66 ± 0.015c 0.16 ± 0.080bc

T0 S2 5.8 ± 0.35c 0.54 ± 0.008b 0.64 ± 0.020c 0.14 ± 0.017bc

S3 5.6 ± 0.08c 0.43 ± 0.004b 0.60 ± 0.021c 0.25 ± 0.004ab

S4 5.2 ± 0.06d 0.53 ± 0.010b 2.62 ± 0.031a 0.25 ± 0.001ab

S5 6.4 ± 0.12b 0.31 ± 0.006b 2.53 ± 0.042a 0.30 ± 0.015a

S6 6.4 ± 0.16b 0.39 ± 0.005b 2.56 ± 0.050a 0.36 ± 0.069a

***F = 274.663 ***F = 48.763 ***F = 560.343 ***F = 17.036
C 7.4 ± 0.14a 0.45 ± 0.061b,c 1.66 ± 0.046c 0.40 ± 0.074b

MT 2.6 ± 0.02c 2.48 ± 0.228a 0.25 ± 0.031f 0.05 ± 0.006d

S1 5.2 ± 0.10d 0.60 ± 0.033b 0.95 ± 0.050e 0.22 ± 0.083c

T8 S2 6.5 ± 0.45b,c 0.50 ± 0.023b,c 0.83 ± 0.061e 0.20 ± 0.028c

S3 6.4 ± 0.55c 0.43 ± 0.004b,c 1.14 ± 0.091d,e 0.33 ± 0.013b,c

S4 5.4 ± 0.07d 0.52 ± 0.011b,c 2.81 ± 0.035b 0.36 ± 0.001b

S5 7.1 ± 0.17ab 0.30 ± 0.002c 2.93 ± 0.076b 0.32 ± 0.011bc

7.3 ± 0.03a 0.35 ± 0.014c 3.17 ± 0.142a 0.56 ± 0.027a

***F = 106.171 ***F = 217.716 ***F = 661.989 ***F = 39.951
***FT = 49.921 NSFT = 0.754 ***FT = 227.550 ***FT = 48.164
***FA = 286.941 ***FA = 178.611 ***FA = 1212.325 ***FA = 53.680
***FTxA = 5.365 NSFTxA = 1.551 ***FTXA = 11.000 **FTxA = 4.178
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tendency was accompanied by a decrease of PI in amended 
substrates. However, despite the overall abatement observed, 
PI for Cu remained very high in all treated substrates, them 
being still classified as severely contaminated.

Overall, the concentrations of Cu- and Zn-extractable 
forms in treated substrates tended to be higher than in the 
control (non-contaminated agricultural soil), but lower than 
those found in untreated mine tailings (Table 4). Cu- and 
Zn-extractable concentrations in mine tailings showed a 
rising trend over time; however, an opposite tendency was 
observed in amended substrates, with the lowest values 
being recorded in substrate S6, followed by S5 and S2.

3.2  Germination toxicity test

Germination inhibition (GI) of seeds of three plant species 
in different substrates, 8 months after the incorporation of 
organo-mineral amendments, is shown in Fig. 2. A com-
plete inhibition of seed germination of all tested species 
was observed in untreated mine tailings, while in agri-
cultural soil (control) GI was lower than 2.5%. The addi-
tion of agricultural soil to mine tailings (S1) significantly 
(P < 0.001) reduced GI (on average by 50%) in all tested 
species. This decrease was further pronounced when mine 
tailings were supplemented with the different combinations 
of organo-mineral amendments. The germination of soft 
wheat and barley seeds in substrates S2, S3, S4, S5, and 
S6 was poorly affected (≈GI < 3%). The highest sensitivity 
was observed for alfalfa, since germination remained quite 

Table 3  Pseudo-total metal 
concentrations in substrates 
immediately  (T0) and 8 months 
(T8) after the incorporation 
of amendments and pollution 
index (PI). Control (C), 100% 
of agricultural soil; MT, 100% 
of mine tailings; S1, 50% 
of mine tailings + 50% of 
agricultural soil; S2, S1 + 3% of 
lime  (CaCO3); S3, S1 + 6% of 
rock phosphate; S4, S1 + 10% 
of compost; S5, S1 + 10% of 
compost + 3% of lime  (CaCO3); 
S6, S1 + 10% of compost + 6% 
of rock phosphate. dl, detection 
limit

* Calculated based on Canadian Soil Quality Guidelines for the Protection of Environmental and Human 
Health for residential/parkland land use

Time Substrate Pseudo-total metal concentrations (mg 
kg − 1 dry soil)

Pollution Index (PI)*

Cu Zn Pb Cu Zn Pb

C 5.79 58.87  < dl 0.1 0.3 0.0
MT 1666.95 288.75 102.63 26.5 1.4 0.7
S1 505.73 152.10 53.62 8.0 0.8 0.4

T0 S2 432.90 149.90 49.19 6.9 0.7 0.4
S3 460.81 165.90 56.13 7.3 0.8 0.4
S4 469.54 173.20 47.59 7.5 0.9 0.3
S5 389.28 173.75 45.41 6.2 0.9 0.3
S6 415.24 165.40 48.48 6.6 0.8 0.3
C 6.15 58.79  < dl 0.1 0.3 0.0
MT 1648.13 291.88 99.82 26.2 1.5 0.7
S1 521.35 156.45 55.64 8.3 0.8 0.4

T8 S2 499.20 147.80 48.23 7.9 0.7 0.3
S3 494.20 176.30 57.36 7.8 0.9 0.4
S4 381.08 165.80 48.44 6.0 0.8 0.3
S5 399.00 175.85 44.81 6.3 0.9 0.3
S6 366.91 159.95 48.98 5.8 0.8 0.3

Table 4  CaCl2-extractable metal concentrations in substrates immedi-
ately  (T0) and 8 months (T8) after the incorporation of amendments. 
Control (C), 100% of agricultural soil; MT, 100% of mine tailings; 
S1, 50% of mine tailings + 50% of agricultural soil; S2, S1 + 3% of 
lime  (CaCO3); S3, S1 + 6% of rock phosphate; S4, S1 + 10% of com-
post; S5, S1 + 10% of compost + 3% of lime  (CaCO3); S6, S1 + 10% 
of compost + 6% of rock phosphate. dl, detection limit

Time Substrate CaCl2-extractable metal concentrations 
(mg kg−1 dry soil)

Cu Zn Pb

T0 C 0.12  < dl  < dl
MT 24.01 3.27  < dl
S1 0.39 0.18  < dl
S2 0.18 0.37  < dl
S3 0.21 1.20  < dl
S4 0.30 0.58  < dl
S5 0.10  < dl  < dl
S6 0.09 0.01  < dl

T8 C 0.13  < dl  < dl
MT 43.01 4.62  < dl
S1 0.44 0.06  < dl
S2 0.17  < dl  < dl
S3 0.30 0.01  < dl
S4 0.33 0.01  < dl
S5 0.09  < dl  < dl
S6 0.05  < dl  < dl
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affected even after the addition of organo-mineral amend-
ments to mine tailings.

3.3  Biochemical analyses

The activity of DHA and AP in substrates immediately 
(T0) and 8 months (T8) after the addition of amendments 
is shown in Fig. 3a, b respectively. Results show that DHA 
activity was not detected in untreated mine tailings, whereas 
in agricultural soil (control) it reached values of about 65 μg 
TPF g dry  soil−1 24  h−1. The addition of agricultural soil 
and organo-mineral amendments led to an increase of DHA 
activity in mine tailings, especially 8 months (T8) after the 
incorporation. Indeed, mine tailings amended with agri-
cultural soil plus compost and rock phosphate (S6) showed 
a DHA activity similar to that observed in control soil 
(≈103 µg TPF g dry  soil−1 24  h−1), followed by substrates S5 
and S3 (64 and 33 µg TPF g dry  soil−1 24  h−1, respectively).

Contrary to that observed for DHA, the activity of AP, 
in the first sampling time (T0), was significantly higher in 
non-amended mine tailings than in the agricultural soil. 
The effect of amendments addition on AP activity seems 
to be dependent upon the nature of the mixture used. In 
lime-containing substrates (S2 and S5), the activity of this 
enzyme was quite low if compared to the other substrates. 
Moreover, the activity of AP in non-treated and treated 

mine tailings decreased with the time. This decrease was 
particularly evident in substrates S2 and S6.

3.4  Enumeration of culturable microorganisms

The effect of organo-mineral amendments on microbial 
counts is presented in Fig.  4. No heterotrophic bacte-
rial counts were recovered from untreated mine tailings 
(Fig. 4a). However, immediately (T0) after the incorpora-
tion of agricultural soil and of organo-mineral amendments, 
the numbers of heterotrophic bacteria increased significa-
tively (up to 0.2 ×  106 CFU  g−1 dry weight substrate). After 
8 months, this increase was further pronounced both in con-
trol and in amended mine tailings, with the highest value 
(58 ×  106 CFU  g−1 dry weight substrate) being recorded in 
agricultural soil, compost and rock phosphate-containing 
substrate (S6).

As for the bacteria, fungi populations were not detected 
in untreated mine tailings. However, a significant increase 
in the number of fungi was observed in treated substrates 
for both sampling periods (Fig. 4b). The treatments that per-
formed best were those containing agricultural soil combined 
with compost and lime (S5) and compost and rock phosphate 
(S6), with values of 0.49 ×  105 and 0.64 ×  105 CFU  g−1 dry 
weight substrate, respectively.
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Fig. 2  Germination inhibitory rates (%) of soft wheat, barley, and 
alfalfa seeds grown in different substrates 8  months after the incor-
poration of amendments. The error bar represents the SD (n = 3). 
A one-way ANOVA was performed to determine the influence of 
amendments (control (C), 100% of agricultural soil; MT, 100% 
of mine tailings; S1, 50% of mine tailings + 50% of agricultural 
soil; S2, S1 + 3% of lime  (CaCO3); S3, S1 + 6% of rock phosphate; 
S4, S1 + 10% of compost; S5, S1 + 10% of compost + 3% of lime 

 (CaCO3); S6, S1 + 10% of compost + 6% of rock phosphate) on ger-
mination rates of each plant species. Means for the different treat-
ments with different letters are significantly different from each 
other (P < 0.05) according to Tukey’s test. The F values of one-way 
ANOVA are F = 9504.555 (P < 0.001), F = 1292.567 (P < 0.001), and 
F = 1270.560 (P < 0.001) for soft wheat, barley, and alfalfa, respec-
tively
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The addition of organo-mineral amendments and the incu-
bation time (8 months) had a significant (P < 0.001) effect 
on actinomycetes enumeration (Fig.  4c). Non-amended 

mine tailings did not support the growth of actinomycetes; 
however, the initial incorporation of amendments slightly 
increased the numbers of these microorganisms in substrates 
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Fig. 3  Dehydrogenase (DHA) (a) and acid phosphatase (AP) (b) 
activities in different substrates immediately  (T0) and 8  months 
(T8) after the incorporation of amendments. The error bar repre-
sents the SD (n = 3). A two-way ANOVA was performed to deter-
mine the influence of time (T0, immediately after  the incorporation 
of amendments; T8, 8  months after the incorporation of amend-
ments) and amendments (control (C), 100% of agricultural soil; MT, 
100% of mine tailings; S1, 50% of mine tailings + 50% of agricul-
tural soil; S2, S1 + 3% of lime  (CaCO3); S3, S1 + 6% of rock phos-
phate; S4, S1 + 10% of compost; S5, S1 + 10% of compost + 3% of 
lime  (CaCO3); S6, S1 + 10% of compost + 6% of rock phosphate) on 
DHA and AP activities. Results are shown with the test statistic for 

each case (T, time; A, amendments; TxA, time x amendments) and 
as: NS, non-significant at the level P > 0.05; *significant at the level 
P < 0.05; ** significant at the level P < 0.01; *** significant at the 
level P < 0.001. A one-way ANOVA was performed to determine 
the influence of amendments on DHA and AP activities in substrates 
for each time. Means for different treatments for each time with dif-
ferent letters are significantly different from each other according to 
Tukey’s test. For DHA activity, the F values of one-way ANOVA 
are F = 106.383 (P < 0.001) and F = 200.254 (P < 0.001) for T0 and 
T8, respectively. For AP activity, the F values of one-way ANOVA 
are F = 53.495 (P < 0.001) and F = 48.793 (P < 0.001) for T0 and T8, 
respectively

489Journal of Soils and Sediments  (2022) 22:482–495



Fig. 4  Enumeration of hetero-
trophic bacteria (HB) (a), fungi 
(b), and actinomycetes (c) in 
different substrates immediately  
(T0) and 8 months (T8) after the 
incorporation of amendments. 
The error bar represents the SD 
(n = 3). A two-way ANOVA 
was performed to determine the 
influence of time (T0, immedi-
ately after the incorporation of 
amendments; T8, 8 months after 
the incorporation of amend-
ments) and amendments (con-
trol (C), 100% of agricultural 
soil; MT, 100% of mine tailings; 
S1, 50% of mine tailings + 50% 
of agricultural soil; S2, S1 + 3% 
of lime  (CaCO3); S3, S1 + 6% 
of rock phosphate; S4, S1 + 10% 
of compost; S5, S1 + 10% of 
compost + 3% of lime  (CaCO3); 
S6, S1 + 10% of compost + 6% 
of rock phosphate) on DHA and 
AP activities. Results are shown 
with the test statistic for each 
case (T, time; A, amendments; 
TxA, time x amendments) and 
as: NS, non-significant at the 
level P > 0.05; *significant at 
the level P < 0.05; ** significant 
at the level P < 0.01; *** signifi-
cant at the level P < 0.001. A 
one-way ANOVA was per-
formed to determine the influ-
ence of amendments on DHA 
and AP activities in substrates 
for each time. Means for dif-
ferent treatments for each time 
with different letters are signifi-
cantly different from each other 
according to Tukey’s test. For 
bacteria, the F values of one-
way ANOVA are F = 169.886 
(P < 0.001) and F = 8420.389 
(P < 0.001) for T0 and T8, 
respectively. For fungi, the F 
values of one-way ANOVA 
are F = 56.034 (P < 0.001) and 
F = 138.199 (P < 0.001) for T0 
and T8, respectively. For actino-
mycetes, the F values of one-
way ANOVA are F = 157.262 
(P < 0.001) and F = 366.138 
(P < 0.001) for T0 and T8, 
respectively
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S3, S5, and S6. After 8 months, actinomycetes populations 
reached their maxima in substrates S5 (2.29 ×  103 CFU  g−1 
dry weight substrate) and S6 (1.19 ×  103 CFU  g−1 dry weight 
substrate).

4  Discussion

Incorporating organo-mineral amendments to Kettara mine 
tailings ameliorated its physicochemical, biochemical, and 
biological properties, restoring essential soil functions which 
allowed plant germination, pivotal for the successful estab-
lishment of vegetation cover in these highly contaminated 
areas.

The application of alkaline mineral amendments, such as 
lime, is a common practice to neutralize the pH of metal-
contaminated acidic mining wastes (Dybowska et al. 2006; 
RoyChowdhury et al. 2015; Liu et al. 2018; Pardo et al. 
2017). However, in the present work, despite the fact all 
amendments raised the pH of mine tailings, the higher 
increases were observed in substrates containing agricultural 
soil, green waste compost and lime (S5) or rock phosphate 
(S6), where pH reached values close to neutrality. This could 
be explained by the high content of  CaCO3 in lime-con-
taining substrates, and by the base cations present in com-
post (Walker et al. 2004; Naramabuye and Haynes 2006; 
Mensah and Frimpong 2018; Qaswar et al. 2020). Several 
authors have also highlighted the importance of incorpo-
rating organic materials to improve soil quality and repair 
the biological functions of environmentally degraded soils 
(Pérez-de-Mora et al. 2005; 2006; Diacono and Montemurro 
2011; Larney and Angers 2012; Gil-Loaiza et al. 2016), such 
as the case of Pb/Zn-contaminated mining sites (Galende 
et al. 2014) and of other multi-element-contaminated areas 
(Beesley et al. 2010). In this study, the substrates incorpo-
rating green waste compost showed on average 3–4 times 
higher TOC levels than substrates amended individually 
with lime or rock phosphate. These results are particularly 
important in case of Kettara mine wastes, since they are 
characterized by very low TOC levels. The amount of avail-
able P in mine tailings was also significantly increased by 
the addition of organo-mineral amendments, in particular in 
the agricultural soil, green waste compost, and rock phos-
phate-containing substrate (S6), indicating that the incor-
poration of the organic material had an additive effect to 
the lone incorporation of rock phosphate. In fact, according 
to Li et al. (2020), the addition of green waste compost to a 
metal-contaminated soil remarkably increased the levels of 
available P even at low application rates (< 10%). Similar 
results were obtained by Farrel and Jones (2010) in a highly 
acidic metal-contaminated soil.

Our results showed that the mixture of non-contami-
nated agricultural soil had a dilution effect on pseudo-total 

concentrations of Cu, Zn, and Pb, and the incorporation of 
organo-mineral amendments tended to further reduce the 
concentrations of these metals in all substrates. Despite this 
general abatement in metal contamination, according to the 
Canadian Soil Quality Guidelines, pseudo-total Cu concen-
trations in all amended substrates (366.91 to 521.35 mg Cu 
 kg−1) were still above the limit recommended for agricultural, 
parkland, commercial, and industrial land uses (63–91 mg 
Cu  kg−1), while pseudo-total Zn and Pb concentrations were 
below the recommended limits for all land uses. Moreo-
ver, Cu and Zn concentrations in amended substrates were 
above the target values (36 mg Cu  kg−1 and 140 mg Zn  kg−1) 
reported in Dutch Standards. This scenario is in accordance 
with the PI determined for Cu, indicating that mine tailings 
are severely contaminated by this metal even after the incor-
poration of organo-mineral amendments.

The analysis of pseudo-total metal concentrations is a 
consensual indicator that provides information on soil 
enrichment by metallic elements, but it is not enough to 
estimate their availability and mobility and their consequent 
impact on ecological processes (Boularbah et al. 2006a; El 
Khalil et al. 2008; Daldoul et al. 2019; Massas et al. 2013). 
The analysis of metal extractable fractions has been used for 
ecological risk assessment of contaminated sites, especially 
concerning the remediation of abandoned mines (Clemente 
et al. 2003; Esshaimi et al. 2013; Benidire et al. 2020). In 
the present study, results showed that  CaCl2-extractable Cu 
and Zn concentrations tended to be lower in substrates with 
higher pH (S2, S5, and S6). Indeed, previous studies have 
shown that the increase of a pH unit leads to a decrease 
of metal solubility in soil by a factor of 100 (Fageria et al. 
2002). Therefore, the increase of pH in Kettara mine tailings 
seems to have a strong influence on the reduction of extract-
able Cu and Zn concentrations in all amended substrates, as 
corroborated by the negative correlations obtained between 
pH and Cu (r =  − 0.793, P < 0.01) and Zn (r =  − 0.839, 
P < 0.01) extractable concentrations (Appendix 2 – supple-
mentary material). Similar results were obtained in other 
studies where the input of green waste compost and/or 
alkaline mineral amendments reduced metal availability 
in mine tailings (van Herwijnen et al. 2007; Beesley et al. 
2010; Bade et al. 2012). Moreover, Cu and Zn extractable 
concentrations were also negatively correlated with available 
P (r =  − 0.510, P < 0.05 and r =  − 0.553, P < 0.05, respec-
tively; Appendix 2 – supplementary material), suggesting 
that the release of P present in the compost and/or in rock 
phosphate contributed to the chelation of metals, increasing 
their immobilization in substrates (Li et al. 2020). There-
fore, the decline of metal availability in soils may contribute 
to enhancing its health and quality, as the biochemical and 
biological activity is in large part influenced by the available 
forms of metals, rather than by their total concentrations 
(Zhang et al. 2013; Lee et al. 2020).
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The negative influence of available metals on DHA activ-
ity has been reported by several authors (Maliszewska-
Kordybach and Smreczak 2003; Wiatrowska et al. 2015; 
Łukowski and Dec 2018). In this work, Cu and Zn available 
concentrations impacted negatively the overall microbial 
activity of untreated mine tailings, as proven by the absence 
of DHA activity. However, the incorporation of organo-
mineral amendments ameliorated the physicochemical 
properties of mine tailings, leading to an enhanced activ-
ity of this enzyme. This improvement was mainly observed 
after 8 months, reflecting the importance of the substrates’ 
maturation, the greatest increase being found in substrate 
S6 which combined agricultural soil, compost, and rock 
phosphate. This finding can be explained by the microbial 
biomass present in the added compost, and by the increas-
ing levels of available P provided by the rock phosphate, 
which certainly enhanced microbial growth (Duong et al. 
2013). Indeed, a strong positive correlation (r = 0.685, 
P < 0.01; Appendix 2 – Supplementary material) was 
observed between available P content and DHA activity. In 
addition, DHA activity was also positively correlated with 
pH (r = 0.718, P < 0.01), whereas a negative, but not signifi-
cant, correlation with the concentrations of extractable Cu 
and Zn forms was observed. Positive correlations between 
DHA activity and soil pH have also been found by other 
authors (Jiang et al. 2003; Benidire et al. 2021), which may 
be explained by the contribution of pH to the overall micro-
bial activity, since it influences microorganisms’ survival 
and growth (Wolińska and Stępniewska 2012).

A different trend was observed for the acid phosphatase 
activity, since its values were significantly lower in agri-
cultural soil and in most amended substrates if compared 
to those found in mine tailings. In addition, an overall 
reduction was observed in the activity of this enzyme after 
8 months. This decrease can be explained by the rise of pH 
(r =  − 0.560, P < 0.05) and/or by the increase of available P in 
most amended substrates resulting from rock phosphate dis-
solution and/or from the conversion of insoluble phosphate 
into soluble P forms by phosphate solubilizing microorgan-
isms. Indeed, several studies reported that phosphatase activ-
ity is negatively regulated by available P in soil (Olander and 
Vitousek 2000), and is highly dependent on soil pH (Herbien 
and Neal 1990; Šarapatka et al. 2004).

Given the crucial role of microorganisms on soil func-
tions, evaluating changes on microbial communities may 
provide important information on the efficacy of remedia-
tion techniques on the restoration of soil quality of anthro-
pogenically degraded areas (Sharma et al. 2010; Epelde 
et al. 2009a, b). In this work, none of the microbial groups 
analyzed was detected in untreated mine tailings, reflect-
ing the harsh conditions and the poor microbiological sta-
tus of this highly contaminated substrate. However, the 
addition of amendments had a positive effect on microbial 

counts, especially after 8 months, indicated by the general 
improvement of the physicochemical properties of mine 
tailings, including reduced metal contamination. Despite 
no significant correlations being observed between micro-
bial counts and the extractable Cu and Zn concentrations, 
the greater increases in microbial abundance were observed 
in substrates containing agricultural soil, compost and lime 
or rock phosphate, which showed at same time the lowest 
metal availability. Interestingly, the heterotrophic bacterial 
counts in these substrates surpassed the numbers found in 
the agricultural soil (control), highlighting the powerful 
effect of the combined use of mineral and organic amend-
ments on soil microbiota. The microbial biomass already 
existing in organic amendments, and the addition of carbon/
nutrient-rich materials, may also explain the results obtained 
for the abovementioned substrates. In fact, the twofold effect 
of organic amendments was also already reported by other 
authors (Pérez-Piqueres et al. 2006; Tripathy et al. 2014; 
Strachel et al. 2017).

In this study, the mitigation of the harsh conditions of 
mine tailings by the incorporation of amendments was cor-
roborated by the results obtained for the germination tests. 
Indeed, the GI decreased abruptly in all amended substrates, 
with the best results being obtained for substrates S5 and 
S6. Likewise, Wang et al. (2018) also reported higher ger-
mination rates in Cd-contaminated soils supplemented with 
vermicompost and biochar.

5  Conclusion

The application of different combinations of organo-mineral 
amendments improved the physicochemical properties of 
acidic Kettara mine tailings, which allowed the restoration of 
some pivotal soil functions, such as those related to nutrient 
cycling, habitat for microbial communities, and support of 
plant systems. The substrates incorporating agricultural soil 
and green waste compost combined either with lime (S5) 
or with rock phosphate (S6) successfully reduced the envi-
ronmental risk posed by these mine tailings. The increase 
of pH and fertility levels, and of microbial activity, accom-
panied by the reduction of total and extractable Cu and Zn 
concentrations, suggests the suitability of both mixtures of 
amendments to remediate the acidic tailings of Kettara mine. 
Notwithstanding, the establishment of field trials to further 
evaluate the effectiveness of these amendments’ combina-
tions to support plant growth is of utmost importance.
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