Hydrophobicity and aggregation properties of gut commensals Faecalibacterium duncaniae DSM 17677 and Akkermansia muciniphila DSM 22959

Fonseca, M.^{1*}; Machado, D.¹; Vedor, R.¹; Barbosa, J.C.¹; Andrade, J.C.²; Gomes, A. M.¹

1Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal 2 TOXRUN – Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal * Presenting author:

Introduction

Probiotics have been emerging as a **promising approach** to prevent and control **foodborne** diseases [1]. In the last years, the bacterial species isolated from gut

PORTO

Objectives

Characterize the type strains *Faecalibacterium duncaniae* **DSM 17677** and *Akkermansia muciniphila* **DSM 22959** regarding following probiotic properties: the hydrophobicity, auto-aggregation and co-aggregation with the following foodborne pathogens: Salmonella enterica ATCC 14028 and Listeria monocytogenes NCTC 10357.

microbiota, such as *Faecalibacterium* spp. and *Akkermansia muciniphila*, have been proposed as novel probiotic candidates [2].

The cell surface hydrophobicity, auto-aggregation and co-aggregation with pathogens are considered desirable characteristics of probiotic strains and these properties may be used in preliminary screening to identify potential probiotic microorganisms appropriate for human or animal use [3].

Methods

PBS- Phosphate-buffered saline

Main findings

Fig. 1 Hydrophobicity percentages of Faecalibacterium duncaniae DSM 17677 and Akkermansia muciniphila DSM 22959.

Fig. 2 Auto-aggregation percentages of *Faecalibacterium duncaniae* DSM 17677 and Akkermansia muciniphila DSM 22959, after 2 hours (green bars) and 24 hours (orange bars) of incubation at 37°C under anaerobic conditions.

Co-aggregation with foodborne pathogens

Fig. 3 Co-aggregation percentages of Akkermansia muciniphila DSM 22959 (AKK) and Faecalibacterium duncaniae DSM 17677 (FD) with Salmonella enterica ATCC 14028 (SE) and Listeria monocytogenes NCTC 10357 (LM) after 2 h (green bars) and 24 h (orange bars) of incubation under anaerobic conditions.

Conclusions

References

Both gut comensal strains displayed hydrophobicity and aggregation properties,

corroborating their potential as probiotics. However, it is important to note that higher

percentagens of hydrophobicity, auto-aggregation, and co-aggregation with foodborne

pathogens were found for F. duncaniae DSM 17677 than for A. muciniphila DSM 22959.

[1] Hassan AA, Sayed-ElAhl RMH, El Hamaky AM, Oraby NH, Barakat MH (2022) Probiotics in the prevention and control of foodborne diseases in humans. In: Probiotics in the Prevention and Management of Human Diseases. Elsevier, pp 363–382

[2] Almeida D., Machado D., Andrade JC, Mendo S., Gomes A.M., Freitas, AC (2020). Evolving trends in next-generation probiotics: a 5W1H perspective. Critical reviews in food science and nutrition, 60(11), 1783–1796. https://doi.org/10.1080/10408398.2019.1599812

[3] Collado MC, Meriluoto J, Salminen S (2008) Adhesion and aggregation properties of probiotic and pathogen strains. European Food Research and Technology 226:1065–1073. https://doi.org/10.1007/s00217-007-0632-x

[4] Krausova G, Hyrslova I, Hynstova I (2019) In vitro evaluation of adhesion capacity, hydrophobicity, and autoaggregation of newly isolated potential probiotic strains. Fermentation 5:100. https://doi.org/10.3390/fermentation5040100 [5] Jena PK, Trivedi D, Thakore K, Chaudhary H, Giri SS, Seshadri S (2013) Isolation and characterization of probiotic properties of Lactobacilli isolated from rat fecal microbiota. Microbiol Immunol 57:407-416. https://doi.org/10.1111/1348-0421.12054

Acknowledgements

This work was supported by the project PROBIOCARE (EXPL/BIA-MIC/0258/2021), financed by national funds through Foundation for Science and Technology, I.P. (FCT). We would like to thanks the scientific collaboration of CBQF (UIDB/50016/2020) and the Scientific Employment Stimulus—Individual Call (CEEC Individual—CEECIND/00520/2017/CP1404/CT0001).

