Follow us

gBIOT - Nutraceutical biopolymeric-biocatalytic microbot against gut inflammatory disorders

<u>AS Sousa^{1,2,3}, MM Pintado¹, RD Matos^{2,3}, CC Sousa¹, MF Machado¹, M Coelho¹, PM Rodrigues¹, AM Magalhães^{2,3}, ER Coscueta^{1,*}</u>

¹Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia; ²i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto³; IPATIMUP – Instituto de Patologia e Imunologia Molecular da Universidade do Porto

*Contact: ecoscueta@ucp.pt

Anticancer

CRC is the **3rd most common cancer type** worldwide & the 2nd most deadly cancer Data source: Globocan 2020

gBiOT aims to develop an intelligent system efficiently oriented to the colon, loaded with

natural bioactive compounds, and capable of reducing microenvironmental oxidative stress

EXPECTED RESULTS

gBiOT will develop a target-efficient biocatalytic and biocompatible polymeric microbot capable of detecting and transforming the environment and delivering bioactive compounds.

- Develop a "rocket" modular microbot specifically and efficiently oriented to the colon, modifying the inflammatory state chemically and catalytically.
- Load the microbot with natural bioactive compounds.
- Validate the prototype in vitro and in vivo for the target functionalities: bacterial enzyme-activated sensitivity, antiinflammatory properties, and anticancer activity.

→ Prevent carcinogenesis Remission

in gastrointestinal diseases.

Explore the creation of a nutraceutical **ingredient**: direct encapsulation of natural extracts in the microbot.

REFERENCES

Cani, P. D., & Jordan, B. F. (2018). Gut microbiota-mediated inflammation in obesity: a link with gastrointestinal cancer. Nature Reviews Gastroenterology and Hepatology, 15(11), 671–682. Coscueta, E. R., Sousa, A. S., Reis, C. A. & Pintado, M. M. (2022). Phenylethyl Isothiocyanate: A Bioactive Agent for Gastrointestinal Health. Molecules 27, 1–12. Franzin, M., Stefančič, K., Lucafò, M., Decorti, G. & Stocco, G. (2021). Microbiota and drug response in inflammatory bowel disease. Pathogens 10, 1–28. Lee, S. H., Bajracharya, R., Min, J. Y., Han, J. W., Park, B. J., & Han, H. K. (2020). Strategic approaches for colon targeted drug delivery: An overview of recent advancements. Pharmaceutics, 12(1). Llopis-Lorente, A. et al. (2019). Enzyme-powered gated mesoporous silica nanomotors for on-command intracellular payload delivery. ACS Nano, 13(10), 12171–12183. Mathews, S. C. et al. (2022). Prevalence and Financial Burden of Digestive Diseases in a Commercially Insured Population. Clinical Gastroenterology and Hepatology 20, 1480-1487.e7. Morgan, E. et al. (2022). Global burden of colorectal cancer in 2020 and 2040: incidence and mortality estimates from GLOBOCAN. Gut gutjnl-2022-327736. Ng, S. C. et al. (2017). Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. The Lancet 390, 2769–2778.

HEALTH

ACKNOWLEDGEMENTS

This work was supported by FCT - Fundação para a Ciência e Tecnologia through grant Ref.^a 2022.02926.PTDC "Nutraceutical biopolymeric-biocatalytic microbot against gut inflammatory disorders", project UIDB/50016/2020 and author Ana Sofia Sousa individual PhD grant number 2021.07407.BD.

