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Alexander Seum 

 

Abstract 

This study examines the potential benefits of utilizing machine learning models for 

default forecasting by comparing the discriminatory power of the random forest and XGBoost 

models with traditional statistical models. The results of the evaluation with out-of-time 

predictions show that the machine learning models exhibit a higher discriminatory power 

compared to the traditional models. The reduction in the sample size of the training dataset 

leads to a decrease in predictive power of the machine learning models, reducing the difference 

in performance between the two model types. While modifications in model dimensionality 

have a limited impact on the discriminatory power of the statistical models, the predictive power 

of machine learning models increases with the addition of further predictors. When employing 

a clustering approach, both traditional and machine learning models exhibit an improvement in 

discriminatory power in the small, medium, and large firm size clusters compared to the 

previous non-clustering specifications. Machine learning models exhibit a significantly higher 

ability to classify micro firms. The findings of this research indicate that the machine learning 

models exhibit superior discriminatory power compared to the traditional models across the 

different specifications. Machine learning models can be used to forecast the potential impact 

of corporate default of non-financial micro cooperations on the Portuguese labour market by 

estimating the number of jobs at risk. 
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I. Introduction 

The field of data analytics plays a key role in comprehending the economic context by 

providing insights into complex economic dynamics such as market trends or consumer 

behaviour. Given the importance of data analytics, the development of new technologies is an 

ongoing and essential process. The advancement in computer sciences along with higher 

computational power makes the analysis of big data and the use of new analytical methods on 

a broader basis applicable. New technologies in conjunction with more accurate analytical 

methods allow economic scientists to achieve a better understanding of economical behaviour 

and give better advice to the decision makers.  

Over recent years, the discussion surrounding the use of machine learning techniques 

in financial services industry has gained momentum because of the availability of big data and 

the ease with which the machine learning algorithms can be applied.  

One area which especially benefits from the new opportunities is risk management 

where data analytics historically plays a key role. The effective management of credit portfolios 

is a crucial aspect of bank management, banking supervisors and central banks. With the 

regulation of the Basel II Accord, the regulatory framework was established and became 

mandatory for the relevant institutions. In this context the prediction of defaults is essential. 

Traditionally, statistical methods were used to evaluate credit risk, however in recent years 

machine learning models have gained popularity as a tool for risk assessments. 

The objective of the study is to explore the potential benefits of implementing machine 

learning algorithms for default forecasting. To assess their predictive power, the machine 

learning models random forest and XGBoost are compared to the traditional statistical models 

linear discriminant analysis, logistic regression and penalized logistic regression based on their 

ability to predict corporate default of non-financial cooperations. 

To evaluate the various models, a comprehensive dataset containing firm-level 

variables and financial indicators for Portuguese non-financial cooperations is utilized. To 

quantify the performance of each model, the area under the receiver operating characteristics 

curve (AuROC) is calculated based on the observed default data and the out-of-sample 

probabilities of defaults in the following year obtained by the respective model from 2009 until 

2020. 
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This analysis reveals the following main results: 

i. When the various models are evaluated using out-of-time predictions, the 

machine learning models outperform traditional statistical models in terms of 

their discriminatory power. 

ii. Decreasing the sample size of the training dataset does not significantly impact 

the discriminatory power of the statistical models, whereas the performance of 

the machine learning models declines as the sample gets smaller, reducing the 

performance gap. 

iii. The ability of the machine learning models to distinguish default and non-

default instances improves with addition of further variables. In contrast, the 

statistical models maintain their level of performance for different number of 

features. 

iv. When implementing a clustering approach, the discriminatory power of both 

traditional and machine learning model improves in the small, medium, and 

large firm size clusters compared to the previous non-clustering specifications. 

However, in the micro cluster which contains for most of the firms in the dataset, 

machine learning models have a significantly higher predictive power. 

v. Finally, this study estimates the number of jobs at risk in the next year due to 

corporate default for different discrimination thresholds and establishes a 

correlation between the estimated jobs at risk and the actual observed 

unemployment rate.  

The results of this research contribute to the existing literature on default forecasting in 

a variety of ways. First, the study shows the effectiveness of machine learning algorithms to 

predict corporate default for non-financial cooperations using out-of-time predictions which 

simulate real-life predictions based on currently available information. In addition, this study 

estimates possible labour market implications due to the default non-financial micro 

cooperations by estimating the number of jobs at risk. 

The rest of paper is organized as follows: chapter II offers an overview of the related 

literate on machine learning and default forecasting; chapter III describes the process of 

developing a predictive model including a description of the dataset and the data pre-processing 

steps; chapter IV includes the explanatory data analysis; chapter V describes the various models 

and the hyperparameter tuning process; chapter V presents the result across various 
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specifications; chapter VI discusses the limitations and implications; chapter VII concludes the 

main findings of the study. 

II. Literature review 

The use of machine learning models in the financial industry has become increasingly 

popular in recent years. As Chakraborty & Joseph, 2017 provide on introduction to the use of 

machine learning in the context of central banking as well as its implications for policy analysis. 

After presenting the fundamental concepts of machine learning and various models including 

random forest, neural networks, support vector machine, the authors provide several case 

studies of successful applications of machine learning models in the context of central banking. 

One of those case studies is about banking supervision under imperfect information in which 

various models are trained to identify problematic institutions based on balance sheet items. 

Their results show that machine learning models outperform conventional models in predicting 

advisory alerts and the discriminatory power of the random forest model is 11.1 percentage 

points higher compared to the logistic regression model. 

Especially in the context of credit risk the benefits of implementing machine learning 

models have been well documented in the literature. For the classification of mortgage loans, 

Galindo & Tamayo, 2000 show that both the CART decision tree-based and the neural network 

models can achieve a lower error rates compared the standard Probit model. This aligns with 

the existing literature stating that neural networks are more accurate and robust when assessing 

credit risk compared to traditional models (Oreski et al., 2012).  

Furthermore, machine learning techniques are used for the classification of corporate 

default. Moscatelli et al., 2020 compare the performance of the random forest and gradient 

boosting model to traditional statistical models in predicting corporate default of Italian non-

financial cooperations. When the models are trained using publicly available information the 

machine learning models outperform the statistical models by approximately 2.6 percentage 

points. If high-quality information such as credit behavioural indicators are included in the 

training set, the performance gap between model types decreases. 

Moreover, based on the findings of the literature boosting algorithm such as XGBoost 

are identified as the top-performing approach in credit scoring (Chang et al., 2018; Hamori et 

al., 2018). When compared to other machine learning models such as deep neural, networks, 

bagging or random forest, models based on boosting have a higher discriminatory power in 

credit scoring (Hamori et al., 2018). 
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As shown in the study of Frey & Osborne, 2017, machine learning models can also be 

used to estimate potential labour market implications. The authors examine how different 

occupations are affected by computerization and automatization in the United States. They 

predict the likelihood of a job being automated in the future using a machine learning algorithm 

and estimate that about 47% of the employment in the United States is at risk in the next 

decades. 

III. Model Building 

Predictive analysis is a data analysis technique that uses empirical models such as 

statistical or machine learning models to identify patterns and extract information from large 

and complex datasets to make accurate predictions of future outcomes. A predictive model also 

includes the evaluation of its predictive power (Shmueli & Koppius, 2011), which refers to its 

ability to correctly forecast future outcomes. The prediction of future default of Portuguese non-

financial cooperations can be classified as a predictive learning problem because the training 

of the model includes the use of historical, past data to predict the likelihood of a future event 

to occur.  

III.A. Research Objectives 

The goal of this study is to predict the probability of corporate default in the next year 

and compare the discriminatory power of machine learning models and traditional statistical 

models. A firm is categorized as in default in a given year if the non-performing credit exceeds 

5% of total credit drawn for at least one month in a year. A credit is classified as non-performing 

credit if the payment is past due for more than 90 days following the definition of default in 

Article 178 of the Regulation by the European Banking Authority (EBA, 2016). This study 

compares the predictive power of various models with several specifications including different 

types of forecasts, sample sizes, dimensionality, a clustering approach and estimates the impact 

of corporate default on the Portuguese labour market which will be explained in more detail in 

chapter V. 

III.B. Data Collection and Study Design 

This study uses the Central Balance Sheet Database provided by Banco de Portugal, 

which includes economic and financial information on all non-financial firms operating in 

Portugal for the period of 2008 until 2020. Most of the database is based on the information 

reported through Informação Empresarial Simplificada (IES). For companies with organized 

accounting, the IES is a mandatory annual declaration which allows them to fulfil several tax 
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obligations, including the delivery of annual accounting data to Banco de Portugal. This ensures 

that the information in the database is accurate, and the sample is representative. Since the IES 

is a mandatory declaration, the data is collected consistently and on a regular basis and there is 

no issue due to a sample selection bias. Furthermore, the dataset used in this study also provides 

a default dummy that indicates whether a firm defaulted in a given year following the definition 

described.  

This database contains a variety of firm-level variables of Portuguese non-financial 

cooperations. Based on balance sheet variables in the dataset, various financial ratios and their 

corresponding growth rates are calculated. Growth rates are additionally calculated because 

they can provide a more informative perspective for the evaluation of the current state of a firm. 

The initial dataset contains a total of 109 variables including firm descriptives, balance sheet 

variables, and financial ratios with their corresponding growth rates. 

III.C. Data Preparation 

Data-pre-processing is a crucial step in the building of any predictive model because it 

has a significant impact on its performance. It describes the process of transforming the raw 

data into a better structured and efficient format.  

Data cleaning is the process of identifying and correcting various error and issues within 

the dataset which otherwise can have a negative impact on the performance of the predictive 

model. This includes dealing with issues like missing data, infinite values, and outliers. Initially, 

the original dataset contains a total of 2,772,451 instances over the observation period. When 

addressing the potential issues of missing data and infinite values, it is important to understand 

the data and identify the origin. Since the dataset is based on a mandatory annual declaration, 

the accounting data provided by Banco de Portugal is complete and has no infinite values or 

missing data.  However, the computation of several financial ratios and their respective growth 

rates results in the generation of infinite and missing values which can be attributed to the 

division by zero. To handle these occurrences, observations that include either missing or 

infinite values are dropped from the dataset which reduces the number of observations to 

2,550,800.  

The next step in the data cleaning process is the handling of outliers in the dataset. It is 

important to address them since outliers can have a significant negative impact on the 

performance of a predictive model leading to inaccurate forecasts. The computation of the 

financial ratios and their corresponding growth rates generates in several natural extreme 
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outliers that are significantly different from the remaining data. Therefore, a variable-specific 

trimming approach is employed that removes the top and bottom one percent of observations 

for these specific variables resulting in a final sample size of 2,469,758 observations. 

Furthermore, feature normalization is implemented in this study which is as an 

important pre-processing step to rescale the predictors using Min-Max scaling. As a result, 

predictors range from 0 to 1 which helps can help to improve the model’s performance and 

training speed. 

III.D. Selection of Variables 

The selection of the most relevant features is an important step in the building of a 

predictive model as it involves the selection of the most relevant variables from the original 

dataset. As previously described, the initial dataset includes a total of 109 variables. However, 

it is likely that many of these variables are noisy and not informative and therefore have no or 

even a negative impact on the models’ performance. Excluding irrelevant data is not only 

important to reduce the dimensionality of the dataset but also improves the performance and 

the generalization of the model. To select the most relevant variables for the classification 

prediction, there are two main techniques: supervised and unsupervised. 

III.D.i. Supervised Feature Selection  

Supervised feature selection techniques involve the use of the dependent variable, 

which is the variable that the model tries to predict, to identify and remove irrelevant features 

from the dataset. For instance, Variable 1 is able to distinguish between the two classes, while 

Variable 2 is similar for both classes and therefore does not enable the differentiation between 

the two classes as illustrated in FIGURE I which is based on Dy and Brodley (2004) and Haar 

et al. (2019). Consequently, Variable 2 is considered irrelevant and therefore removed from the 

dataset. There are numerous methods of a supervised feature selection, however, they can be 

classified into one of three groups: filter methods, wrapper methods, and embedded methods 

(García et al., 2015; Guyon et al., 2008). 
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FIGURE I IRRELEVANT FEATURES 

 

Filter methods, which were implemented in this study, use statistical methods to assess 

the relationship between each input variable and the target variable. The obtained results of the 

statistical model are used to filter and choose the most relevant input variables that will be 

included in the final model (Kuhn & Johnson, 2013). 

In contrast of evaluating the relationship between the input and target variable 

individually, wrapper methods evaluate the performance of various subsets of features. In these 

methods, features are added or removed to find the optimal combination to maximize the 

model’s performance (Kuhn & Johnson, 2013). The most common wrapper methods are 

forward selection, backward elimination, and bi-directional elimination. However, compared 

to filter methods wrapper methods are more computationally intensive and have a tendency of 

overfitting (Kohavi & John, 1997). 

Finally, embedded methods are algorithms in which the feature selection process is 

integrated in the model’s training process. However, not only the subset of the most important 

features is determined but also the optimal weights of each feature to maximize the accuracy of 

the model. Examples of embedded methods include tree-based algorithms like random forest 

or gradient boosting among others. 

III.D.ii. Unsupervised Feature Selection  

Unsupervised feature selection techniques do not require the use of the dependent 

variable. Their objective is to remove redundant variables from the feature vector.  Two 

variables are considered redundant if they contain similar information regarding the 
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discrimination of the two classes. FIGURE II based on Dy and Brodley (2004) and Haar et al. 

(2019), illustrates Variable 1 and Variable 2 which demonstrate an example of two redundant 

variables. Hence, one of the variables can be removed without any loss of information. 

FIGURE II REDUNDANT FEATURES 

 

III.D.iii. Feature Selection Process 

This study implements a hybrid combination of both supervised and unsupervised filter 

methods to select the explanatory variables. From the initial dataset a total of 80 variables were 

considered as potential predictors of corporate default in the next year. The variable selection 

follows the steps illustrated in FIGURE III. 

FIGURE III VARIABLE SELECTION PROCEDURE 

 

To identify the most relevant features, univariate logistic regressions are utilized to 

estimate the out-of-sample probabilities of default in the next year. Based on the estimated 

probabilities and the observed default data the AuROC is calculated for each firm variable. If a 

variable does not exceed an AuROC of 60% it is considered as irrelevant because of its 

insufficient ability to correctly distinguish between the default and non-default class and is 

therefore removed from the dataset. In comparison, other studies use a threshold of 55% 

(Moscatelli et al., 2020). However, when working with high-dimensionality datasets, choosing 

a higher threshold, can be advantageous because it helps to reduce the dimensionality of the 

dataset and to choose the most relevant features. The complete list of all tested features with 
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their respective AuROCs are attached in the appendix TABLE A.1. Out of 80 variables 26 show 

a sufficient ability to distinguish the between default and non-defaults and exceed an AuROC 

of 60%. 

When working with a dataset consisting mostly of balance sheet variables it is likely 

that features are selected that carry similar information to other features, and they are highly 

correlated with each other. These highly correlated variables do not add any additional 

information but cause collinearity problems (Kuhn & Johnson, 2013). To prevent collinearity 

issues and detect highly correlated variable pairs, the Pearson correlation coefficient is 

calculated. The Pearson correlation coefficient is a common method to measure the linear 

correlation between two variables. The coefficient ranges from -1 indicating a perfect negative 

correlation to 1 indicating a perfect positive correlation. In general, two variables are considered 

strongly correlated if their Pearson correlation coefficient exceeds 0.7. Consequently, out of the 

26 relevant variables only variables that do not exceed a linear correlation of 0.7 are retained. 

After removing the redundant variables, the final dataset contains 15 variables which are 

displayed in TABLE I with their corresponding AuROC from the univariate logistic regression. 

In addition, the description of the final variables as well as the correlation matrix is provided in 

the appendix TABLE A.2 - 3. 

TABLE I LIST OF FINAL VARIABLES 
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III.E. Class Imbalance 

A common scenario in many classification tasks that needs to be addressed is the 

imbalance of the dataset. An imbalanced dataset refers to a dataset in which the number of 

instances of one class is significantly higher compared to the other classes, resulting in an 

uneven class distribution. In a binary classification problem, an imbalanced dataset exhibits a 

significant difference in the number of observations that belong to each of the two classes (Kuhn 

& Johnson, 2013). Normally, most of the instances belong to the negative class which is also 

referred to as majority class while the remaining positive class instances belong to the minority 

class. 

 It is common to encounter datasets that are not perfectly balanced and minor disparities 

in the class representation can be considered negligible. However, there are many real-life 

classification problems in which the class distribution is severely imbalanced. Examples of 

imbalanced classification problems are the detection of credit card fraud (Dhankhad et al., 

2018), medical diagnosis (Bach et al., 2017; Mena & Gonzalez, 2006), identification of spam 

messages (Liu et al., 2017) or in default forecasting (Khandani et al., 2010; Moscatelli et al., 

2020). The forecasting of defaults poses a classification problem that is inherently imbalanced 

because the number healthy firms significantly outnumber the firms in default. Accordingly, 

this research is based on a severely imbalanced dataset in which over the observation period, 

approximately 92% of the instances belong to the non-default class, while the default instances 

account for only 8%. 

However, severe class imbalance can cause several challenges during both the training 

and evaluation of a classification model. Due to the underlying imbalance of the class 

distribution, during the training process the model is not exposed to enough instances of the 

minority class compared to the majority class. Consequently, the model is more biased towards 

the majority class which can lead to severe misclassification errors for the minority class 

because the model is unable to capture and learn its underlying patterns.  

To address the issue of the imbalanced datasets during the training process and improve 

the ability of the classification models to correctly identify cases of the minority class, various 

resampling techniques can be used to balance the class distribution. These methods can be 

broadly classified in upsampling/ oversampling and downsampling/ undersampling methods. 

To balance out the dataset, upsampling techniques increase the number of samples of the 

minority class until the ratio of the two classes reaches the desired level. In situations where 
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both classes are of equal significance, it can be advantageous to increase the number of the 

minority class until the distribution of both classes is completely balanced as displayed in 

FIGURE IV based on Kaur et al., 2019. 

FIGURE IV OVERSAMPLING 

 

There are various upsampling techniques that can be used to achieve a balanced dataset 

including random oversampling in which random samples of the minority class are duplicated 

to increase its representation in the dataset. In cases with severe class imbalance where there 

only a small share of observations belongs the minority class, random oversampling can 

improve the performance of a classification model but it also increases the likelihood of 

overfitting which limits the models’ generalization ability to new, unseen data (Batista et al., 

2004). However, other techniques such as Synthetic Minority Oversampling Technique 

(SMOTE) (Chawla et al., 2002) have shown to be more effective in improving the performance 

of a classification models, including decision trees, support vector machines or neural networks, 

while also mitigating the likelihood of overfitting (Bach et al., 2017; Batista et al., 2004). 

SMOTE generates new, synthetic data points of the minority class with similar characteristics 

to the already existing observations based on the k-nearest neighbours algorithm (Chawla et al., 

2002; Fix & Hodges, 1951).  

Instead of increasing the sample size by creating new instances of the minority class, 

downsampling can be implemented to balance the class distribution by reducing the number of 

observations of the majority class. In comparison to upsampling techniques, downsampling 

methods reduce the sample size of the training dataset and thereby the computational 

complexity of the model as shown in the context of urban vegetation monitoring using random 
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forest (Feng et al., 2015) or spam filtering (Cormack et al., 2011). There are a various 

downsampling techniques available including random downsampling, cluster centroids or 

tomek links. To retain a balanced class distribution in the training datasets, this study employs 

random downsampling. In each year, instances from the majority class are randomly removed 

until a balanced class distribution of the majority and minority class is achieved.  

FIGURE V DOWNSAMPLING 

 

Especially in the presence of severe class imbalance the choice whether an upsampling 

or downsampling technique is implemented has a significant impact on the sample size of the 

training dataset. In such cases, upsamping techniques increase the computational complexity 

significantly to train the model. To highlight the enlargement of the sample, in the year 2009 

the sample includes approximately 225,000 firms with a default rate of just under 8%. To 

equalize the number of instances of the default and non-default class, approximately a total of 

189,000 new instances of the minority class needs to be created resulting in a sample size of 

414,000. However, increasing the training datasets can be disadvantageous because large 

datasets pose significant challenges for classification models because of their computational 

complexity.  

In comparison, implementing random downsampling in the training dataset implies 

reducing its sample size from approximately 225,000 to 36,000 observations. Consequently, 

implementing upsampling techniques results in a training dataset that is approximately 11.5 

times larger compared to the training dataset obtained through downsampling methods. 

Therefore, utilizing downsampling can be particularly advantageous to reduce the 

computational complexity. After evaluating the performance of the various classification 
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models used in this study using both sampling techniques, the observed performance of the 

upsampling method SMOTE is comparable to the result obtained through random 

downsampling. Because there is no significant performance gain of using an upsampling 

method, random downsampling is implemented in the study due to its lower computational 

complexity. 

IV. Explanatory Data Analysis 

IV.A. Overview of Defaults 

Over the observation period, the number of firms in the sample fluctuates between the 

minimum of 187,746 in 2015 and maximum of 225,118 non-financial cooperations in 2009. 

Subsequently, the yearly default rate is calculated based on the described definition of default. 

Table II displays the results, which indicate that the default rate peaked in 2013 at a rate of 

10.71% and decreased over time to a minimum rate of 4.64% in 2020. From 2009 to 2020, the 

average observed default rate is 7.76%. 

TABLE II YEARLY DEFAULT RATES 

 

IV.B. Firm Classification and Distribution 

To develop a better understanding of composition of default rates and the main 

influencing factors, this study follows the criteria outlined by the European Commission to 

distinguish between the four firm size classes: micro, small, medium, and large (European 

Commission, 2003). A firm is categorized as a micro firm if the number of employees does not 
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exceed 10 employees and a turnover or balance sheet total of €2 million. According to the 

definition of the European Commission, small firms do not exceed 50 employees and €10 

million in turnover or balance sheet total. Finally, a medium-sized firm is defined as a firm that 

does employ less than 250 employees and a turnover or balance sheet total of €50 million and 

€43 million respectively. All remaining firms are classified as large firms. 

TABLE III FIRM SIZE CLASSIFICATION 

 

The definition by the European Commission results in the following distribution of non-

financial firms in Portugal displayed in FIGURE VI. Even though the number of firms in the 

sample fluctuates within the observation period the respective shares of the four classes remain 

approximately constant. 

FIGURE VI NUMBER OF FIRMS BY SIZE 
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Most firms are classified as micro firms which account on average for 80.40% of the 

firms. More precisely, they represent between 79.7% and 81.4% which corresponds to 152,187 

to 179,674 micro firms over the observations period. In comparison, the second largest group 

which is the group of small firms is significantly smaller and represents between 15.4% and 

17.0% of Portuguese non-financial corporations. The two groups with the fewest observations 

are the groups of medium and large firms. On average these consistently account for 2.76% and 

0.48% respectively. 

Furthermore, the four classes differ not only in the number of firms but also in their 

default rates. As displayed in FIGURE VII, with increasing firm size the default rates decrease. 

Micro firms show highest default rate, peaking at 11.24% in 2013. The remaining groups small, 

medium, and large all reach their respective highest default rate in 2012. Afterwards, the default 

rates in the micro, small class decrease in every year and the same can be observed for the 

medium-sized class except for the year 2016 in which the default slightly increased compared 

to the previous year. In 2020 which is last year of the observation period, the lowest default 

rates can be observed in every class. 

FIGURE VII DEFAULT RATE BY FIRM SIZE 

 

Due to the different default rates of each group, the proportion of defaults does not 

correspond to its representation in the sample. Micro firms exhibit the highest default rate 
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amongst all groups and as a result account for a higher share of defaults compared to their 

representation in the sample. In 2020 79.84% of the firms in the sample are micro firms but 

they account for 87.43% of the defaults. This can be observed over the whole sample period, 

the micro firms are on average responsible for 85.25% of all defaults each year. 

V. Methods 

V.A. Statistical Models 

The study assesses the ability of various statistical and machine models to predict 

corporate default by identifying and learning complex patterns within the data. 

Since Altman, 1968 first implemented the linear discriminant analysis (LDA) to classify 

corporate borrowers into default and non-defaults based on accounting ratios and other financial 

variables, it is also widely used method in the context of default forecasting and many other 

classification problems to separate two or more classes. The LDA is a feature reduction 

technique which aims to find a linear combination of features that best separates the classes of 

the dataset while retaining most of the relevant information. 

The logistic regression (LOG) is another common model which is used in many binary 

classification problems. The LOG estimates the probability of a binary outcome based the 

explanatory variables which is then used to predict the class label. In the context of corporate 

default forecasting, the LOG model determines the state of a firm based on the estimated 

probability as either financially sound represented by 0 or by 1 if the firm is in default. As one 

of the first papers Ohlson, 1980 implements a logistic regression model to predict corporate 

bankruptcy. In this paper, the likelihood of bankruptcy is estimated based on financial ratios 

that reflect the current state of a firm.  

The third statistical method used in this study is the penalized logistic regression (PLR). 

The PLR is a modification of the logistic regression which estimates the probability of binary 

outcome based on a set of explanatory variables. However, in the PLR a penalty term is added 

to avoid overfitting by reducing the impact of high variance explanatory variables. Furthermore, 

the literature has demonstrated that in certain prediction tasks, the PLR can outperform standard 

LOG (Zou & Hastie, 2005).  

V.B. Machine Learning Models 

The study implements the machine learning algorithms random forest (Breiman, 2001) 

and extreme gradient boosting (XGBoost) (Chen & Guestrin, 2016) to identify the complex 
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hidden patterns within the data and use them to build effective predictive models in the context 

of default forecasting.  

Both models are tree-based algorithms which means that both utilize decision trees to 

build a predictive model. A decision tree is a supervised learning technique that can be applied 

in various fields to solve both regression and classification problems.  

A decision tree has hierarchical tree-like structure, in which each of node of the tree 

represents a feature or variable of the dataset (Breiman et al., 1984). Starting from the first 

internal node, also referred to as root node, the data is split recursively into smaller subsets 

according to the decision rules which are derived from the features of the dataset. The decision 

rules are represented by the branches of the tree connecting two nodes. If a node cannot be split 

further, it becomes a leaf node which represents the outcome or class label (James et al., 2021). 

However, a limitation of using a single decision tree to solve a regression or classification 

problem is its tendency of overfitting on the training dataset which limits their ability to 

generalize to new data (Breiman et al., 1984). 

Ensemble methods like random forest and XGBoost, address this limitation by 

aggregating many decision trees. Instead of relying on a single decision tree, these ensemble 

methods combine many individual models to obtain a single more powerful accurate (James et 

al., 2021). Moreover, both models differ in the way the individual decision trees are build and 

combined. 

Bagging is another ensemble method that constructs decision trees using random 

samples (Breiman, 1996). However, when the trees are grown using the same features with 

different samples it, it is still likely that the bagged trees look similar to each other and as a 

result are highly correlated (James et al., 2021). In contrast, the random forest algorithm is also 

based on the bagging method. Moreover, each decision tree in a random forest is created using 

a random sample of observations as well as a random subset of features to decorrelate the trees 

(James et al., 2021). Since the decision trees are grown based on different samples and feature 

subsets, the prediction of the respective tree can differ. Finally, for a classification problem, the 

final prediction is determined by aggregating the predictions of individual decision trees and 

taking the majority vote (James et al., 2021).  

The Gradient boosting model is based on the ensemble modelling technique boosting. 

Unlike in bagging, in boosting the individual trees are not grown parallel but successively. The 

idea behind this approach is to improve a weak model by combining several weak models in 
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series to build a strong model. This method builds sequence of models that attempts to correct 

the errors of the previous model. This is done by fitting a new model on the residuals of the 

previous model with the gradient descent algorithm to minimize the loss function (Friedman, 

2001) (James et al., 2021). Gradient boosting is a specific implementation of boosting in which 

the models are constructed using decision trees whereas boosting can use any type of model. 

XGBoost is an extension of gradient boosting which includes several additional features that 

allow the model to handle complex datasets with a better accuracy and speed (Chen & Guestrin, 

2016). 

V.C. Hyperparameter Tuning 

When building a machine learning model, it is important to distinguish between model 

parameters and hyperparameters. The model parameters are internal parameters that determine 

how input data is transformed into the desired output such as the coefficients in linear and 

logistic regression models. The model parameters are learned and updated during the training 

process by an optimization algorithm specific to the respective model including bagging in 

random forest (Breiman, 2001) or boosting in XGBoost (Chen & Guestrin, 2016). 

On the other hand, hyperparameters are parameters that define the architecture of the 

learning algorithm and are set before the training process such as the number of trees in a 

random forest model (Breiman, 2001) or the learning rate in XGBoost (Chen & Guestrin, 2016). 

Hyperparameters are not learnt or changed during the training of the model but can have an 

significant impact on quality and speed of the training itself (Bergstra & Bengio, 2012). Unlike 

model parameters, hyperparameter control the learning process that determines the model 

parameters. Hyperparameters do not directly affect the predictions but can significantly affect 

the model’s performance. The type and number of hyperparameters vary and are specific to the 

learning algorithm itself. 

To maximize the performance of a model, it is essential to find the optimal combination 

of hyperparameters, which depends on the specific problem and dataset (Bergstra & Bengio, 

2012). Moreover, the process of determining the optimal model architecture is more 

challenging because unlike the model parameters, hyperparameters cannot be directly learned 

or calculated from the data and therefore a trial-and-error approach is required. 

The process of determining the optimal set of hyperparameter is called hyperparameter 

tuning or optimization (Feurer & Hutter, 2019). To assess and compare the performance of 

different combinations of hyperparameters, for each set it is necessary to train the model on the 
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training dataset, followed by testing on the testing dataset and finally evaluating it using a 

chosen validation metric, which is also referred to as hyperparameter metric (Bergstra et al., 

2011). The choice of hyperparameter metric depends on the objective of the respective research 

question (Bergstra & Bengio, 2012). In this study, hyperparameters are chosen based on their 

ability to maximize the AuROC. 

There are a variety of ways to tune hyperparameters (Bergstra & Bengio, 2012). First, 

they can be tuned manually but if the model is too complex with a large number of 

hyperparameters, handling this process manually becomes difficult and time consuming (Feurer 

& Hutter, 2019). Therefore, it is advantageous to use an automated hyperparameter tuning 

method such as grid search, random search, or Bayesian optimization to find the optimal 

hyperparameter values (Bergstra & Bengio, 2012; Feurer & Hutter, 2019). 

Grid search is a common and simple automated algorithm for hyperparameter tuning 

(Feurer & Hutter, 2019). In this method a grid of potential values for each hyperparameter is 

defined. After the grid is specified, the algorithm builds a model for every possible combination 

of the specified hyperparameters and calculates its respective hyperparameter metric using 

cross-validation. Finally, the best performing set of hyperparameters in terms of the 

hyperparameter metric is selected as the optimal model architecture. While grid search is an 

effective method to identify the optimal hyperparameter set, iterating through every 

combination of hyperparameters in the grid is time-intensive and requires a high computation 

capacity (Feurer & Hutter, 2019). 

A similar approach that addresses this limitation is random search (Bergstra & Bengio, 

2012; Feurer & Hutter, 2019). Instead of evaluating all possible combinations of 

hyperparameters, random search only evaluates a randomly selected subset of hyperparameter 

combinations to find the optimal model architecture (Bergstra & Bengio, 2012). Although this 

method might not find the optimal combination of hyperparameters, it still achieves comparable 

results but requires less time compared to the grid search approach (Bergstra et al., 2011). 

Nevertheless, both grid search and random search do not account for the results of 

previous iterations and each set of hyperparameters is evaluated individually. As a result, a 

large number of unsuitable hyperparameter sets is assessed resulting in an inefficient 

hyperparameter tuning process (Bergstra & Bengio, 2012). 

To address this inefficiency and avoid the evaluation of unsuitable hyperparameter 

combinations, Bayesian optimization is a sequential model which choses the hyperparameter 
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that are evaluated next based on the results of previous evaluations (Bergstra et al., 2011). The 

main idea of this method is to focus on the more promising candidates to make fewer calls to 

the objective function. In this classification problem, the AuROC is used as the objective 

function to evaluate the performance of different hyperparameter combinations on the 

validation set, with the goal of maximizing this objective function. Compared to grid search 

and random search the Bayesian optimisation has proven its ability to obtain better results with 

fewer evaluations (Bergstra et al., 2011; Snoek et al., 2012).  

However, to find the best possible hyperparameter combination in the fewest number 

of evaluations using the objective function, Bayesian optimization constructs a surrogate 

function which is a probabilistic model of the objective function based on the results of past 

evaluations (Snoek et al., 2012). Before the actual Bayesian optimisation process starts, various 

random hyperparameter combinations are evaluated to initialize the surrogate function. 

 

The surrogate function can be considered as an application of the Bayes’ Theorem (as 

shown in Equation 1) which relates hyperparameters to the probability of obtaining a certain 

score on the objective function. Equation 2 illustrates P(metric|hyper) which gives the 

probability of the given metric, like the AuROC, to be maximized given a combination of 

hyperparameters. 

 

  (1)  

 

 (2)  

 

This research utilizes the Gaussian Processes as the surrogate function to guide the 

hyperparameter search toward more promising candidates that are likely to yield an 

improvement to the objective function (Rasmussen & Williams, 2006). 

After the surrogate model of the objective function is constructed, the model determines 

the hyperparameters that will be evaluated next by the objective function based on the criterion 

defined in the selection function. A common criterion of the selection function, which is utilized 
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in this study, is the expected improvement function (Jones et al., 1998). Consequently, the set 

of hyperparameters that maximizes the expected improvement criterion is evaluated next using 

the actual objective function. 

After each evaluation, the surrogate function is updated incorporating the new results 

using the Bayes’ rule. Consequently, the selection of the hyperparameters to be evaluated in the 

next iteration is more informed and the surrogate function becomes more accurate as it 

approximates the actual objective function with each iteration (Snoek et al., 2012). 

Finally, the process of evaluating new hyperparameter combinations and updating the 

surrogate function is repeated until the optimal set of hyperparameters is found and no further 

improvement is found, or the predefined maximum number of iterations is reached. 

This study implements Bayesian Optimization to find the optimal set of 

hyperparameters for the two machine learning models random forest and XGBoost model. The 

hyperparameters of the respective model are determined using all available observations of the 

year 2013. The resulting hyperparameter values are used for all remaining specifications 

discussed in this paper. To initialize the surrogate function, five random hyperparameter 

combinations are used that serve as initial estimates of the hyperparameters values which are 

updated during the optimization process. In addition, the maximum number of iterations is 

limited to 30. Alternatively, the optimization process is terminated before the 30th iteration 

when no further improvement is achieved in 10 consecutive iterations. 

To optimize the performance of the machine learning model random forest, there are 

three hyperparameter which can be optimized:  

• mtry = number of predictors that are randomly sampled at each split  

• trees = number of trees contained in the ensemble 

• min_n = the minimum number of data points in a node that are required for the 

node to be split further 

The results of the hyperparameter tuning of the random forest model using Bayesian 

optimization are presented in TABLE IV, showing the 10 best performing hyperparameter 

combinations in terms of the AuROC. The optimal set of hyperparameters is found during the 

15th iteration. As shown in the first row of TABLE IV, the optimal random forest model 

randomly based on the data used selects only one predictor at each split. In addition, a total of 

1905 trees are included in model with a minimum of three data points required to split an 

internal node, otherwise there is no further split, and the internal node becomes a terminal node. 
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By utilizing the optimal combination of hyperparameters, the random forest model is able to 

achieve an average AuROC score of 86.31%. The score is presented as an average because it 

was obtained by utilizing the k-fold cross-validation method using 5 folds. The use of k-fold 

cross-validation allows for a more reliable and accurate evaluation of the performance of the 

model compared to other validation techniques. However, k-fold cross-validation will be 

discussed in more detail in chapter V.E. When considering all mean AuROC score of the 10 

best hyperparameter combinations, it stands out that there are only minor variations between 

the observed results. Furthermore, it is noteworthy that already in the 4th iteration, as shown in 

line five of TABLE IV, a combination of hyperparameters is selected that achieves an AuROC 

score that is quite comparable to the best performing combination. 

TABLE IV HYPERPARAMETER TUNING RANDOM FOREST 

 

Like random forest, XGBoost is a tree-based model and includes the hyperparamters 

mtry, min_n. In addition, three other hyperparameters are tuned: 

• tree_depth: the maximum number of levels or nodes a tree can have 

• learn_rate: determines the step size at each iteration when updating the weights of 

the decision trees 

• loss_reduction: minimum reduction of the loss function required to split further 

TABLE V presents the results of the 10 best performing hyperparameter combinations 

in terms of the AuROC obtained during the hyperparameter tuning of the machine learning 

model XGBoost using the Bayesian Optimization method. Although XGBoost is also a tree-
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based machine learning model, the results table of the hyperparameter tuning do not include the 

number of trees. Since the XGBoost model already includes five hyperparameter with the 

potential addition of further parameters, the decision was made to limit the search space of 

hyperparameters during the tuning process by setting the numbers of trees to 1000. This number 

is still sufficient to learn enough from the data, while allowing for a faster and more efficient 

optimization process of the remaining hyperparameters. The first row of TABLE V shows the 

optimal hyperparameters values of the XGBoost model. The optimal XGBoost model based on 

this dataset considers four predictors at each split and requires a minimum of two data points 

to split an internal node with a maximum of 15 levels. Furthermore, the tuning process reveals 

an optimal learning rate of 0.0000013 which means that the weights of the decision trees are 

updated very slowly. Finally, the optimal loss reduction of 0.0001194 indicates the minimum 

reduction in the loss function that is required to split further. In addition, compared to the tuning 

process of the random forest model the optimal combination hyperparameters of the XGBoost 

model results achieves an average AuROC score of 85.69% during the second iteration of the 

Bayesian Optimization.  

TABLE V HYPERPARAMETER TUNING OF XGBOOST 

 

V.D. Model Evaluation 

When evaluating the performance of classification model using a balanced testing 

dataset where both classes are equally important accuracy, which refers to the share of correct 

predictions, is a simple and sufficient metric (Kohavi & Provost, 1998). However, in 
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imbalanced datasets often a higher accuracy score is achieved due to the high number of correct 

predictions of the majority class while the minority group is neglected. Therefore, accuracy can 

be a misleading metric that does not reflect a models’ ability distinguish between classes in the 

presence of class imbalance in the testing dataset. This phenomenon is also referred to as the 

accuracy paradox (Fawcett, 2001). 

Therefore, when evaluating the overall performance of a binary classification model the 

use of alternative metrics that consider both the majority, and the minority class is 

advantageous. One commonly used metric is the AuROC (Fawcett, 2006; Powers, 2020; 

Tharwat, 2020). Furthermore, there are several other metrics available to evaluate the 

performance of classification models such as the area under precision recall, the F-score or the 

G-mean. However, it is important to note that these metrics capture different aspects of the 

model and therefore the choice of the respective metric depends on the context and objective. 

For imbalanced datasets where both classes are equally important AuROC is the most 

appropriate metric because it measures the ability of a model to correctly distinguish positive 

and negative classes regardless of the class distribution and is therefore implemented in this 

study. 

The AuROC is derived from the confusion matrix which is a graphical representation 

of the actual and predicted classifications done by the classification model which is displayed 

in FIGURE VIII (Kohavi & Provost, 1998; Stehman, 1997). It helps to visualize performance 

of the model and provides a better understanding of its strengths and weaknesses, particularly 

where the model makes false predictions. 

For a binary classification model, the confusion matrix consists of two rows and two 

columns. The rows of the confusion matrix represent the predicted class by the algorithm while 

the columns represent the true class. 
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FIGURE VIII CONFUSION MATRIX 

 

The ROC curve is a plot of true positive rate (TPR) on the y-axis and the false positive 

rate (FPR) on the x-axis for all possible discrimination thresholds (Fawcett, 2006; James et al., 

2021). A discrimination threshold usually refers to a probability and is used to determine 

whether specific case should be assigned to the positive or negative class. For a threshold of 

0.5, all cases with a predicted probability greater than 0.5 are classified to the positive class. 

Any other case with a predicted probability lower than the respective discrimination threshold 

is classified as negative. 

The TPR often also referred to as sensitivity measures the percentage of positives that 

are correctly identified. For the case of default forecasting, the sensitivity is the percentage of 

defaulting firm that are correctly identified as such (Kohavi & Provost, 1998). 

(3)    TPR =  
TP

TP+FN
 

The FPR is defined is the percentage of negative cases that are incorrectly classified 

(Kohavi & Provost, 1998). 

(4)    FPR =  
FP

FP+TN
 

The specificity is the proportion of negative class that is correctly classified. It gives the 

percentage of non-defaulting firms that are correctly identified (Kohavi & Provost, 1998). 

(5)    Specificity =  
TN

FP+TN
 

Consequently, the FPR can also be expressed as: 
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(6)    FPR =  1 − Specificity 

The AuROC is calculated as the area under ROC curve and is used to evaluate the 

performance of a binary classification model. The possible values of the AuROC range from 0 

to 1 with higher AuROC values corresponding to a better performing model. A perfect classifier 

has an AuROC of 1 which will always have a TPR of 1, regardless of the FPR. This implies 

that the classifier does not make any mistakes in distinguishing the positive and negative 

classes. 

For a binary classification model, an AuROC above 0.7 indicates a well-performing 

model. An AuROC of 0.5 indicates that the model has no predictive power and is as good as 

random guessing. Any model with an AuROC score of less than 0.5, which falls under the 

diagonal, is worse than random guessing. The AuROC is a good metric to evaluate a classifiers 

performance especially when one cares equally about the positive and negative class.  

 

FIGURE IX ROC CURVE 

 

V.E. Model Validation 

The following chapter will focus on the model validation which is used to evaluate the 

performance of a model and assess whether the trained model can be generalized. A models 

generalizability refers to its ability to accurately predicted outcomes for new, unseen data, based 
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on patterns learned from the training data. A common method is the validation set approach  in 

which the data is split into  a training set and a testing set which is not used for the training of 

the model (James et al., 2021). Most of the data is assigned to the training set and often a split 

80/20 is used (James et al., 2021). After the model was fitted using the training set, the 

performance of fitted model is evaluated on the testing set. 

The validation set approach is widely used, however it has some limitations. The 

performance of the model heavily depends on the one-time random split which can lead to a 

high variance of the results especially in small datasets. Also, a selection bias can occur when 

the testing set is randomly selected in a way that is no longer representative of the population 

and can result in an overestimation or underestimation of the models’ true performance.  

Another possible issue is overfitting, which occurs when a model is trained too well on 

specific characteristics in training set, causing it to lose its ability to generalize to new, unseen 

data. One way to mitigate these limitations is the use of k-fold cross validation. In this approach 

the data is randomly divided into k groups, also referred to as folds, of equal size. The first fold 

is treated as the test set and the remaining k-1 folds are used to train the model. Then, the 

model’s performance is evaluated on the validation set (Berrar, 2019; James et al., 2021). 

FIGURE X K-FOLD-CROSS-VALIDATION 

 

This process is repeated k times with a different fold selected as the validation set on 

each iteration, so each fold is used exactly once as the validation set. The final k-fold cross-

validation estimate for the metrics like AuROC are obtained by averaging the results from all 

k iterations (Berrar, 2019; James et al., 2021). 
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(5)   CV AUCROC  (k) =
1

k
∑ AUCROCi

k
i=1  

Although k-fold cross-validation is a widely used and appropriate method, it has some 

limitations when applied to time-series modelling. The main objective in time series modelling 

is analyse past data and detect and capture patterns to make accurate predictions of future 

outcomes. One fundamental principal in the assessment of any time series modelling, is that the 

data used to evaluate a model is temporally distinct from the data used for training (Shumway 

et al., 2000). Even when applying k-fold validation repeatedly and splitting the data of each 

period into k folds, this does not capture the ability of the model predict future outcomes but 

rather how well the model can be trained to capture specific patterns at the respective particular 

point in time. In addition, k-fold cross validation does not represent a real life-scenario in which 

a model was trained based on past data and predictions are made using the current, available 

data at the point in time the prediction is made. 

Therefore, to determine the performance and robustness of classification models in 

default forecasting and considering the temporal dynamics of the data, this study implements 

walk-forward validation which can considered as an extension of the k-fold cross validation. 

This approach is commonly used in financial modelling and algorithmic trading with the 

objective to determine the robustness of trading strategies and was originally introduced by 

Robert Pardo (Pardo, 1992). Similarly, to the k-fold cross-validation approach, the walk-

forward validation involves splitting the dataset into a training and testing dataset. However, in 

this approach the model is fitted on the training dataset and tested on the testing dataset of the 

subsequent period. Furthermore, this process is repeated iteratively by training and testing the 

model on a rolling basis, while the training and testing subset move forward one period after 

each iteration as illustrated in FIGURE XI. The duration of each period of the training and the 

testing dataset varies and depends on the context of the specific question. For the purposes of 

this study, one period corresponds to one year for both the training and the testing dataset. 



 

34 

 

FIGURE XI WALK-FORWARD VALIDATION 

 

In this study, a classification model is trained in a given year on all available 

observations of the specific year to predict corporate default in the next year using the selected 

predictors. Afterwards, the fitted model is applied on all available observations of the 

subsequent year to evaluate the performance of the fitted model. The detailed results correspond 

to the year in which the fitted model was tested and are presented in the appendix. The walk-

forward validated results are calculated using the following formula: 

(6)   WFV AUCROC  (n) =
1

n
∑ AUCROCi

n
i=1  

This formula shows the calculation of the AuROC using the walk-forward validation 

method where n represents the number of testing datasets in the data and AUCROCi the AuROC 

score when tested on the ith testing dataset. 

VI. Results 

In this section, the described statistical and machine learning models are assessed in 

terms of their ability to predict corporate default in the next year. To compare the forecasting 

ability of the various models, this study employs several specifications to ensure the validity of 

the results. These specifications include the type of forecast, the sample size of the training 

dataset, the dimensionality of the model and a clustering approach. Furthermore, based on the 

findings, the implications of corporate default of non-financial cooperations on the labour 

market are estimated. 
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VI.A. Type of Forecast 

When discussing the type of forecast this refers to the data that was used to train and 

test the model. If forecasts are made for observations that were also included in the training 

sample, it is an in-sample forecast. Consequently, if the observations in the test sample were 

not included in the training process, it is an out-of-sample prediction. 

Furthermore, the timing of the training and testing data is important to consider when 

making forecasts. If the tested data is in the same period as the data that was used to fit the 

model, it can be described as an in-time forecast. On the other hand, out-of-time predictions 

utilize data from different periods. 

In the first step, the predictive power of the chosen models is evaluated through out-of-

sample predictions using the validation set approach. In each year 80% of the data is used for 

training of the models and the remaining 20 percent of the same year are reserved for testing. 

This is the only specification of this study that implements the validation set approach while all 

following specifications utilize the walk-forward validation.  

The validation set approach is repeated for every year in the observation period using 

the full sample and the top 10 variables with the highest AuROC score in the univariate logistic 

regression as discussed in chapter III.D.iii.. This serves an initial evaluation of the models’ 

performance when they are tested on data of the same period as they are trained. TABLE VI 

illustrates the AuROC of the respective model in every year from 2008 until 2019 and shows 

that the machine learning models outperform the statistical models over the entire observation 

period. The linear discriminant model achieves an average AuROC of 66.36%. In comparison, 

the predictive performance of the logistic regression and the penalized logistic regression model 

is quite similar and they achieve an average AuROC score of 68.60% and 68.53% respectively. 

However, the average AuROC of the penalized logistic regression model which is the best 

performing statistical model is 9.70 percentage points lower compared to the random forest 

model and 9.54 percentage points compared to the XGBoost.  
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TABLE VI DISCRIMINATORY POWER OF OUT-OF-SAMPLE PREDICTIONS 

 

VI.B. Out-of-Time Predictions 

After the initial evaluation of the models using data from the same year, this 

specification evaluates the performance of the models based on out-of-time predictions. In 

contrast to the previous specification, out-of-time predictions represent a real-life scenario 

because the predictions of a specific year are made based on the available information of the 

previous year. 

For this specification the full sample with the top 10 variables is used. The AuROC for 

the respective models are displayed in TABLE VIII, but this time for the period of 2009 until 

2019 because the year 2008 was used to fit the models for the year 2009.  

Similarly, to the previous specification, TABLE VII illustrates that both the logistic and 

penalized logistic achieve comparable walk-forward validated AuROC scores of 69.05% and 

69.03% respectively. They outperform the linear model by approximately by 2.40 percentage 

points, but their predictive power is still significantly lower compared to the machine learning 

models. The random forest model is the best performing classifier and which an average 

AuROC score of 79.03%, followed by XGBoost with an average score of 78.66%. 
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The results of the out-of-time and in-time predictions are quite comparable which 

confirms the validity of the models and indicates that they were not overfitted in the previous 

specification. Consequently, they can be generalized on new out-of-time data and that they are 

not only valid for the same period. 

TABLE VII DISCRIMINATORY POWER OF OUT-OF-TIME PREDICTIONS 

 

VI.C. Sample Size of the Training Dataset 

Another important aspect to consider is the sample size used to train the models. The 

following section discusses the forecasting ability of the various models when only a limited 

share of the available observations is used in the training process. Four different variations were 

implemented which use 100%, 50%, 10% and 5% of all Portuguese non-financial cooperations 

in each year. The used observations in the smaller datasets are randomly selected and then the 

models were tested using the full samples. This examination can be particularly advantageous 

as simulates a scenario in which only a limited amount of data is available. 

The impact of the sample size on the model performance is evaluated by comparing the 

model performance using the top 10 variables with four different sample sizes. In TABLE VIII 

the walk-forward validated AuROCs of the four variations for the respective models are 

illustrated. In addition, the detailed tables of all the AuROCs including the predictions for every 

year are provided in the appendix (Table A.4 - A.7). The results in TABLE VIII and the 
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corresponding FIGURE XII suggest that discriminatory power of the statistical models remains 

constant as the sample size is reduced. 

In contrast, the performance of machine learning models deteriorates when the sample 

size gets smaller. The AuROC of the machine learning model random forest drops from 79.00% 

with the full sample to 76.40% when only 5% of the available observations were used to train 

the models. The same trend can be observed for the XGBoost in which the AuROC decreases 

from 78.70% to 75.80%. The deterioration in performance of the machine learning can be 

attributed to several factors. Firstly, with decreasing sample size the chance of a sampling bias 

increases. This means that the model is trained on data that is not representative of the sample. 

Consequently, the performance deteriorates when tested with the actual data. In addition, with 

decreasing sample size the probability of overfitting increases, and the models are more likely 

capture noise in the data rather than the actual underlying patterns. Finally, to learn more 

complex patterns in the data a smaller sample size might not be sufficient to train the model 

effectively. 

TABLE VIII DISCRIMINATORY POWER SAMPLE SIZE  
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FIGURE XII DISCRIMINATORY POWER SAMPLE SIZE 

 

VI.D. Dimensionality 

Furthermore, the forecasting ability of the models is affected by the dimensionality of 

the model. The dimensionality refers to the number of variable or features used in a model to 

make predictions. Although it may seem beneficial to add more variables to improve the 

performance of the model, increasing the number of variables does not lead to a continuous 

improvement in the predictive power of a model (Hughes, 1968). After the optimal number of 

variables is exceeded, which depends on the specific question and model, the predictive power 

starts to decline (Hughes, 1968). This is commonly referred to as the curse of dimensionality 

or the Hughes phenomenon. With the addition of further variables, the model becomes more 

complex, which increases the chances of overfitting and therefore deteriorates the performance 

of the model and limits its ability to be generalized.  

To test the robustness of the forecasting models with respect to the dimensionality, this 

study examines three variations using the top 5, top 10 and top 15 variables respectively with 

the highest AuROC score in the univariate logistic regression as discussed in chapter III.D.iii. 

using all available observations for training and testing for each year. 

In TABLE IX and FIGURE XIII, the walk-forward validated AuROCs for the different 

variations are presented with the full tables being provided in the appendix (A.8 -A.10). The 

discriminatory power of the statistical models does not benefit from higher dimensionality. The 

performance of the logistic regression, and the penalized logistic regression remain constant 

while the performance of the linear discriminant analysis slightly declines. Compared to that, 
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the discriminatory power of the machine learning models improves significantly as the 

dimensionality increases. The AuROC of the random forest and XGBoost models increase from 

74.90% and 74.10% when the top 5 variables used to 82.50% and 82.10% respectively when 

the top 15 variables are utilized. 

The performance of the machine learning models keeps improving when the number of 

features is increased until 15 features are used. Consequently, it is likely the optimal number of 

features has not been reached yet and potentially more features could be added to further 

enhance the predictive power of the two models. 

TABLE IX DISCRIMINATORY POWER DIMENSIONALITY 

 

FIGURE XIII DISCRIMINATORY DIMENSIONALITY 
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VI.E. Firm Size Clustering Approach 

Finally, a clustering approach is implemented in which the data are divided into four 

groups based on respective their firm size following the definition of the European Commission. 

Accordingly, the firms are classified as micro, small, medium, or large firms. Clustering can be 

particularly useful to identify cluster specific patterns within the respective cluster which 

otherwise would not have been discovered and thereby improve the performance of a 

classification model. 

When firms are divided into clusters based on their size and the models are trained using 

the top 10 variables, the analysis reveals than the machine learning models consistently 

outperform the statistical models across clusters. The ability to distinguish default and non-

default is the highest among all models in the medium cluster, especially the random forest 

model achieves an AuROC of 85.90%. 

 It stands out that when comparing the results from TABLE X with previous results in 

TABLE IX using the top 10 variables, the predictive power of all statistical and machine 

learning models improves. Furthermore, the difference in performance between the two model 

types diminishes significantly in all but the micro cluster. In the micro cluster, the AuROC 

deteriorates slightly but is still comparable to the performance presented in TABLE IX using 

the top 10 variables. Nevertheless, the performance gap observed in pervious specifications 

remains. This result can be attributed to the fact that most of the firms in the sample belong to 

the micro cluster. Consequently, they have a significant influence on the overall results when 

no cluster approach is implemented. 

TABLE X DISCRIMINATORY POWER FIRM SIZE CLUSTERS 
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FIGURE XIV DISCRIMINATORY POWER FIRM SIZE CLUSTERS 

 

VI.F. Labour Market Implications of Corporate Default 

Finally, the following chapter combines the findings of this study to build a model that 

examines the labour market implications of corporate default in Portugal. It is important to note 

that in the context of this study default does not imply bankruptcy because most firms that are 

classified as to be in default appear again in the sample in following years. However, being 

classified as default indicates a certain financial instability for a firm, which can put the jobs 

associated with the firm at risk.  

The majority of all Portuguese non-financial cooperations are micro firms which are 

also responsible for most of the corporate defaults. Approximately 20% of all jobs in the sample 

throughout the observation period are provided by micro firms. The following chapter examines 

corporate default among micro firms and combining the findings of this research. 

As illustrated in TABLE X of the previous chapter, both traditional and machine 

learning models exhibit the most difficulties in correctly distinguishing defaults and non-

defaults among micro firms. However, out of the five models, random forest exhibits the highest 

predictive power to correctly distinguish default and non-default firm in the micro cluster and 

is therefore selected for the subsequent evaluation. Furthermore, the results of TABLE IX 

indicate that by increasing the number of predictors from 10 to 15, the performance of the 

random forest classifier can be improved when all available observations are used. 

Based on the sample using the top 15 predictors, the out-of-sample probabilities of 

default in the next year are obtained by the random forest model. Whether a firm is then 
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classified as in default depends on the specific discrimination threshold chosen. For the further 

evaluation, the discrimination thresholds 0.70, 0.71, 0.72 are considered. These specific 

discrimination thresholds are derived from the actual observed default rate among micro firms. 

Over the observation period, on average 13,525 micro firms default every year. When applying 

the threshold of 0.71, the classifier predicts an average of 13,296 micro firms to default yearly. 

Compared to that, a discrimination threshold of 0.70 overestimates the average number of 

defaults by predicting a total of 14,441 yearly defaults of micro firms. Increasing the 

discrimination threshold 0.72 leads to an underestimation of the average number of defaults 

predicting 12,173 yearly defaults. For each of the three thresholds, the defaulting firms, and the 

corresponding jobs at risk due to the default are calculated. The total jobs risk over the 

observation period for the respective discrimination threshold are illustrated in FIGURE XV. 

The grey area between the lines of the 0.70 and 0.72 discrimination thresholds represents an 

estimation of the number endangered jobs for the respective year. In 2013, the jobs at risk due 

to corporate default reached their highest level when approximately 30,800 to 36,900 jobs are 

endangered. After 2013 the number of jobs at risk decreases and since 2015 levels out between 

18,000 and 22,500 approximately. 

FIGURE XV JOBS AT RISK  

 

In addition, there is a strong correlation between the predicted jobs at risk due to 

corporate default of Portuguese non-financial cooperations and the actual observed 
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unemployment rate in Portugal which is based on data provided by Statista. The predicted jobs 

at risk using the 0.72 discrimination threshold and the actual unemployment rate have a 

correlation coefficient of 0.835 which is illustrated in FIGURE XVI. Therefore, this strong 

correlation shows that these predictions of endangered jobs can be used as a leading indicator 

for future unemployment.  

 

FIGURE XVI JOBS AT RISK COMPARED TO  UNEMPLOYMENT RATE 

 

Based on the findings of this research, the machine learning models random forest and 

XGBoost demonstrate superior discriminatory ability compared to traditional statistical models. 

The gap of discriminatory power remains significant across specifications which shows that it 

is beneficial to implement machine learning models for default forecasting. Especially when 

considering the micro cluster, the random forest model outperforms the best performing 

statistical model by 9.40 percentage points. Moreover, this approach can used to forecast the 

potential impact on the Portuguese labour market by estimating the number of jobs at risk due 

corporate default of non-financial micro cooperations. 
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VII. Discussion 

The results of this research suggest that it is beneficial to implement machine learning 

models such as random forest or XGBoost for default forecasting because of their superior 

discriminatory power compared to traditional models. However, it is important to note that this 

study has some limitations.  

First, when comparing the predictive power of statistical and machine learning models 

the quality of information used to train them has a substantial impact on the performance. As 

shown by Moscatelli et al., 2020, the addition of high-quality information such as credit 

behavioural indicators can lead to significant improvements in the discriminatory power for 

both statistical and machine learning models; however, statistical models benefit more from 

high-quality information.  

Another limitation is the frequency of the data since this study is based on yearly data. 

However, the use of higher frequency such as quarterly or monthly data can potentially improve 

the accuracy of the predictive models. 

Furthermore, the computational complexity of the hyperparameter tuning on a large 

dataset presents another limitation because as a result the hyperparameters are only tuned once. 

To optimize the model’s performance a more frequent hyperparameter tuning can be 

advantageous. Furthermore, this study discusses the implementation of a clustering approach 

based on the firm size and its implications on the labour market. While this research focuses on 

micro firms, future research could explore the other firms size cluster as well as alternative 

clustering approaches based on other characteristics such as geographic location or industry.  

Finally, while this approach focuses on the labour market implications there are many 

other possible macroeconomic consequences of corporate default that can be evaluated using a 

similar approach.



 

46 

 

VIII. Conclusion 

The study examines the potential benefits of implementing machine learning models 

for default forecasting by comparing the discriminatory power of the random forest and 

XGBoost models to that of the conventional statistical models linear discriminant analysis, 

logistic regression and penalized logistic regression. To evaluate the predictive power of the 

various models, their AuROC scores are compared across different specifications using a 

comprehensive dataset containing of firm-level variables and financial indicators for 

approximately 200,000 Portuguese non-financial cooperations from 2009 until 2020. 

When the models are evaluated using out-of-time predictions, the machine learning 

models exhibit a significantly higher discriminatory power compared to the traditional models. 

With the reduction in sample size, the difference in predictive power between the two model 

types decreases. However, machine learning models maintain a higher level of performance. 

While modification in model dimensionality have a limited impact on the ability of statistical 

models to distinguish default and non-default instances, the predictive power of machine 

learning models increases with the addition of further predictors. 

The study applies a clustering approach which divides firms based on their size. Both 

traditional and machine learning models exhibit an improvement in discriminatory power in all 

but the micro cluster in comparison to non-clustering specifications. Regarding the 

classification of micro firms, machine learning models demonstrate a significantly higher 

discriminatory ability, while traditional models exhibit limited performance. Furthermore, this 

research aims to evaluate the macroeconomic impact on the labour market by estimating the 

number of endangered jobs due to corporate default of non-financial cooperations.  

The study can serve as a foundation for future research to evaluate the macroeconomic 

impact of corporate default using machine learning techniques.
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Appendix 

TABLE A. 1 1 LIST OF TESTED VARIABLES 
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TABLE A. 2 VARIABLE DESCRIPTION 
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TABLE A. 3 CORRELATION MATRIX 
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TABLE A. 4 DISCRIMINATORY POWER OF OUT-OF-TIME PREDICTIONS WITH COMPLETE 

DATASET 

 

 

 

TABLE A. 5 DISCRIMINATORY POWER OF OUT-OF-TIME PREDICTIONS WITH 50% 

DATASET 
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TABLE A. 6 DISCRIMINATORY POWER OF OUT-OF-TIME PREDICTIONS WITH 10% 

DATASET 

 

 

TABLE A. 7 DISCRIMINATORY POWER OF OUT-OF-TIME PREDICTIONS WITH 5% 

DATASET 
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TABLE A. 8 DISCRIMINATORY POWER OF OUT-OF-TIME PREDICTIONS WITH TOP 5 

VARIABLES 

 

 

TABLE A. 9 DISCRIMINATORY POWER OF OUT-OF-TIME PREDICTIONS WITH TOP 10 

VARIABLES 
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TABLE A. 10 DISCRIMINATORY POWER OF OUT-OF-TIME PREDICTIONS WITH TOP 15 

VARIABLES 

 

 

TABLE A. 11 DISCRIMINATORY POWER OF OUT-OF-TIME PREDICTIONS WITH MICRO 

FIRM DATASET 
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TABLE A. 12 DISCRIMINATORY POWER OF OUT-OF-TIME PREDICTIONS WITH SMALL 

FIRM DATASET 

 

 

TABLE A. 13 DISCRIMINATORY POWER OF OUT-OF-TIME PREDICTIONS WITH MEDIUM 

FIRM DATASET 
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TABLE A. 14 DISCRIMINATORY POWER OF OUT-OF-TIME PREDICTIONS WITH LARGE 

FIRM DATASET 

 


