

iberian **PLANT BIOLOGY 2023** Braga Portugal 9-12 July

CBQF · CENTRE FOR BIOTECHNOLOGY AND FINE CHEMISTRY ASSOCIATE LABORATORY CBOI

PORTO

Effect of drought stress on pea nutritional quality

Joana Machado, Martyna Bikiewicz, Carla Santos, Marta W. Vasconcelos*

Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia *mvasconcelos@ucp.pt

INTRODUCTION

Principal Challenges

- Global warming

RESULTS AND DISCUSSION

Morphophysiological Traits

Climate Change	- More frequent floods and droughts	2500- 2000- ()	
Legumes	 Often grown in regions that are prone to drought 	Mater Consur 0001 (mL/plan -0051 (mL/plan	
Nutritional Quality	 Drought stress can reduce the protein content and increase the antinutrient levels in legumes 	0 Nutrition	Control Drought Stress
Pea (Pisum sativum L.) One legum S eer p w	of the most widely consumed ne vegetables ignificant portion of the daily rotein intake in many parts of the vorld	Total Phenolics Content (mg AG/g DW) 0 0	**
B let	Important source of protein, fibre, and other essential nutrients	250- 200-	n.s.

Drought stress did not significantly impacted morphophysiological traits **but allowed to** save 16 % of water

Drought stress significantly impacted antioxidant traits decreasing total phenolics content by 11%

□ No significant impact on nutritional traits such as

IMPACT OF DROUGHT STRESS?

While several studies have focused on the effect of drought on pea agronomic traits, <u>understanding the shifts in the nutritional</u> quality (beyond protein content) is yet to be unravelled.

MATERIAL AND METHODS AT HARVEST: TREATMENTS **Morphophysiological Traits:** Dry and fresh weight (shoot, pods, seeds and

40% FC

DROUGHT STRESS CONTROL •START: Filled • START: Filled with water until with water until reaching the field reaching the FC capacity (FC) •No further further irrigation •No until 40% FC and then until irrigation 80% of FC and kept at that level then kept at that level

- total)
- Plant Height
- Chlorophyll Content (SPAD)
- ❑ Water Consumption

Nutritional Traits:

- Nutrients (ICP-OES and DUMAS)
- Protein (DUMAS)
- Total Phenolic Content

From harvest until the grain-filling stage ≈ 8 weeks, cv. Tom Thumb (short cycle cv.)

CONCLUSIONS

Priming Tom Thumb cultivar with mild drought stress might allow water savings during growth, without severely compromising its nutritional properties or yield Additional data is currently under analysis to determine drought impacts on other pea nutritional traits and bioactive value

AKNOWLEDGEMENTS

This work was supported by FCT (Portugal) through project LAND (2022.06252.PTDC) and 2022.01903.CEECIND; and by the European Union's Horizon 2020 Research and Innovation Program through RADIANT, Grant Agreement #101000622. We would also like to thank the scientific collaboration under FCT project UIDB/50016/2020.