
Universal Journal of Applied Mathematics 10(2): 7-19, 2022
DOI: 10.13189/ujam.2022.100201

http://www.hrpub.org

An Open-Source Simulation Model for Solving
Scheduling Problems

Aydin Teymourifar1,∗, Jie Li2, Dan Li2, Taicheng Zheng2

1CEGE - Centro de Estudos em Gestão e Economia, Católica Porto Business School, Porto, Portugal
2Centre for Process Integration, Department of Chemical Engineering, School of Engineering,

The University of Manchester, Manchester, United Kingdom

Received May 12, 2022; Revised September 5, 2022; Accepted September 20, 2022

Cite This Paper in the following Citation Styles
(a): [1] Aydin Teymourifar, Jie Li, Dan Li, Taicheng Zheng, ”An Open-Source Simulation Model for Solving Scheduling Problems,” Universal Journal
of Applied Mathematics, Vol.10, No.2, pp. 7-19, 2022. DOI: 10.13189/ujam.2022.100201

(b): Aydin Teymourifar, Jie Li, Dan Li, Taicheng Zheng (2022). An Open-Source Simulation Model for Solving Scheduling Problems. Universal Journal
of Applied Mathematics, 10(2), 7-19. DOI: 10.13189/ujam.2022.100201

Copyright ©2022 by authors, all rights reserved. Authors agree that this article remains permanently open access under the terms of
the Creative Commons Attribution License 4.0 International License

Abstract In this study, an open-source simulation model
is presented for solving scheduling problems. The model
is capable of solving different benchmarks. The methods
involved in the simulation are mainly based on generating
dispatching rules or using them to solve problems, but there are
other heuristics as well. Dispatching rules in an evolutionary
process are generated using Gene Expression Programming.
For this aim, a coding method, which has not been described in
the literature before, is explained. Along with the explanation
of the properties of the source code, information about deter-
ministic, dynamic models, buffer states, machine breakdown
states, and the methods used to deal with them is presented.
Concepts are explained with visual examples. In addition, a
subject that has not been investigated in the literature before
is analyzed by using the simulation model. This topic is to
examine the results of solving machine assignment and opera-
tion sequencing sub-problems in flexible job shop scheduling
problems with different rules. Moreover, objective functions
that the source code can handle are discussed. Unlike many
studies in the literature, the codes are presented to the readers
as open source. Also, it is open to development and can be
easily modified by users to solve other types of problems.
Finally, in the study, experimental results are presented on the
basis of some benchmarks available in the literature, and the
limits of the study and source code are explained.

Keywords Simulation, Flexible Job Shop Scheduling,
Dispatching Rules, Gene Expression Programming

1 Introduction

Scheduling problems have been of interest to researchers for
a long time because they have many applications in the industry
[3]. Exact algorithms designed for these problems cannot yield
results in polynomial time [1]. Since the run times of these
algorithms are non-deterministic polynomial, scheduling prob-
lems are called NP-hard. Because of the high complexity, the
usage of heuristics to solve especially real-life and large-scale
scheduling problems has become popular [4-7]. One category
of robust heuristics is related to dispatching rules (DRs), which
transform the solution time into the polynomial. An example
is provided in other sections to illustrate this point. In the liter-
ature, several classic DRs exist, like First In First Out (FIFO)
and Shortest Processing Time (SPT), which are robust rules,
meaning they can be used for any environment however, they
may not always achieve good results. These rules provide de-
cisions based on only one feature but in composite rules, the
decision is made over multiple features. In recent years, there
have been many works on the generation of composite DRs us-
ing evolutionary algorithms. The related problems are usually
dynamic and/or stochastic and therefore simulation is used to
solve them.

In general, there is no open-source code for the simulation
model that can be modified by others. One of the main goals of
this work is to provide a source code that is open to everyone,
can be developed easily, and is able to solve different types
of scheduling problems. Further, using this simulation model,
an important subject in the flexible job-shop scheduling prob-
lem (FJSSP) is investigated. This problem is usually solved by
splitting it into machine assignment and operation sequencing

8 An Open-Source Simulation Model for Solving Scheduling Problems

sub-problems. As in many combinatorial optimization prob-
lems, it is possible to manage the sub-problems of FJSSP si-
multaneously or hierarchically [8]. Solving them with differ-
ent rules has not been investigated enough in the literature and
commonly, they are solved with the same rules or a specific
one. In this study, it is shown that the approach of solving
them with different rules is meaningful.

Herewith, contributions of the study can be summarized as
follows:

• Different from many studies, the benefit of solving ma-
chine assignment and operation sequencing sub-problems
in FJSSP with different DRs is investigated.

• An open-source simulation model is introduced to solve
FJSSP, which is also able to solve JSSP.

• Information about different types of FJSSP, related bench-
marks, DRs, GEP, and also some heuristics is given.

• A new and easy method for coding and decoding of GEP
is described.

Also, like many studies, there is a limitation, which can be
summarized like this: theoretically, the contribution to the lit-
erature is not much.

The advantages of the source code are summarized as fol-
lows:

• It is able to solve FJSSP and also job-shop scheduling
problem (JSSP).

• It solves the problem by dividing machine assignment and
operation sequencing into sub-problems.

• It can apply the same or different DRs to these two sub-
problems.

• It contains benchmarks.

• It can solve instances containing buffer states.

• It can handle machines breakdown situations with the
right-shift heuristic.

• It can solve instances containing stochastic states.

• It can do both offline and online scheduling.

• It can generate schedules via orders of operations.

• It can apply the left-shift heuristic to possible gaps.

• It can generate DRs by GEP and apply them as well as
integrate other DRs from literature.

• It includes classic rules such as FIFO, SPT, etc.

• It contains different objective functions.

• It can draw Gantt charts automatically.

• It is open to development.

Also, it has a disadvantage as follows: It may not have
enough speed to solve large-scale problems.

There are models developed for FJSSP in Rockwell Arena
software, with some given details. But there are deficiencies in
machine assignment such that DRs or other heuristics cannot
be used for this sub-problem. Also, the evolutionary process
and hence the combination of features for DRs generations is
not done in this model [9].

An open-source code written in Python that can provide mul-
tiple trees, in the cellular system, is also available. But it does
not include situations such as machine breakdowns and buffer
states [2]. Most of the works in this area don’t provide open-
source codes to be open to development.

The other parts of the work are organized as follows: a short
description of the problem and explanations are given about the
simulation model. Then the experimental results are presented.
Conclusion and future works form the last part of the study.

2 Description of Problem and Simula-
tion

2.1 Definition of the Problem
The problem is an FJSSP, in which there are some jobs, each

of them consists of some operations to be processed on ma-
chines. The processing times of operations are deterministic
and predefined but stochastic breakdowns of machines can oc-
cur, which lengthens the process of operations. It can be said
that the problem consists of two sub-problems of machine as-
signment and operation sequencing. A detailed description of
the FJSSP can be found in [10].

2.2 Simulation Model
As mentioned before, the problem is solved using DRs. The

simulation model is used to employ previously defined DRs
and as well as to derive new ones using GEP. The designed
simulation is an event-based one. Events refer to occurrences
that happen in the shop, as follows:

• Release of a job (an operation).

• Assigning an operation to a machine.

• Starting an operation on a machine ∼ changing the rele-
vant machine state to busy.

• Completion of the process of an operation.

• Completion of the process on the related machine ∼
changing the relevant machine state to free.

The above-mentioned events form the basis of the simula-
tion, but in addition to them, there are other events as follows,
which also need to be checked during the simulation.

• Completion of a job ∼ completion of the process of the
last operation of the job.

• A job enters to or exits from buffers states.

Universal Journal of Applied Mathematics 10(2): 7-19, 2022 9

Based on these events, the fundamental stages of the simu-
lation model are as follows:

• Jobs are released.

• The release time of a job is equal to the release time of the
first operation of the job.

• Release time of other operations is equal to the finish time
of previous operations of the same job.

• After each operation is released, it is assigned to the wait-
ing list of a machine according to a DR or least waiting
time (LWT) heuristic [2].

• If the machine is free, the process of the operation starts,
otherwise it waits on the waiting list.

• When a machine is free, one of the operations waiting on
the waiting list is selected using a DR and the machine
starts to process.

• The finish of the process of machines, operations (and
therefore jobs) is checked.

An example is given in Fig. 1 for a better understanding of
the steps of the simulation, whose stages are summarized as
follows:

At the start time, as shown in Fig. 1 (a), all the machines
are free. Operations 1 and 7 are released, their machine assign-
ment is made randomly and they start the process. It should be
noted that the random selection is just for start however, any
other heuristic can be used instead. Fig. 1(b) shows t = 1. The
reason to advance to this time is that some events occur in this
time, which are releases of operations 4, 9, and 12. It should
be noted that in this example, each color represents a job with
its sequenced operations. for instance, operations 1 and 2 be-
long to job 1, and operation 2 must start after operation 1 is
completed. In this instance, LWT is used to assign operations
to machines. According to this heuristic, when an operation is
released, its total possible waiting time is calculated according
to all assignable machines. For this aim, for all assignable ma-
chines, if the machine is busy at that moment, the remaining
time to finish, if there are jobs waiting on the waiting list, the
sum of their processing times and the time of the operation on
each machine are added up. Thus, the total possible waiting
time of a release operation is calculated according to all ma-
chines. The operation is assigned to the machine that has the
minimum value of total possible waiting times. According to
the LWT heuristic, operation 4 is assigned to machine 1, while
operations 9 and 12 are assigned to machine 3. But since these
machines both are busy at the assignment time, that is, at t = 1,
the operations wait on the waiting lists of machines. At t = 2,
operation 2 is released, and LWT is assigned to machine 2,
which is shown in Fig. 1(c). At t = 2, the process of operation
1 ends, and hence machine 1 becomes free. Also, machine 2
is already free at this time. Consequently, as seen in Fig. 1(d),
the processes of operations 2 and 4 start on machines 2 and 1,
respectively, and the situation becomes as in Fig. 1 (e). The
next event is related to the finish of the process of operation

7 on machine 3, which takes place at t = 3. So the simula-
tion proceeds there, as in Fig. 1 (f). At this time, machine 3
becomes free and since operations 9 and 12 are waiting on its
waiting list, it is needed to prioritize one of them to start its
process before the other. This is the meaning of operation se-
quencing. Assuming that the SPT rule is applied for operation
sequencing, operation 12 is selected and starts on machine 3
at t = 3, since it has a shorter processing time. This process
continues until all processes are completed.

As indicated before, the simulation model is capable of do-
ing both offline and online scheduling. The differences be-
tween these two approaches are as follows:

• In the offline scheduling, at first, the sequence of oper-
ations is created, then the schedule and Gantt chart are
created over it.

• In the online scheduling, step-by-step schedule and Gantt
charts are built by advancing in time. In this way, the
order of the operations is also determined.

The relationship between dynamic and stochastic scheduling
are as follows:

• In dynamic scheduling, some events happen in the work-
shop over time, and the situation changes. For example,
during the time new work enters the workshop.

• The problem is deterministic dynamic if the events oc-
curring are known beforehand, but stochastic if only the
distribution of events is known. That is, the dynamic prob-
lems include deterministic and stochastic cases.

In general, in real scheduling problems, there is no unlimited
space in the workshop, especially between machines. Because
of this, there may be delays in the start of some operations.
Buffer states can be summarized as, but are not limited to:

• If an operation of a job has finished on the current machine
and the machine assigned for the next operation of that job
is busy, one of the following situations occurs:

– If the current machine has buffer space, the job waits
there.

– If the current machine does not have buffer space,
the job waits on that machine until the next machine
is finished.

In the implemented simulation, this breakdown state occurs
during processing time and as seen in Fig. 2 with the right-shift
heuristic, repair time is added to processing time.

Similarities and differences between GA, GP, and GEP can
be explained as follows:

• GP and GEP have similar structures [11]. But implemen-
tation and coding of the GEP may be easier.

• Also, as seen in Fig. 3 GA and applied GEP in this study
are similar. They utilize alike crossover and mutation op-
erators.

10 An Open-Source Simulation Model for Solving Scheduling Problems

1 2 3 4 5 6 7 8 9 10

Time

Machine

7

1 2 3 4 5 6 7 8 9 10

Time

Machine

1 2 3 4 5 6 7 8 9 10

Time

Machine

1 2 3 4 5 6 7 8 9 10

Time

Machine

1 2 3 4 5 6 7 8 9 10

Time

Machine

1 2 3 4 5 6 7 8 9 10

Time

Machine

1

(a) (b)

(c) (d)

(e) (f)

waiting list:

waiting list: waiting list:

waiting list:waiting list:

waiting list:

waiting list:

waiting list:

waiting list:

waiting list:

waiting list:

waiting list: waiting list:

waiting list: waiting list:

4

7

1

9 12

4

9 12

1

7

2

7

1 4

2

9 12

1

7

4

2

9 12

1 4

2

9 127

8

Figure 1. An example showing the stages of the simulation.

Time

Machine

Right shift

White part: repair time.
Blue part: processing time.

Figure 2. Right shift heuristic to include repair time into total processing time of an operation, in case of breakdown.

Universal Journal of Applied Mathematics 10(2): 7-19, 2022 11

Create initial population

Calculate the fitness of each
individual in the population

Selection

Crossover

Mutation

Stop
criteria

Results

Figure 3. Flowchart of the evolutionary process in GEP.

• The structure of the implanted GEP is flexible, and the
number of genes that generate the tree can be changed.

As depicted in Fig. 4, GEP is a population-based algorithm.
In the current implementation, the initial population is built
randomly.

Each individual in the population encloses a chromosome,
which is the genotype of a DR. Related details are explained in
Fig. 5.

By decoding each genotype, the corresponding phenotype,
that is, the mathematical expression of the corresponding DR
is obtained. For each of them, objective functions are calcu-
lated by running the simulation once, if the problem is deter-
ministic, or multiple times if it contains stochastic occurrences.
The population is sorted over this, and then a new population is
generated using the crossover, and mutation operators. Thus,
iterations continue until the stop condition, that is, the maxi-
mum number of iterations is met.

Element set, i.e. features that during the evolutionary pro-
cess, GEP generates DRs combining them, are as follows:

• Rt: Release time.

• Pr: Processing time.

• Nr: Number of operations.

• Rnr: Number of remaining operations.

• Rw: Remaining workload.

As seen in Fig. 6. in the decoding method, at first, the lo-
cation of the last gene is found and the expression making of
DR starts from the last gene to the top. The reason for this is
that although in each chromosome the total number of genes is
constant, only some of them involved in the expression of DR.

So, without finding the last gene, mathematical expression and
also the corresponding tree cannot be formed.

Fig. 7 shows the tree resulting from the chromosome dis-
played in Fig. 5. As seen in Fig. 8 only the marked piece of
the chromosome shown in Fig. 5 generates the tree. So the
number of effective generals in the chromosome is seven.

There are already existing DRs in the simulation model,
which are as follows [3]:

• For operation sequencing:

– FIFO: first in first out.
– SPT: shortest processing time.
– LnOp: least operation number.
– LRnOp: least remaining operation number.
– LTWK: least total work content.
– LRWK: least remaining work content.

• For machine assignment:

– LWK: least waiting time.
– LPK: least processing time.

Actually, LPT and SPT are mathematically the same but the
first is used for machine assignment and the second for oper-
ation sequencing. The description of the LWP has been given
earlier.

The included objective functions in the model are as follows:

• Cmax: Maximum completion time of machines
(makespan).

• Wmax: Maximum machine workload.

• Wt: Total workload of machines.

• Fl: Average flow time of operations.

• F : Average of Cmax, Wmax, Wt and Fl.

It should be noted that DRs construct non-delay schedules.
It means that when a machine is free, if there are jobs on the
waiting list, one of them is selected with a rule and starts the
process on the machine. Though the schedule obtained in this
way may not be optimal, which can be found in the set of active
schedules. If a schedule cannot be obtained by filling any left
shifts, then it is an active schedule. Left shift is a heuristic to
fill gaps by posterior operations. These relationships are shown
in Fig. 9.

Although left shift is an important heuristic, it is not utilized
in this study. Because if this heuristics is applied, there cannot
be a fair comparison between the results of DRs. In Fig. 10, an
example is provided to clarify the matter. Fig. 10 (a) shows a
schedule with several gaps and in Fig. 10 (b) gaps are explored,
in which operation 2 can be placed with a left shift. It should
be pointed out that when scheduling with a DR is applied for
scheduling, situations like Fig. 10 (a) do not arise, because it
produces a non-delay schedule. This situation may occur when
offline scheduling is done according to a predefined order of
operations.

12 An Open-Source Simulation Model for Solving Scheduling Problems

Population

Individual 1 F for individual 1

Individual 2 F for individual 2

… …

… …

… …

… …

… …

… …

Individual 100 F for individual 100

Simulation

E
ac

h
in

di
vi

du
al

 is
 a

 c
hr

om
os

om
e,

w

hi
ch

 is
 th

e
ge

no
ty

pe
 o

f
a

D
R

. The genotype of each individual
is decoded and in this way, the
phenotype (the mathematical

expression) of the DR is acquired.

If during scheduling stochastic events occur, for example, machine breakdowns,
scheduling is repeated multiple times with each DR, and the average of the achieved
objective functions is calculated.

Therefore, the relevant module is called simulation, not just scheduling. This means it
can solve both deterministic and stochastic benchmarks.

Figure 4. Formation of population and usage of simulation to calculate objective functions at each iteration.

5 1 4 2 5 5 1 5 5 3 5 r1 r2 r3 r4 r5
1 1 1 2 1 2 2 2 2 2 2 r r r r r

Head Tail Domain of constants

The second row stands for the
codes of features and functions.

The first row identifies if the
first row is a feature or function.

In the first row:

1: function

2: feature

In the second row:

If the first row is 1 (function):

1: +
2: -
3: /
4: *
5: √ (root square)

If the first row is 2 (feature):

1: Rt
2: Pr
3: Nr
4: Rnr
5: Rw

The first element of a chromosome must be always
a function. Otherwise, decoding is not possible.

- The head can contain both functions and features.
- The tail can only contain features.
- The DC contains random fixed values. This part is
not mandatory. In this part, r represents random values.

One chromosome with one gene.
This means that this chromosome

results in only one tree (DR).

Genotype

Figure 5. Structure of a chromosome in GEP to evolve a DR.

Universal Journal of Applied Mathematics 10(2): 7-19, 2022 13

Function Left side Right side Function Left side Right side Function Left side Right side

√ + √ + √ +
+ * Pr + * Pr + √Rt * Rw Pr
* √ Rw * √Rt Rw √Rt * Rw
√ Rt √Rt

Function Left side Right side Function Left side Right side
√ (√Rt * Rw)+Pr √((√Rt * Rw)+Pr)

(√Rt * Rw)+Pr

√((√Rt * Rw)+Pr)

1 2 3

4

Phenotype:

5

Figure 6. An example for the decoding process.

√

+

* Pr

√ Rw

Rt

This chromosomes results in a single tree, but in the literature there
other types of chromosomes that contain multiple sub -trees.

Figure 7. The acquired tree, as the result of the decoding in Fig. 6.

Figure 8. Involved genes in the formation of the tree.

Figure 9. Classification of schedules.

14 An Open-Source Simulation Model for Solving Scheduling Problems

Figure 10. (a) A schedule with several gaps, (b) looking for appropriate gaps where O2 can be placed with the left shift.

Universal Journal of Applied Mathematics 10(2): 7-19, 2022 15

Figure 11. Convergence of evolutionary process of (a) GEP+LWT, and (b) GEP+LPT for MK2.

16 An Open-Source Simulation Model for Solving Scheduling Problems

Universal Journal of Applied Mathematics 10(2): 7-19, 2022 17

Table 1. Acquired results.

Benchmark Rule Objective Function
T

Cmax Wt Wmax Fl F

MK-1

FIFO+LWT 90 163 88 59.8 100.2 ≈ 0
FIFO+LPT 74 153 70 48.1 86.27 ≈ 0
SPT+LWT 92 170 88 53.6 100.9 ≈ 0
SPT+LPT 74 153 70 42.2 84.8 ≈ 0

LnOp+LWT 105 170 100 60.1 108.77 ≈ 0
LnOp+LPT 75 153 70 43.4 85.35 ≈ 0

LRnOp+LWT 117 174 106 61.1 114.52 ≈ 0
LRnOp+LPT 81 153 70 43.4 86.85 ≈ 0
LTWK+LWT 105 195 94 52.6 104.15 ≈ 0
LTWK+LPT 81 153 70 40.2 86.05 ≈ 0
LRWK+LWT 91 168 88 54.2 100.3 ≈ 0
LRWK+LPT 80 153 70 41.5 86.12 ≈ 0
GEP+LWT 78 161 76 50.1 91.27 297.81
GEP+LPT 74 153 70 41.3 84.57 175.58

MK-2

FIFO+LWT 74 152 72 56.2 88.62 ≈ 0
FIFO+LPT 50 140 45 38.5 68.37 ≈ 0
SPT+LWT 78 150 67 42.2 84.3 ≈ 0
SPT+LPT 58 140 45 32.8 68.95 ≈ 0

LnOp+LWT 77 153 73 52 88.75 ≈ 0
LnOp+LPT 51 140 45 36.4 68.1 ≈ 0

LRnOp+LWT 77 149 69 45.1 85.02 ≈ 0
LRnOp+LPT 58 140 45 34.6 69.4 ≈ 0
LTWK+LWT 71 151 67 41.2 82.55 ≈ 0
LTWK+LPT 50 140 45 33.5 67.12 ≈ 0
LRWK+LWT 77 152 71 43.6 85.9 ≈ 0
LRWK+LPT 58 140 45 32.4 68.85 ≈ 0
GEP+LWT 67 149 56 38.7 77.67 290.64
GEP+LPT 51 140 45 30.6 66.65 302.74

MK-3

FIFO+LWT 446 884 432 354.13 529.03 ≈ 0
FIFO+LPT 343 812 330 252.27 434.32 ≈ 0
SPT+LWT 436 880 423 255.86 498.72 ≈ 0
SPT+LPT 343 812 330 194.07 419.77 ≈ 0

LnOp+LWT 496 896 459 258.87 527.47 ≈ 0
LnOp+LPT 343 812 330 200.2 421.3 ≈ 0

LRnOp+LWT 496 872 432 249.27 505.57 ≈ 0
LRnOp+LPT 362 812 330 201.4 426.35 ≈ 0
LTWK+LWT 435 875 406 239.13 488.78 ≈ 0
LTWK+LPT 367 812 330 200.13 427.28 ≈ 0
LRWK+LWT 430 869 404 229.4 483.1 ≈ 0
LRWK+LPT 359 812 330 195.73 424.18 ≈ 0
GEP+LWT 372 864 367 245.27 462.06 1299.56
GEP+LPT 335 812 330 195.26 418.07 714.25

MK-4

FIFO+LWT 191 328 188 113.07 205.02 ≈ 0
FIFO+LPT 189 324 188 112.53 203.38 ≈ 0
SPT+LWT 192 328 188 98.87 201.72 ≈ 0
SPT+LPT 192 324 188 98.6 200.65 ≈ 0

LnOp+LWT 197 332 188 86.87 200.97 ≈ 0
LnOp+LPT 197 324 188 86.47 198.87 ≈ 0

LRnOp+LWT 197 328 188 89.4 200.6 ≈ 0
LRnOp+LPT 197 324 188 88.93 199.48 ≈ 0
LTWK+LWT 197 328 188 82.87 198.97 ≈ 0
LTWK+LPT 197 324 188 82.53 197.88 ≈ 0
LRWK+LWT 197 332 188 89.07 201.52 ≈ 0
LRWK+LPT 197 324 188 87.47 199.12 ≈ 0
GEP+LWT 191 328 188 85.66 198.17 355.93
GEP+LPT 191 324 188 85.46 197.12 482.69

MK-5

FIFO+LWT 306 690 304 243.6 385.9 ≈ 0
FIFO+LPT 241 672 239 191.07 335.77 ≈ 0
SPT+LWT 273 690 254 169.93 346.73 ≈ 0
SPT+LPT 261 672 239 151.4 330.85 ≈ 0

LnOp+LWT 296 693 276 160.73 356.43 ≈ 0
LnOp+LPT 268 672 239 142.13 330.28 ≈ 0

LRnOp+LWT 297 698 295 162.6 363.15 ≈ 0
LRnOp+LPT 271 672 239 138.47 330.12 ≈ 0
LTWK+LWT 302 698 262 154.87 354.22 ≈ 0
LTWK+LPT 268 672 239 141.07 330.02 ≈ 0
LRWK+LWT 339 695 285 170.87 372.47 ≈ 0
LRWK+LPT 271 672 239 138.2 330.05 ≈ 0
GEP+LWT 220 697 219 175.47 327.87 642.10
GEP+LPT 244 672 239 142.8 324.45 509.25

18 An Open-Source Simulation Model for Solving Scheduling Problems

3 Experimental Results

The algorithms described in Section 2. are implemented in
MATLAB. A system with an Intel Core i5 processor, 2.4 GHz
with 12 GB of RAM is utilized. MK set is employed as the
benchmark. In GEP, the population number is chosen as 100,
the maximum number of iterations is 100, the crossover rate is
1, the mutation rate is 0.4, and the head size in the chromosome
is 5. As seen in Fig. 5, the number of functions and the num-
ber of features in element size are both equal to 5. The domain
of constants (DC) part appears in the same figure, which, al-
though applicable in the utilized code, is not used because the
application of fixed values in DR does not make sense.

The gained results are given in Table 1. where the best out-
comes are bold. The last column of the same table shows
processing times in seconds. As seen, due to GEP’s evolu-
tionary process, the duration is longer than others for classic
DRs. Convergences of GEP+LWT and GEP+LPT for MK2
are shown in Fig. 11.

As seen, the best values are got by GEP+LPT, which
also signifies that applying different rules for sub-problems
of machine assignment and operation sequencing is influen-
tial. Gantt charts of schedules acquired by GEP+LWT and
GEP+LPT for MK1 are shown in Fig. 12 and Fig. 13.

As said before, the simulation model can also handle buffer
states and machine breakdowns, and even can solve JSSP.
Details, benchmarks, and results on all these are available from
the corresponding author’s email address. Nevertheless, it
should be noted that even when these situations are considered,
similar results will arise and there are studies on them in the
literature [3].

4 Conclusion and Future Works

This study has two principal goals, which are (i) providing
an open-source scheduling model to solve various types of
scheduling problems, and (ii) analyzing the effect of solving
machine assignment and operation sequencing sub-problems
in FJSSP with different rules. The presented open-source
simulation model is capable to solve different types of FJSSP
and JSSP. Furthermore, it is easy to develop and modify it
for other types of scheduling problems. Using the simulation
model, it is shown that solving two sub-problems of FJSSP
with different rules is meaningful. Generally, machine assign-
ment and operation sequencing sub-problems of FJSSP are
solved with the same rule or a specific one. The results of this
study, which are gained by applying different rules to the two
sub-problems of FJSSP show that it is possible to improve
outcomes by involving a proper rule for machine assignment
part as well as operation sequencing. One of the important
parts of the simulation model is to evolve DRs using GEP for
the operation sequencing sub-problem of FJSSP. As already
mentioned, the model is able to apply different rules to the
sub-problems, however, in the current implementation, there
are only two rules applicable to the machine assignment part.
This can be considered as a limit for this study, but in future

studies, it is planned to extend GEP and evolve DRs to the
machine assignment sub-problem.

Acknowledgments

Financial support from Fundação para a Ciência e Tecnologia
(through project UIDB/00731/2020) is gratefully acknowledged.

Jie Li appreciates financial support from Engineering and Physical
Sciences Research Council (EP/T03145X/1).

The authors would like to thank the editors and the anonymous
referees for their valuable comments which helped to significantly
improve the manuscript.

Supporting Information

All codes are accessible to readers via the following public link on
GitHub:

https://github.com/aydinteymurifar/Scheduling-Source-Codes

REFERENCES
[1] A. Teymourifar, G. Ozturk, and O. Bahadir. A Comparison

between Two Modified NSGA-II Algorithms for Solving the
Multi-objective Flexible Job Shop Scheduling Problem, Univer-
sal Journal of Applied Mathematics, 6(3), pp. 79-93, 2018.

[2] G. Ozturk, O. Bahadir, and A. Teymourifar. Extracting prior-
ity rules for dynamic multi-objective flexible job shop schedul-
ing problems using gene expression programming, International
Journal of Production Research, 57(10), pp. 3121-3137, 2019.

[3] A. Teymourifar, G. Ozturk, Z. K. Ozturk, and O. Bahadir. Ex-
tracting new dispatching rules for multi-objective dynamic flex-
ible job shop scheduling with limited buffer spaces, Cognitive
Computation, 12(1), 195-205, 2020.

[4] A. Teymourifar, G. Ozturk. A neural network-based hybrid
method to generate feasible neighbors for flexible job shop
scheduling problem, Universal Journal of Applied Mathemat-
ics, 6(1), 1-16, 2018.

[5] A. Teymourifar, O. Bahadir, and G. Ozturk. Dynamic Priority
Rule Selection for Solving Multi-objective Job Shop Scheduling
Problems, Universal Journal of Industrial and Business Man-
agement, 6(1), 11-22, 2018.

[6] A. Teymourifar. Dinamik atölye çizelgeleme problemleri için
taslim zamanı belirleme ve yeni sevk etme kuralları, Master dis-
sertation, Anadolu University, Turkey, 2015.

[7] A. Teymourifar, G. Ozturk, New dispatching rules and due date
assignment models for dynamic job shop scheduling problems,
International Journal of Manufacturing Research, 13(4), 302-
329, 2018.

[8] A. Teymourifar, A. M. Rodrigues, and J. S. Ferreira. A compar-
ison between simultaneous and hierarchical approaches to solve
a multi-objective location-routing problem, In Graphs and Com-
binatorial Optimization: from Theory to Applications, Springer,
Cham, 251-263, 2021.

Universal Journal of Applied Mathematics 10(2): 7-19, 2022 19

[9] M. Thenarasu, K. Rameshkumar, J. Rousseau, and S. P. An-
buudayasankar, Development and analysis of priority decision
rules using MCDM approach for a flexible job shop scheduling:
A simulation study, Simulation Modelling Practice and Theory,
114, 102416, 2022.

[10] N. Rakovitis, D. Li, N. Zhang, J. Li, L. Zhang, and X. Xiao,
Novel approach to energy-efficient flexible job-shop scheduling
problems, Energy, 238, 121773, 2022.

[11] M. Oltean, C. Grosan, A comparison of several linear genetic
programming techniques, Complex Systems, 14(4), 285-314,
2003.

Appendix

DC: Domain of Constant Values
DR: Dispatching Rule
F: Objective Function
FIFO: First In First Out
Fl: Average Flow Time of Operations
GA: Genetic Algorithm
GEP: Gene Expression Programming
GP: Genetic Programming
LnOp: Least Operation Number
LPT: Least Processing Time
LRnOp: Least Remaining Operation Number
LRWK: Least Remaining Work Content
LTWK: Least Total Work Content
LWT: Least Waiting Time
SPT: Shortest Processing Time

