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Abstract: Urinary tract infections (UTIs) are a common public health problem, mainly caused by
uropathogenic Escherichia coli (UPEC). Patients with chronic UTIs are usually treated with long-acting
prophylactic antibiotics, which promotes the development of antibiotic-resistant UPEC strains and
may complicate their long-term management. D-mannose and extracts rich in D-mannose such
as mannan oligosaccharides (MOS; D-mannose oligomers) are promising alternatives to antibiotic
prophylaxis due to their ability to inhibit bacterial adhesion to urothelial cells and, therefore, infection.
This highlights the therapeutic potential and commercial value of using them as health supplements.
Studies on the effect of MOS in UTIs are, however, scarce. Aiming to evaluate the potential benefits
of using MOS extracts in UTIs prophylaxis, their ability to inhibit the adhesion of UPEC to urothelial
cells and its mechanism of action were assessed. Additionally, the expression levels of the pro-
inflammatory marker interleukin 6 (IL-6) were also evaluated. After characterizing their cytotoxic
profiles, the preliminary results indicated that MOS extracts have potential to be used for the handling
of UTIs and demonstrated that the mechanism through which they inhibit bacterial adhesion is
through the competitive inhibition of FimH adhesins through the action of mannose, validated by a
bacterial growth impact assessment.

Keywords: uropathogenic Escherichia coli (UPEC); mannan oligosaccharides (MOS); adhesion;
bladder cells; D-mannose; urinary tract infections (UTIs)

1. Introduction

Urinary tract infections (UTIs) represent a severe public health problem and are caused
by a range of pathogens, most commonly by Escherichia coli (E. coli), Klebsiella pneumoniae
(K. pneumoniae), Proteus mirabilis (P. mirabilis), Enterococcus faecalis (E. faecalis) and
Staphylococcus saprophyticus (S. saprophyticus) [1]. Globally, about 150 million people are
affected by urinary tract infections each year, which are among the most common infectious
diseases [2,3]. UTIs are the second leading cause of infections in the general population,
predominantly in adult females, and are the leading cause of infection in hospital envi-
ronments [4,5]. According to the European Association of Urology (EAU) Guidelines [6],
they can be divided into uncomplicated (including lower UTIs (cystitis) and upper UTIs
(pyelonephritis), typically affecting non-pregnant women, without any other health prob-
lem or anatomical/functional irregularities) and complicated (associated with individuals
with increased probability of complications, namely pregnant women, men, or patients with
other health-related problems such as renal anatomical/functional abnormalities, failure or
transplantation, and other diseases, such as immunocompromised or diabetic individuals).
In most cases, UTIs are caused by the pathogenic uropathogenic E. coli (UPEC), which is
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capable of migrating from the intestinal microbiota to the perianal region and, thereafter, to
the urinary tract [7]. This bacterium is the most prevalent in symptomatic and/or asymp-
tomatic infections, representing up to 75% to 95% of the reported UTIs [1,7,8], with the
ability to colonize all parts of the urinary tract (including the urethra, ureters, kidney and
bladder), thus causing acute, chronic, persistent, and recurrent infections [9,10]. Amidst the
multitude of well-studied virulence factors, the ability of UPEC to adhere to host epithelial
cells is the crucial step for the establishment and progression of infection [1,2,7,8]. This
adhesion ability is mainly conferred by type 1 fimbriae D-mannose specific adhesin (FimH),
located at the tip of UPEC’s type 1 fimbriae, which specifically binds to terminal epitopes
of high mannosylated glycans conjugated to uroplakin 1a (UP1a), a receptor specifically
expressed on the surface of urothelial cells [11–16].

D-mannose is widely used in the food, medicine, cosmetics, and food additive indus-
tries. Among its physiological health benefits, its positive effect on the immune system,
diabetes mellitus (type 2), intestinal diseases, and urinary tract infections have been fre-
quently reported [17,18]. D-mannose, a C-2 epimer of D-Glucose, and D-mannose ana-
logues can prevent FimH-mediated bacterial adhesion through a competitive inhibition
mechanism. This competition mechanism is based on the structural similarity between
the D-mannose receptors and the urothelial mannosylated receptors exposed by the uri-
nary tract epithelium [12,19–22]. When administered in sufficient amounts, D-mannose
is rapidly absorbed and excreted through the urinary tract, where it will saturate UPEC’s
FimH, thus blocking its binding and subsequent adhesion to the urothelium [23,24]. Ac-
cording to Scribano et al. [25], the D-mannose dosage range for UTI prevention determined
in clinical trials is between 2 and 3 g per day and the normal urine volume is between
800 and 2000 mL/day. When administered orally, the absorption of D-mannose is rapid
and detectable in plasma approximately 30 min after taking it, being then excreted thought
the urinary tract. In addition to binding to bacterial fimbriae, D-mannose acts on the
activation of the Tamm–Horsfall protein, which plays a key role in the body’s defense
against UTIs [26,27].

In this work, the viability of using mannan oligosaccharides (MOS) as supplements
for the management of UTIs was evaluated through the assessment of the ability of MOS
extracts to inhibit the adhesion of UPEC to urothelial cells. Two MOS extracts, produced
from yeast-purified mannans fractions by two different methodologies, were assessed
and commercial D-mannose was used as the control. The expression levels of the pro-
inflammatory interleukin 6 (IL-6) and the potential antimicrobial activity of all samples
using a time–growth inhibition curve were also assessed.

2. Materials and Methods
2.1. Materials

MOS extracts were obtained from genetically modified spent yeast (Saccharomyces cerevisiae)
from Amyris, Inc. (Emeryville, CA, USA) following a hydrothermal process at 110 ◦C for
3 h (MOS Parr) and an acidic process with phosphoric acid at 55 ◦C for 24 h (MOS H3PO4).
Mannose content of these extracts was determined using gas-chromatography-flame ion-
ization detection (GC-FID), as previously described [28]. D-mannose was purchased from
Sigma-Aldrich, Munich, Germany.

2.2. Bacterial Strain and Cell Line

The well-characterized uropathogenic E. coli strain CFT073 (DSMZ, Braunschweig,
Germany) was used in this study. Strain CFT073 was grown at 37 ◦C in Tryptic Soy Broth
(TSB; Biokar Diagnostic, Beauvais, France) with 3 g/L of yeast extract (Sigma-Aldrich,
Munich, Germany), from now on referred to only as TSB. The human bladder epithelial cell
line 5637, HTB-9 was obtained from the American Type Culture Collection 5637 (ATCC-
LGC, Milan, Italy) and routinely cultured in T75 flasks at 37 ◦C in a humidified atmosphere
with 5% CO2 using Roswell Park Memorial Institute (RPMI 1640) medium (Invitrogen,
Waltham, MA, USA) supplemented with 10% (v/v) heat-inactivated fetal bovine serum
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(FBS), with the addition of 1% (v/v) antibiotic 100x (Invitrogen, Waltham, MA, USA). Unless
indicated otherwise, RPMI medium supplemented with FBS and without antibiotic will,
from now one, be referred to only as RPMI.

2.3. Cytotoxicity Assay

The cytotoxic effect of the samples was assessed in HTB-9 cell line in conformity
with the International Organization for Standardization (ISO) 10993-5 guideline [29], using
the PrestoBlue™ Cell Viability Reagent (Thermo Fisher Scientific, Waltham, MA, USA)
according to the instructions of the manufacturer. A stock solution of 30.00 mg/mL of
each sample in RPMI medium with antibiotic was prepared, and D-mannose was used
for comparation purposes. Different preparations were implemented due to the nature of
their constituents and the stability of these compounds. For MOS H3PO4 and MOS Parr
extracts were directly dissolved in RPMI medium with antibiotic and sterilized using a
sterile syringe filter with a 0.22 µm pore size (Millipore, Billerica, MA, USA). Commercial
D-mannose was dissolved in phosphate-buffered saline (PBS) solution at pH 7.4, to a final
concentration 2-fold higher than the desired one. After being autoclaved for 20 min at
100 ◦C, a twofold dilution of the solution was prepared in antibiotic containing RPMI
medium to achieve the final concentration of 30 mg/mL. For HTB-9 viability assay, cells in
suspension were seeded at 1 × 104 cells/well in a 96-well microtiter plate and maintained
in culture for 24 h to form a semi-confluent monolayer. Following this incubation period,
the cell culture medium was removed and replaced with the samples. Medium without
the samples in each incubation period was used as positive cell viability control, whereas
medium with a final concentration of 10% of DMSO was used as negative control for cyto-
toxicity. After an additional 24 h incubation period, PrestoBlue (PB) viable dye was added
to the wells and changes in cell viability were detected using fluorescence spectroscopy.
The fluorescence was read (λ excitation = 570 nm; λ emission = 610 nm) after incubation
of 2 h.

2.4. Immunological Response without Stimulus

HTB-9 cells were seeded at a final concentration of 2.5 × 105 cells/mL in a 24-well
microtiter plate and immediately incubated at 37 ◦C with 5% CO2 in a humidified envi-
ronment for 24 h. Following this incubation period, cells were washed twice with warm,
sterile PBS to remove all the antibiotic-containing medium. HTB-9 cells were then exposed
to the samples (MOS H3PO4, MOS Parr and D-mannose) diluted in RPMI medium at a
non-cytotoxic mannose concentration. Medium without the samples was used as positive
control in each incubation period and cells were incubated at 37 ◦C with 5% CO2 in a
humidified environment for 1, 2 and 3 h. After that, the media were collected, transferred
to microcentrifuge tubes, and kept at −20 ◦C until protein and IL-6 expression levels
quantification (Section 2.6).

2.5. UPEC Adhesion Assays
2.5.1. Simultaneous Exposure (Competition)

HTB-9 cells were seeded at a final concentration of 2.5 × 105 cells/mL in a 24-well
microtiter plate and immediately incubated at 37 ◦C with 5% CO2 in a humidified envi-
ronment for 24 h. Following this incubation period, cells were washed twice with warm,
sterile PBS to remove all the antibiotic-containing medium. UPEC previously grown in
TBS were centrifuged (4700× g, 5 min, 4 ◦C), washed twice with PBS and resuspended in
the same buffer at a multiplicity of infection (MOI) of 10 [25], while MOS H3PO4, MOS
Parr and D-mannose samples were diluted in RPMI medium at a non-cytotoxic mannose
concentration (2.5 mg/mL). HTB-9 cells in RPMI and infected with UPEC without MOS
extracts were used as positive control in each incubation period. HTB-9 cells were then
simultaneously exposed to the samples and to UPEC suspension in PBS and incubated for
2 h at the same incubation conditions mentioned above.
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2.5.2. Prophylaxis Assessment

Similar to the above-described study, HTB-9 cells were seeded at a final concentration
of 2.5 × 105 cells/mL in a 24-well microtiter plate and incubated at 37 ◦C with 5% CO2
in a humidified environment. After 24 h of incubation, medium was discarded, and cells
were washed twice with warm, sterile PBS to remove any antibiotic traces. MOS H3PO4,
MOS Parr and D-mannose were diluted in antibiotic-free RPMI medium at a mannose
concentration of 2.5 mg/mL and added to the wells containing HTB-9 cells, which were
then incubated at 37 ◦C with 5% CO2 in a humidified environment for 1, 2, and 3 h before
infection of the urothelial cells with UPEC. After incubation, bacterial cells grown in TSB
were centrifuged (4700× g, 5 min, 4 ◦C), washed twice with PBS, resuspended at MOI of
10 and added to the cells for 2 h (time for adhesion of the UPEC). HTB-9 cells in RPMI and
infected with UPEC were used as positive control in each incubation period.

2.6. Total Viable Counts Determination

At the end of the comparison and prophylaxis assessments, media conditioned by
the samples were transferred to a microcentrifuge tube and processed for protein and IL-6
expression level quantification, as described in Section 2.7. Cell monolayers were carefully
washed twice with sterile, warm PBS to remove unbound bacteria and, after detachment
with trypsin (TrypLETM Thermo Fisher Scientific, Waltham, MA, USA), cells were resus-
pended in PBS. After serial dilutions in 0.1% sterile peptone water (w/v), 100 µL of the cell
suspensions was plated using the drop method [30] on Plate Count Agar (PCA) plates and
incubated at 37 ◦C for 24 h before counting to determine the total viable counts (CFU/mL).
Results are expressed as adhesion inhibition percentage (% Inhibition) calculated using
Equation (1).

% Inhibition = 100 −
(

CFU
mL o f Sample

CFU
mL o f Control

)
× 100 (1)

2.7. Protein Determination and Interleukin Evaluation

Media conditioned by the samples and collected in microtubes at the end of each
experiment were centrifuged (990× g, 20 min, 4 ◦C) and the supernatants were used for
protein and IL-6 expression level quantification. Protein determination was performed in
96-well microtiter plates using the bicinchoninic acid (BCA) methodology, using the Pierce™
BCA Protein Assay Kit (Thermo Fisher Scientific, Waltham, MA, USA) according to the
instructions of the manufacturer. IL-6 expression levels were assessed using enzyme-linked
immunosorbent assay (ELISA) using the Human IL-6 Elisa Max™ Deluxe Kit (BioLegend,
San Diego, CA, USA) according to the instructions of the manufacturer and results are
presented in pg/µg of protein.

2.8. Antimicrobial Activity–Growth Inhibition Curves

The potential antimicrobial activity of H3PO4, MOS Parr and D-mannose was assessed
using a time–growth inhibition curve [31]. A solution of each sample in the growth
medium Mueller Hinton (MH) (Biokar Diagnostic, Beauvais, France) was prepared to a
final concentration of non-cytotoxic mannose concentration (2.5 mg/mL). Mannose content
of each sample was previously determined using GC-FID. MOS H3PO4 and MOS Parr
extracts were diluted in MH medium and sterilized using a sterile 0.22 µm filter (Millipore,
Billerica, MA, USA). D-mannose was dissolved in PBS solution to a final concentration
2-fold higher than the desired one and sterilized using the autoclave (Prohs, Porto, Portugal)
at 100 ◦C for 20 min. After sterilization, D-mannose solution was twofold diluted in MH
medium to achieve a final concentration, in mannose, of 2.5 mg/mL. The UPEC strain
was used as a monoculture and before the assay was grown in Tryptic Soy Agar (TSA;
Biokar Diagnostic, Beauvais, France) with 3 g/L of yeast extract (Sigma-Aldrich, Munich,
Germany) at 37 ◦C for 24 h under aerobic conditions. Afterwards, one colony was picked,
resuspended in 10 mL of MH broth, and grown at 37 ◦C for 24 h under aerobic conditions.
The bacteria inoculum was adjusted to an optical density (OD) at 625 nm of 0.1–0.08 (cell
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density of 1 × 108 cells/mL, corresponding to 1.5 × 107 CFU/mL) and 10 times diluted
to obtain the work inoculum. To evaluate bacterial growth inhibition, 980 µL of each
sample was transferred to a sterile microtube and inoculated with 20 µL of the work UPEC
inoculum. After mixing by vortexing, 200 µL of the suspensions was transferred to a
96-well microtiter plate (Nunc, Darmstadt, Germany) and the OD at 625 nm was assessed
for a 24 h period at 37 ◦C (1 h intervals) using a microplate reader (Epoch, VT, USA) with
the increase in OD values being considered a consequence of bacterial growth. A positive
control was drawn using inoculated MH medium without antimicrobial agent and sterile
MH medium was used as a negative control. Blanks of the samples were used to correct
sample color OD interference.

2.9. Statistical Analysis

The normality of the samples was evaluated using Shapiro–Wilk’s Test. Two-way
analysis of variance (ANOVA) with Tukey’s post-test and 95% confidence level was carried
out with GraphPad Prism 7.04 software. Results are presented as mean values ± SD
(standard deviation), and p < 0.05 was considered statistically significant. All experiments
were performed in triplicate.

3. Results and Discussion

Before assessing the ability of the MOS extracts to inhibit the adhesion of UPEC to the
urothelial cells and given their intended purpose as dietary supplements for UTI prevention,
it was necessary to establish the cytotoxic profile of the samples against urothelial cells.
D-mannose was used as the control and the immunomodulatory activity of the samples
was also assessed.

3.1. Cytotoxicity

The cytotoxicity of the samples was assessed against HTB-9 cells by evaluating their
impact upon cell metabolism using a viable dye (Figure 1) and taking into account the
cytotoxicity threshold defined by ISO 10993-5 [29]—i.e., a sample is cytotoxic when a
metabolic inhibition percentage above 30% is observed. Although a slight metabolic
inhibition can be seen for mannose (14.79 ± 1%), according to the abovementioned standard,
none of the samples was cytotoxic to HTB-9 cells at a mannose concentration of 2.5 mg/mL.
In fact, the negative values observed for MOS Parr (−98.59 ± 0.34%) and MOS H3PO4
(−73.87 ± 9.91%) indicate an increase in cell metabolism when in the presence of these two
extracts. When considering the total weight of extract and not just mannose, the 2.5 mg/mL
of mannose translates into total extract concentrations of 4.17 mg/mL for MOS Parr and
4.10 mg/mL for MOS H3PO4.
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3.2. Impact upon UPEC Growth

To ensure that the inhibitions observed for the MOS extracts and D-mannose were a
result of an inhibition of adhesion and not a consequence of their impact upon bacterial
growth and survival, the samples’ influence on UPEC survival was studied by performing
a growth inhibition assay, and the results are presented in Figure 2. As can be seen, the
samples had no impact on the bacterial growth, with UPEC following the typical bacterial
growth curve. Furthermore, it is possible to observe that, except for D-mannose, after
entering the stationary phase, the number of viable bacteria in culture starts to increase
again, albeit at a much slower pace than in the exponential phase.
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Figure 2. Effect upon the growth curves for UPEC exposed to the samples MOS extracts (Parr and
H3PO4) and D-mannose.

Nevertheless, it was possible to demonstrate that none of the samples exerted any
antimicrobial effect against UPEC.

3.3. Immunologic Response (1, 2 and 3 h Exposures to the Samples)

Enhancing the innate immune properties of the urothelium (bladder cells) repre-
sents an attractive approach for the prevention and treatment of UTIs, as the urothelium
secretes and responds to chemokines and cytokines as an important component of its
response to UTIs [32]. Produced by a myriad of cells such as T-cells, macrophages, fi-
broblasts, keratinocytes, glia cells, mesenchymal stem cells and endothelial cells, IL-6 is a
pleiotropic cytokine that plays crucial roles in biological processes such as inflammation,
immune response, and hematopoiesis [33,34]. IL-6 is expressed as a response to different
stimulus molecules such as pathogen-associated molecular patterns (PAMPs) associated
with pathogen infections or damage-associated molecular patterns (DAMPs) associated
with damaged or dying cells due to trauma or burns [34,35], thus acting as inflammation
biomarkers. Thus, MOS Parr, MOS H3PO4 and D-mannose samples were evaluated to de-
termine their innate inflammatory profiles and immunomodulatory assays were performed,
focusing on this cytokine, using the supernatants collected after HTB-9 cells’ exposure to
the samples.

The expression of IL-6 is depicted in Figure 3, revealing a tendency for increased
IL-6 production by HTB-9 cells with longer incubation periods. Significant differences
in cytokine expression were observed after 3 h of incubation with HTB-9 cells for MOS
Parr (p < 0.0001), H3PO4 (p < 0.01), and D-mannose (p < 0.001). Except for specific time
points, such as MOS Parr 1 h and 3 h, MOS H3PO4 1 h, and D-mannose 3 h (p < 0.01), no
significant differences (p > 0.05) were observed between the samples and their controls.
Moreover, except for MOS H3PO4 after 2 h of incubation (p < 0.01), no significant differences
in IL-6 production levels were found between the extracts and D-mannose (p > 0.05). MOS
has been commercially available as a feed additive and, therefore, information reported
regarding its immunomodulatory effect in humans is, to our knowledge, non-existent.
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3.4. MOS Extracts Inhibitory Effect on UPEC Adhesion to HTB-9

To assess the adhesion inhibition of the MOS extracts, HTB-9 cells were simultaneously
exposed to the samples and to a UPEC suspension. As can be seen in Figure 4, the adhesion
inhibition values obtained for MOS H3PO4 (89.6 ± 1.4%), MOS Parr (79.8 ± 1.1%) and D-
mannose (30.7 ± 5.9%) are significantly higher (p < 0.001) than those obtained for the control,
demonstrating that all samples inhibited UPEC’s adhesion to HTB-9 cells. Furthermore,
it was possible to observe that although no significant difference in bacterial adhesion
was found between MOS H3PO4 and MOS Parr (p > 0.05), both extracts display a higher
adhesion inhibition effectiveness than D-mannose (p < 0.001).
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Due to their exploitation in animal supplementation as prebiotics, scientific reports
on MOS have focused on their impact on the gastrointestinal microflora and immune
system of farm animals [36–40]. Studies on the effect of MOS in UTIs are scarce [41], with
most reports focusing on the benefit of using D-mannose as a therapeutic agent against
UTIs [25,41–45]. One of the mechanisms through which UPEC is capable of adhering to
cells is mediated by a bacterial ligand specific to D-mannose (FimH) located at the tip of
type 1 pili anchored to UPEC’s outer membrane [1,11,46–49]. D-mannose thus inhibits
bacterial binding to the mannosylated proteins (UP1a) expressed on the surface of urothelial
cells [25,50], facilitating bacterial clearance though the urine flow.
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3.5. Prophylactic Potential of MOS Extracts

To evaluate the prophylactic potential of MOS extract supplements, HTB-9 cells were
incubated with the samples for 1, 2 and 3 h before infection with UPEC. Incubation periods
were chosen considering that the majority of ingested mannose is filtered by the kidneys
and excreted to the bladder via urine within 30 to 60 min [51] and that, although urinary fre-
quency depends on a multitude of factors, it is commonly accepted that most people urinate
over eight times in a 24 h period (up to 3 h intervals between voiding) [52,53]. The infection
was allowed to occur for 2 h before the number of bacterial cells that were able to adhere to
the urothelial cells was determined (Figure 5). The results demonstrated that, within the
first hour of incubation (Figure 5a), all samples limited UPEC’s attachment to HTB-9 cells
(p < 0.0001), with MOS Parr (59.3 ± 4.0%) and MOS H3PO4 (64.6 ± 0.9%) extracts inhibiting
UPEC adhesion at significantly higher levels (p < 0.0001) than D-mannose (25.4 ± 5.6%).
However, the inhibitory effect of the extracts significantly decreased (Figure 5b,c) after 2 h
(p < 0.001 for MOS Parr and p < 0.0001 for H3PO4) and after 3 h (p < 0.0001 for both extracts)
of incubation when compared with D-mannose, with this reduction being more substantial
after 3 h. Indeed, the negative values observed for MOS Parr after 2 h (−5.19 ± 3.4%) and
after 3 h of incubation (−42.3 ± 21.6%) and the negative values observed for MOS H3PO4
after 2 h (−24.6 ± 12.3%) and 3 h (−124.0 ± 41.0%) reveal that the extracts might promote
bacterial adhesion to HTB-9 cells. A reasonable explanation for this observation may lay in
the likely binding of cell proteins to the lipidic content of the MOS extracts, thus forming
time-dependent protein–lipid complexes that would act as sort of “adhesion bridges” be-
tween the urothelium and the UPEC’s FimH binding sites saturated with mannose from
the same MOS extracts. While not statistically significant (p > 0.05) for the MOS Parr extract
after 2 h, this putative bacterial adhesion promotion can be slightly seen for MOS Parr after
3 h (p < 0.01) and is statistically evident for the MOS H3PO4 extracts after 2 h (p < 0.001) and
after 3 h (p < 0.0001) of incubation with the urothelial cells. These results were in line with
what has been previously reported by our group regarding the composition of MOS Parr
and MOS H3PO4 extracts, when it was demonstrated that, although composed of the same
percentage of protein, the latter possess a lower total sugar content, thus indicating a higher
percentage, for instance, of lipids (among others) in MOS H3PO4, since MOS extracts are
also composed of lipids [54]. Differently from what is observed with the MOS extracts, the
inhibition efficacy of D-mannose was superior after 3 h of incubation with the HTB-9 cells
(p < 0.05).
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Figure 5. Percentage (%) of adhesion inhibition of UPEC to HTB-9 after 1 h (a), 2 h (b) and 3 h (c) of
HTB-9 incubation with MOS H3PO4, MOS Parr and D-mannose. Bars represent means ± SD. * p < 0.05,
** p < 0.01, *** p < 0.001 and **** p < 0.0001 indicate statistically significant differences between the MOS
extracts and D-mannose and between the different samples and the control (ns—non-significant).
Results are expressed in relation to the control (HTB-9 cells in RPMI and infected with UPEC, used as
reference for 100% survival).

3.6. Cytokine Production in the Presence of UPEC

In addition to providing a physical barrier against invading microorganisms, epithe-
lium bladder cells also act as the first line of defense against urinary tract infections, with
crucial roles such as pathogen recognition, the recruitment of phagocytes, the production



Pathogens 2023, 12, 885 9 of 13

of antimicrobial molecules and the release inflammatory mediators and cytokines [55]. IL-6
is rapidly excreted from urothelial cells after exposure to Escherichia coli [48,56,57]. Studies
by De Man et al. [58], Wult et al. [59] and Schiling et al. [60] have implicated bacterial
determinants such as lipopolysaccharides (LPS) and P-fimbriae in the urothelial produc-
tion of IL-6. In the bladder urothelium, LPS interacts with Toll-like receptor (TLR) 4 and
triggers an intracellular signaling cascade, leading to IL-6 secretion [48,56,60]. Thus, and
considering that the bladder is commonly a sterile site, UTI generates a local powerful
inflammatory response, with neutrophils, IL-6 and IL-8 being found in the urine of affected
individuals [61,62]. IL-6 expression levels can be an indicator of the severity of clinical
UTIs [9,63]. Indeed, children with pyelonephritis and renal scarring have been reported to
exhibit higher IL-6 levels in urine and serum than those of children with cystitis [64–67].
To assess the effect of the samples in the immune response of bladder cells, the expression
levels of the pro-inflammatory IL-6 were assessed in HTB-9 cells simultaneously exposed
to the samples and subjected to UPEC infection at an MOI of 10 (Figure 6). This effect was
also evaluated in HTB-9 cells infected with UPEC after pre-treatment with the samples for
1 h, 2 h and 3 h (Figure 7).
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Figure 7. Quantification of IL-6 production levels by HTB-9 cells incubated with UPEC after expo-
sition to MOS extracts and D-mannose for 1 h (a), 2 h (b) and 3 h (c). Bars represent means ± SD.
**** indicates statistically significant differences (p < 0.0001) between MOS extracts and D.-mannose
(ns—non-significant). Results are expressed in relation to the control (HTB-9 cells pretreated
with RPMI medium before UPEC induced infection, used as reference for 100% survival at each
incubation period).

The determination of the expression levels of IL-6 on the supernatants of HTB-9
cell cultures exposed simultaneously to the samples and to UPEC (Figure 6) revealed no
significant alteration (p > 0.05) in cytokine secretion when compared to cells in RPMI
infected with UPEC (control). Moreover, the expression levels of IL-6 obtained for cells
exposed to both MOS extracts and those obtained for cells exposed to D-mannose were not
statistically different (p > 0.05). Given these results, it was reasonable to conclude that MOS
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extracts and D-mannose were not immunomodulatory and that only bacteria appeared to
be contributing to the immune response of the urothelium cells observed. This conclusion
was further supported by the results attained with HTB-9 cells pre-treated with the samples
(Figure 7), where no synergetic effect was observed (p > 0.05) between the samples and the
bacteria, except for cells pre-treated with MOS Parr for 1 h and 2 h (p < 0.0001), for which it
was possible to see an exacerbation of the pro-inflammatory response (Figure 7a,b). The
observed behavior of the initial response followed by a subsequent decrease in activity
could potentially be attributed to the breakdown of a component that can be metabolized
by the cells or the formation of complexes with certain components in the medium, leading
to a loss of effectiveness. This hypothesis suggests that the component’s activity may be
compromised over time, resulting in the observed decrease in response.

Overall, the results reported here highlight the potential use of MOS extracts as a
dietary supplement for handling UTIs. These promising results must, however, be validated
with samples submitted to an in vitro simulation of the gastrointestinal tract (GIT) system,
since it is known that, to reach their destination, bladder-targeted food supplements must,
firstly, go through a digestion process and mainly through an absorption process that can
alter the structure of the molecules that compose them and, consequently, their activity with
consequences in the amount absorbed that may not be sufficient to produce the desired
effect. GIT simulation could also show that MOS could be effective for prophylaxis against
recurrent UTIs, since, among other events, it is possible that digestive enzymes, namely
lipases, will hydrolyze the lipids that are part of the constitution of MOS extracts and
that may be responsible for the bacterial adhesion promotion by binding to cell proteins.
Furthermore, the processes of digestion will have to be taken into account when evaluating
the possible ways of administering MOS supplements, such as gummies, water-soluble
powders and gastro-resistant capsules.

4. Conclusions

In this study, the feasibility of using MOS extracts to prevent UTIs was assessed and
although their prophylactic capacity can be hindered by some unexpected interaction with
the cells, they have potential as a dietary supplement used to address UTIs, due to its
outstanding competitive inhibition of UPEC adherence to urothelial cells. Indeed, the
competitive assay demonstrated that the effectiveness of bacterial adherence inhibition to
bladder cells of the MOS was 2- to 3-fold higher than the one of D-mannose. Moreover, MOS
extracts showed no significant immunomodulatory effect or evoke a cytotoxic response
up to 2.5 mg/mL of mannose concentration. Furthermore, GIT simulation studies may
potentially disclose a further potential of MOS for prophylaxis against recurrent UTIs.

Author Contributions: Conceptualization, M.F. and S.S.; methodology, M.F., S.S. and E.M.C.; inves-
tigation, M.F., S.S., A.M.P., E.M.C., J.D., C.F.P., J.O.P., A.S.O. and C.M.H.F.; writing—original draft
preparation, M.F. and A.M.P.; writing—review and editing, A.M.P., S.S., E.M.C. and J.D.; supervision,
A.P.C. and M.E.P.; project administration, M.E.P.; funding acquisition, M.E.P. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was co-financed by European Regional Development Fund (ERDF), through the
Operational Program for Competitiveness and Internationalization (POCI) supported by Amyris Bio
Products Portugal, Unipessoal Lda and Escola Superior de Biotecnologia—Universidade Católica
Portuguesa through Alchemy project ‘Capturing High Value from Industrial Fermentation Bio
Products (POCI-01-0247-FEDER-027578).

Institutional Review Board Statement: In this manuscript were used HTB-9 epithelial urinary
bladder cells 5637 from ATCC (https://www.atcc.org/products/htb-9, accessed on 30 May 2023).

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available within the article.

Conflicts of Interest: The authors declare no conflict of interest.

https://www.atcc.org/products/htb-9


Pathogens 2023, 12, 885 11 of 13

References
1. Flores-Mireles, A.L.; Walker, J.N.; Caparon, M.; Hultgren, S.J. Urinary Tract Infections: Epidemiology, Mechanisms of Infection

and Treatment Options. Nat. Rev. Microbiol. 2015, 13, 269–284. [CrossRef]
2. Terlizzi, M.E.; Gribaudo, G.; Maffei, M.E. UroPathogenic Escherichia coli (UPEC) Infections: Virulence Factors, Bladder Responses,

Antibiotic, and Non-Antibiotic Antimicrobial Strategies. Front. Microbiol. 2017, 8, 1566. [CrossRef] [PubMed]
3. Kalas, V.; Hibbing, M.E.; Maddirala, A.R.; Chugani, R.; Pinkner, J.S.; Mydock-McGrane, L.K.; Conover, M.S.; Janetka, J.W.;

Hultgren, S.J. Structure-Based Discovery of Glycomimetic FmlH Ligands as Inhibitors of Bacterial Adhesion during Urinary Tract
Infection. Proc. Natl. Acad. Sci. USA 2018, 115, E2819–E2828. [CrossRef]

4. Magliano, E.; Grazioli, V.; Deflorio, L.; Leuci, A.I.; Mattina, R.; Romano, P.; Cocuzza, C.E. Gender and Age-Dependent Etiology of
Community-Acquired Urinary Tract Infections. Sci. World J. 2012, 2012, 349597. [CrossRef]

5. Vyas, S.; Varshney, D.; Sharma, P.; Juyal, R.; Nautiyal, V.; Shrotriya, V. An Overview of the Predictors of Symptomatic Urinary
Tract Infection among Nursing Students. Ann. Med. Health Sci. Res. 2015, 5, 54. [CrossRef]

6. Bonkat, G.; Bartoletti, R.; Bruyère, F.; Cai, T.; Geerlings, S.E.; Köyes, B.; Kranz, J.; Schubert, S.; Pilatz, A.; Veeratterapillay, R.; et al.
EAU Guidelines, Proceedings of the EAU Annual Congress, Milan, Italy, 10–13 March 2023; EAU Guidelines Office: Amhen, The
Nertherlands, 2023; ISBN 978-94-92671-19-6.

7. McLellan, L.K.; Hunstad, D.A. Urinary Tract Infection: Pathogenesis and Outlook. Trends Mol. Med. 2016, 22, 946–957. [CrossRef]
8. Forsyth, V.S.; Armbruster, C.E.; Smith, S.N.; Pirani, A.; Springman, A.C.; Walters, M.S.; Nielubowicz, G.R.; Himpsl, S.D.;

Snitkin, E.S.; Mobley, H.L.T. Rapid Growth of Uropathogenic Escherichia coli during Human Urinary Tract Infection. mBio 2018,
9, e00186-18. [CrossRef]

9. Hannan, T.J.; Mysorekar, I.U.; Hung, C.S.; Isaacson-Schmid, M.L.; Hultgren, S.J. Early Severe Inflammatory Responses to
Uropathogenic E. coli Predispose to Chronic and Recurrent Urinary Tract Infection. PLOS Pathog. 2010, 6, e1001042. [CrossRef]

10. Schwartz, D.J.; Chen, S.L.; Hultgren, S.J.; Seed, P.C. Population Dynamics and Niche Distribution of Uropathogenic Escherichia
Coli during Acute and Chronic Urinary Tract Infection. Infect. Immun. 2011, 79, 4250–4259. [CrossRef] [PubMed]
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