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Summary: COVID-19 is a disease caused by the new coronavirus SARS-COV-2 which can lead to severe respi-
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ratory infections. Since its first detection it caused more than six million worldwide deaths. COVID-19 diagnosis
non-invasive and low-cost methods with faster and accurate results are still needed for a fast disease control. In
this research, 3 different signal analyses have been applied (per broadband, per sub-bands and per broadband &
sub-bands) to Cough, Breathing & Speech signals of Coswara dataset to extract non-linear patterns (Energy,
Entropies, Correlation Dimension, Detrended Fluctuation Analysis, Lyapunov Exponent & Fractal Dimensions)
for feeding a XGBoost classifier to discriminate COVID-19 activity on its different stages. Classification accura-
cies ranged between 83.33% and 98.46% have been achieved, surpassing the state-of-art methods in some compar-
isons. It should be empathized the 98.46% of accuracy reached on pair Healthy Controls vs all COVID-19 stages.
The results shows that the method may be adequate for COVID-19 diagnosis screening assistance.
Key Words: COVID-19−Cough−Breathing−Speech signals−Non-linear patterns−Classification.
INTRODUCTION
The COVID-19 pandemic provoked a vast negative impact
on health, social and economic systems. Therefore, the
development of methodologies to detect the virus has grown
exponentially for controlling the pandemic. New diagnostic
methods have been developed, such as reverse transcription-
polymerase chain reaction (RT-PCR), serologic testing for
immunoglobulins, and rapid diagnostic kits.1−5 The RT-
PCR is the most widely used method, but these tests are
time-consuming, expensive, and invasive.1,6 So, new diag-
nostic methods with higher sensibility, non-invasive and
low-cost are needed.1,5

Diagnostic methods through voice analysis seems like a
solution. Nowadays, voice is considered an important digi-
tal biomarker for detection and monitoring the disease
progress such as Parkinson’s,7 Vocal Nodule,7 Alzheimer’s,8

Multiple Sclerosis,9 Asthma,10 Heart disease,11 and recent
studies have reported that human audio analysis is found to
be useful for COVID-19 detection.4,10,12 It is known that
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-
CoV-2) affects various parts of the body, with an emphasis
on the respiratory system.13−15 COVID-19 disease is charac-
terized by infections of the respiratory tract, that affects
not only the respiratory system but also the structure that
is used for voice production.13 So, symptoms such as
coughing, altered breathing, voice, and speech have been
reported.
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Voice is a parameter related with the vocal cords charac-
teristics and speech includes the speech speed and hesitation
analyses. The voice production is conditioned by the respira-
tory process, being the sound generated when air is expelled
from the lungs. Then the air passes through the larynx,
where the vocal folds are in a vibrating position, occurring
the phonation and resonating process.13 Although voice
modifications have been a less reported parameter, com-
puted tomography scan data and human biopsies have
shown that the virus affects the lungs, nasal tract, and vocal
folds & tract.16 So, voice changes in COVID-19 patients can
be one of the sensitive symptoms detected at the beginning
or in asymptomatic patients’ case.16 Other recent studies
based on clinical trials, reported that voice perturbation can
be considered as a COVID-19 manifestation.14,15,17 Lechien
and colleagues (2020, 2022) observed dysphonia and apho-
nia in COVID-19 patients.14,17 However, sometimes, the voi-
ces changes are very difficult to be accurately/efficiently
distinguished by humans. So, computer technology has
shown a potential to bridge this gap by allowing voice quan-
tification.18 In this way, the use of artificial intelligence
through voice analysis has allowed the development of tools
for virus diagnosis, prediction, and monitoring (see Table 1).

Other technologies such as the Internet of Things, Big
Data, and Blockchain also have been used to predict, detect,
and control the virus.25 So, Artificial Intelligence can play a
significant role in the development of more effective and
reliable, simple, non-invasive, faster, and less expensive
diagnostic methods.6,20,26 Thus, machine learning trained
models and algorithms can be used for voice analysis in
prognosis and scanning of SARS-COV-2 infection. So, new
real-time algorithms based on voice analysis must be con-
structed in sense of being more reliably and sensitively to
turn possible the distinguish between Healthy and patholog-
ical voice.20,26 To contribute for this development, the pres-
ent research was designed to build a new COVID-19
screening activity machine learning tool based on Cough,
Breathing & Speech analysis.
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TABLE 1.
Sound-based COVID-19 diagnosis state-of-art methods

Reference Dataset Participants Sound type Features Classifier Accuracy

1 Coswara N=1376 partici-

pants (127

COVID-patients

(CP) and 1249

Healthy Controls

(HC))

Cough, Breathing

& Speech

Spectral Centroid,

Spectral Bandwidth,

Spectral Roll-off,

Zero Crossing, Mel

Frequency Cepstral

coefficients (MFCC)

& RMS Energy,

Skewness, Kurtosis,

Coefficient of varia-

tion, Stamdard Error

of Mean

Deep Model Shal-

low classifiers

96.4% CP vs HC

4 Coswara N=1103 partici-

pants (84 CP &

1019 H)C

Cough, Breathing

& Speech

Geneva Minimalistic

Acoustic Parameter

Set (GeMaps),

extended Geneva

Minimalistic Acous-

tic Parameter Set

(eGeMaps), Com-

ParE feature set &

Wavelet scattering

transform

Multi-layer Percep-

tron (MLP)

88.52% CP vs HC

5 Coswara N=210 participants

(70 CP, 70 recov-

ered negative

COVID-19

patients (RP

group) & 70 HC)

Cough & Speech OpenSMILE features

& INTER-

SPEECH2016 chal-

lenge features

Machine learning-

based voice

assessment

(MLVA)

90.07% CP and HC

& 92.81%

CP vs RP &

92.81% RP vs HC

15 Not Coswara N=116 participants

(76 Pos-COVID-

19 (PosC)

patients & 40 HC)

Cough & Speech Log-mel

spectrograms

VGG19 Convolu-

tion neural net-

work (CNN)

85% PosC vs HC

19 Not Coswara N=54 participants

(40 CP and 14

HC)

Cough & Speech Computational Para-

linguistics Chal-

lenge features and

PRAAT and

LIBROSA acoustic

features

Deep Convolution

Neural Network

(dCNN)

83% CP vs HC

20 Coswara N=1027 partici-

pants (77 CP &

950 HC)

Speech Fundamental

Frequency (F0), jit-

ter, shimmer and

Harmonic to Noise

Ratio (HNR), MFCC,

Spectral Centroid

and Roll-off

VGG19 CNN 97% CP vs HC

21 Not Coswara N=88 participants

(29 positive

COVID-19 & 59

HC)

Cough & Speech 80 Mel-scaled fre-

quencies & 80 first

derivatives

Support-vector

Machines (SVM)

78% CP vs HC

22 Not Coswara N=355 participants

(62 positive

COVID-19 & 293

HC)

Cough & Breathing Mel spectrograms ResNet CNN 84.6% CP vs HC

23 Coswara N=2883 partici-

pants (539 posi-

tive COVID-19 &

2344 HC)

Cough Mel spectrograms,

MFCC & clinical

features

Ensemble Deep

Learning Model

77.1% CP vs HC

24 Coswara N=3621 partici-

pants (2001 posi-

tive COVID-19 &

1620 HC)

Cough Mel spectrograms,

MFCC & RMS

Energy & clinical

features

ResNet-18 & Shal-

low classifiers

72% CP vs HC
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In terms of structure, this paper is organized in six main
sections. In Section 2, the database is described. Thereafter,
the methodology concerning the signal processing and the
classification procedure is explained in section 3. The
obtained results are detailed on Section 4 and its inherent
discussion were covered in Section 5. Lastly, Section 6
makes remarks about conclusions.
MATERIALS
The Coswara public database has been used on present
work (released until 11 April 2022).27 The sound samples
are collected via worldwide crowd-sourcing using the inter-
net and also public available on Web.27 Samples are labeled
with 6 COVID-19 statuses (No respiratory illness
exposed (nRE), Positive - asymptomatic (PA), Positive -
moderate (PMo), Positive - mild (PM), Recovered
full (RF), and Respiratory illness not identified (RIn)) and 1
group of control (Healthy Controls - HC).

Every participant in the dataset has 9 different sound
types with a sampling frequency (FS) of 44100Hz (Breath-
ing-deep, Breathing-shallow, Cough-heavy, Cough-shallow,
Counting-fast, Counting-normal, Vowel /a/, Vowel /e/,
Vowel /o/), the data is described in detail here.27 After
removing items with either missing audio files or demo-
graphic data (therefore labels could not be retrieved), a total
of 2092 participants were identified in the study, with an age
range between 1 and 87 years, and more male participation,
70.4% (see Table 2).

The participants reported various locations, with the
majority being from India (92.3%) and the United States
(3.1%), however participants from Germany, Portugal,
Finland, Thailand, South Africa, Australia, Oman, Spain,
Canada, Switzerland, Sweden, France, United Kingdom,
TABLE 2.
Socio-demographic and clinical characteristics

Continuous Measure

Age
Categorical Measure

Gender
Female

Male

Country
India

USA

Germany

Other

Clinical information
Healthy Controls

No respiratory illness exposed

Positive - asymptomatic

Positive - mild

Positive - moderate

Recovered full

Respiratory illness not identified
United Arab Emirates, Netherlands, China, Japan,
Hungary, Turkey, Singapore, Saudi Arabia, Bahrain, Phil-
ippines, Argentina, Indonesia, Italy, Romania, Bangladesh,
Greece, Malaysia, Russia, Brazil, Pakistan, Sri Lanka, Bel-
gium, Korea South, and Syria were also involved in the
study.

The data obtained showed that the majority of the partici-
pants were Healthy Controls (55.9%), however 24.5%
of the participants were infected with the virus, either with
different symptoms or without symptoms (3.2%) (check
Table 2 for more details).
METHODS
The proposed methodology is divided into three main steps:
(1) Preprocessing, (2) Signal Processing and Feature Extrac-
tion and (3) Classification. Figure 1 summarizes the meth-
odology implementation steps.
Preprocessing
The duration of each phoneme is always longer than 2 s, so,
as recommended in,28 a stable and artifact-free with at least
2.2 s-long signal was guaranteed from each participant 9 dif-
ferent sound recording types.

All signals amplitude was normalized in the range ½�1; 1�
to prevent the speaker-microphone distance from affecting
the model.

At the end, the signals were then split into non-overlap-
ping 20 ms-long segments using the Hamming window.
Signal Processing and feature extraction
This section describes the set of features extracted from each
voice type sound recording.
Min Max Mean SD

1 87 35.60 13.87

%

29.6

70.4

92.3

3.1

0.5

4.1

55.9

8.8

3.2

15.4

5.9

5.0

5.8



FIGURE 1. Methodology steps.

ARTICLE IN PRESS

4 Journal of Voice, Vol.&&, No.&&, 2022
Multiband Decomposition via Wavelet Transform

The discrete-time wavelet transform (DTWT) of a discrete-
time finite-energy signal is its breakdown into a set of basis
functions made from a finite number of prototype sequences
and their time-shifted versions.29 It is an optimal tool for
time-frequency signal analysis because it not only allows us
to change the signal domain from time to frequency, and
vice versa, but it also allows us to localise the origin of fre-
quency compounds in time.30,31

This structured expansion and its corresponding recon-
struction are implemented by means of an octave-band criti-
cally decimated filter bank.29,32 Considering only the
positive frequencies, the mth sub-band is confined to

Wk ¼
0;p=2S
� �

; m ¼ 0;

p=2S�mþ1;p=2S�m
� �

; m ¼ 1; 2; . . . ;S;

(
ð1Þ

where S is the number of decomposition stages or levels, S
þ1 is the number of sub-bands and p is the normalized
angular frequency which is equivalent to half the sampling
rate.

The DTWT uses an analysis scale function »f1ðnÞ and
an analysis wavelet function »c1ðnÞ defined as

»f1ðnÞ ¼ hLPðnÞ ð2Þ
and

»c1ðnÞ ¼ hHPðnÞ; ð3Þ
where hLPðnÞ and hHPðnÞ are the impulse responses of the
half-band low-pass and high-pass analysis filters, respec-
tively.

Defining the following recursion formulas

»f iþ1ðnÞ ¼ »f iðn=2Þ � »f1ðnÞ; ð4Þ

»c iþ1ðnÞ ¼ »f iðnÞ � »c1ðn=2iÞ; ð5Þ
where the symbol � denotes the convolution operator, the
equivalent analysis filter of the mth sub-band is given by

hmðnÞ ¼ »fSðnÞ; m ¼ 0;
»cSþ1�mðnÞ; m ¼ 1; 2; . . . ;S:

�
ð6Þ
The mth sub-band signal is given by

xmðnÞ ¼

X1
k¼�1

xðkÞhmð2Sn� kÞ; m ¼ 0;

X1
k¼�1

xðkÞhmð2S�mþ1n� kÞ; m ¼ 1; 2; . . . ;S:

8>>><
>>>:

ð7Þ
In this study, the DTWT was applied to each voice seg-

ment for sub-band decomposition up to the third level, i.e.,
S=3. The sub-band signals xmðnÞ, m ¼ f0; 1; 2; 3g; were
resampled to the original sampling rate using the wavelet
interpolation method.33 The Wavelet decomposition tree is
shown on Figure 2.
Non-linear Analysis

Non-linear dynamic features characterize a complex system,
according to non-linear dynamic theory. Non-linearity fea-
tures are generally associated with entropy, exponents, and
fractal dimensions parameters.
Energy. Energy is one of the most informative concepts
in information theory, that has the ability to exploit multiple
meaningful features from a non-stationary signal and it can
be seen as the system’s ability to accomplish work. In the
case of a speech signal, such as the one used in this work,
the energy describes the effort done by the speaker’s lungs
and vocal tract to make sound as a function of time.34,35

The energy of xðnÞ is defined as

EN ¼
XN
n¼1

jxðnÞj2 ð8Þ
Entropy. Entropy is a measure that considers the
amount of energy present in a complex system. Entropy fea-
tures may also be used to quantify the information content
that has been masked in a signal, modelling the unpredict-
ability and irregularities of a pathological speech signal, as
accurate as possible, within a certain signal’s band.35 The
Shannon (SE), Logarithmic (LE) and Approximate (AE)



FIGURE 2. The discrete-time wavelet transform decomposition tree
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entropies can be estimated as36−38

SE ¼ �
XN
n¼1

jxðnÞj2log½jxðnÞj2�; ð9Þ

LE ¼
XN
n¼1

log½jxðnÞj2�; ð10Þ

and

AEðm; r;NÞ ¼ HmðrÞ �Hmþ1ðrÞ ð11Þ
where N is the data length (suggested to be 1000 of the sig-
nal standard deviation), r is the similar tolerance (between
0.1 and 0.25) and m represents the embedding dimension
(between 2 and 3). H is the Heaviside function that results
from intermediate calculations.39
Chaos theory. Chaos theory is a concept that is closely
related to dynamic systems. Since a dynamic system lacks
the properties of an equilibrium system for sure unpredict-
able disturbances can influence its behavior. As a result of
these perturbations, the system travels from one state to
another. The concept of phase space refers to the collection
of all possible states that a dynamic system can experience
over time.

There are two main exponents which provide a compre-
hensive framework of chaos.37,40 At each time instant, the
state of a dynamic system characterized by m variables may
be represented as a point in m-dimensional space.

The succession of states over time produces arcs called
trajectories in this space, which is known as state or phase
space. When these trajectories are tracked over extended
periods of time, they can converge to a certain geometric
shape, known as an attractor, regardless of the system’s
original settings.

� Correlation Dimension (D2): It characterizes the distri-
bution of the attractor points, reflecting the complexity
of a dynamic system, and is estimated as

D2 ¼ limr! 0
logðCðr;MÞÞ

logðrÞ ; ð12Þ

where

Cðr;MÞ ¼ 2
MðM � 1Þ

XM
i¼1

XM
j¼1

j 6¼i

Qðr� k xi � xj k Þ ð13Þ

is the probability of the pair of points xi; xj

� �
on the

attractor is separated by a distance less than or equal
to r and Q is the Heaviside function.39,41

� Lyapunov Exponent (L): It provides information of
trajectories evolution over time,39 reflecting the stabil-
ity of dynamic systems.

LEðx0Þ ¼ limn! 1
1
n

Xn

k¼1

ln jf 0ðxk � 1Þj ð14Þ
where f 0 is the iterator function f derivative.37

� Detrended Fluctuation Analysis: It is a method that
provides a feature for quantifying long-range correla-
tions (self-similarity) of an apparently non-stationary
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time series.42 From xðnÞ, the cumulative deviation
series is calculated as follows

yðkÞ ¼
Xk

i¼1

½xðiÞ � x�: ð15Þ

Then, for each m-long segment of yðkÞ, a linear
approximation denoted by ymðkÞ is estimated. The
average fluctuation of the signal as a function of m is
defined as

FðmÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
k¼1

½yðkÞ � ymðkÞ�2
s

: ð16Þ

The slope of the best linear approximation of log½FðmÞ
� as a function of logðmÞ is the scale exponent a that
represents the correlation properties of the signal
xðnÞ.43

Fractal Dimension. Self-similarity features of fractal
structures allow for the description of both irregular pro-
cesses and structures. Fractal geometry has been shown to
be a beneficial strategy for identifying irregularities pro-
duced by various disorders in biomedical signals such as the
voice.44 In fact, monitoring the self-similarity of the speech
enables for the clinical status of the patient to be assessed.
Fractal dimension (FD) feature extraction such as the Higu-
chi fractal dimension is considered to be helpful in voice sig-
nal classification.40

� Higuchi Exponent (D):

LðkÞak�D ð17Þ

where k indicates the time interval, LðkÞ is the length of
the curve in the k time interval and D is the Higuchi
Exponent.45

� Katz Algorithm: According to Katz (1988),46 the FD
of a waveform xðnÞ can be defined as

FDk ¼ logðL=aÞ
logðd=aÞ ð18Þ

where L is the sum of the distances between the succes-
sive points of xðnÞ, a is the average distance between
the successive points, and d is the greatest distance
between xð1Þ and the remaining points of xðnÞ.
Feature extraction process

For each study participant voice recording, 9 non-linear fea-
tures (EN, SE, LE, AE, CD, L, a, D, FDk) have been
extracted from each 20 ms-long segments and their respec-
tive sub-bands computed by DTWT decomposition until
level 3 using biorthogonal 3.1. As we are trying to find path-
ological patterns, most of times characterized as being time
domain small signal oscillations imperceptible to human
eye, the small size of Biorthogonal 3.1 filter (N = 4) helps to
keep the quality of signal’s information in time domain for
each signal’s sub-band, avoiding the lose of those pathologi-
cal patterns along the DTWT analysis.47 This Wavelet also
proves to be a good choice for speech signal analysis in pre-
vious works.7,48 Treating the 9 extracted features of all seg-
ments as time series distributions, mean statistic was used to
compress them along time per sub-band and per broadband,
reducing the problem dimensionality and, at the same time,
ensuring that the number of metrics per subjects was equal
for the classification task.
Feature selection and classification procedure
The study goal is to infer about the capacity of a XGBoost
ensemble of machine learning model for evaluating the
COVID-19 activity evolution along its different stages by
voice analysis. The XGBoost classifier,49 that is a tree-based
ensemble machine learning algorithm, has been used for the
propose with the following optimized parameters: boosted
trees to fit = 150, learning rate = 0.1, max. depth of the
tree = 6, L2 regularization term = 1, and L1 regularization
term = 0.

3 different modalities of binary comparison analyses have
been studied: (1) per broadband (1 signal analysis resulting
in a feature vector of 81 features per subject − 9
features � 9 voice recordings); (2) per sub-bands (4 signal
analyses resulting in a feature vector with 324 features per
subject − 9 features � 4 signal analysis � 9 voice record-
ings); and (3) per broadband and sub-bands (5 signal analy-
ses resulting in a feature vector with 405 features per
subject − 9 features � 5 signal analysis � 9 voice record-
ings). In each 22 binary comparisons, it was ensured that all
datasets have been equally balanced for discrimination, for
that, subgroups have been randomly selected from the main
database previously defined on Table 2 taking in to account
the lower maximum number of samples found individually
in each group that form the study group pair. Thus, the
group that has less number of samples in pair indicate the
number of samples in both groups, respectively. Per analysis
modality and binary comparison, the data have been nor-
malized by z-score algorithm50 and 5 different sets of fea-
tures were selected by f-score algorithm,51 representing 5%,
10%, 20%, 50% and 100% of total of features, have been
presented to the entries of the XGBoost ensemble machine
learning model for discrimination. In all cases, to verify the
generalization capacity of the classifier, a leave-one-out
cross-validation procedure is used.

For a better understanding of the whole methodology
Figure 3 presents a summary of the procedure.
RESULTS
Classification accuracies for each pair of study groups,
according to the procedure described in subsection 3.3, are
presented in Table 3.



FIGURE 3. Methodology workflow.
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DISCUSSION
By analysing Table 3, some observations can be drawn
about classification results between pairs of study groups.
Accuracies higher than 83% were obtained for all pairs.
Analysis 1 provided the best features set in 2 of 22 (9%)
study pairs classifications, features from Analysis 2 have
been used in 8 of 22 (36.5%) study pairs classifications and
Analysis 3 brings the best features for 12 of 22 (54.5%) study
pairs classifications. All comparisons that involved the
Recovery full group reached accuracies lower than 90%,
meaning that even when the patients no longer carry the
virus, it still has some impact on patients’ health, the so
called in the literature Long COVID-19 effect.52 Besides
TABLE 3.
Classification accuracy results for each pair of study groups.

Study pair comparison # sam

Healthy Controls vs No respiratory illness exposed

Healthy Controls vs Positive - asymptomatic

Healthy Controls vs Positive - mild

Healthy Controls vs Positive - moderate

Healthy Controls vs Recovered full

Healthy Controls vs Respiratory illness not identified

No respiratory illness exposed vs Positive -

asymptomatic

No respiratory illness exposed vs Positive - mild

No respiratory illness exposed vs Positive - moderate

No respiratory illness exposed vs Recovered full

No respiratory illness exposed vs Respiratory illness not

identified

Positive - asymptomatic vs Positive - mild

Positive - asymptomatic vs Positive - moderate

Positive - asymptomatic vs Recovered full

Positive - asymptomatic vs Respiratory illness not

identified

Positive - mild vs Positive - moderate

Positive - mild vs Recovered full

Positive - mild vs Respiratory illness not identified

Positive - moderate vs Recovered full

Positive - moderate vs Respiratory illness not identified

Recovered full vs Respiratory illness not identified

Healthy Controls vs COVID-19 all stages
that, all other comparisons reached higher accuracy rates
than 90% except the pair Positive - mild vs Positive - moder-
ate. The similarity between their symptoms and effects diffi-
cult the correct identification of those stages53 and that
reason can explain the obtained results.

Table 3 analysis also demonstrates the significance of
Wavelet Transform decomposition, as 91% of the classifi-
cations with greater accuracy came either from analyses 2
or 3, in which wavelet information is employed entirely or
in combination with metrics extracted from broadband,
respectively. This finding helps us to argue the relevance
of utilizing the Wavelet Transform for a signal multi-
band analysis to extract metrics that can discriminate
ples per group Best analysis % of features Accuracy

181 2 10 96.69%

65 3 20 96.92%

318 2 10 98.11%

120 3 20 97.92%

105 2 20 88.57%

120 2 20 97.92%

65 3 20 97.69%

181 1 10 98.90%

120 3 10 97.50%

105 2 20 88.10%

120 3 10 96.67%

65 3 20 98.46%

65 3 20 97.69%

65 3 20 86.15%

65 3 20 96.92%

120 3 10 86.67%

105 2 20 87.62%

120 2 10 96.67%

105 1 20 83.33%

120 3 10 97.92%

105 2 20 97.62%

909 3 50 98.46%
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between several binary groups with higher efficiency and
accuracy.

Regarding state-of-art methods showed on Table 1, it can
be observed that most of the authors have focused mainly
their research on Healthy Controls vs COVID-19 all stages.
Particularly on that comparison, our algorithm outperforms
the best reported accuracy on state-of-art methods that used
the same dataset by 1%,20 showing in this way to be a good
candidate for this kind of discrimination. As for the studies
that didn’t use the Coswara dataset, although comparisons
must be done with some caution as different databases have
been employed, our method outperformed the best result
from those studies by 13%.15 Regarding Positive -
mild vs Recovered full our algorithm provided a slightly
higher accuracy than the achieved in Suppakitjanusan et. al.
study,15 2% higher. About the other remaining 20 pairs, it
can not be done a direct comparison as far as we know those
discrimination’s have been not reported on state-of-art
works.
CONCLUSIONS
This study investigated the detection of COVID-19 by using
multiband non-linear parameters of Cough, Breathing &
Speech. The detection was performed between pairs of study
groups using 3 different modalities of signal analyses: (1) per
broadband; (2) per sub-bands; and (3) per broadband and
sub-bands. For each pair of study groups, a feature selection
was carried out by f-score algorithm with different combina-
tions, 5%, 10%, 20%, 50%, and 100% of the total features,
and they were used as input for the XGBoost ensemble
machine learning model for discrimination within a leave-
one-out cross-validation procedure. The following classifi-
cation accuracies have been obtained: 96.69% HC vs nRE,
98.11% HC vs PM, 97.92% HC vs RIn, 88.57% HC vs RF,
96.92% HC vs PA, 97.92% HC vs PMo, 97.50%
nRE vs PM, 96.67% nRE vs RIn, 88.10% nRE vs RF,
97.69% nRE vs PA, 97.50% nRE vs PMo, 97.92%
PM vs RIn, 83.33% PM vs RF, 98.46% PM vs PA, 86.67%
PM vs PMo, 97.62% RIn vs RF, 96.62% RIn vs PA,
97.92% RIn vs PMo, 86.15% RF vs PA, 97.69%
RF vs PMo, 97.69% PA vs PMo and 98.46% COVID-19
patients vs HC.

The results demonstrated that the combination of cough,
breathing & speech signal multi-band analysis is adequate
to detect COVID-19 activity. As voice recording systems
are relatively inexpensive, non-invasive, mobile, and fast,
this kind of solution can be widely spread and help in
COVID-19 diagnosis screening at clinics and hospitals. As
far as we could check this is the first attempt to distinguish
between different COVID-19 stages by voice analysis. In
future works, the results must be updated with a larger pop-
ulation to ensure generalization, an analysis of the most
suitable wavelet family for each study group pairs may be
performed, and it should be consider new methods for fea-
ture selection based on paraconsistency and paraconsistent
feature engineering that have shown to be good candidates
for the propose in other works.54,55
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