
 

 

 

 
 

Relationship between Carbon Footprint and Profits: The Moderating Role of Clean 

Energy Innovation  

Por 

Francisco Daniel Porles Ochoa 

DNI: 06784359  ORCID 0000-0002-2196-9641 
 

Tesis para Obtener el  

Grado de Doctor en Administración Estratégica de Empresas 

Asesor: 

Dr. Rubén Guevara Moncada 

DNI: 48642063  ORCID 0000-0002-4795-2557 

 

Jurado: 

Pablo José, Arana Barbier 

Rubén, Guevara Moncada 

Sandro Alberto, Sánchez Paredes 

Pascale, Hardy 

 

CENTRUM PUCP BUSINESS SCHOOL 

PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ 

MAASTRICHT SCHOOL OF MANAGEMENT 

Santiago de Surco, julio de 2023



i 
 

 

 

 

 

 

 

 

 

 

 

 



ii 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2023 by Fancisco D. Porles 

All Rights Reserved  



iii 
 

 

Dedication 

Firstly, I dedicate the whole effort carried out in this research work to God and the Most Holy 

Virgin Mary Help of Christians for all the blessings given on my family. Second, I dedicate it 

to my wife Angelica, my children Daniel and Maria Angelica, who have always been my 

strength and inspiration. Dearly loved children, please remember this accomplishment as an 

example of perseverance for you. Always remember that God rewards dedication with success. 

Finally, I dedicate this to my parents, Francisco and Irma, in gratitude for all of their sacrifice 

and effort to provide me with a better education. 

  



iv 
 

 

Acknowledgements 

I extend my beloved spouse Angelica my sincere gratitude for all of her understanding and 

unwavering support, which allowed me to start and complete the doctorate. To Dr. Ruben 

Guevara, who served as my advisor, for guiding and motivating me all the way through.  

  



v 
 

 

Abstract 

Clean energy innovation is critical to the decarbonization of CO₂-intensive industries that rely 

on fossil fuels. Nonetheless, a deeper understanding of the influence of technical innovation on 

firms' efforts to tackle climate change and improve economic competitiveness is needed, 

particularly in those industrial sectors with "hard-to-abate" CO₂e emissions. This quantitative 

longitudinal research examines the moderating effect of clean energy innovation on the link 

between carbon footprint and corporate profits using a global sample of 7,827 firm-year data 

pertaining to 167 multinational companies between 2018 and 2021. This study uses the 

Bayesian method, a recommended statistical framework for fitting complex growth curve 

models with longitudinal data, to specify a multi-indicator latent growth curve (B-LGC) model 

for longitudinal moderation analysis. The findings indicate that the carbon footprint has a large 

positive influence on corporate profits. Furthermore, the model results support the prediction 

that clean energy innovation positively moderates the link between value chain (Scope 3) 

emissions and gross profit margin when measured using renewable energy consumption. The 

implications of the findings suggest that executives and managers in heavily polluting 

companies can achieve greater competitive advantages and transition to a net-zero emissions 

business by developing a comprehensive understanding of Scope 3 emissions. More 

significantly, policymakers should pay particular attention to these companies' Scope 3 

emissions in order to develop regulation and control systems that encourage clean energy 

innovation. 

Keywords: Clean energy innovation, corporate carbon footprint, corporate profits, moderation, 

longitudinal panel model, Bayesian approach. 
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Resumen Ejecutivo 

La innovación en energías limpias es clave hacia la descarbonización de industrias 

intensivas en el uso de combustibles fósiles. No obstante, existe la necesidad de una 

mayor comprensión del impacto de la innovación tecnológica en los esfuerzos de las 

empresas por combatir el cambio climático y mejorar su competitividad, principalmente 

en aquellos industrias “difíciles de reducir” las emisiones de CO₂e. Usando una muestra 

global de 7 827 observaciones de empresa-año correspondientes a 167 empresas 

internacionales entre el 2018 y 2021, esta investigación longitudinal cuantitativa examina 

el efecto moderador de la innovación en energías limpias en el vínculo entre la huella de 

carbono y la rentabilidad corporativa. Para este análisis de moderación longitudinal, se 

emplea el método bayesiano, un marco estadístico recomendado para ajustar modelos de 

curva de crecimiento complejos con datos longitudinales, estimando para ello un modelo 

de curva de crecimiento latente (B-LGC) de múltiples indicadores. Los resultados revelan 

un impacto significativo de la huella de carbono sobre las ganancias. Asimismo, los 

resultados respaldan la hipótesis de que la innovación en energías limpias, cuando es 

medida usando el consumo de energías renovables, modera positivamente la relación entre 

las emisiones de la cadena de valor (Alcance 3) y el margen de utilidad bruta. Estos 

hallazgos implican que una comprensión más detallada de las emisiones de toda la cadena 

de valor (Alcance 3) por parte de los ejecutivos y gerentes de las empresas, representa un 

mecanismo efectivo para obtener mayores ventajas competitivas, y al mismo tiempo llegar 

a ser un negocio con cero emisiones netas. Mas importante aún, los formuladores de 

políticas deberían prestar especial atención a las emisiones de Alcance 3, para formular 

mecanismos regulatorios y de control que estimulen la innovación en energías limpias. 

Palabras clave: Innovación tecnológica, energías limpias, huella de carbono, ganancias 

económicas, datos longitudinales, método Bayesiano 
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Introduction 

This thesis is structured in two Chapters. The first Chapter presents the research paper 

accepted for publication, which is required to complete the degree of Doctor en 

Administración Estratégica de Empresas granted by the Pontificia Universidad Católica del 

Perú through its graduate school in business management, CENTRUM PUCP.  The second 

Chapter includes the main conclusions and recommendations of the thesis. Therefore, Chapter 

1 of this thesis includes the research paper entitled “Moderation of Clean Energy Innovation 

in the Relationship between the Carbon Footprint and Profits in CO₂e-Intensive Firms: A 

Quantitative Longitudinal Study”, which was accepted for publication by the Sustainability-

MDPI on June 29th, 2023 (see Appendix A).  This journal is part of the Scopus database, in 

quartile Q1. 

The current research explored the potential moderating effect of clean energy 

innovation on the relationship between carbon footprint and corporate profit. This study 

focused in particular on large companies operating in energy-intensive industry sectors, which 

are acknowledged as the main contributors of CO₂e emissions (Cadez et al., 2019; Chen & 

Wu, 2022; Rattle et al., 2023). These sectors include energy-generation, industrial, 

technology, and services, among others, where environmental sustainability concerns are 

particularly relevant and expected to remain prevalent in the near future (Yang et al., 2019). 

Moreover, these companies face the dual challenge of optimising profitability while 

minimising their environmental impact (e.g., BP, 2018; Chevron, 2018; Shell, 2018). 

Recent research has found evidence of a direct correlation between carbon footprint 

and corporate profits (e.g., Castro et al., 2021; Galama & Scholtens, 2021; Robaina & 

Madaleno, 2020; Russo et al., 2021; Wedari et al., 2023). However, the results these findings 

remain inconclusive, particularly because all research up to date focuses on Scope 1 and 

Scope 2 CO₂e emissions. Governments and academia are particularly interested in the 
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relationship between the carbon footprint and profits in energy-intensive companies from 

diverse sectors and countries, and including also Scope 3 CO₂e emissions (WRI, 2015). On 

the other hand, technological innovation is widely acknowledged as an effective means of 

tackling environmental degradation (Zhou et al., 2019). In addition to this, technological 

innovations entail a temporal attribute, as their development and implementation require time, 

and their impact on firms is only perceived over the long term (Hang et al., 2019). This 

indicates that longitudinal studies are the most effective method for company-level research to 

determine the impact of clean energy innovation on CO₂e emission reductions and profits. 

Therefore, it is evident that research on clean energy innovation has gradually become an 

important issue at the firm, nation-wide, and regional scales (Altıntaş & Kassouri, 2020; Bai 

et al., 2020; Hao & Chen, 2023; Jordaan et al., 2017; Zhang et al., 2020).  

Evolutionary innovation theory (Nelson & Sidney, 1982) and ecological 

modernization theory (EMT) (Huber, 2000; Mol, 2002; Spaargaren, 1997) are two theoretical 

foundations for the concept of clean energy innovation. The evolutional innovation theory is a 

Schumpeterian explanation of technological development (Dosi, 1982) that contends that the 

activities that lead to technological progress are the pursuit for superior technologies and the 

selection of successful market innovations (Ruttan, 1997). More recently, Busch et al. (2018) 

suggest that the neo-Schumpeterian approach increases the likelihood that clean energy 

innovation will be a key driver of the transition to a low-carbon economy. Similarly, the EMT 

theory encourages energy- and pollution-intensive firms to adopt clean energy technologies 

that reduce the environmental effect of their production processes (Jänicke, 2008). According 

to the EMT theory, the transformation of current industrial energy systems to an industrial 

metabolism consistent with nature's metabolism requires radical innovations (i.e. clean energy 

technology innovations) in the Schumpeterian sense, in which carbon-intensive industrial 

processes are replaced by environmentally neutral ones (Huber, 2000; (Jänicke, 2008).  



4 
 

 

On the other hand, corporate carbon footprint reduction is explained by a series of 

theories applicable to climate change studies, such as the anthropogenic global warming 

theory (AWG) (Anderegg et al., 2010; Oreskes, 2004), stakeholder theory ((Daddi et al., 

2018); Pätäri et al., 2012) and institutional theory (Ervin et al., 2013; Jennings & Zandbergen, 

1995). Recent studies confirm a broad scientific consensus on the AGW theory (Choi et al., 

2020; Cook et al., 2018; Cook et al., 2016; Jankó et al., 2020), to predict that human influence 

is the primary cause of global warming and other negative effects of climate change caused by 

CO₂e emissions (Cook et al., 2013). Specifically, the burning of fossil fuels in extremely 

polluting industries is one of the primary sources of excessive anthropogenic CO₂e emissions, 

and the primary cause of the global greenhouse effect (Attari et al., 2019; Jiang et al., 2020; 

Nepal et al., 2017). Similarly, according to the stakeholder theory, a strong corporate 

commitment to carbon footprint reduction is contingent upon stakeholder pressures and/or 

actions, which may include shareholders, investors, industry organisations, competitors, 

governments, suppliers, and customers (Chen & Montes-Sancho, 2017; Verbeke et al., 2017). 

Additionally, the institutional theory suggests that the normative and obligatory nature of 

institutions can encourage companies to comply with environmental laws and regulations 

pertaining to the reduction of carbon emissions (Ervin et al., 2013; Littlewood et al., 2018; 

Wang et al., 2018). On the other hand, according to the resource-based view (RBV) of the 

firm theory (Barney, 1991), it can be argued that the pursuit of carbon footprint reductions 

represents a means of attaining an enhanced corporate competitive advantage and therefore 

more profits (Penz & Polsa, 2018). Following this, the natural-resource-based view of the firm 

(Hart, 1995; Hart & Dowell, 2011) emerges as an extension of the core tenets of the RBV 

theory, encompassing environmental factors such as pollution prevention in order to mitigate 

carbon emissions (Duque-Grisales et al., 2020).  
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The study used a sample of worldwide major firms included in the Carbon Disclosure 

Project (CDP) reports, an internationally recognised organisation focused on enhancing the 

global availability of information pertaining to corporate carbon emissions whose operational 

processes significantly contribute to climate change. The CDP database was utilised to gather 

data on CO₂e emissions and clean energy innovation (Haney, 2017). The Thomson Reuters 

Eikon database for those same companies and years was utilised to obtain comprehensive 

financial data at the firm level. Similarly, based on a classification of industries according to 

the Global Industry Classification Standard (GICS) at the sector level, five primary energy-

intensive sectors were selected for analysis: materials, consumer discretionary, industrials, 

utilities, technology, energy, and health care. 

This research used a non-experimental research method based on longitudinal data as a 

research strategy, with the intention of identifying causal relationships by establishing a time 

ordering between the research variables (Christensen et al., 2015), adopting a longitudinal 

research design for this purpose, based on the Bayesian method of multi-indicator latent 

growth curve models (hereinafter B-LGC model) (Byrne, 2012; Geiser, 2021; Newsom, 

2015), a specialised structural equation modelling (SEM) approach with increasing levels of 

sophistication (Depaoli et al., 2017; Oravecz & Muth, 2018; Zhang et al., 2007). The 

Bayesian LGC approach was adopted for three reasons. According to Muthén and 

Asparouhov, (2012) and Oravecz and Muth (2018), this procedure is suitable for improving 

estimation precision in the modelling of latent variables. Second, Bayesian estimation is a 

more plausible technique than maximal likelihood estimation (MLE) for analysing 

longitudinal data sets with small sample sizes (Muthén & Asparouhov, 2012; Zhang et al., 

2007). Thirdly, the availability of Bayesian computational methods in software packages (e.g., 

Mplus, Amos, and others) has propelled their application in various disciplines of social 

research (Van de Schoot et al., 2014), specifically in social science research on climate 
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change. Finally, the longitudinal data was analysed using Mplus version 8.8, primarily 

because it facilitates the moderation of latent variables in longitudinal studies. 

The statistical results of this research showed an absolute adjustment of the B-LGC 

model in the Bayesian framework, as well as the convergence of said model in all the 

hypotheses. Regarding the statistically significant results of the direct positive interaction 

between the carbon footprint and corporate profits, only the hypotheses H1b, H3a, H4b, H4c, 

H5a, H5b and H5c (please see them in the research paper, in Chapter 2) obtained plausible 

values at a significance level of 5%, since their corresponding Bayesian credibility intervals 

(C.I) (C.I), [-0.602, -0.101], [0.167, 0.643], [-0.647, -0.101], [-0.512, -0.020], [-0.521, -0.004], 

[-0.635, -0.098] and [-0.501, -0.014], do not contain zero. On the other hand, regarding the 

results of longitudinal moderation analysis of clean energy innovation, only hypothesis H8a 

presented a statistical significance on the moderating effect of clean energy innovation, using 

renewable energy consumption as a continuous observed and moderating metric.   

Consequently, the study proves that the renewable energy consumption positively moderates 

the direct relationship between the corporate value chain CO₂e emissions (Scope 3) and the 

gross profit margin, since its Bayesian 95% CI of [ -0.991, -0.774] does not include zero, 

which implied a positive intervention (moderation) effect. Additionally, hypotheses H7a, H7b 

and H8c showed marginal moderating interaction effects of clean energy innovation. The 

findings of the longitudinal moderation analysis conducted on clean energy innovation 

indicate that only hypothesis H8a proved a statistically significant moderating effect. This 

effect was observed when renewable energy consumption was utilised as a continuous 

variable to moderate the impact of clean energy innovation. Therefore, the findings of this 

study provide evidence that the utilisation of renewable energy has a positive moderating 

effect on the direct relationship between corporate value chain CO₂e emissions (Scope 3) and 

gross profit margin. This is supported by the Bayesian 95% confidence interval of [-0.991, -
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0.774], which excludes zero and shows a significant positive intervention effect. Furthermore, 

the hypotheses H7a, H7b, and H8c revealed marginal moderating interaction effects 

pertaining to clean energy innovation. 

This study represents the first empirical research into the moderating effect of clean 

energy innovation on the relationship between carbon footprint and corporate profit. It also 

represents an important contribution dealing with Scope 3 CO₂e emissions and their effect on 

corporate profits. By studying the effects of the latent variables, namely corporate carbon 

footprint and corporate profit, in conjunction with renewable energy consumption as a 

moderating variable, this research fills a gap in existing empirical knowledge. Furthermore, 

this study yields significant findings that are relevant to scholars, senior executives of 

companies that have substantial fossil CO₂e emissions, and policymakers involved in GHG 

emissions and climate change. This study offers empirical evidence to researchers and 

academics regarding the influence of clean energy innovation on firms with high levels of 

CO₂ emissions in the context of global industrial decarbonization. For executives and 

managers of companies with high CO₂e emissions, it is evident that prioritising the entire 

value chain CO₂e emisions (Scope 3) rather than solely focusing on Scope 1 and Scope 2 

emissions can lead to significant competitive advantages, and therefore profits. One policy 

implication that arises from this analysis is the need for targeted focus on Scope 3 CO₂e 

emissions generated by companies operating in various industries and countries that have high 

levels of CO₂e intensity. This focus is crucial in order to develop effective regulatory and 

control mechanisms that promote the adoption of renewable energy sources. 
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Chapter 1: Research Article 

 
The research article “Moderation of Clean Energy Innovation in the Relationship 

between the Carbon Footprint and Profits in CO₂e-Intensive Firms: A Quantitative 

Longitudinal Study” was accepted for publication on June 29th, 2023, in the Sustainability, an 

Open Access Journal from MDPI, with ISSN 2071-1050, and indexed at the Scopus database 

in quartile 1 (Q1). 

The acceptance certificate and acceptance letter of the research article can be found in 

Appendix A and B, respectively. 

 

Article  

Moderation of Clean Energy Innovation in the Relationship 

between the Carbon Footprint and Profits in CO₂e-Intensive 

Firms: A Quantitative Longitudinal Study  
 

Abstract: This paper sought to analyze the moderating effect of clean energy innovation on the relationship 

between corporate carbon footprint and corporate profits in fossil fuel intensive industrial sectors in which it is 

“hard to abate” CO₂e emissions. We used a longitudinal design consisting of a panel study with a structural 

equation modeling (SEM) method, based on partial least squares. For the analysis of longitudinal moderation, this 

paper employed a Bayesian multiple-indicator latent growth curve model (B-LGC model). A global sample was 

used, consisting of 7827 firm-year observations between 2015 and 2021 for 167 international firms. The results 

showed that the corporate carbon footprint had a very significant impact on corporate profits and that 

innovations in clean energy—measured as renewable energy consumption—positively moderate the relationship 

between Scope 3 value chain greenhouse gas emissions (according to the Greenhouse Gas (GHG) Protocol) and 

the gross profit margin obtained. In addition to the academic contributions made by the moderating effect of 

clean energy innovation, these findings imply that a more detailed understanding of total value chain emissions 

(Scope 3 CO₂e) among executives and managers at high CO₂e-emitting companies offers an effective mechanism 

for obtaining higher profits and creating competitive advantages, while at the same time achieving a net zero 

emissions strategy. More importantly, public policymakers will be able to use these results to revise CO₂e-related 

policies, paying closer attention to the Scope 3 CO₂e emissions produced by these companies to design regulatory 

and control mechanisms that stimulate clean energy innovation. Keywords: clean energy innovation; corporate 

carbon footprint; corporate profits; high CO₂e emissions; longitudinal panel model; latent growth curve (LGC). 

 

Keywords: clean energy innovation; corporate carbon footprint; corporate profits; high CO₂e emissions; 

longitudinal panel model; latent growth curve (LGC. 

 

 

1. Introduction  

The mitigation of climate change by reducing greenhouse gas emissions 

(GHG) is one of the most important challenges facing society today [1]. To this end, 

the Paris Agreement of 2015 seeks to limit the increase in global warming to less than 
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2 ◦C. Among other things, this requires the deep decarbonization of industrial sectors 

with a high demand for conventional fossil fuels [2,3]. Energy-intensive firms 

increasingly face demands that they act decisively to reduce these emissions and 

make a positive impact on climate change [4], since they are considered the largest 

emitters of anthropogenic carbon dioxide and equivalent GHGs (CO₂e), and thus the 

main contributors to global warming [1,5–9]. Consequently, these companies face the 

twofold challenge of generating profits for shareholders while achieving lower CO₂ 

emissions in their production processes [10–12]. In achieving these goals, clean and 

renewable energy sources can contribute to deep decarbonization, especially in 

“hard-to-abate” CO₂ emissions sectors associated with high energy consumption 

[13,14].  

While there is a large body of recent literature with evidence of a direct 

relationship between environmental performance—measured by using the addition 

of Scope 1 and Scope 2 corporate carbon footprints—and corporate profits [15–19], 

the results are still inconclusive. For instance, those studies used absolute metrics 

associated with Scope 1 and Scope 2 CO₂e emissions, but none used Scope 3 CO₂e 

emissions to measure total corporate carbon footprints. They also used other relative 

metrics, such as carbon intensity and environmental, social, and governance (ESG) 

ratings. Consequently, this study filled an existing research gap, involving the total 

measurement of corporate carbon footprint in a longitudinal study to measure its 

impact on corporate profits. This is the first study to do this. Another research gap 

addressed by this research was the measurement of the moderating effect of clean 

energy innovation (CEI) on the relationship between corporate carbon footprint 

(CCFP) and corporate profits (CP). 

The relationship between carbon footprint and profits in fossil-based energy-

intensive global companies from different sectors and countries is of particular 

interest to academia and governments. While technological innovation has been 

widely recognized as an effective means for combating negative environmental 

impacts [20], technological innovations take time to develop and implement, and 

their impact on companies’ performance is only perceived in the long term [21]. This 

means that studies with a longitudinal design are a particularly effective means for 

firm-level research to examine the effect of clean energy innovation on GHG 

reduction and increased profits. As a result, clean energy innovation has gradually 

become an important topic in the business field [22].  

The literature has so far paid little attention to the potential moderating effect 

of firms’ clean energy innovation on the link between their carbon footprint and 

profits, particularly among leading CO₂e-intensive global firms in various industrial 

sectors that are active in different countries around the world [23]. This paper sought 

to address the gap in the literature and examine the moderating effect of clean energy 

innovation on this relationship, focusing on large firms from primary industries with 

the most intensive use of fossil fuel generated energy. To accomplish this, this study 

developed a moderation model with longitudinal panel data obtained from the 

Carbon Disclosure Project (CDP) and the Thomson Reuters Refinitiv database, which 
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were then analyzed using a Bayesian growth curve model. This paper contributes to 

the literature by proposing a longitudinal structural model for the moderation effect 

of clean energy innovation, using Bayesian multipleindicator latent growth curve 

models (B-LGC models), on the link between corporate carbon footprint and 

corporate profits. This study also highlights the importance of renewable energy 

consumption as a moderating indicator for measuring clean energy innovation in the 

relationship between corporate value chain emissions (Scope 3 CO₂e) and gross profit 

margin (Pr_Mrg) in energy-intensive industries.  

 

2. Theoretical Framework and Hypothesis  

The ecological modernization theory (EMT) supports the concept of clean 

energy innovation. EMT states that ecology and the economy can be combined to 

achieve a better result for the company, the country, and society [24,25]. It also states 

that increases in energy and resource efficiency can lead to improved productivity 

and therefore to more available resources for future growth. This knowledge 

encourages energy- and pollution-intensive firms to embrace clean energy 

technologies that allow them to lessen the environmental effect of their economic 

operations [24]. Similarly, the natural resource-based view (NRBV) theory proposes 

that competitive advantage is directly related to the company’s relationship with the 

natural environment [26]. It then supports the idea that competitive advantages can 

be based on institutional capabilities that support natural resources conservation. An 

example is pollution prevention through the reduction of greenhouse gas emissions 

as an effective strategy for protecting the environment while also being profitable for 

business [25]. On the other hand, the anthropogenic theory of global warming 

predicts that human influence is the dominant cause of global warming and of other 

adverse impacts of climate change [26–28]. Likewise, [29] suggested that 

“anthropogenic influence is evident from the emission of greenhouse gases such as 

CO₂ from human activities” (p. 1141). 

 

2.1. Corporate Carbon Footprint  

Corporate carbon footprints are dominated by emissions of carbon and 

equivalent gases resulting from intensive energy consumption [27], with a size value 

that is often expressed in absolute CO₂e emissions [28,29]. As a result, one widely 

accepted taxonomy for accounting and reporting absolute CO₂e emissions is based 

on the philosophy and classifications of the Greenhouse Gas Protocol (or GHG 

Protocol, for short) [30,31]. At the corporate level, the World Business Council for 

Sustainable Development (WBCSD) and the World Resources Institute (WRI) 

Corporate Accounting and Reporting Standard [32] provide guidance for drafting a 

GHG emissions inventory. This paper defined three different scopes for CO₂e: Scope 

1, Scope 2, and Scope 3. The Scope 1 CO₂e inventory, as defined by the WBCSD and 

WRI (2015), consists of “direct GHG emissions from sources owned or controlled by 

the company” [32] (p. 25). Scope 2 CO₂e comprises indirect GHG emissions from 

electricity [27,30]. More specifically, the WBCSD and WRI (2015) state that Scope 2 
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CO₂e “accounts for GHG emissions from the generation of purchased electricity 

consumed by the company” [32] (p. 25). For its part, Scope 3 CO₂e also refers to 

indirect GHG emissions, in this case from the upstream and downstream supply 

chain, which are mainly related to the use of goods and services sold [27,33,34]. To 

this end, the WBCSD and WRI (2011) Corporate Value Chain (Scope 3 CO₂e) 

Accounting and Reporting Standard [35] permits companies to prepare a GHG 

emissions inventory that includes Scope 3 CO₂e emissions and to determine where 

they should focus their activities to reduce these emissions [32].  

 

2.2. Linking Corporate Carbon Footprint and Profits  

Drawing from Barney’s resource-based view (RBV) of business [36] and 

Freeman’s stakeholder theory [37], it can be argued that reducing their carbon 

footprint provides companies with a way to achieve greater competitive advantage 

[38]. Although a significant body of both accounting-based (e.g., profits, sales, ROA, 

ROE, ROS, EBITDA, etc.) and market-based (e.g., Tobin’s Q) empirical investigations 

[17,18,28,33,39,40] has examined the direct relationship between carbon footprint and 

certain indicators of profitability, the results are still inconclusive. For instance, some 

authors have found a statistically significant positive relationship [17–19,28], while 

others concluded that this relationship was not statistically significant [39,41]. Several 

authors found mixed results [33,40,42]. Furthermore, essentially all of this research is 

based on cross-sectional studies, a major limitation when it comes to reaching firm 

conclusions.  

Consequently, there is a clear lack of empirical studies with a longitudinal 

analysis of the relationship between an (absolute) size value, such as carbon 

footprint, and a performance indicator based on a monetary metric, such as profit 

[43]. Thus, the relationship between carbon footprint and profit in energy-intensive 

global companies was of particular interest in this study. In light of these arguments, 

the first hypotheses proposed were the following: 

 

H1a. Scope 1 CO₂e has a positive influence on gross profit margin.  

H1b. Scope 1 CO₂e has a positive influence on EBITDA margin.  

H1c. Scope 1 CO₂e has a positive influence on operating margin.  

H2a. Scope 2 CO₂e has a positive influence on gross profit margin.  

H2b. Scope 2 CO₂e has a positive influence on EBITDA margin.  

H2c. Scope 2 CO₂e has a positive influence on operating margin.  

H3a. Scope 3 CO₂e has a positive influence on gross profit margin.  

H3b. Scope 3 CO₂e has a positive influence on EBITDA margin.  

H3c. Scope 3 CO₂e has a positive influence on operating margin. 

H4a. Scope 1 + 2 CO₂e has a positive influence on gross profit margin.  

H4b. Scope 1 + 2 CO₂e has a positive influence on EBITDA margin.  

H4c. Scope 1 + 2 CO₂e has a positive influence on operating margin.  

H5a. Scope 1 + 2 + 3 CO₂e has a positive influence on gross profit margin.  

H5b. Scope 1 + 2 + 3 CO₂e has a positive influence on EBITDA margin.  
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H5c. Scope 1 + 2 + 3 CO₂e has a positive influence on operating margin. 

 

2.3. Clean Energy Innovation  

From an operational standpoint, clean energy innovation is defined as “the set 

of processes leading to new or improved energy technologies that can increase 

energy resources; enhance the quality of energy services; and reduce the economic, 

environmental, or political costs associated with the supply and use of energy” [44] 

(p. 193). More specifically, renewable energy innovations involve “process 

innovations that lead to a substitution of fossil energy sources with renewable 

sources within companies,” as defined by [45] (p. 405). The concept of clean energy 

innovation builds upon the evolutionary theory of innovation [46] and Joseph 

Huber’s ecological modernization theory (EMT) [47]. According to the first theory, 

technological change is driven by the search for better technologies and the selection 

of successful innovations in the market [48]. However, others argue that a truly 

competitive industry responds to global environmental challenges by reducing 

pollution through technological innovations that redesign industrial processes [49]. 

More recently, the authors of [50] have stated that the neo-Schumpeterian approach 

(evolutionary model) raises the possibility of clean energy innovation acting as a 

major driver of radical transformation to a low-carbon economy. For its part, the 

EMT theory encourages energy intensive (and thus, high-pollution) industries to use 

clean energy technologies that enable them to reduce the environmental impact of 

their business activities [51].  

 

2.4. The Moderating Role of Clean Energy Innovation on the Relationship between 

Carbon Footprint and Profits  

The Porter hypothesis [49] asserts that companies that design and execute 

environmental strategies using innovative pollution prevention technologies can 

simultaneously improve their environmental performance and increase their 

competitiveness [52]. Subsequently, [53] argued that, at a corporate level, carbon 

footprint management promotes cleaner and greener technological innovations. 

Harangozo and Szigeti [30], meanwhile, claimed that in order to achieve a lower 

carbon footprint, companies must make greater efforts at clean energy technological 

innovation.  

Ecological modernization theory (EMT), on the other hand, offers an approach 

to a corporate environmental strategy rooted in innovation and technology, also 

called “ecoefficient innovation” (or eco-innovation) [51]. Seen from this standpoint, 

clean energy innovation is a radical innovation that stems from the ecological 

modernization approach [54]. Indeed, one of the fundamental tenets of this approach 

is that technological innovation in clean energy helps improve both corporate 

environmental performance and financial performance [55]. Wedari et al. [19] 

recently reviewed the current state of research on the relationship between 

environment-related innovation, on the one hand, and environmental and economic 

performance on the other. Their findings shed new light on the role of innovation in 
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the adoption of proactive environmental innovation strategies as a source of 

competitive advantage. According to [23], the influence of clean energy innovation in 

different industrial sectors has not yet been explicitly tested. Thus, we formulated the 

following research hypotheses: 

 

H6a. Clean energy innovation positively moderates the relationship between Scope 1 CO₂e 

and gross profit margin. 

H6b. Clean energy innovation positively moderates the relationship between Scope 1 CO₂e 

and EBITDA margin.  

H6c. Clean energy innovation positively moderates the relationship between Scope 1 CO₂e 

and operating margin.  

H7a. Clean energy innovation positively moderates the relationship between Scope 2 CO₂e 

and gross profit margin.  

H7b. Clean energy innovation positively moderates the relationship between Scope 2 CO₂e 

and EBITDA margin.  

H7c. Clean energy innovation positively moderates the relationship between Scope 2 CO₂e 

and operating margin.  

H8a. Clean energy innovation positively moderates the relationship between Scope 3 CO₂e 

and gross profit margin.  

H8b. Clean energy innovation positively moderates the relationship between Scope 3 CO₂e 

and EBITDA margin.  

H8c. Clean energy innovation positively moderates the relationship between Scope 3 CO₂e 

and operating margin.  

H9a. Clean energy innovation positively moderates the relationship between Scope 1 + 2) 

CO₂e and the gross profit margin.  

H9b. Clean energy innovation positively moderates the relationship between Scope 1 + 2 

CO₂e and EBITDA margin.  

H9c. Clean energy innovation positively moderates the relationship between Scope 1 + 2 

CO₂e and operating margin.  

H10a. Clean energy innovation positively moderates the relationship between Scope 1 + 2 + 3 

CO₂e and gross profit margin.  

H10b. Clean energy innovation positively moderates the relationship between Scope 1 + 2 + 3 

CO₂e and EBITDA margin.  

H10c. Clean energy innovation positively moderates the relationship between Scope 1 + 2 + 3 

CO₂e and operating margin.  

 

Figure 1 presents an overview of the conceptual model used in this paper. 
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Figure 1. Conceptual model. 
 

3. Research Methodology  

3.1. Data and Sample  

The sample used consists of a set of the world’s largest companies that are 

included in CDP reports and that have a significant impact on climate change due to 

their high CO₂e emissions. Data on CO₂e emissions and clean energy innovation 

were collected from the database of the CDP, a well-known international 

organization dedicated to improving the quality of available data on corporate 

carbon emissions worldwide [56]. Detailed financial data were taken from the 

Thomson Reuters Eikon database. Using the industrial sector-level classification of 

the Global Industry Classification Standard (GICS), seven energy-intensive primary 

industries were selected for analysis: materials, consumer discretionary, industrials, 

utilities, technology, energy, and health care. Table 1 summarizes the composition of 

the sample of firms by region and industry sector.  

The final sample, as shown in Table 2, consisted of 7827 firm-year observations 

made between 2015 and 2021 among 167 large firms from 27 countries and various 

energyintensive industry sectors. This is an unbalanced panel, since the number of 

firm-year observations is not always the same for each company. The firm-year 

observations with missing values for more than two consecutive years were removed 

from the data set. Following previous studies [31,57,58], distortion caused by outliers 

was taken into account by winsorizing the lowest and highest percentiles of all 

continuous variables used in the study. Winsorization was performed on 2.41% of the 

total data points in this research.  

 

3.2. Data Collection  

3.2.1. Corporate Carbon Footprint  

The independent variable was the corporate carbon footprint (hereafter, 

CCFP). Following the practices of previous research [17,33,39], this study used 

absolute metrics to measure the CCFP, specifically absolute firm-level carbon 
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emissions expressed in CO₂ equivalent units, that is, in total tons of CO₂e reported 

annually. This took into account not just carbon dioxide (CO₂) but other GHGs with a 

high global warming potential, which were then transformed into carbon dioxide 

equivalent (CO₂e) [27,59]. This metric is most suitable for precisely measuring the 

carbon footprint of those companies and industries with a high absolute GHG 

intensity [60]. Following [29], Scope 1 + 2 CO₂e were added together to capture a 

company’s total annual carbon footprint. Similarly, following the model proposed by 

[33] for the breakdown of corporate carbon emissions, which expands the firm’s total 

carbon footprint by including indirect Scope 3 CO₂e emissions to account for the 

entire GHG supply chain, all emissions were added together to obtain an annual 

snapshot of total absolute CO₂e (Scope 1 + 2 + 3).  

 

Table 1. Distribution of the sample of firms by sector and region. 

 
Note: Firms are classified according to the Global Industry Classification Standard (GICS) 

 
Table 2. Sample description. 

 
3.2.2. Corporate Profits  

Total 
Number 
of Firms

% of 
Total

Consumer 
Discre-
tionary

Energy Health 
care Industrials Technology Materials Utilities

OECD Eurasia 1 1 0.60%
OECD Oceania 1 2 3 1.80%
Non-OECD Americas 2 3 5 2.99%
Non-OECD Asia 1 3 8 1 13 7.78%
OECD Asia 16 1 8 5 12 1 43 25.75%
OECD Americas 8 3 10 3 12 8 44 26.35%
OECD Europe 13 5 8 2 22 8 58 34.73%
Total 37 11 1 26 13 58 21 167 100.00%
% of total 22.16% 6.59% 0.60% 15.57% 7.78% 34.73% 12.57% 100.00%

GICS SECTOR

Region

Firm-year 
Observations

2015 2016 2017 2018 2019 2020 2021 Total
Region

OECD Eurasia 6 7 7 7 7 7 7 48
OECD Oceania 20 20 17 21 21 21 21 141
Non-OECD Americas 34 35 31 35 35 35 35 240
Non-OECD Asia 81 89 84 90 83 89 91 607
OECD Asia 282 288 285 299 295 295 301 2045
OECD Americas 272 282 258 299 306 308 304 2029
OECD Europe 374 384 352 402 398 402 405 2717

Total 1069 1105 1034 1153 1145 1157 1164 7827
Sectors

Health care 7 7 7 7 7 7 7 49
Energy 70 74 66 77 77 77 77 518
Technology 87 87 81 91 90 91 91 618
Utilities 127 139 130 143 146 147 147 979
Industrials 172 173 159 181 178 178 178 1219
Consumer discretionary 232 240 229 257 253 258 259 1728
Materials 374 385 362 397 393 400 405 2716

Total 778 798 750 835 824 836 842 7827

Firm-Observations Per Year
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Given the multidimensional nature of corporate profits (hereafter CP), 

empirical research on the concept tends to adopt different proxy metrics, with 

accounting-based performance metrics being the most prevalent [40,61]. Along these 

lines, [43] distinguished between two types of metrics: money metrics and ratio 

metrics. For the sake of convenience, and given the current availability of detailed 

and reliable financial data for the same period (2015–2021) as the corporate carbon 

footprint panel data, this study measured profits by gross profit margin (Pr_Mrg), 

EBITDA margin (EBITDA Mrg), and operating margin (Op Mrg). Gross profit margin 

(Pr_Mrg) was also included because profits are significantly influenced by operating 

costs [62] and are therefore suitable for examining the effect of corporate carbon 

footprint reduction. EBITDA—which has been used in similar studies [16,43,63]—

was included as a way of capturing the financial cost–benefit ratio for companies 

resulting from climate initiatives to reduce GHG emissions [64]. Finally, operating 

margin (Op Mrg) was used because of its prevalence as an indicator in previous 

studies [18,65,66] but above all because it is an effective financial indicator for 

managerial decision-making [67].  

 

3.2.3. Clean Energy Innovation  

Our model’s moderating variable was clean energy innovation (hereinafter 

CEI), quantitatively measured by renewable energy consumption (RENC) and 

quantified in billions of kilowatt hours (kWh). While output metrics, such as the 

number of new technologies used, energy consumption from renewable sources, and 

the number of patents granted [68–70], are usually used in the final stages of clean 

energy technology innovation processes [44], not all of these are appropriate. On the 

other hand, the use of renewable energy sources is a proxy metric for the 

development of clean energy technology innovation [69]. More importantly, 

renewable energy consumption is more plausible as an indicator of progress in the 

adoption of clean energy technologies in energy-intensive industries with a high 

level of environmental pollution [71,72].  

 

Table 3 contains the definitions and a brief explanation of the metrics being 

examined. 
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3.3. Data Analysis  

This study used a longitudinal design consisting of a panel study with a 

structural equation modeling (SEM) method. One approach widely adopted in the 

literature is the latent growth curve (LGC) model, based on the maximum likelihood 

estimation (MLE) method [73–75]. We also used a Bayesian multiple-indicator latent 

growth curve model, which is becoming an increasingly popular specialized model 

[76], primarily in longitudinal research in the field of developmental psychology [76–

78]. The Bayesian LGC approach was adopted for three reasons. First of all, according 

to [77,79], this method is suitable for improving the accuracy of estimates in the 

modeling of latent variables. Secondly, compared to the MLE method, Bayesian 

estimation is a more plausible technique for analyzing longitudinal data sets in small 

sample sizes [78,79]. Third, the availability of Bayesian computational methods in 

software packages (e.g., Mplus, Amos, among others) is driving their application in 

different fields of social research [80], in particular, in social science research on 

climate change. Finally, we analyzed the longitudinal data collected with version 8.8 

of the Mplus statistical software, mainly because it permits the moderation of latent 

variables.  

 

Bayesian LGC Model Implemented  

The statistical model used for the moderation analysis was a Bayesian latent 

growth curve model (hereafter, B-LGC model) with structural equations [81,82]. 

Figure 2 presents the longitudinal structural model for this B-LGC model, which 

includes three continuous latent variables measured by multiple observed indicators. 

In particular, following the latent growth models proposed by [83–85], this B-LGC 

model contains six time-changing latent growth predictors, that is, five latent 

Variables Symbols Details Data Source
Dependent variables

Gross Profit Margin Pr_Mrg Percentage ratio between the gross profit (revenue minus 
cost of goods sold) and revenue Refinitiv Workspace®

EBITDA Margin EBITDA_Mrg
Percentage ratio between the EBITDA (earning before 
interest, tax, depreciation and amortization) and total 
revenue

Refinitiv Workspace®

Operating Margin Op_Mrg Percentage ratio between the operating income and 
revenue Refinitiv Workspace®

Independent variables
Direct emissions

Scope 1 Emissions Scope1 CO₂e Organization’s gross global Scope 1 emissions in metric 
tons CO₂-e CDP

Indirect emissions

Scope 2 Emissions Scope2 CO₂e
Organization’s gross global Scope 2 emissions in metric 
tons CO₂-e, including location-based and market-based 
accounting

CDP

Scope 3 Emissions Scope3 CO₂e
Organization’s gross global Scope 3 emissions, 
disclosing and explaining any exclusions, in metric tons 
CO₂-e

CDP

Moderator variable
Renewable Energy 
Consumption RENC Organization’s energy consumption totals (excluding 

feedstocks) in MWh from renewable sources CDP
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exogenous variables Xi (i = 1,2,3 . . . ,5) and one latent moderation variable Z, as well 

as three latent growth outcome variables Yj (j = 1,2,3) and an INT cross-product 

indicator representing the interaction (moderation) of Z. Because the observed 

metrics of the predictor variables Xi and Z correspond to the same point in time, the 

product indicator INT is determined by the cross product of the latent growth factors 

(slopes) ξ2 and ξ4 of Xi and Z, respectively. For their part, ηj1 and ηj2 correspond to 

the initial level (intercept) and the rate of change (slope) of Yj. In this case, being a 

linear growth model, all intercept factors are restricted to a constant value of 1 as a 

starting point (initial state) for any change (growth) over time. Likewise, all slope 

factors are specified using fixed-value restrictions (i.e., 0, 1, 2, 3, . . . , 6) that represent 

straight-line growth in order to capture the rate of change in the trajectories over time 

[83]. On the other hand, the Xi and Z growth curve factors interact with each other to 

influence the Yj endogenous growth factors. Lastly, the model’s three latent variables 

(Xit, Zt and Yjt) were measured in total with 63 observed variables, each measured at 

seven equidistant points in time (t1, t2, t3, . . . t7). 

 
Figure 2. Path diagram of the B-LGC model for a latent growth curve model for three constructs and seven time 
points (t = 1,2, . . . ,7). Note: Yjt = latent growth outcome variables (j = 1,2,3); Xit = latent growth predictor (i = 
1,2,3, . . . ,5); Z = latent moderation variable; ξ3, ξ4 = intercept and slope factors for Z; η1, η2 = intercept and 
slope factors for Yjt; INT = latent product indicator for slope factor of moderating interaction term; ζ1 , ζ2 = 
latent residual variables; ε, δ = measurement error variables. Adapted with permission from [85]. Copyright © 
2014, Taylor & Francis Group, LLC. by Z. Wen 

 

Appendix A contains the full formula needed to estimate the hypothesized B-

LGC model, specifically for relationships between corporate carbon footprint (Scope 

1 CO₂e), clean energy innovation (RENC), and profits (Pr_Mrg). Appendix A also 

provides the Mplus-specific syntax for this multiple-indicator measurement model, 

which describes the relationships between latent moderation (Z), latent interaction 

terms (INT1 and INT2), the latent growth predictor (Xit), and latent growth outcome 

1 1 1 1 1 1 1

1
2 3 4 5 6

1 1 1 1 1 1 1

1
2 3 4 5 6

1 1 11 1 11

1
2 3 4 5 6
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(Yjt), as well as the structural model specifications, using Mplus commands. For the 

distribution parameters (priors) used in the Bayesian estimation, this study adopted 

previous non-informative priors, that is, Mplus default priors [79]. 

 
4. Empirical Results  

4.1. Diagnostic Testing of B-LGC Model Fit  

To verify the reliability of the results of the B-LGC model, this study employed 

two diagnostic tools. First, posterior predictive checks were used together with 

posterior predictive p-values (PPP) [77,79,80]. Essentially, this approach is based on 

the idea that Bayesian p-values seek to assess the quality of the model, that is, to 

ensure that the data generated by the model closely resemble the observed data. Any 

deviation would suggest an incorrect specification of the model [86,87]. For the 

proposed B-LGC model, the model’s fit is acceptable for calculated PPP greater than 

zero and close to 0.5 [79,80].  

Secondly, from a Bayesian perspective, using Markov chain Monte Carlo 

(MCMC) algorithms, we examined whether the B-LGC model converges correctly, 

using the potential scale reduction (PSR) factor [86], which is a specific numerical 

measurement of the default convergence criterion in Mplus [74,88]. The B-LGC 

model is estimated using a larger number of MCMC iterations (between 20,000 and 

30,000) in which PSR values close to 1 are considered evidence of convergence, which 

“means that convergence is achieved when the between-chain variation is smaller 

than the within-chain variation” [79] (p. 335). However, it is recommended to 

examine model convergence using other diagnostic tools, such as trace plots, 

autocorrelation plots, and posterior parameter distribution plots [80].  

 

4.2. Hypothesis Testing  

The numerical results of the analysis are shown in Table 4 (a) and (b). Both 

tables provide the standardized parameter estimates of the B-LGC model for each of 

the proposed hypotheses. For example, the fifth column presents the mean obtained 

from the posterior distribution in each simulation. The sixth column contains the 

posterior standard deviation (SD) for the mean of each interaction. In the seventh 

column, one-tailed PPP, based on posterior distribution, is provided for the 

significance tests of each of the proposed hypotheses. For each interaction parameter, 

the posterior probability interval [79,80], also known as the Bayesian 95% credible 

interval (CI), is shown. Finally, the level of statistical significance is shown for each of 

the proposed hypotheses. In a Bayesian context, “significant interaction” must be 

inferred when the credible interval does not contain zero [79].  

Table 4 (a) shows the results of the hypotheses of direct interaction between 

CCFP and CP. In this table, we can see that the PSR measurements dropped rapidly 

to values close to 1.0 and remained at 1.0 between 10,000 and 20,000 MCMC 

iterations, which indicates that the convergence of the B-LGC model was achieved in 

all the MCMC hypotheses. Moreover, all the point estimates of the mean slope 
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parameters reached PPP values greater than zero and below 0.05, which indicates an 

absolute fit of the B-LGC model in the Bayesian framework. With respect to the 

statistically significant results of the direct CCFP→CP interaction, only hypotheses 

H1b, H3a, H4b, H4c, H5a, H5b and H5c obtained plausible values at a significance 

level of 5%, since their corresponding CIs [−0.602, −0.101], [0.167, 0.643], [−0.647, 

−0.101], [−0.512, −0.020], [−0.521, −0.004], [−0.635, −0.098] and [−0.501, –0.014] do not 

contain zero.  

Table 4 (b) presents the results for the longitudinal moderation of clean energy 

innovation (CEI) on the direct CCFP→CP relationship. All hypotheses achieved 

convergence for the estimated parameter (mean), including hypothesis H8c, which 

reached a PSR value of 1.048 at 29,300 iterations. However, according to [79], PSR 

values less than or equal to 1.1 are also considered evidence of convergence. 

Similarly, all PPP values indicated the good fit of the B-LGC model and the 

moderating effect of the CEI construct on the relationship between the exogenous 

(corporate carbon footprint) and endogenous variables (corporate profits). In fact, 

only hypothesis H8a showed the statistical significance of the moderating effect of 

the CEI construct, measured by the continuous observed moderator variable RENC, 

on the direct relationship between the observed variables Scope3 CO₂e →Pr_Mrg, 

given that its Bayesian 95% CI of [−0.991, −0.774] does not include zero, implying a 

positive intervention (moderation) effect. Figure 3 shows the standardized solution, 

confidence intervals, variance estimates, and standard errors provided by the Mplus 

diagram for H8a. This output diagram shows a value of 0.886 and a confidence 

interval of (−0.991, −0.774) for INT2. However, hypotheses H7a, H7b, and H8c 

displayed a PPP of 0.405, 0.490, and 0.357, respectively—all close to 0.5 but with a 

very narrow CI that includes zero. These can be interpreted as marginal effects 

caused by the moderating interaction of the CEI variable [79]. 

 
Figure 3. Mplus output diagram obtained for B-LGC model examined in hypothesis 

H8a. 
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4.3. Graphic Illustrations of Longitudinal Moderating Effect  

Figure 4 shows the Bayesian trace plot of each chain of the MCMC process 

during the 20,000 iterations, which indicates a proper convergence of the 

autoregressive slope parameter corresponding to the moderating interaction term 

(INT) of the B-LGC model. This can be seen by the fact that there are no trends or 

large fluctuations in the trace plot, which confirms that there were no abnormalities 

in the model’s convergence [89]. On the other hand, Figure 5 presents the 

autocorrelation plot for the autoregressive slope parameter, also corresponding to the 

interaction term INT, where the autocorrelation value is shown on the y-axis and the 

time lag between the 20,000 MCMC iterations on the x-axis. More specifically, this 

plot shows a relatively high autocorrelation (just over 0.5) for shorter lags between 

iterations. As the time lag increases, however, the autocorrelation becomes smaller 

(close to zero). This is a positive result, considering that “ideally, each MCMC 

iteration should result in independent information for the posterior distribution of a 

parameter (autocorrelation of zero)” [74] (p. 267). Finally, Figure 6 shows the 

posterior distribution of the mean slope parameter of the INT term. As we can see, 

this distribution is roughly symmetric. In fact, these distributions do not need to be 

normal or symmetrical in Bayesian analysis [88]. The mean, median, and mode were 

0.886, 0.902, and 0.927, respectively. The posterior SD was relatively small (0.112), 

indicating negligible uncertainty about the true value of the mean slope parameter of 

the INT term. This is reflected in the narrow CI range obtained, which goes from 

−0.99108 to −0.77367 and does not cover zero. Consequently, it can be argued that the 

number of data points used (N = 167: 4509 total data points) to test hypothesis H8a 

was sufficient to obtain low uncertainty and high statistical power. 
 
Table 4. (a) Numerical summary of B-LGC model estimate parameters for direct interaction effects 

between corporate carbon footprint (CCFP) and profits (CP). (b) Numerical summary of B-LGC model 

estimate parameters for the interaction (moderating effects) of CEI (measured by RENC) on the 

CCFP→CP relationship. 

 

Simulation Direct interaction effect Number of PSR Estimate Posterior PPP Significance

(Hypotheis) (CCFP→CP) Iterations Measurement (mean) S.D. One-Tailed Bottom 
2.5%

Top 2.5%

Direct CO₂ emissions
H1a Scope1 CO₂e → Pr_Mrg 14,300 1.000 -0.200 0.128 0.058 -0.444 0.057
H1b Scope1 CO₂e → EBITDA_Mrg 10,800 1.000 -0.354 0.128 0.004 -0.602 -0.101 **
H1c Scope1 CO₂e → Op_Mrg 16,200 1.000 -0.226 0.120 0.032 -0.464 0.008

Indirect CO₂ emissions
H2a Scope2 CO₂e → Pr_Mrg 9,700 1.000 -0.164 0.116 0.082 -0.391 0.061
H2b Scope2 CO₂e → EBITDA_Mrg 17,200 1.000 -0.190 0.127 0.071 -0.429 0.066
H2c Scope2 CO₂e → Op_Mrg 9,400 1.000 -0.005 0.004 0.127 -0.013 0.003

Supply‐chain CO₂ emissions
H3a Scope3 CO₂e → Pr_Mrg 14,000 1.000 0.403 0.123 0.003 0.167 0.643 **
H3b Scope3 CO₂e → EBITDA_Mrg 22,500 1.000 0.213 0.183 0.118 -0.229 0.517
H3c Scope3 CO₂e → Op_Mrg 29,300 1.048 0.062 0.261 0.352 -0.464 0.458

Direct and Indirect
H4a [Scope 1+2 CO₂e] → Pr_Mrg 11,700 1.000 -0.259 0.133 0.026 -0.518 0.006
H4b [Scope 1+2 CO₂e] → EBITDA_Mrg 9,900 1.000 -0.374 0.140 0.004 -0.647 -0.101 **
H4c [Scope 1+2 CO₂e] → Op_Mrg 13,700 1.000 -0.264 0.126 0.018 -0.512 -0.020 **

Corporate value‐chain
H5a [Scope 1+2+3 CO₂e] → Pr_Mrg 14,700 1.000 -0.260 0.132 0.023 -0.521 -0.004 **
H5b [Scope 1+2+3 CO₂e] → EBITDA_Mrg 18,100 1.001 -0.371 0.137 0.003 -0.635 -0.098 **
H5c [Scope 1+2+3 CO₂e] → Op_Mrg 11,500 1.000 -0.259 0.124 0.018 -0.501 -0.014 **

95% C.I.
(a)
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** p-value ≤ 0.05 and C.I does not include zero, implying a positive moderating effect. * p-value ≤ 0.05 

and C.I includes zero, implying a marginal positive moderating effect. Note: All estimates are 

standardized model results. RENC = Renewable Energy Consumption; Pr_Mg = Gross Profit Margin 

%; EBITDA = EBITDA Margin %; Op_Mrg = Operating Margin %; CI = Credible Interval; S.D. = 

Standard Deviation; PSR = Potential Scale Reduction; PPP = Posterior Predictive p-Value. 

 

 
Figure 4. Bayesian trace plot obtained for the slope factor of the moderation 

interaction term (INT) examined in H8a. 
 

 

 

 

 

 

 

Simulation Moderation Interaction Effect Number of PSR Estimate Posterior PPP Significance

(Hypotheis) of RENC Iterations Measurement (mean) S.D. One-Tailed Bottom 
2.5%

Top 2.5%

Direct CO₂ emissions
H6a Scope1 CO₂e  → Pr_Mrg 14300 1.000 -0.044 0.033 0.090 -0.109 0.019
H6b Scope1 CO₂e → EBITDA_Mrg 10800 1.000 -0.063 0.035 0.037 -0.132 0.007
H6c Scope1 CO₂e → Op_Mrg 16200 1.000 -0.032 0.031 0.154 -0.095 0.028

Indirect CO₂ emissions
H7a Scope2 CO₂e → Pr_Mrg 9700 1.000 -0.016 0.062 0.405 -0.140 0.107 *
H7b Scope2 CO₂e → EBITDA_Mrg 17200 1.000 0.001 0.067 0.490 -0.134 0.133 *
H7c Scope2 CO₂e → Op_Mrg 9400 1.000 -0.001 0.002 0.285 -0.005 0.003

Supply‐chain CO₂ emissions
H8a Scope3 CO₂e → Pr_Mrg 14000 1.000 -0.886 0.112 0.003 -0.991 -0.774 **
H8b Scope3 CO₂e → EBITDA_Mrg 22500 1.000 -0.733 0.554 0.111 -0.995 0.914
H8c Scope3 CO₂e → Op_Mrg 29300 1.048 -0.266 0.855 0.357 -0.985 0.960 *

Direct and Indirect
H9a [Scope 1+2 CO₂e] → Pr_Mrg 11700 1.000 -0.050 0.033 0.059 -0.115 0.014
H9b [Scope 1+2 CO₂e] → EBITDA_Mrg 9900 1.000 -0.060 0.035 0.042 -0.130 0.009
H9c [Scope 1+2 CO₂e] → Op_Mrg 13700 1.000 -0.034 0.031 0.135 -0.096 0.026

Corporate value‐chain
H10a [Scope 1+2+3 CO₂e] → Pr_Mrg 14700 1.000 -0.050 0.032 0.056 -0.116 0.012
H10b [Scope 1+2+3 CO₂e] → EBITDA_Mrg 18100 1.001 -0.060 0.035 0.042 -0.130 0.008
H10c [Scope 1+2+3 CO₂e] → Op_Mrg 11500 1.000 -0.034 0.031 0.133 -0.093 0.028

95% C.I.
(b)
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Figure 5. Parameter autocorrelation plot obtained for the slope factor of the moderation 

interaction term (INT) examined in H8a. 

 

 

 
Figure 6. Posterior parameter distribution plot obtained for the slope factor of the 

moderation interaction term (𝐼𝑁𝑇) examined in H8a. 

 

5. Discussion  

These results clearly illustrate that the reduction of the CO₂e emissions 

inventory in those industrial sectors with a high consumption of fossil fuel-based 

energy sources helps to improve corporate environmental and financial performance. 

Two conclusions can be drawn from these results. First, continuing to focus on 

measuring and reducing emissions solely from their own operations (Scope 1 CO₂e) 

and from their own electricity consumption (Scope 2 CO₂e) continues to be profitable 
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for these companies in the short term. Secondly, the world’s largest energy-intensive 

companies appear to derive greater economic benefits from having a more accurate 

and detailed understanding of their supply chain’s GHG emissions (Scope 3 CO₂e). 

Consequently, these empirical results are consistent with the resource-based view 

(RBV) of the firm.  

On the other hand, this study suggests that, although clean and renewable 

energies can aid in the deep decarbonization of the sample of companies studied, the 

results show that the changeover to new sources of clean and renewable energy is a 

gradual process that requires considerable capital investment [15], thus dampening 

the effect of Scope 2 CO₂e and Scope 3 CO₂e emissions reduction on the efficiency of 

energy- and CO₂e-intensive firms to generate greater profits. Likewise, our results 

indicate that innovation based on clean and renewable energy technologies, when 

driven by government environmental policies aimed at reducing corporate value 

chain emissions (Scope 3 CO₂e), represents an effective mechanism to help these 

companies achieve the objective of net zero emissions and increase the profitability of 

their businesses, since value chain emissions (Scope 3 CO₂e) represent most of a 

company’s total carbon footprint [90]. According to ecological modernization theory 

(EMT), this result is consistent with an “eco-innovation” strategy [51,55].  

This paper makes three main contributions to the literature on business and 

environmental sustainability. First, it integrates two theoretical frameworks—eco-

innovation theory [91–93] and ecological modernization theory [51,94]—using a 

structural equation model which has predictive and explanatory power [95]. Second, 

it provides empirical evidence of the positive moderating effect of clean energy 

innovation on the efforts of high-polluting industries to reduce their carbon footprint 

while generating higher returns for their shareholders, and at the same time reducing 

this negative impact on climate change. Third, it identifies the importance of 

technological innovation in clean energy as part of the transition towards deep and 

accelerated decarbonization in these industries. 

 
6. Conclusions and Implications  

The findings reveal that corporate carbon footprint has a significantly positive 

impact on profits. More specifically, we found a significant positive relationship 

among the following direct interactions: (a) Scope 1 CO₂e on EBITDA_Mrg; (b) Scope 

3 CO₂e on Pr_Mrg; (c) Scope 1 + 2 CO₂ee on EBITDA Mrg and Pr_Mrg; and d) Scope 1 

+ 2 + 3 CO₂ee on EBITDA_Mrg, Pr_Mrg, and Op_Mrg. On the other hand, the results 

of the BLGC model also support the hypothesis that clean energy innovation, when 

measured using renewable energy consumption, positively moderates the 

relationship between value chain emissions (Scope 3 CO₂e) and gross profit margin 

in energy- and CO₂e-intensive industries. Furthermore, we found only marginal 

effects due to the moderating interaction of renewable energy consumption on the 

relationship of Scope 2 CO₂e emissions with gross profit margin and EBITDA margin, 

as well as the relationship between Scope 3 CO₂e emissions and operating margin. 

This paper has several important implications for academics, senior executives of 
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companies with significant fossil CO₂e emissions, and those who make public policy 

associated with GHG emissions and climate change. For researchers and academics, 

this study provides empirical evidence of the impact of clean energy innovation on 

CO₂e-intensive companies in a global context of deep industrial decarbonization, and 

also substantiates the importance of the concept of eco-innovation taken from the 

ecological modernization approach [54] in management practices and corporate 

environmental strategies. For executives and managers of CO₂e-intensive companies, 

it shows that greater competitive advantages can effectively be obtained by placing 

importance on the emissions of the firm’s entire value chain (Scope 3 CO₂e) and not 

only Scope 1 and Scope 2 CO₂e emissions. According to [32], carbon reduction 

policies focus on achieving significant reductions within specific countries or regions. 

Extrapolating from this, one policy implication is that particular attention needs to be 

paid to Scope 3 CO₂e emissions produced by CO₂e-intensive firms operating in 

different industries and countries in order to design regulatory and control 

mechanisms that incentivize renewable energy consumption. Second, applying 

greater pressure to energy-intensive firms to disclose their upstream and 

downstream supply chain emissions (Scope 3 CO₂e) can lead to more effective eco-

innovation strategies and greater CO₂e reductions. Third, policies and regulatory 

frameworks for clean energy innovation must engage in a harmonization process 

among countries and regions considered high CO₂e emitters by helping CO₂e-

intensive companies to build greater environmental benefits and further competitive 

advantage. This study had some limitations, however, that can be cleared up by 

future research. First, given the obviously sparse literature on clean energy 

innovation metrics at the firm level, we used a single output metric as an indicator 

for this construct. Future studies could include additional input metrics, that is, those 

corresponding to the first stages of the innovation process for clean energy 

technologies. Second, due to the relative lack of reliable statistical data, the time 

horizon of this longitudinal study was limited to 7 years (2015 to 2021), while the 

existing literature on longitudinal studies suggests the need for a minimum 

timeframe of 10 years to counteract random variation [96]. Therefore, future research 

might explore extensions of this timeframe, even using data containing missing 

values.  
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Appendix A Mplus-Specific Syntax for the B-LGC Model 
 

 
by S. Depaoli, H. M. Rus, J. P. Clifton, R. van de Schoot, & J. Tiemensma, 2017, Health Psychology 

Review, 11(3), 248–264. [76]. 
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Chapter 2. Conclusions and Recommendations 

Conclusions 

The findings of this research indicated that out of the fifteen hypotheses put forth to 

investigate the direct positive relationship between carbon footprint and corporate profits, 

only seven (H1b, H3a, H4b, H4c, H5a, H5b, and H5c) yielded statistically significant values 

at a 5% significance level. More specifically, a significant positive relationship was observed 

between the following direct interactions: (a) Scope 1 on EBITDA_Mrg, (b) Scope 3 on 

Pr_Mrg, (c) Scope 1+2 on EBITDA_Mrg and Pr_Mrg and, (d) the Scope 1+2+3 on 

EBITDA_Mrg, Pr_Mrg and Op_Mrg. This conclusion is supported by the corresponding 

confidence intervals, which do not include zero: [-0.602, -0.101], [0.167, 0.643], [-0.647, -

0.101], [-0.512, -0.020], [-0.521, -0.004], [-0.635, -0.098], and [-0.501, -0.014]. 

In a similar vein, the findings of the B-LGC model provide further evidence in support 

of hypothesis H8a (Scope3 CO₂→Pr_Mrg), as the Bayesian 95% confidence interval of [-

0.991, -0.774] does not encompass zero. This latest finding provides evidence that the 

adoption of clean energy technology, as assessed by the use of renewable energy sources, has 

a positive effect on the relationship between value chain emissions (specifically Scope 3 

emissions) and the gross profit margin within industries that depend heavily on energy and 

contribute significantly to pollution. Furthermore, our analysis revealed the hypotheses H7 

(Scope2 CO₂ → Pr_Mrg), H7b (Scope2 CO₂ → EBITDA_Mrg), and H8c (Scope3 CO₂ → 

Op_Mrg) to exhibit posterior predictive p-values (PPP) of 0.405, 0.490, and 0.357, 

respectively, which are in close reach to 0.5. However, it is important to note that the 

confidence intervals (C.I) associated with these hypotheses are very narrow and encompass 

zero. This suggests that the observed effects may be marginal and influenced by the 

moderating interaction of innovation in clean energy, as proposed by Muthén and 

Asparouhov, (2012). 
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This study represents the first empirical research into the moderating effect of clean 

energy innovation on the link between carbon footprint and corporate profit in major 

companies operating within energy-intensive industry sectors and emitting significant 

amounts of CO₂. Moreover, this investigation contributes to the existing empirical literature in 

the field of business and environment by examining the impacts of latent variables, 

specifically corporate carbon footprint and corporate profit, while also considering the 

moderating variable of renewable energy consumption. 

Implications 

The findings of this empirical research have considerable implications for scholars, 

senior executives of companies with significant fossil CO₂e emissions, and policymakers 

engaged in GHG emissions and climate change. This study provides empirical findings on the 

influence of clean energy innovation on energy and CO₂e-intensive firms within a global 

context of deep industrial decarbonization. Additionally, it supports the significance of the 

concept of eco-innovation within the framework of ecological modernization, as applied to 

management practises and corporate environmental strategies. The results of the study suggest 

that executives and managers of companies with high CO₂e emissions can achieve significant 

competitive advantages by prioritising the assessment and reduction of CO₂e emissions 

throughout their entire value chain (Scope 3), rather than focusing solely on Scope 1 and 

Scope 2 emissions. 

According to a study conducted by the World Business Council for Sustainable 

Development (WBCSD) and the World Resources Institute (WRI) in 2015, the main goal of 

carbon reduction policies is to attain substantial reductions in GHG emissions within 

designated countries or regions. Based on this analysis, it is evident that a significant policy 

implication arises, namely the necessity to prioritise the monitoring and regulation of Scope 3 

CO₂e emissions produced by firms operating in many different sectors and countries. This 
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imperative highlight the need to develop effective mechanisms that encourage the adoption of 

renewable energy sources. Furthermore, implementing increased pressure on energy-intensive 

firms to disclose their upstream and downstream supply chain emissions, specifically Scope 3 

CO₂e, can result in enhanced eco-innovation strategies and a larger reduction in CO₂e 

emissions. Thirdly, it is imperative for policies and regulatory frameworks pertaining to clean 

energy innovation to undergo a process of harmonisation across nations and regions that are 

identified as significant contributors to CO₂e emissions. This harmonisation process should 

involve assisting companies with high CO₂e emissions in developing enhanced environmental 

benefits and gaining greater competitive advantages. 

Recommendations 

One significant limitation identified in this study, which should be addressed by future 

research, is the scarcity of literature on measurements for clean energy innovation. In 

addition, there is a relative lack of reliable statistical data at the firm level, which discourages 

the conducting of longitudinal quantitative studies. Richard et al., (2009) argues that a 

minimum time frame of 10 years is needed for reducing the adverse effects of random 

variation in longitudinal studies. Therefore, it is plausible for other scholars to investigate 

potential expansions of this time frame time frame, potentially employing datasets that 

encompass instances of missing values. 

Furthermore, as an objective measure of clean energy innovation, this study relied 

solely on renewable energy consumption. However, it would be quite interesting for future 

research to include additional quantitative metrics corresponding to the different stages of 

energy innovation. In fact, Gallagher et al. (2006) distinguish between three categories of 

quantitative innovation metrics: input metric, output metric, and outcome metric. In the 

energy domain, input metrics correspond to the initial phases of innovation, for which 

expenditures (or investments) are the primary input. Financial investments in research, 
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development, and demonstration (RD&D) and research and development (R&D) intensity are 

the most commonly used input metrics in clean energy (Gallagher et al., 2011; Pless et al., 

2020; Zhang et al., 2021). In contrast, the most commonly used output metrics include the 

number of new technologies implemented, the consumption of energy from renewable 

sources, and the number of patents granted (Gallagher et al., 2011; (Zhang et al., 2021). 

Finally, the output metrics consist of measures of economic outcomes, such as market 

penetration (i.e. market share), and operational measures, such as energy intensity (efficient 

use of energy) and GHG emissions intensity (Gallagher et al., 2006; Gallagher et al., 2011; 

Zhang et al., 2021). 

Clean energy innovation has emerged as a significant subject of interest within 

academic circles, as highlighted by Bai et al., 2020. Recent empirical studies provide evidence 

for the potential contribution of clean energy technology innovation to global endeavours 

aimed at mitigating climate change and enhancing economic competitiveness (Sharma et al., 

2021; Wang et al., 2020). Consequently, it is imperative for future research to investigate and 

delineate the cumulative scientific knowledge and evolutionary intricacies within the field of 

clean energy innovation through the application of bibliometric analysis.  
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