
Facultade de Informática

TRABALLO FIN DE GRAO
GRAO EN ENXEÑARÍA INFORMÁTICA

MENCIÓN EN ENXEÑARÍA DO SOFTWARE

Tool to automatically extract and import
data from OpenStreetMap into relational

databases

Estudante: David Gayoso Salvado

Dirección: Alejandro Cortiñas Álvarez

Miguel Ángel Rodríguez Luaces

A Coruña, junio de 2023.

To my parents Juan and Conchi, I hope you are as proud of me as I am of you.

Acknowledgements

Many of us who have done a end-of-degree project for the first time have been constantly
pushing ourselves, not only with the deadlines for completing our studies and obtaining the
much-prized degree, but also in more personal matters. This means that, as time goes by,
everything revolves around this paper. In this situation I ask for forgiveness and at the same
time I thank my friends for their patience, who understood me in the hardest moments of
the process. I also want to thank my parents for their dedication. Without them and their
unconditional support I would not have made it. Thank you for teaching me that hard work
pays off and I am the one who must fight for what I want. I would also like to thank the
CICAS chair for the funding received for the completion of this end-of-degree project. It is
an incredible joy to see my work receives this kind of recognition. Finally, a special mention
to some true commited people with the cause and who were my guide. Thanks to both my
tutors for their constant follow up. I am grateful for having dedicated their time to direct my
project and helping me through the whole process.

Abstract

The objective of this end-of-degree project is to develop a tool which allows to extract
and import automatically data from OpenStreetMap (OSM) to relational databases quickly
and easily.

In order to achieve this goal, we defined a Domain Specific Language (DSL) which simpli-
fies the requests to obtain the data and insert it on the corresponding database. Following up
a library capable of interpreting and executing the language was designed, and finally a small
web application to simplify the use of the previously mentioned library was implemented.

In the development, PostgreSQL is used for the storage of information, as well as Leaflet
for data visualization on maps. Vue.js is used for the frontend as well as Spring for the back-
end.

The end-of-degree work is managed following an iterative and incremental methodology
for software development.

Resumo

El objetivo de este trabajo de fin de grado es desarrollar una herramienta la cuál permita
extraer e importar automáticamente datos de OpenStreetMap (OSM) a bases de datos relacio-
nados de manera rápida y sencilla.

Para lograr este objetivo, se definió un Domain Specific Language (DSL) que permitiera
simplificar las peticiones para obtener los datos. A continuación, se desarrolló una librería
capaz de interpretar y ejecutar el lenguaje diseñado y, finalmente, se creó una aplicación web
que simplica el uso de la librería previamente mencionada.

En el desarrollo, se usa PostgreSQL como almacén de datos, así como Leaflet para visua-
lizar los datos obtenidos en mapas. Se utiliza Vue.js para implementar el frontend y Spring
para el backend.

El trabajo de fin de grado se gestiona siguiendo una metodología iterativa e incremental.

Keywords:

• OpenStreetMap

• Web application

• Java

• Vue.js

• PostgreSQL

• Spring Boot

• Leaflet

• Git

• Tasks

• Databases

• Users

Palabras chave:

• OpenStreetMap

• Aplicación web

• Java

• Vue.js

• PostgreSQL

• Spring Boot

• Leaflet

• Git

• Tareas

• Bases de datos

• Usuarios

2

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 2

2 Technology fundamentals 4
2.1 State of the art . 4
2.2 Used technologies . 6

3 Methodology and planning 8
3.1 Development methodology . 8
3.2 Planning and monitoring . 10

4 Analysis 15
4.1 Requirements . 15

4.1.1 Web application . 15
4.1.2 Parser library . 17

4.2 System architecture . 17
4.3 User interface . 19
4.4 Conceptual data model . 23

5 Design 27
5.1 Technological system architecture . 27
5.2 Application design . 28

5.2.1 Back-end . 29
5.2.2 Front-end . 39
5.2.3 Parser . 43

5.3 Domain Specific Language design . 45

i

CONTENTS

6 Implementation and tests 50
6.1 Implementation . 50

6.1.1 OverpassAPI performance limitation 50
6.1.2 Communication between the library and the server 51
6.1.3 Strategy pattern . 53
6.1.4 Parallel execution . 54

6.2 Tests . 56
6.2.1 Unit tests . 56
6.2.2 REST tests . 58
6.2.3 Integration and acceptance tests . 60
6.2.4 Library tests . 60

7 Developed solution 62
7.1 Log in and sign up . 62
7.2 Tasks historic . 63
7.3 Create tasks . 64
7.4 My databases . 65
7.5 Update database . 66
7.6 Add database . 67
7.7 Task execution report . 68
7.8 Data visualization . 69

8 Conclusions and future work 71
8.1 Conclusions . 71
8.2 Future work . 72

8.2.1 Periodic tasks . 72
8.2.2 Reverse transformation . 72

A Installation steps 74
A.1 Required software . 74
A.2 Deploy steps . 74

B Mockups 76

C DSL structure 91

List of Acronyms 97

Bibliography 98

ii

List of Figures

2.1 Feature search screen . 4
2.2 Feature search screen . 5

3.1 Incremental Methodology . 9
3.2 Monitoring . 12
3.3 Monitoring Gantt Diagram . 13

4.1 System architecture . 18
4.2 Screen prototype - Login . 19
4.3 Screen prototype - Home . 20
4.4 Screen prototype - Create task . 20
4.5 Screen prototype - Data visualization . 21
4.6 Screen prototype - Add new database . 21
4.7 Screen prototype - My databases . 22
4.8 Screen prototype - Update database . 22
4.9 Application data model . 23

5.1 Technological system architecture . 28
5.2 Server diagram . 29
5.3 Task DAO . 30
5.4 DAO pattern diagram [1] . 31
5.5 User, Catalog and Database Service . 33
5.6 GeoJson, Log and Task Service . 34
5.7 Facade pattern diagram [2] . 38
5.8 Client package diagram . 40
5.9 Model-View-ViewModel pattern [3] . 42
5.10 Callback pattern [4] . 42
5.11 Promise pattern [5] . 43

iii

LIST OF FIGURES

5.12 Parser package diagram . 44
5.13 Domain Specific Language . 46
5.14 Query example . 48

6.1 Retry algorithm . 51
6.2 Callback interface . 52
6.3 Callback passing by parameter . 52
6.4 Communication between library and server 53
6.5 Callback method implementation . 53
6.6 Strategy Pattern interface . 54
6.7 Executor Service . 55
6.8 Executor use . 56
6.9 Unit tests package structure . 57
6.10 Unit test - Structure . 57
6.11 Exception test . 58
6.12 POST authentication request . 59
6.13 GET request . 59

7.1 Login page . 62
7.2 Sign up page . 63
7.3 My tasks . 64
7.4 Task running . 64
7.5 Create task . 65
7.6 Rerun task . 65
7.7 User databases . 66
7.8 Update database connection parameters . 67
7.9 Add database . 68
7.10 Task execution report . 68
7.11 Database imported data . 69

iv

List of Tables

3.1 Human resources costs . 11

4.1 User entity . 23
4.2 Database entity . 24
4.3 Type entity . 24
4.4 EntityTable entity . 24
4.5 Task entity . 25
4.6 Log entity . 25

5.1 User Controller . 36
5.2 Catalog Controller . 36
5.3 Database Controller . 37
5.4 User Controller . 37
5.5 Log Controller . 37
5.6 Task Controller . 37
5.7 Web Application routes . 41

v

Chapter 1

Introduction

This chapter discusses the main motivation for this project and the objectives it must meet in
order to be successful.

1.1 Motivation

OpenStreetMap (OSM) [6] is a community platform for geographic data. It started as a free al-
ternative toGoogleMaps, but over time it has become the leading repository of freely available
geographic data. In OSM, very heterogeneous data can be found since the users themselves
are in charge of digitizing the information, accessing it from any device to indicate the pres-
ence of any type of geographically localized element, usually real estate, but also road signs,
traffic signals, zebra or barriers. OSM data set can be consulted in different ways, including
dowloading data from a raw mapa section or using Overpass API [7] which allows to perform
requests with advanced filters to recover only the neccessary data.

Currently, developers have to import the data manually, which indeed is not an easy pro-
cess since it requires highly specific knowledge on how to work with raw data from OSM or
the query syntax from Overpass API, which is extremely complex. If we had a Geographic
Information System (GIS), we may want to use data from OSM, so then we would have to go
through the tedious and manual process described above. If we had to do the same process
for several GIS systems, it’s a lot of repetitive work. The realization of this project arises from
the need of obtaining data from OpenStreetMap in a simple and efficient way.

In this end-of-degree project the main goal is the development of a tool which simplifies
the data integration from OpenStreetMap into relational databases. The application is called
OSMParser and will allow users with different needs to import data, avoiding the use of an
extremely complex API.

To achieve this goal, we will define a Domain Specific Language (DSL), design and im-
plement a library capable of interpreting and executing this language, and finally develop a

1

CHAPTER 1. INTRODUCTION

small web application that simplifies the use of this library.

1.2 Objectives

From the main objetive that has been described above, this project must meet the following
specific requirements:

• Analysis of both the data and query language used by OpenStreetMap, and extraction
of the tool requirements.

• Definition of a domain specific language that allows to perform both the data extraction
and importation. This language must allow to execute the mapping between the data
from OpenStreetMap and the data schema from the relational database.

• Design and implementation of a programming library responsible of analyzing instances
of the defined language.

• Both the language and the programming library to be defined must be easy to use.

• Automate the process of inserting OSM data into relational databases.

• Design and implementation of simple and intuitive web application which acts as an
interface for the library. The application must be capable of executing import tasks in
a parallel way.

• Allow the visualization of previously imported data on a map viewer.

2

CHAPTER 1. INTRODUCTION

3

Chapter 2

Technology fundamentals

This chapter shows similar applications in which the author has based his work and the dif-
ferent technologies used in the project.

2.1 State of the art

Based on the objectives described in the previous section, a search for both tools and appli-
cations that can support our needs has been carried out. Among the different applications
found, two of them stand out: OSM Extraction Tool and Overpass Turbo.

OSM Extraction Tool [8] is a web application that provides a user-friendly interface to
facilitate access to OSM data, built on the basis of the Overpass API. The application allows to
navigate to areas of interest on the map, access data generated by mass collaboration easily
and download features of interest (selected using a menu of options) of OpenStreetMap. Its
main disadvantage is that it does not allow to perform any type of query for the Overpass
API.

Figure 2.1: Feature search screen

4

CHAPTER 2. TECHNOLOGY FUNDAMENTALS

Overpass Turbo [9] is a web based data mining tool for the Overpass API. It should be
noted an interesting feature: it allows to export the data, the query and the map itself, all of
them in different formats. Unlike the previous tool, it can execute any type of query from
the Overpass API and display the data on a interactive map. Moreover, its filtering system
is more advanced than the rest of alternatives. However, the API query syntax is extremely
difficult and tedious and makes it hard to perform complex queries.

Figure 2.2: Feature search screen

On top of that, there is one more possible alternative apart from the ones mentioned
before. As said before in the previous chapter, developers could import the data manually,
that is: either downloading raw data and then processing, filtering and uploading it to the
corresponding database, or creating a script to execute queries using the Overpass API and
insert the results into the database. However, both cases are not easy to implement, since it
is required deep knowledge on how to work with OSM raw data or how query syntax from
Overpass works (which is very complex). In addition, in any case it would be necessary to
perform the transformation between the data in the OSM model and the concrete domain
from the database.

After analyzing all the alternatives explained in this section, it has been checked that the
current alternatives do not meet all the project objectives. In order to develop a tool which
simplifies the data integration fromOpenStreetMap into relational databases the pre-
vious alternatives will be taken as reference in terms of data collection, data visualization,…
and new features like the access to different databases and users management will be added.

5

CHAPTER 2. TECHNOLOGY FUNDAMENTALS

2.2 Used technologies

• Spring Boot [10], is a framework that facilitates the configuration of a Spring project,
making it automatic.

• Spring Data JPA [11], is a Spring framework which simplifies data persistence in a
relational database.

• PostgreSQL [12], is an object-oriented relational database management system. It fea-
tures multiversion concurrency control (MVCC) and the use of read locks.

• PostGIS [13], is a PostgreSQL extension which allows to save geometric data on any
database.

• ANTLR [14], is powerful parser generator for reading, processing, executing, or trans-
lating structured text or binary files.

• Vue.js [15, 16], is a progressive framework for building user interfaces. Its core is
quite small and scales through plugins. It includes in the same file HyperText Markup
Language (HTML), Cascading Style Sheets (CSS) and JavaScript.

• Node.js [17], is a development platform for the creation of applications for the Web,
network-oriented and focused on speed and scalability.

• CSS (Cascading Stylesheets) is the style language used to describe the design of aWeb
page (colors, elements layout and fonts). Even though it is independent from HTML
(HyperText Markup Language), it is often used in conjunction with it.

• Javascript is the language used in Web pages in order to increase their functionality
and the user interaction.

• Leaflet [18], is an Open Source JavaScript library for map creation and geographic data
visualization.

• Bootstrap [19], is a toolkit for HTML, CSS and JavaScript development that provides
Sass variables to customize the interface.

6

CHAPTER 2. TECHNOLOGY FUNDAMENTALS

7

Chapter 3

Methodology and planning

This chapter explains the development methodology followed in this project and the planning
carried out.

3.1 Development methodology

The project realization process is divided into two really distinct stages.
During the first stage (during the 2021/2022 course), the author started the design of the

DSL and many of its properties, as well as implementing support for Overpass API requests
and the possibility of importing data in a specific type of relational database. However, no
user stories and sprints were described and the project objectives were not clear and well
defined. This is because no formal methodology was followed. Simply, the student worked
4 hours per week at the Database Lab (LBD) of the University of A Coruña and had several
meetings with the project managers during this period to review the work done, so things
were being implemented with sense.

It is important to mention that the student wrote a short article [20] describing what had
been implemented so far, and it was presented at the JISBD conference in September. The
presentation of this article means the completion of the first part of the process.

The second stage, which started at the end of 2022 once the project objetives were clear,
was carried out following an iterative and incremental methodology driven by the system
functionalities. Each iteration included the analysis, design, implementation and test phases
and has led to an increase in functionality to a deliverable product.

8

CHAPTER 3. METHODOLOGY AND PLANNING

Figure 3.1: Incremental Methodology

The first part was the preliminary analysis, which consisted mainly in selecting the
functionalities to be added. Then began the study of the neccessary technologies. Thus, both
a search and an analysis of different tools was carried out, of which the ones on Section 2.2
were selected. Finally, after studying the application global objective it was neccessary to start
thinking about the individual objectives of each iteration. A starting point was previously
built for this purpose:

• Mockups: prototypes of the web application were created. They were used in conjunc-
tion with the results obtained by the preliminary analysis to plan the iterations.

• Datamodel: the different data that the systemmust manage and its relationships were
defined with this model.

Regarding the structure of the different iterations, each one of them included the following
steps:

• Analysis: the new iteration was analyzed taking into account the requirements.

• Design: the different modules were defined carefully since they can be reused in the
following iterations.

• Development: what was defined in the previous phase was implemented, defining
both the entities and methods to carry out the defined features.

• Tests: first unit tests and then global ones of the created functionalities were devel-
oped, which checked that the implemented met the expectations and had an accurate
behaviour.

Once the iterations were completed, tests and documentation were carried out. The au-
thor carried out tests to check that the relationships between the different modules work as

9

CHAPTER 3. METHODOLOGY AND PLANNING

expected, that is, that this modules work together to offer the desired functionality. Regarding
documentation, it consists of the writing of this report.

The tools used are the following ones:

• Latex [21]: is a text composition tool. It has been used in the writing of this report.

• Postman [22]: tools that allows to perform HTTP requests to any Application Pro-
gramming Interface (API) to check that all our REpresentational State Transfer (REST)
connection works perfectly. It was used in the test phase to try the REST service.

• IntelliJ IDEA [23]: it is nothing more than an Integrated Development Environment
(IDE). It was used in the implementation of all the application.

• Balsamiq Mockups [24]: tool that allows to design interface prototypes. It was used
to create a first idea of how the web application would look like.

• Draw.io [25]: web application which allows to create any type of diagram.

• Gitlab [26]: web-based version control and collaborative development service based
on Git [27]. In addition to being a repository manager, it also offers wiki hosting and a
bug tracking system.

3.2 Planning and monitoring

This section shows the initial project planning and estimation. Finally, the deviations pro-
duced and the cost will be taken into account. The first stage of the development of the project,
as explained before, was not planned, but consisted of a research work and it is therefore not
described in this section.

The work is divided into 5 development iterations with a duration from 2 to 3 weeks,
depending on the workload and the author’s availability. The tasks to be carried out on each
iteration are the following:

• First iteration: this iteration covered everything related to the users managemement
(Log in, Sign up,…) and part of the Database module (Add, list, delete and update oper-
ations).

• Second iteration: focused on tasks, that is, creation, cancellation, filtering and seeing
execution report.

• Third iteration: this iteration was used to fix errors from previous iterations and to
add a feature to filter databases.

10

CHAPTER 3. METHODOLOGY AND PLANNING

• Fourth iteration: finished the Task module, that is, adding the final features of the
module.

• Fifth iteration: the last one concentrated on finishing the Database part and adding
the visualization of data on a map viewer.

In terms of resources for this project we can distinguish two different roles:

• Managers: they were in charge of both the planning and supervision of both the over-
all project and the iterations. In terms of the communication between the managers
and the authors follow-up meetings were carried out every 2 weeks approximately, de-
pending on the availability of the assistants, in which what to do in the next iteration
was planned and the previous was reviewed.

• Analyst/Programmer: this is the role of the author, whowas in charge of the analysis,
design, implementation and tests of every iteration to be performed.

For the planning a Gantt Diagram was made which exposes as tasks the iterations men-
tioned on Section 3.2. The start and end dates of the project would correspond to November
15, 2022 and June 1, 2023. It is important to mention that the project was interrumpted two
times, although these interrumptions were planned from the beginning so they did not affect
to the project original planification:

• From January 9 to 19: the cause was the preparation for the first term final exams.

• From April 1 to 8: because of the author’s holy week vacations.

In terms of costs, the author worked 5 hours a day approximately every day of the
week, which means 35 week hours approximately. Taking into account that the duration
of the project amounted to approximately 200 total days, the total hours amounted to 1000
hours. On the other hand, the project managers dedicated approximately 40 hours between
meetings and the report revision. Resources’ costs have been obtained the following way:

Actor Hours/person

David Gayoso Salvado 1000

Alejandro Cortiñas Álvarez 40

Miguel Ángel Rodríguez Luaces 40

Table 3.1: Human resources costs

11

CHAPTER 3. METHODOLOGY AND PLANNING

With regard to monitoring, during the project development there were deviations in
the duration of some tasks. But these deviations in task durations, being only of a few days,
ended up being compensated in later iterations, so the final effort for project completion did
not vary. It was only included the Monitoring Gantt Diagram which we can observe at Figure
3.2 due to the low difference regarding the Initial Planning.

Figure 3.2: Monitoring

12

CHAPTER 3. METHODOLOGY AND PLANNING

Figure 3.3: Monitoring Gantt Diagram

13

CHAPTER 3. METHODOLOGY AND PLANNING

14

Chapter 4

Analysis

In this chapter of the report we focus on the application analysis, describing the different
requirements of both the web application and the parsing library, the system architecture
and the data using a Class Diagram.

4.1 Requirements

4.1.1 Web application

One of the steps we have to perform before the development to describe the behaviour of the
system is the Software Requirements Specification (SRS). The different final requirements are
listed and detailed below:

User stories - Anonymous user

This actor refers to the user who can only login or register on the application.

• US01 - Register: the user will be able to register on the system after writing several
valid fields through a registration form.

• US02 - Login: the user will be able to login on the application writing a valid username
and password through a login form..

User stories - User

This actor refers to the normal user who is able to use any of the application available func-
tionalities.

• US03 - Logout: an user will be able to logout from the application at any moment.

15

CHAPTER 4. ANALYSIS

• US04 - Create tasks: the users will be able to create a new task. To do so, they must
fill out a form with the corresponding parameters: the name of the task and the query
itself. Users must specify the databases where they want to store the data, either using
the corresponding option on the form itself or entering the database connection on the
query.

• US05 - Add database: users will be able to add a new database to their account. They
must enter several fields such as the name of the database, a valid port number, the host,
the user, the password and the type of database. A notification showing the success or
not of the operation will be shown.

• US06 - My tasks: a list of all tasks previously executed by the user will be displayed.

• US07 - Filter tasks: users will be able to filter their previously executed tasks by dif-
ferent parameters, such as the name of the task or the start and end date.

• US08 - My databases: a list of all databases previously added by the user will be dis-
played.

• US09 - Delete database: it will be possible to delete a database at any moment.

• US10 - Update database: users will be able to update the connection parameters of
a database through an update form. A notification showing the success or not of the
operation will be shown.

• US11 - Filter databases: users will be able to filter their previously added databases
by different parameters, such as the name of the database or the host.

• US12 - Cancel task: users will have the option to cancel a running or waiting task if
needed.

• US13 - See task execution report: users will be able to see the execution process of a
task in real time. A notification will be displayed showing the success or failure of the
task execution (only if the user is in the task report view).

• US14 - Data visualization: once the users have executed a task, they will be able to
visualize the data imported on a interactive map viewer.

• US15 - Rerun task: it will be possible to rerun again a previously executed task. The
users will be redirected to the form to create a new task, so they have the possibility to
keep the task previous parameters or change them.

• US16 - Delete task: it will be possible to delete a database if needed.

16

CHAPTER 4. ANALYSIS

4.1.2 Parser library

The parsing library must meet some requirements in order to be able satisfy the needs of the
web application.

• US17: design of a declarative language composed of instructions that allow users, in a
simple and convenient way, to describe which OSM data set they want to retrieve, and
how the data should be transformed to fit the schema of the database where they want
to import it.

• US18: support for specifying multiple database connections of different types on the
same query.

• US19: support for carrying out several tasks in a parallel way.

• US20: allow to apply functions on the retrieved properties, e.g. type transformation or
spatial operations to calculate new geometries, defining a series of operations specific
to the DSL, but also allowing the execution of any function provided by the database.

• US21: possibility to add a default value for any attribute in case OSM does not retrieve
any value for that specific feature.

4.2 System architecture

The designed system follows a layered architecture, composed of a Web Server, a Client Web
and a self-developed library used by the Web Server. The client consumes data from the Web
Server using the REST architecture, while the library is a dependency of theWeb Server itself.
This architecture is useful, since it keeps a total independence between the different layers.

17

CHAPTER 4. ANALYSIS

Web Client

Web App

Web Server

REST

Database
resource

Task resource

User resource

Model

SERVICES

Database

DBMS
SQL

Parser

Task database

SGBD

tasks to
execute

OSM Parser
DSL

SQL

OSM Parser
Tool

OpenStreetMap

Overpass
API

Type resource

Log resource EntityTable
resource

OSM Parser Tool API

Figure 4.1: System architecture

18

CHAPTER 4. ANALYSIS

4.3 User interface

The developed user interface is a web application which allows the user to use all the func-
tionalities derived from the system requirements. Its main purpose is to ease the user interact
with the application and to act as the entry point for the rest of the system. The interface is
easy to handle and is very intuititve, but the target audience, as well as the system itself, is
domain expert users.

Some of the most importants screens are described below:

Figure 4.2: Screen prototype - Login

On Figure 4.2 is shown how the users can access to the application after entering their
credentials. After introducing the credentials and validating them, the user is redirected to
the main page, as shown on Figure 4.3.

Figure 4.3 shows the view after log in on the application. It is possible to observe a hor-
izontal menu on top which will allow to access to different sections. Furthermore, from this
screen the user will be able to filter the different tasks and to perform several actions like
deleting a task or see the task execution report.

19

CHAPTER 4. ANALYSIS

Figure 4.3: Screen prototype - Home

After clicking on the ‘+’ button, the users will be redirected to the section where they can
create a new task, whose design is shown on Figure 4.4. After the user introduces the task
parameters and executes the task, he/she will be redirected again to the home screen where
he/she will be able to see the task he/she have just executed.

Figure 4.4: Screen prototype - Create task

Once the task is created and its execution finished correctly, users will be able to see the
data imported on an interactive map viewer. Figure 4.5 shows the design for this view of the

20

CHAPTER 4. ANALYSIS

application.

Figure 4.5: Screen prototype - Data visualization

Figure 4.6 shows the screen where the users can add a new database to be used in any
of their tasks. After introducing the parameters, the system will check the connection to the
database with the given parameters and will warn the user in case of any error.

Figure 4.6: Screen prototype - Add new database

If the parameters are correct and the system can establish a connection with the database,
the user will be redirect to the view shown on Figure 4.7. On this page, the user can see

21

CHAPTER 4. ANALYSIS

all his/her previously added databases, filter them and perform several actions, like deleting
the database or updating it. Figure 4.8 shows the view which allows the user to update any
database.

Figure 4.7: Screen prototype - My databases

Figure 4.8: Screen prototype - Update database

The prototypes created in the initial analysis phase, which could not be included here due
to space constraints, can be visualized on Appendix B.

22

CHAPTER 4. ANALYSIS

4.4 Conceptual data model

The Web server will use a relational database, which will store all the information related
with users, tasks, databases, the different database types,… It will contain the information
neccessary for the system to work correctly. The following image shows a general view of all
the entities and their relationships. The different entities from the model together with their
attributes will also be shown.

Figure 4.9: Application data model

User Represents all the users from the system Type

id Unique user identifier Long

userName Username which allows user to log in String

password Password which allows user to log in String

Table 4.1: User entity

23

CHAPTER 4. ANALYSIS

Database Represents all the databases from the system Type

id Unique database identifier Long

database Field which contains database name String

port Field which contains database port Integer

host Field which contains database host String

user Field which contains database user String

password Field which contains database user String

Table 4.2: Database entity

Type Represents all the supported database types Type

id Unique type identifier Long

typeName Field which contains type name String

Table 4.3: Type entity

EntityTable Entities associated with a database Type

entityName Unique type identifier Long

Table 4.4: EntityTable entity

24

CHAPTER 4. ANALYSIS

Task Represents all the tasks from the system Type

id Unique task identifier Long

name Field which contains task name String

state Status of the task Enum

taskString Query text of the task String

creationDate Date representing the beginning of the task DateTime

finishedDate Date representing the end of the task DateTime

error Error ocurred in the task if any String

Table 4.5: Task entity

Log Represents all the execution logs from a task Type

id Unique log identifier Long

log Text of the log String

type Type of the log String

Table 4.6: Log entity

It is important to mention that on Table 4.4 we have a weak database entity, so it is iden-
tified by the database itself and its name.

25

CHAPTER 4. ANALYSIS

26

Chapter 5

Design

This chapter focus on the design phase of the application. It starts with a description of the
system architecture, then the logic data model and, finally, the application design, both back-
end and front-end, is discussed.

5.1 Technological system architecture

When carrying out the implementation of this system, it was previously mentioned that it
has been decided to implement a layered architecture.

PostgreSQL has been chosen to use for the database layer of the Web server component.
Data Access Object (DAO) is used for the connection between the model and the server. These
DAOs communicate with the service layer implemented with Spring and JPA (using Spring
Data).

REST is used to connect the Web server and the Web client. This client is implemented
with Vue.js and will make use of Leaflet, a Javascript library to create interactive maps and
Bootstrap, a CSS framework.

ANother Tool for Language Recognition (ANTLR) is used to create the DSL used by the
library component and Overpass API to import the data from OpenStreetMap.

This application is divided in three parts. The front-end part, the client, is the one the
user interacts with, the back-end part, the service, the part which the user cannot see and is
in charge of executing user requests and the parser, the library, the part which is in charge of
performing the requests to the Overpass API and obtaining data from the tasks started by the
users.

27

CHAPTER 5. DESIGN

Web Client

Web App

Vue App

Web Server

REST

Database
resource

Task resource

User resource

Model

SERVICES

Database

DBMS
SQL

Parser

Task database

SGBD

tasks to
execute

OSM Parser
DSL

SQL

OSM Parser
Tool

OpenStreetMap
Overpass

API

Type resource

Log resource EntityTable
resource

OSM Parser Tool API

Figure 5.1: Technological system architecture

5.2 Application design

To explain the application design, it is divided into front-end, back-end and the Parser library
component. The front-end is in charge of collecting user inputs and transforming and ad-
justing them to the back-end specifications. The back-end is in charge of receiving the data,
processing them, returning an answer according to the business logic and persisting the nec-
essary information. The front-end receives the response and shows it in a comprehensible

28

CHAPTER 5. DESIGN

manner for the final user. Finally, the library component is in charge of making the requests
to the Overpass API to obtain the requested elements and to save the received data in the
corresponding database.

5.2.1 Back-end

The back-end is a REST server. On the following figure is shown the server diagram, which
contains the system model structure, which includes the data persistence layer, the access
to them and the distinct fachades the services offer to the upper layers. It also contains the
different REST controllers, which allow the communication between the Web client and the
Web server.

Figure 5.2: Server diagram

29

CHAPTER 5. DESIGN

Data access

DAO design pattern is used for the data access. This pattern allow the data access and, in
turn, allows to hide the way they are accessed. For DAOs organization, they are grouped in
the same package.

• es.udc.fig.tfg.backend.model.entities: package where both entities and their correspond-
ing DAOs are allocated.

• es.udc.fic.tfg.backend.model.entities.nameDAO.java: DAO interface. The class Entity-

DAOJPA from the Figure 5.2 is automatically implemented by Spring Data. However,
it allows to add custom methods if needed.

The following image show one of the the most important DAO class diagram. Not all of
them are shown because they are the same.

Figure 5.3: Task DAO

30

CHAPTER 5. DESIGN

Figure 5.4: DAO pattern diagram [1]

DTO

The Data Transfer Object (DTO) is a type of object which encapsulates the domain classes. In
this project, the controllers makes use of some custom converters which perform the conver-
sion from JavaScript Object Notation (JSON) to DTO and from DTO to JSON.

DTO attributes does not completely match with the ones of the persistent classes. A DTO
will only contain the necessary attributes to be used in the client for certain views or actions,
thus avoiding sending unnecessary attributes.

For the object conversion, Spring Boot uses Jackson transparently for the developer. Jack-
son is in charge of mapping JSON objects from the client into the DTO it expects to receive.

The first reason to use this option is to hide information to the client, like in the case
of AuthenticatedUserDTO, since this way the password is kept in the database, but it is not
passed to the client side as it is a critical value. Another advantage is that DTOs allow to
reduce the number of remote calls bringing all the neccessary data in a unique object in a
single call.

Services

The service layer consists of the logic that performs the main functions of the application,
the high-level operations. For this, the operations call the DAOs which will be in charge
of data access and then the service use this data to offer much more complex and advanced
functionalities.

In the project, if we look to the es.udc.fic.tfg.backend.model.services folder we will find the
Service facade es.udc.fic.tfg.backend.model.services.TaskService and its implementation es.udc.

31

CHAPTER 5. DESIGN

fic.tfg.backend.model.services.TaskServiceImpl. In our case, various services with their respec-
tive operations that can be accessed from the client through requests to the controllers can
be found. The different services that are accessible are:

32

CHAPTER 5. DESIGN

Figure 5.5: User, Catalog and Database Service
33

CHAPTER 5. DESIGN

Figure 5.6: GeoJson, Log and Task Service

Now, the different services will be explained in detail.

• UserService: this facade contains all the operations related to the users management.

– login: it allows an user to access to the application after specifying its username
and password.

– signUp: it registers an user in the system.

– loginFromId: it allows users to log in into the application by using their associ-
ated user id.

• CatalogService: this facade contains the most important search operations of the ap-
plication.

34

CHAPTER 5. DESIGN

– findAllDatabaseTypes: it returns all the database types supported by the system.

– findDatabaseById: it receives a database id as input parameter and it returns the
database associated with the passed id.

– findAllUserDatabases: it receives a user id as input parameter and returns a list
with all the databases added by the user.

– findTaskById: it receives a task id as input parameter and returns the corre-
sponding task.

– findAllUserTasks: it receives a user id as input parameter and returns a list of
the task executed by the user.

– findAllLogsByTaskId: it receives a task id as input parameter and returns a list
with all the saved logs associated with the task.

– findAllLogsByTaskIdAfterLogId: it receives both a task id and log id as input
parameters and returns a list of the logs associated with the task with an id higher
than the one passed as parameter.

• DatabaseService: this facade contains the operations related to the databases.

– addDatabase: it receives the connection parameters for the database as input. If
the parameters are correct, it saves the database and returns it.

– deleteDatabase: it receives both a database id and a user id as input parameters
and deletes the corresponding database. If the database does not exist or it does
not belong to the user passed as parameter, it returns an error.

– updateDatabase: it receives a database id and the connection parameters as in-
put and returns the database with the updated properties. If the system cannot
connect to the database with the new parameters, the database is not updated.

– getDatabaseTables: it receives a database id as input and returns a list containing
the name of all the tables of the database that were used on a task executed by the
user.

• GeoJsonService: this facade is in charge of obtaining the GeoJSONs [28] to be able to
see the data imported on the map.

– getGeoJson: it receives the database id and the name of the table from which the
user wants to extract the GeoJSON as input and it returns an object containing
the name of the table and the GeoJSON associated to it.

• LogService: this facade contains an operation to handle the logs associated to a task.

35

CHAPTER 5. DESIGN

– deleteByTaskId: it receives both a user id and a task id as input parameters and
deletes all the logs associated with a task.

• TaskService: this facade contains all the operations related to the tasks management.

– createTask: it receives the different parameters to create a task and it returns the
task created. Moreover, it sends the request to the library to start the task.

– cancelTask: it receives both a user id and a task id as input parameters and tries
to cancel a running or waiting task.

– deleteTask: it receives both a user id and a task id as input and deletes a task.

Controllers

Controllers are placed on es.udc. fic.tfg.backend.rest.controllers. On this section, both the REST
operations and the Uniform Resource Identifier (URI) to access the client will be shown.

URI OPERATION ACTION

/users/login POST login

/users/signUp POST signUp

/users/loginFromServiceToken POST loginFromId

Table 5.1: User Controller

URI OPERATION ACTION

/catalog/databaseTypes GET findAllDatabaseTypes

/catalog/user/databases GET findAllUserDatabases

/catalog/user/tasks GET findAllUser

/catalog/tasks/{taskId} GET findTaskById

/catalog/tasks/{taskId}/logs GET findAllLogsByTaskId

/catalog/tasks/{taskId}/logs/logId GET findAllLogsByTaskIdAfterLogId

/catalog/databases/{databaseId} GET findDatabaseById

Table 5.2: Catalog Controller

36

CHAPTER 5. DESIGN

URI OPERATION ACTION

/databases/add POST addDatabase

/databases/{databaseId}/delete DELETE deleteDatabase

/databases/{databaseId}/update UPDATE updateDatabase

/databases/{databaseId}/tables GET getDatabaseTables

Table 5.3: Database Controller

URI OPERATION ACTION

/geoJson/database/{databaseId}/{tableName} GET getGeoJson

Table 5.4: User Controller

URI OPERATION ACTION

/logs/database/{taskId}/delete DELETE deleteByTaskId

Table 5.5: Log Controller

URI OPERATION ACTION

/tasks/add POST createTask

/tasks/{taskId}/cancel PUT cancelTask

/tasks/{taskId}/delete DELETE deleteTask

Table 5.6: Task Controller

Facade pattern

The Facade pattern has the feature of hiding the complexity providing a high level interface,
which is in charge of performing the communication with all the neccessary subsystems. The
facade is a great strategy when we require to interact with several subsystems to execute a
specific operation, as it is neccessary to have technical and functional knowledge to find out

37

CHAPTER 5. DESIGN

which operations of each subsystem we have to execute and in which order, what may result
really complex when the systems start to grow too much. That is, in summary, the facade
pattern provides an unified communication interface between client and subsystems.

Figure 5.7: Facade pattern diagram [2]

Other patterns

The back-end also makes use of the following design patterns:

• Singleton: it ensures that a class has only one instance, and it provides a global access
point to it. With Spring, the singleton pattern is the default scope for a Bean. Spring
creates a unique shared instance of the class assigned to that Bean, so that everytime
that Bean is requested, the same object is injected. That is, our classes with the@Service
annotation are Singleton (services).

• Dependency Injection: this pattern implements the Inversion of Control principle
(IoC), where the control is inverted establishing dependencies between the objects. This
is achieved by injecting objects in other objects using an assembler, instead of the ob-
jects itselves. Dependency injection solves the problem of making a class independent
from how the object it requires are created.

Error handling and security measures

Error handling is managed in such a way that it allows to specify both the response status
and body for each error.

38

CHAPTER 5. DESIGN

In terms of security, the web server implements several security measures to protect the
interface from unauthorized access or malicious attacks.

• Authorization and access control: to control authorization to access the system
endpoints, a JSON Web Token (JWT) signed with a symmetric encryption algorithm
(HS256) is used. This token must be added in any request to the server that needs privi-
leges. Access control is carried out using Spring Security, that allows to perform access
control in a declarative way using, in this case, code. Furthermore, it is important to
mention that the access control policy being followed is prohibitive, that is, everything
which is not explicitly allowed is forbidden.

• Encryption and authentication: important information is encrypted to ensure con-
fidentiality and integrity. Users’ password is encrypted using a PasswordEncoder [29]
from Spring Security, specifically one that uses a Bcrypt encryption algorithm. This en-
coder performs a one-way transformation of the password to let the password be stored
securely. In order to check that the users are who their claim to be, the password they
specify when log in is encrypted and compared with the one stored. Passwords spec-
ified in the connection parameters of the databases added by the users are encrypted
using a substituion algorithm.

It is also important to mention that the interface uses the Bean Validation API to apply
validation rules to the data received.

5.2.2 Front-end

For the front-end section, Vue is used. Vue helps to link our presentation layer to our business
layer easily and efficiently. It is a progressive framework, that is, it is really easy to add to
already existent projects; in contrast, frameworks like Angular are more oriented to start
projects from scratch.

To better understand the application, we can see a package diagram (Figure 5.8) which
reflects the organization of the different components of the client. In this diagram, we can
observe the different packages of the application. In particular, the components package con-
tains the different views that are accessible from the application.

A Vue component, as previously explained, contains the HTML, the needed logic to op-
erate inside the component (Javascript) and CSS to format the HTML code.

39

CHAPTER 5. DESIGN

Components

Figure 5.8: Client package diagram

Routes

In the index.js file located at the router package there is the definition of all the routes of the
Web application and the relation with the component that is loaded in that endpoint.

40

CHAPTER 5. DESIGN

NAME ROUTE COMPONENT AUTHORITY

Home / MyTasks logged

Login /login Login public

Sign Up /signUp SignUp public

* NotFound public

AddDatabase /addDatabase AddDatabase logged

MyDatabases /myDatabases MyDatabases logged

CreateTask /createTask CreateTask logged

RerunTask /rerunTask/{taskId} CreateTask logged

TaskReport /taskReport/{taskId} TaskReport logged

SeeData /data SeeData logged

Table 5.7: Web Application routes

MVVM

Vue.js is based on theMVVM (Model - View - ViewModel) pattern. In this way, we separate
the user interface from the business logic linking the public properties and methods with the
view.

• View: it is the structure or template of the user interface (HTML and CSS).

• View-Model: it is the Javascript associated with the view. It is a view abstraction, in
which it is possible to access to both public properties and methods. It represents the
state of the domain data at a specific point in time.

• Model: the REST client.

41

CHAPTER 5. DESIGN

Figure 5.9: Model-View-ViewModel pattern [3]

Callback and Promise

Vue.js makes use of the Callback and Promise patterns. By incorporating these patterns,
the client is able to continue working until the information is available. That is, a function is
attended that cannot immediately return its result and returns a promise that it will have the
result in the future, which will be handled by a callback.

The client perform the request and that request does not immediately return the response,
so the client keeps working. It promises the client that he/she will have the answer and by
the time the result arrives, the callback is executed.

Figure 5.10: Callback pattern [4]

42

CHAPTER 5. DESIGN

Figure 5.11: Promise pattern [5]

5.2.3 Parser

The parser component acts as a dependency library for the back-end. Furthermore, it can
also be used by terminal executing a command where you can specify a file containing the
requests you want to execute. As explained before, the component makes use of ANTLR to
design the DSL and Overpass API to import the requested data from OpenStreetMap.

To better understand the application, we can see a package diagram (Figure 5.12) which
reflects the organization of the different components of the parser.

43

CHAPTER 5. DESIGN

Components

Figure 5.12: Parser package diagram

A description of each one of the packages from the above image will be given below.

• Antlr4: this package contains the file with the definition of the DSL. Section 5.3 ex-
plains how the DSL is designed.

• Backend: this package contains the classes neccessary in the communication with the
back-end component. It also holds the class that the back-end component must use in
order to perform the requests to the Overpass API and the class which manages the
tasks parallel execution.

• Grammar: this package contains the classes neccessary to manage the conversion
between the Parser DSL and the Overpass API query language in order to be able to
perform the requests.

• DataHandler: this package contains the classes that perform the requests to Overpass
API and they also process data they receive from OpenStreetMap.

• DbConnection: this package holds the class which perform the insertions on the cor-
responding databases after all data have been processed.

• OsmConnection: it holds the classwhich acts as intermediary betweenOpenStreetMap
and the databases. That is, it calls the corresponding class from the DataHandler pack-

44

CHAPTER 5. DESIGN

age to perform the request and once it receives the data, it sends the data to the class
in charge of performing the insertions.

5.3 Domain Specific Language design

The developed Domain Specific Language (DSL) is a declarative language composed of in-
structions that allow users, in a simple and convenient way, to describe which set of OSM
data they want to retrieve, and how it should be transformed to fit the schema of the database
where they want to import it.

The DSL is designed making use of ANTLR. ANTLR is a parser generator for reading,
processing, executing or translating structured text or binary files. It helps to build languages,
tools, and frameworks.

Figure 5.13 shows part of the DSL structure and how it is defined. The rest of the DSL,
which could not be included here due to space constraints, can be visualized on Appendix C.

45

CHAPTER 5. DESIGN

1 grammar OSMGrammar;
2

3 parse
4 : (connectStatement | statement)+
5 ;
6

7 statement:
8 SELECT_SYMBOl elements (
9 selectStatement
10)
11 ;
12

13 selectStatement:
14 OBRA_SYMBOL attributeDefinition (COMMA_SYMBOL?

attributeDefinition)* CBRA_SYMBOL
15 fromStatement entityStatement bboxStatement
16 ;
17

18 fromStatement:
19 FROM_SYMBOL OPAR_SYMBOL valueExpression CPAR_SYMBOL
20 ;
21

22 entityStatement:
23 TO_SYMBOL entity
24 ;
25

26 bboxStatement:
27 WHERE_SYMBOL bboxDefinition
28 ;
29

30 connectStatement:
31 CONNECT_SYMBOL TO_SYMBOL dbaseElement OF_SYMBOL typeElement

FROM_SYMBOL portElement OF_SYMBOL hostElement WITH_SYMBOL
userElement

32 AND passwordElement
33

Figure 5.13: Domain Specific Language

Figure 5.14 shows an example of a query and the two instructions of which the DSL is
composed. Using the CONNECT clause, the user must first specify the connection details
for the target database. We may specify which features we want to retrieve from the OSM
and how we want to import them into the database using the second command that defines
the language, SELECT. This instruction contains numerous components, which are described

46

CHAPTER 5. DESIGN

below.
On the one hand, it specifies the filters that the characteristics to be retrieved must adhere

to. This means that the language is intended to obtain data of a specific type and placed in
a specified area of the map, rather than all data from everywhere in the globe from OSM.
The filters relating to the requirements for the features are listed in the FROM clause. For
instance, we can use the filter FROM (amenity=hospital OR amenity=clinic) if we want
to retrieve hospitals and clinics. TheWHERE clause similarly indicates the geographic filter.
In the illustration, we’d be talking about a section of Santiago de Compostela. On the other
hand, it is required to specify which database table should hold the data. The TO clause and
the table name are both used for this purpose. Since we want to store both the hospitals and
the clinics in that table, we indicate TO hospital in our example.

Finally, the SELECT clause allows us to indicate whether we want to retrieve points, lines
or related elements (node, way, relation), and which specific set of properties of the retrieved
features are mapped to columns of the specified database table. The simplest way to map
property of an OSM feature to an attribute of the table is to use the operator =>, e.g. name
=> nombre. However, since the way data is stored in OSM is very flexible and does not
necessarily follow a schema (although it does follow community conventions), the language
also allows you to associate a set of properties to an attribute of the table, using the first of
these properties that has some non-null value.

In this example of Figure 5.14, for each recovered item, the name, the city and the street
where it is located are stored. When it comes to the name, we attempt to extract the Spanish
name first using name:es, and if that is unsuccessful, we use the generic name. We can see
that in the instance of the city, the literal value Santiago de Compostela would be utilized
straight if there is no value for the addr:city attribute.

The retrieved attributes can also be subjected to functions, such as type transformations or
spatial operations to compute new geometries, defining a set of operations unique to the DSL
while also enabling the execution of any function made available by the database. Addition-
ally, the geom attribute represents the geometry value of the OSM feature. The location of the
hospitals is stored in the example using ST_CENTROID(geom) function, which determines
the geometrical center from the geometry acquired from OSM.

47

CHAPTER 5. DESIGN

1 CONNECT TO DBASE=osmparser OF TYPEDB=PostgreSQL FROM
PORTDB=5432 OF HOSTDB=localhost WITH USERDB=david AND
PASSWORDDB=password

2

3 SELECT node, way {
4 name:es, name => name,
5 addr:city, "Santiago de Compostela" => city,
6 addr:street => street,
7 ST_CENTROID(geom) => location
8 }
9 FROM (amenity=hospital OR amenity=clinic) TO Hospital
10 WHERE BBOX=(42.84866, -8.59242, 42.88672, -8.50325)
11

Figure 5.14: Query example

48

CHAPTER 5. DESIGN

49

Chapter 6

Implementation and tests

6.1 Implementation

This chapter describes those complex algorithms that are available throughout the application.
In addition, the different tests that have been carried out will be shown.

6.1.1 OverpassAPI performance limitation

Overpass API has a big limitation in terms of performance. The API assigns a limited and
low number of ‘slots’ per IP, that is, it automatically limits the number of requests that can be
made in a period of time. As you make requests, you fill in those slots. If you end up filling all
of them, the next requests will fail until some slot is free again. Therefore, it is necessary to
implement an algorithm which takes care of retrying the requests. In this case, the retries for
each query is limited to twenty which means that if an error occurs more than twenty times,
the task will be stopped.

Figure 6.1 shows the algorithm which is in charge of retrying the requests. Note that
before sending any request for the first time to the API, the system waits two seconds. This
is done to reduce the risk of filling the slots. If an error still occurs, then the system starts to
wait ten seconds. As said before, if the request fails twenty times then the task is stopped and
an error is shown.

50

CHAPTER 6. IMPLEMENTATION AND TESTS

1 public List<Map<String, Double>>
doWayNodesOSMConnection(ServerCallback serverCallback, Long
taskId, int times) throws InterruptedException {

2 if(times == 0) TimeUnit.SECONDS.sleep(2);
3 else if(times > 0) // come from error
4 TimeUnit.SECONDS.sleep(10);
5 WayNodesMapDataHandler handler = new
6 WayNodesMapDataHandler();
7 if(times == MAX_TRIES){
8 throw new RuntimeException();
9 }
10 try{
11 mapApi.queryElements(queriesList.get(0), handler);
12 }catch (OsmConnectionException e){
13 doWayNodesOSMConnection(serverCallback, taskId,
14 ++times);
15 }catch (OsmApiException e){
16 doWayNodesOSMConnection(serverCallback, taskId,
17 ++times);
18 } catch (OsmApiReadResponseException e){
19 doWayNodesOSMConnection(serverCallback, taskId,
20 ++times);
21 }
22

23 return handler.getCoordinates();
24 }

Figure 6.1: Retry algorithm

6.1.2 Communication between the library and the server

To carry on the communication between the library and the server when needed (for example,
when the status of a task needs to be updated), a common interface was developed. The
Figure 6.2 shows the mentioned interface. The interface is implemented by the server and
then the library uses it to ‘send messages’ to the server. In the example of Figure 6.4, the
library is sending a message to the server in order to update the state of the task. The server
provides implementation for every method of the interface. In Figure 6.5 we can see the
implementation of the method which allows to change the status of a task to running.

This solution makes use of the idea of a ‘callback’. In Java, a callback refers to a technique
in which an object can pass a reference from a function or method to another object, thus
allowing the latter to invoke the callback function when needed. In the case of this imple-
mentation, the Parser component exposes the interface with the methods shown on Figure
6.2, which are implemented by the Web server. Since the Web server implements the inter-

51

CHAPTER 6. IMPLEMENTATION AND TESTS

face, it passes an instance of the interface to the library when it makes use of it, as we can see
in Figure 6.3. This allows the library to invoke the methods defined in the interface, using the
implementation provided by the Web server.

The implementation flow is the following:

• The Web server calls the method of the library shown by Figure 6.3 and passes an in-
stance of the callback as parameter.

• At some point, the library calls a method from the interface like the one in Figure 6.4.

• Finally, the callback is performed and the code in Figure 6.5, implemented by the Web
server, is executed.

1 public interface ServerCallback {
2

3 void parseStart(Long taskId);
4

5 void parseFinishWithError(Long taskId, String error);
6

7 void parseFinishedOk(Long taskId);
8

9 String getTaskState(Long taskId);
10

11 void sendLogs(Long taskId, String log, String type);
12

13 void checkAndAddDatabase(Long taskId, String database, int
port, String host, String userDb, String password, String type);

14

15 void addNewEntityTable(Long taskId, String database, int port,
String host, String userDb, String password, String type,

16 String entityName);
17

18 }
19

Figure 6.2: Callback interface

1 parser.parseQuery(task.getId(), task.getTaskString(),
2 serverCallback);
3

Figure 6.3: Callback passing by parameter

52

CHAPTER 6. IMPLEMENTATION AND TESTS

1 serverCallback.parseStart(parserTask.getTaskId());
2

Figure 6.4: Communication between library and server

1 @Override
2 public void parseStart(Long taskId) {
3

4 Optional<Task> task = taskDao.findById(taskId);
5

6 Task finalTask = task.get();
7

8 finalTask.setState(Task.State.RUNNING.toString());
9 taskDao.save(finalTask);
10 }
11

Figure 6.5: Callback method implementation

6.1.3 Strategy pattern

The system is designed to be able to save data in any relational database. The application uses
a strategy pattern to automatically select the corresponding database driver depending on
the requests. This pattern also allows to control the insertion of data in each one the different
databases types and the query to get the GeoJSON from any table. Furthermore, the use of this
pattern makes easier to both maintain the code and add new drivers in the future if necessary.

In order to carry on this solution, a common interface was developed. The Figure 6.6
shows how it looks.

53

CHAPTER 6. IMPLEMENTATION AND TESTS

1 public interface DbConnectionGenerator {
2

3 boolean testConnection(String user, String password);
4

5 String getCompleteConnectionString();
6

7 String createQueryStringForGeoJson(String entityName,
8 String user, String password);
9

10 StringBuilder addValuesQueryString(StringBuilder
11 queryString, DbElements values, int count,
12 List<DbElements> attributesListMap);
13

14 default boolean checkPointPartOfWay(Point point,
15 List<DbElements> attributesListMap){
16 boolean isPart = false;
17

18 for (DbElements values : attributesListMap){
19 for (String key : values.getMap().keySet()){
20 if(values.getMap().get(key).getValue()
21 instanceof LineString){ //way
22 LineString lineString = (LineString)
23 values.getMap().get(key).getValue();
24 for (Coordinate coordinate :
25 lineString.getCoordinates()){
26 if (point.getX() ==

coordinate.getX() && point.getY() == coordinate.getY())
27 isPart = true;
28 }
29 }
30 }
31 }
32

33 return isPart;
34 }
35 }
36

Figure 6.6: Strategy Pattern interface

6.1.4 Parallel execution

To be able to run several tasks in parallel the system makes use of an ExecutorService [30],
a JDK API that simplifies running tasks in asynchronous mode. Generally speaking, Execu-
torService automatically provides a pool of threads and an API for assigning tasks to it, fa-

54

CHAPTER 6. IMPLEMENTATION AND TESTS

cilitating thread management. Currently, the system only allows 10 parallel running tasks at
most, but it could be increased easily.

The executor works as follows: when it receives a new task, checks if there is some thread
available to attend the requests. If there is one available thread, it assigns the task to the free
thread and the task starts its execution, but if not, it puts the task in a waiting queue. When
any thread is available, the first task in the waiting queue is automatically assigned to the
thread which was released.

The executor is implemented making use of the Singleton pattern so that all the users use
the same instance. The Figure 6.7 shows how the singleton is implemented. TheExecutors [31]
class provides several implementations for the ExecutorService. Some of the options allow to
customize several parameters, but in this case it was decided to use the simplest one: a fixed
size thread pool.

Figure 6.8 shows how the tasks are submitted to the Executor.

1 public class ExecutorSingleton {
2

3 private final static int NUM_THREADS = 10;
4

5 private static ExecutorService instance = null;
6

7 private ExecutorSingleton(){}
8

9 public static ExecutorService getInstance(){
10 if(instance == null){
11 instance =
12 Executors.newFixedThreadPool(NUM_THREADS);
13 }
14 return instance;
15 }
16

17 }
18

Figure 6.7: Executor Service

55

CHAPTER 6. IMPLEMENTATION AND TESTS

1 //executor manages requests' queue and assign tasks depending
on thread availability on the pool

2 Future<?> future = ExecutorSingleton.getInstance().submit(() ->
{

3 try {
4 parse(parserTask, serverCallback);
5 } catch (InvalidQueryException | IOException | SQLException
6 | InvalidDatabaseException |
7 InvalidDbParamsException | ClassNotFoundException |
8 InterruptedException |
9 SyntaxErrorException | InstanceNotFoundException e) {
10 throw new RuntimeException(e);
11 } finally {
12 cleanUpTaskList(parserTask);
13 cleanUpThreadList(parserTask.getTaskId());
14 }
15 });
16

Figure 6.8: Executor use

6.2 Tests

6.2.1 Unit tests

Unit tests [32] consists of checking the correct performance of a specific element of the soft-
ware. For these tests we will use the Spring Boot support framework and JUnit [33].

In order to be able to carry out these tests the following annotation were needed:

• @RunWith(SpringRunner.class): used as a bridge between the Spring Boot test functions
and JUnit.

• @SpringBootTest: specifies Spring Boot that it must search the main configuration class,
annotated with @SpringBootApplication, and use it to initialize a Spring application
context.

We have performed tests intended for checking the right behaviour of the functionalities
exposed in all services, from basic operations like create, delete and update to more advanced
functionalities, as we can see on Figure 6.10, and the test cases in which the output is not a
certain value, but that an exception occurs like in Figure 6.11.

In each Test class, all possible use cases for each service have been tested, both basic CRUD
operations and complex queries that each service may have.

56

CHAPTER 6. IMPLEMENTATION AND TESTS

To give an example of a test, in the database service we will test that the service updates
the information of the database when desired. Therefore we insert a database in the system
and then we call the method of the service that updates the data of the database. Once the
service is called, it checks that the database information has changed. Finally, the database is
removed from the system.

Figure 6.9: Unit tests package structure

1 @Test
2 pu b l i c vo id t e s tUpda t eDa t a b a s e () throws Dup l i c a t e I n s t a n c eEx c e p t i o n ,
3 I n s t anceNotFoundExcep t i on , P e rm i s s i onExcep t i on ,

NoDatabaseConnec t ionExcep t ion {
4 User u se r = c r e a t eU s e r (USERNAME) ;
5 L i s t <Type> type s = c a t a l o g S e r v i c e . f i n dA l lDa t a b a s eType s () ;
6 Database d a t a b a s e = d a t a b a s e S e r v i c e . addDatabase (DATABASE ,
7 t ype s . g e t (1) . g e t I d () , HOST , PORT , USER , PASSWORD,
8 use r . g e t I d ()) ;
9 da t a b a s e = d a t a b a s e S e r v i c e . upda t eDa tabase (d a t a b a s e . g e t I d () ,
10 use r . g e t I d () , DATABASE , t ype s . g e t (1) . g e t I d () ,
11 HOST , PORT , ” p o s t g r e s ” , ” p o s t g r e s ”) ;
12 a s s e r t E q u a l s (d a t a b a s e . g e tDa t aba s e () , DATABASE) ;
13 a s s e r t E q u a l s (d a t a b a s e . getType () , t ype s . g e t (1)) ;
14 a s s e r t E q u a l s (d a t a b a s e . ge tHos t () , HOST) ;
15 a s s e r t E q u a l s (d a t a b a s e . g e t P o r t () , PORT) ;
16 a s s e r t E q u a l s (d a t a b a s e . getUserDb () , ” p o s t g r e s ”) ;
17 a s s e r t E q u a l s (PasswordCipher . decode (d a t a b a s e . ge tPassword ()) ,
18 ” p o s t g r e s ”) ;
19 }
20

Figure 6.10: Unit test - Structure

57

CHAPTER 6. IMPLEMENTATION AND TESTS

1 @Test
2 public void testUpdateNonExistentDatabase() throws

DuplicateInstanceException {
3

4 User user = createUser(USERNAME);
5

6 List<Type> types = catalogService.findAllDatabaseTypes();
7

8 assertThrows(InstanceNotFoundException.class, () ->
9 databaseService.updateDatabase(NON_EXISTENT_ID,
10 user.getId(), DATABASE, types.get(1).getId(), HOST,
11 PORT, "postgres", "pass"));
12 }
13

14 @Test
15 public void testUpdateWithNonExistentUser() throws

DuplicateInstanceException, InstanceNotFoundException,
NoDatabaseConnectionException {

16

17 User user = createUser(USERNAME);
18

19 List<Type> types = catalogService.findAllDatabaseTypes();
20

21 Database database = databaseService.addDatabase(DATABASE,
22 types.get(1).getId(), HOST, PORT, USER, PASSWORD,
23 user.getId());
24

25 assertThrows(InstanceNotFoundException.class, () ->
26 databaseService.updateDatabase(database.getId(),
27 NON_EXISTENT_ID, DATABASE, types.get(1).getId(),
28 HOST, PORT, "postgres", "pass"));
29 }
30

Figure 6.11: Exception test

6.2.2 REST tests

In order to check that all REST requests work as expected PostMan, a tool which allows us to
perform HTTP requests to any API to check the right performance of our developments, has
been used. First, a POST request will be made to authenticate us and receive back the token
needed to be able to make any request.

58

CHAPTER 6. IMPLEMENTATION AND TESTS

Figure 6.12: POST authentication request

Figure 6.13: GET request

59

CHAPTER 6. IMPLEMENTATION AND TESTS

6.2.3 Integration and acceptance tests

These tests have been carried out through the execution of the different use cases. All sys-
tem operations were reviewed to check if they worked properly: creating users, tasks and
databases, testing parallel execution of multiple tasks, visualizing huge amounts of data on
the map viewer, in summary, check that the application as a whole worked as expected.

6.2.4 Library tests

In the case of the parser component, different tests were developed, e.g checking that the
requests were done correctly, testing that the conversion between the DSL and Overpass API
syntax was correct and verifying that the library obtained and inserted the corresponding
data correctly.

60

CHAPTER 6. IMPLEMENTATION AND TESTS

61

Chapter 7

Developed solution

This chapter shows the main features of the developed system. A guided tour of the main
functionalities of the application will be made, accompanied by screenshots of the final ap-
plication.

7.1 Log in and sign up

Here we can see both the log in and sign up page of the application. As we can see, both pages
allow the user to navigate to each other at any time.

It is important to mention that in both cases several checks are made. For example, users
cannot register in the application with an already in use username or email.

Figure 7.1: Login page

62

CHAPTER 7. DEVELOPED SOLUTION

Figure 7.2: Sign up page

7.2 Tasks historic

This is the main page of the web application. It is interesting to mention that once the users
log in into the web, they can access this page at any time using the top button in the naviga-
tion bar. Users are able to see all their previously executed tasks or their currently running
ones. Moreover, they can filter them to find any task faster. Using the ‘+’ button they will be
redirected to another page where they can start a new task.

Looking at Figure 7.4, we can appreciate that users can take a look to important data of
their tasks. Furthermore, they are able to perform several actions on their tasks. For example,
users can cancel a running or waiting tasks, rerun them again if needed, delete them or see
the execution report in real time.

63

CHAPTER 7. DEVELOPED SOLUTION

Figure 7.3: My tasks

Figure 7.4: Task running

7.3 Create tasks

This functionality allows to create new tasks with a given name and using a specific database.
It is possible to select the database from the dropdown (which contains the user previously
added databases) or directly include the connection parameters in the query itself. In any
case, several databases could be included in the same query.

In case the users want to rerun a specific task, they will be redirect to this page but with
the corresponding form elements covered with the task specific data.

From this view, as shown by Figure 7.6, users are able to rerun previously executed tasks.

64

CHAPTER 7. DEVELOPED SOLUTION

Figure 7.5: Create task

Figure 7.6: Rerun task

7.4 My databases

The page shown by Figure 7.7 describes the functionality which allows users to observe their
databases added on the application. Clicking the ’+’ button redirect users to the page where
they are able to enter the connection parameters to add a new database to the application.
Like in the case of the Figure 7.3 section, users can navigate to this page whenever they want
using the top button of the navigation bar.

65

CHAPTER 7. DEVELOPED SOLUTION

It is possible to both delete and update a database at any time using the buttons located
inside the table at the ’action’ column.

Figure 7.7: User databases

7.5 Update database

This functionality is only accessible from the Figure 7.7 view. It allows to update the connec-
tion parameters of any database.

It is essential to mention that once the user press the button to update the database, the
system checks if it has connection to the database using the corresponding parameters. If the
application cannot connect to the database, it alerts the user with an error notification. This
check prevents the user from having problem when using that database on a task.

66

CHAPTER 7. DEVELOPED SOLUTION

Figure 7.8: Update database connection parameters

7.6 Add database

This page shows a form where the user can enter the corresponding connection parameters
to add a new database to the application.

It is important to note that like in the case of updating, the system checks the connec-
tion with the database using the entered parameters. If the check is successfull, the user is
redirected to Figure 7.7 and a notification appears showing that the database was successfully
added.

Moreover, some inputs checks are performed. For example, the application checks that
the entered port is a number that corresponds to one of the computer’s port.

67

CHAPTER 7. DEVELOPED SOLUTION

Figure 7.9: Add database

7.7 Task execution report

This page shows several essential data about a specific task, such as the start and end times,
the written query and real times logs of what the task is performing. Moreover, if the task
failures for some reason, an error notificacion will show up and the message box will turn
red.

As we can see in Figure 7.10, it is possible to cancel or rerun the task also from this view.

Figure 7.10: Task execution report

68

CHAPTER 7. DEVELOPED SOLUTION

7.8 Data visualization

This page is accessible everywhere using the top button from the navigation bar. It shows a
map where the user can select any database and it automatically retrieves on the right corner
legend all the tables used by the user on that database.

Once the user clicks on one checkbox, the system makes an asynchronous call to get the
geographic elements associated to the clicked table. For example, in the case showed in Figure
7.11 when the user clicked on the checkbox an asynchronous call to get all the hospitals was
made. With this method, the system avoid to download huge amounts of data all at once.

Figure 7.11: Database imported data

69

CHAPTER 7. DEVELOPED SOLUTION

70

Chapter 8

Conclusions and future work

8.1 Conclusions

At the end of the project, it can be affirmed that all the objectives that had been proposed at
the beginning of the project have been satisfactorily achieved, creating an application with
the following features:

• Allows successful user management.

• Allows to display a list user executed tasks and to perform different type of actions on
them.

• Allows to save different types of databases and to display a list of previously saved
database.

• Allows to create and execute parallel tasks to import data from OpenStreetMap.

• Allows to visualize the imported data on a map viewer.

• The entire data extraction and import process is automated

With this project, experience has been gained in the use of Spring, JPA and Jackson inside
Java. HTML and CSS knowledge has been improved and Javascript knowledge about events
has increased. Moreover, new skills have been acquired:

• A new framework has been learned (Vue.js).

• Grammar definition with ANTLR.

• Asynchronous programming and use of threads.

• Knowledge in spatial information systems.

71

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

• Use of Leaflet to implement web map viewers.

• Design and integration of a Java library in another project.

8.2 Future work

This project complies with everything proposed at the beginning, but it has many more func-
tionalities that could be added to improve the application. Some of these possible improve-
ments could be:

8.2.1 Periodic tasks

The system allows to execute parallel task, but it would be interesting to be able to schedule
tasks to be executed at a specific time automatically or to be executed periodically during a
period of time.

8.2.2 Reverse transformation

Exploring the reverse transformation (that is, take the geographic data we have in a database
of our own and publish it automatically in OSM) could also be interesting.

72

Appendices

73

Appendix A

Installation steps

A.1 Required software

In order to be able to deploy the application, previously you will need:

• Apache Maven 3.8.6.

• Node.js 18.12.1.

• PostgreSQL database management system.

• Java virtual machine.

A.2 Deploy steps

The following are the different required steps to deploy the application:

• Databases:

– Create the databases where you want to store the data.

• Library

– Inside osmparser project, execute: mvn compile install

– Important note: if you want to make use of the library directly, you can use
it by executing the following command after the previous one: mvn exec:java
-Dexec.args=’pathtofile’ where ’pathtofile’ is the path of a file with contains dif-
ferent tasks to execute.

• Server:

– Inside server project, execute: mvn sql:execute install spring-boot:run

74

APPENDIX A. INSTALLATION STEPS

• Client:

– Inside client project, execute:

∗ npm install
∗ npm run dev

Once the client is running, we launch http://localhost:3000/ in a browser which will open
the main screen of the application.

75

Appendix B

Mockups

Next, all the mockups made in the Initial Phase, explained in Section 3.1, will be incorporated.
It is worth mentioning that these screens are a previous idea of what we wanted to do in order
to plan the project work and have a base to start from so there will be changes with respect
to the screens of the final application.

76

Appendix C

DSL structure

1 grammar OSMGrammar;
2

3 parse
4 : (connectStatement | statement)+
5 ;
6

7 statement:
8 SELECT_SYMBOl elements (
9 selectStatement
10)
11 ;
12

13 selectStatement:
14 OBRA_SYMBOL attributeDefinition (COMMA_SYMBOL?

attributeDefinition)* CBRA_SYMBOL
15 fromStatement entityStatement bboxStatement
16 ;
17

18 fromStatement:
19 FROM_SYMBOL OPAR_SYMBOL valueExpression CPAR_SYMBOL
20 ;
21

22 entityStatement:
23 TO_SYMBOL entity
24 ;
25

26 bboxStatement:
27 WHERE_SYMBOL bboxDefinition
28 ;
29

30 connectStatement:

91

APPENDIX C. DSL STRUCTURE

31 CONNECT_SYMBOL TO_SYMBOL dbaseElement OF_SYMBOL typeElement
FROM_SYMBOL portElement OF_SYMBOL hostElement WITH_SYMBOL
userElement

32 AND passwordElement
33 ;
34

35 passwordIdentifier
36 : identifier
37 | PASSWORD_SYMBOL
38 ;
39

40 dbaseElement:
41 DBASE_SYMBOL EQUAL_SYMBOL identifier
42 ;
43

44 typeElement:
45 TYPE_SYMBOL EQUAL_SYMBOL identifier
46 ;
47

48 portElement:
49 PORT_SYMBOL EQUAL_SYMBOL INT_NUMBER
50 ;
51

52 hostElement:
53 HOST_SYMBOL EQUAL_SYMBOL identifier
54 | HOST_SYMBOL EQUAL_SYMBOL IP_SYMBOL
55 ;
56

57 userElement:
58 USER_SYMBOL EQUAL_SYMBOL identifier
59 ;
60

61 passwordElement:
62 PASSWORD_SYMBOL EQUAL_SYMBOL passwordIdentifier
63 ;
64

65 elements: elementsValues (COMMA_SYMBOL? elementsValues)*;
66

67 elementsValues
68 : NODE
69 | WAY
70 | RELATION
71 ;
72

73 entity: IDENTIFIER;
74

92

APPENDIX C. DSL STRUCTURE

75 bboxDefinition:
76 BBOX_SYMBOL EQUAL_SYMBOL OPAR_SYMBOL FLOAT_NUMBER

(COMMA_SYMBOL? FLOAT_NUMBER)* CPAR_SYMBOL
77 ;
78

79 valueExpression
80 : OPAR_SYMBOL valueDefinition (separator valueDefinition)*

CPAR_SYMBOL (separator valueExpression)*
81 | valueDefinition (separator valueDefinition)*
82 ;
83

84 valueDefinition
85 : identifier EQUAL_SYMBOL identifier
86 | identifier
87 | identifier IS_NOT_NULL_SYMBOL
88 ;
89

90 separator
91 : OR
92 | AND
93 ;
94

95 attribute: identifier (COMMA_SYMBOL? identifier)*;
96

97 attributeDefinition:
98 attribute ARROW_SYMBOL IDENTIFIER
99 ;
100

101 identifier: IDENTIFIER | function | STRING_DPOINTS | IDENTIFIER
(MINUS_SYMBOL | UNDER_MINUS_SYMBOL) IDENTIFIER;

102

103 function:
104 functionName OPAR_SYMBOL arguments? CPAR_SYMBOL // número

ilimitado de parámetros
105 ;
106

107 functionName: IDENTIFIER;
108

109 arguments
110 : expression (COMMA_SYMBOL? expression)*
111 ;
112

113 expression
114 : function
115 | bool
116 | identifier

93

APPENDIX C. DSL STRUCTURE

117 ;
118

119 //-----------------------------LEXER
RULES--

120

121 fragment A : [aA];
122 fragment B : [bB];
123 fragment C : [cC];
124 fragment D : [dD];
125 fragment E : [eE];
126 fragment F : [fF];
127 fragment G : [gG];
128 fragment H : [hH];
129 fragment I : [iI];
130 fragment J : [jJ];
131 fragment K : [kK];
132 fragment L : [lL];
133 fragment M : [mM];
134 fragment N : [nN];
135 fragment O : [oO];
136 fragment P : [pP];
137 fragment Q : [qQ];
138 fragment R : [rR];
139 fragment S : [sS];
140 fragment T : [tT];
141 fragment U : [uU];
142 fragment V : [vV];
143 fragment W : [wW];
144 fragment X : [xX];
145 fragment Y : [yY];
146 fragment Z : [zZ];
147

148 fragment DIGIT : [0-9];
149 fragment DIGITS : DIGIT+;
150 fragment HEXDIGIT : [0-9a-fA-F];
151

152 fragment LETTER_WHEN_UNQUOTED_NO_DIGIT: [a-zA-Z_$\u0080-\uffff];
153 fragment LETTER_WHEN_UNQUOTED: DIGIT |

LETTER_WHEN_UNQUOTED_NO_DIGIT;
154 // Any letter but without e/E and digits (which are used to match a

decimal number).
155 fragment LETTER_WITHOUT_FLOAT_PART: [a-df-zA-DF-Z_$\u0080-\uffff];
156

157 fragment UNDERLINE_SYMBOL : '_';
158 fragment QUOTE_SYMBOL : '"';
159

94

APPENDIX C. DSL STRUCTURE

160 FROM_SYMBOL : F R O M;
161 WHERE_SYMBOL : W H E R E;
162 ENTITY_SYMBOL : E N T I T Y;
163 SELECT_SYMBOl : S E L E C T;
164 BBOX_SYMBOL : B B O X;
165 TO_SYMBOL : T O;
166 CONNECT_SYMBOL : C O N N E C T;
167 OF_SYMBOL : O F;
168 DBASE_SYMBOL : D B A S E;
169 PORT_SYMBOL : P O R T D B;
170 USER_SYMBOL : U S E R D B;
171 HOST_SYMBOL : H O S T D B;
172 PASSWORD_SYMBOL : P A S S W O R D D B;
173 WITH_SYMBOL : W I T H;
174 TYPE_SYMBOL : T Y P E D B;
175

176 TYPE
177 : B O O L E A N
178 | L O C A L D A T E
179 | S T R I N G
180 | I N T E G E R
181 | L O N G
182 | D O U B L E
183 | L I N E S T R I N G
184 | M U L T I L I N E S T R I N G
185 | P O L Y G O N
186 | M U L T I P O L Y G O N
187 | P O I N T
188 | M U L T I P O I N T
189 ;
190

191 bool
192 : TRUE
193 | FALSE
194 ;
195

196 OBRA_SYMBOL : '{';
197 CBRA_SYMBOL : '}';
198 OPAR_SYMBOL : '(';
199 CPAR_SYMBOL : ')';
200 COMMA_SYMBOL : ',';
201 PCOMMA_SYMBOL : ';';
202 DOT_SYMBOL : '.';
203 ARROW_SYMBOL : '=>';
204 HTAG_SYMBOL : '#';
205 EQUAL_SYMBOL : '=';

95

APPENDIX C. DSL STRUCTURE

206 MINUS_SYMBOL : '-';
207 UNDER_MINUS_SYMBOL : '_';
208 DDOTS_SYMBOL : ':';
209 IS_NOT_NULL_SYMBOL : 'is not null';
210 IP_SYMBOL
211 : DIGITS DOT_SYMBOL DIGITS DOT_SYMBOL DIGITS DOT_SYMBOL DIGITS
212 ;
213

214 AND : 'AND';
215 OR : 'OR';
216 NOT : 'NOT';
217

218 TRUE : 'true';
219 FALSE : 'false';
220

221 NODE : 'node';
222 WAY : 'way';
223 RELATION : 'relation';
224

225 INT_NUMBER : MINUS_SYMBOL? DIGITS;
226 FLOAT_NUMBER : MINUS_SYMBOL? (DIGITS? DOT_SYMBOL)? DIGITS;
227

228 WHITESPACE: [\t\f\r\n] -> channel(HIDDEN); // ignore whitespace
229 COMMENT: '//' ~[\r\n]* -> skip;
230 SQL_COMMENT: '--' ~[\r\n]* -> skip;
231

232 IDENTIFIER:
233 STRING
234 | DIGITS+ [eE] (LETTER_WHEN_UNQUOTED_NO_DIGIT

LETTER_WHEN_UNQUOTED*)? // Have to exclude float pattern, as
this rule matches more.

235 | DIGITS+ LETTER_WITHOUT_FLOAT_PART LETTER_WHEN_UNQUOTED*
236 | LETTER_WHEN_UNQUOTED_NO_DIGIT LETTER_WHEN_UNQUOTED* //

INT_NUMBER matches first if there are only digits.
237 ;
238

239 STRING
240 : QUOTE_SYMBOL ('\\' [\\"] | ~[\\"\r\n])* QUOTE_SYMBOL
241 ;
242

243 STRING_DPOINTS
244 : IDENTIFIER DDOTS_SYMBOL IDENTIFIER
245 ;

96

List of Acronyms

ANTLR ANother Tool for Language Recognition. 27, 43, 45, 71

API Application Programming Interface. 10

CSS Cascading Style Sheets. 6

DAO Data Access Object. 27

DSL Domain Specific Language. 1, 8, 43–47

DTO Data Transfer Object. 31

GIS Geographic Information System. 1

HTML HyperText Markup Language. 6

IDE Integrated Development Environment. 10

JSON JavaScript Object Notation. 31

JWT JSON Web Token. 39

OSM OpenStreetMap. 1, 17, 45–47

REST REpresentational State Transfer. 10, 27

URI Uniform Resource Identifier. 36

97

Bibliography

[1] “DAO pattern documentation web page.” [Online]. Available: https://gl.wikipedia.org/
wiki/Data_access_object

[2] “Facade pattern web page.” [Online]. Available: https://es.wikipedia.org/wiki/Facade_
(patrón_de_diseño)

[3] “MVVM documentation web page.” [Online]. Available: https://medium.com/flawless-
app-stories/how-to-use-a-model-view-viewmodel-architecture-for-ios-46963c67be1b

[4] “Callback patern web page.” [Online]. Available: https://www.monografias.com/
trabajos37/call-back/call-back2

[5] “Promise pattern web page.” [Online]. Available: https://es.stackoverflow.com/
questions/64265/que-es-una-promesa-en-javascript#answer-64403

[6] “OpenStreetMap web page.” [Online]. Available: https://www.openstreetmap.org/

[7] “Overpass API web page.” [Online]. Available: https://wiki.openstreetmap.org/wiki/
Overpass_API

[8] I.-A. D. Bank, “OSM Extraction Tool web page.” [Online]. Available: https:
//code.iadb.org/en/tools/osm-extraction-tool

[9] M. Raifer, “Overpass turbo web page.” [Online]. Available: https://wiki.openstreetmap.
org/wiki/Overpass_API

[10] P. Software, “Spring web page,” 2002. [Online]. Available: https://spring.io/projects/
spring-boot

[11] “Spring Data JPA web page.” [Online]. Available: https://spring.io/projects/spring-data-
jpa

98

https://gl.wikipedia.org/wiki/Data_access_object
https://gl.wikipedia.org/wiki/Data_access_object
https://es.wikipedia.org/wiki/Facade_(patrón_de_diseño)
https://es.wikipedia.org/wiki/Facade_(patrón_de_diseño)
https://medium.com/flawless-app-stories/ how-to-use-a-model-view-viewmodel-architecture-for-ios-46963c67be1b
https://medium.com/flawless-app-stories/ how-to-use-a-model-view-viewmodel-architecture-for-ios-46963c67be1b
https://www.monografias.com/trabajos37/call-back/call-back2
https://www.monografias.com/trabajos37/call-back/call-back2
https://es.stackoverflow.com/questions/64265/que-es-una-promesa-en-javascript#answer-64403
https://es.stackoverflow.com/questions/64265/que-es-una-promesa-en-javascript#answer-64403
https://www.openstreetmap.org/
https://wiki.openstreetmap.org/wiki/Overpass_API
https://wiki.openstreetmap.org/wiki/Overpass_API
https://code.iadb.org/en/tools/osm-extraction-tool
https://code.iadb.org/en/tools/osm-extraction-tool
https://wiki.openstreetmap.org/wiki/Overpass_API
https://wiki.openstreetmap.org/wiki/Overpass_API
https://spring.io/projects/spring-boot
https://spring.io/projects/spring-boot
https://spring.io/projects/spring-data-jpa
https://spring.io/projects/spring-data-jpa

BIBLIOGRAPHY

[12] M. Stonebraker, “PostgreSQL web page,” 1996. [Online]. Available: https://www.
postgresql.org/

[13] “PostGIS web page.” [Online]. Available: https://postgis.net/

[14] T. Parr, “ANTLR web page.” [Online]. Available: https://www.antlr.org/

[15] E. You, “Vue.js web page,” 2013. [Online]. Available: https://vuejs.org/

[16] “VueRouter documentation,” 2013. [Online]. Available: https://router.vuejs.org/

[17] R. Dahl, “Node.js web page,” 2009. [Online]. Available: https://nodejs.org/es/docs/
guides/getting-started-guide

[18] V. Agafonkin, “Leaflet web page,” 2019. [Online]. Available: https://leafletjs.com/

[19] “Bootstrap web page.” [Online]. Available: https://getbootstrap.com/

[20] “JISBD web page.” [Online]. Available: https://biblioteca.sistedes.es/
articulo/simplificando-la-importacion-de-datos-de-openstreetmap-a-bases-de-datos-
relacionales-mediante-un-lenguaje-especifico-de-dominio/

[21] “Latex web page.” [Online]. Available: https://www.latex-project.org/

[22] “Postman web page.” [Online]. Available: https://www.postman.com/

[23] “IntelliJ IDEA web page.” [Online]. Available: https://www.jetbrains.com/idea/

[24] “Balsamiq web page.” [Online]. Available: https://balsamiq.com/wireframes/

[25] “Draw.io web page.” [Online]. Available: https://www.draw.io

[26] “Gitlab web page.” [Online]. Available: https://about.gitlab.com/

[27] “Git documentation.” [Online]. Available: https://git-scm.com/

[28] “GeoJSON documentation web page.” [Online]. Available: https://geojson.org/

[29] “Password Encoder web page.” [Online]. Available: https://docs.spring.io/spring-
security/reference/features/authentication/password-storage.html#authentication-
password-storage

[30] “ExecutorService documentation web page.” [Online]. Available: https://docs.oracle.
com/en/java/javase/11/docs/api/java.base/java/util/concurrent/ExecutorService.html

[31] “Executors documentation web page.” [Online]. Available: https://docs.oracle.com/en/
java/javase/11/docs/api/java.base/java/util/concurrent/Executors.html

99

https://www.postgresql.org/
https://www.postgresql.org/
https://postgis.net/
https://www.antlr.org/
https://vuejs.org/
https://router.vuejs.org/
https://nodejs.org/es/docs/guides/getting-started-guide
https://nodejs.org/es/docs/guides/getting-started-guide
https://leafletjs.com/
https://getbootstrap.com/
https://biblioteca.sistedes.es/articulo/simplificando-la-importacion-de-datos-de-openstreetmap-a-bases-de-datos-relacionales-mediante-un-lenguaje-especifico-de-dominio/
https://biblioteca.sistedes.es/articulo/simplificando-la-importacion-de-datos-de-openstreetmap-a-bases-de-datos-relacionales-mediante-un-lenguaje-especifico-de-dominio/
https://biblioteca.sistedes.es/articulo/simplificando-la-importacion-de-datos-de-openstreetmap-a-bases-de-datos-relacionales-mediante-un-lenguaje-especifico-de-dominio/
https://www.latex-project.org/
https://www.postman.com/
https://www.jetbrains.com/idea/
https://balsamiq.com/wireframes/
https://www.draw.io
https://about.gitlab.com/
https://git-scm.com/
https://geojson.org/
https://docs.spring.io/spring-security/reference/features/authentication/password-storage.html#authentication-password-storage
https://docs.spring.io/spring-security/reference/features/authentication/password-storage.html#authentication-password-storage
https://docs.spring.io/spring-security/reference/features/authentication/password-storage.html#authentication-password-storage
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/ExecutorService.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/ExecutorService.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/Executors.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/Executors.html

BIBLIOGRAPHY

[32] “Spring Boot testing web page.” [Online]. Available: https://www.baeldung.com/spring-
boot-testing

[33] “JUnit official web page.” [Online]. Available: https://junit.org/junit5/

100

https://www.baeldung.com/spring-boot-testing
https://www.baeldung.com/spring-boot-testing
https://junit.org/junit5/

	Introduction
	Motivation
	Objectives

	Technology fundamentals
	State of the art
	Used technologies

	Methodology and planning
	Development methodology
	Planning and monitoring

	Analysis
	Requirements
	Web application
	Parser library

	System architecture
	User interface
	Conceptual data model

	Design
	Technological system architecture
	Application design
	Back-end
	Front-end
	Parser

	Domain Specific Language design

	Implementation and tests
	Implementation
	OverpassAPI performance limitation
	Communication between the library and the server
	Strategy pattern
	Parallel execution

	Tests
	Unit tests
	REST tests
	Integration and acceptance tests
	Library tests

	Developed solution
	Log in and sign up
	Tasks historic
	Create tasks
	My databases
	Update database
	Add database
	Task execution report
	Data visualization

	Conclusions and future work
	Conclusions
	Future work
	Periodic tasks
	Reverse transformation

	Installation steps
	Required software
	Deploy steps

	Mockups
	DSL structure
	List of Acronyms
	Bibliography

