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Abstract

We derive the precise form of the low-energy four-dimensional EFT for type IIB
string theory compactified on the complex cone over Kähler-Einstein del Pezzo surfaces,
including N spacetime-filling D3-branes and assuming Minkowski externally. We explicitly
derive the theory for the Kähler modulus in the simplest case of a complex cone over
the complex projective plane, with a stack of four D7-branes and one O7-plane wrapped
around the base of the cone. An effective scalar potential appears in the theory, due to
gaugino condensation taking place at low energies over the D7-branes stack, exhibiting a
runaway direction and an unstable de Sitter vacuum. We find an explicit cosmological-like
solution for the Kähler modulus, showing that the warped volume of the internal complex
projective plane inflates with time in a runaway fashion. We conclude that type IIB string
theory compactified on the complex cone over the complex projective plane, with four
D7-branes and one O7-plane wrapped around the complex projective plane, is unstable.
We explicitly derive the ten-dimensional equations of motion for maximally symmetric
time-dependent metric perturbations by means of an ad hoc procedure, and we exhibit
both stationary and time-dependent solutions, whose boundary conditions are imposed in
part by the gaugino condensate stress-energy tensor. We partially fix the free parameters
of the time-dependent solution using the results from the four-dimensional low-energy
EFT. This thesis contains also an introduction to string compactifications, to the KKLT
scenario and to the literature about ten-dimensional effects of gaugino condensation.
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Introduction

In the last few decades, the standard model of particle physics has proved to describe
consistently and remarkably well all known fundamental interactions, except gravity, at
energy scales far below the Planck scale Mp ∼ 1019 GeV. In light of its many shortcomings,
however, it is regarded today as a low-energy effective field theory (EFT), whose UV
completion is still to be found. String theories are long-standing candidates for such
UV-complete theory.

It has been twenty years since the proposal of the KKLT scenario [15], a putative
realization of de Sitter vacua in string theory, and it remains unclear to these days whether
it is a viable construction, or whether string theory could admit de Sitter vacua altogether.
Gaugino condensation plays a central role in the KKLT construction. Its non-perturbative
nature has proved itself rather difficult to capture using the ten-dimensional tools of
critical superstring theories, sparking a remarkable scientific interest both for academic
reasons in their own right, and in the hope of substantiating KKLT further. Among the
research efforts on gaugino condensation found in the literature, the paper [34] published
in 2011 studied a very explicit string theory model embedding gaugino condensation
– a local type IIB compactification on the complex cone over the complex projective
plane – and it exhibited a closed-form supergravity solution supposedly encoding the
non-perturbative effect. This thesis studies that very same model, which could seem
like the perfect playground for studying gaugino condensation in string theory given its
extremely simple features, and it shows from a four-dimensional analysis that it does not
lead to a stable string theory vacuum, precisely due to the effect of gaugino condensation.
Therefore, the solution presented in [34] seems to be not as physically sensible as it was
argued to be. To corroborate this conclusion further, we take on the study of this very
same model from a ten-dimensional point of view. After dealing with a pathological
equation we found along the way by means of an ad hoc trivialization procedure, we
present the ten-dimensional equations of motion for the perturbation to the background
geometry, and we solve them both in a stationary hypothesis and in a time-dependent
regime. Some free parameters of these solutions are fixed imposing to reproduce the
results of the four-dimensional EFT.

The material of this thesis is organized as follows. In chapter 1 we give a presentation
of some aspects of the physics of string theory compactifications relevant to this work,
with an emphasis on de Sitter vacua and gaugino condensation. In chapter 2 all major
mathematical facts about the compactification space of the explicit model studied in
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this thesis are stated in a single place. This has the advantage of keeping things tidy for
the rest of the discussion, but the drawback of testing one’s patience. The uninterested
reader can mostly skip this chapter, as we explain in its introduction. Chapter 3
constructs the low-energy four-dimensional EFT for type IIB string theory compactified
over Kähler-Einstein del Pezzo surfaces, which we call local del Pezzo models, including N
spacetime-filling D3-branes in the background. This is done adapting established results
from the literature. In chapter 4 we exhibit the low-energy four-dimensional effective
field theory for the moduli of the compactification considered in [34]. In particular,
we compute the effective potential for its unique chiral field and we show that it has
an unstable dS vacuum and it induces runaway dynamics, which implies instability of
the compactification. These are all original results. Finally, in chapter 5 we compute
the ten-dimensional equations of motion for time-dependent and leading order metric
perturbations sourced by gaugino condensation in the same model as the previous chapter,
in the hope of reproducing the results from the four-dimensional EFT analysis. We find
two main classes of solutions depending on a number of parameters, one stationary and
one time-dependent. We argue that the former might be associated with the unstable dS
vacuum, and that a subclass of the latter might be a ten-dimensional description of the
runaway dynamics found in the four-dimensional EFT.
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Chapter 1

KKLT scenario and gaugino
condensation

Remarkably, string theory imposes extremely strict constraints on the low-energy effective
field theories it can generate. Among the constrained features string theory compact-
ifications impose on its low-energy EFT, the cosmological constant is crucial from a
phenomenological standpoint. While experimental evidence shows that our universe has
a positive and exponentially suppressed cosmological constant

Λ ∼ 10−122Mp (} = c = 1), (1.1)

the Maldacena-Nuñez no-go theorem shows that string theory compactifications to de
Sitter spaces necessarily involve singular internal manifolds, which makes them harder to
deal with. It has been recently conjectured by Obied et al. [42] that (metastable) de
Sitter vacua might not even belong to the string theory landscape, making them a part
of the so-called swampland. This is known as de Sitter conjecture, and it is manifestly in
tension with the validity of the KKLT scenario.

The goal of this chapter is to provide some context and motivation for the rest of this
thesis, making explicit the relation between gaugino condensation and dS vacua in string
theories. In §1.1 we introduce the basic ingredients of string theory compactifications and
we state a number of facts concerning them which we make use of in this work, trying to
be as little pleonastic as possible. In §1.2 we review the KKLT scenario, introducing all
of its building blocks in a rather telegraphic fashion. Finally, in §1.3 we present a mildly
discursive overview of the research on gaugino condensation during the last twenty years,
also providing context for where this thesis places itself.
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Chapter 1. KKLT scenario and gaugino condensation

1.1 String compactification generalities

Consistent perturbative superstring theories only exist in D = 10 spacetime dimensions1.
In order to have them generate a low-energy four-dimensional theory, they need to
be compactified, essentially rendering the appearance of the extra six dimensions of
string theory a high-energy effect, possibly close to the Planck scale. Thus, string
compactifications are born out of the application to string theory of a very large class of
techniques aimed at reproducing four-dimensional EFTs with the desired characteristics,
and for each single string compactification there are in general more than one, possibly
thousands or even infinite vacua, namely solutions of the classical ten-dimensional
equations of motion (EOMs) which yield a four-dimensional theory. The features of
the resulting low-energy theory, like its symmetries (e.g. supersymmetry, visible gauge
symmetries like the Standard Model gauge group), its particle content and spectrum, the
classic values of its couplings and its cosmological constant, are going to be determined
dynamically by the specifics of the compactification.

1.1.1 Kaluza-Klein compactifications

The most immediate (geometric) compactification technique is to consider a string theory
over a ten-dimensional manifold which is globally isomorphic to a direct product:

X10 =M4 ×X, (1.2)

where M4 is the visible four-dimensional (external) spacetime, X is an internal six-
dimensional manifold, and X10 makes up the background2 of the string theory. This is
called Kaluza-Klein compactification. The topological structure of (1.2) can be endowed
with a metric of block diagonal form (in the Einstein frame)

ds2
10 = ds2

4(x) + ds2
X(y), (1.3)

where ds2
4(x) is maximally symmetric, i.e. Poincaré-invariant, and ds2

X(y) is Kähler
and Ricci-flat. By SUSY of the low-energy EFT, X is required to be Calabi-Yau (CY),
and ds2

X(y) is chosen to be Ricci-flat in order to satisfy the vacuum Einstein equations,
up to a cosmological constant. It should be noted that compact CY manifolds have
no continuous isometries, therefore maximal symmetry cannot be enforced on ds2

X(y).
Moreover, isometries of the internal space would introduce massless spin one particles
to the low-energy EFT spectrum, like in the classic Kaluza-Klein theory, which are not
phenomenologically welcome, therefore this is a desired byproduct of the internal CY
structure. The length scale of X broadly defines the compactification scale, roughly

1Consistency of the theory is found requiring cancellation of the superconformal anomaly, i.e. the
anomaly associated with the (gauged) Weyl rescaling of the metric g 7→ eω(x)g, while perturbativity is
understood with respect to the string coupling constant gs = 〈eφ〉.

2Often times, one refers to background quantities like fluxes or metrics in order to distinguish them
from localized ones, as in living on extended solitonic objects like Dp-branes as excitations of those
vacuum states.
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String compactification generalities

identified with the (bulk) Kaluza-Klein (KK) scale LKK , and we expect it to be finite
and above the electroweak (EW) energy scale in realistic compactifications, in order not
to clash with experimental data:

1

LKK
> EEW . (1.4)

In particular X is necessarily compact in realistic compactifications, and in this case the
four-dimensional EFTs from (1.2) are going to be gravitational, namely with dynamical
four-dimensional gravity. Contrary to general relativity, strings can propagate consistently
even on singular backgrounds like orbifolds or in presence of D-branes and O-planes,
therefore X is allowed to have singularities of various nature like D-brane stacks wrapping
multiple submanifolds.

One could even relax the metric Ansatz (1.2), allowing for some dependence of the
external metric ds2

4 on the internal coordinates. Imposing again Poincaré-invariance
externally, this is achieved through so-called warped compactifications

X10 =M4 ×A X, (1.5)

where A(y) is a function of the internal coordinates. For type IIB string theory, the
background metric (1.3) is modified into

ds2
10 = e2A(y)ds2

4(x) + e−2A(y)ds2
X(y). (1.6)

The function e2A(y) is commonly known as warp factor, and the specific form of the
Ansatz (1.6) has been chosen so that SUSY of the low-energy EFT constraints the internal
manifold to be conformally Calabi-Yau (that is, the CY constraint is on ds2

X).
String theories have no dimensionless parameters, but they come with a fundamental

scale related to the Regge slope parameter α′, which has dimensions [α′] = `2, where `
denotes the length dimension. Throughout this thesis, we will work in units

} = c = 1, (1.7)

and we define the string length as

`s = 2π
√
α′, (1.8)

which can be identified as the fundamental scale of the string theory. With these
conventions, the tension of a Dp-brane in the Einstein frame is given by

TDp =
2π

`p+1
s

, (1.9)

which gets a further 1/gs factor in the string frame, where gs is the string coupling
constant. On the other hand, the string tension in the string frame is

T =
2π

`2s
=

1

2πα′
, (1.10)

3



Chapter 1. KKLT scenario and gaugino condensation

so that the α′ ∼ 0 limit of the theory corresponds to the rigid string limit. More
intuitively, the α′ perturbative expansion controls the stringy corrections to point-particle
quantities. On ten-dimensional Minkowski backgrounds, since there are no characteristic
length scales, the only possible expansion parameter is α′E2, where E is the energy of
the process, so that sending α′ � 1/E2 corresponds to the low-energy supergravity limit
of the theory. On compactification backgrounds like (1.6), another possible expansion
parameter is α′/D(X)2, where D(X) is the diameter of the internal manifold, so that
the α′ ∼ 0 limit is recovered in the limit of low-energy and large volume of the internal

manifold. More generally, the characteristic lengths `
(a)
c of any given non-trivial cycle Σa

of the internal manifold define the KK scales of the compactification

Λ
(a)
KK =

1

`
(a)
c

, (1.11)

which are distinguished from the bulk KK scale ΛKK and dominated by it, and they

can give rise to a dimensionless expansion parameter α′/
(
`
(a)
c

)2
. On general grounds,

the low-energy EFTs of string theory are supergravity theories, and the former provide
consistent curvature corrections controlled by α′ to the Einstein-Hilbert action. By the
above considerations, when dealing with string compactifications, the validity of the
ten-dimensional supergravity approximation at low energies needs to be assessed, in
particular making sure than none of the internal non-trivial cycles (including the internal
manifold itself) is stabilized to a problematically small volume, so that the KK scale is
kept sufficiently below the string scale and the higher-order corrections are under control.

In a supergravity approximation of string theories, the ten-dimensional Newton’s
constant is determined by the string length. In our units, this is given precisely by

κ2
10 =

`8s
4π
. (1.12)

The four-dimensional Newton’s constant is determined by the (warped) volume of the
internal manifold and by the string length,

κ2
4 =

κ2
10

Volw(X)
=

`8s
4πVolw(X)

, (1.13)

where

Volw(X) =

∫
X

d6y
√
g6 e−4A. (1.14)

The unwarped case can be easily retrieved setting the warp factor to one. This can be
seen expressing the ten-dimensional Ricci tensor in terms of the four-dimensional one
using the warped Ansatz (1.6). The Einstein-Hilbert action then takes the form

SEH =
1

2κ2
10

∫
X10

d10X
√
−ĝ R =

=
1

2κ2
10

∫
X10

d4x d6y
√
−g4g6

(
e−4AR(4) + . . .

)
=

=

(
1

2κ2
10

∫
X

d6y
√
g6 e−4A

)∫
R1,3

d4x
√
−g4R

(4) + . . . .

(1.15)
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String compactification generalities

Therefore, if X is assumed non-compact, the four-dimensional Newton’s constant goes to
zero

κ2
4 =

κ2
10

Vol(X)
∼ 0, (1.16)

and the resulting EFT is going to be non-gravitational, with fixed external metric. While
this would not make for a realistic compactification, it can be regarded as a sensible
approximation when one is interested in non-gravitational aspects of the low-energy EFT,
e.g. if one imagines X as obtained from some decompactification limit of a compact
internal manifold X̃ around some local sector. String compactifications with non-compact
internal spaces are called local models, as in local description of compact realistic models.
While they have infinite compactification scale, local models still have a finite KK scale,
which is less trivially identified with some combination of the sizes of the internal cycles.

Finally, let us briefly digress on SUSY. This thesis will deal with type IIB string
compactifications, so that our focus is going to revolve around type II superstring theories
and F-theory, as obtained from M-theory (see for instance [25, 23]). These theories
have 32 (real) supercharges, which is the maximal number one can have while being
compatible with locality, and which correspond to N = 2 SUSY in D = 10 or N = 1
in D = 11 dimensions3. Due to the approximately SUSY features of the Standard
Model (SM), like its approximate gauge couplings unification at GUT energies or the
hierarchy problem, it appears natural to ask that its UV completion is minimally SUSY
(N = 1 in four dimensions, i.e. with four supercharges) at its KK scale, with spontaneous
symmetry breaking (SSB) of SUSY at some lower energy scale, but still above the EW
scale. Therefore, a possible hierarchy of scales for a string compactification well described
in the supergravity approximation is displayed in figure 1.1.

Type II string theories compactified on Calabi-Yau three-folds X give rise to N =
2 four-dimensional EFTs. One can include spacetime-filling (BPS) D-branes in the
compactification, so that they break half SUSY locally, preserving 16 supercharges on
their worldvolume [22], and this also requires us to include orientifold planes in order to
cancel the tadpole4 that the branes introduce. This is called orientifold compactification
of type II string theories, and it produces N = 1 four-dimensional EFTs, which is what
we are looking for. F-theory compactified on Calabi-Yau four-folds Z already encodes
the D7-branes and O7-planes information at a geometric level5, so that it also gives rise
to N = 1 four-dimensional EFTs. It has been argued [9] that if Z is also elliptically
fibered with base of fibration6 X then in some cases one can go to a region of the
moduli space of Z around which the theory looks like an orientifold compactification of

3This is due to the dimension of irreducible spinor representations in D dimensions, see [4]. More
precisely, in D = 10 there exist Majorana-Weyl spinors, while in D = 11 only Majorana spinors survive.

4Roughly speaking, tadpoles are charges associated with D-branes of different dimensions. Typically,
one needs to cancel them all since the total flux of their corresponding density forms through a compact
space should vanish.

5D5- and D3-branes can also be included in type IIB compactifications in a F-theory setup by means
of M5- and M2-branes respectively.

6That is, if Z can be described as the total space of a fibration π : Z → X with fiber π−1(x) which is
an elliptic curve, i.e. a two-torus.
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Chapter 1. KKLT scenario and gaugino condensation

Figure 1.1: Hierarchy of scales in string compactifications ensuring a controlled supergravity
regime of the low-energy EFT. It is understood that all scales lie above the EW scale.

type IIB string theory on X, and in this orientifold limit of F-theory one can actually
make out bulk quantities from brane quantities, like Kähler potentials and fluxes. More
precisely, D7-branes in F-theory are described as degeneration loci of the elliptic fibration
within the elliptically fibered Calabi-Yau internal space, where the 1-cycle degenerating
to a point is the one over which M-theory is compactified, when recovering F-theory
from M-theory. Moreover, due to F-theory carrying all the brane information of the
compactification in a geometric manner, it naturally brings forth a unification of complex
structure moduli of X with brane deformation moduli, which will come in handy when
dealing with their stabilization. For these reasons, it is often convenient to work directly
with F-theory compactifications on Calabi-Yau four-folds instead of type IIB orientifold
compactifications, and this is the approach usually chosen to illustrate the KKLT scenario.
It should be noted that F-theory vacua are actually more general than type IIB orientifold
vacua, in the sense that the former provide corrections to the latter, and it has been
possible to construct F-theory vacua which cannot be described in a type IIB orientifold,
see e.g. [33]. All of these compactifications can be achieved with Ricci-flat internal
manifolds at leading order in the large internal volume limit.

Let us conclude this introduction to string compactifications introducing two objects
that will play a central role throughout this thesis.

1.1.2 Orientifold planes

Orientifold planes are non-dynamical extended objects in string theories, acting both on
the spectrum of the theory and on its geometric background. Notably, they can carry
negative tension, which makes them a natural candidate to cancel the tadpoles generated

6



String compactification generalities

by stacks of D7-branes, corresponding to gauge anomalies in the gauge theories supported
on them. Including an orientifold plane7 in a string theory CY compactification means
modding out the UV spectrum by the simultaneous action of the worldsheet parity Ωp

and the appropriate lift of a holomorphic and isometric involution of the internal space σ,
projecting out of the theory the non-invariant degrees of freedom. Type II string theory
compactifications on Calabi-Yau 3-folds give rise to N = 2 four-dimensional effective
field theories [23], however the inclusion of O7-planes in the compactification breaks half
of the supersymmetry, yielding a N = 1 SUSY EFT [18]. Broadly speaking, this low
energy effective field theory in the supergravity approximation is derived via Kaluza-Klein
reduction, namely integrating out all of the massive modes out of the ten-dimensional
action by expanding the type IIB supergravity potentials, the Kähler form and the
complex structure in terms of their respective massless deformations. In the absence of
D7-branes and O7-planes, these arrange themselves in N = 2 supermultiplets, while the
inclusion of O7-planes projects out the theory the orientifold-odd part of the spectrum,
in such a way that it rearranges itself into a collection of N = 1 supermultiplets. In the
following, we will only refer to type IIB string theory orientifold compactifications, where
the internal space is required by supersymmetry to be (conformally) Calabi-Yau, since
this is the class of compactifications our model fits in.

By definition, the involution σ is an internal automorphism which squares to the
identity. Moreover, it is a holomorphic isometry8, it leaves the metric and the complex
structure invariant, which implies that the Kähler form is also invariant under σ. The
fixed-point locus of σ defines the cycle where the orientifold plane is wrapped. For
instance, O7-planes wrap 4-cycles of the internal space (e.g. compact divisors) and fill
the external space. Since σ is required to leave the external four-dimensional space
invariant and to be a holomorphic involution of the internal space, orientifold planes are
necessarily even-dimensional9, namely in type IIB string theory compactifications one
can have only O3, O5, O7 and O9-planes. However, the action of σ on the holomorphic
3-form Ω coming from the Calabi-Yau structure is left unconstrained. The involution
requirement implies that σ?2Ω = Ω, so that σ?Ω = ±Ω, and choosing one of the two
possibilities actually completely fixes the full orientifold action. This is given by [18]

O =

{
O− = (−1)FL ◦ Ωp ◦ σ? if σ?Ω = −Ω

O+ = Ωp ◦ σ? if σ?Ω = Ω
(1.17)

where FL is the number of spacetime fermions in the left-moving sector. The O− action
is associated to O3 and O7-planes, while O+ is associated to O5 and O9-planes. This is
easily seen observing that locally one can always find complex coordinates (zi) for the
3-fold such that the holomorphic 3-form takes the form

Ω ∝ dz1 ∧ dz2 ∧ dz3, (1.18)

7The use of the word plane does not refer to the dimensionality of the object. Orientifold planes in
string theory compactifications can have dimensions from four up to ten (including time), and further
constraints on their dimension comes from consistency with the theory they are embedded in.

8Since Calabi-Yau only have discrete isometries, σ is necessarily a discrete symmetry.
9Indeed, σ is holomorphic iff it commutes with the complex structure.
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Chapter 1. KKLT scenario and gaugino condensation

which shows that the only possibilities for σ to change the sign of Ω are that it reverses
the sign of either one or three complex coordinates (zi). This corresponds respectively
to O7 and O3-planes. An analogous argument shows that O+ is associated to O5 and
O9-planes10.

Let us consider the case of O7-planes. The orientifold action is given by O−, and we
are interested in determining what part of the type IIB bosonic spectrum survives the
orientifold projection. This can be easily seen recalling that the worldsheet parity acts
on the type IIB bosons as follows [18],

Ωpφ = φ ΩpC0 = −C0

Ωpg = g ΩpC2 = C2

ΩpB2 = −B2 ΩpC4 = −C4

(1.19)

while (−1)FL changes sign to the RR fields C0, C2 and C4, while leaving the NSNS fields
B2, gAB, φ invariant. Thus, in the case of O7-planes, the orientifold-invariant type IIB
spectrum has to satisfy

σ?φ = φ σ?C0 = C0

σ?g = g σ?C2 = −C2

σ?B2 = −B2 σ?C4 = C4

(1.20)

Finally, let us comment on D7-brane and O7-plane stacks. When dealing with
orientifold 7-planes one has to formally consider the double cover of the internal space
Z, such that the internal space X is recovered as the quotient of Z by the geometric
orientifold action ∼, i.e. X ' Z/ ∼ (more precisely, ∼ is a representation of Z2). Thus,
D7-branes in orientifold compactifications always come in mirrored pairs with respect to
the orientifold geometric involution. When they do not coincide with the O7-plane, the
mirrored pair corresponds to one D7-brane degree of freedom, while when the D7-branes
coincide with the O7-plane, the mirrored pair naturally collapses to a single D7-brane.
For concreteness, let us consider the model studied in this thesis, namely the complex
cone over P2, with four D7-branes and one O7-plane wrapped around the P2 base. By
this we mean that this type IIB orientifold compactification presents eight D7-branes
organized into four mirrored pairs by orientifold projection. This can be described from
an upstairs or a downstairs point of view, namely before and after taking into account
the orientifold projection. In the upstairs geometry, one has eight D7-branes in OP2(−3),
whose dynamics is reduced to that of four by O7-plane projection. In the downstairs

geometry, one has four D7-branes in OP2(−3), coming from eight D7-branes in ˜OP2(−3),
the double cover of OP2(−3) due to the O7-plane wrapped around the P2. The gauge
group associated to the D7-brane stack is affected by the orientifold projection. From
the upstairs perspective, N coincident D7-branes undergo a reduction of the gauge group
by a proper lift of the orientifold projection

π?O7 : U(N)→ SO(N). (1.21)

10O9-planes correspond to σ = id.
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From the downstairs perspective, N coincident D7-branes undergo a gauge group enhance-
ment from U(N) to SO(2N). We present an introduction to gauge theories supported
on the worldvolume of D-branes in §4.1.

1.1.3 D-branes in type II string theories

D-branes are dynamical extended objects of non-perturbative nature11 in string theories.
They can be described as submanifolds of the geometric background, while physically
they are characterized as the locus where open strings of the theory can end. More
precisely, they are associated with Dirichlet boundary conditions for open strings along a
number of directions. Their dynamics is described by a gauge theory for the abelian field
strenth F2 supported on their worldvolume, which corresponds to the vibration of the
open string ending on it.

D-branes in type IIB compactifications need to preserve the bulk supersymmetry12,
which requires them to wrap supersymmetric cycles of the background. D-branes couple
(electrically or magnetically) to the RR supergravity potentials Cp

13, where{
p = 1, 3 type IIA

p = 0, 2, 4 type IIB
(1.22)

This ultimately determines the supersymmetric Dp-branes in type IIA and IIB string
theories.

Given a Dp-brane and a (p+1)-form potential Cp+1 with field strength Fp+2 = dCp+1,
they can couple naturally through the action

Sint = ep

∫
Dp
Cp+1, (1.23)

where ep is the Dp-brane charge, and where we set κ2
10 = 1. The action (1.23) shows

explicitly how Dp-branes couple electrically to background fluxes. This also implies
that D-branes source for background fluxes, analogously to Maxwell’s electromagnetism.
Indeed, in a D-dimensional spacetime, the EOMs for Cp show that ep in (1.23) is really

11For instance, denoting by gs = eφ the string coupling constant, one can see that the tension of a
Dp-brane in the string frame has form TDp ∼ 1

gs
[23]. This is non-perturbative, although it is also different

from the dependence 1/g2
s typical of solitonic objects. Recall that a Dp-brane is a (p+ 1)-dimensional

object, with p spacial dimensions and one time dimension.
12This also implies that they locally preserve half of the supersymmetry generators, which makes many

of their properties persist even at strong coupling. F-theory provides a natural playground to investigate
type IIB D-branes properties at strong coupling thanks to the monodromies of the gauge coupling it
embeds.

13In F-theory, (p, q) 7-branes can couple to both C2 and B2, with D7-branes to be identified with the
(1, 0) 7-branes. The classification of 7-branes in F-theory proceeds through the associated monodromy
of the SL(2,Z) doublet (B2, C2) when circling around the considered D7-brane in the transverse plane.
Notice that this is reminiscent of (p, q)-strings, with the caveat that consistency requires to identify the
(1, 0)-string with the non-perturbative excitation coupled to B2 (i.e. the F-string), while (0, 1) couples to
C2 (the D-string).
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Chapter 1. KKLT scenario and gaugino condensation

the electric flux sourced by the Dp-brane through a (D − p− 2)-sphere surrounding the
brane:

ep =

∫
SD−p−2

?Fp+2. (1.24)

Then, one can also consider its magnetic dual brane, whose magnetic flux is computed by

µD−p−2 =

∫
Sp+2

Fp+2. (1.25)

Since a (p+ 2)-sphere can enclose a (D − p− 3)-dimensional submanifold, the magnetic
dual to a Dp-brane is a D(D− p− 4)-brane. The Dirac quantization condition generalizes
to Dp-branes:

ep µD−p−2 ∈ 2πZ. (1.26)

The fluxes (1.24) and (1.25) give us a pragmatic way to determine the stable D-branes
of type II string theories. In D dimensions, a Dn-brane can couple to a p-form field
strength Fp iff {

n = D − p− 2 magnetically coupled

n = p− 2 electrically coupled
(1.27)

Since type II superstring theories live on backgrounds of dimension D = 10, the
magnetic dual to Dp-brane is a D(6− p)-brane. From (1.27) and (1.22) we find that

Type IIA • D0-branes only couple electrically to F2;

• D2-branes only couple electrically to F4;

• D4-branes only couple magnetically to F4;

• D6-branes only couple magnetically to F2.

Type IIB • D1-branes (D-strings) only couple electrically to F1;

• D3-branes couple both electrically and magnetically to F5;14

• D5-branes only couple magnetically to F3;

• D7-branes only couple magnetically to F1.

We conclude that Dp-branes of type IIA string theory have p = 0, 2, 4, 6 (even), while
Dp-branes of type IIB string theory have p = 1, 3, 5, 7 (odd)15.

14This is consistent with the self-duality of F5.
15Actually, type IIA string theory can admit D8-branes, electrically coupled to a non-dinamical 10-

form field strength, and euclideanized type IIB string theory admits D(−1)-branes, called D-instantons,
electrically coupled to F1.
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1.2 KKLT scenario

The main phenomenological challenge with naive string compactifications of the form (1.3)
is that they generally come with moduli. By definition, these are massless scalars of the
four-dimensional EFT without any potential. They are an issue for the phenomenology of
these theories for multiple reasons. For instance, it follows that their vacuum expectation
values (VEVs) are left unstabilized (i.e. unfixed), so that the couplings of the EFT are
undetermined as well, in a possibly chaotic manner16. This leaves the theory devoid
of any predictive power. Even assuming a chaotic stabilization of the moduli, these
massless scalars would couple at least with gravitational strength to matter. Whenever
their masses are fixed far above the EW scale, this would not be phenomenologically
problematic, but in a chaotic scenario one is bound to find patches of the universe where
such scalars are light, and modern day cosmological data does not easily accommodate
such particles, e.g. due to structure formation observational data. This is known as
moduli stabilization problem, or moduli-space problem. It shows that we should look for
string compactifications which are able to generate scalar potentials for the moduli17 and
such that their VEVs are fixed at a finite value (possibly zero, depending on the specific
modulus). This operation is often called moduli stabilization. It should be stressed that
once a modulus ρ is stabilized at a finite value 〈ρ〉 by a scalar potential V (ρ), in general
it also automatically receives a mass

m2
ρ =

∂2V

∂ρ2

∣∣∣
ρ=〈ρ〉

> 0, (1.28)

effectively lifting it from the moduli space of the theory.

The KKLT scenario is a class of type IIB warped compactifications which has been
claimed to be able to stabilize all moduli, and to generate a de Sitter low-energy EFT.
In order to explain how this works, we need to build some results and terminology.

1.2.1 Moduli space structure

By definition, moduli fields parametrize through their VEVs continuous deformations of
string compactifications which are degenerate in energy, since they correspond to flat
directions of the four-dimensional effective scalar potential. Moduli can have a number
of different origins, but in this thesis we will be concerned with just the following kinds.

Dilaton φ It defines the string coupling constant

gs = 〈eφ〉 = e〈φ〉, (1.29)

for all string theories. This is already a modulus on ten-dimensional Minkowski
spacetime, and it controls the worldsheet perturbative expansion of string theory,

16As in different patches of the universe get different VEVs.
17In string theory literature, it is common to refer to these scalar fields as moduli even after they

received a scalar potential and a mass.
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Chapter 1. KKLT scenario and gaugino condensation

analogous to the loop expansion of Feynman diagrams in quantum field theories18.

Axions In supergravity theories, they roughly correspond to changes in the cohomology
class of their p-form potentials Cp. By means of the harmonic representatives, this
translates to adding harmonic forms to Cp, which clearly does not affect the field
strength Fp+1 = dCp. A more thorough characterization is presented in §3.4.

Metric moduli String compactifications on (conformally) CY manifolds have zero
modes δgMN of the ten-dimensional metric gMN given by the four-dimensional
metric gµν and by the zero modes of the internal unwarped metric δgmn, determined
by requiring that they preserve SUSY and the internal topology. The latter in turn
define the metric moduli, which come in two different classes.

Complex structure moduli They are associated to non-hermitian metric defor-
mations of the form δgij , where i, j are holomorphic complex indices. They
are the generalization of the complex structure modulus τ = ω2

ω1
of the torus

T 2 = C/(ω1Z⊕ω2Z), and for this reason they can also be thought of as shape
moduli.

Kähler moduli They are associated to (1,1) deformations of the Kähler form J on
X. They parametrize the size of p-cycles of the internal manifold. For instance,
in the absence of background fluxes19, the volume of the compactification
manifold X is always a Kähler modulus, thanks to the scale invariance gmn 7→
r gmn of the Einstein equations in the vacuum. More generally, the volume
of the internal cycles are Kähler moduli. Thus, they are also known as size
moduli.

D7-brane deformation moduli Stable D7-branes in string compactifications wrap
internal holomorphic 4-cycles Σ4 (that is, a divisor of X). If the line bundle LΣ4

built on Σ4 admits global holomorphic sections, these are by definition continuous
deformations of the brane preserving SUSY. Therefore, they generate zero-modes of
the brane, which correspond to massless scalar fields on the worldvolume theory of
the brane. A sufficient condition for LΣ4 to admit no global holomorphic sections
is for it to be a negative line bundle.

D3-brane moduli At tree-level, spacetime-filling D3-branes do not feel any force20.
Thus, the position on the internal space of spacetime-filling D3-branes become
moduli of the four-dimensional EFT.

In orientifold type IIB compactifications, the spectrum of the four-dimensional EFT
only comes from the ten-dimensional fields obeying the transformations rules under

18In this analogy, Feynman diagrams correspond to Riemann surfaces, and higher loop order corresponds
to higher genus of the surface representing the string scattering.

19Namely, setting the VEVs of all the supergravity p-form field strengths to zero.
20It has been shown [28] that the D3-brane superpotential in type IIB warped compactifications is

sourced by IASD fluxes, whose presence is a purely quantum effect.
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orientifold involution (1.20) required to make the spectrum invariant. On the other hand,
the orientifold action σ splits the cohomology groups Hp,q(X) into orientifold-even and
orientifold-odd subspaces, with dimensions hp,q± (X). From the above definition, we expect
bp,±(X) (real) axions coming from a respectively orientifold-even/odd p-form potential
Cp. Recall that the only non-trivial Hodge numbers of a compact CY three-fold X with
non-vanishing Euler characteristic are [23]

h1,1(X) = h2,2(X); (1.30a)

h1,2(X) = h2,1(X); (1.30b)

h0,0(X) = h3,3(X) = h3,0(X) = h0,3(X) = 1; (1.30c)

while for a compact CY four-fold Z with non-vanishing Euler characteristic21 they are
[23]

h1,1(Z) = h3,3(Z); (1.31a)

h1,2(Z) = h2,1(Z) = h1,4(Z) = h4,1(Z); (1.31b)

h2,2(Z) = 2
(
22 + 2h1,1(Z) + 2h1,3(Z)− h1,2(Z)

)
; (1.31c)

h0,0(Z) = h4,4(Z) = h4,0(Z) = h0,4(Z) = 1. (1.31d)

Therefore, in a type IIB compactification with O7/O3-planes we see from (1.20) that
there are h1,1

+ (X) C4 axions, h1,1
− (X) B2 axions and h1,1

− (X) C2 axions, and the one axion
C0 surviving the orientifold projection. Similarly, the dilaton φ is kept in the spectrum
of the low-energy EFT.

As for the metric moduli, complex structure deformations ψα on a CY 3-fold are
actually in one-to-one correspondence with harmonic (2, 1)-forms22 χα through the
holomorphic (3,0)-form Ω [18]:

δgij =
i

‖Ω‖2
ψα (χα)ik Ωk

j , (1.32)

where ‖Ω‖2 = 1
3! ΩijkΩ

ijk
. Since the orientifold involution is an holomorphic isometry,

(1.32) shows that only orientifold-odd complex structure deformations introduce moduli
to the low-energy EFT. In particular, there are 2h1,2

− (X) complex structure moduli. As for
the Kähler moduli, thanks to the fact that the Kähler form is invariant under orientifold
involution (thanks to the fact that σ is a holomorphic isometry), they are counted
by orientifold-even harmonic (1, 1)-forms, and there are h1,1

+ (X) of them. Considering
D7-branes deformation moduli, for each divisor Σ4 they are spanned by holomorphic
(2, 0)-forms over Σ4 defined by [25]

ωr = ιδrnΩ
∣∣
Σ4
, (1.33)

21Actually, here we are also assuming h2,0(Z) = 0.
22Analogously, on a CY n-fold they correspond to harmonic (n− 1, 1)-forms.
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where δrn are the holomorphic deformation vector fields normal to Σ4 (that is, a global
holomorphic section of the line bundle LΣ4), corresponding to a deformation δφr of the
moduli of Σ4, and ιαβ denotes the interior product. Since σ inverts the sign of Ω, (1.33)
shows that there are h2,0

− (Σ4) D7-branes deformation moduli for each four-cycle Σ4 of
X wrapped by a D7-brane. Finally, since the internal space is six-dimensional, in type
IIB compactification with ND3 D3-branes, there are 6ND3 D3-brane moduli given by the
coordinates of the D3-brane positions. Notice that there is an equal number of C4 axions
and of Kähler moduli. In fact, by SUSY they combine together to form a complexified
Kähler modulus23

TA '
1

`4s

∫
D4, A

(C4 + idVol(D4, A)) , (1.34)

where D4, A is a basis of divisors of X. This is the quantity entering the low-energy EFT.
Analogously, the dilaton φ and the axion C0 combine into the complexified axio-dilaton

τ = C0 + i e−φ, (1.35)

which transforms like the modulus of a two-torus under the symmetry SL(2,Z) of type
IIB string theory.

On general grounds, while SUSY ensures that the full moduli space M is Kähler, its
global structure is complicated, possibly involving multiple non-trivial fibrations thereof.
As a result, even locallyM cannot be written as a direct product of Kähler manifolds. In
particular, this is due to the fact that D3-branes and Kähler moduli mix in a non-trivial
way in the Kähler potential. While we will actually exhibit the full Kähler potential in
presence of D3-branes in the case of the local model studied in this thesis, for the sake of
an overview of the KKLT model it will not be necessary to include them. Moreover, for
now we will also be scantly concerned with the B2 and C2 axions. This is due to the fact
that their dynamics cannot destabilize the compactification, so that one does not need to
compute the value at which they are stabilized, nor their masses, in order to assess the
validity of a specific string vacuum.

Assuming no B2 and C2 axions are present in the compactification, and that no
D3-branes are included, the full moduli space locally splits (at least at tree-level) into a
complex structure moduli subspace, a Kähler moduli subspace, a D7-branes deformations
moduli space and an axio-dilaton moduli space,

M =MK ×Mc ×Mτ ×MD7. (1.36)

Neglecting the warping coming from curvature corrections on D7-branes, discussed below
(1.61), the full Kähler potential then splits as well into a sum of the Kähler potentials for

23In presence of D3-brane moduli, this definition actually gets modified by the appearance of the warp
factor, which is sourced by the D3-branes, in a non-trivial fashion.
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each sector, and at tree-level it is given by24

K = KK(T, T ) +Kc(ψ,ψ) +Kτ (τ, τ) + gsKD7(ψ, φ, ψ, φ); (1.37a)

KK(T, T ) = −2 log Vol(X) = −2 log

∫
1

3!
J ∧ J ∧ J ; (1.37b)

Kc(ψ,ψ) = − log 2i

∫
X

Ω ∧ Ω; (1.37c)

Kτ = − log Im τ. (1.37d)

Here φ denotes D7-branes deformation moduli, and it is understood that we are in the
weak coupling limit gs ∼ 0. Notice that the D7-brane deformation component enters the
Kähler potential at order gs, since this is quantum (non-perturbative) effect. We omit its
specific form since it will have no relevance in our treatment of the KKLT scenario, nor
in the analysis of this thesis. Moreover, here and in the following we set

κ2
4 = 1. (1.38)

The complex structure Kähler potential actually provides a very convenient basis
for H1,2(X), labeled by complex structure deformations. Indeed, a complex structure
deformation for a CY n-fold can be viewed as a deformation of the complex coordinates

δzi = ε f ia(z, z)δψ
α, (1.39)

where fa, α = 1, . . . , h1,2(X), is a non-holomorphic function (if it were holomorphic,
the complex structure would not be affected). The corresponding deformation of the
holomorphic 3-form δaΩ is going to be of rank (3, 0) + (2, 1),

δΩ =
ε

2!
Ωijkdz

i ∧ dzj ∧
(
∂lf

k
adzl + ∂lf

k
adzl

)
δψα

=: ∂aΩ δψa.
(1.40)

Then, if we define a covariant derivative over the complex structure moduli space

DaW := (∂a + ∂aKc)W, (1.41)

using (1.37c) it is straightforward to see that DaΩ is a (2, 1)-form (namely, ∂a cancels off
the (3, 0) part). Since Ω is harmonic, these are harmonic forms, and one can show that
they are linearly independent, so that they span the whole H1,2(X).

It is worthwhile to note that (1.37a) can be recovered from F-theory, neglecting

non-perturbative contributions25 of order ∼ e
− π
gs , as the orientifold weak coupling limit

24It should be noted that this is not the only form in which they appear in the literature. For instance,
the −2 factor in KK is sometimes replaced with a −3. The relation between these conventions amounts
to a redefinition of the moduli fields, which can be found in [18].

25These are actually a feature of F-theory compactifications, which often ameliorate singularity issues
of pure type IIB orientifold compactifications.
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of the full Kähler potential (at tree-level)

K = KK(T, T ) +Kc(z, z); (1.42a)

KK(T, T ) = −2 log
1

`8M
Vol(Z); (1.42b)

Kc(z, z) = − log

∫
Z

Ω4 ∧ Ω4. (1.42c)

where z are the complex structure moduli of the elliptically fibered four-fold Z, Ω4 is
the holomorphic 4-form of Z, and `M is the eleven-dimensional Planck length, which is
related to the type IIB string length by

`3M = `2s L, (1.43)

where L is the square root of the area v of the elliptic fiber26. In particular, this concretely
shows that from the F-theory point of view the complex structure moduli of Z encompass
the complex structure moduli of X together with the axio-dilaton and the D7-brane
deformation moduli, and that their total number (from an F-theory compactification) is
2h1,3(Z). Furthermore, they can be compactly labeled by DaΩ4, a = 1, . . . , h1,3(Z), as
we showed above in the case of a CY three-fold.

This correspondence goes actually further, and in fact one can count all of the moduli
of a type IIB string compactification using the Hodge numbers of Z alone, except for
the D3-brane moduli, which come directly from M2-brane moduli. In particular, in the
F-theory framework one need not worry about the orientifold-even or -odd character
of the deformations, since this has become a piece of geometric information. Since one
Kähler modulus gets lost in getting from M-theory to F-theory (the area of the elliptic
fiber is shrunk to zero), there are h1,1(Z) − 1 Kähler moduli. M-theory has only one
form potential C3, with field strength G4 = dC3, and a dual potential C6 defined by
G7 = ?11G4. C6 axions correspond to C4 axions, and there are h1,1(Z) of them (one
deformation has to be removed since it is related to the shrinking elliptic fiber). C3

axions generate B2 and C2 axions, and their number is given by 2h1,2(Z). R1,2-filling
M2-branes correspond exactly to spacetime-filling D3-branes, and they come in equal
number, i.e. 6ND3.

1.2.2 Dine-Seiberg problem

One might object that there is no reason to worry about the moduli-space problem,
since eventually SUSY is going to be spontaneously broken in the four-dimensional EFT,
so that all of its non-renormalization theorems cease to apply, and all the moduli are
virtually guaranteed to receive masses through quantum corrections. However, relying
on quantum effects in order to stabilize moduli poses a serious threat to computational

26Since the internal manifold Z is Kähler, the area v does not depend on the point on the base of
fibration. In presence of warping, the internal manifold is conformally Kähler and v does vary from point

to point of the base. More precisely, for the choice of warp factors in (1.6), it has form v(y) = v0 e
4
3
A(y),

where v0 is a constant area.
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Figure 1.2: Qualitative forms of the quantum-generated scalar potential for ρ. On the right,
the solid line is obtained from the addition of two higher order corrections, and it has a (possibly
long-lived) metastable Minkowski vacuum, while the dashed line comes from the inclusion of just
one correction, and it has a stable Anti-de-Sitter (AdS) vacuum. The solid line could also be
slightly modified to give a metastable de Sitter (dS) vacuum.

control over these corrections, as we are now going to argue. This is known as the
Dine-Seiberg problem [5]. Since parametric control over the supergravity approximation
and over the perturbative regime in string compactifications are serious necessities that
one needs to achieve, and given that these are controlled by the VEVs of the Kähler
moduli and of the dilaton respectively, this is an important lesson that has far-reaching
consequences.

Consider a modulus ρ, such as the volume VX or the inverse string coupling e−φ, such
that its limit ρ → +∞ corresponds to the weak coupling region, where the tree-level
low-energy effective action is valid. As we stated, while at tree level Vtree(ρ) = 0, we
expect quantum corrections to generate an effective potential V (ρ) in the four-dimensional
EFT, and by the above assumption it will need to obey the property

lim
ρ→+∞

V (ρ) = 0, (1.44)

since we are considering a string compactification which does not stabilize any modulus.
Assuming the leading order term in the potential to be a power law27

VLO(ρ) ∼ a ρn, (1.45)

we see that there are only two qualitative possibilities, in figure 1.2 (a), corresponding
to the choice V > 0 or V < 0 at infinity. In the former case, ρ has a runaway dynamics
that brings it to infinity, while in the latter ρ is pushed towards zero, in the strongly
coupled region of the theory. Neither of these two possibilities is viable, since they do not
stabilize 〈ρ〉 at a finite value. Thus, we are forced to appeal to higher order (polynomial)

27This is reasonable if we think of this correction as a perturbative quantum effect. Nonetheless, the
conclusion of this argument does not change even generalizing it to transcendental functional dependence.
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Chapter 1. KKLT scenario and gaugino condensation

corrections in order to have a local minimum appear28, like in figure 1.2 (b). Notice that
(1.44) guarantees that a runaway direction is present at all orders, which is often called
Dine-Seiberg vacuum. This is a feature of potentials of quantum nature, whenever (1.44)
holds. The issue, however, is that assuming ρ is stabilized at a finite value via higher
order corrections to the quantum scalar potential implies that higher order corrections are
comparable to leading order ones at the minimum point 〈ρ〉, namely that ρ is stabilized
at the strong coupling region. One should then consider all other higher order corrections
too, which we lack the computational tools to do in the absence of extended SUSY
(N ≥ 2 in four dimensions), so that we unavoidably lose control.

Notice that at the core of this argument lies the interplay of 〈ρ〉 controlling the regime
of the EFT and the EFT governing the dynamics of ρ itself. This tells us that, ideally,
we should resort to some other way other than quantum corrections to stabilize the
Kähler and complex structure moduli, and that whenever we cannot do without them,
parameteric control should be addressed carefully.

1.2.3 Flux compactifications and de Sitter vacua

Considering string compactifications in the supergravity approximation, up to now we
have implicitly assumed that the VEVs of all the supergravity p-form field strengths Fp
were vanishing. The common jargon in string theory literature for the VEVs of Fp is
fluxes. Naturally, if a string compactification admits non-vanishing VEVs for its p-form
field strengths, classical electric and magnetic fluxes (1.24) and (1.25) are generated,
hence the name. Dirac quantization requires the fluxes Fp to be integrally quantized,
namely they need to satisfy ∫

ΣI

Fp = `p−1
s N I ∈ `p−1

s Z (1.46)

for some suitably normalized29 field strength Fp, and for any homology class p-cycle
representative ΣI ∈ Hp(X), I = 1, . . . , bp(X). Equivalently stated,

Fp = `p−1
s N I ΣI , (1.47)

where Poincaré duality is understood. Thus, fluxes are discrete degrees of freedom, when
present. In general, setting the fluxes to zero is not a consistent assumption, since they
too are subject to the equations of motion for the compactification, their respective
Bianchi identities, a consistency condition associated with the brane content of the
compactification called tadpole cancellation condition, and maximal symmetry. Since one
is usually interested in SUSY low-energy EFTs, SUSY conditions are often solved instead
of the EOMs30. Moreover, one can expect that turning on fluxes provides a backreaction

28For instance, like in the Lennard-Jones potential V (r) ∼ α
(
σ
r

)12 − β
(
σ
r

)6
, which in the present case

would correspond to the dashed line of figure 1.2 (b).
29The `s factor is due to the fact that [Fp] = `p−1.
30In the case of global supersymmetry, solutions to the supersymmetry constraints are automatically

solutions to the equations of motion. In the local case, this is no longer true, unless the Bianchi identities
are imposed as well [23].
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on the external and internal geometry, i.e. the Einstein equations for the ten-dimensional
metric are expected to be modified by a non-trivial flux-induced stress-energy tensor.

String compactifications involving non-trivial fluxes are called flux compactifications.
Due to the fact that fluxes backreact on the geometry, in flux compactifications one needs
to employ the most generic background compatible with maximal symmetry, namely
warped ones of the form (1.6). More precisely, fluxes end up sourcing the warp factor.
As it turns out, fluxes are indeed able to stabilize at least part of the compactification
moduli at classical level. This is good news, since it allows us to evade the Dine-Seiberg
problem. However, a very general no-go theorem due to Maldacena and Nuñez [13]
shows that the simplest flux compactifications setups (namely using the supergravity
approximation, smooth internal geometry, no branes included) are completely ruled out
from reproducing de Sitter low-energy EFTs, which are phenomenologically favoured.
This is bad news, since it tells us that we need to work with mildly pathological setups
in order to even hope to find dS string vacua. This difficulty in producing dS vacua from
string theory has recently given rise to doubts regarding even their existence, see for
instance the proposal of [42].

No-go theorems

Let us first give a very direct derivation31 of the Maldacena-Nuñez no-go theorem for the
case of type IIB string theory, which is the more relevant one for this thesis, and for the
KKLT scenario at large. Let us start from type IIB supergravity,

SIIB =
1

2κ2
10

∫
d10X

√
−ĝ

[
R− |dτ |2

2(Im τ)2
− |G3|2

2Im τ
− |F5|2

4

]
+

− i

8κ2
10

∫
1

Im τ
C4 ∧G3 ∧G3.

(1.48)

Here we use the conventions of §5.1.1, and the fermionic sector is omitted. As we
mentioned at (1.13), this is the α′-leading order approximation of type IIB string theory,
and in this limit one identifies

1

κ2
10

=
4π

`8s
. (1.49)

Since we are dealing with fluxes, let us compactify this theory on a warped background of
the form (1.6). By Poincaré invariance, G3 is only allowed to have legs along the internal
manifold, while F5 necessarily takes the form

F5 = (1 + ?10) dα ∧ dVol4, (1.50)

where α(y) is a function of the internal coordinates only, and dVol4 is the spacetime
volume form. The ten-dimensional Einstein equations are

RMN = κ2
10

(
TMN −

1

8
ĝMN T

)
, (1.51)

31Found in [23].
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Chapter 1. KKLT scenario and gaugino condensation

where the ten-dimensional stress-energy tensor is computed by

TMN = − 2√
−ĝ

δSIIB

ĝMN
, (1.52)

and T is its trace. The external components of (1.51) can be computed from (1.48) to be

Rµν = −1

4
ĝµν

(
1

2 Im τ
|G3|2 + e−8A |dα|2

)
. (1.53)

On the other hand, the ten-dimensional Ricci tensor can be expressed in terms of the
unwarped four-dimensional one as follows,

Rµν = R(4)
µν − e4A∆Agµν , (1.54)

where ∆ = gmn∇m∇n. Maximally symmetric spacetimes are Einstein, and in four
dimensions it holds

Rµν = Λ gµν , (1.55)

where Λ is the cosmological constant, and gµν = e−2Aĝµν is the external unwarped metric.
Plugging (1.54) into (1.53) yields the equation for the warp function

∆A =
e4A

8 Im τ
|G3|20 +

1

4
e−8A |dα|20 + e−4A Λ, (1.56)

where |ωp|20 is defined like |ωp|2 but using the unwarped internal metric instead of the
warped one. This can be recast as an equation of motion for the warp factor

∆e4A =
e8A

2 Im τ
|G3|20 + e−4A

(
|dα|20 +

∣∣de4A
∣∣2
0

)
+ 4Λ. (1.57)

The no-go theorem is a simple consequence of this equation. Let us assume that externally
we have Mink4 or dS4, that is Λ ≥ 0. Integrating both sides over X, since the internal
space is compact we get zero on the l.h.s., while on the r.h.s. we have a sum of positive
definite terms, therefore (1.57) implies that Λ = 0 and∫

X
d6y
√
g6 |G3|20 =

∫
X

d6y
√
g6 |dα|20 = 0. (1.58)

Assuming that X is non-singular, (1.58) implies G3 = dα = 0. We conclude that, on
smooth geometries32, type IIB supergravity has no Kaluza-Klein compactifications down
to dS4 spacetime, while it might admit KK compactifications down to Mink4, but only
with vanishing fluxes (except for F1) and thus constant warping. On the contrary, (1.57)
does not obstruct AdS flux compactifications (Λ < 0), and as it turns out these vacua
are abundant33.

32Assuming X has a smooth geometry also rules out the inclusion of branes in the compactification,
since they introduce localized (i.e. delta-like) physical quantities on their worldvolume.

33Notable examples of these are Freund-Rubin vacua, like type IIB string theory on AdS5 × S5 with
non-trivial F5 flux.
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As we already mentioned, the above no-go theorem for type IIB string compactifi-
cations actually has a larger scope. This is known as Maldacena-Nuñez no-go theorem,
and it can be stated as follows. Let us consider any D-dimensional gravity theory, whose
gravitational dynamics is given exactly by the Einstein-Hilbert action (i.e. without
curvature corrections coming from string theory for instance), possibly coupled to ar-
bitrary massless fields (e.g. scalars, p-forms, non-abelian gauge fields) with positive
definite kinetic terms and with zero or negative potential (possibly depending on the
scalars). Let us compactify this theory on a manifold X, with coordinates ym, down to
an a-dimensional (a < D) vacuum solution via a warped compactification of the form

ds2
D = Ω2(y)

(
ds2

a(x) + ds2
X(y)

)
, (1.59)

where ds2
a(x) is maximally symmetric, namely AdS, Minkowski or dS. Let us also assume

that X is compact, and that the warp factor is regular everywhere on X. Then, there
are no compactifications down to de Sitter, and no compactifications down to Minkowski
except if only F1 6= 0 or FD−1 6= 034, in which case we get Minkowski with constant warp
factor (which can be reabsorbed by coordinate redefinition).

String theory immediately violates this theorem’s hypothesis, with α′ curvature
corrections to the action and with the inclusion of open strings, but the core message
of this result is rather that one should get one’s hands dirty while looking for de Sitter
vacua from string theories with the above ingredients. Including localized objects like
D-branes and O-planes into the type IIB supergravity argument presented above clearly
exemplifies how the no-go theorem can be evaded. D-branes and O-planes act as sources
for the localized part of the stress-energy tensor

T loc
MN = − 2√

−ĝ
δSloc

δĝMN
, (1.60)

where Sloc is the worldvolume action of the localized sources. In the case of D7-branes
wrapped around a four-cycle Σ, assuming vanishing worldvolume fluxes, the relevant
terms of the localized action at leading order in α′ are [23]

SD7
loc = −TDp

∫
R1,3×Σ

d8ξ
√
−g̃ + µ7

∫
R1,3×Σ

C8 − µ3

∫
R1,3×Σ

C4 ∧
p1(R)

48
. (1.61)

Here ξ are the worldvolume coordinates, g̃ is the pullback of the background metric to the
brane worldvolume, C8 is defined by dC8 = ?dC0, µ7 is the electric charge of the brane
defined in (1.24), induced by the electric coupling with C8 (i.e. the magnetic coupling
with F1), and µ3 is the induced D3-charge on the D7-brane by curvature corrections,
which at lowest order are due to the first Pontryagin class of Σ:

p1(R) = −1

2

1

(2π)2
trR∧2, (1.62)

34Recall that FD−1 = ?F1.
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where R = (Rab) is the curvature two-form. In particular, µ3 is actually higher order in
α′, precisely given by [38]

µ3 = (2π)4α′2µ7. (1.63)

Since the total (net) D3-charge of a compactification enters the Bianchi identity for F5, as
well as the warp factor EOMs and the tadpole cancellation condition, induced D3-charge
on D7-branes by means of curvature corrections is a feature one should take into account,
even though it is higher order in the α′ expansion. It is straightforward to see that (1.60)
contributes to (1.57) with a contribution proportional to the current

Jloc =
1

4

(
Tmm − Tµµ

)
, (1.64)

where the indices are contracted using the warped metric (i.e. there are warp factors
involved in the sum). More precisely, one finds that the full EOM for the warp factor
including localized sources is given by

∆e4A =
e8A

2 Im τ
|G3|20 + e−4A

(
|dα|20 +

∣∣de4A
∣∣2
0

)
+ 4Λ + 2κ2

10e2AJloc. (1.65)

For instance, in the case of D7-branes, one can see that this new term does bring a
negative contribution due to the curvature corrections presented above, possibly balancing
the rest of the positive terms and thus giving a way to evade the no-go theorem [23].

Let us remark that, in this context, from (1.65) and from the Bianchi identity for F5

(1.69), one can show that at tree-level F5 is completely determined by the warp factor,
and more precisely [23]

α = e4A, (1.66)

where we refer to the notation used in (1.50).

Tadpole cancellation condition

Let us consider type IIB string theory compactifications. Localized sources like D3-
branes, anti-D3-branes, O3-planes and D7-branes contribute to the net D3-charge of the
compactification

Qloc
3 =

∫
X
ρloc

3 , (1.67)

where ρ3 is the D3-charge density 6-form due to localized objects. It contains delta
functions centered on the sources35, for instance D3-branes, O3-planes, fluxes on D7-
branes and D7-branes curvature corrections:

ρloc
3 =

ND3∑
I=1

δ
(6 )
I − 1

4

NO3∑
J=1

δ
(6 )
J + . . . . (1.68)

Non-vanishing Q3 modifies the Bianchi identity for the self-dual field strength F5 to

dF5 = H3 ∧ F3 − 2κ2
10T3ρ

loc
3 , (1.69)

35In the case of D7-branes, the D3-charge is smeared over the brane.
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where T3 = 2π
`4s

is the D3-brane tension, so that using (1.9)

2κ2
10T3 = `4s. (1.70)

This modification of the bulk Bianchi identity can be physically understood identifying
F3 ∧H3 with the D3-charge density induced by bulk fluxes, so that

ρ3 =
1

`4s
F3 ∧H3 + ρloc

3 , (1.71)

and (1.69) becomes

dF5 + `4s ρ3 = 0. (1.72)

Integrating (1.72) over the internal space X, and using the fact that X is compact, one
arrives at the tadpole cancellation condition Q3 = 0, or equivalently

1

`4s

∫
X
F3 ∧H3 +Qloc

3 = 0. (1.73)

This shows that the EOMs36 require the total D3-brane charge of the compactification
to vanish.

This condition also admits an F-theory interpretation. The EOM for the M-theory
field strength G4 including NM2 M2-branes and the first curvature correction to the
action is given by [25]

d ?11 G4 =
1

2
G4 ∧G4 − `6MI8(R) + `6M

NM2∑
I=1

δ
(8 )
M2, I , (1.74)

where I8(R) is an 8-form built out of complete contractions of the curvature 2-form.
Integrating over the compact internal four-fold Z one finds

1

2 `6M

∫
Z
G4 ∧G4 +NM2 =

χ(Z)

24
=: Qc, (1.75)

where χ(Z) is the Euler characteristic of Z. Schematically decomposing37

G4 = H3 ∧ Ldx+ F3 ∧ Ldy, (1.76)

where x, y are the real coordinates of the elliptic fiber, and recalling (1.43), one finds in
the type IIB weak coupling limit the condition

1

`4s

∫
X
F3 ∧H3 +ND3 −Qc = 0, (1.77)

36Since F5 is self-dual, its Bianchi identity is equivalent to its EOM.
37This expression should not be taken too seriously. It does hold as is in the case of type IIB bulk

fluxes, but it hides the SL(2,Z) twisting that F-theory geometrically embeds.
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where ND3 = NM2. This is actually equivalent to (1.73), even though we need to state
the dictionary between the two expressions. Indeed, the F3 ∧H3 flux density in (1.77)
already includes the brane-flux contributions from D7-branes present in the F-theory
compactification, which enters (1.73) through Q3, together with the naive bulk fluxes
contribution; on the contrary, Q3 in (1.73) also contains contributions from D7-branes
curvature corrections, which enter (1.77) explicitly, corresponding to a D3-brane charge
−Qc. Notice how D3-brane charge from curvature corrections on D7-branes are due to
the Euler characteristic of the elliptically fibered four-fold from the F-theory point of
view.

This tadpole cancellation condition is a crucial contraint on fluxes in compactifications,
and it is the ultimate reason as to why string theory is not infinitely finely tunable.

Complex structure moduli stabilization

Let us consider type IIB compactifications as obtained from F-theory. Turning on flux
yields the tree-level scalar potential for the moduli in R1,2 38

Vtree(G) =
2π

`9M

1

2

∫
Z
G4 ∧ ?ZG4. (1.78)

The presence of the Hodge star makes it clear that this is a scalar potential for the
metric moduli. However, rescaling the external metric in order to recover the canonical
normalization m2

p/2 of the Einstein-Hilbert term, one finds that (1.78) generates a
runaway potential for the internal volume modulus of the form of the solid line in figure
1.2 (a), unless we turn it off imposing∫

Z
G4 ∧ ?ZG4 = 0, (1.79)

which means G4 = 0 in the case of smooth Z. This is a consequence of the no-go theorem
presented above, and it can be avoided introducing branes and higher order corrections.

Turning on the F-theory flux G4 and including curvature corrections and M2-branes
contributions generates the scalar potential for the moduli

VIIB =
2π

`4s

1

`6M

∫
Z
G4,− ∧ ?ZG4,−, (1.80)

where G4,− is the anti-self-dual39 (ASD) part of G4. This can also be recast in terms of
type IIB spectrum as

VIIB =
2π

`8s

∫
X

1

Im τ
G3,− ∧ ?XG3,−, (1.81)

38Recall F-theory is recovered compactifying M-theory over R1,2 × Z, and then applying T-duality
fiberwise.

39On a D-dimensional space with euclidean metric, the square of the Hodge star acting on k-forms is
given by ?2 = (−1)k(D−k). Therefore, on Z and on 4-forms ?2 = 1, which allows for real eigenvalues ±1.
These correspond to SD and ASD 4-forms. On the contrary, on X and on 3-forms ?2 = −1, thus 3-forms
on X (like G3) can only be imaginary-self-dual (ISD) or imaginary-anti-self-dual (IASD).
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where G3,− is the imaginary-anti-self-dual (IASD) part of G3. Once again, after perform-
ing a rescaling of the external metric in order to bring the Einstein-Hilbert term to the
canonical normalization

gµν 7→
m2
p

Vol(X)
gµν , (1.82)

(1.81) becomes a runaway potential for the volume modulus of X, which would destabilize
the compactification. In order to escape this problem, however, thanks to curvature
corrections we do not need to set the fluxes to zero, but we need to impose that G3 is
ISD, that is

G3 = i ?X G3, (1.83)

or equivalently G4 = ?ZG4. Notice that this implies that the flux should be harmonic,
and since X is a CY three-fold with χ(X) 6= 0, this also implies that G3 is primitive by
the Lefschetz decomposition. Moreover, on a n-dimensional Kähler manifold (n odd), a
harmonic (n− k, k)-form with Lefschetz spin ` satisfies [25]

? ωn = (−1)k+`(−i)ωn, (1.84)

therefore (1.83) constraints G3 to be primitive (` = 0) and of the form (2, 1) + (0, 3). The
condition (1.83) can actually be interpreted as the classical supersymmetric EOM for
the fluxes. Thanks to the presence of the Hodge star, this is the condition stabilizing
the metric moduli of the compactification, while the fluxes are left as tunable discrete
degrees of freedom.

The ISD condition (1.83) can actually be recast as F-flatness and D-flatness conditions
for the compactification moduli. The F-flatness condition lives over the complex structure
moduli space, and it takes the form40

DaW (z) = 0, (1.85)

where we introduced the so-called Gukov-Vafa-Witten (GVW) superpotential

W (z) =
1

`3M

∫
Z
G4 ∧ Ω4. (1.86)

The D-flatness condition can be expressed analogously as

DJW̃ = 0, (1.87)

where

DJ = ∂J + ∂JKJ ; (1.88a)

KJ = −1

2
log

∫
Z

J4

4!
; (1.88b)

W̃ (J) =
1

`3M

∫
Z
G4 ∧ J2. (1.88c)

40When dealing with complex structure deformations, the (p, q)-rank of a form is unfixed. Therefore,
although only the (0, 4) and (4, 0) parts of G4 contribute to W , (1.85) only constraints G1,3

4 and G3,1
4 .
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Despite its appearance, since J is real, W̃ (J) cannot be interpreted as a superpotential,
so that (1.87) should really be regarded as a D-flatness condition.

In the case of smooth Z, one can show that (1.87) is always satisfied41, so we will
not consider it in the following. In presence of intersecting 7-branes one should assess
whether or not it should be imposed separately. This leaves us with the GVW F-flatness
condition (1.85), which only stabilizes the complex structure moduli of Z, and once this
is satisfied the scalar potential for the remaining moduli (1.81) is flat and set to zero. In
particular, this shows that this kind of flux compactifications leave all Kähler moduli
unstabilized at tree level. Therefore, we will need to resort to quantum effects in order
to stabilize the latter, bringing the Dine-Seiberg problem back into the picture.

Finally, as one would expect, (1.81) can be recast according to the standard four-
dimensional supergravity scalar potential formula. Reinstating the κ4 factors, one finds

VIIB =
1

4πκ4
4

eκ
2
4(Kc+KK)

(
hαβDαWDβW − 3κ2

4 |W |
2
)

=
1

4πκ4
4

eκ
2
4(Kc+KK) habDaWDbW,

(1.89)

where a, b run over the complex structure moduli only, α, β run over Kähler and complex
structure moduli, hαβ = κ2

4∂α∂βK is the metric moduli space metric, and we denoted by

the same symbol as above the covariant derivative over the whole moduli space42

Dα = ∂α + κ2
4 ∂αK. (1.90)

Notice that in the rigid limit κ2
4 → 0, namely for non-compact internal space according to

(1.16), (1.89) reduces to the standard rigid supersymmetry formula for the F-term scalar
potential43. This shows that the GVW superpotential can be used to enforce SUSY
by imposing DW = 0. In particular, (1.89) tells us that VIIB has a no-scale structure,
namely it does not stabilize the Kähler moduli, since their contribution to DW cancels
with the −3 |W |2 term: ∑

α, β∈Kähler moduli

hαβ∂αK∂βK = 3. (1.91)

We already noted that the no-scale structure forces us to resort to quantum corrections,
which is indeed troublesome. On the other hand, a positive byproduct is that at tree
level we can take the KK scale to be large, so that the supergravity approximation is
justified.

As one would expect, in the weak coupling limit the GVW superpotential for the
complex structure moduli of the four-fold Z splits into the sum of a bulk part, the

41In particular, one can prove that G4 has no ` = 2 part, which makes it primitive.
42This does not lead to any ambiguity since the derivative of the Kähler potential only selects its

relevant part.
43The 1/κ2

(4) factor in front of (1.89) diverges in the κ(4) → 0 limit. This is an artifact due to the
rescaling (1.82), which is singular in this limit, and thus it should not be taken.
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superpotential for the complex structure moduli of X, and a brane part, the superpotential
for the D7-brane deformation moduli,

W (z) = Wb(τ, ψ) +WD7(ψ, φ), (1.92)

where

Wb(τ, ψ) =
1

`2s

∫
X
G3 ∧ Ω3; (1.93)

WD7(ψ, φ) '
∫

Γ5

(F2 −B2) ∧ Ω3, (1.94)

where Γ5 is a 5-chain in Z going from the D7-brane to the O7-plane (needed to cancel the
tadpole), and F2 is the brane flux. At leading order in gs, (1.85) splits into the F-flatness
conditions

∂τW + (∂τKτ )W = 0 (1.95a)

∂ψW + (∂ψKψ)W = 0 (1.95b)

∂φWD7 = 0. (1.95c)

All of these weak coupling expansions hold up to non-perturbative corrections, which
arise exclusively in the F-theory picture.

A final remark on supersymmetry. Assuming that (1.85) stabilizes all complex
structure moduli of Z, one would end up with a Minkowski vacuum and broken SUSY
since

DTAW = κ2
4 (∂TAKK)W 6= 0, (1.96)

unless W = 0 at its minimum. This can happen accidentally, or imposing44 that
G0,4

4 = G4,0
4 = 0, i.e. that

G0,3
3 = 0. (1.97)

Another way to restore SUSY without constraining the flux is to break the no-scale
structure of the scalar potential by introducing quantum corrections to the GVW super-
potential depending on the Kähler moduli. This is the path chosen in KKLT scenarios.

1.2.4 Non-perturbative corrections

Quantum effects in string theory compactifications have a number of origins. They
can arise both from the α′ stringy expansion45 and from the gs expansion. Moreover,
non-perturbative effects and instantonic solutions can also arise on branes, which are in
turn non-perturbative solutions in gs, and they can in principle affect the moduli space
of the low-energy theory.

44Recall that G4 is real, while G3 is complex. The condition on G4 is straightforward from W = 0,
while the condition on G3 comes from Wb = 0.

45Since α′ controls the quantum string worldsheet perturbative expansion, these can still be regarded
as quantum effects.
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While α′-quantum corrections to the moduli Kähler potential are scarcely constrained,
much more can be said about quantum corrections to the effective superpotential for
compactification moduli. Thanks to classical non-renormalization theorems from super-
symmetry, such quantum effects can only be of non-perturbative origin46. Two main
classes of such effects, whose string theory embedding have been extensively studied, are
instantons and gaugino condensation on branes, which we are now going to review.

Instantons

Supersymmetric instantons in string theory compactifications can give rise to corrections
to the moduli superpotential. These are of the form [25]

Winst = Λ3 e2πi nATA , (1.98)

where Λ3 is a holomorphic function of non-Kähler moduli (called Pfaffian), including
complex structure moduli, TA are a basis of complexified Kähler moduli, and nA ∈ Z.
Notice that (1.98) is invariant under integer shifts of ReTA, namely it preserves the axion
shift symmetry. In the type IIB picture, (1.98) arises from a euclidean D3-brane wrapped
around an internal divisor

D4 = nAD4,A. (1.99)

This is often called an E3-brane instanton. In the F-theory picture, (1.98) arises from
M5-branes wrapped around the entire elliptic fiber47 and D4 in the base, namely wrapping
D6 = nAD6,A.

The existence of a E3-brane instantons does not imply that they will contribute to
the superpotential. A sufficient condition for an E3-brane instanton to give non-zero
contribution is carrying the minimal amount of fermionic zero-modes, that is two. These
are the Goldstino fields living on the D3-brane worldvolume, due to the breaking of half
SUSY by the brane48 (recall that stable branes are BPS). In particular, such E3-brane
instantons necessarily wrap rigid divisors, since otherwise its deformation moduli would
correspond to bosonic zero modes on the D3-brane worldvolume, and by the remaining
SUSY they would introduce fermionic zero modes.

Gaugino condensation

Let us consider N coincident spacetime-filling D7-branes wrapping a rigid divisor D4 =
nAD4,A in X. Barring subtle complications, their low-energy dynamics is described by
a pure SU(N) super-Yang-Mills (SYM) theory (i.e. without coupled chiral matter) in
D = 4 dimensions. The rigidity of the divisor, namely the absence of holomorphic global

46This can be quickly understood from holomorphicity of the superpotential and from the fact that the
axion shift symmetry of the complexified Kähler modulus TA is exact, so that all perturbative corrections
must preserve it.

47These are the only M5 instantons that retain finite action in the F-theory limit of vanishing fiber
area.

48Maximally SUSY instantons in D = 4 dimensions have N = 4 Weyl spinor supercharges.
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sections of its normal bundle, is crucial for gaugino condensation to occur on D7-branes.
Indeed, D7-brane deformation moduli would appear in the low-energy spectrum of the
worldvolume gauge theory as a Higgs branch, spontaneously breaking the gauge group
completely at low energies. The complexified gauge coupling of the SYM theory is given
by the complexified Kähler modulus associated with D4, namely

τ(T ) = nATA =
θYM (T )

2π
+

4πi

g2
YM (T )

. (1.100)

This can be seen from the low-energy expansion of the DBI action for the D7-brane
stack, which describes its worldvolume dynamics. Notice that the normalization factor
in (1.100) is fixed to one by requiring the axion shift symmetry of TA to match the
non-perturbative SYM symmetry τ → τ + n.

Let us show how (1.100) comes about in the case of N = 1 D7-brane wrapping a rigid
divisor D. In the static gauge and neglecting the couplings with bulk fluxes, the bosonic
part of the DBI action in the string frame takes the form [23]

SD7
DBI = −2π

`8s

∫
D7

d8σ e−φ

√
−det

(
g(s) +

`2s
2π

F

)
(1.101)

where the deformation scalars are absent due to the rigidity of D, g(s) = eφ/2g(e) is
the induced metric in the string frame, and in the static gauge d8σ = d4xd4ξ is the
worldvolume measure splitting. Let us expand this actions in an α′ series, using the
identity

det(1 + εA) = 1 + ε trA+ ε2
(trA)2 − trA2

2
+O(ε3), (1.102)

we find

SD7
DBI =− 2π

`8s

(∫
D

d4ξ

√
g̃

(e)
4

)∫
R1,3

d4x eφ
√
−g(e)

4

−
(

1

4π

1

`4s

∫
D

d4ξ

√
g̃

(e)
4

)
1

2

∫
R1,3

F2 ∧ ?4F2,

(1.103)

where g̃
(e)
4 and g

(e)
4 are the determinant of the internal and external induced metrics

respectively, in an unwarped background and in the Einstein frame. Notice that the
first term in (1.103) yields the four-dimensional tension contribution, which is going to
be canceled by the O7-plane tension in a realistic setup. In the non-abelian case of N
coinciding D7-branes, the second term in (1.103) readily generalizes to

Sstack = −
(

1

4π

1

`4s

∫
D

d4ξ

√
g̃

(e)
4

)
1

2

∫
R1,3

trF2 ∧ ?4F2 + . . . , (1.104)

which allows us to identify, using (1.34),

1

g2
YM

=
1

`4s
Vol(D) =

1

4π
ImT, (1.105)
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which completes to (1.100) by supersymmetry. Notice that here we choose the trace
normalization for the gauge group generators

trT aT b =
δab

2
. (1.106)

In the rest of this work, we will actually use the equivalent choice for the complexified
Kähler modulus

ρ = −iT, (1.107)

so that (1.100) actually takes the form

τ(ρ) = i ρ. (1.108)

Notice that (1.108) in components reads

Re ρ =
4π

g2
YM

; (1.109a)

Im ρ = −θYM

2π
. (1.109b)

In particular, Im ρ is periodic with period 2π. This is due to large gauge transformations
of C4, see §3.4 below (3.21) for an introduction to the matter.

At energies lower than the non-perturbative scale of the worldvolume gauge theory,
gauginos λ (fermionic superparterns of the gauge fields in the N = 1 chiral multiplet)
condense in pairs [7]. This adds a new non-trivial gauge-invariant VEV, which makes
its appearance in the EFT and sources highly non-trivial modifications of the string
theory background. The generic form of the superpotential contribution from gaugino
condensation taking plane on a D7-brane stack is

Wnp(T ) = N µ3
0 e

2πi T
N . (1.110)

In §4.4.2 we work out the details on how to derive this. Here µ3
0 is a UV scale associated

with the running of τ(T ), which depends on non-Kähler moduli, including complex-
structure moduli.

Notice that instantons corrections (1.98) and gaugino condensation corrections (1.110)
have a very similar form, in particular the exponential arguments suggest that gaugino
condensation may be interpreted as a sort of fractional instantonic contribution. This
intuition can actually be made explicit, and one can show that the four-dimensional
gaugino condensate superpotential is related to a three-dimensional M5-brane instanton
superpotential [25]. This provides a unification of the two non-perturbative effects, at
least at the superpotential level.

1.2.5 The KKLT scenario

The Kachru-Kallosh-Linde-Trivedi (KKLT) scenario [15], proposed in 2003, brings to-
gether all the ingredients discussed above to achieve a dS vacuum in type IIB string theory
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compactifications while retaining reasonable control over quantum corrections. While the
scenario delineates a general strategy to how one could in principle achieve dS vacua with
exponentially small cosmological constant and spontaneously broken supersymmetry, this
is by no means a guarantee of success, due to the plethora of details that the scenario
ignores. Indeed, as of today no realistic explicit models of dS vacua from type IIB string
theory have been constructed, and the task may very well be impossible. As we already
mentioned, motivated doubts have recently arisen about the existence altogether of dS
vacua in string theory (de Sitter conjecture [42]), which implies that even the KKLT
scenario should not work. Indeed, it has been conjectured that this construction is not
consistent [51].

The KKLT recipe splits into two movements. First, one stabilizes the complex
structure moduli with fluxes (§1.2.3) and the Kähler moduli with non-perturbative
corrections to the GVW superpotential (§1.2.4) in such a way that supersymmetry is
preserved. This produces a SUSY AdS4 vacuum. Then, one breaks all supersymmetry by
introducing spacetime-filling D3-branes49, which also provide a quantum correction to
the scalar potential able to uplift the minimum to a positive value. In order to perform
the uplift and end up with an exponentially small value for the cosmological constant,
the contribution from anti-D3-brane is redshifted by means of a highly warped geometry
known as Klebanov-Strassler solution (or throat).

Moduli stabilization

Let us consider type IIB/F-theory flux compactification, and let us assume that one of
the non-perturbative effects of §1.2.4 contribute to the effective superpotential. The flux
is quantized according to

G4 = `3MN
IΣ4,I , (1.111)

where Σ4,I is a basis of 4-cycles wrapping a 1-cycle in the elliptic fiber, and Poincaré
duality is understood. For simplicity, let us assume that there is only one Kähler modulus
T . Moreover, let us also assume that gs has been already stabilized at a small value with
a proper tuning of fluxes50. The total superpotential of the compactification in F-theory
language is then given by

W (z, T ) = Wflux (z) + µ3
0(z) e2πia T , (1.112)

where

a =

{
1 E3-brane instanton

1/N Gaugino condensation on N D7-branes
(1.113)

and Wflux is the GVW superpotential (1.86). The UV scale µ3
0 is naturally order 1 in

string units51. Since (1.112) is dimensionless in our convention, and Wflux is in string

49Anti-D3-branes, or D3-branes, break the SUSY generators along their worldvolume. Since we chose
them transverse to the internal space, they break spacetime supersymmetry.

50This is possible at least in some cases.
51The string mass scale is defined by the effective scalar potential prefactor in (1.89), given by

m4
s ∼ m4

p eκ
2
4KK .
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units, we should take
µ3

0 ∼ 1. (1.114)

Crucially, let us assume that the quantum effect in (1.112) is small with respect to the
classical flux contribution. Then, the complex structure moduli are stabilized by the
classical EOMs up to small corrections:

DaWflux (z) = 0. (1.115)

The flux superpotential takes the explicit form

Wflux (z) = N IΠI(z), (1.116)

where we introduced the periods

ΠI(z) =

∫
Σ4,I

Ω4 (z). (1.117)

For a generic G4 flux, all the complex structure moduli are stabilized52 by (1.115) at
values za = za0 . From the scalar potential (1.89), we see their masses at weak coupling
are of order

mz ∼
|G4|mp

Vol(X)
gs ∼

|G4|ms

(Vol(X))
1
2

gs, (1.118)

where |G4| is some measure of the flux in string units, and Vol(X) is in string units as
well. The size of the flux is estimated from the tadpole cancellation condition (1.75),
which reads here

1

2
QIJN

INJ +ND3 = Qc, (1.119)

where QIJ = Σ4,I · Σ4,J is the intersection matrix. Introducing no D3-branes in the
compactification, we estimate

|G4| ∼
√
Qc. (1.120)

This makes the number of possible fluxes finite, although typically exponentially large.
One can show that this still allows one to expect a large number of vacua with exponentially
small |W0| := |Wflux (z0)| to exist [17], once the complex structure moduli are stabilized.
This is desirable in order to stabilize the Kähler modulus at a large value, which justifies
the supergravity approximation and the tree-level approximation for the Kähler potential,
so we are going to assume it.

After stabilization of the complex structure moduli, we are left with a superpotential
for the Kähler modulus

W (T ) = W0 + µ3
0(z0) e2πiaT , (1.121)

where W0 is exponentially small and µ3
0 is order 1. Thanks to the quantum contribution

in (1.121), we can now stabilize the Kähler modulus imposing supersymmetry,

DTW (T ) = 0. (1.122)

52Actually, this is plausible but not obvious, given that fluxes are constrained by the tadpole cancellation
condition.
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Using a field redefinition, (1.37b) can be taken to the form

KK(T, T ) = −3 log ImT, (1.123)

and using this, (1.122) becomes

2πiaT ∼ log

(
W0

µ3
0

)−1

. (1.124)

Thanks to the fact that W0 is exponentially small, (1.124) stabilizes T at order 10 or
more, as stated above. The Kähler modulus receives a mass from (1.89) of order

mT ∼ e2πiaT0ms ∼ |W0| ms, (1.125)

which is exponentially small with respect to (1.118). This is consistent with our choice of
integrating out the complex structure moduli before the Kähler modulus.

We managed to stabilize in principle all moduli in a SUSY vacuum. The effective
scalar potential (1.89) then generates a cosmological constant

Λ = −3
1

4πκ2
4

eK |W |2 ∼ −m4
s e2πaT0 ∼ −m4

s |W0|2 , (1.126)

which is necessarily negative. Thus, we found a AdS4 vacuum with exponentially small
cosmological constant. Notice that W0 is determined by the (0, 3) part of G3, which
is allowed to be non-vanishing even requiring SUSY, thanks to the presence of non-
perturbative corrections to W .

Actually, the scalar potential for the Kähler modulus generated by (1.121) can be
explicitly computed to be

VT =
α

σ2

[
4

3
(2πa)2 µ6

0σ
2e−4πaσ + 4A2(2πa)σ e−4πaσ −W 2

0

]
, (1.127)

where T = i σ, α is a real constant, and W0 is assumed real. This potential is of the
form of the dashed line in figure 1.2 (b), which is expected being the result of a tree level
contribution plus a quantum effect.

Uplift to dS

As we already mentioned, adding D3-branes to the compactification breaks SUSY
completely. This also adds a negative tadpole, which needs to be canceled by flux, and a
positive energy density

δV = 2
a4

0T3

gs

1

σ3
, (1.128)

where a0 is the warp factor value at the location of the brane. In order to uplift the AdS
minimum from an exponentially small negative value to an exponentially small positive
value, it is possible to employ the Klebanov-Strassler solution. Indeed, it has been shown
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[12] that there do exist warped type IIB compactifications with regions of substantial
warping. More precisely, these models have warped throats, with warp factor reaching
the minimal value

eAmin ∼ exp− 2πK

3gsM
, (1.129)

which is parametrized by properly tuned flux integers M and K. Furthermore, it has been
shown that the presence of ISD flux in the Klebanov-Strassler solution drives D3-branes
towards the bottom of the throat, where they experience the maximal redshift (1.129),
exponentially suppressing their contribution to the scalar potential. Putting everything
together53, one ends up with a potential looking like the solid line of figure 1.2 (b), which
admits a metastable dS vacuum with exponentially suppressed cosmological constant.

The need for an exponentially small W0, and the need to hit exactly the value (1.1) for
the cosmological constant may sound like a problem for naturalness, seemingly invoking
fine tuning. However, a feature of KKLT scenarios is to admit exponentially large
numbers of vacua with approximately the same W0 and Λ, both close to zero, forming a
so-called discretuum. If there are at least 10120 of such dS vacua, there should be at least
order 1 vacua satisfying (1.1). In this sense, naturalness of KKLT is not an issue thanks
to the landscape of string theory, as long as the anthropic principle does not bother us.

1.3 Gaugino condensation from ten dimensions

Gaugino condensation plays a central role in the KKLT scenario. Together with E3-
brane instantons, it provides a suitable quantum effect which enable us to stabilize the
Kähler moduli. One major point of criticism, however, is that the whole argument
for Kähler moduli stabilization in KKLT is based on the low-energy four-dimensional
EFT, and on its effective superpotential. In light of the objections moved against it, a
ten-dimensional understanding of the non-perturbative phenomena would put KKLT
on a much firmer footing. While achieving such a description would certainly be of
major academic interest, at first glance it does not seem reasonable to even expect that
a formulation of such low-energy phenomena making use of the high-energy formalism
of warped flux compactifications even exists. However, this is a faulty line of thought.
Consider a type IIB flux compactification with bulk KK scale Λbulk

KK , exhibiting a confining
sector on a D7-brane stack endowed with a confining scale Λnp . The D7-brane stack
needs to wrap an internal rigid divisor D, therefore the UV cutoff scale for the effective
SYM theory supported on its worldvolume is given by the KK scale ΛD7

KK associated to
D, and confinement is naturally assumed to be a low-energy phenomenon, so that it
always holds

ΛD7
KK � Λnp . (1.130)

On the other hand, it is reasonable to expect a ten-dimensional description of gaugino
condensation to exist whenever it holds

Λnp ' ΛKK . (1.131)

53Together with the new term (1.128), the scalar potential gets slightly modified, see [15].

34



Gaugino condensation from ten dimensions

Therefore, a well-defined regime to describe ten-dimensional effects of gaugino condensa-
tion exists if and only if the compactification satisfies the scale hierarchy

ΛD7
KK � Λbulk

KK . (1.132)

In such case, one can in principle devise a setup such that the complex structure moduli
conspire in order to achieve the complete scale hierarchy

ΛD7
KK � Λnp ' ΛKK . (1.133)

Whenever this happens, it is reasonable to expect a ten-dimensional description of
gaugino condensation to exist, which should match the four-dimensional supergravity
EFT employed by KKLT when one integrates out all massive Kaluza-Klein modes.
Clearly, if the complex structure moduli allow Λnp to drop below Λbulk

KK , the only viable
description of gaugino condensation is a four-dimensional one. Notice that (1.132) and
(1.133) are guaranteed to hold in local models since Λbulk

KK is sent to zero, which justifies
the ten-dimensional analysis of §5.

1.3.1 State of the art

In type II compactifications to four dimensions, requiring N = 2 supersymmetry in
the low-energy EFT in the absence of fluxes leads to the requirement that the internal
manifold X be CY. This can be seen imposing the Killing spinor equation found by
setting the SUSY variation of the gravitinos in the supergravity approximation to zero.
Calabi-Yau manifolds are Kähler manifolds with exactly SU(3) holonomy54. Reduction55

of the holonomy group can be effectively understood in terms of existence of a globally
defined SU(3)-covariantly constant spinor, which makes the U(1) factor of U(3) trivially
realized [6]. Therefore, N = 2 D = 4 SUSY in unfluxed compactifications can be recast
as the union of an algebraic condition, the existence of a globally defined spinor, and a
differential one, it being covariantly constant. In presence of fluxes, both conditions are
modified imposing to find N = 2 or N = 1 SUSY in four dimensions [21]. The algebraic
condition becomes that the Whitney sum bundle TX ⊕ T ?X should have SU(3)× SU(3)
structure. This implies the existence of two globally defined pure spinors. These can be
represented as polyforms, i.e. sums of differential forms of different rank (odd in type IIB,
even in type IIA). The differential condition becomes a set of differential equations for
the pure spinors involving the fluxes, the warp factor and the dilaton. These are usually
referred to as supersymmetry conditions. These equations are most easily formulated
employing the formalism of generalized complex geometry [30, 19]. Therefore, we surmise
that this should be the mathematical framework one needs to employ in order to achieve
a proper ten-dimensional description of flux vacua.

A ten-dimensional embedding of gaugino condensation in the supergravity approxi-
mation is expected to manifest itself as a modification of the fluxes EOMs as well as a

54The holonomy group of a space is defined as the structure group of its associated frame bundle.
55The most general holonomy group of a Kähler three fold is U(3).
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deformation of the background geometry. This is due to the fact that a non-vanishing
value for the gaugino bilinear VEV 〈λλ〉, which has a four-dimensional origin and it is
artificially injected into the ten-dimensional framework, would turn on Chern-Simons
corrections coming from quadratic self-interactions terms, or from interaction with bulk
fluxes in the DBI action

δS ∼
∫
D7

d8σ
√
−g G3λλ, (1.134)

as well as localized currents entering the supersymmetry conditions. Indeed, it has been
shown in [28] that non-perturbative effects on D7-branes in type IIB compactifications
source IASD fluxes at leading order in 〈λλ〉. This is a ten-dimensional quantum correction
to the tree-level ISD G3 flux. In general, IASD primitive contributions to G3 can be of the
form (1, 2)+(3, 0), but [28] finds only a (1, 2) term due to gaugino condensation at leading
order. The appearance of a IASD correction to the flux is exactly due to the modification
of the EOM for G3 induced by 〈λλ〉. On the other hand, it has been shown in [24] that
E3-brane instantons and gaugino condensation on D7-branes (condensing D7-branes) in
type II compactifications destabilize the ordinary CY complex structure of the internal
manifold, making it a genuine generalized complex one. This happens independently of
the presence of background fluxes. Therefore, a ten-dimensional embedding of gaugino
condensation, also referred to as a geometrization of the non-perturbative contribution it
brings to the effective four-dimensional superpotential, seems to manifest itself at leading
order in a twofold manner: it sources an IASD contribution to the flux G3, and it deforms
the internal space into a proper generalized complex geometry.

A more explicit analysis of the fluxes sourced by gaugino condensation on D-branes
in type II compactifications has been performed in [31]. This work studies condensing
D5-, D6- and D7-branes and solves the supersymmetry conditions, updated with the
non-perturbative contributions, in the framework of generalized complex geometry and
in a perturbative approach, stopping at leading order in the gaugino condensate 〈λλ〉.
Although the case of D7-branes turns out to be a pathological one, for reasons we
will discuss in §5, they find that condensing D7-brane do source IASD (1, 2) + (3, 0)
components to G3, and they provide an explicit (although local) SUSY solution for it in
absence of tree-level fluxes. This validates the findings of [28], since the (3, 0) part of G3

found in [31] actually turns out to vanish in the setup of the former (constant dilaton
over the internal space).

A parallel line of research [49, 45, 46, 31] studied the form of the on-shell gaugino-
condensate action, as coming from the low-energy expansion of the DBI action. This is
of interest, given that [28] shows how it could source IASD fluxes. In particular, due to
the localized nature of the currents gaugino condensation introduces in the generalized
complex geometry equations, the issue resides in the fact that the bulk + D7-branes
action appears to contain delta functions (from bulk and branes) and square delta
functions (from bulk fluxes only) centered on the D7-brane stack. This is both physically
and mathematically problematic, since square delta functions are not well defined, and
on-shell actions cannot really be divergent56. While the form of the G3λλ coupling has

56Integrating out one delta function would leave the second one, making the action divergent. This is
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been explicitly computed multiple times in the literature (see e.g. [49, 31]), the higher
order quartic gaugino coupling from D7-branes is far harder to come by, with no real
consensus about its precise form. Attempts at computing the quartic coupling can be
found in [49], which performs an involved dimensional reduction, and in [46], which
proposes a so-called perfect square form of the gaugino action, in order to conveniently
cancel divergences.

The very recent work [50] brings together many of the lessons learned from the above
literature. It argues that properly employing a smearing procedure of the D7-brane
non-perturbative effect already proposed in [24, 26]

δ2
D 7→ γ e2A−φJ, (1.135)

where D is the 4-cycle wrapped by the D7-branes, A is the warp function, φ is the dilaton,
γ is a constant and J is the internal Kähler form, one is actually able to reproduce the
predictions of the effective four-dimensional superpotential of [15] from the modified fluxes
and geometry. This justifies a posteriori the smearing procedure (1.135). Furthermore,
it addresses the issues of possible divergences in the on-shell action, exhibiting its form
and concluding that no perfect square form arises and that the complete on-shell action
is indeed divergent, which in turn implies the need for local counterterms.

1.3.2 An explicit supergravity solution?

As we already mentioned, all of the above papers proceed assuming a non-vanishing VEV
for the gaugino bilinear 〈λλ〉 at low energies, and adopting a perturbative approach for
the corrections it introduces. The origin of this VEV is purely four-dimensional, which
is the very picture one is trying to reproduce in a ten-dimensional framework. Thus,
the logic employed in these analysis is somewhat faulty, although very practical and
reasonable. In an effort to get rid of this somewhat subtle inconsistency, [34] studies a
specific type IIB local compactification where gaugino condensation does occur. More
precisely, this paper finds an explicit family of supergravity solutions for type IIB string
theory compactified on the simplest del Pezzo cone, i.e. the P2 cone OP2(−3), including
four D7-branes and one O7-plane57 wrapping the P2 base of the cone, in a so-called
near-stack limit, namely zooming close to the P2 base of the cone, where the D7-brane
stack lies58. This solution is found solving the supersymmetry conditions for AdS4

compactifications, which in the decompactification limit yield a Mink4 vacuum, using
the mathematical framework of generalized complex geometry. The central point, as the
authors argue, is that this explicit solution should already encode the ten-dimensional
effect of non-perturbative dynamics on 7-branes, without including any gauge theory
four-dimensional input. Indeed, the proposed solution does carry a dynamic SU(2)
structure, as opposed to ordinary SU(3) structures, which has been shown to be required

the reasoning, at least.
57Due to the presence of the O7-plane, one could also talk of eight half-D7-branes in the upstairs

geometry brought down to four in the downstairs geometry.
58In this sense, the supergravity solution exhibited therein is doubly local.
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by gaugino condensation on D7-branes (see e.g. [43]), and which is strictly related to
generalized complex geometry.

This thesis studies the same model as the one considered in [34], both from a four-
dimensional perspective (in chapter 3 and chapter 4) and from a ten-dimensional one
(in chapter 5), but without taking any near-stack limit. Moreover, we do inject the
four-dimensional information 〈λλ〉 6= 0, which allows us to directly build upon the existing
literature. Employing the results of [40, 27] for warped compactifications, we find the
explicit form of the low-energy EFT for the chiral field associated to the P2 warped
volume59, and we show that gaugino condensation sources a runaway potential which
pushes it to infinity. This implies that type IIB compactifications on OP2(−3) with four
D7-branes and one O7-plane wrapped around P2 are unstable, and they cannot be regarded
as a suitable playground to probe a ten-dimensional description of gaugino condensation
on D7-branes. In this sense, the family of supergravity solutions found in [34] cannot be
interpreted as a near-stack limit of a putative stable type IIB supergravity solution on
the whole P2 cone. We also move to ten-dimensions, and making use of the results of [31]
we investigate possible leading order perturbations to the background metric. Performing
an ad hoc trivialization procedure, we find the explicit global equations of motion for the
leading order metric perturbation, and we show that they admit both stationary and
time-dependent solutions. We argue that the former solution is related to the unstable
vacuum found in the four-dimensional analysis, while a subclass of the latter can be
associated with the P2 expansion phenomenon found in §4.

59In collaboration with prof. Luca Martucci.
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Chapter 2

Geometry of the P2 cone

The aim of this chapter is to provide the necessary facts for the analysis of the following
chapters. The topics are organized in order of increasing technicality. In order to derive
the low-energy four-dimensional EFT for the P2 cone, we will follow the constructions of
[40, 39, 27]. This requires us to lay some mathematical foundations for the geometry of
the P2 cone, which make up the majority of the chapter. Moreover, the ten-dimensional
analysis we will tackle next requires us to build upon some results of [31] specialized to
this particular geometric playground. This prompts us to state some more results about
delta functions and delta 2-forms on the P2 cone, which are found in §2.9.3.

In section 2.1 we provide some motivation as to why the complex cone over P2 appears
to be a promising internal space candidate in order to study gaugino condensation in
type IIB compactifications, and we provide a direct construction of it as a toric variety
(i.e. via homogeneous coordinates). This serves as a basis for setting up an atlas. In
section 2.2 we give a telegraphic presentation of the divisor group of the space, of the
linear equivalences between its class representatives and of their intersection products.
This hopefully provides an intuitive understanding of the space, as well as introducing
intersection products as an effective tool to compute integrals, which we will use in the
rest of the chapter. In section 2.3 we present the atlas we are going to use to describe the
P2 cone. This is a crucial tool both for the four-dimensional analysis of chapters 3 and 4
and for the ten-dimensional analysis of chapter 5. In section 2.4 we present the isometry
group of the space. This will be of prime relevance in the ten-dimensional analysis of
chapter 5. Section 2.5 delves into the cohomology and homology groups both of the
P2 cone and of the generic Kähler-Einstein del Pezzo cone. This is needed in order to
work out the form of the Lagrangian for local del Pezzo models, as we do throughout
§3. Section 2.6 reviews the asymptotic behavior of the Green’s function associated to
the Hodge-de Rham Laplacian, which completes the discussion of §3.2. In section 2.7
we introduce the Eguchi-Hanson metric for the P2 cone, and its associated Kähler form.
This is a closed-form Ricci-flat and maximally symmetric metric for the space. It plays
a minor role in the four-dimensional analysis of §3, while it covers a major one in the
constructions and results of §5. Section 2.8 defines the Kähler modulus v of the space,
and relates it explicitly to the P2 volume in the Eguchi-Hanson metric. This is a central
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quantity in §3, since it enters local del Pezzo models as a function of the chiral field ρ and
of the rest of moduli. Finally, section 2.9 reviews three possible representatives for the
single linearly independent cohomology class of 2-forms of the space, namely the primitive
form dual to the P2, the Kähler form and the P2 delta 2-form. More precisely, we state
their explicit form, their potential and some notable properties. The four-dimensional
analysis in §3 makes use of §2.9.2 and partly of §2.9.1, while the ten-dimensional one in
§5 makes full use of §2.9.3 and §2.9.1.

We suggest the reader to first go through the less technical sections from §2.1 to §2.4
(included), in order to get acquainted with the internal space structure, and to skip the
rest of the chapter, jumping to §3. The rest of the mathematical notions and objects will
be accompanied by references to this chapter, so that the reader can go back at its own
pace. We have tried to keep this chapter short, leaving to appendix A some details and
proofs, as well as some mathematical lore about the considered topics.

2.1 Motivation and construction

We are strictly interested in studying the effects of gaugino condensation occurring on a
stack of D7-branes wrapped around an internal 4-cycle, from both a four-dimensional
and a ten-dimensional point of view. A convenient class of internal manifolds fit for
this purpose are complex cones over Kähler-Einstein del Pezzo surfaces M1. We will
call these local del Pezzo models. One could generally think of these as some limit of a
putative proper compactification, where one zooms in on the del Pezzo surface, which
plays the role of the 4-cycle where we will wrap the stack of D7-branes. The infinite
volume of the internal manifolds decouples four-dimensional gravity2, which simplifies the
ten-dimensional dynamics of the system. Moreover, gaugino condensation only occurs on
coinciding D7-branes if the low-energy EFT supported on the stack is pure N = 1 SYM,
namely if the is no massless charged matter in the spectrum of the theory. Notably, the
D7-brane deformation moduli can potentially break this condition if they stay massless
at low energy, since they would enter the supersymmetric gauge theory as a Higgs
branch, preventing gaugino condensation from taking place [15]. Complex cones over
Kähler-Einstein del Pezzo surfaces avoid this problem, since the del Pezzo base is a rigid
divisor of the geometry, namely it does not admit any holomorphic deformation. They
also come with the very welcome feature of admitting no complex structure deformations,
which would otherwise be promoted to a modulus of a string theory compactified on it,
so that their complex structure is entirely fixed by the one of the underlying unresolved
complex cone. This leads to a pure N = 1 SYM theory supported on the D7-branes
at low energies3. Finally, complex cones over Kähler-Einstein del Pezzo surfaces are
(non-compact) Calabi-Yau manifolds, which is required in order to retain N = 1 SUSY
in the four-dimensional low-energy effective theory, presented in §3.

1More precisely, by complex cone over a Kähler-Einstein del Pezzo surface M we mean the canonical
line bundle over M , denoted KM .

2See around (1.16).
3We discuss the gauge group of this theory in §4.1.
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Motivation and construction

Up to biholomorphisms, there are only eight Kähler-Einstein del Pezzo surfaces, which
are P2, P1 × P1 and the blowup of P2 at 3 ≤ k ≤ 8 generic points, denoted dPk [36]. In
our notation, Pn denotes the 2n-dimensional complex projective space. In this work we
will study the local model compactified on the complex cone over dP0 = P2.

The complex cone over P2 is defined as the canonical line bundle over P2, therefore
our internal manifold of choice is4

X0 := OP2(−3). (2.1)

This can be obtained as the crepant5 resolution of the orbifold C3/Z3, namely from
blowing up the orbifold singularity at the origin6. Thus, X0 is a line bundle over P2,
endowed with a Calabi-Yau structure, and it can be effectively described as a toric
variety7 as follows. Consider the four complex coordinates (Z1, Z2, Z3, Z4) ∈ C4 charged
under a single U(1) with charge vector

Q = (1, 1, 1,−3) (2.2)

and with FI parameter ξ > 0. The D-flatness condition arising from the corresponding
gauged linear sigma model is∣∣Z1

∣∣2 +
∣∣Z2
∣∣2 +

∣∣Z3
∣∣2 − 3

∣∣Z4
∣∣2 = ξ, ξ > 0 (2.3)

and the equivalence relation holding on the moduli space of the theory is

(Z1, Z2, Z3, Z4) ∼ (λZ1, λZ2, λZ3, λ−3Z4), λ ∈ C?. (2.4)

The points of C4 that cannot be gauge-transformed with (2.4) into a solution of the
D-flatness condition (2.3) make up the SR-ideal, which in this case is

Ξξ =
{

(Z1, Z2, Z3, Z4) ∈ C4 : Z1 = Z2 = Z3 = 0
}
. (2.5)

Thus,

OP2(−3) =
C4 \ Ξξ
∼

. (2.6)

Notice that choosing λ = e
2πi
3 in (2.4), one gets

(Z1, Z2, Z3, Z4) ∼
(

e
2πi
3 Z1, e

2πi
3 Z2, e

2πi
3 Z3, Z4

)
, (2.7)

which shows that the action of Z3 in C3/Z3 is embedded in the action of the gauged U(1),
which is what we expect from resolving the orbifold. The local coordinates description
will show how one retrieves C3/Z3 away from the resolved origin.

Finally, let us note that, since the complex cone over P2 is a negative line bundle, it
admits no global holomorphic sections.

4Recall that OP2(−1) is the tautological line bundle over P2 and that OP2(−n) is its n-th tensor power.
5A crepant resolution preserves the canonical class of the singular space. A crepant resolution of a

Calabi-Yau cone is still Calabi-Yau.
6The origin is a singular point for C3/Z3, since the deficit angle 4π

3
from the Z3 quotient induces a

delta-like curvature concentrated in the origin. Recall that the blowup operation consists in excising the
orbifold singularity and replacing it with a finite-sized P2.

7Recall that toric varieties can be readily understood as the moduli space of supersymmetric gauged
linear sigma models.
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2.2 Divisors

A divisor D =
∑

I nID
I of X is a formal sum of codimension one holomorphic submani-

folds DI with integer coefficients nI [25]. The description of OP2(−3) as a toric variety
provides us with a natural complete set of divisors8:

Dα =
{

(Z1 : Z2 : Z3 : Z4) ∈ OP2(−3) : Zα = 0
}
, (2.8)

where α = 1, 2, 3, 4. Let us denote E := D4, and from (2.4) we easily see that E is
biholomorphic to P2, namely this is the resolved divisor. Notice also from (2.4) that Di,
i = 1, 2, 3, are non-compact divisors, while E is compact.

Since OP2(−3) is realized as a toric variety with just one U(1), we expect only one
linearly independent divisor class. Indeed, two possible gauge invariant and rational
combinations of the homogeneous coordinates of OP2(−3) are

Zi

Zj
, Z4

(
Zi
)3
, (2.9)

where i, j = 1, 2, 3. These are globally defined, hence they provide the following linear
equivalences:

D1 = D2 = D3, E = −3D1. (2.10)

This shows that there is indeed only one independent divisor class of OP2(−3), which we
can represent with the compact 4-cycle E.

2.2.1 Intersection products

From (2.5) one immediately sees that D1 ∩D2 ∩D3 = ∅, namely

D1 ·D2 ·D3 = 0. (2.11)

From (2.10) it follows that D2
i · Dj = 0 and D3

i = 0, i, j = 1, 2, 3. On the other

hand, D1 ∩ D2 ∩ E =
{

(Z1 : Z2 : Z3 : Z4) ∈ C4 : Z1 = Z2 = Z4 = 0,
∣∣Z3
∣∣2 = ξ

}
, thus

the D-flatness condition admits a single point solution up to U(1) equivalences, namely

Di ·Dj · E = 1. (2.12)

Using (2.10) one also finds

Di · E · E = −3, E · E · E = 9. (2.13)

One can also construct compact holomorphic curves like C1 = D1 ·E, and since D1∩E ={
(Z1 : Z2 : Z3 : Z4) ∈ C4 : Z1 = Z4 = 0,

∣∣Z2
∣∣2 +

∣∣Z3
∣∣2 = ξ

}
' P1, we see that C1 ' P1

in P2 9. It follows that
Ci · E = −3. (2.14)

8The colon denotes homogeneous coordinates.
9For instance, take (Z2, Z3) = λ(Z2

0 , Z
3
0 ), with (Z2

0 , Z
3
0 ) 6= (0, 0) fixed and λ ∈ C?, so we can interpret

the D-flatness condition as a gauge fixing for |λ|, leaving U(1) to be modded out. This is indeed P1.
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Similarly, one can construct non-compact holomorphic curves like C̃1 = D2 · D3 ={
(Z1 : Z2 : Z3 : Z4) ∈ C4 : Z2 = Z3 = 0,

∣∣Z1
∣∣2 − 3

∣∣Z4
∣∣2 = ξ

}
, with intersection product

C̃i · E = 1. (2.15)

2.3 Local coordinates

From the SR-ideal (2.5) it follows that an open covering of OP2(−3) is given by

U(i) =
{

(Z1 : Z2 : Z3 : Z4) ∈ OP2(−3) : Zi 6= 0
}

(2.16)

for i = 1, 2, 3. One can also define the open set

U(4) =
{

(Z1 : Z2 : Z3 : Z4) ∈ OP2(−3) : Z4 6= 0
}
, (2.17)

and one immediately sees that U(4) ⊂
⋃3
i=1 U(i).

On U(i) we define the following local coordinates:

ua(i) =
Za

Zi
a = 1, 2, 3, a 6= i

ξ(i) = Z4
(
Zi
)3 (2.18)

These coordinates are completely invariant under (2.4). On U(4) we define the following
local coordinates:

zi = Zi
(
Z4
) 1

3 . (2.19)

Notice that a residual Z3 invariance is left from (2.4), acting on these coordinates as

Z3 : zi 7→ e
2πi
3 zi. (2.20)

A Z3-invariant combination of these coordinates is

r2 = zizi. (2.21)

Let us stress that these coordinates are defined for r2 6= 0. This shows that U(4) ' C? 3/Z3,
as we expect from this resolved orbifold. The change of coordinates on U(i) ∩ U(j) is

ua(j) =
ua(i)

uj(i)
a 6= i, j

ui(j) =
1

uj(i)

ξ(j) =
(
uj(i)

)3
ξ(i)

(2.22)
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The change of coordinates on U(4) ∩ U(i) is

zj = uj(i)ξ
1
3

(i) j 6= i

zi = ξ
1
3

(i)

r2 =
∣∣ξ(i)

∣∣ 2
3 (1 + ρ2

(i)), ρ2
(i) = ua(i)u(i)a

(2.23)

with inverse

ua(i) =
za

zi

ξ(i) =
(
zi
)3 (2.24)

Note that from (2.22) one sees that on U(i) ∩ U(j) it holds

1 + ρ2
(j) =

1 + ρ2
(i)∣∣∣uj(i)∣∣∣2 . (2.25)

This shows that the combination r2 =
∣∣ξ(i)

∣∣ 2
3 (1 + ρ2

(i)) is indeed globally defined.

Notice that the resolved divisor E ' P2 can be covered with the open sets U(i) ∩E,

i = 1, 2, 3, and with local coordinates
(
ua(i)

)
over each one of these. Therefore, on U(i)

the
(
ua(i)

)
describe the point on the base of the cone, while ξ(i) describes the point on the

fiber above it. Moreover, since P2 ' E =
{
Z4 = 0

}
, U(4) does not contain the base of the

cone, which would correspond to r2 = 0. Indeed, extending the r2 coordinate to U(i) as

r2 =
∣∣ξ(i)

∣∣ 2
3 (1 + ρ2

(i)), (2.26)

it holds P2∩U(i) '
{
r2 = 0

}
, i.e. P2 can be locally described as the zero of the holomorphic

section

h(i)

(
ξ(i)

)
=

1

`3s
ξ(i), (2.27)

where the string length scale has been added to make this dimensionless. As already
stated, since OP2(−3) is a negative line bundle, it admits no global holomorphic sections,
which makes the task of extending (2.27) hopeless.

2.4 Maximal symmetry

Recall that OP2(−3) is obtained as crepant resolution of the orbifold C3/Z3, effectively
blowing up the orbifold singularity at zi = 0 to a finite-sized P2 (which is therefore the
exceptional divisor of the resolution). The maximal symmetry of X0 is inherited from
that of the singular orbifold, as we now explain. This is a continuous symmetry, which
is not in contrast with X0 being CY, thanks to the fact that it is non-compact. When
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endowed with the euclidean metric, the (holomorphic) isometry group of C3 is U(3),
acting in the defining representation on its coordinates (zi). Upon Z3 identification, the
isometry group of C3/Z3 becomes U(3)/Z3. Once the resolution of the singular point
is performed, X0 still admits a local chart with the C3/Z3 coordinates zi, defined for
r2 6= 0. Therefore, in a natural way X0 admits as maximal symmetry the group U(3)/Z3,
whose action is defined by its defining representation when acting on the (zi) coordinates.
Since the actions of U(3) and of U(3)/Z3 on X0 are the same, it is equivalent to state
that the maximal symmetry of X0 is U(3).

In order to better understand how U(3) acts on the internal geometry, it is useful to
consider the well known decomposition

U(3) ' SU(3)× U(1)

Z3
' PU(3)× U(1), (2.28)

where PU(3) ' U(3)/U(1) ' SU(3)/Z3 is the projective unitary group. The actions of
SU(3) and PU(3) on P2 are equivalent. Therefore, the holomorphic isometry group of
X0 can be decomposed as10

U(3)/Z3 ' PU(3)× U(1)/Z3. (2.29)

Since PU(3) is the holomorphic isometry group of P2, this elegantly suggests that
the action of U(3)/Z3 on X0 = OP2(−3) corresponds to SU(3) acting in the defining
representation on the homogeneous coordinates of P2, and to the action of U(1)/Z3 on

the (zi) given by zi 7→ e
iα
3 zi, with α ∼ α+ 2π. Thus, U(3) consists of the isometries of

the base of the complex cone together with the rotations of the fiber above it, as one
would expect.

The action of U(3) can even be defined on the homogeneous coordinates of OP2(−3)
directly. For U(3) to act in the defining representation on the (zi), one easily sees from
(2.19) that it must act of the (Zi) in the defining representation, while Z4 needs to be a
singlet:

U(3) :

{
Zi 7−→ U ijZ

j

Z4 7−→ Z4
(2.30)

where U ∈ U(3). This shows that the exceptional divisor P2 is U(3)-invariant. Similarly,
the U(1) factor in (2.28) acts as

U(1) :

{
Zi 7−→ eiαZi

Z4 7−→ Z4
, α ∈ R. (2.31)

2.5 Topology

In this section, we review the absolute and relative cohomologies of the P2 complex cone,
and their relation, which we make use of in §3.8. We then extend these results to the

10Distribution of the quotient on the direct product factors is legitimate since Z3 can be see as a normal
subgroup of SU(3) or U(1).
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Chapter 2. Geometry of the P2 cone

generic Kähler-Einstein del Pezzo cones, which play a crucial role in the construction
of local del Pezzo models, found in §3. An introduction to short exact sequences and
relative cohomology is found in the appendices A.1 and A.2.

2.5.1 P2 cone

Recall the Betti numbers bp(X0) are defined as the dimension of Hp(X0;R). The Hodge
diamond of OP2(−3) is given by

1

0 0

0 1 0

0 0 0 0

0 1 0

0 0

0

(2.32)

Being non-compact, OP2(−3) has an exact volume form, which is why b6(X0) = 011.
Since OP2(−3) is connected, b0(X0) = 1. The boundary of OP2(−3) is clearly the same
as the boundary of the unresolved orbifold C3/Z3, namely

Y0 := ∂X0 = S5/Z3. (2.33)

This is a regular five-dimensional Sasaki-Einstein manifold, namely it can be described
as a U(1) fibration over a Kähler-Einstein del Pezzo surface12. Thus, OP2(−3) can be
described both as a complex cone over P2 or as the resolution of a real Calabi-Yau cone
over Y0, denoted C(Y0) = R>0 × Y0, with metric

ds2
C(Y0) = dr2 + r2ds2

Y0
. (2.34)

Thus, the orbifold C3/Z3 can also be described as a Calabi-Yau cone over Y0

C3/Z3 ' C(S5/Z3). (2.35)

The resolved real Calabi-Yau cone structure implies that [20]

b1(X0) = b5(X0) = 0. (2.36)

The Calabi-Yau holomorphic 3-form Ω ∈ H3,0(X0;R) is exact13. The only non-trivial
cohomology groups14 are the H1,1(X0;R), which is generated by the (1, 1)-harmonic form

11This can also be justified using Poincaré duality: H6(X0;R) ' H0(X0, Y0;R) = Hc
0(X0;R) = 0,

where the last equality is due to the fact that the only connected component of X0 is non-compact.
12Indeed, notice that in our case Y0 is then a U(1) fibration over P2 up to a Z3 identification, which is

isomorphic to S5/Z3 by the Hopf fibration.
13On a non-compact Kähler manifold, harmonic forms can be exact and non-vanishing. This is the

case for Ω.
14For an introduction to relative cohomology, see appendix A.
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ω dual to the only compact divisor E ' P2, and H2,2(X0;R), the Poincaré-dual group to
H2(X0, Y0;R).

As for the topology of the boundary, it has the same homology of a 5-sphere up to
torsion15. Therefore,

bi(Y0) = 0 i = 1, . . . , 4 (2.38a)

b0(Y0) = b5(Y0) = 1 (2.38b)

and16

H1(Y0;Z) = H3(Y0;Z) = Z3. (2.39)

The volume form of S5 generates the top-dimensional cohomology group of Y0.
Applying (A.8) to X0 provides us with an important relation between the non-trivial

homology and cohomology groups of the space. Thanks to b1(Y0) = b3(Y0) = 0, (A.8)
implies

0 −→ H2(X0, Y0;R) −→ H2(X0;R) −→ 0, (2.40)

which is equivalent to
H2(X0, Y0;R) ' H2(X0;R), (2.41)

which implies in turn
b2(X0) = b4(X0). (2.42)

Dualizing (2.40) yields the homology analogous

H2(X0;R) ' H2(X0, Y0;R). (2.43)

On the other hand, applying (non-compact) Poincaré duality to (2.40) yields

H4(X0;R) ' H4(X0, Y0;R), (2.44)

with cohomology analogous

H4(X0, Y0;R) ' H4(X0;R). (2.45)

The isomorphisms (2.40, 2.43, 2.44, 2.45) admit a natural generalization into short exact
sequences in the generic del Pezzo cone case. The sequence (2.40) and its dualizations

15 Recall that n-th homology group of a topological space X, with coefficients in Z, by the universal
coefficient theorem has the general form

Hn(X;Z) =

bn(X)⊕
i=1

Z

⊕( m⊕
j=1

Gj

)
, (2.37)

where m ∈ Z≥0 and Gj are (finite) cyclic groups. The discrete part of Hn(X;Z) makes up its torsion.
16Thanks to the Z3 quotient, closed curves on S5/Z3 come in three flavors: those that would also

be closed on the 5-sphere, and those whose extrema are identified under the Z3 action. Take a point
p ∈ S5, let pk, k = 1, 2, 3, the three images of p under Z3, and consider a curve with one extremum in p,
then choosing the other extremum to be one of the three pk yields three inequivalent cycles in S5/Z3.
Therefore H1(Y0;Z) = Z3.
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Chapter 2. Geometry of the P2 cone

do not hold in the case of (co)homologies with integral coefficients, due to presence of
torsion terms arising from (2.39). Therefore, we expect cyclic groups Z3 to show up in
place of the 0’s. In particular, we expect H2(X0;Z) and H4(X0;Z) to be isomorphic up
to cyclic factors, namely

H2
free(X0;Z) ' H4

free(X0;Z), (2.46)

where

Hp
free(X0;Z) = Hp(X0;Z)/TorHp(X0;Z). (2.47)

Except for the Kähler form J ∈ H1,1(X0;R) and the holomorphic 3-form Ω ∈
H3,0(X0;R), due to Dirac’s quantization condition, we will work with integrally quantized
forms and cycles, namely elements of Hp(•;Z) and Hp(•;Z). See §3.4 for more details
on this choice.

The non-compact divisors Di define the same relative homology class [D] := [Di] ∈
H4(X0, Y0;Z)17. Any one of their boundaries Σi := ∂Di is non-zero, and they represent
the same homology class [Σ] := [Σi] generating H3(Y0;Z) = Z3. This implies that

3[Σ] = 0, (2.48)

which is consistent with the previously derived linear equivalence (2.10).

One can also show that the resolved divisor E is not Spin, see appendix A.

2.5.2 General del Pezzo cone

Notice that (2.44) means that the P2 cone does not admit non-compact divisor classes18,
essentially due to the fact that b3(Y0) = 0, that is due to the particularly simple horizon
topology (2.38). This fact can equivalently be seen as a consequence of b2(P2) = 119.
Indeed, H2(P2;Z) is generated by the single class of curves [C] = [Ci] we introduced in
§2.2. The restriction of X0 over Ci is the divisor Di, which is linearly equivalent to E,
thus showing that there are no non-compact divisor classes.

This does not hold for the other complex cones over Kähler-Einstein del Pezzo surfaces
M = P1 × P1, dPk, where k = 0, 3, . . . , 8. Let us denote these, with their respective
horizon, by

X = KM ; Y = ∂KM . (2.50)

This is motivated by the fact that X can be constructed as the canonical bundle of M .
The generic Kähler-Einstein del Pezzo cone has non-compact divisor classes. The precise

17Recall that, by non-compact Poincaré duality, H4(X0, Y0;Z) ' H2(X0;Z).
18By non-compact divisor classes we mean divisor classes without compact representatives.
19In general, it holds

Hp(Pp;Z) =

{
Z p even

0 otherwise
. (2.49)
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result for the general case is

b4(KM ) = 1 (2.51a)

b2(KM ) =

{
1 + 1 if M = P1 × P1

1 + k if M = dPk, k = 0, 3, . . . , 8
(2.51b)

b3(∂KM ) =

{
1 if M = P1 × P1

k if M = dPk, k = 0, 3, . . . , 8
(2.51c)

bi(KM ) = 0 i = 1, 3, 5, 6. (2.51d)

Here (2.51a) shows that del Pezzo cones always admit only one compact divisor class,
while (2.51c) shows that different bases of the cone lead to different horizon topologies.
This result can be understood from the Betti numbers of the base:

b2(M) =

{
1 + 1 if M = P1 × P1

1 + k if M = dPk, k = 0, 3, . . . , 8
(2.52)

Indeed, P1 × P1 admits two independent 2-cycles C1 and C2, the two P1’s, while dPk
admits 1 + k 2-cycles C, Eσ, σ = 1, . . . , k, where C is the pullback of the generator of
H2(P2;Z) under the blowdown map π : dPk → P2, and Eσ are the exceptional curves
associated to the k blowups in P2. One can then introduce a basis of independent divisors
for H4(KM , ∂KM ;Z) by restricting KM over each of these curves.

Let us emphasize that a remarkable and characteristic feature of del Pezzo cones is
(2.51d). Thanks to b3(X) = 0, string theories compactified on a del Pezzo cone do not
admit complex structure moduli, which greatly simplifies their low-energy dynamics20.
Moreover, it makes it possible to write down short exact sequences which generalize the
isomorphisms (2.40, 2.43, 2.44, 2.45) for the generic del Pezzo cone:

0 −→ H2(X,Y ;R) −→ H2(X;R) −→ H2(Y ;R) −→ 0; (2.53a)

0 −→ H2(Y ;R) −→ H2(X;R) −→ H2(X,Y ;R) −→ 0; (2.53b)

0 −→ H4(X;R) −→ H4(X,Y ;R) −→ H3(Y ;R) −→ 0; (2.53c)

0 −→ H3(Y ;R) −→ H4(X,Y ;R) −→ H4(X;R) −→ 0. (2.53d)

Using (A.4), these imply

b2(X) = b4(X) + b3(Y ), (2.54)

which generalizes (2.42). Notice that (2.51c) follows from (2.51b) and (2.51a) thanks to
(2.54). In this sense, b3(Y0) = 0 is the reason why the topology of KP2 = OP2(−3) is the
simplest.

20Thanks to b3(X) = 0, Kähler-Einstein del Pezzo cones fall into the classes of compactification
backgrounds analyzed in [27].
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2.6 Hodge-de Rham Green’s function

Let us consider the Green’s function G(y; y0) for the Hodge-de Rham operator associated
with the Ricci-flat metric on the generic del Pezzo cone KM . These are of interest when
one studies solutions for the warp factor equation of motion (3.8). They are defined by
the equation

∆G(y; y0) = `4s δ(y − y0), (2.55)

where y0 ∈ KM is fixed, where we introduced a string length factor in order to make the
Green’s function dimensionless, and where we introduced the Hodge-de Rham Laplacian
for the Eguchi-Hanson metric ∆ = −∇m∇m (its action on general p-forms is given by
(A.58)). They are symmetric, i.e. they obey [40]

G(y; yI) = G(yI ; y). (2.56)

They do not admit a closed form expression, but their asymptotic behavior far away
from the P2 base is determined by the Green’s functions on the unresolved cone. Thanks
to KM being the resolution of a real Calabi-Yau cone C(Y ) over a Sasaki-Einstein 5-fold
Y , the metric of KM asymptotically has form (2.34). In components, this is

gαβ =

(
1 0
0 r2gY ab

)
(2.57)

with inverse

gαβ =

(
1 0
0 1

r2 gY
ab

)
(2.58)

Using (2.57) and the generic action of the Hodge-de Rham operator (A.58) we find that
its action on C(Y ) is given by

∆C(Y )f(y) =

(
− d2

dr2
+

1

r2
∆Y

)
f(y). (2.59)

Therefore, one easily sees that the Green’s function on the real cone C(Y ) is given by21

Gc(y; y0) =
1

4Vol(Y )

`4s
r4
, (2.61)

where r2 = (y − y0)m(y − y0)nδmn. The Green’s function G(y; y0) of KM then is
asymptotically described by the Green’s function on C(Y ):

G(y; y0) ∼∞
1

4Vol(Y )

`4s
r4
, (2.62)

where r2 = ymynδmn in the r2 ∼ ∞ limit.

21Indeed, given ϕ ∈ S(R6),

〈∆
(

1

4Vol(Y )

1

r4

)
|ϕ〉 =

1

4Vol(Y )
4

∫
r5dr dVol(Y )

(
d

dr

1

r5

)
ϕ

:= − 1

Vol(Y )

∫
r5dr dVol(Y )

1

r5

d

dr
ϕ = ϕ(0).

(2.60)

50



Metric and Kähler form

2.7 Metric and Kähler form

Finding an explicit Kähler and Ricci-flat metric for a compact Calabi-Yau space is a
notoriously difficult problem. In fact, currently none is known [37]. This is mainly due
to the fact that compact CY manifolds do not admit continuous isometries, allowing
at most discrete symmetries. On the other hand, non-compact CY manifolds do allow
for continuous isometries, which can greatly simplify the form of the Kḧaler potential.
Thanks to OP2(−3) being non-compact, it is fairly easy to write down an explicit Ricci-flat
metric for it assuming maximal symmetry, see §A.6. The maximally symmetric Ricci-flat
metric for the resolved C3/Z3 is the so-called Eguchi-Hanson geometry [6]. In the U(4)

patch, it takes the form22

ds2
X0

=

(
1 +

c6

r6

) 1
3

(
δi −

c6

r6

(
1 +

c6

r6

)−1
ziz
r2

)
dzidz (2.63)

where c ∈ R is a constant controlling the volume of the resolved P2, and we use the
notation

zı = δıjz
j . (2.64)

Setting c = 0 one recovers the singular orbifold metric. For general c > 0, this is a
one-parameter family of metrics, and any physical application thereof requires c to be
eventually fixed to a certain positive value. Notice that this metric is flat in the limit
r2 → ∞, and together with the residual Z3 action acting on the (zi) this shows that
∂X0 ' S5/Z3. The metric components in (zi) coordinates are

gi =

(
1 +

c6

r6

) 1
3

(
δi −

c6

r6

(
1 +

c6

r6

)−1
ziz
r2

)
. (2.65)

The singularity in r2 = 0 is just a coordinate singularity, and the metric is regular also

on the resolved P2 passing to the coordinates
(
ξ(i), u

a
(i)

)
. By construction, this satisfies

det(gi) = 1, (2.66)

or equivalently
√
g6 = 8, where g6 = det(gmn). Its inverse is easily found to be

gi =

(
1 +

c6

r6

)− 1
3
(
δi +

c6

r6

ziz

r2

)
. (2.67)

The Kähler form on U(4) is then given by

J = igidz
i ∧ dz

= i

(
1 +

c6

r6

) 1
3

(
δi −

c6

r6

(
1 +

c6

r6

)−1
ziz
r2

)
dzi ∧ dz

(2.68)

22Notice this is manifestly U(3)-symmetric, thanks to the fact that U(4) = {r2 6= 0} is.
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Thanks to the Kähler structure, one can also write this as

J = i
(
C(r2)δi + C ′(r2)ziz

)
dzi ∧ dz (2.69)

where

C(r2) =

(
1 +

c6

r6

) 1
3

. (2.70)

This can be recast in terms of the Kähler potential on U(4) as

J =
1

2
ddcC(4)(r

2) (2.71)

where23

dc = i
(
∂ − ∂

)
, (2.72)

and the Kähler potential on U(4) is given by.

C(4)(r
2) =

∫ r2

?
C(y)dy. (2.73)

Its explicit expression is

C(4)(r
2) = c2

(
1 +

r6

c6

) 1
3

+

− c2

6

2
√

3 arctg

(
1√
3

+
2√
3

(
1 +

r6

c6

) 1
3

)
+ 3 log

r2

c2(
1 + r6

c6

) 1
3 − 1

+ const .

(2.74)
Notice that this potential exhibits a singularity in r2 = 0, with asymptotic behavior

C(4)(r
2) ∼0 c

2log(r2). (2.75)

On the other hand, J is regular for r2 = 0 just like the metric is, therefore the patching
rules of the potential need to get rid of this singularity. More precisely, we can choose
the patching rules for the Kähler potential as follows:

C(i) = C(4) −
c2

3
log
∣∣ξ(i)

∣∣2 on U(i) ∩ U(4 ) (2.76a)

C(i) = C(j) − c2log
∣∣∣ui(j)∣∣∣2 on U(i) ∩ U(j ) (2.76b)

Indeed, using the global definition of r2 (2.26) and setting r2 = 0 in (2.76b) using (2.74),
we find

C(i)|P2 = c2 log
(

1 + ρ2
(i)

)
, (2.77)

23Notice that 1
2
ddc = i∂∂.
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which is the Kähler potential for the Fubini-Study metric24. This shows that on U(i)∩U(4),

J |P2 = c2JFS = c2 i

1 + ρ2
(i)

(
δab −

u(i)au(i)b

1 + ρ2
(i)

)
dua(i) ∧ dub(i), (2.78)

and that (2.63) induces the Fubini-Study metric on P2:

ds2
P2 = c2ds2

FS =
c2

1 + ρ2
(i)

(
δab −

u(i)au(i)b

1 + ρ2
(i)

)
dua(i)du

b
(i). (2.79)

From a direct computation, one can find the explicit form of the metric and the Kähler
form on U(i), in the (ξ, ua) coordinates (dropping the pedix (i)), starting from (2.63) and
(2.68) and applying the change of coordinates. The Kähler form becomes

J =
(
c6 + r6

) 1
3 JFS +

i

3

(
1 + ρ2

)2
(c6 + r6)

2
3

[
ua ξ dua ∧ dξ − ua ξ dua ∧ dξ +

1

3
(1 + ρ2)dξ ∧ dξ

]
,

(2.80)
where we used (2.26) and the change of coordinates identities

dzi ∧ dzi = |ξ|
2
3

[
dua ∧ dua +

1

3
ua dua ∧ dξ

ξ
− 1

3
ua dua ∧ dξ

ξ
+

1

9
(1 + ρ2)

dξ

ξ
∧ dξ

ξ

]
(2.81a)

zidz
i = |ξ|

2
3

[
uadu

a +
1

3
(1 + ρ2)

dξ

ξ

]
(2.81b)

Notice that (2.80) is indeed regular in r2 = 0, and it implies (2.78) once this is pulled-back
onto P2. Then, the metric in these coordinates immediately follows:

ds2
X0

=
(
c6 + r6

) 1
3 ds2

FS +
1

3

(
1 + ρ2

)2
(c6 + r6)

2
3

[
ua ξ dua dξ + ua ξ dua dξ +

1

3
(1 + ρ2) dξ dξ

]
.

(2.82)
In passing, notice that the Kähler form and the metric evaluated on ξ = 0, but without
taking the pullback to P2, are of the form

J |ξ=0 =c2JFS +
i

9 c4
(1 + ρ2)3dξ ∧ dξ (2.83a)

ds2
X0
|ξ=0 =c2ds2

FS +
1

9 c4
(1 + ρ2)3dξ dξ (2.83b)

which shows that they are of block-diagonal form: the fiber legs do not mix with the
base legs on the resolved divisor, making ∂ξ and ∂ua orthogonal on the P2. Explicitly,
the metric components at ξ = 0 are

gαβ|ξ=0 =

(
gab|ξ=0 0

0 gξξ|ξ=0

)
(2.84)

24Eduard Study (/"Stu:di/ SHTOO-dee), more properly Christian Hugo Eduard Study (23 March 1862
- 6 January 1930), was a German mathematician.

53



Chapter 2. Geometry of the P2 cone

where α, β ∈ {a, ξ}, and

gab|ξ=0 =
c2

1 + ρ2

(
δab −

uaub
1 + ρ2

)
(2.85a)

gξξ|ξ=0 =
1

9c4
(1 + ρ2)3 (2.85b)

The block-diagonal form makes it easier to compute the inverse metric at ξ = 0:

gab|ξ=0 =
1 + ρ2

c2

(
δab + uaub

)
(2.86a)

gξξ|ξ=0 =
9c4

(1 + ρ2)3 (2.86b)

Finally, notice that in the limit r2 →∞ (and taking the pullback to ∂X0) we get

J |∂X0 = idzi ∧ dzi 6= 0 (2.87)

which shows that this is not a compactly supported 2-form, so that J ∈ H2(X0;R).

2.8 Kähler modulus

Let us introduce a parametrization for the Kähler cone. Since b2(X0) = 1, there is
only one linearly independent (1, 1)-cohomology class of H2(X0, Y0;Z), which can be
represented by its Poincaré-dual homology class [E] ∈ H4(X0;Z)25. Therefore, we can
choose to decompose J is this basis, i.e.

[J ] = v[E] (2.88)

where v ∈ R is our choice of parametrization for the only (uncomplexified) Kähler
modulus of the model. Admittedly, by an abuse of notation, here we denote a cohomology
class by its Poincaré-dual. The Kähler cone condition states that for any 2-homology
class with holomorphic curve representative C it holds∫

C
J > 0. (2.89)

Therefore, choosing C = Ci = Di · E we can compute explicitly (2.89)26:∫
Ci

J = ic2

∫
C

(
1− |y|2

1 + |y|2

)
dy ∧ dy

1 + |y|2

= 4πc2

∫ ∞
0

rdr

(1 + r2)2
= 2πc2

(2.90)

25Recall that Poincaré duality in this non-compact context involves relative (co)homology and take
the form Hn

free(X0;Z) ' H free
6−n(X0, Y0;Z), Hn

free(X0, Y0;Z) ' H free
6−n(X0;Z), where free singles out the

non-torsion component of the (co)homology group. See [14] and [27] for more details. Since b3(Y0) = 0, it
holds H2(X0;Z) ' H2(X0, Y0;Z) up to cyclic factors.

26Recall dy ∧ dy = −2idRe(y) ∧ dIm(y).
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which justifies the choice c ∈ R as a consequence of the Kähler cone condition. On the
other hand, using (2.14) ∫

Ci

J = v(Ci · E) = −3v, (2.91)

which shows that

v = −2πc2

3
. (2.92)

Thus, the Kähler cone condition forces our Kähler modulus to be negative,

v < 0. (2.93)

Let us give an intuitive understanding to this quantity. The volume of the resolved
divisor, being a holomorphic codimension one submanifold, can be computed by27

Vol
(
P2
)

=

∫
E

1

2
J ∧ J =

v2

2
(E · E · E) =

9v2

2
= 2π2c4, (2.97)

where we used (2.88). This shows how the Kähler modulus, or alternatively c2, controls
the volume of the resolved divisor.

2.9 Harmonic forms and other representatives

The Calabi-Yau structure of OP2(−3) is equivalent to the existence of a holomorphic
(3, 0)-form Ω, which is harmonic and covariantly constant. Being the resolution of the
orbifold C3/Z3, X0 inherits the same CY structure as C3 on U(4), namely

Ω = dz1 ∧ dz2 ∧ dz3. (2.98)

Due to the non-compactness of X0, this is exact and non-vanishing despite being harmonic.
Moreover, the pullback of Ω to Y0 does not vanish, thus Ω ∈ H3,0(X0;R).

From b2(OP2(−3)) = 1 we know that there is only one linearly independent harmonic
form in H2(X0, Y0;Z). There are, however, a few notable representatives of these linearly
dependent cohomology classes, which we are now going to review.

27Referring to §2.9, notice that

Vol
(
P2) =

∫
E

1

2
J ∧ J 6=

∫
X0

1

2
J ∧ J ∧ ω = 0, (2.94)

by primitivity of ω, contrary to the naive expectation. Indeed, care has to be applied when dealing with
Poincaré duality and integrals of non-compactly supported forms on compact divisors. In this case, this
is due to (2.124), so that the correct relation is∫

E

1

2
J ∧ J =

∫
X0

1

2
(J ∧ J)|c ∧ ω =

9v2

2
= Vol(P2), (2.95)

where (J ∧ J)c = v2 ω ∧ ω is the compactly supported part of J ∧ J . An alternate definition is∫
X0

(J ∧ J)c ∧ ω =

∫
X0

J ∧ J ∧ δ2P2 . (2.96)
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2.9.1 Primitive 2-form

There is a unique primitive representative for the cohomology class dual28 to the resolved
divisor P2. This is given by29

ω =
1

2
d
(
A(r2)dcr2

)
=

1

2
ddcκ(4)(r

2), (2.99)

where

A(r2) = − 3

2π

1

r2
(

1 + r6

c6

) 2
3

, (2.100)

and where we introduced the local potential κ(4), which on U(4) is given by

κ(4)(r
2) = −

∫ ∞
r2

A(y)dy =
3

2π

∫ ∞
r2

c2

1

u (1 + u3)
2
3

du. (2.101)

This can be computed explicitly:

κ(4) =
1

4π

[
2
√

3 arctg

(
1√
3

+
2√
3

(
1 +

r6

c6

) 1
3

)
+ 3 log

r2

(c6 + r6)
1
3 − c6

]
−
√

3

4
. (2.102)

The expression of the form in local coordinates (zi) on U(4) is

ω = i(A(r2)δi +A′(r2)ziz)dz
i ∧ dz

= i
(
A(r2)∂∂r2 +A′(r2)∂r2 ∧ ∂r2

)
,

(2.103)

where A(r2) is given by (2.100). By primitivity, it also holds

J ∧ J ∧ ω = 0. (2.104)

Notice that in the limit r2 → ∞, ω|Y0 = 0 30, which shows that this is a compactly
supported form, ω ∈ H2(X0, Y0;Z). This is clearly singular in r2 = 0, as a consequence
of the singularity of these coordinates on P2, with asymptotic behavior

κ(4) ∼0 −
3

2π
log r2. (2.105)

However, ω is regular on the resolved P2, since we can cancel this singular behavior by
means of patching rules similar to (2.76a, 2.76b):

κ(i) = κ(4) +
1

2π
log
∣∣ξ(i)

∣∣2 on U(i) ∩ U(4 ); (2.106a)

κ(i) = κ(j) +
3

2π
log
∣∣∣ui(j)∣∣∣2 on U(i) ∩ U(j ). (2.106b)

28The Poincaré-dual of a 4-cycle on X0 is necessarily a 2-form. It needs to be a (1, 1)-form because P2

is a divisor.
29See §A.5.1 for a derivation.
30This is true regardless of the pullback to Y0 being taken or not.
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Notice that, from these patching rules and (2.100) we read

κ(i)|P2 = − 3

2π
log
(

1 + ρ2
(i)

)
, (2.107)

which is proportional to the Fubini-Study potential. In other terms, we found that

ω|P2 = − 3

2πc2
J |P2 . (2.108)

This should not surprise us. Being both harmonic (1, 1)-forms in a 1-dimensional
cohomology group, they should be proportional, up to exact terms due to the non-
compactness of X0

31. Either way, this is enough to conclude that

[ω] = − 3

2πc2
[J ]. (2.109)

This is consistent with (2.92). We will come back to the precise relation between the two
forms.

One can compute the explicit form of ω on U(i) in the coordinates (ξ, ua) starting
from (2.103) and using the change of coordinates (2.23). One finds

ω =− i 3

2π

1(
1 + r6

c6

) 2
3

{
JFS −

2

c6
|ξ|2 1 + ρ2

1 + r6

c6

ua ub dua ∧ dub+

− 2

3 c6

(1 + ρ2)2

1 + r6

c6

[
ξ dξ ∧ uadua + ξ ua dua ∧ dξ +

1

3
(1 + ρ2) dξ ∧ dξ

]}
,

(2.110)

where we used the change of coordinates identities (2.81), recalling that ∂∂r2 = dzi ∧ dzi
and ∂r2 = zidz

i. In principle, the local potential κ(i) could be directly derived integrating
(2.110), but the patching rules (2.106a, 2.106b) are a faster option.

Let us stress that, by definition of Poincaré-dual, the 2-form ω satisfies∫
E
α4 =

∫
X0

α4 ∧ ω (2.111)

for every every compactly supported α4 ∈ H4(X0, Y0;R). Thanks to (2.122), this also
implies that∫

X0

ω ∧ ω ∧ ω =

∫
E
ω ∧ ω = 9; (2.112a)∫

X0

J ∧ ω ∧ ω =

∫
E
J ∧ ω =

∫
E·E

J = −3

∫
C
J = −6πc2. (2.112b)

31Co-exact terms are technically allowed, as but will not show up. Notice that in order to enter a
closed form, a co-exact term d†λp+1 is constrained to satisfy dd†λp+1 = 0.
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2.9.2 Kähler form

The Kähler form of a Kähler manifold M is always harmonic, since it is covariantly
constant and

d†αp = − 1

(p− 1)!
∇kαkm1...mp−1dxm1 ∧ . . . ∧ dmp−1 , (2.113)

in the convention d† = (−1)D(p+1)+1 ? d?. Being H1,1(X0, Y0;R) one-dimensional, this
implies that it must be proportional to the other harmonic form we found ω, up to exact
terms, namely

J = J0 + v ω, (2.114)

where J0 is exact and v ∈ R. The presence of an exact term is actually to be expected,
since 1

vJ ∈ H
2(X0;Z), while ω ∈ H2(X0, Y0;Z), and since the absolute and the relative

cohomologies of OP2(−3) are isomorphic only up to Z3 identifications. This is consistent

with (2.88) and (2.109), with v = −2πc2

3 . Let us check this relation by direct computation.
Using (2.71) and (2.101), we find

J0 =
1

2
ddc

(
C(4) − vκ(4)

)
=:

1

2
ddck0, (2.115)

so that the local potential for J0 is given by

k0(r2) = C(4)(r
2)− vκ(4)(r

2) =

∫ r2

?

(
1 +

c6

y3

)− 2
3

dy

= c2

(
1 +

r6

c6

) 1
3

,

(2.116)

where we choose ? such that the constant additive term is set to zero. This is for later
convenience. In particular, it is consistent with the gauge fixing choice (3.50a) with
respect to the c2 dependence of the potential, see §3.8 for the details. From the patching
rules (2.76a, 2.76b, 2.106a, 2.106b) we see that this is actually globally defined, which
makes J0 exact, as expected. Notice also that this is regular in r2 = 0, like J and ω.
Therefore, J0 on U(4) can be recast as

J0 = i
(
D(r2)δi +D′(r2)ziz

)
dzi ∧ dz (2.117)

where

D(r2) =

(
1 +

c6

r6

)− 2
3

. (2.118)

Thus, (2.114) implies that the Eguchi-Hanson Kähler potential can be recast as

C = k0 + vκ. (2.119)

Moreover, by direct computation32

J0 ∧ ω ∧ ω = 8
d

dr2

[
r6(A2(r2)D(r2))

]
dr2 ∧ dΩ5 (2.120)

32Recall we use the real orientation d6y =
∧3
i=1 dui ∧ dvi, given complex coordinates yi, i = 1, 2, 3,

and their real representation yj = uj + ivj .
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thus, using (2.118) and (2.100), we find33∫
X0

J0 ∧ ω ∧ ω = 0. (2.122)

This also shows that, using (2.104),∫
X0

J0 ∧ J0 ∧ ω = −v2

∫
X0

ω3 = −9v2. (2.123)

Notice, in particular, that ∫
X0

J0 ∧ J0 ∧ ω 6=
∫
E
J0 ∧ J0 = 0, (2.124)

where we used
J0|E = 0, (2.125)

which is implied by (2.108).

2.9.3 Delta 2-form for P2

The delta 2-form associated with the base P2 of the complex cone satisfies the character-
izing condition ∫

X0

ω4 ∧ δ2
P2 =

∫
P2

ω4 (2.126)

for any 4-form ω4 globally defined on X0.
In the patch U(i) = {Zi 6= 0}, i = 1, 2, 3, with coordinates (ξ(i), u

a
(i)), a = 1, 2, P2 is

locally described by Re ξ(i) = Im ξ(i) = 0. Using equation (3.23) from [25], we find

δ2
P2 =

i

2
δ(ξ(i))dξ(i) ∧ dξ(i), (2.127)

where
δ(ξ) = δ(Re ξ)δ(Im ξ). (2.128)

Globally, this form can be written as

δ2
P2 =

1

2
ddcP (2.129)

33Explicitly, ∫
X0

J0 ∧ ω ∧ ω = 8

∫
X0

d

dr2

[
r6(A2(r2)D(r2))

]
dr2 ∧ dΩ5

=
18

π2
Vol(S5/Z3)

∫ ∞
0

d

dr2

(
r6

c4

(
1 +

r6

c6

)−2
)

dr2

=
18

π2
Vol(S5/Z3)

(
r6

c6

(
1 +

r6

c4

)−2
)∣∣∣∣∣
∞

0

= 0.

(2.121)

59



Chapter 2. Geometry of the P2 cone

where dc is defined in (2.72), and P is the local potential defined by

P(i) =
1

2π
log
∣∣ξ(i)

∣∣2 on U(i)

P(4) = const ∈ R on U(4 )

(2.130)

This can be checked using the well-known identities34

∂ξ
1

ξ
= ∂ξ

1

ξ
= πδ(ξ). (2.132)

The patching rules for this potential are

P(i) = P(j) +
3

2π
log
∣∣∣ui(j)∣∣∣2 on U(i) ∩ U(j ) (2.133a)

P(i) = P(4) +
1

2π
log
∣∣ξ(i)

∣∣2 on U(i) ∩ U(4 ) (2.133b)

In particular, we see that δ2
P2 = 0 on U(4), which is expected since P2 ∩ U(4) = ∅. The

patching rules follow from the changes of coordinates (2.23, 2.22).
By definition, δ2

P2 is a non-harmonic35 (1, 1)-form belonging to the cohomology class
dual to the resolved P2, whose primitive representative is ω. Moreover, since δ2

P2 is
compactly supported (its support is P2 itself), δ2

P2 ∈ H2(X0, Y0;Z). Therefore, there
must exist a globally defined (non-closed) 1-form Λ1 such that

ω = δ2
P2 + dΛ1. (2.134)

This is indeed the case. Just by looking at the patching rules (2.106a, 2.106b, 2.133a,
2.133b) one sees that the combination of potentials

κ− P = κ(4)(r
2) (2.135)

is globally defined, with a singularity in r2 = 0, and it yields the globally defined 1-form

Λ1 =
1

2
dcκ(4), (2.136)

34This is straightforward using Cauchy’s formula and Stoke’s theorem. Let γ be a closed curve centered
at the origin of C, D1 the surface enclosed by γ, then∫

D1

δ(z) dx ∧ dy = 1 =

∫
γ=∂D1

dz

2πi

1

z
=

∫
D1

d

(
1

z

)
∧ dz

2πi

=

∫
D1

∂

(
1

z

)
∧ dz

2πi
=

∫
D1

1

2πi

(
∂

∂z

1

z

)
dz ∧ dz

=
1

π

∫
D1

∂

∂z

(
1

z

)
dx ∧ dy,

(2.131)

where z = x+ iy. This is consistent with equation (5.33) of [8].
35If it were harmonic, then it would have to be proportional to the primitive form ω, i.e. δ2P2 = aω.

Since δ2P2 is compactly supported, there can be no further exact terms. This implies that δ2P2 is primitive,
which is a contradiction since ιJδ

2
P2 ∝ δ(r

2) 6= 0, where r2 is understood as globally defined.
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which is singular on P2, and does satisfy (2.134). Notice that this solution is not unique,
but it is defined up to closed 1-forms. Since b1(X0) = 0, all closed 1-forms are exact,
therefore the general solution to (2.134) is

Λ̃1 = Λ1 + df
(
zi, zı

)
, (2.137)

where f(zi, zı) is regular in r2 = 0.

Scalar delta function for P2

Let us define a scalar delta-function localized on P2 starting from the delta 2-form:

δ
(0)
P2 = Jyδ2

P2 . (2.138)

Recal the definition of interior product for 2-forms α2yβ2 = 1
2α

mnβmn. In §A.5.3 we
show that

δ
(0)
P2 =

9

2

c4

(1 + ρ2)3 δ(ξ) on U(i). (2.139)

Despite its appearance, this is globally defined. One can make this manifest with the
following equivalent representation:

δ
(0)
P2 =

1

2
∆κ(4) =

9

2π
c4 δ(r6), (2.140)

where ∆ is the Hodge-de Rham Laplacian for the Eguchi-Hanson metric (2.63), whose
action of U(3)-symmetric functions is given by

∆f(r2) = − 2

r4

(
c6 + r6

)− 1
3

[
r2(c6 + r6)

d2

d(r2)2
+ (c6 + 3r6)

d

dr2

]
f(r2). (2.141)
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Chapter 3

Local del Pezzo models

In this chapter we present the four-dimensional low-energy N = 1 SUSY EFT for the
moduli fields associated to the local warped compactifications of weakly coupled type
IIB string theory on the general complex cone X = KM over a Kähler-Einstein del Pezzo
surface M , with horizon Y = ∂X. We presented the topology of KM in §2.5.2. We do so
by adapting the construction of [40], which is crucially based in turn on the results of [39],
to Kähler-Einstein del Pezzo cones, and keeping the universal modulus a non-vanishing,
in order to retrieve Mink4 externally. We later specialize to the M = P2 cone case. We
will neglect non-perturbative corrections to the EFT, and we will adopt the supergravity
approximation. The entirety of this chapter has been obtained in collaboration with prof.
Luca Martucci, and has been based on unpublished notes.

In section 3.1 we state the ten-dimensional supergravity background of local del
Pezzo models, possibly including N D3-branes. Section 3.2 reviews how the universal
modulus enters warped type IIB compactifications, and identifies it in the present model.
In §3.3 reviews some relevant mathematical notions about Kähler-Einstein del Pezzo
cones, which are crucial in order to define the moduli of the low-energy four-dimensional
EFT. In particular, we define flat form potentials, and we introduce a basis of harmonic
2-forms which allows us to describe the relevant flat deformations of the background. In
§3.4 we use results from [40, 27] to define the moduli fields of the background, and its
non-dynamical marginal parameters. In §3.5 we define the local potentials associated
to some relevant 2-forms of the constructions, which enter the low-energy EFT directly.
Section 3.6 we use some results from [39, 40] to introduce a chiral parametrization of the
Kähler modulus of the background, which we introduced in §3.4. In §3.7 we exhibit the
effective Lagrangian of local del Pezzo models, and we find its Kähler potential. Finally,
§3.8 specializes this construction to the special case of the P2 cone, the simplest del Pezzo
cone.
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Chapter 3. Local del Pezzo models

3.1 Supergravity background

Let us consider warped type IIB backgrounds in the Einstein frame of the form

ds2
10 = e2Ads2

R1,3 + e−2Ads2
X (3.1)

where ds2
R1,3 is the four-dimensional Minkowski metric, X = KM is the complex cone

over a Kähler-Einstein del Pezzo surface M (see §2.5.2), and ds2
X is a Ricci-flat Kähler

metric for X. Due to b3(X) = 0 (see §2.5.2), the complex structure of the del Pezzo cone
is completely fixed by the one of the underlying singular Calabi-Yau cone C(Y ).

We include no D7-branes in the compactification, so that the axio-dilaton τ = C0+ie−φ

is constant on the internal manifold, and we assume

1

gs
= Im τ � 1, (3.2)

in order to attain a weak coupling regime for the string theory. We will allow, however,
for the presence of N spacetime-filling D3-branes.

The brane content implies that the fluxes F1 = dC0 and G3 = F3− τH3 are classically
vanishing,

F1 = G3 = 0 classically. (3.3)

On the other hand, F5 is non-vanishing due to a non-trivial warp factor. From (1.66), we
have

F5 = (1 + ?10) de4A(y) ∧ d4x. (3.4)

Notice that (3.4) satisfies the correct quantization condition1:∫
Y
F5 = −`4sN. (3.6)

Let us point out that the tadpole cancellation condition in this non-compact context
does not provide any further constraint as long as (3.3) holds. Indeed, integrating both
sides of (1.72) over X, due to the fact that X does have a boundary Y , we get by Stokes’
theorem ∫

Y
F5 + `4s N = 0, (3.7)

where we used
∫
X ρ

loc
3 = N . Then, the quantization condition (3.6) exactly ensures that

this holds.

1Indeed, from ?10

(
de4A(y) ∧ d4x

)
= ?Xde−4A(y) we see i?Y F5 = ?Xde−4A(y). Then, using (3.13) and

the fact ?Xdr = r5dVol(Y ), we find∫
Y

F5 =

∫
Y

?Xde−4A(y) = −4Vol(Y )R4 = −`4sN. (3.5)
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In this setting, the only source to warping are D3-branes, according to the equation
of motion for the warp factor [40]

∆e−4A = `4s ?X

N∑
I=1

δ6
I , (3.8)

where ?X is the Hodge star with respect to the unwarped internal metric, δ6
I are delta

6-forms localized at the positions ZI ∈ X of the D3-branes2, and for dimensional reasons
we introduced the string length, which we define as

`s = 2π
√
α′, (3.9)

where α′ is the Regge slope parameter, which controls the stringy perturbative expansion.

3.2 Universal modulus

In unwarped compactifications without fluxes, the universal modulus parametrizes rescal-
ings of the Kähler form of the internal space

J 7→ aJ. (3.10)

Due to scale invariance of the vacuum Einstein equations, this is a Kähler modulus.
While in a proper compactification it is a dynamical field, in a local model it becomes non-
dynamical, because its ten-dimensional kinetic term diverges in the decompactification
limit, as one can see applying the rescaling (3.10) to the Kähler potential for the Kähler
moduli (1.37b).

In warped compactifications, its identification becomes more subtle, as it is explained
in [39]. The equation of motion for the warp factor (3.8) admits the general solution3

e−4A(y) = a+

N∑
I=1

G(y; yI), (3.12)

where G(y; yI) are the Green’s functions of the Hodge-de Rham operator ∆ for the metric
ds2

X in (3.1), ym are the real coordinates on X, and a ∈ R is a constant. Recalling the
asymptotic behavior of the Green’s functions (2.62), we find

e−4A(y) ∼∞ a+
R4

r4
, (3.13)

2We denote respectively by ymI and ZiI the real and complex coordinates for the position of the
D3-branes on X. We advise the reader not to confuse the notation ZiI for the generic holomorphic local
chart of the del Pezzo cone with the homogeneous coordinates (Zi) introduced in §2.1 to define the P2

cone.
3It is a simple check:∫

X

(
?X
∑
I

δ6I

)
(ỹ)G(y; ỹ) d6ỹ =

(∑
I

δ6I , ?XG(y; ỹ)

)
=
∑
I

G(y; yI). (3.11)
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Chapter 3. Local del Pezzo models

where

R4 =
N `4s

4Vol(Y )
. (3.14)

The universal modulus can be identified with variations of the constant a. In our local
background, the universal modulus is non-dynamical, therefore a can be regarded as a
marginal parameter of the low-energy four-dimensional EFT.

Since we are interested in the recovering the asymptotic geometry Mink4 × C(Y ) far
away from the exceptional divisor of X, i.e. for r2 ∼ ∞, where r2 = ymynδmn, we will
assume

a > 0. (3.15)

This is in contrast with [40], which takes the so-called near-horizon limit boundary
condition

a = 0, (3.16)

in order to recover the asymptotic geometry AdS5 × Y . This chapter is devoted to
reviewing the construction found in [40] accounting for this modification of the asymptotic
geometry, in order to apply it to del Pezzo cones.

3.3 Flat form potentials and harmonic forms

The moduli fields associated with the background described in §3.1 parametrize its flat
deformations, namely those that do not lead to changes in its energy. Due to b3(X) = 0,
there are no flat deformations of the complex structure of X. Therefore, the only
background deformations we need to consider are those of the (internal) Kähler form
J (Kähler moduli), and of the supergravity potentials C2, C4 and B2 (axionic moduli).
These are essentially given by closed 2- and 4-forms. Therefore, in order to define these
moduli precisely we need to identify a basis in the cohomology of X for 2- and 4-forms.
However, we also need to take into account gauge invariance associated with the axionic
moduli (essentially due to their natural shift symmetry), and the complication due to
the fact that the internal space is non-compact. For this reason, in §3.3.1 we introduce
flat forms and their gauge invariance, while in §3.3.2 we use the topological results of
§2.5.2 in order to define a base in cohomology for 2-forms, and for their dual divisors.

3.3.1 Gauge invariance of flat form potentials

As we already mentioned in §1.2.1, axion moduli are roughly due to changes in the
cohomology class of supergravity potentials, which preserve field strengths. Let us be
more precise. The paper [27] precisely studies the low-energy four-dimensional EFTs
for type IIB string theory compactified on (crepant resolutions of) Calabi-Yau cones
C(Y ), where Y is a Sasaki-Einstein 5-fold, with N spacetime-filling D3-branes, which are
allowed to move away from the tip of the cone4. However, it assumes the near-horizon

4Both resolving the Calabi-Yau cone and allowing the D3-branes to move away from the tip of the
cone are deformations of the exact solution of type IIB string theory AdS5 × Y , which plays a central
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limit (3.16). Following its presentation of form field moduli, let us consider a generic
p-form field strength G, with (p− 1)-form local potential C, so that locally G = dC. The
point is that, even in a given coordinate patch, C is not uniquely determined. Given a
(p− 1)-form C\ such that G = dC\, then all other potentials giving rise to the same field
strength are

C = C\ + C[, (3.17)

where C[ is a flat (p−1)-form, namely it is closed. While C\ is possibly locally defined, e.g.
in the case of C4, we assume C[ is globally defined in order to treat it with cohomology5.

Naively, the gauge transformations of C are the ones that preserve its field strength
G, namely adding elements of Hp−1(R1,3 ×X;R) ' Hp−1(X;R), like in (3.17). However,
on a quantum level potential fields are physical by themselves, and indeed (p− 2)-branes
will couple electrically with C by means of the standard Chern-Simons term

SCS = µ

∫
D(p−2)

C, (3.18)

where µ is the electric coupling. Then, invariance of the path integral partition functional
implies in particular that exp [iSCS] be gauge invariant, which allows us to identify the
generic gauge transformation of C

C 7→ C +
2π

µ
α, (3.19)

where α ∈ Hp−1(X;Z), namely α is a closed (p − 1)-form such that its integral over
a basis of Hp−1(X) is an integer. In the special case of an exact α, (3.19) is called a
small gauge transformation, otherwise it is called a large gauge transformation. By the
universal coefficient theorem, restricting the coefficients from R to Z in general gives rise
to a torsion component of the cohomology group, defined as

TorHp−1(X;Z) = ker
(
Hp−1(X;Z)→ Hp−1(X;R)

)
, (3.20)

see also footnote 15 in §2.5.1. As a consequence, the inclusion of Hp−1(X;Z) into
Hp−1(X;R) is identified as the free component of Hp−1(X;Z), namely Hp−1

free (X,Z) '
Hp−1(X;Z)/TorHp−1(X;Z). This is the non-cyclic part of Hp−1(X;Z). Therefore, it
would appear that physical flat deformations of (p− 1)-form potentials are classified by

Hp−1(X;R)/Hp−1
free (X;Z). (3.21)

This is still naive, but it will suffice for our purposes. In fact, it does not hold for RR form
potentials, since in this case large gauge transformations are actually linked to SL(2;Z)

role in exemplifying the AdS/CFT conjecture. The former deformations are called baryonic, while the
latter are called mesonic.

5This is restrictive, since the most general flat form field is not globally defined. Indeed, the field
strength G typically obeys a quantization condition which constrains it to belong to Hp(X;Z), rather
than Hp(X;R). On the other hand, C[ ∈ Hp−1(X;R), so that imposing it to be flat by G[ = dC[ = 0
shows that flat field strengths are classified by ker (Hp(X;Z)→ Hp(X;R)) ' TorHp−1(X;Z). Clearly,
non-trivial elements of TorHp−1(X;Z) cannot be written as dC[ for some globally defined C[.
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gauge symmetry of type IIB string theory, whose ultimate effect is to twist (3.21) by a B
contribution (see [27] for the details). In any case, (3.21) (or any generalization thereof)
implies that flat deformations of C are periodic (or belong to a twisted torus). This
means that all axionic moduli we will defined are periodic.

3.3.2 Cohomology and homology bases

Let us turn to the task of defining a basis in cohomology for 2-forms. Motivated by
the Hodge theorem, which holds in the compact case, it is natural to seek harmonic
representatives for each cohomology class in H2(X;R). On the other hand, due to the
non-compact nature of X we should also consider the relative cohomology H2(X,Y ;R).
This is the group of compactly supported and closed 2-forms on X. Its relation with the
absolute cohomology of X is described in §2.5.2. The salient feature for this analysis is
that, thanks to b3(X) = 0, we can write the short exact sequence (2.53a), which implies
the isomorphism6

H2(Y ;R) ' H2(X;R)/H2(X,Y ;R), (3.22)

and the dimensional splitting b2(X) = b4(X) + b3(Y ), found in (2.54). Intuitively, (3.22)
ensured that all non-trivial 2-forms on the horizon Y are obtained as a pullback of non-
compactly supported 2-forms on X, modulo adding compactly supported terms (which are
killed by the pullback). On the other hand, it holds b4(X) = 1 (see (2.51a)), namely there
is only one linearly independent compactly supported 2-form on X. Therefore, a basis of
H2(X;R) is given by the pair of harmonic 2-forms (ω, χσ), where ω ∈ H2(X;Z) generates
H2(X;R), while χσ ∈ H2(X;Z), σ = 1, . . . , b3(Y ), generate H2(Y ;R) via pullback onto
Y . Note that we choose ω and χσ to be integrally quantized. The quantization conditions
for this basis can be explicitly stated as follows: given a basis of 2-cycles Ca ∈ H2(X),
we require

Na =

∫
Ca
ω ∈ Z; Ma

σ =

∫
Ca
χσ ∈ Z. (3.23)

We assume (ω, χσ) to be integrally quantized so that there exists a dual divisor basis,
which makes the computation of integrals far more convenient, at the cost of introducing
torsion components TorHp(X;Z) in the cohomology groups. Notice that due to the
quotient in (3.22) the χσ can always be shifted by some multiple of the compactly
supported generator ω, namely by

χσ 7→ χσ + nσ ω, nσ ∈ Z. (3.24)

Thus, the choice of the non-compactly-supported harmonic 2-forms χσ is non-canonical7.
This non-canonical division into compactly supported and non-compactly-supported
harmonic 2-forms (ω, χσ) allows us to define the moduli fields and the marginal parameters
of the EFT, see §3.4.

6This is an application of (A.3). An introduction to relative cohomology is found in §A.2.
7This is due to the fact that (2.53a) does not split.
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The asymptotic behaviors of these harmonic forms are given by [27]

‖ω‖2 ∼∞
1

r8+µ
; (3.25a)

‖χσ‖2 ∼∞
1

r4
, (3.25b)

where µ > 0. This shows that only the harmonic generators of H2(X,Y ;Z) are L2-
normalizable, which we checked in the case of X = KP2 , see (A.52), finding µ = 4.
As it is shown in [40], the asymptotics (3.25a, 3.25b) also imply that these harmonic
representatives are primitive.

Thanks to the asymptotics (3.25a, 3.25b) we can define the warped and unwarped
norms of ω:8

M =

∫
X
ω ∧ ?Xω (3.26a)

G =

∫
X

e−4Aω ∧ ?Xω (3.26b)

These norms enter the four-dimensional EFT. Let us stress that (3.26b) is only defined
for ω, and not for χσ. Indeed, assuming a 6= 0 implies that the space of Lw2 -normalizable
forms coincides with the space of L2-normalizable forms, where the Lw2 product is the
warped product which defines the norm (3.26b). This is a major qualitative distinction
between this analysis and the one found in [40], which will affect the low-energy EFT
spectrum. Using the solution for the warp factor (3.12), we find the relation

G = aM+
N∑
I=1

∫
X; ỹ

G(ỹ; yI) (J ∧ ω ∧ ω) (ỹ). (3.27)

Now, let us look for a basis of 4-cycles in H4(X;R). Thanks to the fact that H2(X;Z)
is isomorphic to the Picard group9 of X, ω and χσ which we defined above admit a divisor
basis as their Poincaré dual. Let us denote with E ∈ H4(X;Z) and Dσ ∈ H4(X,Y ;Z)
the divisors Poincaré-dual to the forms ω and χσ respectively. Recall that H4(X,Y ;R)
is the group of 4-chains C of X such that ∂C ∈ H3(Y ;R), namely such that they are
closed up to a 3-cycle of the horizon. Clearly, E is a closed 4-cycle of X. On the other
hand, due to the short exact sequence (2.53c), Dσ are non-compact 4-chains such that
∂Dσ ∈ H3(Y ;Z) define non-trivial 3-cycles in Y .

8In the more general case b4(X) > 1 (which cannot be achieved with del Pezzo cones), these would
be positive-definite metrics on the space of L2-normalizable harmonic forms ωα, given by Mαβ =∫
X
ωα∧?Xωβ and Gαβ =

∫
X

e−4Aωα∧?Xωβ . Their dimensions are found using the formula [?X ] = `D−2p,
where D is the real dimension of the ambient space X and p is the order of the form, so that [M] = [G] = `2.

9Here, it can be described as the group of divisors of X up to linear equivalences. See [40] and
references therein.
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Let us define the intersection products

I = E · E · E =

∫
X
ω ∧ ω ∧ ω; (3.28a)

Iσ = E · E ·Dσ =

∫
X
ω ∧ ω ∧ χσ; (3.28b)

Iσρ = E ·Dσ ·Dρ =

∫
X
ω ∧ χσ ∧ χρ. (3.28c)

These will enter the four-dimensional EFT. In the case of the P2 cone, (3.28a) has been
computed in (2.13). Once again, notice that the non-compact divisors Dσ are defined
only up to a linear shift by the compact divisor E, namely

Dσ 7→ Dσ + nσ E, nσ ∈ Z, (3.29)

which is the Poincaré-dual version of (3.24).

3.4 Moduli and marginal parameters

The moduli fields of this class of compactifications are the following:

• Open string moduli: the N positions of the D3-branes ZI ∈ X, I = 1, . . . , N .

• Closed string moduli:

{
Kähler moduli

Axion moduli of B2, C2, and C4

.

In particular, let us stress the fact that there are no complex structure moduli, thanks to
h1,2(X) = 0.

Linear flat deformations of supergravity potentials and of the Kähler form, depending
on R1,3 coordinates, give rise to moduli fields and marginal parameters of the low-energy
four-dimensional EFT of the compactification. While the former make up the spectrum
of the EFT, the latter are entirely non-dynamical. Establishing the number and the
nature of the moduli, as opposed to the marginal parameters, is a crucial part of this
analysis. Due to (3.15), the number of moduli in local del Pezzo models is different
than the ones found in [27], and reviewed in [40]. The guiding principle for establishing
whether a ten-dimensional deformation gives rise to a dynamical field in the low-energy
four-dimensional EFT is checking that its kinetic term coming from the ten-dimensional
action is finite. In this section we will present the results from [40] relevant for us,
whenever they still apply to out setup, or their proper modification holding in this case.

3.4.1 C2 and B2 moduli

Let us consider C2 and B2 moduli first. By supersymmetry, C2 and B2 moduli come in
the same number. In [27] it is shown that it is consistent to set to zero the fluctuations of
the axio-dilaton, while deforming the supergravity potentials and the Kähler form. Flat
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linear deformations of the two 2-form potentials in general are non-compactly supported,
i.e. they are elements of H2(X;R). Moreover, since G3 vanishes in our background, in our

notation we can take C\2 = B\
2 = 0. Following [40], we expand a flat linear deformation

of the G3 potential in the cohomology basis defined above:

δC2(x)− τ δB2(x) = `2s (β(x)ω + λσ(x)χσ) , (3.30)

where β(x) and λσ(x) are complex-valued10 fields depending on R1,3 coordinates x.
Thanks to the fact that in the analysis of [27] the warp factor drops out of the computation
for the case of C2 and B2 moduli, the results presented in [40] hold equally well in our
case. On the one hand, the deformation β defines the axion modulus associated to C2

and B2, since it controls a compactly supported cohomology class shift. On the other
hand, the non-compactly supported deformations λσ correspond to marginal parameters
of the EFT, and in particular they do not depend on x. Thus, there is only one axion
modulus and b3(Y ) marginal parameters from C2 and B2.

Note that, as one can see from the definition (3.30), the non-perturbative shift
symmetry τ 7→ τ + n, n ∈ Z, implies that at perturbative level only Imβ and Imλσ enter
the Kähler potential of the four-dimensional EFT.

3.4.2 C4 moduli

Let us pass to C4 moduli. Due to (3.6), F5 is not exact and C\4 is not globally defined. Its
deformations belong to H4(X;R), but due to the short exact sequence (2.53d), it holds

H4(X;R) ' H4(X,Y ;R)/H3(Y ;R). (3.31)

This tells us that, somewhat counterintuitively, one can always regard a generic defor-
mation of C4 as compactly-supported, up to compactly-supported 3-forms dΛ3, where
the pullback onto Y of Λ3 defines a non-trivial cohomology class in H3(Y ;R). This
makes dΛ3 non-exact in H4(X,Y ;R). Therefore, compactly supported deformations of
C4 fall into two classes: those of the form dΛ3, and all the others. In analogy to the
case of B2 and C2 moduli treated above, this suggests that all C4 deformations give rise
to C4 moduli, and no marginal parameters. This is indeed the case if one assumes the
near-horizon boundary condition (3.16), as it is pointed out in [40], thanks to a general
result from [27].11 However, in our case of interest a 6= 0 this no longer holds. Indeed,
[27] proves that the C4 moduli are in one-to-one correspondence with Lw2 -normalizable
harmonic forms, namely with respect to the warped metric

gwX = e−4A gX . (3.32)

As we already pointed out below (3.26b), (3.15) implies that (in the notation of [27])

H2
L2

(X, e−4A gX) ' H2
L2

(X, gX), (3.33)

10This is necessary since ω = ω and χσ = χσ.
11Indeed, it is shown in [27] that in the near-horizon limit of the compactification, the internal space

develops an isolated conical singularity at r =∞, which in turn implies the above result.
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contrary to the near-horizon case. Therefore, we conclude that in local del Pezzo models
only compactly-supported deformations of C4, which belong to H4(X,Y ;R), give rise
to C4 axion moduli, while its non-compactly supported ones generate non-dynamical
parameters. Thus, there is only b4(X) = 1 axion modulus associated to C4, which is
given roughly by12 ∫

E
δC4 =

∫
X
C4 ∧ δ2

E , (3.34)

while there are b3(Y ) (see §2.5.2) marginal parameters coming from C4 deformations,
given by ∫

Dσ

δC4 =

∫
X
C4 ∧ χσ. (3.35)

However, these would-be C4 marginal parameters are actually unphysical, so that they do
not show up in the EFT. This is due to the fact that they are associated to deformations
of C4 of the form

δC4 = γ dΛ3. (3.36)

As we explained below (3.31), this is a cohomologically non-trivial deformation in
H4(X,Y ;R), but it is an exact deformation in H4(X;R), namely it is a small gauge
transformation (see §3.3.1).

3.4.3 Kähler moduli

Linear deformations of the Kähler form are constrained by the Kähler condition

dJ = 0, (3.37)

therefore they are necessarily flat. Following [40], let us expand the Kähler form into the
harmonic 2-form basis we defined above:13

J = J0 + v ω + uσ χσ =: Ĵ0 + v ω, (3.38)

where v and uσ are real constants, and J0 is an exact (1, 1)-form. The exact component
J0 appears even in the M = P2 case, as shown in §2.9.2, and it is due to the fact that J
itself is not compactly supported. Then, a linear flat Kähler deformation takes the form

δJ(x) = δJ0(x) + δv(x)ω + δuσ(x)χσ, (3.39)

where v(x) and uσ(x) are real-valued functions on external spacetime, and δJ0(x) is an
exact (1, 1)-form field over R1,3 as well. Once again, [27] states that the ten-dimensional
kinetic terms induce a warped norm for metric perturbations, i.e. a scalar product with
respect to the warped metric (3.32). Due to (3.33), in the absence of the near-horizon
limit only compactly supported Kähler deformations are normalizable, which makes them

12Allowing for a non-trivial F5 flux, due to D3-branes, complicates the definition of the C4 axions [40].
13Notice that, since [J ] = `2 and [ω] = [χσ] = 1, the Kähler moduli and marginal parameters are

dimensionful: [v] = [uσ] = `2.
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dynamical14. Therefore, analogously to the case of B2 and C2 moduli, δv defines the sole
Kähler modulus of the compactification, while δuσ are the b3(Y ) marginal parameters
associated to the Kähler deformations, and they are constant. The generic deformed
Kähler form then is given by

J + δJ = J0(x) + v(x)ω + uσ χσ. (3.40)

We take (3.40) as the definition of the Kähler modulus v and marginal parameters
uσ. Notice that, contrary to the case of C4, the non-compactly supported flat linear
deformations of the Kähler form are physical, since they are not exact. We also define
the non-compactly supported part of J ,

Ĵ0 = J0 + uσχσ. (3.41)

Notice that the Kähler moduli and marginal parameters are constrained by the identity

Iv + Iσuσ =

∫
X
J ∧ ω ∧ ω = −M, (3.42)

where we used the primitivity of ω, namely (A.45), and the identity15
∫
J0 ∧ ω ∧ ω = 0.

This could also be taken as an alternative definition for M.

3.4.4 Summary

In conclusion, the local del Pezzo models spectrum and non-dynamical parameters set
comprise:

• 3N D3-brane chiral moduli ZI ∈ X;

• one Kähler modulus v;

• one B2 and C2 axion β;

• one C4 axion;

• b3(Y ) B2 and C2 marginal parameters λσ;

• b3(Y ) Kähler marginal parameters uσ;

• the constant axio-dilaton τ ;

• the non-dynamical universal modulus a.

Here, b3(Y ) for the generic del Pezzo cone is given by (2.51c). In particular, notice that in
the case of the P2 cone, the associated local del Pezzo model has no marginal parameters.
This is a subset of the spectrum of the EFTs exhibited in [40].

14This is expected from supersymmetry, since Kähler and C4 deformations are required to pair into
complexified Kähler moduli in the EFT.

15We check this in the P2 cone case in (2.122).
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3.5 Local potentials

In order to write down the four-dimensional EFT for the moduli fields we defined above,
we will need to use the (local) potentials for some of the 2-forms we introduced. More
precisely, we are interested into the harmonic forms ω and χσ, introduced in §3.3.2, and
the exact component of the Kähler form J0, which we defined in (3.40). Thanks to the ∂∂
lemma, local potentials always exist for closed 2-forms on Kähler manifolds. Therefore,
we can always write16

ω = i∂∂κ(z, z; v) (3.43a)

χσ = i∂∂ξσ(z, z; v) (3.43b)

J0 = i∂∂k0(z, z; v) (3.43c)

where zi are complex local coordinates of X, κ and ξσ are local potentials, while k0 is
a globally defined potential, since J0 is exact by definition. Recall the definition of the

Dolbeault operators ∂ωp =
∂ωm1...mp (z,z)

∂zi
dzi ∧ dym1 ∧ . . . ∧ dymp . Notice that they all

depend on the Kähler modulus v, since ω and χσ are harmonic, while J0 is part of the
harmonic decomposition of J , and harmonicity is a metric-dependent notion. We can
also define the local potential of Ĵ0, the non-compactly supported part of J :

k̂0 = k0 + uσξσ. (3.44)

Thanks to these definitions, from the decomposition of the Kähler form (3.40) we see
that the Kähler potential of the background internal metric is given by

K = k0 + v κ+ uσξσ = k̂0 + v κ, (3.45)

so that J = i∂∂K.

Local potentials transform under change of coordinates like a Kähler potential [40],
namely we have generic patching rules of the form

κ(z, z) 7→ κ(z, z) + χ(z) + χ(z), (3.46)

where χ(z) is a holomorphic function of the complex coordinates zi of X. Here, χ(z) is
necessarily (v, uσ)-independent, since it is associated with the invariance of the complex
structure of X under holomorphic deformations of its local coordinates. Therefore, the
derivative of the local potentials with respect to v or uσ are globally defined functions. On
the other hand, (3.43a)-(3.43c) define the local potentials only up to a (v, uσ)-dependent,
but point-independent function. Since the EFT for the moduli fields will directly depend
on these local potentials, a fixing of their moduli dependence is in order.

16We explicitly include the Kähler modulus dependence, however remember that Kähler marginal
parameters dependence is also allowed. The dimensions are given by [κ] = [ξσ] = 1, [k0] = `2.
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As it is explained in [40], a convenient and consistent choice to fix such degeneration
is choosing the derivative of the local potentials with respect to v as follows:

∂κ

∂v
(y) =

2

`4s

∫
X; ỹ

G(y; ỹ) (J ∧ ω ∧ ω) (ỹ) (3.47a)

∂ξσ
∂v

(y) =
2

`4s

∫
X; ỹ

G(y; ỹ)(J ∧ ω ∧ χσ)(ỹ) (3.47b)

where G(y; y0) are the Hodge-de Rham Green’s functions on X. It should be stressed
that these conditions do not change turning on a 6= 0, but they could be modified adding
a constant term on the r.h.s. of (3.47a) and (3.47b). We choose not to do so, which
affects the form of the Kähler potential in §3.7.

Notice that this also fixes the dependence on v of k0 and of k̂0. Indeed, (2.88) implies
that

∂[J ]

∂v
= [ω]. (3.48)

In particular, this holds for the harmonic representatives of their respective classes, so
that

∂J

∂v
= ω. (3.49)

Therefore, the expansion (3.38) together with (3.49) impose

∂k0

∂v
= −v ∂κ

∂v
− uσ ∂ξσ

∂v
; (3.50a)

∂k̂0

∂v
= −v ∂κ

∂v
. (3.50b)

This only leaves the usual freedom to add constant terms to the potentials, and it will
be our fixing of choice to write down the moduli EFT. It should be noted that, while
cohomology classes do not depend on (v, uσ), harmonic representatives J and ω do, so
that (3.49) does not follow solely from (3.38). Moreover, (3.50a) shows that J0 depends
on v too (other than uσ).

3.6 The ρ chiral field

Because of four-dimensional supersymmetry, the physical quantity entering the EFT of
unwarped compactifications are the complexified Kähler moduli, which are defined as [25]

TA =
1

`4s

∫
D4,A

(C4 + i dVol(D4,A)) , (3.51)

where {D4,A}A is a basis of divisors of the internal space. According to this prescription,
the Kähler moduli come together with the C4 axion moduli via complexification, and the
resulting complexified Kähler modulus TA inherits shift symmetry only by real constants:

TA 7→ TA + αA, αA ∈ R, (3.52)
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Chapter 3. Local del Pezzo models

as a consequence of the axion shift symmetry17 of
∫
D4,A

C4. In the following, we will

largely refer to the complexified Kähler modulus as simply Kähler modulus.
In our model, since the only compact divisor is E ' P2, the cone base, we expect

the Kähler modulus to roughly take the form, interchanging real and imaginary part of
(3.51) and neglecting warping effects,

ρ ∼ 1

`4s

∫
P2

(
1

2
J ∧ J + iC4

)
=

1

`4s

(
Vol(P2) + i

∫
P2

C4

)
, (3.53)

with axion symmetry
ρ 7→ ρ+ iα, α ∈ R. (3.54)

Classical shift symmetry of ρ, together with four-dimensional supersymmetry, implies
that Im ρ does not enter the low-energy four-dimensional Kähler potential at perturbative
level.

In unwarped compactifications, (3.51) provides the so-called chiral parametrization of
the background Kähler modulus, namely the scalar fields TA enter the four-dimensional
low-energy EFT as the bottom component of a N = 1 superfield. This parametrization
of Kähler moduli is desiderable, since four-dimensional supersymmetry prescribes holo-
morphy of a number of objects with respect to them, like superpotentials or D3-brane
instanton actions. However, due to the inclusion of mobile D3-branes in our model, a
neat identification of ρ is complicated by the presence of a non-trivial warp factor. This
issue has been successfully addressed in [39], identifying the precise modification of (3.53)
by means of local four-dimensional superconformal symmetry and holomorphy of the
action of probe D3-brane instantons. As it turns out, the Kähler modulus v is not a
chiral parametrization of the background fields, thus it needs to be exchanged for a chiral
field entering the EFT as the bottom component of a superfield. Let us call this the ρ
chiral field, whose real part will play the role of a chiral Kähler modulus.

The precise parametrization of the real part of the ρ chiral field in term of the
background moduli defined in §3.4 can be found restoring the contribution from B2

and C2 axions in (A.13) of [40], which can be found in equation (3.2) therein. In

particular, note that the background D3-brane charge Qbg
6 defined there is vanishing in

our background, since the only source of D3-brane charge at tree level included here are
the D3-branes themselves, and in our background G3 is vanishing. Therefore, the real
part of the ρ chiral fields in terms of the background moduli is given by18

Re ρ =
a

`4s

(
1

2
Iv2 + Iσvuσ +

1

2
Iσρuσuρ

)
+

1

2

N∑
I=1

κ(ZI , ZI ; v)+

− 1

2 Im τ
I (Imβ)2 − 1

Im τ
IσImβ Imλσ,

(3.55)

where I, Iσ, Iσρ are the intersection products of the divisor classes of X, which were
defined in (3.28a, 3.28b, 3.28c), and κ(ZI , ZI ; v) is the local potential for the compactly

17At non-perturbative level, this breaks down to a discrete shift symmetry, due to large gauge
transformations described in §3.3.1.

18Notice that by this definition, ρ is dimensionless, like in (3.51).
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supported form ω Poincaré dual to the (compact) exceptional divisor E, which we defined
in (3.43a). It should be noted that, while [40] defines a Re ρ field for all b2(X) Kähler
deformations, due to non-vanishing universal modulus of our background a 6= 0, only
compactly supported ones give rise to dynamical moduli, so that one is left with (3.55)
only.

The parametrization (3.55) should be understood as an implicit definition of the real
Kähler modulus v in terms of the real part of of ρ, and in terms of the imaginary part of
β and of the D3-brane moduli ZiI . Indeed, one can compute, using (3.42), (3.26b), (A.45)
and (3.47a),

∂Re ρ

∂v
=

1

`4s

∫
X; ỹ

(
a+

N∑
I=1

G(ỹ; yI)

)
(J ∧ ω ∧ ω) (ỹ)

=
1

`4s

∫
X

e−4AJ ∧ ω ∧ ω = − 1

`4s
G,

(3.56)

where G is the warped norm of ω, defined in (3.26b). Therefore, ∂Re ρ
∂v 6= 0, and (3.55)

can be locally inverted, yielding v as a function of Re ρ, Imβ and ZI . As it is explained
in [39], β and ZiI are chiral moduli, and the universal modulus, although non-vanishing,
is non-dynamical, therefore this completes our search for chiral moduli parametrizations.

Notice that the parametrization (3.55) implies that in presence of D3-branes, Re ρ is
locally defined because the potential κ is. More precisely, under change of coordinates
the local potential κ transforms according to the patching rule (3.46), which implies that
under the very same change of coordinates Re ρ transforms as

Re ρ 7→ Re ρ+
1

2
χ(z) +

1

2
χ(z). (3.57)

This is a manifestation of the fact that Re ρ is actually a section of the moduli space
[40]. More precisely, the total moduli space M has a fiber bundle structure, where the ρ
moduli space is fibered over the D3 moduli space and the β moduli space

Mρ ↪→M
π→MD3 ×Mβ. (3.58)

This will also be apparent from the form of the EFT, where a covariant exterior derivative
is induced from the fibration structure. Notice that, in the case of only one D3-brane,
the D3 moduli space is a copy of X.

Note that (3.55) defines v as a globally defined function over the total moduli space
M , thanks to the fact that both sides of the equation transform accordingly under change
of coordinates. Its derivatives with respect to Re ρ, Imβ, and ZI are extracted from
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(3.55). They are given by

∂v

∂Re ρ
= −`4s G−1; (3.59a)

∂v

∂Imβ
= −

∂Re ρ
∂Imβ

∂Re ρ
∂v

= − `4s
Im τ

G−1 (I Imβ + IσImλσ) ; (3.59b)

∂v

∂ZiI
= −

∂Re ρ
∂ZiI
∂Re ρ
∂v

=
`4s
2
G−1AIi , (3.59c)

where

AIi :=
∂κ(ZI , ZI ; v)

∂ZiI
. (3.60)

Let us point out that here ∂
∂ZiI

denotes the partial derivative with respect to ZiI , and not

the total one, namely one should only derive the explicit dependence with respect to ZiI ,
keeping v fixed. Due to the patching rule for the local potential (3.46), (3.60) is locally
defined, with transformation law under change of coordinates given by

AIi 7→ AIi +
∂χ(ZI)

∂ZiI
. (3.61)

This might be puzzling, since v is globally defined over M . However, ∂v
∂ZiI

is necessarily

locally defined, since the derivative is taken only along the base of the fibration MD3 ,
while v also depends on the fiber Re ρ.

Let us conclude with a couple of comments. The derivative of ∂Re ρ
∂v (3.56) can also be

integrated to give an immediate interpretation to (3.55). Using (3.49) and recalling that
ω is Poincaré-dual to the exceptional divisor E, we can recast the above expression as

∂Re ρ

∂v
=

1

`4s

∂

∂v

∫
E

e−4A

(
1

2
J ∧ J

)
, (3.62)

which implies

Re ρ =
1

`4s

∫
E

e−4AdVol(E) + . . . , (3.63)

where the dots are some non-holomorphic function of β, ZI and of the marginal parameters
uσ and λσ. Thus, the real part of ρ is given by the warped volume of the compact divisor
E, corrected by G3 moduli and D3-brane moduli. This is the correct generalization of
(3.51) to a warped background, and in the case of constant warping the Kähler modulus
v becomes an equivalent chiral parametrization of the background modulus to Re ρ.

Moreover, (3.59a) provides us with a more direct way to compute the warped norm
of ω defined in (3.26b):

G = −`4s
∂Re ρ

∂v
= −a (Iv + Iσuσ)− `4s

2

N∑
I=1

∂κ(ZI , ZI ; v)

∂v
. (3.64)
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Let us stress that (3.64) in particular shows that G is globally defined, despite the fact
that Re ρ is not, since the holomorphic function χ(z) in the patching rule (3.57) is
v-independent. This is consistent with the definition (3.26b) for G.

3.7 Effective action and Kähler potential

The low-energy four-dimensional EFT of weakly coupled type IIB string theory compact-
ified on a Kähler-Einstein del Pezzo cone, including only D3-branes, is a rigid N = 1
supersymmetric field theory for the moduli Re ρ, Imβ and ZI , and for their fermionic
superpartners. By supersymmetry, at perturbative level it has vanishing superpotential,
since the moduli have no classical scalar potential.

The effective Lagrangian of this model at perturbative level can be obtained from that
of the holographic EFTs studied in [40], under the assumptions that the D3-branes are
not coincident19 and that the two-derivative approximation of supergravity is sensible.
In this work we will neglect non-perturbative string corrections to the Kähler potential
of the EFT. In particular, due to the modifications to the spectrum of the EFT once the
near-horizon limit is lifted, which we explored in §3.4, one only needs to get rid of the
degrees of freedom that have become non-dynamical. These are given by the ρ chiral
fields associated to non-compactly supported Kähler deformations.

Not all of the moduli listed in §3.4 contribute to the Kähler potential of the EFT at
perturbative level. As we noted below (3.30), only Imβ enters the theory at perturbative
level. Analogously, below (3.54) we explained that only Re ρ enters the Kähler potential
at perturbative level. Thus, the set of independent chiral fields entering the Kähler
potential of the four-dimensional EFT at perturbative level consists of Re ρ, Imβ, and
ZI .

The theory comprises N decoupled U(1) N = 1 super-Yang-Mills sectors supported
on the mobile D3-branes, describing the evolution of their worldvolume field strengths
FA (A = 1, . . . , N), and an N = 1 supersymmetric interacting Lagrangian of the chiral
moduli

L = LSYM + Lchiral , (3.65)

where the decoupled N U(1) SYM sectors are given by [40]

LSYM = − 1

4π

N∑
A=1

(
Im τ FA ∧ ?D3F

A + Re τ FA ∧ FA
)

+ fermions, (3.66)

and the chiral sector is given by

Lchiral = −π G−1∇ρ ∧ ?4∇ρ−
2π

`4s

N∑
I=1

gi(ZI , ZI) dZiI ∧ ?4dZ

I

− π

`4s Im τ
Mdβ ∧ ?4dβ + fermions,

(3.67)

19In the language of [27], assuming that mesonic deformations of the background are indeed present.

79



Chapter 3. Local del Pezzo models

where we define the covariant exterior derivative

∇ρ := dρ−AIi dZiI −
i

Im τ
(I Imβ + Iσ Imλσ) dβ, (3.68)

and the D3-brane metric gi is the Calabi-Yau metric on X, which we introduced in the
background (3.1). Recall that G andM are respectively the warped and unwarped norms
of ω, defined20 in (3.26b) and (3.26a), I and Iσ are the intersection products defined in
(3.28a, 3.28b), and AIi are the derivatives of the local potential κ for ω, defined in (3.60).
Since we will only be interested in the bosonic dynamics of the EFT, we omitted the
details of the bosonic sector. This is one of the main original results of this work, and it
has been obtained in collaboration with prof. Luca Martucci; it is based on unpublished
notes.

Notice that, since MD3 ' X, the moduli space metric on MD3 is naturally given by
the Calabi-Yau metric on X; note that it also depends on the chiral fields Re ρ and Imβ
through the Kähler modulus v. Moreover, the covariant exterior derivative (3.68) signals
that Mρ is fibered over MD3 ×Mβ . Note that it is invariant under change of coordinates
on MD3 , namely under the simultaneous action of the transformations (3.57) and (3.61).

Let us prove that (3.67) is supersymmetric, by exhibiting a Kähler potential that
generates it. This is given by a proper modification of the one exhibited by [40] keeping
the universal modulus a finite. The final result is

`4sK =− 4π

`4s
a

(
1

3
I v3 +

1

2
Iσv2uσ

)
+ 2π

N∑
I=1

k̂0(ZI , ZI ; v)

− 4π

Im τ
uσ
(

1

2
Iσ (Imβ)2 + IσρImβ Imλρ

)
.

(3.69)

The corresponding Lagrangian is obtained as21

Lchiral =

(∫
d2θ d2θK(Φ,Φ)

)
d4x = −KAB dφA ∧ ?4dφB + fermions + . . . , (3.70)

where
(
ΦA
)

=
(
Φρ,Φβ,ΦI

)
are the chiral superfields with bottom components (φA) =

(ρ, β, ZI), KAB = ∂2K

∂ΦA∂ΦB
, and the dots are irrelevant higher order kinetic contributions.

One can explicitly check that (3.67) follows from (3.69) computing the second deriva-
tives of the Kähler potential. Using (3.50b), (3.42), (2.56), (3.45) and (3.59a - 3.59c),

20From a practical standpoint, G can be computed from (3.64), and M from (3.42).
21Using the four-dimensional signature convention (−,+,+,+), and the Grassmannian integration

convention
∫

d2θ θ2 = 1.
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one finds

dK

dv
=

4π

`8s
v G; (3.71a)

dK

dρ
=

1

2

dK

dRe ρ
=

1

2

∂v

∂Re ρ

∂K

∂v
= −2π

`4s
v; (3.71b)

dK

dβ
=

1

2i

∂K

∂Imβ
+
∂v

∂β

∂K

∂v
=

2πi

`4s Im τ
[v (IImβ + IσImλσ) + uσ (IσImβ + IσρImλρ)] ;

(3.71c)

dK

dZiI
=

2π

`4s

∂k̂0

∂ZiI
+

∂v

∂ZiI

∂K

∂v
=

2π

`4s

(
∂k̂0

∂ZiI
+AIi v

)
; (3.71d)

and finally the second derivatives in agreement with (3.67):

d2K

dρdρ
= π G−1; (3.72a)

d2K

dβdρ
= − iπ

Im τ
G−1(I Imβ + IσImλσ); (3.72b)

d2K

dZiIdρ
= −π G−1AIi ; (3.72c)

d2K

dβdβ
=

π

`4s Im τ
M+

π

(Im τ)2
G−1 (I Imβ + IσImλσ)2 ; (3.72d)

d2K

dZiIdβ
=

iπ

Im τ
G−1AIi (I Imβ + IσImλσ); (3.72e)

d2K

dZiIdZ

I

= 2πgi + π`4sG−1AiA. (3.72f)

Here we use the total derivative notation in order to make it clear when one should also
take into account the implicit dependence of v on all the other chiral fields. Notice how
the gauge fixings (3.47a, 3.47b) directly affect the form of the local del Pezzo Kähler
potential (3.69).

3.8 EFT of the local P2 model (no D7-branes)

Let us specialize the above construction to the P2 cone

X0 := KP2 , (3.73)

that is we choose as a base for the del Pezzo cone the simplest del Pezzo surface M = P2.

3.8.1 Background specifics and chiral moduli

We choose the internal background metric ds2
X introduced in (3.1) to be the Eguchi-

Hanson metric. See §2.7 for its explicit form. Recall that it depends on the Eguchi-Hanson
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parameter c ∈ R, which controls the size of the resolution, and which is related to the
Kähler modulus v by (2.92).

As we explained in §2.3, the P2 cone can be completely covered by three local patches
U(i), i = 1, 2, 3, where X0 looks like a P2 with local coordinates ua, a = 1, 2, and with a
complex fiber above described by the complex coordinate ξ. Another convenient local
patch is U(4), which includes the P2 cone outside the P2 base, and over which we can

place three complex coordinates zi, i = 1, 2, 3, with the identification zi ∼ e
2πi
3 , so that

X0 looks locally like C3/Z3.
The horizon of the P2 cone is given by Y0 = ∂X0 = S5/Z3, see §2.5.1. From the

topology of the horizon (2.38), it follows in particular that

b3(Y0) = 0. (3.74)

From the summary of §3.4 we conclude that there are no marginal parameters in the
local P2 model.

The unique primitive and compactly supported 2-form ω which is Poincaré-dual to
the exceptional divisor P2 is explicitly described in §2.9.1, together with its local potential
κ. On U(4) one should use κ(4), whose explicit form is found in (2.101), while on U(i) one
should use κ(i), which is defined by the patching rules (2.106a, 2.106b).

The only surviving intersection number is I, defined in (3.28a), which we computed
in (2.13), finding

I = 9. (3.75)

The axionic modulus from C2 and B2 is defined by the flat deformation

δC2(x)− τ δB2(x) = `2sβ(x)ω, (3.76)

and the Kähler modulus v by

J + δJ = J0(x) + v(x)ω. (3.77)

By the Kähler cone condition (2.89), we showed that v is forced to be negative in this
background. The explicit expression of the exact 2-form J0 is found in §2.9.2, together
with its global potential k0. Due to the fact that there are no marginal parameters in
the EFT, the potential for the non-compactly supported part of J , defined in (3.44), is
given by

k̂0(z, z; v) = k0(z, z; v) = − 3v

2π

(
1− 8π3

27v3
r6

) 1
3

, (3.78)

where in the second equality we used (2.116) and (2.92).
Including N D3-branes in the background, the parametrization of Re ρ in terms of

the background moduli (3.55) becomes

Re ρ =
9a

2 `4s
v2 +

1

2

N∑
I=1

κ(zI , zI ; v)− 9

2 Im τ
(Imβ)2 , (3.79)
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where both Re ρ and the local potential κ for ω should be evaluated in the chosen local
patch. Recall that one should invert (3.79) in order to retrieve v as a function of the
chiral moduli, as we explained in §3.6.

Due to the parametrization (3.79), Re ρ is local, namely it is defined up to a holomor-
phic or anti-holomorphic function, since the potential κ is, according to the patching rule
(3.46). When the D3-branes are away from the P2 base of the cone, one can use the local
potential κ(4) found in (2.101), which defines Re ρ(4), while if one needs to describe a
D3-brane moving also on the P2 base, the local expression κ(i) defined in (2.106a) should
be employed, which defines Re ρ(i). The ρ chiral field patching rules are easily derived
from the ones of κ in (2.106a, 2.106b):

Re ρ(i) = Re ρ(4) +
1

4π
log

∣∣∣∣∣
N∏
I=1

(
ξ(i)

)
I

∣∣∣∣∣
2

on U(i) ∩ U(4 ); (3.80a)

Re ρ(i) = Re ρ(j) +
3

4π
log

∣∣∣∣∣
N∏
I=1

(
ui(j)

)
I

∣∣∣∣∣
2

on U(i) ∩ U(j ). (3.80b)

Due to the complicated dependence of κ from v (see its explicit expression (2.101)
keeping in mind the relation between c2 and v (2.92)) a global inversion of (3.79) is
impossible as long as D3-branes are included in the model, but local inversions are within
computational reach.

The unwarped norm (3.26a) is computed using (3.42) and (3.75), finding

M = −9v. (3.81)

The warped norm (3.26a) is computed using (3.64), finding

G = −9av − `4s
2

N∑
I=1

∂κ(zI , zI ; v)

∂v

= −9av − 3 `4s
4πv

N∑
I=1

(
1− 8π3

27v3
r6
I

)− 2
3

,

(3.82)

where in the second equality we used (2.101) and22

∂κ(z, z; v)

∂v
=

3

2πv

(
1− 8π3

27v3
r6

)− 2
3

. (3.83)

Notice that for r2 ∼ ∞ (3.83) displays the asymptotic behavior

∂κ(z, z; v)

∂v
∼∞

27v

8π3r4
, (3.84)

22Since the patching rule functions do not depend on v, the derivative of κ with respect to it is globally
defined and it can be computed starting from the expression of the potential on any local patch, like κ(4)

in (2.101).
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which is indeed consistent with the prescription (3.47a), thanks to the asymptotic behavior

of conical Green’s functions ∼ 1
r4 in (2.62) with Vol(Y0) = π3

3 , thus the local potential κ
as defined in (2.101) has the correct v dependence. Moreover, notice that k0 specified by
(2.116) does satisfy the consistency condition (3.50a), using (3.83), which justifies the
choice of vanishing additive term discussed below (2.116).

3.8.2 Effective action and Kähler potential

The chiral Lagrangian of the EFT is found from (3.67) with the explicit expressions
(3.82) and (3.81), which yields

LP2 =
π

9av

[
1 +

`4s
12πav2

N∑
I=1

(
1− 8π3

27v3
r6
I

)− 2
3

]−1

∇ρ ∧ ?4∇ρ+

− 2π

`4s

N∑
I=1

gi(zI , zI) dziI ∧ ?4dzI +
9πv

`4s Im τ
dβ ∧ ?4dβ + fermions,

(3.85)

with covariant exterior derivative

∇ρ = dρ−AIi dziI −
9i

Im τ
Imβ dβ. (3.86)

The Kähler potential (3.69) simplifies to

`4sKP2 = −4πaI
3 `4s

v3 + 2π

N∑
I=1

k0(zI , zI ; v)

= −12πa

`4s
v3 − 3v

N∑
I=1

(
1− 8π3

27v3
r6
I

) 1
3

.

(3.87)

All of these expressions are not completely explicit in the sense that they still require a
local inversion of (3.79) in order to obtain an expression for v = v(Re ρ, Imβ; zI , zI).

It should be noted that, thanks to the internal space being non-compact, its Ricci-flat
metric is explicitly known, given by (2.63), as well as the local potential κ(4) for the
Poincaré-dual form to its exceptional divisor (2.101) and the Kähler potential (2.74).
Thus, the Lagrangian (3.85) provides an example of explicit D3-brane kinetic term.

In the following, we consider in detail the case of N = 0 and N = 1 D3-branes in the
model.

3.8.3 No D3-branes

Let us assume there are N = 0 D3-branes in the local P2 model. The ρ chiral field
parametrization (3.79) becomes

Re ρ =
9a

2 `4s
v2 − 9

2 Im τ
(Imβ)2 . (3.88)
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Due to the absence of D3-branes, this can be globally inverted, yielding

v = −`
2
s

3

√
2

a

(
Re ρ+

9

2 Im τ
(Imβ)2

)
, (3.89)

where we used (2.93). The Kähler potential (3.87) shrinks further to

KP2 = −12πa

`8s
v3, (3.90)

and plugging (3.89) back into (3.90), we find a global and explicit expression:

KP2 = − 8π

9 `2s

√
2

a

(
Re ρ+

9

2 Im τ
(Imβ)2

) 3
2

. (3.91)

The warped norm (3.82) before the substitution of v becomes

G = −9av. (3.92)

Likewise, the Lagrangian (3.85) reduces to

LP2 =− π

3 `2s

[
2a

(
Re ρ+

9

2 Im τ
(Imβ)2

)]− 1
2

∇ρ ∧ ?4∇ρ+

− 3π

`2s Im τ

√
2

a

(
Re ρ+

9

2 Im τ
(Imβ)2

)
dβ ∧ ?4dβ + fermions,

(3.93)

with covariant exterior derivative

∇ρ = dρ− 9i

Im τ
Imβ dβ. (3.94)

3.8.4 One D3-brane

Let us include only N = 1 D3-brane in the model. The ρ chiral field parametrization
(3.79) is given by

Re ρ =
9a

2 `4s
v2 +

1

2
κ(z, z; v)− 9

2 Im τ
(Imβ)2 . (3.95)

A global inversion of this expression is an impossible task. We will perform a local
inversion in §??, once the orientifold projection got us rid of the β degree of freedom.
The Kähler potential (3.87) becomes

`4sKP2 = −12πa

`4s
v3 − 3v

(
1− 8π3

27v3
r6

) 1
3

, (3.96)
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and the warped norm (3.82) is given by

G = −9av − 3 `4s
4πv

(
1− 8π3

27v3
r6

)− 2
3

. (3.97)

Finally, the EFT Lagrangian (3.85) is given by

LP2 =
π

9av

[
1 +

`4s
12πav2

(
1− 8π3

27v3
r6

)− 2
3

]−1

∇ρ ∧ ?4∇ρ+

− 2π

`4s
gi(z, z) dzi ∧ ?4dz +

9πv

`4s Im τ
dβ ∧ ?4dβ + fermions,

(3.98)

with covariant exterior derivative

∇ρ = dρ−Ai dzi − 9i

Im τ
Imβ dβ. (3.99)
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Chapter 4

D7-branes and gaugino
condensation

In the previous chapter we derived the form of the low-energy four-dimensional EFT
for type IIB string theory compactified on the P2 cone, including N D3-branes and no
D7-branes, and neglecting non-perturbative string corrections to the Kähler potential.
We are now ready to include four D7-branes and one O7-plane wrapped around the P2

base1. This completes the background to the one considered in [34], when no D3-branes
are included in the model. Gaugino condensation occurring on the D7-brane stack
generates an effective scalar potential of non-perturbative nature for the chiral field Re ρ,
which injects non-trivial dynamics into the low-energy EFT described in §3.8. Our goal
is to compute the effective scalar potential entering the EFT at leading order in the
gaugino condensate, and to find its vacuum structure. We will show that the effective
scalar potential is runaway, which implies that Re ρ is pushed to infinity, rendering the
compactification unstable.

In §4.1 we review some details of worldvolume gauge theories in string compactifica-
tions relevant for our background, in order to include the stack of four D7-branes and
one O7-plane. Section 4.2 describes how the inclusion of the orientifold plane wrapped
around the P2 projects out of the EFT spectrum one of its chiral fields, more specifically
the axionic chiral field associated to B2 and C2. In §4.3 we exhibit the Kähler potential
of the local P2 model once the D7- and O7-stack is included, neglecting possible non-
perturbative corrections. This is done by dropping from the Kähler potential of the local
P2 model found in §3.8 the chiral fields which have projected out by orientifold projection.
In §4.4 we derive in two ways the effective superpotential, and we compute the effective
scalar potential of the EFT coming from gaugino condensation considering a generic
SYM theory with gauge coupling dependent on a chiral background sector. In particular,
we show that the non-perturbative effect generates a runaway scalar potential for the
real part of the ρ chiral field, which makes the whole compactification unstable. In §4.5
we study the classical motion of Re ρ and we compute its precise runaway behavior.

1See §1.1.2 for an introduction to orientifold planes, and §1.1.3 for an introduction to D-branes in
type II string theories.
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4.1 Worldvolume gauge theories and tadpole cancellation

The dynamics of an open string starting and ending on a D-brane can be described
by a theory supported on the worldvolume of the D-brane. At energies lower than the
string scale, only the string zero modes have relevant dynamics, and they constitute
its spectrum. In a string compactification, the dynamics of a single D7-brane wrapped
around a divisor D of the internal space is described at energies lower than the KK scale
associated to D by an effective U(1) gauge theory of massless fields (scalars, spinors
and vectors) localized on the brane2. On general grounds, N coincident D7-branes
wrapping a supersymmetric3 4-cycle in the internal space support on their worldvolume a
supersymmetric U(N) gauge theory, whose low-energy spectrum is determined also by the
chosen 4-cycle4. The P2 base in OP2(−3) is a vanishing 4-cycle. This makes it so that the
gauge theory supported on a stack of D7-branes wrapped around the P2 is going to present
a gauge anomaly5. Cancellation of this gauge anomaly requires adding non-compact
D7-branes (flavor branes) and/or O7-planes. The resulting gauge theories have a rather
intricate moduli space and non-perturbative dynamics which are not fully understood
yet. The O7-planes cancelling the charges of the D7-branes modify the gauge group
from U(N) to SO(2N) [25]. While flavor branes can cancel anomalies of an arbitrary
number of D7-branes, in order to do so with the O7-planes the number of D7-branes
needs to be a multiple of a fixed integer, given by the ratio between the orientifold charge
and the D7-brane charge. In our setup of gauge anomaly cancellation via (internally)
compact O7-planes in OP2(−3), the RR charge of the O7-plane is constrained by anomaly
cancellation to be

QO7 = −4QD7, (4.1)

and the O7-plane is also required to be wrapped around the same 4-cycle as the D7-branes,
namely the P2 base. Therefore, wrapping a stack of four D7-branes and one O7-plane
wrapping the P2 base of OP2(−3) yields a gauge anomaly-free SO(8) gauge theory6.
Moreover, tadpole cancellation via (4.1) means that the net D7-brane charge of our setup
is vanishing. Since there are no lower-dimensional branes or orientifold planes, the only
leftover brane charge we expect to find in the low-energy EFT is the lower-dimensional

2Supersymmetric branes support vector supermultiplets.
3A supersymmetric 4-cycle is a divisor of the internal space. Supersymmetry of the 4-cycle is required

in order to make the D7-branes BPS states, which ensures their stability.
4Up to cyclic group quotients, which affects only global properties, U(N) ' SU(N) × U(1). The

U(1) gauge group factor is actually associated to a decoupled sector of the gauge theory, therefore we
could equivalently just consider the SU(N) gauge theory supported on the D7-brane stack worldvolume,
leaving the decoupled U(1) sector as understood.

5D7-branes wrapping vanishing 4-cycles are also called color 7-branes. See [32] for more details on
this topic.

6Furthermore, it has been shown in [10] that since P2 is not spin (see §A.3), the gauge theory supported
on the D7-branes worldvolume also presents a global anomaly, whose cancellation can in principle break
the gauge group down to at most U(4) (see also [34]). It is not understood how the presence of the O7-
plane affects the anomaly cancellation requirement, but in principle it could prevent gaugino condensation
from occurring by breaking SO(8) down to a non-asymptotically free gauge group. Thus, in the entirety
of this work we will assume that gaugino condensation does take place in the geometric setup we study.
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D3-brane charge induced by curvature corrections (higher order in α′) on the D7-brane
stack, which is going to be proportional to the Euler characteristic of the wrapped 4-cycle
χ(P2) = 3, and they will source a warp factor of the form in (3.1). We described this
kind of induced brane charge below (1.61). However, these corrections are not central in
our analysis, therefore we will neglect them in this work.

To make contact with the F-theory picture, recall that O7-planes in the weak coupling
limit of F-theory are recovered as a pair of D7-branes with non-perturbatively small
separation scale at small coupling [25]. Thus, in this picture, the P2 base is wrapped by
six 7-branes. Indeed, notice that U(6) and SO(8) carry the same dual Coxeter number
[11, 23]:

Nc = 6. (4.2)

Since Nc defines the number of vacua of a SYM theory, which is a physical quantity, this
is necessary in order to embed this type IIB orientifold vacuum into F-theory.

4.2 Orientifold projection

We studied the local P2 model including no D3-branes in §3.8.3. Let us consider how its
spectrum is modified once a O7-plane is wrapped around the P2 base.

Wrapping four D7-branes and one O7-plane around the P2 base yields an orientifold
compactification, with associated orientifold involution leaving the P2 invariant and
changing the sign of the holomorphic 3-form Ω, see §1.1.2. Since Ω on U(4) (the local
patch excluding the P2 base defined in (2.17)) is given by (2.98), we immediately see that
the orientifold involution in our model is defined on U(4) by

σ : zi 7→ −zi. (4.3)

Its action on the homogeneous coordinates can be taken to be

σ : Zi 7→ −Zi, (4.4)

so that on U(i), where X0 looks locally like P2 with coordinates (ua), a = 1, 2, and with a
complex fiber ξ ∈ C above it, see (2.16), this action reads

σ :

{
ξ 7→ −ξ
ua 7→ ua

. (4.5)

This shows that the orientifold involution acts by inverting the complex fiber over each
point of the P2 base. From (4.4) we also see that σ belongs to the U(1) factor of the
U(3) isometry group in (2.28).

Although the D7-brane tadpole has been cancelled locally by introducing the O7-plane
coinciding with the D7-brane stack, the orientifold plane still binds us to work either
with the double cover of OP2(−3), over which the SL(2,Z) doublet (B2, C2) is single-
valued, or with OP2(−3) directly, but at the cost of including the non-trivial monodromy
−1 ∈ SL(2,Z) circling around the D7-brane stack, namely ξ = 0 in U(i). We will opt for
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the latter option. D7-brane charge cancellation also ensures that at perturbative level
the EFT (3.67) still holds for the spectrum of the theory that survives the orientifold
projection.

In order to determine the spectrum of the four-dimensional EFT associated to the
considered orientifold compactification, let us examine the local P2 model spectrum before
orientifold projection. Thanks to the trivial cohomology of the internal horizon (2.38),
the decomposition of C2 and B2 flat deformations (3.30) takes the simple form

δC2(x)− τδB2(x) = `2s β(x)ω, (4.6)

where x are the external spacetime coordinates. From (2.103) we see that

σ?ω = ω, (4.7)

which shows that the geometry of the background does not allow B2 and C2 to have any
orientifold-odd deformations.

Including now the D7-branes and the O7-plane, the prescription (1.17) shows that
only orientifold-odd components of B2 and C2 survive the orientifold projection. Thus,
the axion β is projected out of the EFT by the inclusion of the O7-plane. On the other
hand, from (3.40) we find that a generically deformed Kähler form in the P2 model is
given by

J = J0 + v(x)ω, (4.8)

thus from (4.7) and (1.17) we also see that the ρ chiral field is not projected out of the
theory. This holds even after complexification, since H4(X0;R) 3 C[4 is generated by J2

and ω ∧ J , which are both orientifold-even. Therefore, the spectrum of the low-energy
EFT from this orientifold compactification consists only of the chiral field ρ. Notice that,
due to the fact that β has disappeared from the spectrum, the moduli space (3.58) is no
longer fibered, and Re ρ is globally defined over Mρ.

4.3 Kähler potential of the local P2 model

Let us compute the Kähler potential of the local P2 model after inclusion of the D7-brane
stack and the O7-plane. This is done modifying the Kähler potential of local del Pezzo
models (3.69), by accounting for the action of the orientifold projection on the spectrum
of the EFT.

The parametrization of the ρ chiral field in our model is obtained from (3.88) dropping
the β terms, and it reads

Reρ =
9v2

2 `4s
a =

a

`4s
Vol(P2). (4.9)

where we used (2.97). Let us point out that the non-perturbative definition of Re ρ in
presence of the D7-branes and O7-plane stack is obtained from (3.63), which simplifies to

Re ρ =
1

`4s

∫
P2

e−4AdVol(P2), (4.10)
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assuming no spacetime-filling D3-branes are present. In (4.10) the warp factor is sourced
only by quantum effects, and it provides a ten-dimensional definition for Re ρ, which will
come in handy when comparing the ten-dimensional results to the four-dimensional ones
in §5.5.3. Classically7, (4.10) reduces to (4.9).

Inverting (4.9) is straightforward, and recalling the negativity condition for v (2.93)
it yields

v = −`
2
s

3

√
2

a
Re ρ. (4.11)

The warped norm (3.92), substituting (4.11), becomes

G = 3`2s
√

2aRe ρ. (4.12)

The Kähler potential receives no explicit modifications from the O7-plane projection,
so that (3.90) still holds in form. However, in principle we expect non-perturbative
corrections due to the gaugino condensation to contribute to the Kähler potential:

K = Kcl +Knp , (4.13)

where8 Kcl ∝ e−
π
3
ρ. In this work we neglect such non-perturbative corrections.

Thus, we find a global explicit expression for the (perturbative) Kähler potential for
the local P2 model with the D7- and O7-stack, plugging (4.11) in (3.90):

K =
1

`2s

8π

9

√
2

a
(Re ρ)

3
2 , (4.14)

with second derivative and its inverse

Kρρ =
1

`2s

π

3

1√
2aRe ρ

; (4.15a)

Kρρ = `2s
3

π

√
2aRe ρ. (4.15b)

Therefore, directly from (4.15a), or dropping the β terms in the Lagrangian (3.93) and in
the exterior derivative (3.94), the kinetic part of the Lagrangian takes the precise form9

Lkin, ρ = − 1

`2s

π

3

1√
2aRe ρ

∂µρ ∂
µρd4x. (4.16)

Notice that the kinetic Lagrangian (4.16) is singular in Re ρ = 0. This corresponds
to a zero-sized P2, namely a compactification on the singular orbifold C3/Z3. All of the
construction of chapter 2 falls apart in this limit, so this comes as no surprise. As for
the universal modulus a, defined in (3.12), due to the induced D3-brane charge, even
in the absence of D3-branes the warp factor is not going to be constant. In particular,
a is going to receive α′ corrections. However, we already explained in §4.1 that we will
neglect these corrections. Thus, we will carry out all the computations keeping a generic,
and at the end one could fix a = 1, corresponding to Minkowski externally.

7Recall that we are neglecting warping due to D7-brane curvature corrections.
8This is due to 〈S〉 = µ3

0e−
π
3
ρ, where 〈S〉 is the gaugino condensate, see (4.53).

9We include the kinetic term for Im ρ as well, since it enters for instance the effective superpotential
(4.47).
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4.4 Effective scalar potential from gaugino condensation

The Kähler potential (4.14) is not a complete description of the EFT for the local P2

including the D7- and O7-stack. Indeed, the theory also displays a superpotential. The
stack of four D7-branes and one O7-plane wrapped around the P2 supports, due to gauge
group modification by the orientifold plane, a rigid N = 1 SO(8) pure glue SYM theory.
This theory is well known to exhibit gaugino condensation in the IR [7]. This means that
the bilinear formed by the Weyl fermions λα = λaαT

a, which are the superpartners of the
spin one massless and non-abelian gauge fields vµ = vaµT

a, picks up a VEV10:

〈trλλ〉 =
1

2
〈λαaλaα〉 6= 0, (4.17)

where T a are the SO(8) generators, with the normalization convention

trT aT b =
δab

2
. (4.18)

This section is devoted to the computation of the effective scalar potential due to
gaugino condensation, assuming that no D3-branes are included in the background. The
first step to do that is computing the effective superpotential from gaugino condensation,
which is done in §4.4.2. This can be achieved both from the Veneziano-Yankielowicz
superpotential [3], or from direct inspection of the F-flatness condition of the low-energy
EFT, consisting of an EFT of moduli together with a Super-Yang-Mills theory supported
on the D7-brane stack. As it is explained in §4.1 and below (1.100), the latter is given by
a gauge-singlet chiral moduli sector with kinetic Lagrangian (4.16) plus an SO(8) SYM
theory with dynamical gauge coupling, i.e. depending on the background moduli. For
this reason and in order to fix the notation, in §4.4.1 we review the generic setting of
SYM with dynamical gauge coupling.

4.4.1 Field-dependent SYM gauge coupling

Let us start with a review of rigid non-abelian N = 1 SYM theories. We will adopt
the conventions (−,+,+,+) signature and ε0123 = +1, and we will work in the N = 1
superspace formalism11. We employ the normalization convention (4.18) for the generators
of the gauge group. We denote by σi the Pauli matrices, σµ = (1, σi), σµ = (1,−σi),
with index structure (σµ)αβ̇ and (σµ)α̇β. Let us use the convention ε12 = ε1̇2̇ = +1 and
ε12 = ε1̇2̇ = −1, so that spinor indices are raised and lowered as follows,

λα = εαβλβ, λα = εαβλ
β, (4.19)

and the same holds for dotted indices. Undotted indices are contracted northwest to
southeast, while dotted indices are contracted southwest to northeast; in particular, λα
and χα̇ are column spinors, while λα and χα̇ are row spinors. Denoting with xµ the

10Notice that trλλ is the lowest dimensional gauge-invariant combination involving the gaugino fields.
11For an introduction to the subject, see e.g. [48].
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four-dimensional spacetime coordinates, and with θ, θ the Grassmannian coordinates, we
define the covariant supersymmetric derivatives

Dα = ∂α + i(σµθ)α∂µ; (4.20a)

Dα̇ = ∂α̇ + i(θσµ)α̇∂µ. (4.20b)

Defining the new complex coordinate yµ = xµ + i(θσµθ) and performing the change of
coordinates in superspace (xµ, θ, θ), they take the form

Dα = ∂α + 2i(σµθ)α∂µ; (4.21a)

Dα̇ = ∂α̇. (4.21b)

The vector superfield in the Wess-Zumino gauge takes the form

V = (θσµθ)vµ(x) + iθ2θλ(x)− iθ2
θλ(x) +

1

2
θ2θ2D(x), (4.22)

where vµ = vaµT
a. We define the covariant derivative and the field strength:

∇µ = ∂µ − i[vµ, ·]; (4.23a)

Fµν = ∂µvν − ∂νvµ − i[vµ, vν ]. (4.23b)

The supersymmetric non-abelian field strength is defined as

Wα = −1

4
D

2 (
e−VDαeV

)
= −iλα(y) + i(σµνθ)αFµν + θαD(y) + θ2

(
σµ∇µλ(y)

)
α
,

(4.24)

where

σµν =
1

4
(σµσν − σνσµ) , (4.25)

with index structure (σµν)α
β. Let us define the gauge-invariant composite chiral super-

field12

S := − 1

16π2
trWαWα =: s(y) +

√
2θχS(y) + θ2fS(y), (4.26)

where

s(y) =
1

16π2
trλλ; (4.27a)

χS
α(y) = −

√
2

16π2
tr [(λσµν)αFµν − iλαD] ; (4.27b)

fS(y) = − 1

16π2
tr

[
D2 − 2iλσµ∇µλ−

1

2
FµνF

µν − i

2
FµνF̃

µν

]
, (4.27c)

12Notice that the prefactor choice S = 1
(4πi)2

trWαWα is such that Re (4πiτ(φ)S) = (4πi)2

g2
ReS −

2θImS = 1
g2

Re trWαWα + θ
8π2 Im trWαWα.
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where F̃µν = 1
2εµνρσF

ρσ. This will be the supermultiplet which the IR EFT of pure SYM
is built on.

The worldvolume SO(8) gauge theory describes the dynamics of the superfield S,
and it is coupled to the background chiral superfield Φρ, whose bottom component is
the scalar field ρ, through the holomorphic gauge coupling τ(Φρ), which is itself a chiral
superfield, and whose bottom component is given by

τ(ρ) =
θYM

2π
+

4πi

g2
YM

. (4.28)

The precise definition of the holomorphic gauge coupling is given by

τ(ρ) = i ρ, (4.29)

where the i factor is required in order to match the perturbative and non-perturbative
parts of the two quantities. We discussed the need for this normalization below (1.100),
as well as a justification for the dependence of the gauge coupling on the background
chiral field associated to the 4-cycle.

For the sake of being slightly more general, let us consider N background chiral fields,
with components

ΦI = φI(y) +
√

2θχI(y) + θ2f I(y), (4.30)

and at the end we will go back to the N = 1 case we are interested in. These are SO(8)
singlets, i.e. they live in its trivial representation. The pure gauge SYM action with
holomorphic coupling depending on N background singlet chiral fields ΦI is given by

Sgauge =
1

8πi

∫
d4x d2θ τ(Φ) trWαWα + c.c. = Re

1

4πi

∫
d4x d2θ τ(Φ) trWαWα

= 2πi

∫
d4x d2θ τ(Φ)S + c.c. = Re 4πi

∫
d4x d2θ τ(Φ)S

= Re 4πi

∫
d4x

[
fS τ(φ) +

(
sf I − χIχS

)
τI(φ)− s

2
χIχJτIJ(φ)

]
= −4π

∫
d4x

[
Im (fS τ(φ)) + Im

(
sf I − χIχS

)
τI(φ)− Im

s

2
χIχJτIJ(φ)

]
,

(4.31)

where τI(φ) = ∂τ(φ)
∂φI

and τIJ(φ) = ∂2τ(φ)
∂φI∂φJ

. Using

χIχS = −
√

2

16π2
tr
[
(λσµνχI)Fµν − iλχID

]
, (4.32)

we can decompose the action as follows:

Sgauge = −4π

∫
d4x [Re fS Im τ(φ) + Im fS Re τ(φ)] +

− 4π Im

∫
d4x

[
s f IτI(φ) +

√
2

16π2
tr
(
(λσµνλI)Fµν − iλχI D

)
τI(φ)− s

2
χIχJτIJ(φ)

]
=: SSYM + SΦ−SYM.

(4.33)
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Using the explicit expressions

Re fS(y) = − 1

16π2
tr

[
D2 − 1

2
FµνF

µν − 2i λσµ∇µλ+ i∇µ(λσµλ)

]
; (4.34a)

Im fS(y) = − 1

16π2
tr

[
1

2
FµνF̃

µν −∇µ(λσµλ)

]
; (4.34b)

and the identity valid for any chiral superfield Φ∫
d4x d2θΦ(y) =

∫
d4x d2θΦ(x), (4.35)

we arrive at the quasi-explicit gauge action

Sgauge = Re 4πi

∫
d4x d2θ τ(Φ)S

= SSYM + SΦ−SYM,

(4.36)

where

SSYM =

∫
d4x

[
1

g2
YM

(
−1

4
F aµνF

aµν − iλaσµ∇µλ
a

+
i

2
∇µ(λaσµλa) +

1

2
DaDa

)
+

+
θYM

32π2

(
F aµνF̃

aµν − 2∇µ(λaσµλa)
)]

;

(4.37a)

SΦ−SYM = −4π Im

∫
d4x

[
s f IτI(φ) +

√
2

16π2
tr
(
(λσµνχI)Fµν − iλχI D

)
τI(φ)+

− s

2
χIχJτIJ(φ)

]
.

(4.37b)

Here we kept for completeness the total derivative terms, which do not contribute for
spacetimes without boundary. Notice that, in the case of non-dynamical gauge coupling
τ = const, we retrieve from (4.36) the usual pure gauge N = 1 SYM action in the
holomorphic scheme:

Sgauge =

∫
d4x

[
1

g2
YM

(
−1

4
F aµνF

aµν − iλaσµ∇µλ
a

+
1

2
DaDa

)
+
θYM

32π2
F aµνF̃

aµν

]
.

(4.38)

4.4.2 Effective superpotential

The (bottom component of the) composite superfield S becomes massive at low energies,
being the pseudo-Goldstone boson associated to the spontaneous breaking at low energies
of the anomalous chiral symmetry of pure SYM by means of its VEV [7, 3]:

〈S〉 = 〈s〉 =
1

16π2
〈trλλ〉 6= 0. (4.39)
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Thus, the full theory describing the SYM sector and the decoupled background chiral
fields sector at low energies generates an EFT for the chiral fields only. This theory has
a non-trivial superpotential for the chiral superfield τ(Φρ) generated by the SYM sector
(4.36) by integrating out the heavy superfield S.

In this section we derive the explicit form of the effective superpotential from gaug-
ino condensation in two ways. First we derive it using the Veneziano-Yankielowicz
superpotential, which describes the low-energy dynamics of a pure SYM theory. Then,
we comment on the vacuum choice associated with gaugino condensation. Finally, we
show that the effective scalar superpotential can also be obtained from inspection of the
F-flatness condition of the full theory including the SYM sector and the background
ρ modulus sector, just assuming a non-vanishing VEV (4.39). The latter derivation
provides a more direct intuition for the form of the effective superpotential, which is the
reason why we include it, whereas the former derivation ties the form of the effective
superpotential to the effective low-energy dynamics of the SYM sector.

From the Veneziano-Yankielowicz superpotential

The effective superpotential describing the dynamics of the chiral superfield S at low
energies in pure N = 1 SYM is notoriously given by the Veneziano-Yankielowicz super-
potential [3]

WVY = Nc S

(
1− log

S

µ3
0

)
, (4.40)

where Nc is the dual Coxeter number of the gauge group of the SYM theory (in our
setup, this is given by (4.2)), µ0 is an energy scale, and the normalization will be justified
shortly. In the case of pure N = 1 SYM with non-dynamical gauge coupling τ , (4.40)
singles out the unique SUSY vacuum

〈s〉 = µ3
0, (4.41)

showing that µ3
0 should be seen as the non-perturbative scale of the theory, entering

explicitly the low-energy scalar potential. However, we are interested in a theory including
a singlet chiral field Φρ and a dynamical gauge coupling τ(ρ), and in this case we will
show µ0 is actually a UV scale above the non-perturbative scale |Λ|:

µ0 > |Λ| . (4.42)

The N = 1 SYM sector of the IR EFT, neglecting the S contribution to the Kähler
potential13, is given by

LSYM,IR = 2πi

∫
d4x d2θ τ(Φρ)S +

∫
d4x d2θWVY + c.c., (4.43)

13As explained in [3], the Kähler potential for S would be of the form (SS)
1
3 . Clearly, in order to

integrate S out of the action at tree-level one has to neglect its kinetic contribution.
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so that at low energies the SYM sector generates an effective superpotential for τ(Φρ)
given by

W̃eff(S,Φρ) = 2πi τ(Φρ)S +Nc S

(
1− log

S

µ3
0

)
. (4.44)

Assuming ρ is stabilized with a mass lower than that of S, one can consistently integrate
out S as in the standard top-down EFT approach, namely solving the classical EOMs
coming from (4.44):

∂W̃eff(s, ρ)

∂s
= 0, (4.45)

which yields s = µ3
0 e

2πiτ
Nc . This is completed to the superfield relation

S = µ3
0 e

2πiτ(Φρ)
Nc , (4.46)

which provides the expression of the heavy superfield S in terms of the light superfield
Φρ. Therefore, we find the effective superpotential for the IR EFT of the ρ chiral field
integrating out S, namely plugging (4.46) into (4.44):

Weff(Φρ) = Nc S = Nc µ
3
0 e

2πiτ(Φρ)
Nc . (4.47)

The assignment (4.46) can be easily understood as follows. For a SYM theory with
dual Coxeter number of the gauge group Nc, the complexified non-perturbative scale
defined at the UV scale µ0 takes the well known form14

Λ = µ0 e
2πiτ
3Nc , (4.48)

where τ := τ(〈ρ〉) is the classic complexified gauge coupling at the high-energy scale
µ0. Recall that this is obtained from dimensional transmutation of the one-loop exact
running for τcl = 4πi

g2
YM

, and from its subsequent completion with the non-peturbative

theta angle contribution. This defines the chiral superfield

Λ3(Φρ) = µ3
0 e

2πiτ(Φρ)
Nc . (4.49)

On the other hand, the IR superfield S is naturally set by the non-perturbative scale, up
to a phase factor that we fix to one15:

S = Λ3(Φρ), (4.50)

and this is exactly (4.46). This allows us to correctly identify µ0 as a UV scale far above
the gaugino condensate scale |Λ|, and it also justifies the normalization choice for (4.40).

14Recall that this scale is indeed independent of µ0, thanks to the renormalization group equation
satisfied by τ(µ).

15This shows that the value of the gaugino condensate (and of the non-perturbative scale of the
worldvolume gauge theory) is fixed by the volume of the P2.
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On the SYM vacuum choice

The assignment (4.46) reads in components

s(y) = Λ3(ρ); (4.51a)

χS α(y) =
2πi

Nc
Λ3(ρ)χρατρ(ρ); (4.51b)

fS(y) =
2πi

Nc
Λ3(ρ)

[
fρτρ(ρ)− 1

2

(
τρρ(ρ) +

2πi

Nc
τρ(ρ)τρ(ρ)

)
χρχρ

]
. (4.51c)

Recall that the notation is defined in (4.30). This implies that the IR superfield S takes
the VEV16

〈S〉 = 〈Λ3(Φρ)〉 = Λ3(〈ρ〉)
(

1 + θ2 2πi

Nc
〈fρ〉τρ(〈ρ〉)

)
, (4.52)

and on SUSY vacua 〈fρ〉 = 0, so that

〈S〉 = Λ3 = µ3
0 e

2πiτ
Nc = 〈s〉, (4.53)

which shows why (4.39) holds. In particular, the assignment (4.46) provides S with a
non-vanishing VEV. Notice that (4.53) explicitly shows also that a pure SYM theory
admits Nc inequivalent vacua

〈S〉(k) = e
2πik
Nc 〈S〉 k = 0, . . . , Nc − 1, (4.54)

and that one can jump from one to the next by the natural shift τ 7→ τ + 1. Indeed,
pure N = 1 SYM theory admits an anomalous U(1) R-symmetry λ 7→ eiαλ, explicitly
broken at quantum level to Z2Nc due to the fact that it corresponds to a shift in the
YM angle θ → θ − nα (i.e. τ → τ − n

2π α) where n is the number of zero modes of λ in
a k = 1 instanton solution, and further spontaneously broken to Z2 by (4.53). The Nc

inequivalent vacua e
2πik
Nc 〈S〉 yield different superpotentials, namely

W
(k)
eff = Nc S

(k)

(
1− 2πik

Nc

)
= e

2πik
Nc Weff

(
1− 2πik

Nc

)
, (4.55)

where S(k) = e
2πik
Nc S, and S is given by (4.46). Our vacuum choice is k = 0, corresponding

to θYM ∈ [0, 2π), which restricts the span of Imρ down to

Im ρ ∈ (−1, 0], (4.56)

thanks to (4.29), or more explicitly due to (1.109b).

16Recall that by Lorentz invariance of the vacuum 〈χS〉 = 0.
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Alternate derivation via VEV insertion

The effective superpotential (4.47) can also be derived simply assuming that S acquires
a VEV given by (4.53) and upon inspection of the F-flatness condition of the full theory.

Let us consider the setup introduced in §4.4.1, with N background chiral fields ΦI .
The full IR action for the SYM theory and the chiral background superfields, before
integrating out the heavy degrees of freedom, is given by

Sfull = SSYM + SΦ−SYM +

∫
d4xLmatter, (4.57)

where

Lmatter =

∫
d2θ d2θK(Φ,Φ) +

(∫
d2θW (Φ) + c.c.

)
= KIJ(φ, φ)

(
∂µφ

I∂µφJ − iχIσµ∂µχJ + f IfJ
)

+

+

(
∂IW (φ)f I − 1

2
∂2
IJW (φ)χIχJ + c.c.

)
+O(KIJK)

(4.58)

We have included a generic effective superpotential W (φ), possibly allowing for a classical
contribution from the UV theory to the ΦI sector. However, we are going to set this to
zero at the end of the computation, since the chiral fields are moduli. Moreover, we do
not allow for Fayet-Iliopoulos terms, since they do not play a role in this analysis. The
F-term associated to the ΦI is defined as17

FφI := − δ

δf I
Skin

∣∣∣∣
ren

, (4.59)

where we keep only the renormalizable terms18. This yields the F-term

FφI = −KIJ(φ, φ) fJ . (4.60)

Imposing the EOM for the auxiliary field f I

δ

δf I
S = 0 (4.61)

gives its on-shell value

FφI = ∂IW −
1

8πi
τI(φ) trλλ+O(KIJK). (4.62)

Similarly we define the D-terms associated to the vector superfield V a:

Da :=
δ

δDa
SSYM, (4.63)

17The sign choice is a matter of convention.
18The higher derivative terms are going be be negligible in the low energy limit.
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which yields

Da =
1

g2
YM(φ)

Da. (4.64)

Imposing the EOM for Da, we find its on-shell expression:

Da = Im

(√
2

8πi
τI(φ)λaχ

I

)
. (4.65)

Now let us assume that gaugino condensation does occur, namely that

〈s〉 6= 0. (4.66)

By Lorentz invariance, we still require

〈vaµ〉 = 〈λa〉 = 0, (4.67)

while 〈φI〉 6= 0. In fact, we are interested in the dynamics of the only scalar field of our
EFT. The F- and D-terms of our theory (4.62, 4.65), once we take their VEVs, become19

FφI = ∂IW (〈φI〉)− 1

8πi
τI(〈φI〉) 〈trλλ〉 (4.68a)

Da = 0 (4.68b)

These contribute to the classical Lagrangian, describing the dynamics of the VEVs, which
we are now going to determine.

Denoting 〈φI〉 with φI for easiness of notation, the classical action is given by

〈Sfull〉 = 〈SSYM〉+ 〈SΦ−SYM〉+ 〈Smatter〉

= −4π Im

∫
d4x 〈s〉〈f I〉τI(φ)+

+

∫
d4x

[
KIJ(φ, φ)

(
∂µφ

I∂µφJ + 〈f I〉〈fJ〉
)

+
(
∂IW (φ)f I + c.c.

)]
.

(4.69)

Thus, using (4.60) we find the classical Lagrangian

Lcl =KIJ(φ, φ) ∂µφ
I∂µφJ+

+KIJ(φ, φ)
[
FφIFφJ −

(
∂IW (φ)FφI + 2πi 〈s〉τI(φ)FφJ + c.c.

)]
,

(4.70)

and by the on-shell expression of the F-term (4.68a) we find the scalar potential

V (φ, φ) = KIJ(φ, φ)FφIFφJ |on-shell

= KIJ(φ, φ)
(
∂IW (φ) + 2πi τI(φ)〈s〉

)(
∂IW (φ)− 2πi τ I(φ)〈s〉

)
.

(4.71)

This is but the standard SUSY formula for the F-term scalar potential.

19By an abuse of notation we denote them in the same way.
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Therefore, since KIJ(φ, φ) is positive definite, SUSY vacua are found imposing the
F-flatness condition (the D-flatness condition (4.68b) is already satisfied here)

FφI = ∂IW (φ)− 1

8πi
τI(φ) 〈trλλ〉 = 0. (4.72)

From the components of S (4.27b, 4.27c) and from the VEVs of the SYM vector multiplet
(4.67), we see that it holds

〈fS〉 = 〈χS〉 = 0 (4.73)

which is consistent with the assignment of S in terms of the background modulus (4.46)
(albeit we are not assuming it here), and it shows that the value for the VEV of S (4.39)
holds. Thus, the F-flatness condition (4.72) can be recast as20

∂IW (φ) + 2πi τI(φ)〈S〉 = 0. (4.74)

Notice that assuming the definition of 〈S〉 in terms of the background moduli

〈S〉 = µ3
0 e

2πiτ(Φ)
Nc , (4.75)

which generalizes (4.53), then (4.74) can also be written as

∂IWeff(φ) := ∂I (W (φ) +Nc〈S〉) = 0 (4.76)

where we used the relation21

〈S〉 =
1

2πi

∂

∂τ
Weff(τ, φ), (4.77)

which is implied by (4.75).

Let us specialize to the local P2 model including the D7- and O7-stack. We consider
only one background chiral field Φρ with bottom component ρ, and we set the perturbative
superpotential to zero W (ρ) = 0. Then, we find

Weff(ρ) = Nc Λ3 = Nc µ
3
0 e

2πiτ(ρ)
Nc , (4.78)

from which we recover the effective superpotential (4.47) once this is extended to the full
chiral superfield.

20This is equation (2.16) of [31].
21This is equation (30) of [7]. However, there this relation between gaugino condensate and effective

superpotential is derived from a more general argument. Indeed, the pure SYM sector once the heavy
superfield S has been integrated out should yield an effective superpotential Weff(τ, φ), depending on
τ(φ) exclusively through a coupling proportional to 〈S〉, like in the UV Lagrangian (4.31).

101



Chapter 4. D7-branes and gaugino condensation

4.4.3 Effective scalar potential

Let us compute the scalar potential from gaugino condensation in the local P2 model,
including the D7- and O7-stack. Let us explicitly set the dual Coxeter number of the
gauge group SO(8):

Nc = 6. (4.79)

Using (4.29), the effective superpotential is given by

Weff(ρ) = 6µ3
0 e−

π
3
ρ. (4.80)

The F-flatness condition for (4.80) is

Fρ =
∂Weff(ρ)

∂ρ
= −2π µ3

0 e−
π
3
ρ = 0. (4.81)

Thus, SUSY is preserved only with ρ at infinity:

ρ = +∞. (4.82)

This is not a vacuum since Re ρ = +∞ is at infinite distance in the moduli space.
Indeed, the ρ moduli space metric is given by the second derivative of the Kähler potential
(4.15a), namely

gρρ = Kρρ =
π

3`2s

1√
2aRe ρ

. (4.83)

Therefore, the Mρ distance from a point ? and Re ρ = +∞ is given by

dρ(?,∞) =

∫
[?,∞]×(−1,0]

√
g dRe ρ ∧ dIm ρ, (4.84)

and using
√
g = 2 det gi, we find

dρ(?,∞) =
π

3`2s

√
2

a

∫ ∞
?

1√
Re ρ

dRe ρ = +∞. (4.85)

This is the first indication that the compactification on the P2 cone we chose is unstable,
since at Re ρ = +∞ the P2 base is in the decompactification limit. In passing, notice
that Re ρ = 0 is at finite distance in the moduli space, since

dρ(0, ?) =
π

3`2s

√
2

a

∫ ?

0

1√
Re ρ

dRe ρ <∞. (4.86)

From (4.81), (4.71) and (4.15b) we find the effective scalar potential of the EFT for
the ρ chiral field:

V (ρ) = 12π µ6
0 `

2
s

√
2aRe ρ e−

2π
3

Re ρ. (4.87)

Therefore, combining the results (4.16) and (4.87), the full effective Lagrangian for the
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(a) Top (b) Bottom

Figure 4.1: Effective scalar potential for the ρ chiral field (4.87), plotted in units of µ6
0`

2
s

√
a.

The radial coordinate is Reρ, while the polar coordinate is Imρ, spanning (−1, 0]. See around
(4.56) for details.

local P2 model including four D7-branes and one O7-plane wrapped around the P2 is
given by

LP2 = − 1

`2s

π

3

1√
2aRe ρ

∂µρ ∂
µρ− 12π µ6

0 `
2
s

√
2aRe ρ e−

2π
3

Re ρ, (4.88)

where we use the (−,+,+,+) signature convention. Recall that this result does not
include non-perturbative corrections to the Kähler potential. This is one of the main
results of this work. Figure 4.1 shows a plot of this scalar potential from the top and
from the bottom. Its rotation symmetry is clearly due to its independence of Im ρ. This
kind of dependence could only be sourced by non-perturbative string effects different
from gaugino condensation, which we are nonetheless not concerned about, since the
dynamics of Im ρ has no relevance with respect to the stability of the compactification.

It should be noted that, since the Lagrangian (4.16) is singular in Reρ = 0, only
nonvanishing field configurations can be regarded as valid vacua. This potential then
selects Reρ = +∞ as the only value of ρ which preserves SUSY. This is not a vacuum,
as we showed above. Its asymptotic behaviors are

V (ρ, r2) ∼∗Reρ∼+∞ e−
2π
3

Reρ (4.89a)

V (ρ, r2) ∼∗Reρ∼0+

√
Reρ. (4.89b)

We can write (4.87) completely in terms of the gaugino condensate, making its
non-perturbative nature manifest. Indeed, from (4.53) we have

|〈S〉|2 = µ6
0 e−

2π
3

Re ρ, (4.90)
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which can be inverted as long as 〈S〉 6= 0:22

Re ρ =
3

π
log

µ3
0

|〈S〉|
. (4.91)

Therefore, (4.87) can be recast as

V (ρ) = 12
√

6πa `2s |〈S〉|2
(

log
µ3

0

|〈S〉|

) 1
2

. (4.92)

This expression, and (4.91) allow us to revisit the interpretation of the SUSY vacua of
(4.92). Imposing V (ρ) = 0, there are two solutions:

• |〈S〉|2 = 0, i.e. Re ρ = +∞, which is not a vacuum because of (4.85). This is the
so-called Dine-Seiberg vacuum introduced in §1.2.2;

• |〈S〉|2 = µ6
0, i.e. Re ρ = 0, which is a non-legitimate vacuum, since at energies

E ∼ µ0 there is no gaugino condensate. Thus, setting |〈S〉|2 = µ6
0 is inconsistent.

This is the physical interpretation as to why Re ρ = 0 is not an allowed value for
the ρ chiral field.

Therefore, the local P2 model without D3-branes and with four D7-branes and one
O7-plane wrapped around the P2 base does not admit any SUSY vacuum. We will show
in the next section that this implies that the only physical cosmological-like solutions for
the evolution of Re ρ in time are runaway.

4.5 Cosmological evolution

Assuming no D3-branes in the local P2 model, we have shown that the scalar potential
for the modulus ρ generated by gaugino condensation occurring on an stack of four
D7-branes and one O7-plane wrapped around the P2 base is given by

V (ρ) = 12π µ6
0 `

2
s

√
2aRe ρ e−

2π
3

Re ρ. (4.93)

Let us study some simple dynamics associated with this potential. In particular, in a
cosmological spirit, let us study radial solutions depending only on time, namely of the
form (Re ρt, Im ρ0), where Imρ0 is fixed and Reρt is solely a function of time t. In this
whole section, we will set

`s = 1. (4.94)

4.5.1 Qualitative analysis

In order to assess qualitatively the kind of cosmological-like solutions associated to the
scalar potential (4.93), let us establish a simple fact about one-dimensional Lagrangian
dynamical systems in presence of a non-trivial kinetic function.

22Notice that thanks to (4.42), this yields Re ρ > 0.
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Non-trivial kinetic terms and d = 1 dynamics

Consider the following general one-dimensional Lagrangian

L = f(ρ)ρ̇2 − V (ρ), (4.95)

where ρ is a real classical degree of freedom, depending only on time, f(ρ) > 0 for all
ρ > 0 by requiring the kinetic matrix to be positive definite, and the dot denotes the
time derivative.

The associated equation of motion is

ρ̈+
1

2

f ′(ρ)

f(ρ)
ρ̇2 = −1

2

1

f(ρ)
V ′(ρ). (4.96)

This can be recast into the form

F̈(ρ) = −1

2

V ′(ρ)

f(ρ)
1
2

, (4.97)

where

F(ρ) =

∫ ρ

f(u)
1
2 du. (4.98)

Then, one can view this equation as an ODE for F(ρ) up to an overall rescaling. Then,
let us consider the change of coordinate23

x = αF(ρ) α > 0, (4.99)

and we end up with the ODE

ẍ = −1

2
α2 d

dx
V
(
F−1

(x
α

))
. (4.100)

A prime integral of this dynamical system is the usual mechanical energy

H(x, ẋ) =
ẋ2

2
+ ν(x), (4.101)

where the effective potential ν(x) is defined by

ẍ = − d

dx
ν(x). (4.102)

Thus, from (4.100) one immediately reads the form of the effective potential

ν(x) =
α2

2
V
(
F−1

(x
α

))
, (4.103)

up to an additive constant which we set to zero.

23Indeed, thanks to the assumption f(ρ) > 0, F(ρ) is locally invertible on R>0 and orientation-preserving.
Since we are dealing with functions R>0 → R>0, local invertibility implies global invertibility.
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(a) (b)

Figure 4.2: (a) One-dimensional plot of the scalar potential for Re ρ in (4.93) in units µ6
0`

2
s

√
a;

(b) Qualitative phase portrait for xt associated with the prime integral H(x, ẋ) = 1
2 ẋ

2 + V (x),
where x is the alternate coordinate to Re ρ defined in (4.99).

We conclude that V (x) and ν(x) are just related by an orientation-preserving one-
dimensional change of coordinate (and an overall rescaling). In particular, this implies
that V (x) and ν(x) share general features like the limits for x→ 0 and x→∞, and their
stationary points24. As a consequence, the phase portraits associated with the prime
integrals Hfictitious = 1

2 ẋ
2 + V (x) and H = 1

2 ẋ
2 + ν(x) will also share the same general

features, like runaway orbits and stable solutions.

General features

As we showed above, before trying and solving the precise dynamics associated to (4.87) as
embedded in the correct EFT, the classical time-dependent playground we are considering
allows us to proceed with an analysis of the phase portrait associated with the fictitious
prime integral H(x, ẋ) = 1

2 ẋ
2 + V (x), in order to find out the main general features of

the solutions. Figure 4.2 shows the profile of the scalar potential (4.93) with respect to
Re ρ, and it qualitatively displays the phase portrait of the scalar potential (4.87). From
the explicit expression of the potential (4.93) one readily finds that it has an unstable de
Sitter vacuum in

Reρ? =
3

4π
, (4.104)

which corresponds to a constant orbit of fictitious energy H? = V (x?), where x = x? is
the value for the ad hoc coordinate x corresponding to Re ρ?. This looks rather unusual,
but it does seem to be corroborated by the existence of a stationary ten-dimensional
perturbative solution, presented in §5.5.

The feature we are interested in is the existence of runaway orbits. For the ad hoc
variable x, these have been denoted in blue in figure 4.2. They are of three kinds:

24Namely, if x? is stationary for ν(x), then F−1
(
x?
α

)
is stationary for V (x).
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Low-energy runaway orbits They have energy 0 < H < H?, and they can all be
obtained with initial data (x0, 0), with x0 > x?.

Separatrix runaway orbit This single runaway orbit has energy H = H?, and it has
initial data (x0, ẋ0), with x0 > x? and ẋ0 > 0 such that H0 = H?.

High-energy runaway orbits They have energy H > H?, and they can be obtained
with initial data (x0, ẋ0) with x0 > 0 and ẋ0 > 0 such that H0 > H?. In particular,
they are the only kind of runaway solution such that one can choose x0 > x?.

Except for the unstable constant solution at (4.104), all other orbits either reach x = x?
in an infinite amount of time, or they reach x = 0 in a finite amount of time.

In the next subsection we will show that the ad hoc coordinate (4.99) is related to
Re ρ in such a way that the three runaway orbits described above are also present in the
Re ρ phase portrait (figure 4.3 (b)). The main difference between the phase portraits
of Re ρ and of x (figure 4.2 (b)) is that all orbits approaching Re ρ = 0 reach it in an
infinite amount of time. This is due the fact that in Re ρ = 0 the Lagrangian of the
system (4.105) is singular.

4.5.2 The dynamical system

The full theory for Reρ in our cosmological setup, namely for radial motions with Im ρ = 0
and without any D3-brane, is given by (4.88) setting spacial derivatives to zero:

Lρ =
π

3

1√
2aReρ

˙Reρ
2 − 12π µ6

0

√
2aRe ρ e−

2π
3

Re ρ. (4.105)

This yields the equation of motion

R̈eρ− 1

4

1

Reρ
˙Reρ

2
= 24πaµ6

0

(
Reρ− 3

4π

)
e−

2π
3

Reρ. (4.106)

Following the same construction outlined in §4.5.1, one can recast this ODE in the simpler
form

d2

dt2
(Reρ)

3
4 = 18πaµ6

0

(
(Reρ)

3
4 − 3

4π
(Reρ)−

1
4

)
e−

2π
3

Reρ. (4.107)

Therefore, let us solve this ODE for the new ad hoc variable

x = (Reρ)
3
4 . (4.108)

The ODE for x is given by

ẍ = 18πaµ6
0

(
x− 3

4π
x−

1
3

)
e−

2π
3
x

4
3 . (4.109)

The standard prime integral for this dynamical system is given by the mechanical energy

H(x, ẋ) =
1

2
ẋ2 + ν(x), (4.110)
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where25

ν(x) = −18πaµ6
0

∫ (
x− 3

4π
x−

1
3

)
e−

2π
3
x

4
3 dx

=
81a

4
µ6

0 x
2
3 e−

2π
3
x

4
3 .

(4.111)

As expected, the phase portrait associated to the prime integral (4.110) is qualitatively
the same as the one shown in figure 4.2 (b). The only constant solution is found imposing
ν ′(x) = 0, which yields

x? =

(
3

4π

) 3
4

, (4.112)

accordingly with the location of the unstable vacuum (4.104) and with the definition of
the variable (4.108). This constant solution has energy26

H? =
81a

4
µ6

0

√
3

4π
e−

1
2 . (4.113)

The existence of the energy (4.110) allows us to lower the degree of the ODE (4.109) of
one unit, meaning we just need to solve

1

2
ẋ2 +

81a

4
µ6

0 x
2
3 e−

2π
3
x

4
3 = h, h > 0. (4.114)

Using the relation (4.108) and the form of the prime integral (4.110) for x, we conclude
that the prime integral for the dynamical system (4.106) is given by

F
(

Re ρ, ˙Re ρ
)

=

(
˙Re ρ
)2

2
√

Re ρ
+ 36aµ6

0

√
Re ρ e−

2π
3

Re ρ. (4.115)

Therefore, all orbits solving (4.106) belong to level sets of (4.115), which are displayed
in figure 4.3 (a). The resulting phase portrait for Re ρ is found in figure 4.3 (b). Upon
inspection of the Re ρ phase portrait, we conclude that the general features of the
runaway solutions found in the x phase portrait in §4.5.1 translate exactly to Re ρ orbits.
More precisely, we conclude that the Lagrangian (4.105) induces three kinds of runaway
solutions:

Low-energy runaway orbits They have energy 0 < H < H?, and they can all be
obtained with initial data (Re ρ0, 0), with Re ρ0 >

3
4π .

Separatrix runaway orbit This single runaway orbit has energy H = H?, and it has
initial data (Re ρ0, ˙Re ρ0), with Re ρ0 >

3
4π and ˙Re ρ0 > 0 such that H0 = H?.

25One could alternatively use formula (4.103) in §4.5.1 using α = 3
4

√
3
π

(2a)
1
4 and F(ρ) = 4

3

√
π
3

1

(2a)
1
4
ρ

3
4 .

26Here and onward we will loosely refer to the prime integral H as energy, albeit H does not have the
physical dimensions of one.
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Figure 4.3: (a) Level sets of the prime integral (4.115) in the plane (Re ρ, ˙Re ρ). They represent
orbits of the Lagrangian (4.105). (b) Phase portrait for Re ρ in the (Re ρ, ˙Re ρ) plane. Runaway
orbits come in three classes: (i) low-energy runaway orbits; (ii) separatrix runaway orbits; (iii)
high-energy runaway orbits.

High-energy runaway orbits They have energy H > H?, and they can be obtained
with initial data (Re ρ0, ˙Re ρ0) with Re ρ0 > 0 and ˙Re ρ0 > 0 such that H0 > H?.
In particular, they are the only kind of runaway solution such that one can choose
Re ρ0 >

3
4π .

As for the other orbits, the phase portrait in figure 4.3 (b) shows (modulo computational
limitations) they either reach Re ρ = 3

4π or Re ρ = 0 in an infinite amount of time27, see
figure 4.4 (b) for a closeup of the orbits’ behavior around Re ρ = 0. Since Re ρ = 0 is not
a legitimate vacuum of the theory, as we discussed in §4.4.3, the latter do not seem to
be physically acceptable solutions. On the other hand, since Re ρ = 3

4π is an unstable
vacuum, the former orbits do appear to be physical, but upon small perturbations they
either become runaway orbits or non-physical orbits. For this reason, we continue this
analysis only considering runaway orbits exclusively, and specifically we study low-energy
ones.

4.5.3 Explicit low-energy runaway solutions

As it is discussed in §4.5.1, runaway solutions of the ODE (4.114) are of three kinds:
low-energy, separatrix and high-energy. In the following we will focus on low-energy

27The reason for this is that the full EOM (4.106), when both sides are multiplied by Re ρ, admits
Re ρ = 0 as a (unstable) constant solution, together with the already known unstable vacuum Re ρ = 3

4π
.

Therefore, due to existence and uniqueness theorems, no orbit of (4.106) can reach Re ρ = 0 in a finite
amount of time, even though Re ρ = 0 is not a solution of the ODE.
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runaway solutions, given their simplicity. Intuitively, along these solutions the 4-cycle P2

starts with zero initial velocity, and if it is large enough it starts expanding.
In order to have a cosmological-like low-energy runaway solution, the initial conditions

with respect to Re ρ read

Re ρ0 >
3

4π
; ˙Re ρ0 = 0. (4.116)

These are found imposing low energy, namely 0 < h < H?, and proper initial conditions,
that is (x, ẋ) = (x0, 0) with x0 > x?. With this input data, it immediately follows from
(4.114) (imposing ẋt > 0) that low-energy runaway solutions solve the equation

ẋ =

√
2h− 81a

2
µ6

0 x
2
3 e−

2π
3
x

4
3 , (4.117)

so that they are implicitly defined by∫ xt

x0

dx
1√

2h− 81a
2 µ6

0 x
2
3 e−

2π
3
x

4
3

= t, (4.118)

where we set t0 = 0, and the energy is fixed by the initial datum as

h =
81a

4
µ6

0 x
2
3
0 e−

2π
3
x

4
3
0 . (4.119)

This is hard to make explicit, so perturbative approximations for some regimes are in
order if we want an explicit description of how the inflation of the internal 4-cycle occurs.
The graph of a full low-energy runaway solution for Re ρ = 3

4π + 1 is found in figure 4.4
(a). Now, let us work out the precise runaway behavior of these solutions for early and
late times with respect to t.

Early times

In order to find an explicit expression for the low-energy runaway solution at times t ∼ 0,
let us expand the ODE (4.117) for x ∼ x0, and let us stop at leading order. We find

ẋ =

√√√√√2h

2

3

4π
3 x

4
3
0 − 1

x0

√x− x0 + ox0

(√
x− x0

)
. (4.120)

This readily integrates to

xt = x0 + 9πaµ6
0 e−

2π
3
x

4
3
0
x

4
3
0 − 3

4π

x
1
3
0

t2 + o0(t2). (4.121)

Recall now that x = (Reρ)
3
4 , so one finds the solutions at early times

Reρt = Reρ0 + 12πaµ6
0 e−

2π
3

Reρ0

(
Reρ0 −

3

4π

)
t2 + o0(t2). (4.122)
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Figure 4.4: (a) Graph of a low-energy runaway solution Re ρt for Re ρ0 = 3
4π + 1. The

time axis is in units of 1
`2sµ

3
0

√
a

. (b) Detail of the Re ρ phase portrait around Re ρ = 0 for some

illustrative (non-maximal) orbits. Non-runaway orbits reach Re ρ = 0 in an infinite amount of
time.

Therefore we find that the 4-cycle starts to inflate scaling with t2, and from the phase
portrait in figure 4.2 we know that this rate will only increase, as we will now show
explicitly.

Notice that the solution (4.122) and the relation (4.90) allow us to study how the
gaugino condensate evolves with time at the beginning of the expansion. Plugging (4.122)
into (4.90) and neglecting o0(t2) corrections one finds

|〈S〉|2 = µ6
0 e−

2π
3

Re ρ0 − 8π2a

(
Re ρ0 −

3

4π

)
|〈S〉|4 t2 + o0(t2). (4.123)

Let us adopt a perturbative approach in |〈S〉|2, in agreement with the analysis of §5. In
this framework, the perturbative approach corresponds to assuming

Re ρ0 �
3

4π
. (4.124)

Therefore, (4.123) at lowest order becomes

|〈S〉|2 = µ6
0 e−

2π
3

Re ρ0 + o0(t2). (4.125)

We conclude that, at lowest order, the gaugino condensate is constant at early times.
This allows us to rewrite (4.122) as (reinstating the `s factors)

Reρt = Reρ0 + 12πa `4s|〈S〉|2
(

Reρ0 −
3

4π

)
t2 + o0(t2), (4.126)
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which holds at lowest order in |〈S〉|2. This also shows that the characteristic time of
early expansion is

τearly '
1√

12πa
(
Re ρ0 − 3

4π

) 1

`2s |〈S〉|
, (4.127)

and we assume t / τearly .
Let us go one order further. Computing the next to leading order correction to (4.122)

and using (4.90) to recast the result in terms of powers of the gaugino condensate, we
find

Reρt =Reρ0 + 12πa `4s|〈S〉|2
(

Reρ0 −
3

4π

)
t2 + a2π `8s |〈S〉|

4

{
18π

(
Re ρ0 −

3

4π

)
+

− 1

2

[
32π2

(
Re ρ0 −

15

8π

)
Re ρ0 − 9

]
+ 96π2

}
Re ρ0 − 3

4π

Re ρ0
t4 + o0(t4).

(4.128)
Notice that this is also higher order in 〈S〉. Thus, at leading order in |〈S〉|2 there is no t4

correction to the expansion of the P2.

Late times

At later times t ∼ +∞ we already know that xt ∼ +∞ thanks to §4.5.1, so one
immediately reads from equation (4.117) the leading order solution

x
(0)
t =

√
2h t, (4.129)

where the exponential suppression of ν(x) allowed us to neglect it entirely.
Let us find the next to leading order correction to the solution. In order to do that,

we start by expanding (4.117) keeping only the first order correction in the x ∼ +∞
limit. We get

ẋ =
√

2h

(
1− 1

2

(
x

x0

) 2
3

e
− 2π

3

(
x

4
3−x0

4
3

)
+ o∞

(
x

2
3 e−x

4
3

))
. (4.130)

Let us parametrize the first order correction as

x
(1)
t = x

(0)
t + δ

(1)
t , (4.131)

where x
(0)
t is given by (4.129), so that plugging this in (4.130) we find the ODE for the

correction δ
(1)
t . This yields, using (4.114),

δ̇
(1)
t = − 81a

4(2h)
1
6

µ6
0 t

2
3 e−

2π
3

(2h)
2
3 t

4
3 , (4.132)

which integrates to

δ
(1)
t = −243a

8πh
µ6

0

(
3

2π

) 1
4
∫ ( 2π

3 )
3
4
√

2h t

0
τ

2
3 e−τ

4
3 dτ. (4.133)
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This is still hard to compute explicitly.
In order to find an explicit expression for this correction, we could proceed as follows.

Since we are working in the regime t ∼ +∞, δ
(1)
t is weakly dependent on time, given the

polynomial-exponential suppression of the integrand. Therefore, at leading order in this

approximation, δ
(1)
t is a constant; more precisely,

δ
(1)
t = −243a

8πh
µ6

0

(
3

2π

) 1
4
∫ ∞

0
τ

2
3 e−τ

4
3 dτ + o∞

(
t

2
3 e−

2π
3

(2h)
2
3 t

4
3

)
. (4.134)

Now, one could directly evaluate this numerically. Alternatively, we could try and use an
analytic approximation, which is what we choose to do. One finds28

δ
(1)
t ' −

9

2
√

2

(
3

e2π3

) 1
4

x
− 2

3
0 e

2π
3
x

4
3
0 + o∞

(
t

2
3 e−

2π
3

(2h)
2
3 t

4
3

)
. (4.140)

Therefore, plugging back (4.119) into (4.129) and adding the correction (4.140), one finds
the solution at later times including the first order correction

xt = 9

√
a

2
µ3

0 x
1
3
0 e−

π
3
x

4
3
0 t− 9

2
√

2

(
3

e2π3

) 1
4

x
− 2

3
0 e

2π
3
x

4
3
0 + o∞

(
t

2
3 e−

2π
3

(2h)
2
3 t

4
3

)
. (4.141)

Going back to Reρt = x
4
3
t , we finally find the late time evolution of the 4-cycle volume

28We want to approximate analytically the integral

I =

∫ ∞
0

τ
2
3 e−τ

4
3

dτ. (4.135)

Thanks to the polynomial-exponential suppression of the integrand, the leading contribution to the
integral in (4.135) comes from the region around the maximum point of the integrand

τ? = 2−
3
4 . (4.136)

For this reason, the approximation we will use is a variation of the steepest descent method. Let us define

v(τ) =
2

3
logτ − τ

4
3 , (4.137)

then we adopt the following gaussian approximation

I =

∫ ∞
0

ev(τ)dτ

' ev(τ?)

∫
R

e−
1
2 |v′′(τ?)|(τ−τ?)2dτ

= ev(τ?)

√
2π

|v′′(τ?)|
,

(4.138)

which leads to

I ' 3

4
2−

1
4

√
π

e
. (4.139)

One can check this approximation carries a 0.3% relative error.
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along the low-energy runaway orbits:

Reρt =9
4
3

(a
2

) 2
3
µ4

0 Re ρ
1
3
0 e−

4π
9

Re ρ0 t
4
3 − 27 (18)

1
3

(
3

e2π3

) 1
4

a
1
6 Re ρ

− 5
12

0 e
8π
9

Reρ0 t
1
3 +

+ o∞

(
t e−

2π
3

(2h)
2
3 t

4
3

)
.

(4.142)

The scalar field Reρ grows like t
4
3 , which is faster than the rate found for early times in

equation (4.122), as expected.
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Metric perturbations from
gaugino condensation

In §4 we found from the four-dimensional EFT that, precisely due to the condensation
taking place on the D7-branes stack wrapped around the P2 base, the considered type IIB
flux compactification on the P2 is necessarily unstable. The compact four-cycle inflates
with time as a power law.

Following the recent efforts in the literature devoted to understanding gaugino
condensation from a high-energy ten-dimensional perspective (see §1.3), in this chapter
we are going to try and substantiate the instability claim of §4 from a ten-dimensional
analysis. Contrary to [34], which purely solves the AdS supersymmetry conditions of the
compactification in order to find the exhibited supergravity solution (in the infinite P2

volume limit) without explicitly assuming any non-vanishing gaugino condensate 〈S〉 6= 0,
we will inject the assumption 〈S〉 6= 0 in our ten-dimensional analysis. Our approach
will be based on the results of [31]. Since from our four-dimensional analysis in §4 it
emerges that type IIB string theory on OP2(−3) is unstable, we try to reproduce the
inflation of the P2 base from a ten-dimensional point of view. In order to do that, we
will try to compute the ten-dimensional equations of motion for time-dependent metric
perturbations at leading order in the gaugino condensate.

In §5.1 we review type IIB supergravity, fixing our notation and conventions in the
process, and we state the ten-dimensional setup which we are going to perturb. We
also review the form of the stress-energy tensor from gaugino condensation as it is
found in the literature today, including its putative quartic gaugino coupling, which we
already introduced in §1.3.1. In §5.2 we tackle the problem of ten-dimensional metric
perturbation with the standard first step of conveniently fixing the gauge. We make use
of the ten-dimensional de Donder gauge together with imposing maximal symmetry, and
we argue that this completely fixes the gauge and it removes a number of degrees of
freedom. In §5.3 we present the precise form of G3 sourced by gaugino condensation as it
is found in [31]. We show that it is not globally defined, and we propose a trivialization
of the characterizing equation for the 1-form inducing the generalized complex structure
deformation, which admits global solutions. We compute the leading order contribution
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to the ten-dimensional stress-energy tensor coming from gaugino condensation using
the global solution found above. In §5.4 we present the global equations of motion for
the metric perturbations obtained by this procedure, leaving the contribution from the
gaugino condensate stress-energy tensor generic. Indeed, this is only going to fix some
boundary conditions of the solution, given its localized nature. In §5.5 we show that the
equations of motion that we found do not admit trivial solutions, but they do admit both
stationary and time-dependent ones. We exhibit the most general stationary solution,
and we argue that it might be identified with the unstable vacuum found during the
four-dimensional analysis in §4. We also display a class of time-dependent solutions, and
we fix some of its free real parameters imposing that it should reproduce the P2 inflation
phenomenon at early times found from the four-dimensional EFT analysis. From this
viewpoint, this class of time-dependent solutions should represent a ten-dimensional
description candidate at the metric level of gaugino condensation, for small time intervals.

5.1 Preliminaries

5.1.1 Type IIB supergravity

Type IIB supergravity has N = 2 SUSY in D = 10 spacetime dimensions, corresponding
to 32 (real) supersymmetry generators. Its bosonic particle content is divided into an
NS-NS sector and a R-R sector. The NS-NS sector consists of the ten-dimensional metric
ĝAB, the dilaton φ and the two-form B2, while the R-R sector consists of the p−forms
Cp, with p = 0, 2, 4. The fermionic sector of the spectrum consists of two left-handed
Majorana-Weyl gravitinos1, and two right-handed Majorana-Weyl dilatinos. In the
present work, however, we are exclusively interested in finding vacuum solutions of the
equations of motion, therefore we will not need to worry about the fermionic sector of
the theory. It is convenient to group the bosonic degrees of freedom in the following
gauge-invariant2 field strengths:

H3 = dB2; (5.1a)

F1 = dC0; (5.1b)

F3 = dC2 − C0H; (5.1c)

F5 = dC4 −
1

2
C2 ∧H +

1

2
B ∧ dC2. (5.1d)

1Being the gravitinos the gauge fields associated to local N = 2 SUSY, their presence is expected.
Majorana-Weyl fermions exist in D = 2 mod 8 (Lorentzian) spacetimes [4], and in ten dimensions they
have 16 real independent components (possibly brought down to eight if they obey the Dirac equation).
Thus, two Majorana-Weyl spinors in ten dimensions do match the 32 supersymmetry generators of N = 2
SUSY in D = 10. Their chirality is peculiar to type IIB supergravity.

2We mean invariance with respect to the natural gauge transformations δB2 = dΛNS
1 , δCp = dΛR

p−1.
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The Bianchi identities for these field strengths are

dH3 = 0; (5.2a)

dF1 = 0; (5.2b)

dF3 = H3 ∧ F1; (5.2c)

dF5 = H3 ∧ F3. (5.2d)

The proper interpretation of (5.1a)-(5.1d) should be as local solutions of their respective
Bianchi identities (5.2a)-(5.2d).

The bosonic part of the action for type IIB supergravity in the Einstein frame is [23]

SIIB = SNS + SR + SCS , (5.3)

where

SNS =
1

2κ2
10

∫
d10X

√
−ĝ
[
R− 1

2

(
(∇φ)2 + e−φ |H3|2

)]
; (5.4a)

SR = − 1

4κ2
10

∫
d10X

√
−ĝ
(

e2φ |F1|2 + eφ |F3|2 +
1

2
|F5|2

)
; (5.4b)

SCS = − 1

4κ2
10

∫
C4 ∧H3 ∧ F3. (5.4c)

Here ĝ is the determinant of the background ten-dimensional metric, XA are the ten-
dimensional coordinates, κ2

10 is the ten-dimensional Newton’s constant given by (1.13),
R is the Ricci scalar for the ten-dimensional Levi-Civita connection. Moreover, given a
p-form Fp, we use the notation

|Fp|2 =
1

p!
(F )M1M2...Mp(F )N1N2...Np ĝ

M1N1 ĝM2N2 · · · ĝMpNp . (5.5)

More precisely, the global manifestly covariant action (5.3) yields the correct equations
of motion for type IIB supergravity once they are supplemented with the self-duality
constraint3

?10 F5 = F5. (5.6)

In our analysis, we will also make prominent use of a more compact formulation of
type IIB supergravity, in terms of complexified scalars and complexified forms, which is
better suited in order to achieve manifest covariance under its SL(2,R) classical global
symmetry [34] 4. One can group the dilaton φ and the R-R axion C0 into the so-called
axio-dilaton

τ = C0 + ie−φ. (5.7)

3It is important to stress that the self-duality constraint is to be imposed at the level of the equations
of motion, and not at the level of the action. In fact, this very same constraint is the whole reason why
one cannot write down a globally defined covariant action for type IIB supergravity.

4Note that the SL(2,R) classical global symmetry of type IIB supergravity is broken both by quantum
and stringy effects down to the infinite discrete subgroup SL(2,Z) [23].
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Additionally, let us define the complex 3-form

G3 = dC2 − τH3 (5.8)

= F3 − ie−φH3. (5.9)

With these definitions, the action (5.3) can be recast in the form

SIIB =
1

2κ2
10

∫
d10X

√
−ĝ
[
R− 1

2

(
e2φ |dτ |2 + eφ |G3|2 +

1

2
|F5|2

)]
+

− i

8κ2
10

∫
eφC4 ∧G3 ∧G3.

(5.10)

The equivalence between (5.3) and (5.10) is made apparent by the identities

G3 ∧G3 = 2ie−φF3 ∧H3; (5.11a)

|G3|2 = |F3|2 + e−2φ |H3|2 ; (5.11b)

The equations of motion for type IIB supergravity split in the Einstein equation
for ĝAB and in the equations of motion for the NS-NS and R-R forms. The Einstein
equations for the ten-dimensional metric in the notation of (5.10) are [29]

RAB −
1

2
ĝABR = κ2

10T
(IIB)
AB , (5.12)

where

T
(IIB)
AB =

1

2κ2
10

(
e2φ∇(Aτ∇B)τ

? + eφ |G3|2AB +
1

2
|F5|2AB

)
+

− 1

4κ2
10

ĝAB

(
e2φ |dτ |2 + eφ |G3|2

)
.

(5.13)

Here we use the notation for a given p-form Fp

|Fp|2AB =
1

(p− 1)!
(F )(A|M2M3...Mp

(F )|B)N2N3...Np ĝ
M2N2 ĝM3N3 · · · ĝMpNp , (5.14)

and ∇A is the ten-dimensional Levi-Civita (i.e. torsionless) connection. Moreover, we
use the symmetrization notation

(A| . . . |B) =
A . . . B +B . . . A

2
, (5.15)

with straightforward generalization to p indices. The rest of the equations of motion, in
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the notation of (5.3), are [29]

d ? dφ = −1

2
e−φH3 ∧ ?H3 + e2φF1 ∧ ?F1 +

1

2
eφF3 ∧ ?F3; (5.16a)

d
(

e2φ ? F1

)
= −eφH3 ∧ ?F3; (5.16b)

d
(

e−φ ? H3

)
= eφF1 ∧ ?F3 + F3 ∧ ?F5; (5.16c)

d
(

eφ ? F3

)
= −H3 ∧ ?F5; (5.16d)

d ? F5 = H3 ∧ F3; (5.16e)

? F5 = F5. (5.16f)

Notice that the self-duality constraint for F5 implies the on-shell identity5

|F5|2 = 0. (5.17)

5.1.2 Unperturbed background

We will compute at leading order in the gaugino condensate the equations of motion for
the perturbations around a specific ten-dimensional background metric in the type IIB
supergravity approximation. From this point on, the expressions zero-order, leading order,
lowest order and non-perturbative will refer exclusively to the perturbative expansion in
the gaugino condensate 〈S〉, unless we specify otherwise.

We assume that the zero-order stress-energy tensor for our background vanishes,

T (0)

AB = 0, (5.18)

where the apex (0) refers to the order in 〈S〉. This corresponds to setting to zero all fluxes
and taking the axio-dilaton to be constant at zero-order:

dτ (0) = G(0)

3 = F (0)

5 = H (0)

3 = 0. (5.19)

Since this is no longer a flux-compactification background, the warping function itself is
vanishing at zero-order,

A(0) = 0. (5.20)

It should be noted that (5.20) technically neglects the background warping sourced by
curvature corrections on the D7-brane stack, which we commented below (1.63). Since
this effect is not central to our analysis, we will not take it into account. This is consistent
with the four-dimensional analysis in §4, as in §4.1 we explain that we do not consider
D7-brane backreaction on the warp factor. Moreover, notice that (5.20) corresponds to
fixing the universal modulus introduced in §3.2 to

a = 1. (5.21)

5This is easily seen using the identity ?10F5 ∧ F5 = |F5|2
√
−ĝ d10X.
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We choose the Eguchi-Hanson Ricci-flat metric (see §2.7) for the internal manifold X0,
and Minkowski externally. This trivially solves the ten-dimensional Einstein equations in
the vacuum. We denote the background metrics as follows,

ds2
10

(0) = ĝ(0)

ABdXAdXB (5.22)

= ηµνdxµdxν + g(0)

i dzidz. (5.23)

Here XA denotes ten-dimensional coordinates, xµ denotes the four-dimensional coordi-
nates and zi denotes the complex six-dimensional coordinates. Recall that√

g(0)

6 = 8. (5.24)

In this whole chapter, we will denote with a hat the ten-dimensional metric ĝAB. Its
relation with the internal and external metrics in (5.22) is given by

ĝµν = ηµν ; (5.25a)

ĝi =
1

2
gi; (5.25b)

ĝi = 2 gi. (5.25c)

As it is clear from (5.22), in this chapter we will use the following index notation:

• A,B, . . . denote ten-dimensional indices (A = 1, . . . , 10).

• m,n, . . . denote real six-dimensional indices (m = 1, . . . , 6).

• i, j, . . . denote complex six-dimensional indices (i = 1, 2, 3).

• µ, ν, . . . denote real four-dimensional indices (µ = 0, . . . , 3).

5.1.3 Gaugino condensate stress-energy tensor

The complete stress-energy tensor of our model at the non-perturbative level takes the
form

TAB = T
(IIB)
AB + T

〈S〉
AB . (5.26)

Here T
〈S〉
AB is the stress-energy tensor coming from the gaugino condensate coupling

contributions to the Dirac-Born-Infeld action of the D7-branes in the ten-dimensional
background,

T
〈S〉
AB = − 2√

−ĝ
δS
〈S〉
D7

δĝAB
, (5.27)

while T
(IIB)
AB is the type IIB supergravity stress-energy tensor sourced by the background

fluxes induced by gaugino condensation via generalization of the complex geometry of
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the internal space. Therefore, at non-perturbative level the Einstein equations for the
exact metric ĝAB take the form

RAB −
1

2
ĝABR− κ2

10T
(IIB)
AB = κ2

10T
〈S〉
AB . (5.28)

The precise form of S
〈S〉
D7 (and in turn of T

〈S〉
AB ) is not entirely known, and numerous efforts

have been put in place in order to shed some light on it. More precisely, it is known that
the action of a D7-brane stack contains a coupling between the G3 flux and the gaugino
bilinear λλ. In a type IIB warped background

ds2
10 = e2Ads2

R1,3 + e−2Ads2
X0
, (5.29)

this has been computed in the appendix of [31], and it has been re-derived in the appendix
of [49], finding

SGλλD7 = Re
4πi

`4s

∫
e
φ
2 (G3 · Ω) s δ(0)

D

√
−g4g6 d10X, (5.30)

where s = 1
16π2 Trλλ is the bottom component of the chiral superfield S = − 1

16π2 TrWαWα,

δ(0)

D is the scalar delta-function centered on the internal divisor D wrapped by the D7-
branes, Ω is the internal holomorphic 3-form normalized such that

i

8
Ω ∧ Ω =

√
g6 d6y, (5.31)

and

G3 · Ω =
1

3!
Gm1m2m3Ωn1n2n3g

m1n1gm2n2gm3n3 . (5.32)

Here, ym denote some real internal coordinates, g4 the unwarped determinant of the
external metric, and g6 the unwarped determinant of the internal metric. On the other
hand, it has been argued [44, 47, 49, 45] that the D7-brane action should also contain a
quartic gaugino coupling, however as of today there is no general consensus about its
specific form. All of these proposals agree nonetheless about the generic structure of the
four-gaugino coupling. A precise proposal is found in [49], and in our notation it is given
by

SλλλλD7 = −π
6
ν

∫ √
−g4g6 e−4A (Ω · Ω) |s|2 δ(0)

D d10X, (5.33)

where we defined the inverse of the volume transverse to the divisor D, in the internal
space X,

ν :=

∫
D

√
g6 e−4A∫

X

√
g6 e−4A

. (5.34)

All in all, the relevant part of the D7-brane action as far as gaugino condensation is
concerned is

S
〈S〉
D7 = SGλλD7 + SλλλλD7 . (5.35)

The stress-energy tensor T
〈S〉
AB computed from (5.35) inherits the very same decomposition

into linear and quadratic dependence on the gaugino bilinear. Moreover, the fact that
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both the actions (5.30) and (5.33) are localized on the divisor D via the delta-function

δ(0)

D makes it clear that T
〈S〉
AB is localized as well. Therefore, once we turn the gaugino

condensate on and we specialize to our case D = P2, the stress-energy tensor from
D7-brane couplings takes the form6

T
〈S〉
AB = T λλAB + T λλλλAB , T λλ, T λλλλ ∝ δ(0)

P2 . (5.36)

Using (5.30) and assuming (5.33) is correct, one can explicitly compute the gaugino
condensate stress-energy tensor. The result is7

T λλµν = Re

(
4πi

`4s
e4A+φ

2 (G3 · Ω) 〈S〉 δ(0)

P2 ηµν

)
; (5.37a)

T λλij = −Re

(
4πi

`4s
e
φ
2 〈S〉 δ(0)

P2 (G3 · Ω)ij

)
; (5.37b)

T λλλλµν = −π
6
ν e−4A (Ω · Ω) |〈S〉|2 δ(0)

P2 ηµν , (5.37c)

where

(G3 · Ω)mn =
1

2
G(m|k1k2

Ω|n)l1l2 g
k1l1gk2l2 . (5.38)

Here we replaced the gaugino bilinear s with its vacuum expectation value 〈S〉. This
assumes we are working at low enough energies for s to become non-dynamical, but high
enough so that the ten-dimensional description does not break down8.

Once the EOMs are have been solved outside of P2, (5.36) provides some boundary
conditions. Let us point out that, due to (5.30), if G3 has a singular component sourced
by gaugino condensation Gsing

3 ∝ δ(0)

P2 , then we would end up with

T λλsing ∝
(
δ(0)

P2

)2
, (5.39)

barring accidental cancellations. Here, the square of the scalar delta-function
(
δ(0)

P2

)2

makes its appearance. As we already mentioned in §1.3.1, this is actually ill-defined,
but it could be interpreted as a divergence δ(0). For this reason, its cancellation in
the Einstein equation is a necessity. Moreover, it should be stressed that, due to the
non-compactness of X0, in our setup it holds ν = 0, so that

T λλλλAB = 0 over all X0. (5.40)

More generally, assuming (5.33) holds, this shows that local models are not fit to probe
quartic gaugino couplings on D7-branes. In deriving the Einstein equations for the
perturbation, we will remain agnostic about the explicit form of T 〈S〉, keeping it implicit.
Starting from §5.4.2, however, we will adopt as Ansatz for T 〈S〉 a slight generalization of
the form proposed in [49], in order to study some explicit solutions.

6Recall that, in the coordinates (zi), P2 is defined by r2 = 0. Therefore, δ(0)

P2 ∝ δ(r2), which also

has the correct dimension [δ(0)

P2 ] = [`s]
−2 needed to make the previous actions dimensionless. Its precise

expression is (2.140), see §2.9.3 and §A.5.3 for more details.
7Here we used the fact that (F3 · Ω)gi = (F3 · Ω)i for any 3-form F3.
8Clearly, this requires the scale hierarchy (1.133) to hold.
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5.2 Fixing the gauge

The trace-reversed Einstein equations take the form

RAB = κ2
10TAB; (5.41)

TAB = TAB −
1

8
ĝABT, (5.42)

where T = TAB ĝ
AB , and the total stress energy tensor is given by (5.26). Let us introduce

a generic perturbation to the background metric

ĝAB = ĝ(0)

AB + hAB, (5.43)

where ĝ(0)

AB is given by (5.22). The linear perturbation to the ten-dimensional Ricci tensor
is given by9

δRAB = −1

2

(
�(0)hAB +∇(0)

A∇
(0)

B h−∇
(0)

C ∇
(0)

A h
C
B −∇(0)

C ∇
(0)

B h
C
A

)
, (5.44)

where indices are raised with the background metric, h = hAB ĝ
(0)AB, the apex ∇(0)

A

denotes the Levi-Civita connection associated to the background metric ĝ(0)

AB, and the

background Laplace-Beltrami operator is defined as �(0) = ĝ(0)AB∇(0)

A∇
(0)

B .
Naturally, in order to find physical solutions for the perturbation hAB we should fix

the gauge, analogously to how one proceeds in order to derive the form of gravitational
waves in general relativity. In appendix B we schematically review how the story goes in
this simpler case.

5.2.1 Ten-dimensional de Donder gauge

We choose the de Donder gauge
�X̃M = 0, (5.45)

where the tilde stresses the fact that we are performing a gauge transformation X̃A =
XA + ξA such that

�(0)ξM = −�XM . (5.46)

We are going to assume that this equation admits at least one solution. In general, we do
not expect this solution to be unique. The linearized de Donder gauge around a generic
curved background takes the form

∇(0)

A h
AM =

1

2
∇(0)Mh+ hABΓ(0)M

AB , (5.47)

where Γ(0)M
AB denotes the Christoffel symbols of the background metric. Before plugging

(5.47) in (5.44), we prefer to fix the gauge completely by specifying an explicit Ansatz for
the perturbation. As we will see, this will simplify things considerably.

9Computed with the Mathematica package xAct.
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5.2.2 Ansatz for the perturbation

Motivated by the time-dependent solution that we found for the ρ chiral field in the
low-energy EFT, we will look for perturbations exhibiting maximal symmetry on the
internal space X0 = OP2(−3) and obeying the cosmological principle externally, namely
invariance under spacial rotations and translations. The external cosmological principle
amounts to imposing R3 o SO(3) symmetry. From §2.4 we known that the maximal
internal symmetry is U(3), thus we require our Ansatz to possess a R3 o SO(3)× U(3)
symmetry.

The only R3 o SO(3)× U(3)-invariant coordinates are the external time t and the
internal distance from the cone base r2 = zizi, therefore we can already assume to
be in some coordinate system where the perturbation depends only on (t, r2). At the
non-perturbative level and in these coordinates, the most general ten-dimensional metric
compatible with R3 o SO(3)× U(3) symmetry is

ĝAB dXAdXB = −2Dhdt2 + e2Ahηµνdxµdxν +Bhdr2dt+ Chdcr2dt+ e−2Ahgidz
idz,
(5.48)

where

gi dzidz =e2Fh

(
1 +

c6

r6

) 1
3

dzidzi − e2Gh
c6

r6

(
1 +

c6

r6

)− 2
3 ∂r2∂r2

r2
+

+Hh

(
∂r2
)2

+Hh

(
∂r2
)2
,

(5.49)

where the Ah, Bh, Ch, Dh, Fh, Gh, Hh are all functions only of (t, r2), with Ah, Bh,
Ch, Dh, Fh, Gh real and Hh complex. Recall that ∂r2 = zidz

i is the holomorphic
differential, or Dolbeault operator. By comparison with the background metric (5.22),
the perturbation functions are required to vanish at zero-order. More precisely, we will
show in §5.3.2 that the Einstein equations (5.41) imply that at leading order

Ah, Bh, Ch, Dh, Fh, Gh, Hh ∼ |〈S〉|2 . (5.50)

However, in a perturbative framework, the Ansatz (5.48, 5.49) is redundant when working
at leading order in 〈S〉. In fact, in §C we show that it is always possible to set D = 0 and
H = 0 by means of a change of coordinates10, up to corrections of order |〈S〉|4, which
is beyond leading order. Therefore, the minimal R3 o SO(3)× U(3)-symmetric leading
order metric Ansatz only involves five independent functions, and it is given by

ĝABdXAdXB = e2Ahηµνdxµdxν +Bhdr2dt+ Chdcr2dt+ e−2Ahgidz
idz; (5.51a)

gidz
idz =

(
e2Fh

(
1 +

c6

r6

) 1
3

δi − e2Gh
c6

r6

(
1 +

c6

r6

)− 2
3 ziz
r2

)
dzidz, (5.51b)

10Notice that the time dependence of the perturbation functions make it so that the possibility of
setting H = 0 by coordinate redefinition, that is assuming that gaugino perturbations preserve hermiticity
of the internal metric, is a priori non-trivial.
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where the Ah, Bh, Ch, Fh, Gh are all real functions of (t, r2), and it is understood that all
O(|〈S〉|4) terms on the r.h.s. should be discarded. Thus, the minimal R3 oSO(3)×U(3)-
symmetric Ansatz for the leading order ten-dimensional metric perturbation is

hABdXAdXB = 2Ahηµνdxµdxν +Bhdr2dt+ Chdcr2dt+

+

[
2(Fh −Ah)

(
1 +

c6

r6

) 1
3

δi − 2(Gh −Ah)
c6

r6

(
1 +

c6

r6

)− 2
3 ziz
r2

]
dzidz.

(5.52)

5.2.3 Gauge-fixed Einstein equations

We will assume the Ansatz (5.52), together with the de Donder gauge (5.47), to fix the
gauge completely. On general grounds, the de Donder gauge equation (5.46) around a
flat background requires ten degrees of freedom to be fixed in order to admit a single
solution. However, a solution to the equation may not even exist for complicated enough
background metrics, even without fixing any degree of freedom. All in all, we surmise that
the number of degrees of freedom we need to fix for (5.46) to admit a single solution lies
between none and ten. On the other hand, a quick counting shows that the Ansatz (5.52)
fixes at least 39 degrees of freedom11, so that we expect it to fix the gauge completely and
to impose at least 29 physical constraints on the solution. By a similar token, assuming
the Einstein equations to provide at most 55 degrees of freedom to the perturbation
(which is true for a flat background), imposing the Ansatz (5.52) together with the ten
conditions from the de Donder gauge (5.47) would seem to leave us with at most six free
degrees of freedom, before imposing further boundary conditions. In §5.5 we show that
this does allow us to find a unique solution.

Notice that, thanks to the fact that we assumed the perturbation to preserve internal
hermiticity, the de Donder gauge condition (5.47) simplifies to

∇(0)

A h
AM =

1

2
∇(0)Mh, (5.53)

where we used the fact that the Christoffel symbols for a Kähler manifold are pure in

their indices, namely Γ(0)k
i = Γ(0)k̄

ij = 0. Using (5.53), the Ricci tensor perturbation (5.44)
simplifies to

δRAB = −1

2

[
�(0)hAB + 2hCDR(0)

CADB

]
, (5.54)

where R(0)

CABD denotes the background Riemann tensor. Therefore, the trace-reverse
Einstein equations (5.41) in this gauge take the form12

�(0)hAB + 2hCDR(0)

CADB = −2κ2
10T

lo
AB, (5.55)

where T
lo
AB is the (trace-reversed) leading order contribution to the complete stress-energy

tensor (5.26).

11This comes from imposing hµi = 0; hij = 0; h00 = −hµµ; hµµ = hνν ; hµν = 0; h0µ = 0 where
µ, ν = 1, 2, 3 and µ 6= ν.

12This result agrees with equation (349) of [35], in units such that κ2
10 = 8π.
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5.3 Fluxes from gaugino condensation

In [31] it is shown that gaugino condensation on D7-branes dynamically deforms the
supersymmetry conditions of the internal manifold, which have to be treated employing
the formalism of generalized complex geometry. Through a perturbative approach in 〈S〉
and assuming all the background fluxes to be vanishing, there it is shown that, in the
case of gaugino condensation occurring on a stack of D7-branes (and possibly O7-planes)
wrapping a divisor D, the deformed supersymmetry conditions for the fluxes at first
order in 〈S〉 are solved by F5 = 0, dτ = dτ (0) and by13

G3 =
i

4
e−φ

(0)
∂θm ∧ ιmΩ +

i

4
e−φ

(0)
(∇mφ)(0) θ

m
Ω +

i

4
e−φ

(0)
(∇mθm) Ω, (5.56)

where all of the contractions are performed using the background internal metric g(0)

i , the

apex (0) denotes the zero-order component in 〈S〉, ιm is the interior derivative along ∂m,

Ω is the internal holomorphic 3-form with normalization given by i
8e−φ

(0)
Ω∧Ω =

√
g6d6y,

namely

Ω =
2

3
2

3!
e
φ(0)

2 εijkdz
i ∧ dzj ∧ dzk, (5.57)

and finally θ = θmdym is the (1, 0)-form specified by the conditions

∂θ = 0; (5.58a)

∂θ = −2i`4s〈S〉δ2
D, (5.58b)

where δ2
D is the delta 2-form localized on D. Notice that the structure of (5.56) is

harmonic (1, 2) + (3, 0) + (0, 3), that is it contains a IASD (1, 2) + (3, 0) part, and a ISD
part (0, 3). This is agreement with [28], as we already explained in §1.3.

The origin of this (1, 0)-form is the following. One of the supersymmetry conditions
for the complex polyform Z = Z1 +Z3 +Z5 in the case of condensing D7-branes on the
P2, that is for non-vanishing gaugino condensate 〈S〉 6= 0, becomes

dZ = −2i`4s〈S〉δ2
P2 . (5.59)

This is solved by

Z = θ + Ω, (5.60)

where Ω is the holomorphic 3-form associated with the CY structure of X0, while θ is a
1-form solving

dθ = −2i`4s〈S〉δ2
P2 . (5.61)

A non-vanishing 1-form contribution Z1 signals a genuine complex structure deformation,
which in this case is manifestly sourced by the gaugino condensate thanks to (5.61). A
local solution is found in [31], imposing θ to be a (1,0)-form. This condition stems from

13This is equation (5.22) of [31].
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the matching with β deformations, employed there. Since δ2
P2 is a (1,1)-form, then it has

to satisfy (5.58a, 5.58b), which in our setup are

∂θ = 0; (5.62a)

∂θ = −2i`4s〈S〉δ2
P2 . (5.62b)

These are solved locally by means of the Poincaré-Lelong lemma, finding

θ = −`
4
s

π
∂w; (5.63)

w(z) = 〈S〉 log h(z) + w0, (5.64)

where h(z) is the holomorphic section of the P2 line bundle that defines P2 via h(z)|P2 = 0,
and w0 is a constant. Since X0 is a negative line bundle over P2, it does not admit global
holomorphic sections, therefore (5.64) is necessarily local. Concretely, this provides four
maximally extended, but still local, solutions obtained by taking the local holomorphic
sections

h(i)
(
ξ(i)

)
=

1

`3s
ξ(i) on U(i);

h(4 ) = 1 on U(4 ),

(5.65)

which correspond to four local 1-forms θ(i), θ(4 ) defined on U(i), U(4 ), solving (5.61) on

U(i), U(4 ) only. Notice that θ(4 ) = 0, which is indeed a (1,0)-form solving (5.58a-5.58b)
on U(4), namely

∂θ = 0; (5.66a)

∂θ = 0. (5.66b)

On the other hand,

θ(i) = −`4s〈S〉
1

π

dξ(i)

ξ(i)
. (5.67)

One can check this solves (5.58b) using the well-known identity (2.132). If we were to
extend θ(i) e.g. to U(4 ), using (2.23) we would find

θ(i) = −`4s〈S〉
3

π

dzi

zi
, (5.68)

which satisfies

∂θ(i) = 3`4s〈S〉δ(zi)dzi ∧ dzı 6= 0. (5.69)

This explicitly shows that θ(i) only solve (5.58b) on U(i), and no holomorphic extension
is possible.

This result is trivial. Indeed, (5.61) does not admit globally defined 1-form solutions
θ, since δ2

P2 is non-trivial in cohomology. This seems to be an issue, since were flux (5.56)
only locally defined, its physical interpretation would appear obscure to us. One could
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Chapter 5. Metric perturbations from gaugino condensation

argue that (5.56) might still be globally defined for classically constant dilaton (∇mφ)(0),
since then θ enters G3 only through derivative combinations, and patching together the
θ(i) could be a well-defined operation. Unfortunately, one can see immediately that this
is not the case, since

∇mθ(i)
m −∇mθ(j)

m = −3`4s〈S〉
(
giı|zi=0δ(z

i)− gj|zj=0δ(z
j)
)
6= 0. (5.70)

This motivates us to seek an appropriated trivialization of (5.61) which would admit a
U(3)-invariant global solution, in order to proceed with our computation of the Einstein
equations for the perturbation functions.

5.3.1 Trivializing the complex geometry deformation

Let us illustrate how one could go about solving the issue of absence of global solutions
of the defining equation for θ (5.61) by directly modifying in a possibly natural way.
Contracting both sides of (5.61) with the Kähler form J yields

∇mθm = −2`4s〈S〉δ
(0 )
P2 , (5.71)

where δ
(0 )
P2 is given by (2.140), and we used14 Jydθ = i∇mθm. Local solutions to (5.61)

satisfy this equation. Let us assume (5.71) to be more fundamental than (5.61), and
let us require the global solution we are looking for to obey (5.71). This identifies the
trivialization of δ2

P2 completely. Indeed, (5.71) does admit global U(3)-invariant solutions
thanks to the fact that the topological obstruction from cohomology has been evaded
by contraction with the Kähler form. Imposing that θ is still a (1, 0)-form, so that the
construction of [31] remains applicable, yields a unique solution (up to a constant) given
by

θ = 2`4s〈S〉∂κ(4), (5.72)

where κ(4) is given by (2.101). This is indeed globally defined thanks to (2.135). Moreover,
notice that it is singular in r2 = 0 because κ(4) is, see (2.101), once it is interpreted as
globally defined, as in non-patchwise defined. Naturally, (5.72) no longer satisfies (5.61).
Instead, from direct computation and using (2.135), one finds that (5.72) obeys

dθ = −2i`4s〈S〉
(
δ2
P2 − ω

)
. (5.73)

This suggests a trivialization in cohomology of δ2
P2 by subtraction of a cohomological

counterterm ω:
δ2
P2

trivialize7−→ δ2
P2 − ω. (5.74)

Recall that ω is the compactly-supported and primitive 2-form Poincaré-dual to the P2

exceptional divisor, see §2.9.1. Clearly, (5.73) is no longer subject to the topological
obstruction against global solutions since [ω] = [δ2

P2 ]. By (2.135), a more explicit
expression for the trivialized 2-form in (5.74) is given by

δ2
P2 − ω = −1

2
ddcκ(4). (5.75)

14Recall the definition of the interior product for 2-forms α2yβ2 = 1
2
αmnβmn.
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Although still being singular in r2 = 0 (since κ(4) is), (5.75) is no longer concentrated in
r2 = 0. Notice that (5.74) effectively corresponds to subtracting from δ2

P2 exactly the
cohomologically non-trivial part, represented by the harmonic form ω, so that only its
exact component is left behind, see (2.134). Let us point out that, since ω is regular on
P2, approaching r2 ∼ 0 it holds δ2

P2 − ω ∼0 δ
2
P2 . This observation may suggest that the

original defining equation for θ (5.61) could be interpreted as correct only in the vicinity
of the exceptional divisor P2, while (5.73) is the correct modification holding everywhere
on X0. However, let us make it clear that this procedure has been engineered in order to
find globally defined complex geometry deformations while trying to be as little invasive
as possible towards the defining equation for θ (5.61), and that a putative proper physical
interpretation for it remains obscure to us.

In the rest of this work, we will use the global solution (5.72) to compute the leading
order Einstein equations. Let us make it clear that this is just Since we assume that the
dilaton is constant at lowest order, in our model (5.57) becomes

Glo
3 =

i

4
e−

φ(0)

2 ∂θm ∧ ιmΩ +
i

4
e−

φ(0)

2 (∇mθm) Ω. (5.76)

Already at this level we can see that G3 consists of a bulk (1, 2) contribution, i.e. which
is non-vanishing over the whole internal manifold, and by a (0, 3) term localized on
the 4-cycle P2 where the D7-branes and the O7-plane are wrapped. This means that
G3 sources a bulk component to the stress-energy tensor, which survives even when
considering the Einstein equations away from the P2. Therefore, we expect non-trivial
dynamics in the perturbation functions generated from this flux. Inserting the solution
for θ (5.72) in (5.76) we find

Glo
3 = −i

√
2 e−

φ(0)

2 `4s〈S〉
(

9

2π

c4

r8

1

2!
zıεık∂r

2 ∧ dz ∧ dzk + δ(0)

P2

1

3!
εıkdz

ı ∧ dz ∧ dzk
)
.

(5.77)
This is an SU(3)-invariant solution, while it spontaneously breaks the U(1) factor of U(3)
(see (2.29)) since it changes sign under the orientifold holomorphic involution σ : zi 7→ −zi,
and σ ∈ U(1). However, this is expected, because only the σ-odd components of G3

are singlets of the orientifold action, and thus are not projected out of the theory. In
particular, this solution shows that Glo

3 , F
lo
3 and H lo all scale like 〈S〉.

5.3.2 Leading order stress-energy tensor

The first step in order to find the explicit equations for the perturbation functions implied
by the Einstein equations (5.55) is to compute the leading order stress-energy tensor T lo

AB .
Taking into account the zero-order value of the background forms (5.19), from (5.26) and
(5.12) one can recast the lowest order contribution to the stress-energy tensor as

T lo
AB =

1

2κ2
10

[
e2φ(0) (∇(Aτ

)lo (∇B)τ
?
)lo

+ eφ
(0)
∣∣∣Glo

3

∣∣∣2
AB

+
1

2

∣∣∣F lo
5

∣∣∣2
AB

]
+

− 1

4κ2
10

ĝAB

[
e2φ(0)

∣∣∣(dτ)lo
∣∣∣2 + eφ

(0)
∣∣∣Glo

3

∣∣∣2]+ T
〈S〉lo
AB ,

(5.78)
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where the apex lo extracts the lowest order contribution, and it is understood that any
higher-order contribution to the r.h.s. is to be discarded. Let us stress the fact that,

for instance,
(
|G3|2

)lo
=
∣∣Glo

3

∣∣2 exactly thanks to the fact that we assume G3 to vanish

at zero-order, that is G(0)

3 = 0. We already showed in (5.77) that Glo
3 ∼ 〈S〉. In this

subsection, we build upon this result to show that

F lo
5 ∼ |〈S〉|

2 ; (5.79a)

(dτ)lo ∼ |〈S〉|2 ; (5.79b)

T
〈S〉lo
AB ∼ |〈S〉|2, (5.79c)

so that the only contribution to the stress-energy tensor at leading order comes from G3

and from T
〈S〉
AB , and

T lo
AB ∼ |〈S〉|

2 . (5.80)

While doing that, we will explicitly compute the leading order contributions to G3 and
to the stress-energy tensor of our model. Notice that (5.80) implies together with the
Einstein equations (5.55) that the linear perturbation hAB and in turn the perturbation
functions Ah, Bh, Ch, Fh, Gh scale in general like |〈S〉|2.

Leading order scaling of F5 and dτ

Consider the Bianchi identity for F5 (5.16e) in terms of G3, keeping it at the lowest order:

dF lo
5 =

i

2
eφ

(0)
Glo

3 ∧G3
lo
. (5.81)

This shows that F lo
5 ∼ |〈S〉|

2. Using (5.77) one can even compute this equation explicitly,
finding

dF lo
5 = 8 `8s |〈S〉|

2

[
− 81

4π2

c8

r12
+
(
δ(0)

P2

)2
]

d6y, (5.82)

where we used (5.24).

Let us move on to dτ . Consider first the equation of motion for F1 (5.16b) at lowest
order:

d
(

e2φ(0)
?(0) F lo

1

)
= −eφ

(0)
H lo ∧ ?(0)F lo

3 , (5.83)

where ?(0) denotes the Hodge dual with respect to the background metric. This shows
that dC0 is of order |〈S〉|2. Now consider the equation of motion for φ (5.16a) at lowest
order:

d ?(0) dφlo = −1

2
e−φ

(0)
H lo ∧ ?(0)H lo + e2φ(0)

F lo
1 ∧ ?(0)F lo

1 +
1

2
eφ

(0)
F lo

3 ∧ ?(0)F lo
3 . (5.84)

Thanks to the fact that F lo
1 ∼ |〈S〉|2, this shows that dφlo too scales like |〈S〉|2. This

implies that at leading order dτ = d
(
C0 + ie−φ

)
= F1 − ie−φdφ scales like |〈S〉|2.
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Type IIB leading order stress-energy tensor

In the previous sections we showed that Glo
3 ∼ 〈S〉, while F lo

5 ,dτ
lo ∼ |〈S〉|2, so that∣∣Glo

3

∣∣2 ∼ |〈S〉|2, while
∣∣F lo

5

∣∣2 , ∣∣dτ lo∣∣2 ∼ |〈S〉|4. On the other hand, one immediately sees
from substituting the supersymmetric solution for Glo

3 (5.77) in the quadratic part of the
D7-brane action (5.30) that the lowest order contribution from T λλAB is of order |〈S〉|2.

Since T λλλλAB is directly quadratic in the gaugino condensate, this means that T
〈S〉lo
AB

receives contributions from both T λλAB and T λλλλAB , and it is of order |〈S〉|2. This shows
that the only contribution to the stress-energy tensor at lowest order (5.78) comes from

Glo
3 and from T

〈S〉lo
AB , and it is of order |〈S〉|2. Thus, (5.78) simplifies to

T lo
AB =

eφ
(0)

2κ2
10

(∣∣∣Glo
3

∣∣∣2
AB
− 1

2
ĝ(0)

AB

∣∣∣Glo
3

∣∣∣2)+ T
〈S〉lo
AB . (5.85)

From (5.77) one can compute∣∣∣Glo
3

∣∣∣2 = 16 e−φ
(0)
`8s|〈S〉|2

[
81

4π2

c8

r12
+
(
δ(0)

P2

)2
]
. (5.86)

Likewise, the only non-vanishing components of
∣∣Glo

3

∣∣2
AB

are

∣∣∣Glo
3

∣∣∣2
ij

= −36

π
e−φ

(0)
`8s|〈S〉|2

1

r2

(
1 +

r6

c6

)− 2
3

δ(0)

P2

zizj
r2

; (5.87a)∣∣∣Glo
3

∣∣∣2
i

= 4 e−φ
(0)
`8s|〈S〉|2

[
81

4π2

c8

r12
+
(
δ(0)

P2

)2
]
g(0)

i . (5.87b)

Notice that from direct computation we found that the supersymmetric solution for G3

at leading order (5.77) satisfies ∣∣∣Glo
3

∣∣∣2
i

=
1

4

∣∣∣Glo
3

∣∣∣2 g(0)

i . (5.88)

Recalling that ĝi = 1
2gi, this implies that

T lo
i = T

〈S〉lo
i . (5.89)

As for the rest of the components of (5.85), one finds

T lo
µν = −4

`8s
κ2

10

|〈S〉|2
[

81

4π2

c8

r12
+
(
δ(0)

P2

)2
]
ηµν + T 〈S〉loµν ;

T lo
µi = T

〈S〉lo
µi ;

T lo
ij = −18

π

`8s
κ2

10

|〈S〉|2 1

r2

(
1 +

r6

c6

)− 2
3

δ(0)

P2

zizj
r2

+ T
〈S〉lo
ij ;

T lo
i = T

〈S〉lo
i .

(5.90)
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Continuity equation

The differential Bianchi identity for the Einstein tensor together with the Einstein
equations imply the continuity equation for the stress-energy tensor

∇(0)AT lo
AB = 0. (5.91)

Enforcing the continuity equation leads to a constraint on T
〈S〉lo
AB . Using the explicit

stress-energy tensor (5.90), one finds the equations

∇(0)AT
〈S〉lo
Aµ = 0; (5.92a)

∇(0)AT
〈S〉lo
Ai +

36

π

`8s
κ2

10

|〈S〉|2 c
4

r8

(
δ(0)

P2 − r2δ(0)

P2
′
)
zi = 0, (5.92b)

where δ(0)

P2
′ is the distributional derivative of δ(0)

P2 with respect to r2. Let us point out that
(5.92b) is nothing but an explicit rewriting of

∇(0)AT
〈S〉lo
Ai = −∇(0)AT

(IIB)lo
Ai . (5.93)

Notice that these equations are trivially satisfied outside of the complex cone base, thanks

to (5.36), which ensures that T
〈S〉lo
AB ∝ δ(0)

P2 . In the following, we will assume that these
equations hold everywhere on X0.

5.4 Equations of motion for the perturbation functions

Let us consider the trace-reversed perturbation

h̄AB = hAB −
1

2
ĝ(0)

ABh. (5.94)

Exploiting the fact that the unperturbed metric is Ricci-flat, R(0)

AB = 0, the Einstein
equations (5.55) and the de Donder gauge (5.53) for our R3 o SO(3)× U(3)-symmetric
perturbation can be rewritten in terms of the trace-reversed perturbation as

�(0)h̄AB + 2h̄CDR(0)

CADB = −2κ2
10T

lo
AB; (5.95a)

∇(0)Ah̄AB = 0. (5.95b)

Clearly, the trace-reversed perturbation is still of the form (5.52), with perturbation
functions that are related to the ones in hAB by:

A = 2Ah −
(

3 +
c6

r6

)
Fh +

c6

r6
Gh; (5.96a)

B = Bh; (5.96b)

C = Ch; (5.96c)

F = 2Ah −
(

5 + 2
c6

r6

)
Fh + 2

c6

r6
Gh; (5.96d)

G = 2Ah − 2

(
3 +

c6

r6

)
Fh +

(
1 + 2

c6

r6

)
Gh, (5.96e)
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where we used the explicit expression for the trace of the perturbation

h = ĝ(0)AB hAB = 4

[
−Ah +

(
3 +

c6

r6

)
Fh −

c6

r6
Gh

]
. (5.97)

Given the simpler form of the de Donder gauge in terms of the trace-reversed perturbation
(5.95b), our strategy will be to compute the Einstein equations for the trace-reversed
perturbation (5.95a)-(5.95b). Once one finds the solution for the trace-reversed pertur-
bation functions, the original perturbation functions are easily recovered inverting the
relations (5.96a)-(5.96e):

Ah =
1

4

[
5A−

(
3 +

c6

r6

)
F +

c6

r6
G

]
; (5.98a)

Bh = B; (5.98b)

Ch = C; (5.98c)

Fh =
1

2

[
A−

(
1 +

c6

r6

)
F +

c6

r6
G

]
; (5.98d)

Gh =
1

2

[
A−

(
3 +

c6

r6

)
F +

(
2 +

c6

r6

)
G

]
. (5.98e)

Let us start recalling the R3 o SO(3)×U(3)-symmetric Ansatz for the trace-reversed
metric perturbation:

h̄ABdXAdXB = 2Aηµνdxµdxν +B dr2dt+ C dcr2dt+

+

[
2(F −A)

(
1 +

c6

r6

) 1
3

δi − 2(G−A)
c6

r6

(
1 +

c6

r6

)− 2
3 ziz
r2

]
dzidz.

(5.99)

Computing the Einstein equations and the de Donder gauge (5.95a)-(5.95b) explicitly in
local coordinates, we find

h1ηµν = 8`8s |〈S〉|2
[

81

4π2

c8

r12
+
(
δ(0)

P2

)2
]
ηµν − 2κ2

10T
〈S〉lo
µν ; (5.100a)

h2ziηµt = −2κ2
10T
〈S〉lo
µi ; (5.100b)

0 =
36

π
`8s |〈S〉|2

1

r2

(
1 +

r6

c6

)− 2
3

δ(0)

P2

zizj
r2
− 2κ2

10T
〈S〉lo
ij ; (5.100c)

h3δi + h4
ziz
r2

= −2κ2
10T
〈S〉lo
i , (5.100d)

where

h1 = −4

(
∆(0)A+

1

2
Ä

)
; (5.101)

Re h2 =

(
∆(0)

∫
B dr2

)′
+

1

2
B̈; (5.102)

Im h2 =

(
∆(0)

∫
C dr2

)′
+

1

2
C̈; (5.103)
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h3 =
1

r8(c6 + r6)

[
4c6(−3c6 + r6)

(
F̃ − G̃

)
− 4r4(c6 + r6)2

(
F̃ ′′ − G̃′′

)
+

− 2r6(c6 + r6)
4
3

(
∆(0)F̃ +

1

2
¨̃F

)]
;

(5.104)

h4 =
c6

r8(c6 + r6)2

[
16c6(3c6 + 5r6)

(
F̃ − G̃

)
− 4r2(c6 + r6)(5c6 + 3r6)

(
F̃ ′ − G̃′

)
+

− r6(c6 + r6)
4
3

(
¨̃F − ¨̃G

)
+ 2r6(c6 + r6)

4
3

(
∆(0)F̃ +

1

2
¨̃F

)]
,

(5.105)
where ′ = d

dr2 , ˙ = d
dt , we defined

F̃ = F −A; (5.106a)

G̃ = G−A, (5.106b)

and we introduced the Laplacian for the background Eguchi-Hanson metric ∆(0) =
−2 g(0)i∂i∂, whose action on U(3)-symmetric functions is given by (2.141), namely

∆(0)f(r2) = − 2

r4

(
c6 + r6

)− 1
3

[
r2(c6 + r6)

d2

d(r2)2
+ (c6 + 3r6)

d

dr2

]
f(r2). (5.107)

The de Donder gauge (5.53), on the other hand, yields the following non-dynamical
constraints:

− 1

2
∆(0)

∫
B dr2 + Ȧ = 0; (5.108a)

4c6(−c6 + r6)
(
F̃ − G̃

)
− 4c6(c6 + r6)r2

(
F̃ ′ − G̃′

)
− r8(c6 + r6)

[
4F̃ ′ − Ḃ

]
= 0;

(5.108b)

Ċ = 0. (5.108c)

Once one specifies the explicit form of T
〈S〉lo
AB , from equations (5.100a)-(5.100d) one can

extract the corresponding Einstein equations valid on the whole internal manifold X0.

5.4.1 Gaugino condensate stress-energy tensor constraints

Notice that the (ij) component of the Einstein equations (5.100c) is really just another
non-dynamical constraint on the D7-brane gaugino-couplings stress-energy tensor, thanks
to our choice of coordinates in order to preserve hermiticity of the internal metric. It
effectively determines the (ij) component of the gaugino condensate stress-energy tensor
completely in this model, and replacing the ten-dimensional Newton’s constant with its
expression with respect to the string length (1.13), we get

T
〈S〉lo
ij = |〈S〉|2 72

r2

(
1 +

r6

c6

)− 2
3

δ(0)

P2

zizj
r2

, (5.109)
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This requires the (ij) component of the leading order stress-energy tensor to vanish, and
it can be recast into the more compact form

T
〈S〉lo
ij = −T (IIB)lo

ij . (5.110)

Combining (5.110) with the (i) component of the continuity equation (5.92b), one finds
the new (but dependent) constraint

− Ṫ 〈S〉loti + 2g(0)k`∂kT
〈S〉lo
`i

= 0, (5.111)

where T
〈S〉lo
ti denotes the (µ = 0, i) component of T

〈S〉lo
AB . This is trivially satisfied outside

of the P2 base.
As we already explained below (5.39), the divergent terms on the r.h.s. of (5.100a)

should cancel in order for the equation to be well-defined. This puts a further constraint
on the external components of the gaugino condensate stress-energy tensor:

T 〈S〉loµν = 16π|〈S〉|2
(
δ(0)

P2

)2
ηµν + T̃ 〈S〉loµν , (5.112)

where we used (1.13), and the leftover piece T̃
〈S〉lo
µν only contains terms proportional to

δ(0)

P2 and not
(
δ(0)

P2

)2
.

A gaugino condensate stress-energy tensor Ansatz

Let us show that the gaugino condensate stress-energy tensor Ansatz (5.37) proposed in
[49] satisfies all consistency constraints from our explicit analysis (5.109, 5.111, 5.112).
Let us start by noticing that in our non-compact setting, ν defined in (5.34) vanishes, so
that (5.40) holds and

T 〈S〉lo = T λλlo. (5.113)

Plugging the global solution for G3 (5.77) into the explicit formulas (5.37a, 5.37b) we
find

T 〈S〉loµν = 16π|〈S〉|2
(
δ(0)

P2

)2
ηµν ; (5.114a)

T
〈S〉lo
ij = |〈S〉|2 72

r2

(
1 +

r6

c6

)− 2
3

δ(0)

P2

zizj
r2

. (5.114b)

This straightforwardly satisfies (5.109, 5.111, 5.112), with

T̃ 〈S〉loµν = 0. (5.115)

A slightly more general Ansatz compatible with (5.109, 5.111, 5.112) would be

T̃ 〈S〉loµν = α |〈S〉|2 8π

c2
δ(0)

P2ηµν , (5.116)

where α ∈ R, and the numerical normalization has been chosen for later convenience.
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5.4.2 Simplifying assumptions

Due to (5.36), the gaugino condensate stress-energy tensor is completely localized on the
P2, therefore its unique role in (5.100a)-(5.100d) is to contribute to fixing some boundary
conditions for the solutions. Let us consider the Ansatz for the gaugino condensate
stress energy tensor given by (5.112, 5.114b, 5.116). This is a partly literature-motivated
assumption, which has the advantage of leading to simpler boundary conditions; one
recovers the proposal of [49] setting α = 0. Moreover, it is clear from the explicit
expressions (5.104) and (5.105) that the l.h.s. of (5.100a)-(5.100d) drastically simplify
assuming F̃ = G̃. Using the definitions (5.106a, 5.106b) and the relations (5.96a)-(5.96e),
it is trivial to see that this is equivalent to asking

Fh = Gh. (5.117)

More precisely the relations of the trace-reversed perturbation functions with the proper
perturbation functions (5.98a)-(5.98e), under the assumption (5.117), become

Ah =
1

4

(
2A− 3F̃

)
; (5.118a)

Bh = B; Ch = C; (5.118b)

Fh = Gh = −1

2
F̃ . (5.118c)

From the non-perturbative form of the perturbated internal metric (5.51b), one sees that
this amounts to assuming that the internal geometry does not receive gaugino-condensate
corrections up to a conformal factor e2Fh .

Thus, assuming the Ansatz for the gaugino-condensate stress-energy tensor (5.112,
5.114b, 5.116), together with the further requirement (5.117), the Einstein equations
(5.100a)-(5.100d) and the de Donder gauge conditions (5.108a)-(5.108c) reduce to the
equations of motion

∆(0)A+
1

2
Ä = `8s|〈S〉|2

(
− 81

2π2

c8

r12
+
α

c2
δ

(0)
P2

)
; (5.119a)(

∆(0)

∫
B dr2

)′
+

1

2
B̈ = 0; (5.119b)(

∆(0)

∫
C dr2

)′
+

1

2
C̈ = 0; (5.119c)

∆(0)F̃ +
1

2
¨̃F = 0; (5.119d)

−1

2
∆(0)

∫
B dr2 + Ȧ = 0; (5.119e)

4F̃ ′ − Ḃ = 0; (5.119f)

Ċ = 0. (5.119g)
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Let us stress that these equations hold over the whole internal manifold X0, namely they
already encompass boundary conditions due to the stress-energy tensor15.

5.5 Solutions

Let us look for solutions of the PDE set (5.119a)-(5.119g). Recall that these describe the
dynamics of the trace-reversed perturbations functions, with the assumptions explained
above (5.119a).

Let us start by noting that the system (5.119) does not admit trivial solutions, since
(5.119a) imposes that A 6= 0. Therefore, fluxes from gaugino condensation do source non-
trivial metric perturbations. In the following, first we are going to derive the most general
time-independent solutions, and we will show that these depend of three real parameters.
Secondly, we are going to exhibit a class of time-dependent solutions for (5.119a)-(5.119g),
which have the property of growing indefinitely with time. We argue that these solutions
are the ones relevant for our discussion, and we show that by comparing with the four-
dimensional results from §4 one can fix the perturbed ten-dimensional solution, although
not completely. This singles out a class of candidates, depending on four real parameters,
for a leading order description of gaugino condensation from ten dimensions at the level
of the metric in this model.

5.5.1 Stationary solutions

Let us assume time-independence of the (trace-reversed) perturbation functions A,B,C, F .
First, let us consider the equation for A (5.119a). It is convenient to introduce dimen-
sionless counterparts to the above quantities:16

A =:
`8s
c2
|〈S〉|2A; B =:

`8s
c
|〈S〉|2 B;

F̃ =:
`8s
c2
|〈S〉|2 F̃ ; C =:

`8s
c
|〈S〉|2 C;

(5.120)

u :=
r2

c2
. (5.121)

Then, (5.119a) can be recast as

∆(0)
u A = − 81

2π2

1

u6
+ αδ

(0)
P2 , (5.122)

where we introduced the dimensionless background Hodge-de Rham Laplacian ∆(0)
u :=

c2∆(0), where ∆(0) is defined in (2.141), namely

∆(0)
u f(u) = − 2

u2

(
1 + u3

)− 1
3

[
u(1 + u3)

d2

du2
+ (1 + 3u3)

d

du

]
f(u). (5.123)

15Naturally, not all boundary conditions are specified by the stress-energy tensor delta-functions. A
complete set of boundary conditions would determine the solution to the equations (5.119) uniquely, and
in §5.5 we show that this is not the case.

16Recall that B and C have dimension `−1, while A,F,G are dimensionless.
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4 5
u

2

4

6

8

A(u)

(a) α = 0 (Ansatz from [49])

4 5
u

-1

1

2

3

4

A(u)

(b) α = − 6
π − 10

Figure 5.1: Profile of As(u) defined in (5.124) for two values of α, and c1 = 0. The function
always diverges to +∞ in u ∼ 0+ and vanishes for u ∼ +∞. However, for α ≥ − 6

π it has no

stationary points, while for α < − 6
π it exhibits one in u? =

(
9

|6+πα|

) 1
3

.

Using (2.140), the solution of (5.122) is given by

As(u; c1) = c1 +
α

2
κ(4)(u) +

9

4π2

(1 + u3)
1
3

u3
, (5.124)

where κ(4) is the local potential for the harmonic form ω Poincaré-dual to the exceptional
divisor P2 on the local patch U(4) away from the P2, defined in (2.101), and c1 ∈ R is

to be fixed. Notice that c1 = limu→∞As(u; c1), and that the δ
(0)
P2 term in (5.122) is

exactly the boundary condition that fixes one of the two integration constants of the
homogeneous part of the solution (5.124). A plot of (5.124) is displayed in figure 5.1.
This solution displays an unavoidable singularity in r2 = 0, namely reaching the P2 base,
irrespectively of the value of α. Naturally, its physical origin is gaugino condensation
occurring on the P2. More precisely, the logarithmic divergence from κ(4) (see (2.105)) is
due to the localized contribution from the external component of the gaugino condensate
stress-energy tensor (5.116), while its polynomial divergence ∼ u−3 is essentially due
again to the singularity of κ(4) in r2 = 0, which makes the global flux solution G3 in
(5.77) singular as well.

Let us move on to B. It is more convenient to solve its non-dynamical constraint
(5.119e) and then make sure that it solves its dynamical equation (5.119b). In the
time-independent case, (5.119e) reduces to(

∆(0)

∫
B dr2

)′
= 0. (5.125)

Then, (5.125) admits the only solution
∫
Bs dr2 = const , namely

Bs = 0, (5.126)
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which also trivially solves (5.119b). Notice that we took into account the fact that no
delta-function appears on the r.h.s. of (5.125).

Next, let us consider C. Due to (5.119g), it is forced to always be time-independent.
Then, in dimensionless quantities (5.119c) becomes

d

du

(
∆(0)
u

∫
C du

)
= 0. (5.127)

The general solution to (5.127) is given by17

Cs(u) = c2 u
2
(
1 + u3

)− 2
3 , (5.128)

where c2 ∈ R to be fixed. Once again, the absence of delta-functions on the r.h.s.
of (5.127) sends to zero one integration constant, otherwise (5.128) would receive an

additional term +c3
dκ(4)

du . Notice that c2 = limu→∞ Cs(u).
Finally, let us consider F . In the time-independent case, (5.119f) is simply

F̃ ′ = 0. (5.129)

Then, (5.129) is solved by
F̃s = c3, (5.130)

where c3 ∈ R to be fixed. Recalling the definition (5.106a), this is equivalent to Fs =
c3 +As, where As is given by (5.124).

Therefore, the full stationary solution for the trace-reverse perturbation functions is
given by (5.124, 5.126, 5.128, 5.130), and it depends on three real parameters c1, c2, c3.

5.5.2 Time-dependent solutions

Let us drop the time-independence assumption from the previous section, and let us
introduce the dimensionless time coordinate

s :=
t

c
. (5.131)

Let us consider the dynamical equation for A (5.119a). We can easily devise two classes
of time-dependent solutions, one oscillating and one hyperbolic:

A(u, s) = As(u; c1) + β+(u) cos(
√

2s) + γ+(u) sin(
√

2s) + c2s; (5.132a)

A(u, s) = As(u; c1) + β−(u) cosh(
√

2s) + γ−(u) sinh(
√

2s) + c2s, (5.132b)

where As(u; c1) is the stationary solution (5.124) depending on the real parameter c1,
c2, c3 ∈ R are integration constants, and β± and γ± are eigenfunctions of the dimensionless
Hodge-de Rham Laplacian associated to the eigenvalues ±1, namely

∆(0)
u β±(u) = ±β±(u), (5.133)

17Using the fact that a particular solution for ∆(0)f(r2) = 1 is fp(r
2) = − 1

6
(c6 + r6)

1
3 .
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and the same holds for γ±. Since we look for a ten-dimensional description of the runaway
behavior of the ρ chiral field found in §4.5.3, and since at early times Re ρ departs
from its initial value scaling like t2 (see (4.122)), it seems promising to consider the
solution increasing with time (5.132b). Thus, here we are not concerned with the physical
interpretation of a perturbation solution (5.132a) oscillating with time. Let us stress that
the existence of solutions with cosh and sinh growth in time, like (5.132b), is due to the
fact that the internal space X0 is non-compact. The spectrum of the Hodge-de Rham
Laplacian on a compact manifold is non-negative, therefore β− and γ− do not exist on a
compact space, and in turn (5.132b) would be ill-defined. In the present case, there is no
closed form for β− and γ−, but approximations for u ∼ 0 and u ∼ ∞ are easily found
using the explicit expression (5.123); since they are solutions of a second order linear
ODE, they each depend on two free real parameters.

Let us look for the solution for the other perturbations functions B,C, F̃ associated
with the hyperbolic solution for A (5.132b). Solving the de Donder condition for B
(5.119e), using the input data (5.132b), we find18

B(u, s) = −2
√

2

(
dβ−(u)

du
sinh(

√
2s) +

dγ−(u)

du
cosh(

√
2s)

)
− c2

3
u2(1 +u3)−

2
3 . (5.134)

One can check by direct computation that this also solves its dynamical equation (5.119b).
Since C is decoupled from the other perturbation functions, its general solution is

still given by

C(u) = c3 u
2(1 + u3)−

2
3 . (5.135)

Finally, F̃ is found solving its de Donder constraint (5.119f) using the input data
(5.134). One finds

F̃(u, s) = −
(
β−(u) cosh(

√
2s) + γ−(u) sinh(

√
2s)
)

+ c4s+ c5, (5.136)

where c4, c5 ∈ R are integration constants. Once can check by direct computation that
this also solves its dynamical equation (5.119d).

Thus, the full solution is given by (5.132b, 5.134, 5.135, 5.136), and it depends on
nine real parameters: c1, . . . , c5 and four from β− and γ−.

5.5.3 Comparison with the four-dimensional analysis

Let us use the results from §4.5.3 to fix some of the free parameters of the time-dependent
solution in §5.5.2, as well as the Eguchi-Hanson parameter c, which is defined in (2.63),
and which determines the unperturbed background. In order to do that, we will compute
the time evolution at early times of the chiral field Re ρ, defined in (4.10), associated to
the time-dependent ten-dimensional solution found in §5.5.2, and we will match it with
the leading order early time evolution of Re ρt found in (4.126).

Let us stress that this is a trivial matching, in the sense that the number of free
parameters exceeds the number of independents constraints, as we will see. Nonetheless,

18Using again footnote 17.
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this is interesting to carry out, since it gives some insight on how some of the free
constants of the ten-dimensional solutions might be fixed. Moreover, let us point out
that, due to the fact that our ten-dimensional analysis has been performed at leading
order in |〈S〉|2, we expect it to produce correct results only at early times, when the
perturbation is small. More precisely, we expect the time-dependent solution in §5.5.2 to
be physically sensible only for times

t /
1

`2s |〈S〉|
. (5.137)

This is in agreement with the characteristic time of early expansion (4.127), coming from
the four-dimensional analysis.

The strategy to fix some of the real parameters of the time-dependent solution
presented in §5.5.2 is to compute from a ten-dimensional definition the chiral field Re ρ,
whose dynamics is described by the four-dimensional low-energy EFT (4.88) whose
construction is found in chapter 4. More precisely, by comparing the time-dependence
of Re ρ from its ten-dimensional definition with the early time expansion of low-energy
runaway solutions, which was derived in §4.5.3, equation (4.122), we will be able to fix
some free parameters.

Unfortunately, for multiple reasons it is not clear how one should define the four-
dimensional chiral field Re ρ in a ten-dimensional setting. Indeed, one could use the
non-perturbative definition Re ρ ∼

∫
P2 e−4AdVol that we derived in (4.10), which includes

the warp factor; or one could neglect the warp factor, given that in the analysis of §4 once
the D3-branes are not included no warp factor survives (neglecting curvature corrections
from D7-branes), so that we would get Re ρ ∼

∫
P2 dVol. Moreover, Re ρ is defined up to

field redefinitions in the context of its EFT, so that it is not clear how this invariance
could be restored from a ten-dimensional definition. Nevertheless, let us proceed. In the
following we will adopt both definitions of Re ρ, and we will point out the differences
between the two approaches and their outcomes.

Re ρ from warped volume

Let us compute the real part of the ρ chiral field using its non-perturbative definition
(4.10) employing the perturbed metric (5.51a, 5.51b), with the trace-reversed perturbation
solutions (5.132b, 5.134, 5.135, 5.136). Using the relation (5.118a), we find

Re ρt =
1

`4s

∫
P2

e−4Ah(r2=0,t) dVol(P2) =
1

`4s

∫
P2

e−2A(r2=0,t) dVol(0)(P2), (5.138)

where, using (5.24),

dVol(P2) =
√
g6 d4y = 8e6Fh(r2=0,t)d4y = e6Fh(r2=0,t)dVol(0)(P2). (5.139)

Notice that (5.138) is ill defined, since As(r
2) in (5.124) diverges in r2 = 0 due to

gaugino condensation, as we explained below its expression. How to interpret and how
to treat this divergence is a delicate point, to which by no means do we intend to give
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a definite answer. We could argue, however, that this might be seen as a divergence
associated to a quantum effect, which would make it natural to try to renormalize it.
In fact, as we explained in §1.3.1, the need for counterterms in the on-shell gaugino
condensate action has been established by [50], therefore this procedure could even seem
in principle justified to some extent.

Therefore, let us try to sketch a simple renormalization procedure for Re ρ in (5.138).
The most straightforward way to do this is to introduce the regulator ε > 0 and to define

Aεs(u) := As(u+ ε; cε1) (5.140)

where cε1 ∈ R, and As(u; c1) is defined in (5.124). In this way, Aεs(0) is well-defined, and
the physical solution is obtained in the limit ε → 0, once cε1 is fixed. Thus, once the
regularization procedure described above is applied, (5.138) can be expanded at leading
order in the gaugino condensate and for small times, finding

Re ρt =
Vol(0)(P2)

`4s
− 2`4s|〈S〉|2

Vol(0)(P2)

c2
(Aεs(0) + β−(0)) +

− 2`4s|〈S〉|2
Vol(0)(P2)

c3

(√
2γ−(0) + c2

)
t− 2`4s|〈S〉|2

Vol(0)(P2)

c4
β−(0) t2 + o0(t2),

(5.141)
where Vol(0)(P2) is given by (2.97). Let us point out that, in this framework, the Eguchi-
Hanson parameter c controlling Vol(0)(P2) should not receive quantum corrections, since
it determines the vacuum solution.

Let us comment on the values at u = 0 of the eigenfunctions β−(0) and γ−(0). As we
already mentioned below (5.133), they depend on two real parameters each, and they do
not admit a closed form representation. However, imposing them to be real-valued, for
u ∼ 0 they can be approximated at leading order by

β−(u) ∼0 a1I0

(√
2

3
u

3
2

)
+ a2ReK0

(√
2

3
u

3
2

)
; (5.142a)

γ−(u) ∼0 b1I0

(√
2

3
u

3
2

)
+ b2ReK0

(√
2

3
u

3
2

)
, (5.142b)

where In(z) and Kn(z) are the modified Bessel functions of I and II kind respectively,
and a1, a2, b1, b2 ∈ R. Their relevant asymptotics are

I0

(√
2

3
u

3
2

)
∼0 1 +O(u3); (5.143a)

ReK0

(√
2

3
u

3
2

)
∼0

3

2
log

1

u
+O(1). (5.143b)

Once a1, a2, b1, b2 are fixed, the eigenfunctions are completely specified over the whole
internal manifold X0. In order not to introduce divergences which are not physically due
to gaugino condensation, let us set

a2 = b2 = 0. (5.144)
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Comparing (5.141) with the P2 expansion found from the four-dimensional EFT
(4.126) leads to the following identifications:

c =

(
Re ρ0

2π2

) 1
4

`s; (5.145a)

cε1 =
3

π

(
Re ρ0 −

3

4π

)
− α

4

(
3

π
log

1

ε
+

3

2π
log 3− 1√

3

)
− 9

4π2

1

ε3
+O(ε); (5.145b)

c2 = −
√

2b1; (5.145c)

a1 = − 3

π

(
Re ρ0 −

3

4π

)
. (5.145d)

Here we set the universal modulus a of the four-dimensional analysis to one due to the
choice (5.21). The initial value of the Re ρ field identifies the compactification, therefore
it is natural for all other parameters to depend on it. Let us comment these assignments:
(5.145a) fixes the Eguchi-Hanson parameter in terms of the initial value of Re ρ, and it is
equivalent to setting

Vol(0)(P2)

`4s
= Re ρ0; (5.146)

(5.145b) includes the counterterms needed to cancel the singularity of As(u) in u = 0, and
the matching specifies the precise form of the finite terms; (5.145c) relates two parameters
of the solution in §5.5.2 in order to cancel time-independent quantum corrections; (5.145d)
together with (5.144) identifies the eigenfunction β−(0) completely. It is important to
note that this appears to be a trivial matching procedure, since the number of free real
parameters involved exceeds the number of independent constraints. Nonetheless, it can
be regarded as a method to fix some parameters of the ten-dimensional solution found in
§5.5.2.

In conclusion, this procedure fixes five out of nine parameters of the time-dependent
solution, and the vacuum Eguchi-Hanson parameter c. There remain four real constants to
be fixed, so that we still lack a precise ten-dimensional realization of the four-dimensional
phenomenon of P2 expansion. This could be achieved by imposing to reproduce some
further physical quantity able to determine the remaining constants.

Re ρ from unwarped volume

Let us define the chiral field Re ρ neglecting the warping in (4.10). Therefore, using the
relation (5.118c) and the decomposition (5.139), we find

Re ρt =
1

`4s

∫
P2

dVol(P2) = e−3F̃ (r2=0,t)Vol(0)(P2). (5.147)

Here F̃ is defined by (5.136). Therefore, expanding at leading order in the gaugino
condensate and for small times, we find

Re ρt =
Vol(0)(P2)

`4s

{
1− 3|〈S〉|2 `

8
s

c2

[
c5 − β−(0) +

(
c4 −

√
2γ−(0)

) t
c
− β−(0)

t2

c2
+ o0(t2)

]}
.

(5.148)
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Like before, we want to compare this expression with the early time evolution (4.122)
from the four-dimensional EFT analysis.

Let us assume (5.144) so that the eigenfunctions do not introduce any divergence. It is
apparent from (5.148) that neglecting the warp factor in the definition of Re ρ technically
ameliorated the situation, since we no longer have to deal with diverging quantities. The
comparison yields the identifications

c =

(
Re ρ0

2π2

) 1
4

`s; (5.149a)

c5 = a1; (5.149b)

c4 =
√

2b1; (5.149c)

a1 =
2a

π

(
Re ρ0 −

3

4π

)
. (5.149d)

Here, a1 and b1 have been defined in (5.142). Like in the case of Re ρ defined as warped
volume, this procedure fixes five real parameters and the Eguchi-Hanson parameter.
However, all of these are finite, since no renormalization procedure has been invoked.

Stationary solution interpretation

Let us note that, in the perspective of matching the ten-dimensional perturbative solutions
with the four-dimensional findings, the stationary solutions in §5.5.1 could be interpreted
as the ten-dimensional realization of the dS unstable vacuum found in (4.104), shown
in figure 4.2. However, this would require fixing its three free real constants by some
non-trivial procedure which does not appear clear to us.
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Appendix A

Details on the geometry of the P2
cone

A.1 Chain complexes

Given n+ 1 groups Gi, a chain complex is a sequence of groups and homomorphisms

G0
f1−→ G1

f2−→ G2
f3−→ . . .

fn−→ Gn (A.1)

such that im fi ⊆ ker fi+1. An exact sequence is a chain complex (A.1) such that
im fi = ker fi+1. Therefore, a short sequence

0→ A
f→ B

g→ C → 0 (A.2)

is exact iff f is an injective morphism and g is a surjective morphism. This implies that

C ' B/im f. (A.3)

In such case, if A,B, and C are vector spaces,

dimB = dimA+ dimC. (A.4)

A short exact sequence (A.2) splits iff there exists a homomorphism h : C → B such
that g ◦ h = idC ; interpreting C as the equivalence classes of elements of B with respect
to the action of im f , this amounts to requiring that an equivalence class [c] ∈ C is sent
through h to the corresponding element c ∈ B modulo the action of im f . In this case, if
A,B and C are abelian groups (for instance, if they are vector spaces), im f is abelian as
well, therefore we have the isomorphism B ' A⊕ C.
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Appendix A. Details on the geometry of the P2 cone

A.2 Relative homology and cohomology

Given a non-compact1 D-dimensional smooth manifold X with boundary Y = ∂X, we
define the relative n-chains as n-chains of X up to n-chains of Y :

Cn(X,Y ;R) =
Cn(X;R)

Cn(Y ;R)
. (A.5)

The boundary operator ∂ naturally extends to the relative chains complex, therefore
defining the relative homology groups Hn(X,Y ;R) = ker ∂n+1/im ∂n. A relative n-cycle
is a n-chain of X α ∈ Cn(X) such that its boundary is zero up to an (n− 1)-chain of Y ,
namely ∂α ∈ Cn−1(A). The relative cohomology groups Hn(X,Y ;R) are defined as the
dual of Hn(X,Y ;R).

The relation between the relative homology groups and the absolute homology groups
is described as follows. It is well defined the short exact sequence of real n-chains

0 −→ Cn(Y ;R)
i−→ Cn(X;R)

j−→ Cn(X,Y ;R) −→ 0 (A.6)

where i : Y ↪→ X is the natural inclusion, and j : X →→ X/Y is the natural projection2.
Dualizing (A.6) we get a short exact sequence for n-cocycles

0 −→ Cn(X,Y ;R)
j?−→ Cn(X;R)

i?−→ Cn(Y ;R) −→ 0. (A.7)

With a little work, this implies the existence of a long exact sequence of cohomology
groups:

0 −→ H0(X,Y ;R) −→ . . .

. . . −→ Hn(X,Y ;R)
j?−→ Hn(X;R)

i?−→ Hn(Y ;R)
δ−→ Hn+1(X,Y ;R) −→ . . .

(A.8)

where i? and j? are the lift of i and j to cohomology, and δ is the dual operator of ∂
lifted to cohomology. The analogous sequence for homology groups is obtained from
dualizing (A.8):

. . . −→ Hn(Y ;R)
i?−→ Hn(X;R)

j?−→ Hn(X,Y ;R)
∂−→ Hn−1(Y ;R) −→ . . .

. . . −→ H0(X,Y ;R) −→ 0.
(A.9)

The long exact sequences (A.8) and (A.9) hold equally well in the case of integral
coefficients, i.e. substituting R with Z. More details can be found in [14].

1Meaning non-compact and with boundary.
2By an abuse of notation, we denote by the same symbol the pointwise maps and their lift to chain

complexes.
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Spin structure

A.3 Spin structure

Proposition A.3.1. The P2 base in OP2(−3) is not Spin.

Proof. The divisor E is Spin if and only if its normal bundle NE is Spin [10]. On the
other hand, if EC is a complex vector bundle, and if ER is the associated real vector
bundle, then the second Stiefel-Whitney class of the latter is given by the first Chern
class of the former mod 2, namely

w2(ER) = c1(EC) mod 2. (A.10)

By the adjuction formula, NE ' OKE (E)|E . Moreover, by the bijection induced by the
first Chern class between line bundles over E (up to isomorphisms) and divisors (up
to linear equivalences), we get [c1(NE)] = [E] in H2(E;Z). Therefore, for any 2-cycle
C ⊂ E one has ∫

C
c1(NE) =

∫
C

[E] = C · E (A.11)

and we showed there is only one independent homology class of curves in P2, that is
[C] = [Ci] = [P1], so that using (2.14) we get∫

C
c1(NE) = −3. (A.12)

This is odd, therefore w2(E) 6= 0 and E is not Spin.

A.4 Hodge theorem, Lefschetz decomposition and Kähler
identities

On a compact3 Kähler manifold M , the Hodge theorem guarantees that each cohomology
class contains exactly one harmonic representative, making Hk(M) isomorphic to the
bk(M)-dimensional vectorial space of harmonic k-form on M , denotes Hk(M). However,
in general for M non-compact4 this does not hold. What fails here is that d† is no longer
the L2-dual operator of d, namely

(dωp, λp+1) 6= (ωp,d
†λp+1). (A.13)

Some consequences of this are that not all harmonic forms ω are such that dω = d†ω = 0,
and that equations in cohomology translate in pointwise equations for harmonic forms
up to exact and co-exact terms. Moreover, in the non-compact case one has to deal with
both relative and absolute (co)homologies, which suggests one should work with two
separate sets of harmonic forms. Therefore, one does not expect every cohomology class
to have a harmonic representative, nor it to be unique.

3Meaning compact and without boundary.
4Meaning non-compact and with boundary.
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Appendix A. Details on the geometry of the P2 cone

In the case of a compact Kähler m-fold M , it is well known that its cohomology
groups H•(M) are generated by its primitive cohomology, as specified by

Hk(M) =
⊕
s≥0

0≤k−2s≤m

Ls+

(
PHk−2s(M)

)
, (A.14)

where L+ is the raising operator of the Lefschetz SU(2), which acts on harmonic forms
by wedging them with the Kähler form5, i.e.

L+ :Hp(M)→ Hp+2(M)

α 7→ J ∧ α
(A.17)

whereHp(M) is the vector space of harmonic p-forms on M , and the primitive cohomology
groups are defined as

PHm−r(M) = ker
(
Lr+1

+ : Hm−r(M)→ Hm+r+2(M)
)
. (A.18)

Equivalently stated, a harmonic p-form is primitive iff p ≤ m and it is annihilated by
wedging it with Jm−p+1. Notice that for p = 0, 1 all harmonic p-forms are primitive.

One can show that for a ωp ∈ Hp(M), 2 ≤ p ≤ m, Jm−p+1 ∧ ωp = 0 is equivalent to
ιJωp = 0, where ιJ is the interior product with the Kähler form, i.e.

ιJωp =
1

2 · (p− 2)!
Jmnωmnr1...rp−2dxr1 ∧ . . . ∧ dxrp−2 . (A.19)

Therefore, one could also define primitive forms as harmonic p-forms ωp, p ≤ m, such
that ιJωp = 06. For this reason, given a closed p-form ωp ∈ Hp(M), p ≥ 2, we will refer
to

ιJωp = 0 (A.20)

as the primitivity condition. Note that it suffices to define L+ on harmonic forms thanks
to the Hodge theorem. In this context, (A.14) is called Lefschetz decomposition of Hk(M),
and it means that a harmonic k-form on M can be uniquely decomposed into a linear
combination of primitive forms wedged with the suitable power of J . In other words, all

5Note that wedging a harmonic p−form αp with another harmonic 2-form β does not yield a harmonic
form in general, but it does if β is the Kähler form. Indeed, d(αp ∧ J) = 0 by Kählerity; on the other
hand, by direct computation, for a generic p-form αp it holds

d†(J ∧ αp) = dcαp + J ∧ d†αp (A.15)

in the convention d† = (−1)D(p+1)+1 ?d?, where D = 2m is the dimension of the (possibly quasi-complex)
manifold. Since M is a complex manifold, dαp = 0 is equivalent to ∂αp = ∂αp = 0, which implies
dcαp = 0, and by harmonicity it also holds d†αp = 0, therefore

d†(J ∧ αp) = 0, (A.16)

which shows that J ∧ αp is harmonic too.
6For p = 0, 1 it is assumed always satisfied.
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Hodge theorem, Lefschetz decomposition and Kähler identities

the homology groups of M are generated as linear combinations of Lefschetz multiples
of spin 0 ≤ ` ≤ m−p

2 . This is a consequence of the hard Lefschetz theorem, and it is
compatible with the Hodge (p, q) decomposition. In the non-compact case, in general the
Lefschetz theory does not apply. Therefore, we do not expect a Lefschetz decomposition
to exist at all, nor to be unique. Nonetheless, primitive representatives of cohomology
classes can be of interest.

In this thesis we see by direct computation that the compactly supported cohomology7

of OP2(−3) admits harmonic representatives for all cohomology classes, and that the
Lefschetz decomposition appears to hold for them. Equivalently, we assume the Hodge
theorem and the Lefschetz theory to apply to OP2(−3) as well (in the sense of the previous
statement), and we do not run into any trouble8.

Finally, let us mention some technical results, which are of great aid in dealing
with direct computations on Kähler manifolds. Let αp ∈ HP (M), and let us define the
operators

L+(αp) = αp ∧ J (A.21a)

L−(αp) = L†+(αp) = ιJαp (A.21b)

L3(αp) =
p−m

2
αp (A.21c)

One can show from direct computations that L+, L− and L3 generate the SU(2) algebra
([23]):

[L+, L−] = 2L3 (A.22a)

[L3, L±] = ±L± (A.22b)

Moreover, they obey the following commutation rules with respect to the Hodge dual
([25]):

L+? = ?L− (A.23a)

L−? = ?L+ (A.23b)

[L3, ?] = 0. (A.23c)

Defining as usual the angular momentum operator L2 = L+L− + L2
3 − L3, one easily

finds from these relations that

[L2, ?] = 0. (A.24)

This means that the each element of the same Lefschetz spin multiplet transforms in the
same representation of the Hodge duality.

7Recall that in this case the absolute and the compactly supported cohomologies are isomorphic up to
cyclic terms.

8This does seem to be guaranteed by theorem (4.8) of [2].
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Appendix A. Details on the geometry of the P2 cone

Furthermore, the following identities hold for any Kähler manifold M (in particular
for M non-compact): [

L+, ∂
]

= [L+, ∂] = 0 (A.25a)[
L−, ∂

†
]

=
[
L−, ∂

†
]

= 0 (A.25b)[
L+, ∂

†
]

= −i∂ (A.25c)[
L+, ∂

†
]

= i∂ (A.25d)[
L−, ∂

]
= −i∂† (A.25e)

[L−, ∂] = i∂
†

(A.25f)

These can be equivalently recast in the following form:

[L+, d] = [L+, d
c] = 0 (A.26a)[

L−, d
†
]

=
[
L−,d

c†
]

= 0 (A.26b)

[L−, d] = −dc† (A.26c)[
L+, d

†
]

= dc (A.26d)

[L−, d
c] = d† (A.26e)[

L+, d
c†
]

= −d (A.26f)

These are known as the Kähler identities.

This allows us to prove the following simple, but convenient technical fact:

Lemma A.4.1. Let M be a Kähler manifold, ωp ∈ Ωp(M) a p-form on M . If ωp is
closed (dωp = 0) and satisfies the primitivity condition (A.20), then it is harmonic, i.e.

∆ωp = 0, ∆ = dd† + d†d. (A.27)

Proof. A p-form satisfying dωp = d†ωp = 0 is harmonic even if M is non-compact
(although we already noted that in the non-compact case not all harmonic forms satisfy
these relations). Let us assume ωp is closed and it obeys the primitivity condition. Then
dωp = 0 by hypothesis. Being M complex, this is equivalent to ∂ωp = ∂ωp = 0. On the
other hand, using again the fact that M is a complex manifold to split the differential in
holomorphic and antiholomorphic parts and the Kähler identities (A.25e, A.25f),

d†ωp = ∂†ωp + ∂
†
ωp =

[
L−, i∂

]
ωp − [L−, i∂]ωp = −i∂(ιJωp) + i∂(ιJωp) = 0. (A.28)
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A.5 Harmonic forms and other representatives

A.5.1 Primitive 2-form derivation

Let us look for harmonic representatives, if any, for the (1, 1)-cohomology class Poincaré-
dual to the resolved divisor P2 Recall that P2 = {r2 = 0}9, which is U(3)-invariant,
therefore let us consider a U(3)-symmetric Ansatz for the dual 2-form10:

ω = iA(r2)dzi ∧ dzi + iB(r2)zizdz
i ∧ dz. (A.29)

Closure easily implies B = A′, so that

ω =
1

2
d
(
A(r2)dcr2

)
. (A.30)

We showed in lemma A.4.1 that we can now just enforce primitivity (A.20) to find
automatically harmonic and primitive representatives for the cohomology. In the p = 2
case, the primitivity condition becomes

giωi = 0. (A.31)

Using (2.67) this takes the form(
3 +

c6

r6

)
A+

(
1 +

c6

r6

)
A′ = 0. (A.32)

This can be recast as
d

dr2
log
(
r2A(r2)

)
= − 2

r2
(

1 + c6

r6

) , (A.33)

which is solved by

A(r2) =
a

r2
(

1 + r6

c6

) 2
3

, (A.34)

where a ∈ R. This solution can be recast in the form

ω =
1

2
ddcκ(4)(r

2) (A.35)

where we introduced the local potential

κ(4)(r
2) =

∫
A(r2)dr2. (A.36)

9From the homogenous coordinates point of view, P2 : Z4 = 0, which is U(3)-invariant because Z4 is.
10We consider the Ansatz on U(4) since this is the maximal U(3)-invariant coordinate neighborhood.

The i is needed to make ω real, i.e. ω = ω, which is a necessary condition to being Poincaré-dual to a
divisor.
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We found a family of linearly dependent primitive harmonic (1, 1)-forms. In order to
fix the normalization and single out the dual form to P2, we impose the intersection
products involving the non-compact holomorphic curves11 (2.15), e.g. choosing C̃3:∫

C̃3

ω = 1. (A.37)

On the other hand, recalling that C̃3 = {z1 = z2 = 0} on U(4), that ∂X0 = S5/Z3,

decomposing z3 = reiθ3 and using Stokes’ theorem we get∫
C̃3

ω =
1

2

∫
∂C̃3

A(r2)dcr2 =
1

2

∫
∂C̃3

A(
∣∣z3
∣∣2)
z3dz3 − z3dz3

i

=
2π

3

(
lim
r2→∞

r2A(r2)− lim
r2→0

r2A(r2)

)
= −2πa

3
.

(A.38)

Thus, imposing [ω] = [E] fixes

a = − 3

2π
, (A.39)

and we find

A(r2) = − 3

2π

1

r2
(

1 + r6

c6

) 2
3

. (A.40)

A.5.2 Testing the Lefschetz decomposition

In §A.5.1 we showed by direct computation that H1,1(X0, Y0;Z) does have one linearly
independent cohomology class with harmonic and primitive representative, as one would
expect from the Hodge theorem and the Lefschetz decomposition:

H1,1(X0;R) = PH1,1(X0;R)⊕
(
PH0(X0;R)

)
J. (A.41)

One can test the Lefschetz decomposition even further in this non-compact setting, as we
now show. Let us consider the Hodge dual of ω ∈ H2,2(X0, Y0;Z). By direct computation,
using the convention

εi1i2i3ı1ı2ı3 = 3! i g[i1|ı1g|i2|ı2g|i3]ı3 (A.42)

and the definition

? αp =
1

p!(D − p)!
αm1...mp ε̃

m1...mp
n1...nD−pdx

n1 ∧ . . . ∧ dxnD−p , (A.43)

where ε̃m1...mD =
√
g6εm1...mD , and D = dimR(M), we find

? α2 = (ιJα2)
1

2
J ∧ J − α2 ∧ J (A.44)

11We choose the non-compact curves so that we can perform the explicit calculation in the (zi)
coordinates.

152



Harmonic forms and other representatives

for any (1, 1)-form α2. For the primitive ω, this yields

? ω = −ω ∧ J, (A.45)

while for J , using ιJJ = 3, we get

? J =
1

2
J ∧ J. (A.46)

This is exactly what one expects from the Lefschetz theory. Indeed, the Lefschetz
decomposition for this space would look like

H2,2(X0;R) = J ∧ PH1,1(X0;R)⊕
(
PH0(X0;R)

)
J2. (A.47)

This means that a harmonic (2, 2)-form α4 can be decomposed uniquely as

α4 = a
1

2
J ∧ J + b ω ∧ J. (A.48)

Here, 1
2J ∧ J belongs to the ` = 3

2 multiplet (1, J, J2, J3), while ω ∧ J belongs to the
` = 1

2 multiplet (ω, J ∧ ω). In the case of α4 = ?ω12, the preservation of Lefschetz spin
under Hodge dual (A.24) implies a = 0. One can also see this using (A.23) and the
equivalent primitivity condition ω ∧ J2 = 0, so that

0 = ?L−ω = L+ ? ω = a
1

2
J3 + b ω ∧ J2 = a

1

2
J3. (A.49)

On the other hand, for α4 = ?J , the preservation of Lefschetz spin under Hodge dual sets
b = 0. The value of the proportionality constants is found by integration, in particular
for ?ω = b ω ∧ J it holds

b =

∫
X0
ω ∧ ?ω∫

X0
ω2 ∧ J

= − 1

6πc2

∫
X0

‖ω‖2dVol(X0) = −1, (A.50)

where we used (2.14), (2.90), the definition ‖ω‖2 = ιωω, and the direct computations

ω ∧ ?ω = ‖ω‖2 dVol(X0) (A.51a)

‖ω‖2 =
27

2π2c4

(
1 +

r6

c6

)−2

(A.51b)

dVol(X0) =
√
g6d6x = 8r5dr ∧ dΩ5 (A.51c)∫

∂X0

dΩ5 =

∫
S5/Z3

dΩ5 =
π3

3
(A.51d)∫

X0

‖ω‖2 dVol(X0) = 6πc2 (A.51e)

12Recall that αp is harmonic iff ?αp is.
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In passing, we also showed that ω is a L2-normalizable harmonic 2-form of OP2(−3),
since

‖ω‖2 ∼∞
1

r12
. (A.52)

As for ?J = a 1
2J ∧ J , the proportionality constant is found by

a =

∫
X0
J ∧ ?J∫

X0

1
2J

3
=

1

3
lim
r2→∞

∫
X0
‖J‖2 dvol(X0)

8 r6Vol(S5/Z3)
=
‖J‖2

3
= 1, (A.53)

where we used 1
3!J

3 = dVol(X0) and ‖J‖2 = ιJJ = 3.

A.5.3 Scalar delta function for P2: two derivations

Starting from the delta 2-form concentrated on P2, one naturally defines a scalar delta-
function localized on P2 as

δ
(0)
P2 = Jyδ2

P2 = −igiδ2
P2 i, (A.54)

where we used the more democratic notation for 2-forms Jyα2 := ιJα2 = ια2J =
1
2J

mnαmn. One would intuitively guess that δ
(0)
P2 ∝ δ(r2), and this is (almost) correct, as

we are going to show by computing this explicitly. There are multiple ways one can go
about this. Let us start with the explicit form of δ2

P2 on U(i) in (2.127). It allows us to
write, dropping the coordinate pedix (i),

Jyδ2
P2 =

1

2
gξξ|ξ=0 δ(ξ), (A.55)

where gξξ|ξ=0 is the (ξξ) component of the inverse metric evaluated (but not pulled-back)
at ξ = 0, found in (2.86b). Therefore, we find

δ
(0)
P2 =

9

2

c4

(1 + ρ2)3 δ(ξ) on U(i). (A.56)

This is still somewhat unsatisfactory, since it uses locally defined coordinates and it
does not seems clear how δ(ξ) should transform under coordinate change, while we do
expect this to be globally defined (i.e. that the transformations of each factor cancel

out). For this reason, it seems we are after a globally defined expression for δ
(0)
P2 . Such

expression should involve only r2, which is the sole U(3)-symmetric global coordinate at
our disposal. This is indeed correct, as we now show. Let us consider (2.134), and let us
contract both sides with the Kähler form, so that by primitivity of ω we get

Jyδ2
P2 = −1

2
Jyddcκ(4) =

1

2

(
−2gi∂i∂ κ(4)

)
. (A.57)

On the other hand, recalling the general expression for the Hodge-de Rham operator
∆ = dd† + d†d in local coordinates on a p-form,

(∆ωp)m1...mp
= −∇k∇kωm1...mp − pRk[m1

ωkm2...mp] −
1

2
p(p− 1)Rjk[m1m2

ωjkm3...mp],

(A.58)
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Harmonic forms and other representatives

its action on scalars reduces to13

∆f(z, z) = −2gi∂i∂f(z, z). (A.59)

Using (2.67) one can even explicitly compute this in the case of a U(3)-symmetric function,
finding

∆f(r2) = −2

r2

(
1 +

c6

r6

) 2
3 d2

d (r2)2 +
3 + c6

r6(
1 + c6

r6

) 1
3

d

dr2

 f(r2). (A.60)

Therefore, we proved the relation

Jyδ2
P2 =

1

2
∆κ(4), (A.61)

which gives us a way to compute

δ
(0)
P2 =

1

2
∆κ(4). (A.62)

This looks reasonable, since a straightforward computation using (2.101) and (A.60)
shows that ∆κ(4) = 0 for r2 6= 0, while κ(4) is singular in r2 = 0 with a logarithmic
divergence (2.105), therefore we can expect a second derivative combination of κ(4) to
define some distribution localized in r2 = 014.

Let us consider a test function ϕ ∈ S(R6), then using (2.101) and (A.60)

〈∆κ(4)|ϕ〉 = −2

〈 d

dr2
A(r2)|r2

(
1 +

c6

r6

) 2
3

ϕ〉+ 〈A(r2)|
3 + c6

r6(
1 + c6

r6

) 1
3

ϕ〉

 . (A.63)

We expect the first term to yield a singular distribution together with a term perfectly
cancelling the second. Indeed, we compute (using d6x = r5dr ∧ dΩ5 = r4 dr2

2 ∧ dΩ5)

〈 d

dr2
A(r2)|r2

(
1 +

c6

r6

) 2
3

ϕ〉 =

∫
C3/Z3

(
d

dr2
A(r2)

)
r2

(
1 +

c6

r6

) 2
3

ϕ(x) d6x =

=
1

2

∫
S5/Z3

dΩ5

∫ ∞
0

(
d

dr2
A(r2)

)
r2

(
1 +

c6

r6

) 2
3

ϕ(x) dr2

:= −1

2

∫
S5/Z3

dΩ5

∫ ∞
0

A(r2)
d

dr2

[
r2

(
1 +

c6

r6

) 2
3

ϕ(x)

]
dr2

= −1

2

∫
S5/Z3

dΩ5

∫ ∞
0

A(r2)

 3 + c6

r6(
1 + c6

r6

) 1
3

r4ϕ(x) + r6

(
1 +

c6

r6

) 2
3 d

dr2
ϕ(x)

dr2

= −〈A(r2)|
3 + c6

r6(
1 + c6

r6

) 1
3

ϕ〉+
3

4π
c4

∫
S5/Z3

dΩ5

∫ ∞
0

d

dr2
ϕ(x)dr2.

(A.64)

13Recall that the connection symbols Γrmn on a Kähler manifold are pure in their indices.
14For instance, this is motivated by 1

2
ddclog r2 = 2π

3
δ2P2 + JFS (direct computation).
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Here, we compute separately∫
S5/Z3

dΩ5

∫ ∞
0

d

dr2
ϕ(x)dr2 =

∫
S5/Z3

dΩ5

(
lim
R→∞

ϕ(R x̂)− lim
ε→0

ϕ(ε x̂)

)
= −π

3

3
ϕ(0)

(A.65)

where we used Vol(S5/Z3) = π3

3 . On the other hand, notice that

〈 6

π3

δ(r2)

r4
|ϕ〉 = ϕ(0), (A.66)

namely that on C3/Z3 it holds

δ(x) =
6

π3

δ(r2)

r4
. (A.67)

This shows that

〈∆κ(4)|ϕ〉 = 〈 3
π

c4

r4
δ(r2)|ϕ〉, (A.68)

that is, in the distributional sense,

∆κ(4) =
3

π

c4

r4
δ(r2) =

9

π
c4 δ(r6). (A.69)

We conclude that

δ
(0)
P2 =

9

2π
c4 δ(r6), (A.70)

which is indeed proportional to δ(r2), as we already guessed. Unlike (A.56), this expression
is manifestly global, since it only depends on the global coordinate r2; it also does carry
the right dimension `−2. Let us point out that this is consistent with (A.56). In order to
make the connection between the two expressions, we just need to use the distributional
identity

δ
(
|ξ|2
)

= π δ(ξ), (A.71)

so that, on U(i), using (2.26)

δ(r6) = δ
(
|ξ|2 (1 + ρ2)3

)
=

δ
(
|ξ|2
)

(1 + ρ2)3
=

π

(1 + ρ2)3
δ(ξ). (A.72)

In passing, by (A.71) we also showed the correct transformation law of δ(ξ) under (2.22):

δ
(
ξ(j)

)
=
δ
(
ξ(i)

)∣∣∣uj(i)∣∣∣6 . (A.73)
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A.6 Derivation of the Eguchi-Hanson geometry

We look for a U(3)-symmetric, Calabi-Yau and Ricci-flat metric15, therefore we start on
U(4), with coordinates (zi). The most generic Ansatz including U(3) symmetry is

ds2
6 = gidz

idz

=

(
A(r2)δi +B(r2)

ziz
r2

)
dzidz.

(A.74)

Let us impose Kählerity:

∂igjk = ∂jgik; (A.75)

one finds

∂igjk = A′ziδjk +

(
B

r2

)′
zizjzk +

B

r2
zjδik, (A.76)

therefore Kählerity is equivalent to

B = r2A′. (A.77)

As for the curvature 2-form R = −i∂∂log
√
g6, one way to achieve vanishing first

Chern class is to make g6 globally defined on OP2(−3). Let us forget this for a moment
and look simply for a Ricci-flat metric. This amounts to imposing

∂i∂log
√
g6 = 0. (A.78)

On the other hand, U(3) symmetry constraints g6 to be a function of r2 alone, and for a
generic smooth function f(r2) it holds

∂i∂f(r2) = f ′′(r2)ziz + f ′(r2)δi, (A.79)

therefore (A.78) is solved iff g6 = const. Then, let us choose

det(gi) = 1. (A.80)

Notice that this also implies that g6 is globally defined, and R is exact, namely OP2(−3)
is Calabi-Yau as we expect.

In order to impose (A.80), we compute the determinant by means of the Levi-Civita
tensor:

detgi =
1

3!
εi1i2i3ε123

(
Aδi11 +A′zi1z1

) (
Aδi22 +A′zi2z2

) (
Aδi33 +A′zi3z3

)
= A2(A+ r2A′).

(A.81)

15Recall that a Calabi-Yau space is a Kähler manifold with trivial first Chern class. This implies that
it admits a Ricci-flat metric in the same Kähler class. Equivalently, a Calabi-Yau space is a Kähler n-fold
with exactly SU(n)-holonomy.
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Then (A.80) becomes
A2(A+ r2A′) = 1, (A.82)

and multiplying by 3r4 both sides this can be recast in

d

dr2

[(
r2A(r2)

)3]
= 3r4, (A.83)

which is solved by

A(r2) =

(
1 +

c6

r6

) 1
3

, (A.84)

where c ∈ R controls the size the resolution.
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Appendix B

Gravitational waves in general
relativity

B.1 Gauge choice, Einstein equations and degrees of free-
dom

Let us review how the story goes in general relativity when dealing with gravitational
waves (see e.g. [16]).1 First of all, gravitational waves are linear perturbations hµν around
Minkowski empty spacetime,2

gµν = ηµν + hµν . (B.1)

This means that gravitational waves are the solution of the linearized Einstein equations
around Minkowski, which in a generic gauge take the form

�hµν + ∂µ∂νh− ∂ρ∂µhρν − ∂ρ∂νhρµ = 0, (B.2)

where h = ηµν hµν , and indices are raised with the background metric ηµν . In order to
find physical solutions, one needs to fix the gauge first. One convenient way to do so is
to choose the so-called de Donder gauge, or harmonic gauge,

�(g)x̃µ = 0, (B.3)

where �(g) is the Laplace-Beltrami operator built with the perturbed metric (B.1) and
linearized in hµν . This means that we are choosing harmonic coordinates, which we can
go to by means of an infinitesimal coordinate change

x̃µ = xµ + ξµ, (B.4)

where the vector field ξµ is such that

�ξµ = −�(g)xµ. (B.5)

1Only in this section, we will denote with greek indices µ, ν, . . . = 0, . . . , 3 the four-dimensional
spacetime indices and with latin indices i, j, . . . = 1, 2, 3 the spacial indices.

2See appendix B.2 for a more formal introduction to the subject.
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Appendix B. Gravitational waves in general relativity

Notice that this PDE admits infinite solutions, unless we specify some initial conditions
in order to single out a specific solution of the homogeneous equation. We will come back
to this later. The de Donder gauge (B.3) is equivalent to asking ηµνΓρµν [g] = 0, or even
more explicitly

∂µh
µν =

1

2
∂νh, (B.6)

which is a non-dynamical constraint on the initial values of the perturbation components,
effectively lowering the degrees of freedom thereof. We will need to impose this together
with the Einstein equations. Thus, in the de Donder gauge (B.6), the Einstein equations
(B.2) simplify to

�hµν = 0 (B.7a)

∂µh
µν − 1

2
∂νh = 0 (B.7b)

One usually considers the trace-reversed perturbation

hµν = hµν −
1

2
ηµνh, (B.8)

in terms of which the Einstein equations in the de Donder gauge become

�hµν = 0 (B.9a)

∂µh
µν

= 0 (B.9b)

Let us go back to the issue of fixing the gauge. We already noted that the de Donder
gauge condition (B.3) does not fix the gauge vector ξµ completely since (B.5), which is a
linear second-order PDE, admits solutions of the form

ξµ = ξµ0 + ξ̃µ, (B.10)

where ξ̃µ is the particular solution of the PDE (B.3), while ξµ0 is a solution of the
homogeneous PDE �ξµ0 = 0. The arbitrariness in the choice of ξµ0 is referred to as
residual gauge invariance. In order to completely fix the gauge, one should impose
some initial conditions such that ξµ0 is singled out unambiguously. Since these are four
homogeneous wave equation in flat spacetime, and since it is well known (see e.g. [41])
that each one of them requires a (second order) degree of freedom3 to be fixed in order to
admit a single solution, one needs to impose four independent (second order) initial data
constraints to fix the residual gauge invariance. This is done, once again, by fixing four
degrees of freedom of the perturbation hµν . The standard choice in cosmology for these
four constraints is h = h0i = 0, so that the full gauge fixing condition takes the form

∂µh
µν = 0 (B.11a)

h = 0 (B.11b)

h0i = 0. (B.11c)

3That is, the initial value of the functions ξµ0 (0, xi) and of their time derivatives ∂0ξ
µ
0 (0, xi).
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Perturbation theory in general relativity

This is the so-called traceless-transverse gauge. Indeed, one can show4 that the conditions
(B.11a-B.11c) single out a unique solution ξµ for (B.5), therefore fixing the gauge
completely. To sum things up, the linearized Einstein equations supplemented with a
complete gauge fixing are

�hµν = 0 (B.12a)

∂µh
µν = 0 (B.12b)

h = 0 (B.12c)

h0i = 0 (B.12d)

The last crucial point one should establish before actually solving these equations
is the counting of physical degrees of freedom of the solution. This is most easily done
looking at the above equations. Equation (B.12a) yields ten degrees of freedom, the de
Donder gauge condition takes away four of them, and likewise the residual gauge fixing
conditions take away another four5. Thus one is left with two physical degrees of freedom,
as expected.

B.2 Perturbation theory in general relativity

As explained in the introduction of [1], a formal treatment of linear perturbation theory
in general relativity requires the introduction of a triplet (M(0)

4 ,M4, ψ), where M(0)

4 and
M4 are four-dimensional Lorentzian manifolds, and ψ : M(0)

4 → M4 is an arbitrary
diffeomorphism. In the case at hand, M(0)

4 = (X4, ηµν) is the unperturbed spacetime
equipped with the background metric, and M4 = (X4, gµν) is the perturbed spacetime
equipped with the perturbed metric. The atlas on M4 is defined such that the repre-
sentative of ψ in local coordinates is the identity.6 The gauge freedom of perturbation
theory in general relativity is precisely the freedom of replacing the gauge function ψ with
another diffeomorphism ψ̃.7 A gauge choice is the choice of a specific diffeomorphism ψ.
Therefore, a gauge transformation taking from the gauge ψ to the gauge ψ̃ is identified
with the diffeomorphism Φ :M(0)

4 →M
(0)

4 defined by Φ = ψ−1 ◦ ψ̃. Then, by definition
two gauge choices ψ and ψ̃ are related by

ψ̃ = ψ ◦ Φ. (B.13)

Let us call λ the perturbative expansion parameter of the system, then for λ → 0 the
perturbed manifold collapses onto the unperturbed one, and no perturbative gauge

4See the appendix B.3.
5This counting is equivalent to taking into account the differential Bianchi identity to reduce the

number of dynamical Einstein equations down to six, and considering how many non-dynamical constraints
are left for the physical degrees of freedom that this procedure has singled out.

6More precisely, this is to say that a local chart ofM4, ϕ, is defined in terms of ψ and of a local chart
on M(0)

4 , ϕ(0), by ϕ = ϕ(0) ◦ ψ−1.
7Notice that this, in turn, corresponds to replacing the local charts ϕ = ϕ(0) ◦ ψ−1 of M4 with

ϕ̃ = ϕ(0) ◦ ψ̃−1.
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Appendix B. Gravitational waves in general relativity

freedom is left. This shows that Φ should be an infinitesimal diffeomorphism, with local
representative Φ̂µ(x) = xµ + ξµ, where the vector field ξ is of order λ. At this point,
notice that a gauge transformation is completely identified with the vector field ξ ∼ O(λ),
and one can think of Φ̂µ(x) = xµ + ξµ as an infinitesimal coordinate transformation of
M(0)

4
8

x̃µ = xµ + ξµ. (B.14)

On the other hand, one defines the perturbation of the metric tensor as the section of
T ?M(0)

4 ⊗ T ?M
(0)

4 given by9

hµν = ψ?gµν − ηµν . (B.15)

By definition of perturbative expansion parameter, hµν ∼ O(λ). Moreover, it is clear
that the metric perturbation depends on the gauge choice. Under a gauge transformation
taking ψ to ψ̃, it transforms to h̃µν = ψ̃?gµν − ηµν = Φ?ψ?gµν − ηµν , where we made use
of (B.13). Interpreting Φ(x) = x+ ξ as an infinitesimal change of coordinate, one can
verify by direct computation that the action of the pullback of Φ on a (0, 2)−rank tensor
field T on M(0)

4 corresponds to a change of coordinates under Φ, and that

Φ?Tµν = Tµν + LξTµν , (B.16)

where Lξ· is the Lie derivative along the flux of ξ, and we neglect higher order terms
in λ since we are interested in linear perturbations. Therefore, using (B.16), under
gauge transformations the perturbation to the metric tensor transforms as h̃µν = hµν +
Lξ (ψ?gµν), and since we are working at the linear approximation it holds Lξ (ψ?gµν) =
Lξηµν , where we used (B.15). Thus, the gauge transformations of the metric pertubation
are

h̃µν = hµν + Lξηµν (B.17)

= hµν + 2∂(µξν), (B.18)

as one would expect.

B.3 Cauchy problem for gravitational waves

In this section, greek indices µ, ν, . . . = 0, . . . , 3 will denote four-dimensional spacetime
indices, latin indices i, j, . . . = 1, 2, 3 will denote the three-dimensional spacial indices, t
will denote the time coordinate and x will denote the spacial components of the spacetime
coordinates xµ, namely (xi). We are interested in pinpointing a single solution of the
homogeneous equation for the gauge vector in flat spacetime

�ξµ = 0. (B.19)

8Here the slightly more mathematically involved nature of this approach to perturbation theory pays
off, making it clear as to why one should consider infinitesimal coordinate transformations of the order of
the perturbation parameter when dealing with gauge transformations of the perturbation tensor.

9From here on, we will denote by the same symbol a function and its local representative.
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Cauchy problem for gravitational waves

This is achieved once the four second order initial data (ξµ(0,x), ∂0ξ
µ(0,x)) are fixed.

To ease up the notation, let us call these

ξµ(0,x) = fµ1 (x); (B.20a)

∂0ξ
µ(0,x) = fµ2 (x). (B.20b)

We are now going to show that fµ1 (x) and fµ2 (x) are uniquely determined by the four
conditions

h̃(t,x) = 0; (B.21a)

h̃0i(t,x) = 0; (B.21b)

once they are supplemented with the boundary condition

lim
|x|2→∞

fµ1 (x) = lim
|x|2→∞

fµ2 (x) = 0. (B.22)

This is due to the fact that physical perturbations hµν vanish at spacial infinity, so that
asymptotically there is no gauge invariance, meaning ξµ(t,x) must vanish at spacial
infinity too. We already showed in appendix B.2 that the metric perturbation around
Minskowski transforms under gauge symmetry as

h̃µν = hµν + ∂µξν + ∂νξµ. (B.23)

The conditions (B.21a)-(B.21b) imply the four initial data constraints

h̃(0,x) = 0 (B.24a)

h̃0i(0,x) = 0 (B.24b)

∂0h̃(0,x) = 0 (B.24c)

∂0h̃0i(0,x) = 0. (B.24d)

Using (B.23) and (B.19), these conditions can be easily recast into the following PDEs
for the initial data fµ1 and fµ2 :

h(0,x) + 2f0
2 (x) + 2∂if

i
1(x) = 0 (B.25a)

h0i(0,x) + f i2(x)− ∂if0
1 (x) = 0 (B.25b)

∂0h(0,x) + 2∇2f0
1 (x) + 2∂if

i
2(x) = 0 (B.25c)

∂0h0i(0,x) +∇2f i1(x)− ∂if0
2 (x) = 0 (B.25d)

where ∇2 = ∂i∂
i is the three-dimensional Laplacian operator. Acting on (B.25b) with ∂i

and contracting the spacial index, we get ∂if
i
2(x) = ∇2f0

1 (x)− ∂ih0i(0,x). Plugging this
in (B.25c) one gets

∇2f0
1 (x) =

1

2

[
∂ih0i(0,x)− 1

2
∂0h(0,x)

]
. (B.26)
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One can show (see [41]) that ∇2 is invertible on the space of functions vanishing at spacial
infinity, therefore this equation admits a unique solution, which determines f0

1 (x). Then
(B.25b) determines f i2(x). Similarly, (B.25a) can be recast as ∂if

i
1(x) = −f0

2 (x)− 1
2h(0,x);

on the other hand, acting on (B.25d) with ∂i and contracting the spacial index, one gets
∂i∂0h0i(0,x) +∇2∂if

i
1(x)−∇2f0

2 (x) = 0, so plugging in this (B.25a) one gets

∇2f0
2 (x) =

1

2

[
∂i∂0h0i(0,x)− 1

2
∇2h(0,x)

]
, (B.27)

which uniquely determines f0
2 (x). Then by the same token (B.25d) determines f i1(x).

We showed that the system (B.25a)-(B.25d) admits a unique solution for fµ1 (x) and
fµ2 (x). The rest of the conditions implied by (B.21a)-(B.21b), namely ∂n0 h̃(0,x) = 0
and ∂n0 h̃0i(0,x) = 0, are redundant once the Einstein equation �hµν = 0 is taken into
account. Indeed, for instance ∂2

0 h̃(0,x) = ∇2h̃(0,x) = 0 thanks to h̃(0,x) = 0, and
similarly ∂3

0 h̃(0,x) = ∇2∂0h̃(0,x) = 0 thanks to ∂0h̃(0,x) = 0. This concludes the proof.
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About the minimal
ten-dimensional Ansatz

Let us consider the generic non-perturbative R3 o SO(3)× U(3)-symmetric Ansatz1

ĝABdXAdXB = −2Ddt2 + e2Aηµνdxµdxν +Bdr2dt+ Cdcr2dt+ e−2Agidz
idz (C.1)

gidz
idz = e2F

(
1 +

c6

r6

) 1
3

dzidzi − e2G c
6

r6

(
1 +

c6

r6

)− 2
3 ∂r2∂r2

r2
+

+H
(
∂r2
)2

+H
(
∂r2
)2 (C.2)

where the perturbation functions A,B,C,D, F,G,H are functions of (t, r2) and they are
of order |〈S〉|2. The goal of this section is to show that one can always set D = 0 and
H = 0 via coordinate redefinition, up to O(|〈S〉|4) corrections.

First, let us show that, at leading order, one can always trade D = 0 with a redefinition
of B. Externally, (C.1) is more explicitly ĝABdXAdXB = −(2D+ e2A)dt2 + 2Ad3x+ . . .,
where d3x denotes the euclidean three-dimensional metric. We look for a R3 o SO(3)×
U(3)-symmetric time redefinition

t̃ = t+ δt(t, r2), (C.3)

where δt(t, r2) is real and order |〈S〉|2. Under this time redefinition one finds

− (2D+e2A)dt2 +Bdr2dt2 +Cdcr2dt = −
(

1 + 2Ã
)

dt̃2 + B̃dr2dt̃+Cdcr2dt+O(|〈S〉|4)

(C.4)
where

Ã = A+D − δ̇t (C.5a)

B̃ = B − 2δt′ (C.5b)

1In this section, we drop the pedix h for the sake of simplicity.
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where ḟ(t, r2) denotes the derivative of f with respect to time, and f ′(t, r2) denotes the
derivative of f with respect to r2. Therefore, imposing A = Ã, we find that the time
redefinitions we are after are

δt(t, r2) =

∫
D dt+ c(r2) (C.6)

where c(r2) is some function of r2 alone. Then B is redefined according to (C.5b).
Let us move on to show that hermiticity of the internal metric (H = 0) can be achieved

at the cost of redefining B,C and G. As a side remark, note that internal hermiticity up
to internal coordinate redefinitions would be guaranteed if the perturbation functions
were functions of the internal coordinates alone given that X0 is a complex manifold. Let
us consider a R3 o SO(3)× U(3)-symmetric internal coordinate redefinition

z̃i = zi
(
1 + δz(t, r2)

)
, (C.7)

where δz(t, r2) is complex and order |〈S〉|2. Up to O(|〈S〉|4) corrections, the perturbation
functions are transformed to

H̃ = H −
(

1 +
c6

r6

)− 2
3 (

Reδz′ − iImδ̇z
)

(C.8a)

B̃ = B −
(

1 +
c6

r6

)− 2
3

Reδ̇z (C.8b)

C̃ = C −
(

1 +
c6

r6

)− 2
3

Imδ̇z (C.8c)

G̃ = G− Reδz +
r8

c6
Reδz′ (C.8d)

Imposing H̃ = 0, we find the internal coordinate redefinition we are after:

Reδz =

∫ (
1 +

c6

r6

) 2
3

ReHdr2 + c1(t) (C.9a)

Imδz = −
∫ (

1 +
c6

r6

) 2
3

ImHdt+ c2(r2) (C.9b)

where c1(t) and c2(r2) are arbitrary functions.
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