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Abstract

Dual manipulation is a natural skill for humans but not so easy to achieve
for a robot. The presence of two end effectors implies the need to consider the
temporal and spatial constraints they generate while moving together. Conse-
quently, synchronization between the arms is required to perform coordinated
actions (e.g., lifting a box) and to avoid self-collision between the manipula-
tors. Moreover, the challenges increase in dynamic environments, where the
arms must be able to respond quickly to changes in the position of obstacles
or target objects. To meet these demands, approaches like optimization-based
motion planners and imitation learning can be employed but they have limi-
tations such as high computational costs, or the need to create a large dataset.
Sampling-based motion planners can be a viable solution thanks to their speed
and low computational costs but, in their basic implementation, the environment
is assumed to be static. An alternative approach relies on improved Artificial
Potential Fields (APF). They are intuitive, with low computational, and, most
importantly, can be used in dynamic environments. However, they do not have
the precision to perform manipulation actions, and dynamic goals are not con-
sidered. This thesis proposes a system for bimanual robotic manipulation based
on a combination of improved Artificial Potential Fields (APF) and the sampling-
based motion planner RRTConnect. The basic idea is to use improved APF to
bring the end effectors near their target goal while reacting to changes in the
surrounding environment. Only then RRTConnect is triggered to perform the
manipulation task. In this way, it is possible to take advantage of the strengths
of both methods. To improve this system APF have been extended to consider
dynamic goals and a self-collision avoidance system has been developed. The
conducted experiments demonstrate that the proposed system adeptly responds
to changes in the position of obstacles and target objects. Moreover, the self-
collision avoidance system enables faster dual manipulation routines compared
to sequential arm movements.



Sommario

La manipolazione duale è un’abilità naturale per gli esseri umani, ma non è
così facile da svolgere per un robot. La presenza di due manipolatori implica
la necessità di considerare i vincoli temporali e spaziali che essi generano men-
tre si muovono insieme. Di conseguenza, la sincronizzazione tra le braccia è
necessaria per eseguire azioni coordinate (ad esempio, sollevare una scatola)
ed evitare l’autocollisione tra i manipolatori. Inoltre, le difficoltà aumentano
negli ambienti dinamici, in quanto le braccia devono essere in grado di rispon-
dere rapidamente ai cambiamenti di posizione degli ostacoli o degli oggetti
target. Per soddisfare queste esigenze, approcci come gli optimization-based
motion planner o l’imitation learning possono essere utilizzati, ma essi presen-
tano limitazioni come elevati costi computazionali o la necessità di creare un
ampio dataset. I sampling-based motion planners possono essere una valida
alternativa grazie alla loro velocità e ai bassi costi computazionali ma, nella
loro implementazione di base, l’ambiente è considerato solo statico. Un al-
tro possibile approccio si basa sugli improved Artificial Potential Fields (APF).
Sono intuitivi, con un basso costo computazionale e, soprattutto, possono essere
utilizzati in ambienti dinamici. Tuttavia, non hanno la precisione necessaria
per eseguire azioni di manipolazione e i target dinamici non sono considerati.
Questa tesi propone un sistema di manipolazione robotica bimanuale basato su
una combinazione di improved Artificial Potential Fields (APF) e del sampling-
based motion planner RRTConnect. L’idea di base è quella di utilizzare gli
improved APF per portare i manipolatori vicino alla loro posizione obiettivo,
reagendo al contempo ai cambiamenti dell’ambiente circostante. Solo allora
RRTConnect viene attivato per eseguire il compito di manipolazione. In questo
modo, è possibile sfruttare i punti di forza di entrambi i metodi. Per migliorare
questo sistema, gli APF sono stati estesi per considerare target dinamici ed è
stato sviluppato un sistema di anticollisione tra le braccia. Gli esperimenti con-
dotti dimostrano che il sistema proposto risponde abilmente ai cambiamenti di
posizione degli ostacoli e degli oggetti target. Inoltre, il sistema di self-collision
avoidance consente di velocizzare le routine di manipolazione duale rispetto a
movimenti sequenziali delle braccia.
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1
Introduction

1.1 Bimanual manipulation

Dual arm systems were among the first robotic manipulators to be devel-
oped, back in the 1940s and 1950s. Such systems were mostly teleoperated and
designed to operate in environments prohibitive to humans. Some examples
include the manipulators produced by Goertz for handling radioactive mate-
rials [9], and dual-arm teleoperation setups used for deep sea exploration [8].
Following this initial research, there has been a proliferation of studies explor-
ing the use of single-arm manipulators, which have been widely adopted as the
norm, particularly during the 1980s and 1990s. Since the 2000s, advances in the
field of humanoid robotics, as well as research into learning by imitation, have
created new opportunities for the use of dual-arm setups.

In [34] a broad overview of dual manipulation is presented, along with the
main factors motivating the study of dual arm setups. Some of such factors are:

• Similarity to the operator: since humans are used to performing tasks
using both hands, this skill can be transferred to dual-arm robots.

• Manipulability: the ability to perform tasks that require at least two hands
(e.g. screw assembly or folding laundry).

• Flexibility: the possibility of using and combining different kinds of end
effectors, for example, a gripper can be great for stabilizing a bottle while
a human-like robotic hand removes the cap.

• Human form factor: compared to two single-arm units, dual-arm sys-
tems take up less space and incur lower costs. Moreover, it is possible to
substitute human labor without the need to modify the workspace.
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1.1. BIMANUAL MANIPULATION

A wide range of robotic platforms are available for dual-arm manipulation.
While some researchers focus on utilizing two single-arm manipulators that
share the same workspace, others dedicate their efforts to creating dual-arm
platforms. Some of these configurations have a torso-like structure and are
mounted on a mobile base, allowing them to combine manipulation skills with
the ability to navigate their surroundings (Willow Garage PR2, PAL Robotics
TIAGo). On the contrary, other configurations are fixed, designed specifically for
assembly line tasks in industrial environments. These fixed robots are optimized
for high precision, speed, and accuracy (Yaskawa Motoman SDA10D).

While many dual-arm systems are primarily used for research purposes to
develop and evaluate technologies and principles, there are also practical appli-
cations for these systems. Domestic applications such as folding laundry have
been widely studied; vision is used to detect folds and corners, and different ma-
nipulation methods are employed depending on the task. For example, a system
for autonomous towel folding has been demonstrated using stereo vision and a
grasp point detection algorithm on the PR2 robot [21] (Fig. 1.1). Other exam-
ples of domestic applications include attendant care for the elderly [11], making
pancakes [2], and serving tea using preprogrammed motions and teaching by
demonstration [23]. Dual-arm systems are commonly used in industrial settings
for parts assembly and material reshaping. For example, in [36] it is presented
a preprogrammed gearbox assembly, and in [20] a dual-arm system capable of
folding cartons into predetermined shapes. Other application scenarios are in
agriculture to help harvest plants, in logistics for sorting and packing goods in
warehouses, and also in the medical field.

Figure 1.1: Some of the steps performed in [21] to fold towels
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CHAPTER 1. INTRODUCTION

Challenges

To understand which are the main challenges and constraints of bi-manual
robotic manipulation, it is useful to analyze the various types of dual manipula-
tion that can occur. Bi-manual manipulation can be divided into two main cate-
gories (showed in Fig. 1.2): uncoordinated and coordinated, based on whether
there is any kind of spatial or temporal coordination between the hands [16].

Figure 1.2: Bimanual manipulation taxonomy proposed in [16]

In the uncoordinated scenario, the two arms perform completely unrelated
tasks that can be seen as simultaneously executed uni-manual actions. Since
there are no time constraints, the space coordination is confined to preventing
clashes between the arms. An example of this type of manipulation can be
picking up a bottle while the other manipulator takes a pen. The two picks are
mutually independent.

In the coordinated case, the hands work together to achieve a common goal.
If the cooperation is only at a logical level (i.e., there is no contact with a com-
mon object) the task falls into the coordinated loosely coupled case and the
constraints are the same as the uncoordinated bimanual scenario. An example
of the previous case can be "clear the table", both manipulators cooperate to
achieve the common logical goal, but this does not impose any time constraint,
only space coordination is required. Conversely, if the hands act on the same
item, such coordinated manipulation is called tightly coupled; in this situation,
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1.2. DYNAMIC MANIPULATION

both spatial and temporal constraints are present, and the manipulators must
avoid collisions with each other and act within a precise time window. In ad-
dition, constraints imposed by forces must be taken into account; the objects
must be grasped not too lightly or too strongly to avoid the risk of dropping or
breaking the item. The tightly coupled category can be further subdivided into
symmetric and asymmetric by considering the role of the hands. The asymmet-
rical scenario occurs when one hand, called non-dominant, has a stabilizing role
and provides the reference frame for the dominant hand. Instead, the symmetri-
cal case occurs when both hands play the same role. An example of asymmetric
manipulation can be stirring the liquid inside a cup, the non-dominant hand
holds the cup steady while the dominant hand stirs. An example of symmetric
manipulation can be picking and lifting a box.

In order to have robotic personal assistants capable of working in unstruc-
tured environments, dual manipulation systems are often installed on mobile
bases [33]. This type of system is called Mobile Manipulation (MM) and imposes
an additional constraint: the positioning of the base. In fact, the robot must be
positioned congruently with the bi-manual action to be performed.

1.2 Dynamic manipulation

As described in the previous section, bimanual robots can manipulate objects
within their workspace. However, if that area is uncertain, additional difficulties
arise. The target objects might change position over time, potentially causing
the manipulation system to fail in grasping them. Moreover, the arms may
collide with newly introduced items in the workspace. Dynamic manipulation
allows to deal with such scenarios by employing online motion planning. In
online motion planning, a real-time process receives a stream of data about the
robot’s surroundings. As the robot moves, new plans are created in response
to environmental changes. In contrast, offline motion planning is a one-time
calculation that is performed before any motion is executed. In order to use this
method, all relevant data must be known beforehand, making it impractical for
environments that are constantly changing.

Dynamic manipulation systems impose new challenges compared to static
configurations [5]:

1. Perception: robots require accurate and fast perception of the object loca-
tion as well as the ability to adapt to changes in lighting and surroundings
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CHAPTER 1. INTRODUCTION

2. Grasping: the robot must be able to adjust its grasp in real time according
to changes in the position of the object

3. Safety: as robots interact with moving objects, the possibility of accidents
and damage increases. Therefore, safety and reliability are key aspects
in dynamic manipulation and require the use of sophisticated detection,
planning, and control algorithms to avoid accidents and ensure safe oper-
ation

Dynamic manipulation is essential in several contexts. An example is MM
since the operation of robots in unstructured human environments poses signifi-
cant obstacles to their efficiency. Manipulation in these places involves handling
unfamiliar objects and dealing with cluttered workspaces, different lightings,
and imprecise sensor data. Another important application of dynamic manip-
ulation is medical robotics, where robots are used to assist surgical procedures
[37]. In this context, to reach high levels of autonomy, robots must be able to
manipulate delicate tissues and organs without causing damage and to respond
to unexpected movements or changes in surgical conditions. Dynamic manip-
ulation also plays an important role in the industry as collaborative robots are
increasingly present. They are designed to work alongside humans in a shared
workspace and thus require dynamic skills to interact with humans properly.
Another application is in search and rescue operations, where robots are used
to navigate through rubble and debris [22]. In this application, dynamic ma-
nipulation allows robots to remove debris while being able to react to obstacles
or changes in the environment. To sum up, dynamic robotic manipulation is
an important capability for autonomous robots, which must be able to perform
complex tasks in unstructured and changing environments. As technology con-
tinues to advance, we can expect to see this capability applied to a growing
range of applications in industry, medicine, and beyond.

1.3 Thesis objective

To develop a dynamic bimanual manipulation system, various approaches
can be employed, such as optimization-based motion planners and imitation
learning. However, these approaches come with significant drawbacks, such
as high computational costs or the requirement of a large dataset. An alterna-
tive solution, therefore, relies on sampling-based motion planners, specifically
RRTConnect. Thanks to its simplicity, it is fast and with low computational
cost but, in its basic implementation, it considers the environment as static. For
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1.4. THESIS STRUCTURE

this reason, it cannot be applied directly but must be integrated with something
else to be robust to dynamic goals and obstacles. With this purpose, we focus
on Artificial Potential Fields (APF) [14]. APF perform well in dynamic envi-
ronments and can be used to bring the end effectors close to the target items
while reacting to changes in the surrounding scenario. Anyhow, one of the
main limitations of APF are local minima: an end effector might get stuck near
an obstacle without being able to overcome it. Hence, this thesis builds upon
the work presented in [10] where APF have been improved in order to solve
such a problem. The so-called "improved APF" enables an easier escape from
local minima through the dynamic generation of escape points around obstacles.
This approach has been successfully tested in a shared control scenario where
the user controlled a single robotic arm via different external devices. However,
only the dynamism of the obstacles was considered while the target goals remain
static. This thesis, therefore, aims to extend this work to have a fully dynamic
bimanual manipulation system, capable of performing both coordinated and
uncoordinated tasks. Moreover, a control system has been developed to detect
potential arm collisions and generate dynamic motion plans that allows the end
effector to reach the respective goal safely.

1.4 Thesis structure

The content of this thesis is divided into the following chapters:
• Chapter 2 describes the current state of the art. It provides an overview

of sampling-based motion planners, optimization-based motion planners,
imitation learning approaches, and APF. In addition to highlighting their
strengths, this chapter examines the limitations of each approach

• Chapter 3 illustrates the tools used in the development of this thesis. After
introducing the TIAGo++ robot, ROS, MoveIt, and Gazebo are described

• Chapter 4 introduces the proposed solutions, defining the problem and
outlining the process of developing the bimanual manipulation system. It
includes block diagrams and detailed descriptions of the main ROS nodes
used in the system

• Chapter 5 presents the results of experiments conducted with the pro-
posed bimanual manipulation system. It describes the setup and provides
pictures and tables for each experiment, illustrating the capabilities of the
approach

• Chapter 6 draws conclusions about the proposed bimanual manipulation
system and discusses potential future works
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2
State-of-the-Art

To perform bimanual actions in dynamic environments, different approaches
can be employed. This chapter is devoted to presenting an overview of the most
common approaches for bimanual manipulation. First, sampling-based motion
planners are presented, despite their simplicity they are still widely used to plan
manipulation routines (e.g., pick and place). Next, optimization-based motion
planners are described; they are more complex than sampling-based methods
and require more computational power. The following section is dedicated to
imitation learning. Thanks to recent developments in the field of deep learning,
in fact, it is possible to learn bimanual actions via human demonstrations; nev-
ertheless, this method still has several limitations. Finally, manipulation with
APF is discussed. Although it is not a recent methodology, thanks to some
improvements it is still effective, especially in dynamic environments.

2.1 Sampling-based motion planners

Sampling-based motion planners generate paths by sampling the configu-
ration space (C-space1). These planners do not guarantee to find a solution in
cases where one exists, which is known as completeness. Instead, they offer a less
certain form of completeness, namely probabilistic completeness. In other words,
given enough time, these algorithms should be able to provide a solution if one

1Space of possible positions that the robot may attain
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2.1. SAMPLING-BASED MOTION PLANNERS

exists [6]. However, the solution found is probabilistic, meaning that it may
not be the best one. It takes time to optimize it or look for the optimal solution
directly. The two most common types of sampling-based motion planners are:

• Probabilistic Road Map (PRM): comprising of two stages, the first part
involves a learning phase. During this stage, the C-space is sampled for
a specific interval, where samples from the obstacle space are excluded
while others are retained. This is followed by a query phase, in which a
roadmap is created by linking the initial configuration with the final one
using collision-free neighboring samples [6]

• Rapidly-Exploring Random Tree (RRT): this algorithm involves the grad-
ual expansion of a tree from the initial configuration. Configurations
within the C-space are randomly selected, and if they are in a free space,
an attempt is made to connect them with the tree. As the algorithm con-
tinues to sample new configurations, the tree grows and explores more of
the environment finding possible paths towards a goal position [6]

Some extensions of RRT and PRM have been developed in order to apply such
algorithms to dual-arm manipulation. Some examples are Bi-RRT [18] and SBL
[31], which allow both arms to reach their respective targets without colliding
with each other. Moreover, many other optimizations have been studied, like
the Probabilistic Road Map with Obstacles (PRMwO) planner [30]. In a two-
arm scenario, the presence of another manipulator can be an obstacle and thus
impose limitations on the possible grasping points of an object, but it might
also be a powerful tool. In fact, it is possible to exploit one of the two arms
to remove potential obstacles and ensure an unobstructed path to grasp the
object of interest. The PRMwO planner not only generates paths for each arm
to grasp the target objects but, at the same time, returns the set of obstacles that
must be removed. This method is based on the generation of a graph where
the root node symbolizes the target object. The motion planning algorithm is
then used to search for a trajectory to reach and grasp the item of interest. If
a path without collisions is discovered, it is immediately returned. Otherwise,
the graph is enlarged by adding child nodes that represent the objects that must
be removed to clear the path for the parent node, thus launching the process
into a repeating cycle. An upgrade of RRT instead is the Bimanual Grasp-RRT
planner [35]. The Grasp-RRT planner integrates the primary actions required to
pick an object, such as: identifying a valid grasp, resolving inverse kinematics,
and finding an unobstructed path to bring the hand into the grasp position.
In the bimanual scenario, the planner launches two Grasp-RRT planners, one
for each hand, which are run simultaneously to find feasible grasps. The main
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CHAPTER 2. STATE-OF-THE-ART

thread gathers the grasps and their corresponding trajectories for both hands
and evaluates them to determine the best bimanual solution. Whenever a new
grasping trajectory is discovered, all possible bimanual combinations with the
grasps from the other hand are calculated and their quality is evaluated. If the
bimanual score exceeds a certain threshold and there is no self-collision, the
combined solution with the grasping details is returned and can be executed.

Anyhow, even if the random procedure of sampling-based planners offers
advantages in solving challenging problems quickly, a drawback is that the
resolutions are commonly perceived as suboptimal, as the movements may
be unnecessarily large and not human-like. Moreover, when there are many
obstacles in the considered area, the strategies employed by sampling-based
planners to move through narrow spaces may be unnecessarily complicated
and extra steps must be taken to eliminate any rough or unnecessary movements
from the routes created by these planners. Moreover, in their basic bimanual
implementation, PRM and RRT are not suitable for dynamic scenarios since they
assume that the environment is static and therefore roadmaps are generated
offline. In fact, a strength of the improved APF over sampling-based methods is
the online generation of the motion, thus the ability to react to changes in target
position or obstacles.

2.2 Optimization-based motion planners

Optimization-based motion planners use mathematical optimization tech-
niques to plan the robot’s movements [38]. The process of these planners in-
volves breaking up the C-space into finite cells using a consistent pattern (usually
a grid). This is followed by building a graph that includes a vertex for each cell,
with edges connecting nearby vertices that can be linked by a feasible motion.
Only collision-free region vertices and edges are included. Along the path, all
edges may be assigned a cost which allows for the minimisation of a cost function
in addition to finding any path. The strength of optimization-based planners
lies precisely in the cost function since it can take into account several factors
such as obstacle avoidance, kinematic and dynamic constraints, end effector
pose, orientation constraints, energy consumption, etc. This can lead to smooth
trajectories, high adaptability to a wide range of environments, and applications
that provide significant savings in battery life and operating costs.

Two popular optimization-based motion planners are Covariant Hamilto-
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2.2. OPTIMIZATION-BASED MOTION PLANNERS

nian Optimization for Motion Planning (CHOMP) [27] and Stochastic Trajec-
tory Optimization for Motion Planning (STOMP) [13]. Although many high-
dimensional motion planners divide the trajectory generation process into sepa-
rate planning and optimization stages, CHOMP exploits covariant gradient and
functional gradient techniques in order to create a motion planning algorithm
that solely relies on trajectory optimization. Starting from a naïve trajectory,
CHOMP strategically reacts to the environment generating a trajectory that
avoids any possible collisions, while simultaneously fine-tuning the cost func-
tion. STOMP is based on creating trajectories with random perturbations to
investigate the surroundings of a starting trajectory, even if it may be infeasible.
These perturbed trajectories are merged to generate an improved path with a
lower cost. A cost function, consisting of both obstacle and smoothness costs,
is selected for optimization in every step. The optimization algorithm that is
used does not require gradient information, allowing for the inclusion of gen-
eral costs, such as those related to constraints and motor torques, for which
derivatives may not be accessible.

Since CHOMP and STOMP also check for self-collisions, they can be used
directly for dual-arm manipulation. For example, in [32] a bimanual robotic
system is presented for harvesting aubergines that uses STOMP as motion plan-
ner. The aim of the study was to improve the efficiency of aubergine harvesting
while minimizing damage to the fruit. Results showed that the robotic system
was effective in increasing the speed of harvesting and reducing fruit damage
compared to manual harvesting methods. Another setup in which the STOMP
planner is exploited is presented in [24] for autonomous dual-arm manipulation
of familiar objects. The system uses a 3D camera to perceive the environment
and generate a point cloud, which is then utilized by the STOMP algorithm to
plan the manipulation actions. In [26] a motion planning approach is proposed
for dual-arm assembly of ring-shaped elastic objects that rely on CHOMP. An
energy-based functional objective is established by incorporating a component
related to the potential energy of the elastic entity to the cost function. The
result is a path that minimizes the deformation of the elastic object. In addition,
the cost function for collisions is modified to allow the robot to get as close as
possible to the assembly parts without causing collisions.

However, optimization-based motion planners have some drawbacks. Com-
pared with improved APF, tuning the parameters might not be trivial. For
example, the default parameters of CHOMP are effective in obstacle-free envi-
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CHAPTER 2. STATE-OF-THE-ART

ronments, but if the scenario contains several obstacles, it might get trapped in
a local minima. Therefore, it becomes essential to fine-tune the parameters ac-
cording to the specific scenario. Nevertheless, due to the numerous parameters
involved, this task can be challenging and non-intuitive to perform. In con-
trast, improved APF parameters are less and much more intuitive. In addition,
STOMP and CHOMP can be computationally expensive, as they require a finely
discretized trajectory to perform collision checks with obstacles and ensure a
smooth solution. Improved APF, in contrast, thanks to their simplicity can be
applied also to systems with low computational capabilities.

2.3 Imitation Learning

Imitation Learning (IL) [1] is a type of machine learning where an agent
learns to perform a task by imitating an expert’s behavior. The central element
of IL is the environment where the expert acts, which can be described as a
Markov Decision Process (MDP). Therefore it has a set of states S, a set of actions
A, a transition model 𝑇(𝑠′|𝑠, 𝑎) (probability that taking action a in the state s
will result in a transition to state s’ ) and an unknown reward function 𝑅(𝑠, 𝑎).
Whereas in Reinforcement Learning (RL) it may be necessary to manually design
a reward function that meets the desired behavior, in IL the expert provides
a series of demonstrations 𝜏 = {(𝑠0, 𝑎0), (𝑠1, 𝑎1), ...} that the agent imitates to
learn the optimal policy (mapping from states to actions) 𝜋*. In the most basic
form of imitation learning, Behavior Cloning (BC), the expert’s demonstrations
𝐷 = {𝜏1, 𝜏2, ..., 𝜏𝑛} are treated as independent and identically distributed state-
action pairs and the policy is learned via supervised learning minimizing the
loss 𝐿(𝑎∗,𝜋(𝑠)) that depends on the application. An alternative to BC is inverse
reinforcement learning (IRL), in which the idea is to learn the reward function
of the environment through expert demonstrations and then employ RL to
determine the optimal policy that maximizes such reward function. This process
is repeated until the policy found is satisfactory.

The application of imitation learning for bimanual manipulation tasks re-
mains challenging [7] even if very promising. To generate the expert demon-
strations, two categories of methods can be employed: indirect teaching and
direct teaching [17]. Indirect teaching methods involve the use of wearable de-
vices and visual systems to directly capture human movement data, which can
then be used by robots to perform anthropomorphic tasks. An example of this
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2.3. IMITATION LEARNING

is presented in [39]: using stereo cameras and two data-gloves with magnetic
trackers and tactile sensors are recorded actions demonstrations. These acqui-
sitions are then classified into coordinated symmetric, coordinated asymmetric
and uncoordinated actions by considering the spatial relationship between the
trajectories of the hands. Symmetrical coordination is detected by analyzing
closed kinematic chains and a set of heuristics is then applied to differentiate be-
tween asymmetrical and uncoordinated actions. The actions are then executed
using a synchronization framework that is based on Petri nets [25]. However,
since the operational characteristics of the robot are not taken into account and
indirect teaching is done separately, demonstrations cannot be guaranteed to
be of high quality. On the other hand, direct teaching methods obtain demon-
strations directly from the robot and can be divided into kinesthetic teaching
and teleoperation teaching. Kinesthetic teaching involves physical interaction
between the operator and the robot to accomplish a specific task. During such
operation, the robot autonomously gathers information about the movement.
Nevertheless, robots that are appropriate for this kind of interaction must be
passively controllable and require physical contact. Therefore, this method is
often unsuitable, especially for dual-arm robots. Teleoperation teaching allows
to extract demonstrations by operating the robot with remote control devices
such as joysticks, touch sensors, wearable devices, etc. Usually the operator
wears a head-mounted display that provides the robot’s point of view. Even if
teleoperation teaching provides many advantages like high safety, wide applica-
tion range and high-quality teaching samples, most of the current teleoperations
merely focus on instructing the robot on how to move its body or follow a cer-
tain path, neglecting crucial details on the necessary force required for precise
operations. This limitation presents a challenge for the robot to execute intricate
tasks effectively.

In recent years, there has been growing interest in exploring deep imitation
learning methods for bimanual manipulation. The paper [15] presents a pos-
sible approach in this area. A state 𝑠 ∈ 𝑆 can be composed by the user’s gaze
position, the foveated image embedding of the target object, and the left and
right arm kinematic states. However, due to the large size of the concatenated
kinematic states, distractions (i.e., irrelevant information that can interfere with
the learning process) can occur, leading to poor policy generations. For example,
if the robot employs its right arm to reach for an item, the kinematic state of the
left arm is not useful to calculate the policy and becomes a distraction. Unlike
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visual attention, which can be improved by analyzing the direction in which the
eyes are looking, there are no equivalent teaching cues for somatosensory infor-
mation. To solve this problem the authors of the paper exploit the Transformer.
Self-attention mechanisms like the Transformer allow to evaluate the relation-
ships between elements on a sequence determining which features are of interest
and which are not, this method can therefore be applied to the sensory input
sequence. Different types of bi-manual tasks are performed (uncoordinated,
loosely coupled, tightly coupled) numerous times, generating the sensory input
dataset. Such dataset is then fed to the Transformer which generates a model
capable of predicting the actions for both arms and a binary signal open/close
for the gripper.

However, the main downside of IL and deep learning-based methods, in
general, is the generation of the dataset. In order to be effective, deep learning
methods require a lot of data, information that must consider different scenar-
ios. While for a priori known environments this might not be a problem, the
size of the dataset needed for a model that can generalize across different sce-
narios could be enormous. Moreover, the time and hardware needed for the
training phase must be taken into account. In contrast, improved APF, are a
simple, low-cost algorithm that can be applied directly. Although in the future,
deep learning-based methods are likely to become very efficient at perform-
ing bimanual actions, for now, improved APF are a good compromise between
effectiveness and simplicity.

There are methods that attempt to solve the problem of the large amount of
data required in RL, but they have some limitations. For example, [12] proposes
the Boosted Hybrid Reinforcement Learning (BHyRL). This approach is de-
signed for learning reaching and fetching tasks in MM with reachability behav-
ior priors while considering hybrid action spaces (a combination of both discrete
and continuous actions that a robot can perform within its environment). First of
all, Hybrid RL is designed to model the distribution of discrete actions utilizing
the Gumbel-Softmax reparameterization. Afterward, it is trained a reachability
prior (a model that determines the positions that a robot can reach) by utilizing
data obtained from the robot’s working area. Finally, is derived BHyRL, an algo-
rithm that benefits from representing Q-functions as a combination of residuals.
When presented with a new task, the acquired residuals are transferred and the
task-specific component of the Q-function is learned. This approach ensures
that the structure of the task is maintained from previous behaviors. Anyhow,
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the drawback of this study is that the agent is trained to maximize the likelihood
of finding IK (Inverse Kinematics) solutions. As a result, optimal actions are
learned only in relation to reachability, rather than manipulability. It is also not
optimized for bimanual tasks and working in cluttered environments.

2.4 Artificial Potential Fields

The basic idea behind APF is that the manipulator moves in a field of forces,
where the target location is an attractive pole and the obstacles are repulsive
surfaces, the final movement of the manipulator is controlled by the resultant
force [14]. Let 𝑝 be the position of the end effector in the workspace. The
resulting artificial potential field, to which the end effector is subjected, is:

𝑈𝐴𝑃𝐹(𝑝) = 𝑈𝐴(𝑝) +𝑈𝑅(𝑝)

where 𝑈𝐴(𝑝) is the attractive potential field generated by a goal and 𝑈𝑅(𝑝) the
repulsive potential field generated by obstacles. Attraction and repulsion can
be expressed in several ways, a possible formulation (and the one used in this
thesis) is the following. 𝑈𝐴(𝑝) depends on a parameter 𝑘𝑔 that determines the
attraction of the goal, and is calculated as:

𝑈𝐴(𝑝) = 1
2 𝑘𝑔(𝑝 − 𝑝𝑔)

2

where 𝑝𝑔 is the goal position. 𝑈𝑅(𝑝) depends on three parameters: 𝜂 (costant
gain), 𝜌 (shortest distance to the obstacle) and 𝜌0 (limit distance of the potential
field influence). It is calculated as:

𝑈𝑅(𝑝) =


1
2𝜂( 1𝜌 − 1

𝜌0
)2 if 𝜌 ≤ 𝜌0

0 if 𝜌 > 𝜌0

Due to its straightforward mathematical formulation, minimal hardware
demands, and quick planning capabilities, this method has found extensive use
in robot navigation and obstacle avoidance. Nevertheless, the APF technique
is subject to certain drawbacks, such as the possibility of becoming trapped in
local minima, the target being inaccessible in closed proximity to obstacles, and
oscillations occurring when navigating through obstacles or narrow passages.
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To tackle some of these problems a solution based on decision trees has been
proposed in [19]. Decision trees are commonly employed in machine learning for
classification tasks. They serve as a prediction model that maps object attributes
to object values. The benefits of decision trees in rule extraction and expression
have been leveraged to create an enhanced path planning model based on APF.
This new model incorporates decision tree-based methods to facilitate real-time
and precise identification of current behaviors, enabling quick decision-making
for subsequent path-planning steps. Even if this method shows good results, it
has not been tested for dual-arm manipulation.

[4] proposes a system for the execution of uncoordinated and loosely coupled
coordinated bimanual tasks, based on APF. For uncoordinated actions, each end
effector is assigned to the closest target (considering the Euclidean distance) and
then starts moving toward it via APF. However, in some cases, the manipulator
paths might intersect due to the position of obstacles in the environment. In this
scenario "goal configuration sampling" is performed to search for a configuration
for both arms that avoids arm crossing. If, despite attempts, no valid configura-
tion can be found, the tasks cannot be performed simultaneously and the arms
must move consecutively. For loosely coupled coordinated tasks (e.g., passing
an object from one manipulator to another, assembly of two parts) a method
called "goal space sampling" is used. The space in which a common goal can
be achieved is sampled to search for a suitable position for the manipulators to
perform the coordinated task. If such a position is found the end effectors start
moving towards it via APF. The process of identifying a mutually valid target is
also capable of handling the discovery of new obstacles in real-time. If the target
position cannot be reached anymore, due to an obstacle, a new target position is
sought starting from the ones adjacent to the previous target. A difference with
the method developed in this thesis lies in the scenario where the arms would
cross. If in the previous work, the end effectors would move one at a time, in
this thesis both arms continuously check online for self-collision; instead, this
check is performed online. If a self-collision risk is detected, a recovery method
is executed and the arms move consecutively from then on. In this way, the
execution time of the action can be reduced. However, the main difference be-
tween the two approaches consists of the improved APF formulation since this
thesis starts from the work shown in [10]. In order to reduce the risk of getting
stuck in a local minima the dynamic generation of escape points around the
obstacles is performed. Such points are attractive poles that the end effector
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can follow to overcome the obstacles more easily; the process of deciding which
point to pursue is made in real-time by solving a soft-constrained problem (CSP)
[3] that optimizes both obstacle avoidance and goal achievement. In the chosen
point, located in 𝑝𝑒 , an attractive force is then applied according to the attractive
constant 𝑘𝑒 :

𝑈 𝑒
𝐴(𝑝) =

1
2 𝑘𝑒(𝑝 − 𝑝𝑒)

2

However, this method has only been applied for single-arm shared control, and
it is, in fact, the aim of this thesis to extend this work to a double-arm setup and
to deal with the related challenges of spatial and temporal coordination.
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3
Technologies used

3.1 TIAGo++

TIAGo++ is a mobile manipulator robot designed by PAL robotics1. It com-
bines perception, navigation, manipulation, and human-robot interaction skills
that make it a great mobile manipulation robot for research in fields such as
ambient-assisted living, healthcare, or light industry.

Starting from the top of the robot (Fig. 3.1), the first component is a moving
head containing an RGB-D camera. The head is fixed on a base that can be rotated
and tilted by two motors. These movements allow to adjust the camera’s viewing
range expanding the perception area without repositioning the robot. Directly
below the head, at the base of the neck, the robot has a stereo microphone that
can be used for interaction and a speaker capable of playing different sounds.

Moving down to the torso, the main components are the seven Degrees Of
Freedom (DOF) arms attached to the sides of the robot. The first joint allows
the shoulder to rotate over the ground plane, like a 7 DOF inverted industrial
arm. The arm end effector includes a force/torque sensor to monitor the load
capacity at the arm end. The left arm is equipped with a parallel gripper, while
the right arm features a five-finger hand as end effector. On the back of the torso
there is a NVIDIA® Jetson™ TX2 GPU.

Continuing downward, there is a prismatic joint on the upper section of the

1https://pal-robotics.com/robots/tiago/
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mobile base. This link can be lengthened or shortened to adjust the height of
the robot by raising or lowering the torso. The mobile base is a differential
drive equipped with all the essential elements for navigation. It incorporates a
laser sensor for distance detection, two rear sonar sensors and a programmable
LED belt that can display various lights and patterns (which may also signal
a warning status). Inside the base it’s also installed the internal computer that
includes a Intel i7-7700 3.60GHz CPU, 16GB of RAM and a 500GB HDD. The
operating system is Ubuntu LTS 64-bits.

Figure 3.1: The TIAGo++ robot

3.2 Robot Operating System (ROS)

TIAGo relies on ROS2 as middleware between the software layer and the
Ubuntu OS. A robotics middleware functions as an interface that enables the
communication between the software applications developed by the user and
the different drives of the operating system that manage the robot.

2https://www.ros.org/
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"The Robot Operating System (ROS) is a set of software libraries and tools that
help you build robot applications" [29]. In fact, ROS is an open-source layer that
provides operating system services such as hardware abstraction, low-level de-
vice control, implementation of commonly used functionality, message-passing
between processes, and package management.

The origin of this middleware can be traced back to Eric Berger and Keenan
Wyrobek, two doctoral students from Stanford University who identified defi-
ciencies in the technical expertise of software developers, which hindered their
ability to fully exploit the capabilities of robotic hardware [28]. Back in 2007,
Eric Berger and Keenan Wyrobek became a part of Willow Garage, a recently es-
tablished enterprise by Scott Hassan. During that year, Willow Garage released
an initial version of ROS on SourceForge. Within three years, the company
managed to produce a preliminary robot model capable of navigating inside an
office and manipulating doors. After publishing comprehensive documentation
on the project, the entire framework gained widespread acceptance and became
a standard de facto in the field of robotics.

ROS Architecture

Packages: ROS software is arranged in packages. Typically, every pack-
age is assigned a particular operation to execute. This method guarantees that
each package has a well-defined function, simplifying its use and debugging
process. ROS packages are designed in adherence to the "Goldilocks" princi-
ple: they should provide sufficient functionality to be valuable, but not so much
that the package becomes cumbersome and challenging to use in other software.

Nodes: processes that perform the operations necessary for the execution of
a task. These units are assembled into graphs and communicate with each other
through various means such as topics, services, and actions. As an example, in
the management of a small robot, one node would oversee the wheel control,
another would determine the optimal path to take, another would be devoted
to collision avoidance, and so forth. The use of nodes in ROS offers a number of
advantages for the system as a whole:

• They enhance fault tolerance: nodes operate independently, so if any one
of them malfunctions, it only affects a single unit rather than the entire
system
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• They simplify code complexity in contrast to a monolithic structure that
lacks modularity

• Implementation specifics are confidential since nodes utilize a severely
restricted API to communicate with the rest of the graph

Topics: serve as the medium through which nodes communicate with one
another. Essentially, they are buses that enable nodes to exchange messages.
Messages can be defined as data structures comprising primitive data types
such as integers, floating-point numbers, booleans, and arrays thereof. More-
over, messages may include nested structures. Each topic is capable of con-
veying a singular category of information, meaning that it can only transmit
pre-determined data. The topics maintain a policy of anonymity for both the
senders and receivers involved. For instance, if Node 1 publishes data in a certain
topic, Node 2 must subscribe to that topic if it wishes to access the information
being transmitted. Through the exchange, no details are communicated regard-
ing who sent or received the data, ensuring complete anonymity. Additionally,
it is worth noting that each topic may have multiple publishers and subscribers.

Services: another method of enabling the exchange of information between
nodes. Although the topic-based model is highly adaptable for communica-
tion purposes, its many-to-many one-way transport system is not suitable for
request/response interactions that are often required in distributed systems. To
address this, request/response is facilitated through a service, which consists of
a pair of messages; one for the request and the other for the reply. To provide
a service, a ROS node defines the service server under a string name, a client
will trigger the service by sending the request message to the server and waiting
for a response. Clients may establish a persistent connection to a service to
achieve better performance, but this comes at the expense of reduced resilience
to changes in service providers.

Actions: in case a service requires significant processing time, users may pre-
fer to have options such as canceling the request while it’s running or receiving
feedback on its progress at intervals. To achieve this, the actionlib package offers
server tools for executing long-term goals that can be preempted. Furthermore,
it provides clients with an interface for submitting requests to the server. For the
client and server to exchange information, a set of messages that they can use
to communicate must be established. This is accomplished through an action
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specification, which outlines the Goal, Feedback, and Result messages that will
serve as the communication medium between the two parties.

• Goal: To execute tasks through actions, it is introduced the concept of a
goal that can be transmitted to an ActionServer by an ActionClient. In the
case of base movement, the goal would be represented by a PoseStamped
message containing details of the robot’s target location in the world

• Feedback: allows server developers to update an ActionClient regarding
the gradual advancement of a goal. In the case of base movement, this
could mean reporting the robot’s present position along its path

• Result: upon accomplishing a goal, the ActionServer transmits a result to
the ActionClient. This is distinct from feedback, as it is dispatched only
once. This feature is particularly beneficial when the objective of the action
is to supply some form of data

For this thesis, the ROS Melodic version was used.

3.3 Gazebo

Gazebo3 is an open-source 3D robotics simulator that is natively supported
by ROS. It offers a wide range of functionalities, such as its own format for
describing robot models and environments (the SDF format), numerous freely
available models and plugins, and efficient physics engines. With Gazebo, it is
possible to simulate every aspect of the real world in detail, including gravity,
wind, controllers dynamics, sensor behavior (taking into account noise), and
inertia and friction distribution for any model. Gazebo shares many character-
istics with ROS as an open-source product, including a supportive community,
active development, and efficient support forums.

3.4 MoveIt

MoveIt4 is an open-source platform for designing and operating various types
of robots. It facilitates the planning of motion trajectories within an environment,
and offers collision control capabilities to prevent obstacles from interfering with

3https://gazebosim.org/
4https://moveit.ros.org/

21

https://gazebosim.org/home
https://moveit.ros.org/


3.4. MOVEIT

robot movements. Moveit enables the resolution of inverse and direct kinemat-
ics, as well as the execution of joint trajectories using a variety of controllers and
hardware interfaces. Additionally, it integrates seamlessly with Gazebo and
ROS control to create a comprehensive development platform. The Rviz Motion
Planning plugin enables users to engage in interactive trajectory planning by
relocating the end effector to the desired location, and to visualize the trajectory
plan within the space. The primary ROS node of MoveIt is move_group, which
provide users with a collection of ROS services and actions (Fig. 3.2). MoveIt
provides three distinct methods for accessing the features and services provided
by the move_group node:

1. move_group_interface package to interface to the node in C++

2. moveit_commander package to interface with python

3. Rviz Motion Planning plugin with the GUI

Figure 3.2: MoveIt move_group

The move_group node is configured via the ROS parameter server, which
provides the node with the robot’s URDF model, the SRDF file produced via
the MoveIt Setup Assistant, as well as additional information such as joint lim-
its, kinematics, motion planning, and perception. Typically, the move_group
node communicates via ROS topics and actions, gathering information regard-
ing the robot’s current state and other general data, and dispatching orders to the
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controllers through the FollowJointTrajectoryAction5 interface, which is a ROS
action interface. MoveIt interacts with various motion planners through a plu-
gin interface that employs a ROS Action/Service provided by the move_group
node. The default motion planners for move_group are based on the Open
Motion Planning Library (OMPL). Such library contains many samplig-based
motion planning algorithms like PRM, RRT, RRTConnect, etc. When requesting
a motion plan, MoveIt asks the motion planner to relocate the robot to a specified
target pose or a different position of the joints, after which the move_group node
generates the desired trajectory in order to move the robot.

3.5 Apriltag

AprilTags6 are visual markers that are commonly used for various computer
vision applications such as robotics, augmented reality, and camera calibration.
These markers have a distinctive black and white pattern that is designed to be
easily identifiable by a camera and includes a unique identification code. The
pattern is similar to a 2D barcode and is built to be resilient to lighting changes,
orientation, and scaling.

AprilTags were developed by the robotics research group at the University
of Michigan and are released under an open-source license. They have become
increasingly popular among robotics experts because of their accuracy, efficiency,
and user-friendliness. AprilTags can be detected and monitored in real-time by
a camera using specialized algorithms, which is why they are commonly used
for tasks such as object recognition, pose estimation, and localization.

AprilTags are subdivided into families. Each family refer to a group of
AprilTag designs that share similar properties, such as the size of the tag, the
number of bits used to encode the ID, and the error correction capabilities.
These families are identified by a number, such as 36h11 or 16h5, where the first
number represents the size of the tag and the second number represents the
number of bits used to encode the ID. Each AprilTag family is designed for a
specific purpose, such as tracking large objects or small objects, working with
close or far distances, or performing well under different lighting conditions.

5https://ros-planning.github.io/followjointtrajectory
6https://github.com/AprilRobotics/apriltag
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Figure 3.3: Examples of 36h11 apriltags
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Solution & System Implementation

To develop a bimanual manipulation system based on APF, capable of op-
erating effectively in dynamic environments, there are several important con-
siderations that need to be taken into account. The first section of this chapter
delves into formal definitions and presents a mathematical formulation of the
constraints that must be considered. The second section explains the proposed
solutions at a high level, outlining the architecture of the developed system.
Lastly, in the final section of this chapter, a more detailed analysis of the pro-
posed approach is presented. Specifically, it describes the ROS structure that
has been employed and the algorithm utilized for the self-collision avoidance
system.

4.1 Problem definition

4.1.1 Basic concepts

First of all, it is necessary to describe the space in which a bimanual robotic
system can act. In robots such as PAL Tiago++, where the arms are positioned
symmetrically with respect to the torso, the workspace 𝑊 can be divided into
three main areas: a safe zone 𝑆, a common zone 𝐶, and an unreachable zone 𝑈
(Fig. 4.1).

𝑊 = 𝑆 ∪ 𝐶 ∪𝑈
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The safe zone can be divided into two types: a safe zone for the left arm 𝑆𝐿
and a safe zone for the right arm 𝑆𝑅. The main characteristic of this area is the
possibility of end effectors to move freely, without the risk of colliding with the
other arm and only obstacles can be considered. Objects positioned in 𝑆𝐿 are
unreachable for the right arm and vice versa.

𝑆 = 𝑆𝐿 ∪ 𝑆𝑅 𝑆𝐿 ∩ 𝑆𝑅 = ∅

The common zone 𝐶 is defined as the intersection of the workspaces of the
two arms. It indicates the area where both arms are capable of operating. It
is a risky area, where the task of picking or placing an object can be further
complicated by the possibility of collision between the arms. The unreachable
zone 𝑈 , represents the area outside the workspaces of the left and right arms.
Therefore, it indicates an area where neither arm can operate due to kinematic
constraints. For instance, an object placed very close to the torso or even behind
is likely to be unreachable.

Figure 4.1: Workspace schema. 𝑆𝐿 and 𝑆𝑅 are the safe zones for the left and
right arm, respectively. 𝐶 is the common area and𝑈 is the unreachable zone

To determine the positions of the end effectors in the workspace over time,
the reference frame set at the base of the robot is considered. The x-axis points
to the right, the y-axis points upward, and the z-axis points outward from the
origin (Fig. 4.2). Therefore, the position of a generic end effector 𝑒𝑖 can be
defined as 𝑒𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖). According to the previous workspace description,
𝑒𝐿 ∈ {𝑆𝐿 , 𝐶} and 𝑒𝑅 ∈ {𝑆𝑅 , 𝐶}. Moreover, to make the experiments uniform, it
has been decided that at the beginning and at the end of a manipulation task, 𝑒𝐿
and 𝑒𝑅 must return to the starting position within the respective safe zones.
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Figure 4.2: Workspace with reference frame

Some considerations regarding the objects in the workspace are also neces-
sary. Let 𝑂 be the set of all objects in the workspace. Such a set can be divided
into two categories: items that can be grasped with only one end effector (𝑂𝐻1)
and items that must be picked up using both arms synchronously (𝑂𝐻2). 𝑂𝐻1

is further divided into objects that can be grasped only by the left end effector
𝑂𝐻𝐿 and only by the right end effector 𝑂𝐻𝑅. If an object can be grasped by both
manipulators will be in both 𝑂𝐻𝐿 and 𝑂𝐻𝑅. An object may end up in 𝑂𝐻1 or
𝑂𝐻2 not only based on its size or weight (e.g. a large object necessarily requires
both effectors to be grasped), but the logic behind the grasp also plays a role. For
example, a plate can be picked up with only one arm, but in order to have greater
stabilization and a more human-like form, both effectors should be employed.
Objects in 𝑂𝐻2 must require both arms to be used for grasping. For instance,
a bottle can be picked up with both the end effectors at the same time, but it
would be unnecessary and hinder proper grasping and subsequent movement.
In order to grasp objects in 𝑂𝐻2, two grasping points have to be defined: 𝑔𝐿 for
the left arm and 𝑔𝑅 for the right manipulator. Such points should be positioned
as symmetrical as possible in order to be easily reached by the respective end
effectors (Fig. 4.3).

Figure 4.3: Example of grasping points for picking a plate
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4.1.2 Constraints

To define the constraints of bimanual manipulation in a dynamic environ-
ment, two scenarios need to be considered: uncoordinated bimanual and sym-
metric coordinated bimanual. The asymmetric coordinated case (e.g., mixing a
liquid in a cup) is unnecessary given that, in the pick phase, it does not differ
from the uncoordinated case. After picking the two objects, the asymmetric
coordinated action can be easily performed with a static motion planner.

Uncoordinated bimanual

Figure 4.4: Uncoordinated bimanual setting. 𝐴 ∈ 𝑆𝐿 can be grasped only by 𝑒𝐿,
𝐵 ∈ 𝑆𝑅 can be grasped only by 𝑒𝑅

Assume a setting like the one in Figure 4.5. Two objects 𝐴, 𝐵 ∈ 𝑂𝐻1 are
positioned in 𝑆𝐿 and 𝑆𝑅 respectively. Due to their positions, 𝐴 can only be
picked up by 𝑒𝐿 and 𝐵 by 𝑒𝑅. In such a scenario, the arms cannot collide
with each other during the path towards their respective goal and the main
challenges are to avoid obstacles and handle the dynamic position of the objects
in the workspace. Then, a mathematical definition of these points is provided.
Consider an obstacle 𝑄 = (𝑥𝑄 , 𝑦𝑄 , 𝑧𝑄) with a regular base, where 𝑟 represents
the maximum distance between the center and the edge of the base (e.g., in
a cylindrical object, r is the radius of the circular base). Then, the following
relationship must be respected in order to avoid collisions between the end
effectors and the obstacles:

𝑑(𝑒𝑖 , 𝑄) > 𝑟 + 𝑑𝑠
where 𝑑(·, ·) is the Euclidean distance between two points and 𝑑𝑠 represents a
small value that ensures the end effectors maintain a safe distance from obstacles.
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Figure 4.5: Safe distance from an obstacle

Assume now that 𝐴1 and 𝐴2 respectively represent the position of the object
𝐴 at times 𝑡1 and 𝑡2. Then, the position of a generic end effector 𝑒𝑖 , capable to
reach 𝐴2 at the instant of pick 𝑡𝑝𝑖𝑐𝑘 (with 𝑡𝑝𝑖𝑐𝑘 > 𝑡2), is:

𝑒𝑖(𝑡𝑝𝑖𝑐𝑘) = 𝐴2 + 𝑑𝑝

where 𝑑𝑝 is the distance that allows the end effector to grasp the object correctly
(e.g. the offset to grasp the object in the gripper).

The previous considerations remain valid even if 𝐴 and 𝐵 are in the 𝐶 zone,
as long as they are respectively on the left and right side of the common area.
The situation becomes different when the uncoordinated bimanual scenario is
like the one in Figure 4.6. If the left end effector is in charge of picking up 𝐵 and
the right end effector is assigned the task of picking up𝐴, no problems arise since
the arm trajectories do not overlap. However, suppose instead we stick with 𝑒𝐿
associated with 𝐴 and 𝑒𝑅 associated with 𝐵. This choice may be motivated by
the need to use a specific end effector for a certain object. For example, a bottle
can be grasped with either a hand-style end effector or a gripper, but the latter
allows for greater stabilization and is therefore preferable in most cases.

Figure 4.6: Uncoordinated bimanual setting that requires crossing arms to grasp
𝐴 with 𝑒𝐿 and 𝐵 with 𝑒𝑅

29



4.1. PROBLEM DEFINITION

(a) (b)

(c)

Figure 4.7: Different orientations of the end effectors

In this scenario, the probability of self-collision between the arms is very
high. It is therefore necessary the implementation of a method that prevents
this. It is hypothesized that the following two relationships must be respected
to avoid arm-crossing and self-collision:


𝑥𝐿 < 𝑥𝑅

𝑑(𝑒𝐿 , 𝑒𝑅) > 𝑘
(4.1)

where 𝑥𝐿 and 𝑥𝑅 are the x coordinates of the left and right end effectors and
𝑘 is the miniumum safe distance that must exist between the arms. Only the
x coordinates are considered since movements along the y and z axis cannot
cause the arms to cross. Even if 𝑑(𝑒𝐿 , 𝑒𝑅) > 𝑘 would be enough to prevent
self collisions, the arm crossing constraint (𝑥𝐿 < 𝑥𝑅) adds an additional level
of security to the grasping system. The 𝑘 value should not be a constant but
should vary according to the orientation of the end effectors. For example, if
the manipulators are positioned as shown in Figure 4.7a, the value of distance 𝑘
must be different compared to the setup depicted in Figure 4.7c. Assigning the
correct value of 𝑘 is critical to the self-collision system, as a value that is too low
could result in collisions, while a value that is too high could cause slow and
inefficient movements.
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Coordinated Bimanual

Consider the coordinated bimanual scenario depicted in Figure 4.8. To pick
the object 𝐶 ∈ 𝑂𝐻2, 𝑒𝐿 should reach the left grasping point 𝑔𝐿 and 𝑒𝑅 the right
grasping point 𝑔𝑅.

Figure 4.8: Coordinated bimanual setting. 𝐶 is an 𝑂𝐻2 object, 𝑔𝐿 and 𝑔𝑅 are the
left and right grasping points

In addition to react to obstacles and changes in the position of objects as
before, the manipulation system must perform a synchronous pick and move in
a symmetric manner from the moment of grasping until the object is released.
If one manipulator moves a certain amount along the three axes, the other
manipulator must also move accordingly in the same way. Assume that in 𝑡1
the object is picked and that in 𝑡2 is released, then ∀𝑡𝑖 : 𝑡1 ≤ 𝑡𝑖 ≤ 𝑡2 the following
relationship must apply (𝑙® indicates a shift along the three axes):

𝑒 𝑖𝐿 = 𝑒 𝑖−1
𝐿 + 𝑙®←→ 𝑒 𝑖𝑅 = 𝑒 𝑖−1

𝑅 + 𝑙® (4.2)

To sum up, a dynamic bimanual manipulation system should avoid obstacles,
react to changes in the positions of objects in the workspace, have a self-collision
system and be capable to perform synchronous symmetric movements. The
next section presents the APF-based solution proposed in this thesis to deal
with such requirements.

4.2 Proposed system

A simple approach to implementing a manipulation system in robotics in-
volves a two-step process: object detection followed by motion planning 4.9.
The user chooses the object that should be grasped, for example, indicating
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the apriltag number associated with the object, and with which end effector to
perform the grasp. This request is forwarded to an object detection system that
uses vision techniques to determine the position and orientation of all objects
in the field of view of the camera. At this point, if the selected object has been
detected, the motion planner brings the end effector to a grasping position for
such an item.

Figure 4.9: RRTConnect-only manipulation system

For this purpose, the RRTConnect motion planner can be employed. Af-
ter defining the planning scene, i.e., the collision objects for all items in the
workspace, it is then possible to search for a path that leads the chosen end
effector to the respective object to be picked. RRTConnect can also be used
to perform dual grasping. For example, in the uncoordinated scenario with-
out crossing arms in Figure 4.5, it is possible to bring the two manipulators 𝑒𝐿
and 𝑒𝑅 simultaneously to their respective pick positions for the target objects
𝐴, 𝐵 ∈ 𝑂𝐻1. In the coordinated case in Figure 4.8, RRTConnect can be used to
perform the grasping of the object 𝐶 ∈ 𝑂𝐻2 by bringing the manipulators to
the corresponding grasping points (𝑔𝐿 for 𝑒𝐿 and 𝑔𝑅 for 𝑒𝑅) and then creating
routines to lift/lower the object as described in the Equation 4.2. Although
RRTConnect allows for such uncoordinated and coordinated grasps, it suffers
from the problems associated with the basic implementations of sampling-based
motion planners, described in Chapter 2. The main limitation is the lack of dy-
namism, i.e., online generation of the path to the goal. For this reason, if objects
in the workspace are moved, or new ones appear, the probability of collisions
and failure to pick the selected object is very high. Moreover, considering the
uncoordinated case with crossing arms, RRTConnect is unable to find a solu-
tion. This happens because the motion plans inevitably end up overlapping thus
causing the planner to fail. To overcome this problem, it is necessary to move
only one arm sequentially. This results in a suboptimal behavior since moving
the arms together could reduce the total time of the grasping routine in addition
to having a more human-like and intelligent execution. For such reasons, this
thesis proposes the architecture depicted in Figure 4.10.
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Figure 4.10: APF+RRTConnect manipulation approach

The object detection phase and the RRTConnect phase remain the same as
the previous system. The difference is the addition of APFs as support for
RRTConnect. As described in Section 2.4, APFs suffer from some problems
including the risk of the agent getting stuck in a local minimum. For this reason,
it was decided to use the improved APFs version described in [10] which allows
this risk to be reduced through the dynamic generation of escape points around
obstacles. Such escape points are attractive points that allow the agent to avoid
obstacles more easily.

Thanks to APFs, it is possible to move the end effector toward the goal ex-
ploiting the ability to react to changes in the surrounding environment. There-
fore, APFs can bring the manipulator to a position near the target object (named
proximity pose), from which RRTConnect can be triggered to perform the grasp.
APFs in fact do not have the precision required to pick up an object, but it is
necessary to rely on RRTConnect. Even in this system, if there are major changes
in the workspace during the RRTConnect phase, the pick is likely to fail. In any
case, since the RRTConnect phase is much shorter than before, such changes are
less likely to occur in a real-world scenario. Figure 4.11 depicts such reasoning:

Figure 4.11: Illustrative representation of the functioning of the RRTConnect
and APF+RRTConnect approaches
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To better understand the concept, assume that the object to be picked up is
𝐴 ∈ 𝑂𝐻1 which at instant 𝑡1 is at position 𝑝1. At instant 𝑡2 > 𝑡1 such object is
moved from 𝑝1 to a new position 𝑝2. Suppose that the motion planning of the
RRTConnect-only approach is executed at 𝑡1, then the end effector will reach
𝑝1 after a time 𝑡𝑝 . If 𝑡𝑝 > (𝑡2 − 𝑡1) then 𝐴 is no longer there, thus missing the
pickup. In contrast, in the APF+RRTConnect approach, the arm starts moving
toward 𝐴 at time 𝑡1 adjusting its trajectory at time 𝑡2 when 𝐴 is moved. When
the end effector arrives at a position close to the target object (at time 𝑡3 > 𝑡2),
RRTConnect brings the manipulator to 𝑝2 where 𝐴 is present.

However, the previous example considered only a single arm. This thesis
expands the system to two arms, necessitating a method to prevent self-collision
between the arms.

4.2.1 Self-collision avoidance

The core concept of the developed self-collision avoidance system is rela-
tively straightforward. This system is designed to monitor the positions and
orientations of end effectors over time. If a potential collision risk is detected,
a recovery method is activated. This system employs a prioritization approach,
favoring the manipulator closest to the goal. The other end effector is required to
initially retreat by a certain distance (according to the context), providing ample
space for the prioritized arm to safely reach the target object. Subsequently, it
remains stationary until further notification. Once the arm with priority com-
pletes its routine, the waiting end effector can resume its movement towards its
goal, thereby concluding the grasping routine.

Consider, for instance, the application of such system to an uncoordinated
bimanual case with arm crossing like the one in Figure 4.6. Without the self-
collision avoidance system, the paths of the two end effectors would overlap
at point 𝑝𝑜 , resulting in an arm collision, as depicted in Figure 4.12a. On the
other hand, by implementing the previously described control system, the arms
would halt upon detecting the risky situation (Figure 4.12b). Assuming that 𝑒𝐿
is closer to its goal (𝐴) compared to 𝑒𝑅, the left manipulator is given priority.
As a result, the right arm moves backward to create sufficient space for the left
arm to complete its grasping routine (Figure 4.12c). Finally, 𝑒𝑅 can reach point
𝐵 without encountering any issues (Figure 4.12d).
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(a) The trajectories of the end effectors
would overlap, colliding in 𝑝𝑜

(b) 𝑒𝐿 and 𝑒𝑅 must stop when a potential
collision is detected

(c) Priority given to the end effector
closer to the goal (𝑒𝐿)

(d) Once 𝑒𝐿 has finished its routine, 𝑒𝑅
can start

Figure 4.12: Self-collision avoidance system

4.3 Implementation

The entire solution presented in the previous section was implemented in
ROS using C++. The code developed in [10] was used as starting building block.

One of the main nodes of the system is robot_controller. As the name
suggests, it handles the robot’s movements via RRTConnect. In fact, using
the /move_srv service, it is possible to request the pick or release of a specified
object, bring the end effector to a certain position, adjust the arm joints, and
perform predefined routines such as bringing the robot to an approach or home
position. In addition, the robot_controller node is responsible for managing
the dynamic environment. It is subscribed to the apriltag_ros node that
constantly publishes the positions and orientations of the objects in the field of
view of the camera. Such data are subsequently used to dynamically modify the
planning scene1 (i.e. the collision objects). However, a problem arises: when an
end effector moves, it may hinder the reading of apriltags (i.e., occlusion). As a
result, some objects may not be added to the planning scene, leading to potential

1It is assumed that the dimensions of the objects in the workspace as well as the grasping
points for the items in 𝑂𝐻2 are known a priori
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collisions. To solve this, the Algorithm 1 is proposed. The basic idea is that, for
the whole duration of the manipulation routine, if an object "disappears" (i.e.,
is no longer in 𝑂) it is not deleted from the scene but remains in its last known
position, which is recorded in 𝑅.

Algorithm 1 Object recorder
Require: 𝑂: vector of current detected objects; 𝑃: vector of picked objects;
𝑅: vector of objects detected so far

Ensure: 𝑂 𝑓 : 𝑂 with missing objects
for all 𝑜 ∈ 𝑂 do

if 𝑜 ∈ 𝑅 then
𝑅.update(𝑜) {update the position of 𝑜}

else
𝑅.push(𝑜)

end if
𝑂 𝑓 .push(𝑜)

end for
for all 𝑟 ∈ 𝑅 do

if 𝑟 ∉ 𝑂 and 𝑟 ∉ 𝑃 then
𝑂 𝑓 .push(𝑟)

end if
end for
return 𝑂 𝑓

Once RRTConnect is ready to be used it is then time to start the APFs. If
the user specifies only one apriltag code and which end effector to use, then
the single-arm manipulation routine is triggered. The apf_control constantly
receives information from the robot_controller node about which goal to
pursue and its position, the location of obstacles and their respective escape
points. By leveraging such information, it is therefore possible to calculate the
attractive and repulsive force acting on the considered end effector, moving it
towards its target. For proper operation of APFs, certain parameters need to be
tuned, some of the most influential are:

• Attractive potential fields gain: parameter defining the attractive force of
the target object

• Repulsive potential fields gain: parameter defining the repulsive force of
the obstacles

• Repulsive force threshold distance: parameter defining the distance from
obstacles where the repulsive force begins to act
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• Escape gain: parameter defining the attractive force of the escape points

• Goal radius: distance from the target object that the end effector must
reach. For example, a value of 0.10 indicates that the end effector uses
APFs up to ∼10cm away from the target, from that point the grasp is
performed by RRTConnect

In summary, the nodes apf_control and robot_controller allow single-
arm actions to be performed in a dynamic environment with APFs+RRTConnect.
Figure 4.13 depicts the ROS structure described so far.

Figure 4.13: Single-arm APF+RRTConnect ROS structure

If the user specifies two apriltag codes and the respective end effector to be
used, the dual-arm manipulation routine is triggered. Two apf_control nodes
are started, one for each arm (namedleft_apf_controlandright_apf_control).
There are a few differences in the ROS structure compared to Figure 4.13.
First of all, robot_controller publishes the messages /object_msg_left and /ob-
ject_msg_right instead of the single /object_msg, but the structure remains the
same. It was decided to differentiate the messages since the goal for the left end
effector must be considered as an obstacle by the right end effector, and vice
versa.

Further considerations are also needed for performing synchronous or asyn-
chronous grasps. For the latter, it was decided to adopt the following method-
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ology: assuming that the left manipulator 𝑒𝐿 reaches its goal via APF before
the right end effector, the left arm will initiate the pick of its target object via
RRTConnect. If the right manipulator reaches its target item during this phase,
it will remain idle and wait until the left arm completes its routine. Once 𝑒𝐿 has
grasped the object and returned to its safe position, 𝑒𝑅 can proceed to carry out
the pick of its target item. Such a synchronization is achieved through an ex-
change of data via services (/left_arm_feedback and /right_arm_feedback) between
the left arm node and the right arm node. Instead, for the execution of syn-
chronous grasps, if 𝑒𝐿 reaches its APF goal before 𝑒𝑅, the left end effector waits
until the right manipulator has also reached its goal. Once this condition is met,
the synchronous grasp is executed via RRTConnect. The synchronous pick is
performed by the parallel_pick node, with which the left and right arm nodes
constantly communicate their current state. The decision on which behavior
to perform depends on the value assigned to the parallel_pick parameter. If set
to true, a synchronous pick is executed. If set to false (or left unspecified), an
asynchronous pick is performed. If the pick of an object in 𝑂𝐻2 is requested, it
is not necessary to specify this parameter, as it will be assigned the value true by
default.

4.3.1 Self-collision avoidance

The self-collision avoidance system, described in Section 4.2.1, is imple-
mented in the bimanual_coordinator node in the package of the same name.
This node is launched whenever a bimanual movement is requested. The algo-
rithm can be subdivided into two phases: arm crossing control and a coordi-
nation routine. The arm-crossing control algorithm iteratively checks whether
the end effectors are in danger of colliding with each other until both arms have
finished the pick and returned to the safe position. In order to work properly
three parameters need to be tuned: 𝑘, 𝛾, and 𝜇. 𝑘 is the minimum safe distance
that must exist between the two end effectors. As mentioned in Section 4.1, the
distance 𝑘 cannot be a fixed value but must depend on the orientation of the end
effectors. This dependence is determined by the parameters 𝛾 and 𝜇. As shown
in the Algorithm 2, the RPY orientation of the end effectors are considered,
𝜇 and 𝛾 are the weights for the sum_pitch and diff_yaw variables, respectively.
The values assigned to these parameters have been determined empirically by
considering various configurations of the Tiago++ robot arms.
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Algorithm 2 Arms crossing control
Require: 𝑟𝑦 , 𝑙𝑦 : position along the y-axis of the right and left end effector;
𝑟𝑦𝑎𝑤 , 𝑙𝑦𝑎𝑤 : yaw angle of the RPY orientation of the right and left end effector;
𝑟𝑝𝑖𝑡𝑐ℎ , 𝑙𝑝𝑖𝑡𝑐ℎ : pitch angle of the RPY orientation of the right and left end effector;
𝑘: minimum safe distance between end effectors;
𝛾, 𝜇: weights

Ensure: true if arm crossing detected
𝑑← |𝑟𝑦 - 𝑙𝑦|
𝑑𝑦𝑎𝑤 ← |𝑟𝑦𝑎𝑤 - 𝑙𝑦𝑎𝑤|
𝑠𝑝𝑖𝑡𝑐ℎ ← |𝑟𝑝𝑖𝑡𝑐ℎ + 𝑙𝑝𝑖𝑡𝑐ℎ|
𝐾←max(𝑘, 𝑘 + ((𝛾 · 𝑑𝑦𝑎𝑤) - (𝜇 · 𝑠𝑝𝑖𝑡𝑐ℎ)))
if 𝑑 < 𝐾 then

return true
end if
return false

In case a risk situation is detected, the arm crossing control returns true, and
the coordination algorithm is triggered (Algorithm 3). First of all, the arms are
stopped via the topics /start_and_stop_left and /start_and_stop_right. Then, if it is
the first stop since the start of the manipulation routine, the recorded movement
vectors of the left and right arms are saved. These arrays contain the joint values
of the respective arms during the APF trajectories (𝑟𝑚𝐿 and 𝑟𝑚𝑅). However,
they are not sent to the coordination algorithm (via the /recorded_movement_left
and /recorded_movement_right topics) in their entirety. Instead, they are sampled
based on a parameter 𝜙. For example, in Figure 4.14 are depicted the four
positions recorded in 𝑟𝑚𝐿. The parameter 𝜙 determines how much the arm
without priority needs to retract to allow the leading arm to reach its goal. If the
value of 𝜙 is too low, it can lead to continuous blockages and jerky movements.
Conversely, if the value is too high, there would be no significant time advantage
over moving the arms individually one at a time. After saving the recorded
movements, it is checked which end effector is closest to the goal. If the left
manipulator has the priority, the right arm returns to its previous position in
𝑟𝑚𝑅 and the left end effector will be given the green light to start (vice versa if
the right arm has priority). If further collision risks occur, the right arm move
back further and further until it might return to the safe starting position.
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Figure 4.14: Example of recorded movement vector

Algorithm 3 Coordination routine
Require: distance_left: distance between the left end effector and its goal

distance_right: distance between the right end effector and its goal
Ensure: self collision avoidance

counter← counter + 1
stopArmLeft()
stopArmRight()
if counter == 0 then
𝑟𝑚𝐿← getRecordedMovementLeft()
𝑟𝑚𝑅← getRecordedMovementRight()

end if
if distance_left > distance_right then

pos← 𝑟𝑚𝐿.size() - 1 - counter
moveArmLeft(𝑟𝑚𝐿[pos])
startArmRight()

else
pos← 𝑟𝑚𝑅.size() - 1 - counter
moveArmRight(𝑟𝑚𝑅[pos])
startArmLeft()

end if
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Figure 4.15: APF+RRTConnect manipulation system
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5
Experiments

This chapter presents an evaluation of the performance and effectiveness
of the proposed dual arm manipulation system based on APF. To assess the
capabilities and limitations, it has been tested in the execution of uncoordinated
and coordinated bimanual actions. Moreover, the advantages of using the self-
collision avoidance system are shown.

5.1 Setup description

The workspace on which the robot can operate consists of a table measuring
124x90x71 cm. The TIAGo++’s torso is at a distance of 34 cm from the edge of
the table which allows the robot to observe nearly the entire workspace. As a
result, the camera remained stationary throughout all the experiments, without
requiring the additional detection phase in which the head is moved to scan the
entire table. The objects used for manipulation are the following:

• Blue polystyrene cube (7x7x7 cm) with apriltag code 29, associated with
the left end effector and used in uncoordinated bimanual experiments

• Red polystyrene cube (7x7x7 cm) with apriltag code 42, associated with
the right end effector and used in uncoordinated bimanual experiments

• Cardboard box (30x40x40 cm), with apriltag code 0, that requires both end
effectors to be grasped and used in the coordinated bimanual experiments
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Figure 5.1: Photo of the workspace used in the experiments

5.2 Experimented modalities

To test the dynamic capabilities of the proposed APF+RRTConnect manip-
ulation system, it has been compared with an RRTConnect-only approach in
performing uncoordinated and coordinated actions. Moreover, another exper-
iment has been performed to show the utility of the proposed self-collision
avoidance system. The comparison is conducted between moving the arms si-
multaneously and moving the arms sequentially, in an uncoordinated bimanual
scenario, using the proposed APF+RRTConnect system. The RRTConnect-only
system was not taken into account because, as explained in Chapter 4, it is inca-
pable of performing the bimanual task with crossing arms by moving both end
effectors simultaneously. Even if a comparison can be performed, moving one
arm at a time, the RRTConnect-only system would consistently miss the pick due
to the dynamic nature of the environment. Therefore, given the meaningless of
this condition, this has not been tested. The modalities are evaluated based on
the metrics described in Section 5.3.

• Uncoordinated bimanual: the left end effector must reach and grasp the
blue cube, instead the right manipulator has to pick up the red cube. The
pick is asynchronous, meaning that the end effectors do not perform the
pick simultaneously. Instead, it has been decided to prioritize the arm
that reaches its target object first. The other manipulator must wait for the
priority arm to finish the manipulation before proceeding. Three different
initial positions were chosen for both objects to test the adaptability of the
system. For each of these positions, twenty test runs are performed with
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APF+RRTConnect and twenty test runs with RRTConnect-only (i.e., 60 per
modality in total)

• Coordinated bimanual: the left end effector must reach the left grasping
point of the box and the right manipulator the right grasping point. After
grabbing the object, the box must be raised. If the box does not fall and the
base remains parallel to the table, the pick is considered successful. Sixty
test runs are performed with APF+RRTConnect and sixty test runs with
RRTConnect-only

• Uncoordinated bimanual with crossing arms: as the uncoordinated bi-
manual case described above but with the need to coordinate the arms
to avoid a self-collision. A total of sixty test runs were carried out by
moving the arms simultaneously and another sixty by moving the arms
sequentially

5.3 Metrics description

To perform the comparison analysis between the proposed APF-based sys-
tem and the RRTConnect-only approach, the following metrics are considered
for each test run and for each end effector:

• SR1 APF: determines the ability of APFs to reach the point at which RRT-
Connect is triggered. For each run, a value of 1 is assigned if the end
effector reaches such point, 0 if for any reason during the movement the
system fails or crashes

• SR RRTConnect: determines the ability of RRTConnect to perform the
requested pick motion. For each run, it is assigned value 1 if the movement
is executed (even if the object is eventually dropped), 0 if the motion
planner fails for any reason

• SR Pick: determines the ability to grasp the requested object. For each run,
a value of 1 is assigned if the object is successfully grasped and remains
stable for the entire duration of the picking routine, otherwise, a value of
0 is assigned

These metrics are considered separately for the left and right arms.
In the coordinated scenario (i.e. grasping an object in 𝑂𝐻2), in addition to

the previous metrics, the grasping offset is also considered. In order to ensure
a proper grasp of the box, it is essential for the end effectors to accurately reach
the left grasping point 𝑔𝐿 and the right grasping point 𝑔𝑅. This precision is

1Success Rate
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necessary to prevent any backward or forward sliding of the box when it is
lifted. For this reason, the grasping offset metric indicates the distance between
the actual grasping position reached by the end effectors and the expected ones.

In the uncoordinated case with crossing arms, in addition to the three initial
metrics, the routine times are also considered, namely the time to perform the
routine. The pick routine for each arm consists of reaching the pick point via
APF, grasping the item, and returning to the safe starting position.

5.4 Results

5.4.1 Uncoordinated bimanual

In this experiment, the cubes (i.e., the target objects) are moved during the
arm motion. The results show that the proposed APF+RRTConnect system
reacts to such position change (Figures 5.3a, 5.4a, 5.5a, 5.6a, 5.7a, 5.8a) and is
therefore capable to perform the pick in most cases (59/60 for the left arm, 52/60
for the right arm).

Figure 5.2: Uncoordinated bimanual setup

It should be kept in mind that
the SR pick of the right arm is
also affected by the different end
effector. In fact, the hand of the
TIAGo++ is not always capable
of ensuring a secure grip, result-
ing in instances where the cube
has slipped. In such cases, the
pick was considered to have failed,
even though APF and RRTCon-
nect behaved correctly. In con-
trast, the gripper on the left arm
is much more reliable. Unlike the
APF+RRTConnect system, the RRTConnect-only approach does not react to
changes in position of the target objects (Figures 5.3b, 5.4b, 5.5b, 5.6b, 5.7b, 5.8b).
As a result, it is unable to successfully grasp them. Furthermore, when using
APF as the first step, RRTConnect never failed, unlike when using RRTConnect
directly (52/60 SR RRTConnect Left).
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Position 1

APF+RRTConnect RRTConnect
SR APF Left 20/20 -

SR APF Right 20/20 -
SR RRTConnect Left 20/20 15/20

SR RRTConnect Right 20/20 20/20
SR Pick Left 20/20 0/20

SR Pick Right 15/20 0/20

Table 5.1: Uncoordinated bimanual success rates - Position 1

(a) APF+RRTConnect behavior in 2D. The arms react to the change in position of the
target objects and thus are able to grasp them

(b) RRTConnect-only behavior in 2D. The arms do not react to the change in position of
target objects and thus fail the grasp
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(c) Merged graphs in 2D

Figure 5.3: Uncoordinated bimanual - Position 1 - 2D

(a) APF+RRTConnect behavior in 3D. The arms react to the change in position of the
target objects and thus are able to grasp them
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(b) RRTConnect-only behavior in 3D. The arms do not react to the change in position of
target objects and thus fail the grasp

(c) Merged graphs in 3D

Figure 5.4: Uncoordinated bimanual - Position 1 - 3D
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Position 2

APF+RRTConnect RRTConnect
SR APF Left 20/20 -

SR APF Right 20/20 -
SR RRTConnect Left 20/20 18/20

SR RRTConnect Right 20/20 20/20
SR Pick Left 20/20 0/20

SR Pick Right 20/20 0/20

Table 5.2: Uncoordinated bimanual success rates - Position 2

(a) APF+RRTConnect behavior in 2D

(b) RRTConnect-only behavior in 2D
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(c) Merged graphs in 2D

Figure 5.5: Uncoordinated bimanual - Position 2 - 2D

(a) APF+RRTConnect behavior in 3D

51



5.4. RESULTS

(b) RRTConnect-only behavior in 3D

(c) Merged graphs in 3D

Figure 5.6: Uncoordinated bimanual - Position 2 - 3D
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Position 3

APF+RRTConnect RRTConnect
SR APF Left 20/20 -

SR APF Right 20/20 -
SR RRTConnect Left 20/20 19/20

SR RRTConnect Right 20/20 20/20
SR Pick Left 19/20 0/20

SR Pick Right 17/20 0/20

Table 5.3: Uncoordinated bimanual success rates - Position 3

(a) APF+RRTConnect behavior in 2D

(b) RRTConnect-only behavior in 2D
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(c) Merged graphs in 2D

Figure 5.7: Uncoordinated bimanual - Position 3 - 2D

(a) APF+RRTConnect behavior in 3D
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(b) RRTConnect-only behavior in 3D

(c) Merged graphs in 3D

Figure 5.8: Uncoordinated bimanual - Position 3 - 3D
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5.4.2 Uncoordinated bimanual with crossing arms

In this experiment, an uncoordinated bimanual action is considered as before,
but with the additional requirement of avoiding self-collisions. In fact, the
placement of the red cube on the right side of the table and the blue cube on the
left side leads the trajectories of the arms to inevitably cross each other during
the APF phase. As described in Chapter 4, the self-collision avoidance system
is launched every time a dual manipulation routine is requested. When the
potential collision is detected (Figure 5.10a) it is checked which arm is closer
to its goal. In this scenario, the right end effector is closer to its target object
and therefore has priority. The left arm moves backward2 (Figure 5.10b) and
the right end effector can restart moving towards its goal. Once the right arm
has grasped the object (Figure 5.10c) and has returned to its safe position, no
more obstacles hinder the movement of the left end effector. Consequently, it
can resume its motion towards the blue cube (Figure 5.10d).

Figure 5.9: Uncoordinated bimanual with crossing arms scenario

2In the previous position stored in the recorded movement vector
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(a) Potential collision detected

(b) The left arm moves backward

(c) The right arm reaches its goal, grasps the object, and returns to a safe position

57



5.4. RESULTS

(d) The left arm picks the right object completing the routine

Figure 5.10: Self-collision avoidance behavior

Dual Sequential
APF+RRTConnect APF+RRTConnect

SR APF Left 60/60 59/60
SR APF Right 60/60 60/60

SR RRTConnect Left 60/60 59/60
SR RRTConnect Right 60/60 60/60

SR Pick Left 59/60 58/60
SR Pick Right 58/60 60/60

Table 5.4: Uncoordinated bimanual with crossing arms - Success rates

Moving the arms simultaneously or sequentially the behavior is very similar
(Table 5.4). The main difference lies in the total time of the manipulation routine
(Table 5.5). The term "APF time" refers to the time required by an end effector to
reach the APF goal, i.e. the distance from the target object where RRTConnect
is triggered to perform the grasp. "Pick time" represents the time required for
grasping and lifting an object. "Home time" refers to the time an end effector
needs to return to the initial safe position after the pick. To calculate the total
time for the dual APF+RRTConnect approach, only "Avg. APF left time", "Avg.
pick left time", and "Avg. safe left time" are summed since "Avg. APF left time"
includes the partial times for the right arm. As the results show, the self-collision
avoidance system reduces the total time by 5.1%.
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Dual Sequantial
APF+RRTConnect APF+RRTConnect

Avg. APF left time 175.01s 86.92s
Avg. pick left time 31.35s 31.27s
Avg. safe left time 32.38s 33.08s

Avg. APF right time 64.15s 50.74s
Avg. pick right time 18.20s 18.22s

Avg. home right time 26.57s 31.40s
Avg. total time 238.74s 251.63s

Table 5.5: Uncoordinated bimanual with crossing arms - Times

5.4.3 Coordinated bimanual

In this experiment, the box (i.e., the target object for both end effectors) is
moved during the arm motion. The results show that the proposed APF+RRT
Connect system reacts to such position change (Figures 5.12a, 5.13a) and is
therefore capable to perform the pick in most cases (53/60). In the seven failed
cases, the arms were always able to pick and lift the box by grasping it at the
expected grasping points, but the box slipped backward or forward. Although
not flawless, the APF+RRTConnect system is certainly an improvement com-
pared to the RRTConnect-only system. Since the RRTConnect-only approach
is unable to react to the change in position of the box, it inevitably ends up
grabbing it in the wrong position (Figures 5.12b, 5.13b). This results in the box
sliding backward, causing the pick to fail. Moreover, the trajectories generated
by the APF+RRTConnect method exhibit greater compactness, with a higher
degree of similarity to each other, in contrast to the trajectories obtained with
the RRTConnect-only system. Lastly, similar to the uncoordinated bimanual
case, when using APF as the first step, RRTConnect never fails, unlike when
using RRTConnect directly.
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Figure 5.11: Coordinated bimanual scenario

APF+RRTConnect RRTConnect
SR APF Left 60/60 -

SR APF Right 60/60 -
SR RRTConnect Left 60/60 57/60

SR RRTConnect Right 60/60 57/60
SR Pick Left 53/60 0/60

SR Pick Right 53/60 0/60

Table 5.6: Coordinated bimanual - Success rates

Avg. Grasping Avg. Grasping SD. Grasping SD. Grasping
offset left offset right offset left offset right

APF+RRTConnect 0.00088 0.00090 0.06419 0.08251
RRTConnect 0.10950 0.10956 0.12623 0.12624

Table 5.7: Coordinated bimanual - Grasping offset
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(a) APF+RRTConnect behavior

(b) RRTConnect-only behavior
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(c) Merged graphs

Figure 5.12: Coordinated bimanual - 2D

(a) APF+RRTConnect behavior
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(b) RRTConnect-only behavior

(c) Merged graphs

Figure 5.13: Coordinated bimanual - 3D
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5.5 Discussion

From the experiments performed, several considerations can be made. First
of all, analyzing the APF success rate across all the experiments, it is observed
that it has never failed (478/480, 99.6%). Therefore, the improved APFs demon-
strate a significant level of robustness, as they consistently bring the end effectors
to the requested goal position without encountering any problems. The same
consideration can also be made for RRTConnect since, considering its success
rate (705/720, 97.9%), it proves to be capable of generating grasping plans very
often. Analyzing the pick success rates, it is noticed how the APF+RRTConnect
combination allows to grasp the objects in most cases (452/480, 94.2%). On
the contrary, the RRTConnect-only approach, because of its static nature, is not
capable of picking objects in dynamic environments (0/240, 0%).

Considering the grasping offset metric, in the coordinated bimanual exper-
iment, it can be seen how the RRTConnect-only approach positions the end
effectors nearly 11 cm away from the correct grasping positions. Even if it man-
ages to catch the object, because of the offset the box ends up sliding backward in
most cases. If for a closed box this might not be a significant issue, in a real-world
scenario the consequences could be more serious. If a robot needs to pick up and
lift a box containing objects, an incorrect pick could result in the items inside the
box falling out, with the risk of suffering or causing damage. On the contrary,
the APF+RRTConnect system reacts to the changing position of the box and set
the manipulators in the correct location. Therefore the object is raised correctly
53 times out of 60. Another advantage of the APF+RRTConnect system can be
deduced by comparing Figures 5.12a and 5.12b. With the APF+RRTConnect
approach, both trajectories via APF and RRTConnect tend to be "compact". In-
stead, when relying on the RRTConnect-only system, the generated trajectories
become significantly more diverse and broad. Consequently, these movements
are much more inefficient and less human-like.

The uncoordinated bimanual with crossing arms experiment highlights the
utility of the self-collision avoidance system. This security method allows to
exploit the two arms of the robot to reduce the total time of the picking routine.
Moving the arms sequentially in fact results in a 5.1% slowdown of the routine
(as well as not being a human-like movement). While this percentage may seem
small, in a setup where a robot must constantly perform bimanual actions in a
dynamic environment, it leads to considerable time savings.
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6
Conclusions and Future Works

This thesis is born from the idea of creating a dual manipulation system ca-
pable of working in dynamic environments. This means that such a system must
be able to perform both uncoordinated and coordinated bimanual tasks while ef-
fectively adapting to changes in the surrounding scenario as humans do. Several
approaches, such as optimization-based motion planners or imitation learning,
can be used for this purpose. However, due to drawbacks like high computa-
tional cost or the need to create a large dataset, it was decided to opt for the
simpler sampling-based motion planners; in particular RRTConnect. Such mo-
tion planner allows to execute bimanual actions but, in its basic implementation,
it consider the environment as static and therefore cannot be applied directly
in dynamic scenarios. For this reason, the dual arm manipulation approach
proposed in this thesis relies on the combination of APF and RRTConnect. APF,
thanks to their simplicity and ability to react to changes in the surrounding
environment, are a useful support tool for RRTConnect. In fact, instead of gen-
erating static motion plans when the user asks to pick an object, APF generates
motion plans in an online manner, bringing the end effector to an intermediate
position, close to the target item, while reacting to changes in the scenario. Only
after the APF phase RRTConnect is triggered, in this way it have to generate a
much shorter plan resulting in a lower risk of changes in the environment and
in a higher probability of grasping the target object. Since with APF the end
effectors might get trapped in local minima, the so-called "improved-APF" im-
plementation has been adopted. Such improvement, described in [10], enables
an easier escape from local minima through the dynamic generation of escape
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points around obstacles. However, they lacked the ability to react to changes
in the goal position and it was necessary to develop an additional extension to
address this limitation. Moreover, the APF consider the two arms as separate
entities, meaning that during their movements they might collide with each
other. For this reason, it has been developed a self-collision avoidance mecha-
nism that allows the detection of risky situations over time and, consequently,
coordinates the arms in a way that allows safe movements. The experiments of
this thesis showed that the APF+RRTConnect approach is an effective dynamic
dual manipulation system. Thanks to the APF and the self-collision avoidance
method, it can safely grasp non-static objects in the workspace, in a coordinated
or uncoordinated way. It also leverages the use of two arms to minimize the
overall routine time required for picking two objects. For these reasons, the pro-
posed dual manipulation system can be applied in different real-world scenarios
like in logistics for sorting and packing goods in warehouses or as support as-
sistants in industrial and medical applications. However, the current version of
the APF+RRTConnect manipulation system is not without some limitations and
problems. One of the issues concerns the speed during the APF phase, as you
get progressively closer to the goal the attractive force decreases thus causing
a reduction in the velocity of the end effectors. Moreover, the movement via
APF is jerky (at least with TIAGo++) so further improvements and parameter
optimizations will be needed in order to achieve a smoother behavior. To apply
the proposed manipulation system in real-world scenarios would also be better
to avoid using apriltags since every object that needs to be manipulated must
be tagged. Instead, relying on a computer vision algorithm capable of detecting
objects in the environment and estimating their position would be a better solu-
tion. Furthermore, to perform the experiments, only a few grasping points have
been defined for each object. To use the APF+RRTConnect system in real-life
scenarios it should be integrated with a method capable of automatically gener-
ating several grasping points for every object that must be picked, according to
its shape. Finally, another upgrade regards the RRTConnect phase: if the vision
system detects that the target objects changed position during the RRTConnect
phase, the current motion plan must be aborted and the system should return to
the APF phase. These considerations will be all taken into account to improve
the proposed manipulation system in future works. This thesis can therefore be
seen as a starting point for a full dynamical and bimanual manipulation system
applicable in a wide variety of scenarios.
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