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Abstract

This thesis deals with the problem of fault detection and isolation (FDI) in multi-agent systems
(MAS) with linear dynamics. After a brief introduction of MAS, the relative problems and
applications, the problem of FDI is introduced. A model in which two kinds of faults (one
on the actuator and one on the sensor) is presented, and an unknown input observers (UIO)
technique is used in order to generate the residual signal that is necessary to detect the presence
of a fault. Subsequently, the consensus problem is solved simultaneously with the FDI problem.
The thesis investigates both the scenario in which the connection topology among the agents is
directed and when it is undirected. Finally, some simulations with MATLAB are performed in
order to shown the effectiveness of the proposed approach.
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Chapter 1

Introduction

1.1 Multi Agent Systems

The expression Multi Agent System (MAS) refers to a group of intelligent agents, connected
through a network and interacting with each other in order to reach a common objective. In
the past decades MASs have received considerable attention in the control system community
due to their potential applications in many areas, such as formation of unmanned aerial vehicles
(UAVs), unmanned underwater vehicle (UUVs), satellite formation, distributed optimization of
multiple robotic systems, distributed filtering and many other topics.
There are several advantages in using a MAS, such as the capability to complete tasks in a
distributed manner and this leads to an increase of the performance in terms of computational
times and energy harvesting. Furthermore, a decentralised system is more resilient against
external attacks with respect to a centralized one.

1.1.1 Dynamics of a MAS

A Multi Agent System network is a particular kind of network in which each node (agent)
includes a certain dynamics that can be in discrete or continuous time, time variant or time
invariant, linear or non-linear. In this thesis the linear time invariant (LTI) continuous time (CT)
case is take into account. In the following, the state space representation of the ith agent is given
by:

ẋi(t) = Axi(t)+Buui(t),

yi(t) =Cxi(t), i = 1, . . . ,N,
(1.1)

where xi(t) ∈ Rn, ui(t) ∈ Rnu , yi(t) ∈ Rny are the state vector, the input and the output of the
system, respectively. Moreover, A ∈ Rn×n is the state matrix, B ∈ Rn×nu is the input matrix and
C ∈ Rny×n is the output matrix.

The dynamics of whole system can be written in "condensed" form; define the state vector,
input and output of the whole system stacking the state, input and output of each agent as
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follows:

X(t) =


x1(t)

x2(t)
...

xN(t)

 , U(t) =


u1(t)

u2(t)
...

uN(t)

 , Y (t) =


y1(t)

y2(t)
...

yN(t)

 (1.2)

where X(t) ∈ RNn, U(t) ∈ RNnu and Y (t) ∈ RNny . With this vector notation it holds that:

Ẋ(t) =


A

. . .

A

X(t)+


Bu

. . .

Bu

U(t),

Y (t) =


C

. . .

C

X(t)

(1.3)

Using the Kronecker product (⊗), in order to compact the equation, the three real valued, block
diagonal matrices can be written as:

(IN⊗A) =


A

. . .

A

 , (IN⊗B) =


Bu

. . .

Bu

 , (IN⊗C) =


C

. . .

C

 (1.4)

Hence Eq.(1.3) becomes:

Ẋ(t) = (IN⊗A)︸ ︷︷ ︸
:=AN

X(t)+(IN⊗Bu)︸ ︷︷ ︸
:=BuN

U(t),

Y (t) = (IN⊗C)︸ ︷︷ ︸
:=CN

X(t)
(1.5)

where dim(AN) = Nn×Nn, dim(BuN) = Nnu×Nn and dim(CN) = Nn×Nny.
From now on, every matrix that is the Kronecker product between the identity matrix and a
generic matrix will be indicated with the name of the matrix and as subscript the dimension of
the identity matrix (e.g. AN := IN⊗A ).

The connection topology among N agents is represented trough a graph G = (V,E), where
V = {1,2, ...,N} is the set of nodes and the edge set is E ⊆ V ×V . Moreover, the adjacency
matrix of the graph A = ai j ∈ RN×N is the matrix whose entries are defined as follows: ai j = 1
if (v j,vi) ∈ E and ai j = 0 if (v j,vi) /∈ E. Condition ai j > 0 indicates that the agent i has access
to the information from agent j. The out-degree matrix is defined as D = diag(d1,d2, . . . ,dN)

with di = ∑
N
j=1 ai j and the Laplacian matrix is defined as L = D−A .

In a MAS, agents do not known their own outputs or the outputs of their neighbors but they
can measure the difference between them; this is due to the fact that a distributed approach is
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used and there is no centralized node that stores all the data outputs. With this in mind, it is
reasonable to replace the output dynamics of Eq. (1.5) with:

W (t) =


∑

N
j=1 a1 j(y1(t)− y j(t))

...

∑
N
j=1 aN j(yN(t)− y j(t))

 (1.6)

and substituting yi(t) with the definition in Eq. (1.1) the equation becomes

W (t) =


∑

N
j=1 a1 jC(x1(t)− x j(t))

...

∑
N
j=1 aN jC(xN(t)− x j(t))

 (1.7)

Note that the ith entry of vector W (t), [W (t)]i, is the weighted sum of the differences between
the output yi(t) of the agent i and the output y j(t) for every j such that there exists an edge from
j to i (i.e. all the neighbors agents j of the agent i); the weight of the edge interconnection is
encoded in the value of ai j ̸= 0.
With the introduction of the Laplacian matrix L the system of Eq. (1.5), using Eq. (1.6) as
output dynamics, can be rewritten as:

Ẋ(t) = ANX(t)+BuNU(t),

W (t) = (L⊗C)X(t)
(1.8)

Technological advances in ad hoc networks and the availability of low-cost reliable computing,
data storage, and sensing devices have made it possible to envision scenarios where the coordi-
nation of many subsystems extends the range of human capabilities. In these applications, the
ability of a network system to fuse information (in a decentralized fashion), compute common
estimates of unknown quantities, and agree on a common view of the world is critical. These
problems can be formulated as agreement problems on linear combinations of dynamically
changing reference signals or local parameters. The dynamic average consensus problem is for
a group of agents to cooperate to track the average of locally available time-varying reference
signals, assuming that each agent is capable only of local computations and communicates with
local neighbors. The difficulty of the dynamic average consensus problem is that the informa-
tion is distributed across the network. There are several approaches to this problem, the main
ones are discussed below. The centralized solution to the dynamic average consensus problem
is the straightforward one, since all the information are stored in a single place and the com-
putation is performed there. Despite its simplicity, there are several drawbacks that make it an
unused method, such as:

1. The algorithm is not robust to failures of the centralized agent;

2. the method is not scalable because the amount of communication and memory required
for each agent scales with the size of the network;

3



3. each agent must have a unique identifier (so that the centralized agent counts each value
only once);

4. the calculated average is delayed by an amount that grows with the size of the network;

5. the reference signals from each agent are exposed over the entire network (which is un-
acceptable in applications involving sensitive data).

The centralized solution is fragile due to the existence of a single failure point in the network.
This can be overcome by having every agent act as the centralized agent. In this approach, re-
ferred to as flooding, agents transmit the values of the reference signals across the entire network
until each agent knows each reference signal. While flooding fixes the issue of robustness to
agent failures, it is still subject to many of the drawbacks of the centralized solution. Although
this approach works reasonably well for small size networks, its communication and storage
costs scale poorly in terms of the network size and may cause, depending on how it is imple-
mented, costs of order O(N2) per agent. This motivates the interest in developing distributed

solutions for the dynamic average consensus problem that involve only local interactions and
decisions among the agents. [8]
Although the use of the distributed approach gives a lot of advantages in terms of performance
and robustness, the breakage of a MAS component remains a problem that must not be underes-
timated. The faults that can occur in this kind of networks are essentially two: the faults in the
agents (nodes) and the faults in the communication links among them (edges). It is immediate
to understand how the breakage or failure of one or more agents can cause the misbehavior of
the whole system or in the worst cases its breakage. Whenever an agent breaks down, the neigh-
boring agents that share information with it could misbehave as well and cause damage to the
entire system which may remain in this condition permanently. If a communication path fails,
the exchange of information between the agents is affected; in some lucky situations the topol-
ogy of the network can guarantee that the communication graph remains connected, however
this is not in general true since in some circumstances the MAS network split in two or more
subsystems that reach their goal (e.g. consensus) with different results. In both the plight, edge
or node disconnection/ failure, the final results that the MAS have reached is typically different
from the one that is expected in the case in which the fails did not happened.
To avoid this it is necessary to implement a strategy called fault detection and isolation (FDI),
to prevent this unwanted ends. The advantage of FDI for MAS systems is its ability to reduce
the system’s unplanned downtime by detecting a fault before the system suffers severs damage
and has to be shut-down. Then preventive maintenance can be carried out and the time during
which the system is out of work is considerably reduced. [14]

In this thesis only the case in which the agents have a malfunction in their dynamics will
be taken into account. Instead, for what concerns the communication among the agents, it is
assumed that remains unchanged. In first place the case in which only one agent at a time can
breaks will be considered, subsequently, adding some hypotheses necessary for the resolution of
the problem, the situation where several agents have simultaneous faults affecting the dynamics
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will be investigated. The agent faults are usually modelled through an additive l2 signal in the
state dynamics, however more details will be given in the next section where the fault in a MAS
is introduced in a more rigorous way.

1.1.2 Modelling a fault in an agent of a MAS

The fault that occurs in an agent is usually represented through an additive signal, bounded
in the L2 norm, added in the dynamics of the state; together it is also possible consider the
presence of some disturbances, for example due to the noisy measure, and finally rewrite Eq.
(1.1) as:

ẋi(t) = Axi(t)+Buui(t)+Bddi(t)+B f fi(t),

yi(t) =Cxi(t)+Dddi(t)+D f fi(t), i = 1, . . . ,N,
(1.9)

where xi(t) ∈ Rn, u(t) ∈ Rnu , yi(t) ∈ Rny are the state vector, the input and the output of the sys-
tem, respectively, as in Eq. (1.1); moreover di(t)∈Rnd is an external disturbance and fi(t)∈Rn f ,
n f ≤ ny, is the fault signal that assumes a value different from zero in the case in which the ith

agent is faulty. The matrices of the state space model are A ∈ Rn×n, Bu ∈ Rn×nu , Bd ∈ Rn×nd ,
B f ∈ Rn×n f , C ∈ Rny×n, Dd ∈ Rny×nd , D f ∈ Rny×n f .

Another, more specific, way to model the fault, showed in [15], is to suppose that it can only
affect the agent actuator; in this case it is convenient to distinguish two types of fault: outage
and partial loss of effectiveness. Both of them are modelled and embedded in the following
equation:

ẋi(t) = Axi(t)+B f
uui(t)+Bddi(t)

yi(t) =Cxi(t)+Dddi(t), i = 1, . . . ,N
(1.10)

where B f
u is defined as:

B f
u = Bu ·diag(ki1(t),ki2(t), . . . ,kinu(t)), i = 1, . . . ,N (1.11)

with Bu a full column rank constant matrix; kil , l = 1, . . . ,nu is a time-varying coefficient that
indicates the operational status of the lth actuator of the ith agent. Each agent i = 1, . . . ,N has
a number of actuators nu whose correlation with the state dynamics is described by the matrix
B f

u .
Until the coefficient is equal to 1 the actuator works correctly, whenever this coefficient is
smaller than one it possible to distinguish two kinds of fault: the case in which there is complete
breakage of the actuator (i.e. any input given to the agent does not influence in any way the
dynamics of the state) and the "intermediate" case in which there is a partial loss of effectiveness
of the actuator (i.e. in order to have the same dynamics it is necessary a larger input with respect
to the case in which there is no fault).
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The fault-free status and two types of actuator faults that are all covered by Eq. (1.11), can be
summarized in the following cases:

1. kil(t) = 1: the lth actuator of agent i is free of faults;

2. 0 < kil(t)< 1: the lth actuator of agent i loses part of its effectiveness;

3. kil(t) = 0: the outage case. The lth actuator of agent i completely loses its effectiveness
and its output is stuck at zero.

Remark 1. In the case in which B f fi(t)= (B f
u−Bu)ui(t), Eq. (1.9) and Eq. (1.10) are equivalent.

This means that the second representation Eq. (1.10) is a particular case of Eq. (1.9).

In this thesis we consider two types of faults that can affect the agents’ dynamics: one on
the actuator, and the second on the sensor. The two addictive signals are independent and affect
two different parts of the dynamics of the agent. The ith agent’s actuator fault signal f a

i (t)∈ Rnu

modifies the dynamics of the state in a way similar to the one stated in (1.10), however it is
convenient make the presence of the fault explicit, by writing B f

uui(t) as the sum of the input
ui(t) and the fault signal f a

i (t) multiplied by Bu. For what concerns the sensor fault signal
f s
i (t) ∈ Rny , it acts as an addictive signal to the output dynamics of the ith agent. The dynamics

of the ith agent hence becomes:

ẋi(t) = Axi(t)+Buui(t)+Bddi(t)+Bu f a
i (t),

yi(t) =Cxi(t)+Dddi(t)+ f s
i (t), i = 1, . . . ,N,

(1.12)

However, in the following, it will be assumed that only one type of fault at each time can affect
an agent, because the scenario in which both sensor and actuator have a fault is improbable.

Now, some assumption are introduced in order to ensure the existence of an UIO. The details
will be shown in the next chapter.

Assumption 1. The signals f a
i , f s

i and di, i = 1, . . . ,N, are bounded.

Assumption 2. The fault affects only one agent actuator at each time.

Assumption 3. The fault affects only one agent sensor at each time.

Assumption 4. The matrices Bu and Bd are of full column rank.

Assumption 5. The column rank of the matrix[
sIn−A Bd Bu

C 0 0

]
(1.13)

is full for ℜ(s)> 0, or at least the matrices[
sIn−A Bu

C 0

]
and

[
sIn−A Bd

C 0

]
(1.14)

are not column rank deficient for ℜ(s)> 0.
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Assumption 6. The pair (A,C) is detectable.

Assumption 7. The following relations hold for the matrices Bu, Bd and C:

1. rank(CBd) = rank(Bd);

2. rank(CBu) = rank(Bu).

Before starting with the analysis of the various cases, it is convenient to define, as it was
done with (1.2), the vectors Fa(t) ∈ RNnu , Fs(t) ∈ RNny and D(t) ∈ RNnd associated to the fault
on the actuator, the fault on the sensor and the disturbance signal of the system, respectively:

Fa(t) =


f a
1 (t)

f a
2 (t)
...

f a
N(t)

 , Fs(t) =


f s
1(t)

f s
2(t)
...

f s
N(t)

 , D(t) =


d1(t)

d2(t)
...

dN(t)

 (1.15)

Considering this new output definition (with the sensor fault signal f s
i (t)), Eq.(1.6) becomes:

W (t) =


∑

N
j=1 a1 j(y1(t)− y j(t))

...

∑
N
j=1 aN j(yN(t)− y j(t))



=


∑

N
j=1 a1 j(Cx1(t)+Ddd1(t)+ f s

1(t)−Cx j(t)−Dddi(t)− f s
j (t))

...

∑
N
j=1 aN j(CxN(t)+DddN(t)+ f s

N(t)−Cx j(t)−Dddi(t)− f s
j (t))


(1.16)

and rewriting Eq. (1.16) in a more "useful" form.

W (t) =


∑

N
j=1[a1 jC(x1(t)− x j(t))+a1 j( f s

1(t)− f s
j (t))+a1 jDd(d1(t)−di(t))]

...

∑
N
j=1[a1 jC(xN(t)− x j(t))+a1 j( f s

N(t)− f s
j (t))+a1 jDd(dN(t)−di(t))]

 (1.17)

It is now possible to see that

W (t) =


∑

N
j=1 a1 jC(x1(t)− x j(t))

...

∑
N
j=1 a1 jC(xN(t)− x j(t))

+


∑
N
j=1 a1 j( f s

1(t)− f s
j (t))

...

∑
N
j=1 a1 j( f s

N(t)− f s
j (t))

+

+


∑

N
j=1 a1 jDd(d1(t)−di(t))

...

∑
N
j=1 a1 jDd(dN(t)−di(t))


(1.18)

where it easy to see that the first matrix is identical to the one given in Eq. (1.8), namely
(L⊗C)X(t), instead the other two components are equal to (L⊗ Iny)Fs(t) and to (L⊗Dd)D(t).
Finally, we get

W (t) = (L⊗C)X(t)+(L⊗ Iny)Fs(t)+(L⊗Dd)D(t) (1.19)
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Using this new definition of W (t), adding the disturbance and the fault signal (1.15) it is possible
to write (1.8) as

Ẋ(t) = ANX(t)+BuN(U(t)+Fa(t))+BdND(t),

W (t) = (L⊗C)X(t)+(L⊗ Iny)Fs(t)+(L⊗Dd)D(t)
(1.20)

In the literature alternative ways to detect a fault on an agent can be found, however the most
common one is the use of observers in order to generate a residual signal and use it as a warning.
In this thesis we will use an Unknown Input Observer (UIO) in order to solve the FDI problem;
an introduction to them is presented in the next paragraph.

1.2 Unknown Input Observers

In this section Unknown Input Observer are introduced; following the Chapter 3 of [3] a full
order observer for a generic n-dimensional state space is build. In the second part of this section
some constraints on the matrices are imposed, in order to ensure convergence to zero of the
estimation error, and a theorem that state the conditions for the existence of an Unknown Input
Observer for the system is given. Moreover, robust fault detection scheme based on an UIO is
shown; this will be taken into account in the next chapter where the method is used in the MAS
network.

Starting with a generic n-dimensional state space in which all the matrix are known

ẋ(t) = Ax(t)+Buu(t)+Bdd(t),

y(t) =Cx(t)+Ddd(t)
(1.21)

where x(t) ∈ Rn is the state vector, y(t) ∈ Rny is the output vector, x(t) ∈ Rn is the input vector
and x(t) ∈ Rn is the unknown input vector.
We introduce some consideration in order to made next analysis more simple without loosing
generality in the statement of the problem.

Remark 2. There is no loss of generality in assuming that the unknown input matrix Bd is of
full column rank. When this is not the case, the following rank decomposition can be applied
to the matrix Bd:

Bdd(t) = B1
dB2

dd(t)

where B1
d is a full column rank matrix, B2

d is of full row rank and B2
dd(t) can now be considered

as a new unknown output.

Assumption 8. It is assumed, for the sake of simplicity, that the disturbance can only affect the
state update equation and not the output one (i.e. Dd = 0).

To sum up, the UIO definition we will introduce below will refer to the following agent
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dynamics:

ẋ(t) = Ax(t)+Buu(t)+Bdd(t),

y(t) =Cx(t)
(1.22)

We define the state estimation error as the difference between the estimated state x̂(t) and the
true value of the state x(t)

e(t) = x(t)− x̂(t) (1.23)

Definition 1.2.1. Unknown Input Observer (UIO). An observer is defined as an unknown in-
put observer for the system described by Eq. (1.22), if its state estimation error vector e(t)

approaches zero asymptotically, for every initial condition and control input, regardless of the
presence of the unknown input in the system.

A full-order observer for the system (1.22) is described as:

ż(t) = Jz(t)+MBuu(t)+Ky(t)

x̂(t) = z(t)+Hy(t)
(1.24)

where x̂(t)∈Rn is the estimated state vector, z(t)∈Rn is the state of this full-order observer, and
J, M, K, H are matrices designed for achieving unknown input de-coupling and other design
requirement. The observer described by Eq. (1.24) is illustrated in Fig.1.1.

Figure 1.1: Structure of a full-order Unknown Input Observer. [3]
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Suppose to split K in two parts K = K1 +K2: the details about how these two gains are
selected will be shown in the following. When the observer (1.24) is applied to the system
(1.22), the estimation error (e(t) = x(t)− x̂(t)) is governed by the equation:

ė(t) = ẋ(t)− ˙̂x(t)

= (I−HC)ẋ(t)− ż(t)
(1.25)

By substituting the definition of ẋ(t) and ż(t), given respectively by (1.22) and (1.24), in (1.25)
we get

ė(t) = (I−HC)(Ax(t)+Buu(t)+Bdd(t))− (Jz(t)+MBuu(t)+(K1 +K2)y(t)) (1.26)

and after some manipulation, the final result is given by

ė(t) = ((I−HC)A−K1C)e(t)+ [J− ((I−HC)A−K1C)]z(t)

+ [K2− ((I−HC)A−K1C)H]y(t)

+ [M− (I−HC)]Buu(t)+(HC− I)Bdd(t)

(1.27)

If one imposes the following conditions (the cases under which these equalities can be met are
discussed below):

(HC− I)Bd = 0 (1.28)

M = I−HC (1.29)

J = A−HCA−K1C (1.30)

K2 = JH (1.31)

The estimation error dynamics then becomes:

ė = Je(t) (1.32)

If all the eigenvalues of J are stable, e(t) will approach zero asymptotically, i.e. x̂−→ x(t). This
means that the observer (1.24) is an unknown input observer for the system (1.22) according to
Definition 1.2.1. The design of this UIO consists of solving Eqs. (1.28)-(1.31) and making all
the eigenvalues of the system matrix J stable.

Lemma 1.2.1. Eq. (1.28) in the unknown matrix H is solvable if and only if

rank(CBd) = rank(Bd) (1.33)

and a special solution is

H∗ = Bd[(CBd)
TCBd]

−1(CBd)
T (1.34)

Now a necessary and sufficient condition, derived in [3], for the existence of an UIO are
reported.
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Theorem 1.2.2. Necessary and sufficient conditions for (1.24) the existence of a UIO for the

system defined by (1.22) are:

1. rank(CBd) = rank(Bd)

2. (C,A−H∗CA) is a detectable pair.

Remark 3. Since it was assumed that Bd is of full column rank, this means that the rank of the
matrix coincides with the number of its columns. In light of this, condition 1. of Theorem 1.2.2

is equal to saying that the rank of the matrix CBd must be equal to the number of columns of
the matrix Bd .

Remark 4. Condition 2 of Theorem 1.2.2 is identical to the condition that the column rank of[ sIN−A Bd
C 0

]
is full when ℜ(s)≥ 0. [1] [3]

1.2.1 Robust Fault Detection schemes based on UIO

The main task of robust fault detection is to generate a residual which is robust to the system
uncertainty. To detect a particular fault, the residual has to be sensitive to this fault. Consider
model (1.22) in which the fault signal is added and where the disturbance in the output equation
is neglected, due to Assumption 8:

ẋ(t) = Ax(t)+Buu(t)+Bdd(t)+Bu fa(t),

y(t) =Cx(t)+ fs(t)
(1.35)

with the same dimension as (1.22) and with fa(t) ∈ Rnu that represents the fault in the system’s
actuator and fs(t) ∈ Rny that is the fault signal associated to the sensor. To generate a robust
residual, a UIO described by Eq. (1.24) is required. Suppose that the state estimate is available,
the residual is defined as:

r(t) = y(t)−Cx̂(t) (1.36)

when this UIO-based residual generator is applied to the system described in Eq. (1.35), the
residual and state estimation error (e(t)) will be

ė(t) = ((I−HC)A−K1C)e(t)+MBu fa(t)−K1 fs(t)−H ḟs(t)

r(t) =Ce(t)+ fs(t)
(1.37)

From Eq. (1.37), it can be seen that the disturbance effect has been decoupled from the residual.
In order to detect the fault it is necessary to ensure that the fault in the jth actuator will affect
the residual if and only if M[Bu] j ̸= 0. Similarly, the residual has to be made sensitive to fs(t) if
sensor faults are to be detected. This condition is normally satisfied, as the sensor fault vector
fs(t) has a direct effect on the residual r(t). In order to detect the fault, the residual is used and
the following threshold logic is applied∥r(t)∥ ≤ τ. fault-free case

∥r(t)∥> τ. faulty case
(1.38)
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Figure 1.2: Schematic description of residual evaluation and threshold generation. [5]

Choice of threshold value

The residual error, generated by the observer, is generally corrupted with disturbance and uncer-
tainties caused by parameter changes. Since the aim of this thesis is to achieve a successful fault
detection based on the available residual signal, it is necessary to take into account this kind of
issues. A way to be able to distinguish the faults from the disturbances and uncertainties is the
residual evaluation and threshold setting. A decision on the possible occurrence of a fault will
then be made by means of a simple comparison between the residual feature and the threshold.

The main task of robust fault detection is to generate a residual which is robust to the system
uncertainty. To detect a particular fault, the residual has to be sensitive to this fault. Consider
model (1.22) in which the fault signal is added and where the disturbance in the output equation
is neglected, due to Assumption 8. Depending on the type of the system under consideration,
there exist two residual evaluation strategies. The statistic testing is one of them, which is well
established in the framework of statistical methods. Another one is the so-called norm-based

residual evaluation. Besides the reduced on-line calculation, the norm-based residual evalua-
tion allows a systematic threshold computation using the well-established robust control theory.
[5]

In this thesis we give an hint on the norm-based evaluation method in order to choose the
best value for the threshold logic scheme. For the purpose of fault detection, an evaluation
function is first defined, is based on some mathematical feature of the signal, and, based on it, a
threshold is established. The last step is then the decision making.
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In the following, the most common evaluation functions are proposed.

• Peak value: The peak value of residual signal r(t) is defined and denoted by

Jpeak = ∥r(t)∥peak = sup
t≥0
∥r(t)∥ ∥r(t)∥=

√
n

∑
i=1

r2
i (t)

so the so-called threshold is defined by

Jth,peak = sup
f ault− f ree

∥r(t)∥peak

Also, we can use the peak value of ṙ(t) to reformulate the trend analysis. Let

Jtrend = ∥ṙ(t)∥peak = sup
t≥0
∥ṙ(t)∥

consequently
Jth,trend = sup

f ault− f ree
∥ṙ(t)∥peak

• RMS value: The RMS value of r(t) is defined by

JRMS = ∥r(t)∥RMS =

√
1
T

∫ t+T

t
∥r(τ)∥2dτ

JRMS measures the average energy of r(t) over time interval (t, t +T ). Remember that the
RMS of a signal is related to the L2 norm of this signal. In fact, it holds

∥r(t)∥2
RMS ≤

1
T
∥r(t)∥2

2

then the threshold is defined as

Jth,RMS = sup
f ault− f ree

∥r(t)∥RMS

From an engineering viewpoint, the determination of a threshold requires to find out the tol-
erance limits for disturbances and model uncertainties under fault-free operation conditions.
There are a number of factors that can significantly influence this procedure. Among them one
can list:

1. the dynamics of the residual generator;

2. the way of evaluating the unknown inputs (disturbances) and model uncertainties;

3. the bounds on the unknown inputs and model uncertainties.
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The threshold is understood as the tolerance limit on the unknown inputs and model uncer-
tainties during the fault-free system operation. Based on this consideration, the threshold can
be generally defined as

Jth = sup
f=0, d, ∆

∥r(t)∥ (1.39)

With ∆ denoting the model uncertainties of the model. Also, the way of evaluating the unknown
inputs plays an important role in the determination of thresholds. Typically, the energy level and
the maximum value of unknown inputs are adopted in practice for this purpose.

1.3 Consensus problem

Among the several problems that have been investigated for networks of agents, the most no-
table are the consensus problem and the synchronization problem. In the discussion of both
problems, below, the MAS dynamics of Eq. (1.8) will be taken into account.
Suppose to have a network of N agents, represented trough a graph G = (V,E), under the as-
sumption that there are no self-loops in the graph, and the agents know only the value of their
relative output with respect to all their neighbours (i.e. the nodes with which they share an
edge). Denote the agent ith relative output information with its neighbours by:

wi(t) =
N

∑
j=1

ai j(yi(t)− y j(t)), i = 1, . . . ,N (1.40)

where ai j is the element in position (i, j) of the adjacency matrix A defined previously. Notice
that this formulation is identical to the one introduced in Eq. (1.6). Usually the goal of this
kind of problems, assuming that the information on the relative output of the agents is avail-
able, is to bring the states or the outputs of all agents to be identical, moreover in the case of
the synchronization problem the states of the agents must also follow some reference model
dynamics.

Remark 5. The relative state information is a particular case of relative output information in
which the output matrix is C = In (i.e. the state and the output coincide).

Even if the consensus problem and the synchronization problem are the ones on which this
thesis mainly focuses, there are many other applications of the consensus schemes to MAS
coordination that we now briefly mention [13]:

• Vehicle Formations: consensus schemes have been extensively applied to achieve vehi-
cle formations.

• Attitude Alignment: in general applied to spacecrafts, the aim of this problem is to have
all the agents adopt an identical attitude/orientation.

• Rendezvous Problem: the rendezvous problem requires that all agents reach a certain
location simultaneously.
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• Coordinated Decision Making: in MAS, distributed decision making has an advantage
over centralized decision making in the sense that a decision maker is not required to
access information from all the other decision makers.

• Flocking: flocking is a form of collective behavior of a large number of interacting agents
with a common group objective. For many decades, scientists from rather diverse dis-
ciplines including animal behavior, physics, biophysics, social sciences, and computer
science, have been fascinated by the emergence of flocking, swarming, and schooling in
groups of agents with local interactions. [12]

• Coupled Oscillators: The coupled dynamics of oscillators is described by an ordinary
differential equation which comprises of the oscillator’s dynamic state with an additional
weak coupling term. Therefore, understanding the mutual interactions of coupled oscil-
lators and ensuring consensus and phase locking of the states of these oscillators is a key
challenge. [7]

• Robot Position Synchronization: Path following problems entail designing control al-
gorithms that drive the output of a control system along a given path in its output space
with no timing law assigned to the desired traversal of the path. [9]

In the following the State consensus (SC) problem and Model reference consensus (MRC) prob-
lem (also known as synchronization problem) are presented in a more formal way.

1.3.1 Consensus problem

The aim of this requirement is to drive the state (or part of it) of all the agents to a common value
that can be either the average of all the states or not. In order to reach consensus, a common
approach is to define a controlled output function zSCi(t) = xi(t)− 1

N ∑
N
j=1 x j(t), i = 1, . . . ,N, to

measure the distance of xi(t) from the average value of the states of all the agents. Note that if
zSCi(t) = 0 ∀i ∈ V , then xi(t) = x j(t) ∀i, j ∈ V , which implies that the consensus is achieved.
Whit this formulation the case where all the agents reach the same state is considered; however
it possible to consider only a portion of the state, for example in a scenario in which only the
velocity of the agent must be the same. [4]

1.3.2 Model Reference Consensus

The request in this case is not only to achieve the state consensus, but also to ensure that the
state follow a reference ("leader") model with dynamics:

ẋr(t) = Axr(t)+Buur(t),

yr(t) =Cxr(t)
(1.41)

where xr(t) ∈ Rn, ur(t) ∈ Rnu , yr(t) ∈ Rny are the state vector, the input and the output of the
system, respectively, moreover the matrices A, B, C are the same as in Eq. (1.1).
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The aim of this problem is that the agent’s states (or combination of them) are required to con-
verge to the reference state xr(t) satisfying Eq. (1.41); in light of this, it is convenient to define
the performance outputs zmrci(t) = H(xi(t)−xr(t)), i = 1, . . . ,N, where zmrci ∈ Rnz , nz ≤ ny and
H is a constant matrix of appropriate dimensions that is defined according to the designer’s
specifications. [4]

In this thesis the synchronization problem is addressed, simultaneously trying to detect the
faults that might affect a MAS.

1.3.3 Connectivity proprieties of graphs

In the next chapters, both undirected and directed topologies for the connection graph will
be considered, and also some properties of connected graph will be used. For this reason in
this subsection some definition will be given and some theorems state. To make it clear the
subparagraph will be split in two parts, the firs refers to the undirected graphs the second one to
the digraph. All the definition are taken from [2]. Before to the definition and the theorems, the
following assumption is done, and it hold from now on.

Assumption 9. Without loss of generality, the eigenvalues of a matrix are supposed to be ordered
so that Re(λi)≤ Re(λ j), if i < j.

Undirected graphs

Definition 1.3.1 (Connected graph). A graph G is connected if there exists a walk connecting
any node to any other node.

Lemma 1.3.1 (Zero row-sums). Let G be a weighted undirected graph with Laplacian L and N

nodes. Then

L1N = 0N

Lemma 1.3.2. For a weighted undirected graph G with symmetric Laplacian L:

(i) G is connected if and only if λi > 0 for every i = 2, . . . ,N;

(ii) The multiplicity of 0 as an eigenvalue of L is equal to the number of connected components

of G .

Directed graphs (Digraphs)

Definition 1.3.2 (Strongly connected graph). A graph G is strongly connected if there exists a
directed walk from any node to any other node.

Definition 1.3.3 (Spanning subgraphs). A digraph (V ′,E ′) is a subgraph of a digraph (V,E) if
V ′ ⊆V and E ′ ⊆ E. A digraph is a spanning subgraph of (V,E) if it is a subgraph and V ′ =V .
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Definition 1.3.4 (Directed spanning tree). A directed tree is an acyclic digraph with the follow-
ing property: there exists a node, called the root, such that any other node of the digraph can
be reached by one and only one directed walk starting at the root. A directed spanning tree of a
digraph is a spanning subgraph that is a directed tree.
A digraph G possesses a directed spanning tree if one of its nodes is the root of directed walks
to every other node.

Theorem 1.3.3 (Simplicity of the zero eigenvalue of the Laplacian matrix). Let L be the Lapla-

cian matrix of a weighted digraph G with N nodes. Then the following statement are equivalent:

(i) G has a spanning tree;

(ii) the eigenvalue 0 is simple;

(iii) rank(L) = N−1.

Lemma 1.3.4 (Spectrum of the Laplacian matrix). Given a weighted digraph G with Laplacian

L, the eigenvalues of L different from 0 have positive real part.
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Chapter 2

Fault Detection and Isolation for MAS
with undirected graph

As mentioned before, from now on the disturbance will appear only in the state dynamics,
instead for what concerns the fault two possible scenarios will be considered:

(i) the fault acts on an agent’s actuator, a case which is represented by the state space equation

Ẋ(t) = ANX(t)+BuNU(t)+BuNFa(t)+BdND(t),

W (t) = (L⊗C)X(t)
(2.1)

(ii) the fault affects the sensor of an agent, a situation that is represented through the state
space model

Ẋ(t) = ANX(t)+BuNU(t)+BdND(t),

W (t) = (L⊗C)X(t)+(L⊗ Iny)Fs(t)
(2.2)

Both cases can be represented by means of a unique state space representation given in Eq.
(1.20), and at the occurrence one can impose that one of the two faults is identically zero for the
whole evolution of the dynamics of the system.
In this chapter the case of an MAS connected with a network described by an undirected graph
is taken into account. First, it is shown that an MAS of homogeneous systems (i.e. all the agents
have the same dynamics) is not observable; then an UIO approach is used in order to generate a
residual signal that will be used for the detection and finally a threshold logic is defined in order
to detect the fault.

Assumption 10. The undirected graph G is connected and hence L has a single eigenvalue in 0
and all the others are positive and real.
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2.1 Non observability of a homogeneous MAS

The study of FD for a homogeneous MAS whose agents are connected through an undirected
network is complicated by the fact that the whole system Eq. (1.8) is not observable. This result
comes from [11] where, after some mild assumption, the Lemma 2.1.1 is stated.

Assumption 11. The triple (A, Bu, C) is a minimal realisation of the agent dynamics, with Bu

and C of full column and row rank, respectively, and nu ≤ ny.

Lemma 2.1.1. The pair (L⊗C, IN⊗A) associated with the dynamical system at network level

described in (1.8) is not observable.

Proof. The pair (L⊗C, IN ⊗A) is observable if and only if the associated Popov-Belevitch-
Hautus (PBH) matrix pencil, given by

O(s) :=

[
(L⊗C)

sINn− (IN⊗A)

]
=

[
(L⊗C)

IN⊗ (sIn−A)

]
, (2.3)

is of full column rank for all s∈C. Since L is positive semi-definite (and singular) and the graph
G associated to it is connected, by Lemma 1.3.1, its N eigenvalues, that we assume ordered,
due to Assumption 9, satisfy 0 = λ1 < λ2 ≤ ·· · ≤ λN . Also, L admits a spectral decomposition
L = V ΛV T , where V ∈ RN×N is an orthonormal matrix (i.e., V TV = IN) and Λ is a diagonal
matrix with diagonal entries λ1,λ2, . . . ,λN . Define two orthonormal scaling matrices

Tl :=

[
(V T ⊗ Iny) 0

0 (V T ⊗ In)

]
and Tr := (V T ⊗ In) (2.4)

Pre and post multiply the PBH matrix O(s) in (2.3) by Tl and Tr, respectively. Since the scaling
matrices Tl and Tr are non-singular, TlO(s)Tr is full column rank if and only if O(s) is full
column rank. Since V TV = IN and V T LV = Λ, it follows from the properties of the Kronecker
product that (V T ⊗ Iny)(L⊗C)(V ⊗ In) = (V T LV ⊗C) = (Λ⊗C) and similarly (V T ⊗ Iny)(IN⊗
(sIn−A))(V ⊗ In) = (I−N⊗ (sIn−A)). From these equalities one gets:

TlO(s)Tr =

[
(Λ⊗C)

IN⊗ (sIn−A)

]
(2.5)

Since Λ is diagonal, (Λ⊗C) can be written as diag(λ1C, . . . ,λNC) and therefore from (2.5)

rank(TlO(s)Tr) =
N

∑
i=1

rank

([
λiC

sIn−A

])
(2.6)

By Assumption 11, the pair (C,A) is observable, implying [CT (sI−A)T )]T is full column rank
for every s ∈ C. However λ1 = 0, while the other λi, i = 2, . . . ,N are strictly positive. Conse-

19



quently

rank

[
λ1C

sIn−A

]
= rank(sIn−A) (2.7)

and hence, for every s∈C, rank(TlO(s)Tr) = (N−1) ·n+rank(sI−A). Because TlO(s)Tr (and
hence O(s)) loses rank if (and only if, due to the observability assumption on the pair (C,A)) s

is an eigenvalue of A, the pair (L⊗C, IN⊗A) is not observable. ■

Remark 6. Since the matrix V is orthonormal then V T =V−1.

Remark 7. The unobservable modes of (L⊗C, IN⊗A) are the eigenvalues of A and consequently
if the system matrix A is stable, then (L⊗C, IN⊗A) is detectable.

To extract the observable-subspace from

Ẋ(t) = ANX(t)+BuN(U(t)+Fa(t))+BdND(t),

W (t) = (L⊗C)X(t)+(L⊗ Iny)Fs(t)
(2.8)

define a change of coordinates transformation matrix T−1 in order to have X −→ T−1X = Xo

where

T−1 := T−1
s ⊗ In and T−1

s =

[
1 0T

N−1

−1N−1 IN−1

]
(2.9)

Applying the transformation T−1 to the vector state X yields

X =


x1

x2
...

xN

 −→ T−1X = Xo =


x1

x̄2
...

x̄N

=

[
x1

X̄

]
(2.10)

Where x̄i = xi− x1 for i = 2, . . . ,N.
Using the new state definition, it is possible to rewrite the system matrices as

Ao := T−1 (IN⊗A)︸ ︷︷ ︸
:=AN

T = (T−1
s ⊗ In)(IN⊗A)(Ts⊗ In)

= (T−1
s INTs⊗ InAIn) = AN

(2.11)

Buo := T−1 (IN⊗Bu)︸ ︷︷ ︸
:=BuN

= (T−1
s ⊗Bu) = BuN(T

−1
s ⊗ Inu) (2.12)

Bdo := T−1 (IN⊗Bd)︸ ︷︷ ︸
:=BdN

= (T−1
s ⊗Bd) = BdN(T

−1
s ⊗ Ind) (2.13)

Finally, by applying the transformation matrix T to (L⊗C), we obtain

Co := (L⊗C)T = (L⊗C)(Ts⊗ In) = (LTs⊗C) (2.14)
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For the sake of symmetry, we apply the same transformation T to the sensor fault signal Fs(t)

in order to have

Fo
s (t) = T−1Fs(t) =


f s
1(t)

f̄ s
2(t)
...

f̄ s
N(t)

=

[
f s
1(t)

F̄s(t)

]
(2.15)

Where, as before, f̄ s
i (t) = f s

i (t)− f s
1(t) for i = 2, . . . ,N.

In order to decouple the relative output signal, so that the output components do not depend on
each other, we pre-multiply W (t) by (T T

s ⊗ Iny) to obtain

Wo(t) :=(T T
s ⊗ Iny)W (t)

=(T T
s ⊗ Iny)(LTs⊗C)Xo(t)+(T T

s ⊗ Iny)(L⊗ Iny)Fs(t)

=(T T
s LTs⊗C)Xo(t)+(T T

s L⊗ Iny)(LTs⊗ Iny)F
o
s (t)

=(T T
s LTs⊗C)Xo(t)+(T T

s LTs⊗ Iny)F
o
s (t)

(2.16)

From the definition of Ts and the the fact that L1N = 0 by Lemma 1.3.1 it is easy to check that

T T
s LTs =

[
0 0
0 Ls

]
(2.17)

where Ls ∈ R(N−1)×(N−1) is a symmetric positive definite matrix; moreover it is a sub-matrix of
the original Laplacian matrix with entries obtained by setting the entire first column and row to
zero. Hence the relative output measurements W (t) in the new coordinate system can be written
as

Wo(t) =

[
0

(Ls⊗C)

]
X̄(t)+

[
0

(Ls⊗ Iny)

]
F̄s(t) (2.18)

From the expression of Buo given in (2.12) we obtain

BuoU(t) = BuN(T
−1

s ⊗ Inu)U(t) = BuNUo(t) (2.19)

similarly
BuoFa(t) = BuN(T

−1
s ⊗ Inu)Fa(t) = BuNFo

a (t) (2.20)

and finally, by (2.13)

BdoD(t) = BdN(T
−1

s ⊗ Ind)D(t) = BdNDo(t) (2.21)
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where Uo(t), Fo
a (t) and Do(t) are defined, respectively, as

Uo =


u1

ū2
...

ūN

=

[
u1

Ū

]
, Fo

a =


f a
1

f̄ a
2
...
f̄ a
N

=

[
f a
1

F̄a

]
Do =


d1

d̄2
...

d̄N

=

[
d1

D̄

]
(2.22)

and, as before ūi = ui−u1, f̄ a
i = f a

i − f a
1 and d̄i = di−d1 for every i = 2, . . . ,N. To sum up, the

whole system, after the change of coordinates, is rewritten in the following way

Ẋo(t) = ANXo(t)+BuNUo(t)+BuNFo
a (t)+BdNDo(t)

Wo(t) = (T T
s LTs⊗C)Xo(t)+(T T

s LTs⊗ Iny)F
o
s (t)

(2.23)

The structure just introduced allows to isolate the observable sub-system from the remaining
one; hence the observable subsystem can be written as

˙̄X(t) = (IN−1⊗A)︸ ︷︷ ︸
:=AN−1

X̄(t)+(IN−1⊗Bu)︸ ︷︷ ︸
:=BuN−1

Ū(t)+(IN−1⊗Bu)︸ ︷︷ ︸
:=BuN−1

F̄a(t)+(IN−1⊗Bd)︸ ︷︷ ︸
:=BdN−1

D̄(t)

W̆ (t) = (Ls⊗C)X̄(t)+(Ls⊗ Iny)F̄s(t)

(2.24)

Since the sub-matrix Ls exhibits the same eigenvalues as the Laplacian matrix L, except for
λ1 = 0, there exists a change of coordinates matrix V ∈ R(N−1)×(N−1) such that

Ls =V ΛsV T =V


λ2

. . .

λN

V T (2.25)

where 0 < λ2 ≤ ·· · ≤ λN are the eigenvalues of the matrix Lr.
Define, again, a change of coordinates for the observable subsystem, so that X̄ −→ TvX̄ = X̃

where Tv = (V T ⊗ In) and consequently:

Ã := TvAN−1T−1
v = (V T ⊗ In)(IN−1⊗A)(V ⊗ In)

= (V IN−1V T ⊗ InAIn) = AN−1
(2.26)

B̃u := TvBuN−1 = (V T ⊗Bu) = BuN−1(V
T ⊗ Inu) (2.27)

B̃d := TvBdN−1 = (V T ⊗Bd) = BdN−1(V
T ⊗ Ind) (2.28)

where Ũ = (V T ⊗ Inu)Ū , F̃a = (V T ⊗ Inu)F̄a and D̃ = (V T ⊗ Ind)D̄. Moreover apply the same
transformation (V T ⊗ Iny) to the sensor fault signal F̄s(t) so that F̃s = (V T ⊗ Iny)F̄s.
Finally, pre-multiply W̆ by (Λ−1

s V T ⊗ Iny) to obtain

W̃ = (Λ−1
s V T ⊗ Iny)W̆ (2.29)
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which is, by (2.24) and the fact that X̄ = T−1
v X̃ equal to

W̃ (t) = (Λ−1
s V T ⊗ Iny)[(Ls⊗C)X̄(t)+(Ls⊗ Iny)F̄s(t)]

= (Λ−1
s V T ⊗ Iny)(Lr⊗C)(V ⊗ Iny)X̃(t)+(Λ−1

s V T ⊗ Iny)(Ls⊗ Iny)(V ⊗ In)F̃s(t)

= (IN−1⊗C)X̃(t)+(IN−1⊗ Iny)F̃s(t)

=CN−1X̃(t)+ I(N−1)nyF̃s(t)

(2.30)

and thus system (2.24), in the new coordinates, becomes

˙̃X(t) = AN−1X̃(t)+BuN−1Ũ(t)+BuN−1F̃a(t)+BdN−1D̃(t)

W̃ (t) =CN−1X̃(t)+ I(N−1)nyF̃s(t)
(2.31)

In the new coordinates, system (2.24) is equivalent to the decoupled system, in the sense that
the dynamics of each of the N− 1 agents is described in a way that does not depend on the
dynamics of the other agents.

˙̃xi(t) = Ax̃i(t)+Buũi(t)+Bu f̃ a
i (t)+Bd d̃i(t)

w̃i(t) =Cx̃i(t)+ f̃ s
i (t), i = 2, . . . ,N

(2.32)

If instead of the decoupled system we want to work with the one that represents the relative
measures with respect to the agent 1, we need to perform the following transformation on the
Laplacian matrix:

T−1
s LTs =

[
0 lT

0 Lr

]
(2.33)

and define, as usual, w̄i(t) = wi(t)−w1(t). It is possible to verify that

˙̄X(t) = AN−1X̄(t)+BuN−1Ū(t)+BuN−1F̄a(t)+BdN−1D̄(t)

W̄ (t) = (Lr⊗C)X̄(t)+(Lr⊗ Iny)F̄s(t)
(2.34)

this second model will be used both for the analysis of the FDI of the actuator and in the
resolution of the synchronization problem. Instead the "decoupled" model (2.31) will be used
in the following for the FD in the sensors fault case.

2.2 Actuator Fault Detection and Isolation

The Fault Detection and Isolation (FDI) problem is the problem of locating the fault, i.e. of
determining at which node the fault has occurred. One of the approaches to facilitate fault
isolation is to design a residual set which is designed to be sensitive to a certain group of faults
and insensitive to others. The sensitivity and insensitivity properties make isolation possible.
The ideal situation is to make each residual only sensitive to a particular fault and insensitive
to all other faults. However, this ideal situation is normally difficult to achieve. Even when the
ideal situation can be achieved, the design freedom will be used and no freedom will be left
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to achieve robustness. To exploit the maximum design freedom for robustness, a commonly
accepted scheme in fault isolation, used also in this thesis, is to make each residual sensitive to
faults for all but one agents [3].

2.2.1 Residual signal generator for a fault of an agent actuator

As mentioned before, it is assumed that only one type of fault can occur at each time. In this
subsection an actuator fault is considered (i.e. we assume f s

i (t) = 0 ∀ i = 1, . . . ,N, ∀ t), and
hence the dynamics of the considered MAS is

˙̄X(t) = AN−1X̄(t)+BuN−1(Ū(t)+ F̄a(t))+BdN−1D̄(t)

W̄ (t) = (Lr⊗C)X̄(t)
(2.35)

To detect whether or not there is a fault, an UIO for the system is designed. Before doing that,
a wise representation of the fault signal is adopted, namely the fault signal F̄a(t) is divided in
two parts, in order to highlight the generic ith fault signal f̄ a

i and the associated transfer matrix
that must be excluded in the FD. We assume

BuN−1F̄a(t) = Bu
i
N−1 f̄ a

i +Bu
−i
N−1F̄−i

a (t) (2.36)

Where F̄−i
a (t)∈R(N−2)nu is obtained from the vector F̄a(t) by removing the entry corresponding

to the ith agent, f̃ a
i ∈ Rnu . On the other hand, Bu

i
N−1 ∈ R(N−1)n×nu is the block of columns of

BuN−1 with indices ranging from (i− 1)nu + 1 to inu and Bu
−i
N−1 ∈ R(N−1)n×(N−2)nu is what

remains of BuN−1 after removing Bu
i
N−1. In a more graphical way

F̄−i
a (t) =



f̄ a
2
...

f̄ a
i−1

f̄ a
i+1
...
f̄ a
n


Bu

i
N−1 =



0
...
0

Bu

0
...
0


Bu
−i
N−1 =



Bu
. . .

Bu

Bu
. . .

Bu


(2.37)

Remark 8. The following relation holds: Bu
i
N−1 = (ei⊗Bu), where ei is the ith canonical base

vector (i.e. the vector with all zeros, but one 1 in position i).

As a result, (2.31) becomes

˙̄X(t) = AN−1X̄(t)+BuN−1Ū(t)+Bu
i
N−1 f̄ i

a +Bu
−i
N−1F̄−i

a (t)+BdN−1D̄(t),

W̄ (t) = (Lr⊗C)X̄(t)
(2.38)

Since the matrix BuN−1 is shared by both the actuator fault signal F̄a(t) and the input signal
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Ū(t), the same partition adopted above is performed on this last term, and hence we obtain:

BuN−1Ū(t) = Bu
i
N−1ūi +Bu

−i
N−1Ū−i(t) (2.39)

where as before Ū−i(t) ∈ R(N−2)nu is obtained from the vector Ū(t) by deleting the ith agent’s
input. In light of this, it is possible to group some terms in Eq. (2.38), in particular we define

Bi
dDi(t) =BdN−1D̄(t)+Bu

i
N−1ūi +Bu

i
N−1 f̄ a

i

=BdN−1D̄(t)+Bu
i
N−1(ūi + f̄ a

i )

=
[
BdN−1 Bu

i
N−1

][ D̄(t)

(ūi + f̄ a
i )

] (2.40)

With this representation the fault signal corresponding to the ith agent is embedded in the dis-
turbance term of the equation. Substituting (2.40) in Eq. (2.38) we obtain:

˙̄X(t) = AN−1X̄(t)+Bu
−i
N−1Ū−i(t)+Bu

−i
N−1F̄−i

a (t)+Bi
dDi(t),

W̄ (t) = (Lr⊗C)X̄(t)
(2.41)

In order to detect which agent is the faulty one, a UIO is built for every agent i = 2, . . . ,N
considering as unknown input the augmented signal Di(t) defined in (2.40). Following the
same steps as in the previous chapter, a full order observer will be

żi(t) = Jizi(t)+MiBu
−i
N−1Ū−i(t)+KiW̄ (t)

X̂ i(t) = zi(t)+H iW̄ (t) i = 2, . . . ,N
(2.42)

Define the estimation error, as before, as

ei
a(t) = X̄(t)− X̂ i(t) (2.43)

Its update equation results to be the same as Eq.(1.27), namely

ėi
a(t) = ˙̄X(t)− ˙̂X i(t)

= ˙̄X(t)− (żi(t)+H i ˙̄W (t))

= ˙̄X(t)− (żi(t)+H i(Lr⊗C) ˙̄X(t)

= (I(N−1)n−H i(Lr⊗C)) ˙̄X(t)− żi(t)

(2.44)

By replacing the expression (2.41) and (2.42) in the equation (2.44) we obtain

ėi
a(t) = (I(N−1)n−H i(Lr⊗C))(AN−1X̄(t)+Bu

−i
N−1Ū−i(t)+Bu

−i
N−1F̄−i

a (t)+Bi
dDi(t))

− (Jizi(t)+MiBu
−i
N−1Ū−i(t)+KiW̄ (t))

(2.45)

Substitute, now, the expression of Ki with Ki
1+Ki

2, and substitute W̄ (t) with its expression given

25



in Eq. (2.41) only for the components that multiply matrix Ki
1, to obtain

ėi
a(t) = [(I(N−1)n−H j(Lr⊗C))AN−1−Ki

1(Lr⊗C)]X̄(t)

+(I(N−1)n−H j(Lr⊗C)−Mi)Bu
−i
N−1Ū−i(t)

+(I(N−1)n−H j(Lr⊗C))Bu
−i
N−1F̄−i

a (t)

+(I(N−1)n−H j(Lr⊗C))Bi
dDi(t)

− Jizi(t)−Ki
2W̄ (t)

(2.46)

Moreover, if the following matrix relations are imposed for i = 2, . . . ,N

(H i(Lr⊗C)− I(N−1)n)B
i
d = 0 (2.47)

Mi = I(N−1)n−H i(Lr⊗C) (2.48)

Ji = MiAN−1−Ki
1(Lr⊗C) (2.49)

Ki
2 = JiH i (2.50)

Ki = Ki
1 +Ki

2 (2.51)

the error dynamics of the ith observer becomes

ėi
a(t) = (MiAN−1−Ki

1(Lr⊗C))X̄(t)+MiBu
−i
N−1F̄−i

a (t)− Jizi(t)− JiH iW̄ (t)

= Ji(X̄(t)− X̂ i(t))+MiBu
−i
N−1F̄−i

a (t)

= Jiei
a(t)+MiBu

−i
N−1F̄−i

a (t)

(2.52)

Remark 9. In order to ensure the convergence to zero of the estimation error, in the case in
which there is no fault, it is necessary that Ji is asymptotically stable for every i = 2, . . . ,N (i.e.
ℜ(σ(Ji))< 0, ∀ i = 2, . . . ,N).

Notice that if there are no faults in the system, the part of the error dynamics MiBu
−i
N−1F̄−i

a (t)

is zero, and hence since Ji is stable, the error converges to zero. On the other hand, if a fault
occurs at one of the agents j ̸= i, the error will increase as its derivative is no longer identically
zero.
Define, finally, the residual associated to the ith observer as

ri
a(t) = W̄ − (Lr⊗C)X̂(t)

= (Lr⊗C)X̄− (Lr⊗C)X̂(t)

= (Lr⊗C)ei(t)

(2.53)

Observe that the residual ri
a(t) directly depends on the error ei

a(t). Therefore it follows that the
reasoning previously made for error holds also for the residual signal.

With the strategy used to build the ith UIO, we are able, when a fault affects the system, by
looking the associated residual ri

a(t), to detect if such fault occurred at one of the agent of the
network j = 1, . . . ,N except for the ith one. For this reason N−1 observers are built in order to
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generate as many residual signals as possible, that will be used for the FDI.
Now it is necessary to verify through Theorem 1.2.2 if the observer described by (2.42) is a UIO
for the system (2.41), more precisely if it is a UIO for the system

˙̄X(t) = AN−1X̄(t)+Bu
−i
N−1Ū−i(t)+Bi

dDi(t),

W̄ (t) = (Lr⊗C)X̄(t)
(2.54)

for which it is straightforward to realise that Di(t) is the unknown input. The first condition that
must be verified is that

rank((Lr⊗C)Bi
d) = rank(Bi

d) (2.55)

By developing the equation one gets

(Lr⊗C)Bi
d = (IN−1⊗C)

[
BdN−1 Bu

i
N−1

]
= (Lr⊗C)

[
(IN−1⊗Bd) (ei⊗Bu)

]
=
[
(Lr⊗C)(IN−1⊗Bd) (Lr⊗C)(ei⊗Bu)

]
=
[
(Lr⊗CBd) (Lr ∗ ei⊗CBu)

]
(2.56)

since by Assumption 7 the matrices CBd and CBu have the same rank as Bd and Bu respectively
and the reduced Laplacian Lr is full rank by construction, condition (2.55) holds.

For what concerns the second requirement of Theorem 1.2.2, in light of Remark 4 we have
to verify that [

sI(N−1)n−AN−1 Bi
d

(Lr⊗C) 0

]
is full column rank when ℜ(s)≥ 0. (2.57)

The previous matrix can be rewritten as follows[
(IN−1⊗ sIn)− (IN−1⊗A) (IN−1⊗Bd) (ei⊗Bu)

(Lr⊗C) 0 0

]
=[

(IN−1⊗ (sIn−A)) (IN−1⊗Bd) (ei⊗Bu)

(Lr⊗C) 0 0

] (2.58)

Consider the first Nn column, and notice that the following inequality holds true[
(IN−1⊗ sIn)− (IN−1⊗A)

(Lr⊗C)

]
=

[
(V IN−1V T ⊗ (sIn−A))

(V ΛrV T ⊗C)

]

=

[
(V ⊗ In)(IN−1⊗ (sIn−A))(V T ⊗ In)

(V ⊗ Iny)(Λr⊗C)(V T ⊗ In)

] (2.59)

27



and finally get [
(V ⊗ In)

(V ⊗ Iny)(Λr⊗ Iny)

][
IN−1⊗ (sIn−A)

IN−1⊗C

]
(V T ⊗ In) (2.60)

‘since the matrices V , V T and Λr are non-singular by construction, also their Kronecker product
with the identity matrix is non-singular, and hence evaluating the rank of the first Nn column of
(2.58) is equivalent to evaluate the column rank of[

(IN−1⊗ (sIn−A))

(IN−1⊗C)

]
(2.61)

Consequently, the original problem has now been converted into the problem of verifying that
the column rank of [

(IN−1⊗ (sIn−A)) (IN−1⊗Bd) (ei⊗Bu)

(IN−1⊗C) 0 0

]
(2.62)

is not deficient when ℜ(s)≥ 0.
Through the use of permutation matrices, which do not alter the rank of the matrix to which
they are applied, it is possible to bring the matrix (2.62) to block diagonal form consisting of
one diagonal block (the first one) equal to[

sIn−A Bd Bu

C 0 0

]
(2.63)

and the remaining N−2 blocks equal to[
sIn−A Bd

C 0

]
(2.64)

Consider, first, matrix (2.63). It can be observed that if the matrix in (2.63) is of full column
rank for ℜ(s)≥ 0, then also (2.64) has this property, since (2.64) coincides with the first n+nd

column of (2.63). By Assumption 5, (2.63) is of full column rank for ℜ(s)≥ 0.

Hence in the first part of the proof it has been proven that rank((Lr⊗C)Bi
d) = rank(Bi

d). In

the second part of the proof, instead, it has been shown that the column rank of
[ sI(N−1)n−AN−1 Bi

d
(Lr⊗C) 0

]
is full when ℜ(s) ≥ 0 and by Remark 4 this is equivalent to the fact that the pair ((Lr ⊗
C),AN−1−H∗(Lr⊗C)AN−1), where H∗ = B1

d[((Lr⊗C)Bi
d)

T (Lr⊗C)B−i
d ]−1((Lr⊗C)Bi

d)
T , is

detectable. These are the two necessary and sufficient conditions of Theorem 1.2.2 that guaran-
tee the existence of an UIO for the system (2.41). This concludes the proof.

Remark 10. Imposing that the columns of the matrices Bd ∈ Rn×nd and Bu ∈ Rn×nu are linearly
independent implies that nd +nu ≤ n.

Remark 11. Considering the disturbance di(t), affecting the dynamics of the system, as an
unknown input is not always convenient. Indeed it is necessary to ensure that the matrix [Bu Bd ]
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is of full column rank in order to guarantee the existence of an UIO for the system. To overcome
this issue, the simplest solution is to not consider the disturbance of the system as an unknown
input. It follows that the conditions that must be verified are:

1. rank(CBu) = rank(Bu);

2. The column rank of
[ sIn−A Bu

C 0

]
is full when ℜ(s)> 0.

It follows that the residual error in this case could converge to values that are different from zero
even if there is no fault at the actuator. This behavior will be considered when the threshold
values are designed in order to avoid false alarms in the detection of malfunctioning in the
system.

2.2.2 Actuator Fault Detection and Isolation using residual signals

Based on the work done in [1], a strategy that uses the residual signals (2.53) generated by an
UIO is presented.
From previous computation the matrix Ji twas assumed to be Hurwitz, under this assumption,
it was shown that, in the case of actuator fault the error dynamics ėi

a(t) is driven by the fault
signals F̃−i

a . It follows that if the fault signals are equal to zero, the error ei
a(t) converges to

zero asymptotically. By Assumption 2, there is at most one faulty agent in the system, hence it
is possible to distinguish two situations: agent 1 has a fault or one of the agents i = 2, . . . ,N has
a fault (i.e. f a

1 (t) ̸= 0 or ∃ i ̸= 1 such that f a
i (t) ̸= 0).

1. if there is a fault at the agent 1, this implies that f a
1 (t) ̸= 0. By Assumption 2 there can

only be one fault, consequently ∀i = 2, . . . ,N, we have that f a
i (t) = 0. It follows that

f̃ a
i (t) = f a

i (t)− f a
1 (t) ̸= 0 ∀i = 2, . . . ,N, and also, by definition, F̃−i

a (t) is different from
zero. This implies that the estimation error ei

a(t) does not tend to zero end hence also

lim
t→∞

ri
a(t) ̸= 0 ∀ i = 2, . . . ,N (2.65)

2. if the faults occur at an agent i ̸= 1, the fault signal associated to the ith agent will be
f a
i ̸= 0, thereby also the vector f̃ a

i will be different from zero; instead, by definition, we
have that F̃−i

a = 0. It follows thatlimt→∞ ri
a(t) = 0 ∃ i, i ̸= 1

limt→∞ r j
a(t) ̸= 0 j = 2, . . . , i−1, i+1, . . . ,N

(2.66)

Therefore, the residual signal can be used in order to identify and exclude the faulty agent of
the MAS.
After proving, in the previous sections, the existence of an UIO and have just shown that it is
possible to distinguish different scenarios depending on where the fault is located looking only
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at the value of the residual signal, a logic threshold is introduced to cover all possible cases.∥ri
a(t)∥< τ, ∃ i, i ̸= 1

∥r j
a(t)∥ ≥ τ, ∀ j ̸= i

=⇒ fi ̸= 0

{
∥ri

a(t)∥ ≥ τ, ∀ i = 2, . . . ,N =⇒ f1 ̸= 0{
∥ri

a(t)∥< τ, ∀ i = 2, . . . ,N =⇒ fault-free

(2.67)

Where τa is the threshold associated to the logic.

Remark 12. In the case in which, instead of relative output information, the system collects
relative state information the reasoning does not change. In fact, this special case is equivalent
to solve the problem above for C = In.
For what concerns the existence of an UIO, the two requirements of Theorem 1.2.2 hold since
the first one is satisfied by the equalities rank(CBd) = rank(InBd) = rank(Bd) and rank(CBu) =

rank(InBu) = rank(Bu); instead, the second requirement holds by Lemma A.0.1.
The rest of the FDI procedure, therefore, remains the same.

Algorithm 1 FDI for MASs with undirected topology.

1. Number N agents and select agent number 2, that is, begin from i = 2.

2. Solve the equation (H iCN−1 − I(N−1)n)Bi
d = 0 to get a solution of H i, then set Mi =

I(N−1)n−H iCN−1;

3. Determine Ki
1 such that Ji = MiAN−1−Ki

1CN−1 is stable.

4. Compute Ki
2 = JiH i and Ki = Ki

1 +Ki
2. Hence observer (2.42) for agent i con be con-

structed.

5. Get the corresponding residual ri(t) as in (2.53).

6. Implement the threshold logic as shown in (2.67). Check if ∥r2(t)∥ < τ: if yes, then the
agent 2 is faulty and stop, else move to the next step.

7. Choose agent number 3, that is, select i = 3, repeat steps 2-5. Check whether ∥r3(t)∥< τ:
if yes, then agent 3 is faulty. Stop the algorithm. If not, proceed with another agent and
repeat until ∃k, ∥rk(t)∥< τ . Then agent k is faulty and stop.

8. If ∀i = 2, . . . ,N, ∥ri(t)∥> τ , then a fault affected agent 1.

2.2.3 Distributed implementation

As mentioned in the Introduction, being able to implement the algorithm, that will be applied
to an MAS in a distributed way, has several advantages, such as the scalability property and the
lower cost due to the smaller size of the implemented structures (such as observers). Based on
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the main result presented in [1], a distributed implementation of the previous result is proposed.

The observers design until now has required the collective relative output W̄ (t), which is not
distributed and needs a lot of information. Since we are dealing with an undirected connected
graph (Assumption 10) for every choice of three nodes of the graph that are connected we have
either one of the two elementary structures depicted in Fig.2.1.

Figure 2.1: Two basic structure of tree connected node of an undirected graph.

In both cases it is possible to apply the FDI method shown before. Indeed two UIOs are
built for agents 2 and 3, moreover the following logic threshold is presented in order to find if
one of the tree agents has a malfunctioning:

∥r2∥(t)≥ τ, ∥r3∥(t)≥ τ =⇒ f1(t) ̸= 0 (Fault in 1);

∥r2∥(t)< τ, ∥r3∥(t)≥ τ =⇒ f2(t) ̸= 0 (Fault in 2);

∥r2∥(t)≥ τ, ∥r3∥(t)< τ =⇒ f3(t) ̸= 0 (Fault in 3);

∥r2∥(t)< τ, ∥r3∥(t)< τ =⇒ fault-free.

(2.68)

Where τ is the same threshold as in (2.67). Starting from this idea, it is possible to develop an
FDI algorithm in a distributed manner for a network of n≥ 3 agents.

Algorithm 2 Distributed FDI for MAS with undirected topology.

1. Separate the whole system into several small groups consisting of 3 connected agents.
This type of division is not necessarily a partition, in fact in two different groups there
may be common nodes. The goal is to cover all agents with the minimum number of
groups. Choose one group first.

2. Label the tree agents in the group with 1,2,3. Solve equations (2.47)-(2.51) to get param-
eter matrices. Then construct the observer as (2.42) or (2.72) for agents 2 and 3. Get the
residual and implement the Fault Detection and Isolation logic in (2.68). Check if there
exist a faulty agent in this group, if yes then terminate the algorithm. Conversely, go on.

3. Select another group, return the above step until all agents have been checked and the
fault has been isolated.

By the way we implemented Algorithm 2, the previous Assumption 2 that imposes that only
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one agent is faulty can be relaxed. This is due to the fact that, in this case, Assumption 2 must
hold only for the three-agent groups, and hence, for each group at most one fault can occur.
This implies that, with this strategy, if more than one fault occurs in the whole system at each
time we are still able to detected them, as far as there is a triple of agents for which a single
agent is faulty.
Moreover it can be noticed that the number and the dimension of the UIO built for the task is
drastically reduced. In fact, for each subset of three agents only two observers are built and
their dimension is 2n (compared to the N−1 observers of dimension (N−1)n each, built in the
non-distributed scenario).

Example 1. We show now an example on how to separate in groups a general undirected graph.

(a) A general connected and undirected graph with
N = 11 nodes.

(b) Four group of three node obtained per-
forming the separation on the connected
graph.

Figure 2.2: Example of separation procedure.

It can be noticed that some groups share common agents, since the way different groups are

built does not represent a partition.

2.2.4 Directed graph scenario

For what concerns the scenario in which the Multi Agent System (MAS) has a communication
network described by a directed graph the result does not change too much. This case is partially
covered by [1], in particular the case in which the fault affects the state dynamics and the
disturbance is not present (the effects of possible disturbance are accounted for in the choice of
the threshold value). However, in addiction, the following assumption is made:

Assumption 12. The graph G of the MAS is directed and has a spanning tree.

If the setup of (1.20) is considered, the construction of an UIO does not change with respect
to the one shown in the previous sections, and consequently also the evaluation of the residual
signal will be identical.
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2.3 Sensor Fault Detection and Isolation

In this section we try to apply the same techniques seen before to detect a fault in the sensors of
the agents. In order to exclude the fault and perform the isolation it is necessary to neglect one
output from the evaluation.

2.3.1 Residual signal generator for a fault of an agent sensor

In this subsection the case in which the fault affects one of the sensors of the agents is consid-
ered. To perform the computation, the model of Eq. (2.24) is taken into account by imposing
that the actuator fault signal F̄a(t) is identically zero at each time, namely the system is described
by

˙̄X(t) = AN−1X̄(t)+BuN−1Ū(t)+BdN−1D̄(t)

W̄ (t) = (Lr⊗C)X̄(t)+(Lr⊗ Iny)F̄s(t)
(2.69)

Notice that also in this case the disturbance signal acts only on the state update equation, as in
the previous case.

In order to detect the faulty agent, a smart representation of the Eq. (2.69) is derived; take
the generic ith agent and isolate its relative output w̄i(t) from W̄ (t) in order to obtain an equation
of the type

˙̄X(t) = AN−1X̄(t)+BuN−1Ū(t)+BdN−1D̄(t)

W̄−i(t) = (Lr⊗C)−iX̄(t)+(Lr⊗ Iny)
−iF̄s(t)

W̄ i(t) = (Lr⊗C)iX̄(t)+(Lr⊗ Iny)iF̄s(t)

(2.70)

Where (Lr⊗C)i ∈ Rny×(N−1)n is the block of rows of (Lr⊗C) with indices ranging from (i−
1)ny + 1 to iny and (Lr⊗C)−i ∈ R(N−2)ny×(N−1)n is what remains of (Lr⊗C) after removing
(Lr⊗C)i. It can be noticed that the matrices of the output equations can be rewritten as

(Lr⊗C)−i = (L−i
r ⊗C)

(Lr⊗ Iny)
−i = (L−i

r ⊗ Iny)

(Lr⊗C)i = ([Lr]i⊗C)

(Lr⊗ Iny)i = ([Lr]i⊗ Iny)

(2.71)

Where L−i
r indicates the matrix Lr in which the ith row was removed, instead [Lr]i indicates the

ith row of Lr.
In order to detect which agent’s sensor is the faulty one, it is necessary to design a UIO for each
agent i = 2, . . . ,N. Following the reasoning about the construction of the observer previously

33



discussed, a full order observer is described by

żi(t) = Jizi(t)+MiBuN−1Ũ +KiW̃−i(t)

X̂ i(t) = zi(t)+H iW̃−i(t) i = 2, . . . ,N
(2.72)

As previously done, we compute the error dynamics

ėi(t) = ˙̄X(t)− ˙̂X i(t)

= ˙̄X(t)− (żi(t)+H i ˙̄W−i(t))

= ˙̄X(t)− (żi(t)+H i((L−i
r ⊗C) ˙̄X(t)+(L−i

r ⊗ Iny)
−i ˙̄Fs(t))

= (I(N−1)n−H i(L−i
r ⊗C)) ˙̃X(t)− żi(t)−H i(L−i

r ⊗ Iny)
−i ˙̄Fs(t)

(2.73)

By replacing the expressions (2.70) and (2.72) in the equation (2.73), we obtain

ėi(t) = (I(N−1)n−H i(L−i
r ⊗C))(AN−1X̄(t)+BuN−1Ū(t)+BdN−1D̄(t))

− (Jizi(t)+MiBuN−1Ū +KiW̄−i(t))−H i(L−i
r ⊗ Iny)

˙̄Fs(t)
(2.74)

Substitute, also in this case, the expression of Ki with Ki
1 +Ki

2, and substitute the expression of
W̄−i(t) only for component that multiply matrix Ki

1

ėi(t) = ((I(N−1)n−H i(L−i
r ⊗C))AN−1−Ki

1(L
−i
r ⊗C))X̄(t)

+((I(N−1)n−H i(L−i
r ⊗C)−Mi)BuN−1Ū(t)

+(I(N−1)n−H i(L−i
r ⊗C))BdD̄(t)

− Jizi(t)−Ki
1(L
−i
r ⊗ Iny)F̄s(t)−Ki

2W̄−i(t)−H i(L−i
r ⊗ Iny)

˙̄Fs(t)

(2.75)

Imposing the following constraints

(H i(L−i
r ⊗C)− I(N−1)n)BdN−1 = 0 (2.76)

Mi = I(N−1)n−H i(L−i
r ⊗C) (2.77)

Ji = MiAN−1−Ki
1(L
−i
r ⊗C) (2.78)

Ki
2 = JiH i (2.79)

Ki = Ki
1 +Ki

2 (2.80)

the error dynamics of the ith observer becomes

ėi(t) = (MiAN−1−Ki
1(L
−i
r ⊗C))X̄(t)− Jizi(t)−Ki

2W̄−i(t)

−Ki
1(L
−i
r ⊗ Iny)F̄s(t)−H i(L−i

r ⊗ Iny)
˙̄Fs(t)

= Ji(X̄(t)− X̂ i(t))−Ki
1(L
−i
r ⊗ Iny)F̄s(t)−Ki

2W̄−i(t)−H i(L−i
r ⊗ Iny)

˙̄Fs(t)

= Jiei(t)−Ki
1(L
−i
r ⊗ Iny)F̄s(t)−Ki

2W̄−i(t)−H i(L−i
r ⊗ Iny)

˙̄Fs(t)

(2.81)

Finally, in order to ensure the convergence of the estimation error, in the case in which F−i
s (t)

is identically zero, Ji must be stable for every i = 2, . . . ,N. Also in this case a residual signal is
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built for each agent i = 2, . . . ,N as

ri
s(t) = W̄−i− (L−i

r ⊗C)X̂(t)

= (L−i
r ⊗C)X̄(t)+(L−i

r ⊗ Iny)F̄s(t)− (L−i
r ⊗C)X̄(t)

= (L−i
r ⊗C)ei(t)+(L−i

r ⊗ Iny)F̄s(t)

(2.82)

In this case, it is easy to understand that the presence of a fault in one sensor of the network
influences all the residuals with a combination of them and the isolation in this case is very
difficult.
Now it is necessary to verify that the condition that ensures the existence of a UIO is satisfied.
First of all, we must verify that rank((L−i

r ⊗C)BuN−1) = rank(BuN−1). Developing the matrix
(L−i

r ⊗C)BuN−1, we get that

(L−i
r ⊗C)BuN−1 = (L−i

r ⊗C)(IN−1⊗Bu)

= (L−i
r ⊗CBu)

(2.83)

This implies that even if, by hypothesis rank(CBd) = rank(Bd), whenever the Kronecker prod-
uct is performed with a matrix L−i

r , the resulting matrix has always lower rank with respect to
the matrix BdN−1, and hence the first condition for the existence of a UIO for the system of Eq.
(2.70) does not hold.

2.4 Sensor Fault Detection

Since, in the previous subsection it was shown that it is not possible to achieve the fault isolation,
we try at least to find a way to ensure the Fault Detection (FD). To do this we consider the
decoupled system of (2.31), namely

˙̃X(t) = AN−1X̃(t)+BuN−1Ũ(t)+BdN−1D̃(t)

W̃ (t) =CN−1X̃(t)+ I(N−1)nyF̃s(t)
(2.84)

and we build a UIO for the whole system, considering again as unknown input the disturbance
D̃(t).

First of all, we verify that the necessary and sufficient conditions given in Theorem 1.2.2 are
matched. in this case it is necessary to verify that

rank(CN−1BdN−1) = rank(BdN−1) (2.85)

By developing the computation, we get that

(CN−1BdN−1) = (IN−1⊗C)(IN−1⊗Bd)

= (IN−1⊗CBd)
(2.86)
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Hence the equality is satisfied if and only if rank(CBd) = rank(Bd) as stated in Assumption 7.
For what concerns the second requirement, we must verify that the pair (CN−1,AN−1−H∗CN−1AN−1)

is detectable, where H∗ = BdN−1[(CN−1BdN−1)
TCN−1BdN−1]

−1(CN−1BdN−1)
T . As shown be-

fore, the product CN−1BdN−1 can be written as (IN−1⊗CBd) and hence we get that:

H∗ = BdN−1[(IN−1⊗CBd)
T (IN−1⊗CBd)]

−1(IN−1⊗CBd)
T

= BdN−1[(IN−1⊗ (CBd)
T )(IN−1⊗CBd)]

−1(IN−1⊗ (CBd)
T )

= BdN−1[(IN−1⊗ (CBd)
TCBd)]

−1(IN−1⊗ (CBd)
T )

= (IN−1⊗Bd)(IN−1⊗ [(CBd)
TCBd)]

−1)(IN−1⊗ (CBd)
T )

= IN−1⊗ (Bd[(CBd)
TCBd)]

−1(CBd)
T )

(2.87)

Before applying the PBH criterion A.0.2 in order to verify whether the pair (CN−1,AN−1−
H∗CN−1AN−1) is detectable or not, define H∗1 = Bd[(CBd)

TCBd)]
−1(CBd)

T ). Then the matrix
H∗ is equivalent to

H∗ = (IN−1⊗H∗1 ) (2.88)

We need to verify if for ℜ(s)≥ 0 the column rank of the following matrix is full:[
AN−1−H∗CN−1AN−1− sI(N−1)n

Cn−1

]

=

[
AN−1− (IN−1⊗H∗1 )CN−1AN−1− sI(N−1)n

Cn−1

]

=

[
(IN−1⊗A)− (IN−1⊗H∗1 )(IN−1⊗C)(IN−1⊗A)− s(IN−1⊗ In)

IN−1⊗C

]

=

[
IN−1⊗ (A−H∗1CA− sIn)

IN−1⊗C

]
(2.89)

It is immediate to realise that the condition on the whole system holds if the pair (A−H∗1CA−
sIn,C) is detectable. By Remark 4 this condition is equivalent to impose that the column rank
of
[ sIN−A Bd

C 0

]
is full for ℜ(s)≥ 0 and this is equivalent to Assumption 5.

Now the UIO for system (2.84) is presented. In order to detect which agent’s sensor is the
faulty one, it is necessary to design a UIO for each agent i = 2, . . . ,N. Following the reasoning
about the construction of the observer previously discussed, a full order observer is described
by

ż(t) = Jz(t)+MBuN−1Ũ +KW̃ (t)

X̂ i(t) = z(t)+HW̃ (t)
(2.90)
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As previously done, we compute the error dynamics

ės(t) = ˙̃X(t)− ˙̂X(t)

= ˙̃X(t)− (ż(t)+H ˙̃W (t))

= ˙̃X(t)− (ż(t)+H(CN−1
˙̃X(t)+ ˙̃Fs(t))

= (I(N−1)n−HCN−1)
˙̃X(t)− ż(t)−H i ˙̃Fs(t)

(2.91)

By replacing the expressions (2.84) and (2.90) in the equation (2.91), we obtain

ės(t) = (I(N−1)n−HCN−1)(AN−1X̃(t)+BuN−1Ũ(t)+BdN−1D̃(t))

− (Jz(t)+MBuN−1Ũ +KW̃ (t))−H ˙̃Fs(t)
(2.92)

Substitute, also in this case, the expression of K with K1 +K2, and develop the expression of
W̃ (t) only for the matrix K1

ės(t) = ((I(N−1)n−HCN−1)AN−1−K1CN−1)X̃(t)

+(I(N−1)n−HCN−1−M)BuN−1Ũ(t)

+(I(N−1)n−HCN−1)BdD(t)

− Jz(t)−K1F̃s(t)−K2W̃ (t)−H ˙̃Fs(t)

(2.93)

Imposing the following constraints

(HCN−1− I(N−1)n)BdN−1 = 0 (2.94)

M = I(N−1)n−HCN−1 (2.95)

J = MAN−1−K1CN−1 (2.96)

K2 = JH (2.97)

K = K1 +K2 (2.98)

the error dynamics of the observer becomes

ės(t) = (MAN−1−K1CN−1)X̃(t)− Jz(t)−K1F̃s(t)− JHW̃ (t)−H ˙̃Fs(t)

= J(X̃(t)− X̂(t))−K1F̃s(t)−H ˙̃Fs(t)

= Je(t)−K1F̃s(t)−H ˙̃Fs(t)

(2.99)

Finally, in order to ensure the convergence of the estimation error, in the case in which Fs(t) is
identically zero, J must be stable. Then the residual signal is equal to

rs(t) = W̃ −CN−1X̂(t)

=CN−1X̃(t)+ F̃s(t)−CN−1X̂(t)

=CN−1es(t)+ F̃s(t)

(2.100)
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by the way it has been previously defined F̃s(t) can be written as

F̃s(t) = (V−1⊗ In)F̄s(t) (2.101)

where f̄i
s
= f s

i − f s
1(s).

2.4.1 Case of 3 agents

In the following, we try to analyze the case in which the system is composed only by three
nodes, and verify if it is possible to perform the isolation of the fault knowing the topology of
the graph.
If the graph is an undirected, connected, graph G composed by only N = 3 nodes is considered,
four different types of connections between the agents exist, all described by the following
adjacency matrices. In particular we can notice that there exists only one graph that has all the
edges (i.e., |E|= 3), instead the other three graphs have |E|= 2.

A1 =

0 1 1
1 0 1
1 1 0

 A2 =

0 1 0
1 0 1
0 1 0

 A3 =

0 0 1
0 0 1
1 1 0

 A4 =

0 1 1
1 0 0
1 0 0

 (2.102)

Figure 2.3: Undirected connected graph associated whit the adjacency matrices (2.102).
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From the adjacency matrix (2.102), applying the definition of Laplacian matrix we obtain

L1 =

 2 −1 −1
−1 2 −1
−1 −1 2

 L2 =

 1 −1 0
−1 2 −1
0 −1 1



L3 =

 1 0 −1
0 1 −1
−1 −1 2

 L4 =

 2 −1 −1
−1 1 0
−1 0 1


(2.103)

In order to extract the reduced Laplacian Lr from L, we define a change of coordinates transfor-
mation matrix Ts as in (2.33), obtaining

T−1
s L1Ts =

0 −1 −1
0 3 0
0 0 3

 T−1
s L2Ts =

0 −1 0
0 3 −1
0 0 1



T−1
s L3Ts =

0 0 −1
0 1 0
0 1 3

 T−1
s L4Ts =

0 −1 −1
0 2 1
0 1 2


(2.104)

Extracting the matrix Lr from the matrices in (2.104) we get

Lr1 =

[
3 0
0 3

]
Lr2 =

[
3 −1
0 1

]
Lr3 =

[
1 0
3 −1

]
Lr4 =

[
2 1
1 2

]
(2.105)

Remark 13. It can be noticed that the reduced Laplacian matrices Lr2 e Lr3 are substantially the
same, and hence only one case will be considered.

The system considered is described by Eq. (2.34) in the case in which N=3, hence, the
resulting system is

˙̄X(t) = A2X̄(t)+Bu2Ū(t)+Bd2D̄(t)

W̄ (t) = (Lr⊗C)X̄(t)+(Lr⊗ Iny)F̄s(t)
(2.106)

Note that differently from before we do not apply transformations to decouple the system; this
is because the system is small and therefore it is quite simple to work with it. Since it will be
valid for all the cases, a unique derivation of a UIO for the system (2.106) is performed.
The dynamics of the observer is the following

ż(t) = Jz(t)+MBu2Ũ +KiW̄ (t)

X̂(t) = z(t)+HW̄ (t)
(2.107)

The existence of the UIO is guaranteed by Assumptions 5 and 7. Define the estimation error, as
before, as

es(t) = X̄(t)− X̂(t) (2.108)
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Its update equation results to be

ės(t) = ˙̄X(t)− ˙̂X(t)

= ˙̄X(t)− (ż(t)+H ˙̄W (t))

= ˙̄X(t)− (ż(t)+H((Lr⊗C) ˙̄X(t)+(Lr⊗ Iny)
˙̄Fs(t))

= (I2n−H(Lr⊗C)) ˙̄X(t)− ż(t)−H(Lr⊗ Iny)
˙̄Fs(t))

(2.109)

By replacing the expression (2.106) and (2.107) in the equation (2.109), we obtain

ės(t) = (I2n−H(Lr⊗C))(A2X̄(t)+Bu2Ū(t)+Bd2D(t))

− (Jz(t)+MBu2Ū(t)+KW̄ (t))−H(Lr⊗ Iny)
˙̄Fs(t)

(2.110)

Substitute, now, the expression of K with K1 +K2, and develop the expression of W̄ (t) only for
the matrix K1

ės(t) = [(I2n−H(Lr⊗C))A2−K1(Lr⊗C)]X̄(t)

+(I2n−H(Lr⊗C)−M)Bu2Ū(t)

+(I2n−H(Lr⊗C))Bd2D(t)

− Jz(t)−K1(Lr⊗ Iny)F̄s(t)−K2W̄ (t)

−H(Lr⊗ Iny)
˙̄Fs(t)

(2.111)

Moreover, if the following matrix relations are imposed for

(H(Lr⊗C)− I2n)Bd = 0 (2.112)

M = I2n−H(Lr⊗C) (2.113)

J = MA2−K1(Lr⊗C) (2.114)

K2 = JH (2.115)

K = K1 +K2 (2.116)

the error dynamics of the ith observer becomes

ės(t) = (MA2−K1(Lr⊗C))X̄(t)− Jz(t)− JHW̄ (t)

−K1(Lr⊗ Iny)F̄s(t)−H(Lr⊗ Iny)
˙̄Fs(t)

= J(X̄(t)− X̂(t))−K1(Lr⊗ Iny)F̄s(t)−H(Lr⊗ Iny)
˙̄Fs(t)

= Jes(t)−K1(Lr⊗ Iny)F̄s(t)−H(Lr⊗ Iny)
˙̄Fs(t)

(2.117)

Define, finally, the residual associated to the observer as

rs(t) = W̄ − (Lr⊗C)X̂(t)

= (Lr⊗C)X̄(t)+(Lr⊗ Iny)F̄s(t)− (Lr⊗C)X̂(t)

= (Lr⊗C)ei(t)+(Lr⊗ Iny)F̄s(t)

(2.118)
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To sum up the error dynamics and the residual are equal to

ės(t) = Jes(t)−K1(Lr⊗ Iny)F̄s(t)−H(Lr⊗ Iny)
˙̄Fs(t)

rs(t) = (Lr⊗C)es(t)+(Lr⊗ Iny)F̄s(t)
(2.119)

Case Lr = Lr1

Consider the matrix Lr1;

Lr1 =

[
3 0
0 3

]
(2.120)

Upon expanding Eq. (2.119) and substituting the expression of Lr1, the error dynamics and the
residual generated by the UIO are equal to

ės(t) = Jes(t)−K1

([
3 0
0 3

]
⊗ Iny

)[
f̄ s
2(t)

f̄ s
3(t)

]
−H

([
3 0
0 3

]
⊗ Iny

)[
˙̄f s
2(t)
˙̄f s
3(t)

]

= Jes(t)−3K1

[
Iny 0
0 Iny

][
f̄ s
2(t)

f̄ s
3(t)

]
−3H

[
Iny 0
0 Iny

][
˙̄f s
2(t)
˙̄f s
3(t)

]

= Jes(t)−3K1

[
f̄ s
2(t)

f̄ s
3(t)

]
−3H

[
˙̄f s
2(t)
˙̄f s
3(t)

] (2.121)

rs(t) =

([
3 0
0 3

]
⊗C

)
ei(t)+

([
3 0
0 3

]
⊗ Iny

)[
f̄ s
2(t)

f̄ s
3(t)

]

= 3

[
C 0
0 C

]
es(t)+3

[
Iny 0
0 Iny

][
f̄ s
2(t)

f̄ s
3(t)

]

= 3

[
C 0
0 C

]
es(t)+3

[
f̄ s
2(t)

f̄ s
3(t)

] (2.122)

It is possible to distinguish four cases, depending on where the fault is located

1. No Fault 
ės(t) = Jes(t)−→ 0

rs(t) = 3

C 0

0 C

es(t)−→ 0
(2.123)

2. Fault in agent 1 
ės(t) = Jes(t)−3K1

− f s
1(t)

− f s
1(t)

−3H

− ḟ s
1(t)

− ḟ s
1(t)


rs(t) = 3

C 0

0 C

es(t)+3

− f s
1(t)

− f s
1(t)

 (2.124)
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3. Fault in agent 2 
ės(t) = Jes(t)−3K1

 f s
2(t)

0

−3H

 ḟ s
2(t)

0


rs(t) = 3

C 0

0 C

es(t)+3

 f s
2(t)

0

 (2.125)

4. Fault in agent 3 
ės(t) = Jes(t)−3K1

 0

f s
3(t)

−3H

 0

ḟ s
3(t)


rs(t) = 3

C 0

0 C

es(t)+3

 0

f s
3(t)

 (2.126)

For this particular case (Lr = Lr1), we try to describe the dynamics of the error es(t) isolat-
ing each single component, namely es

2(t) = x̄2(t)− x̂2(t) and es
3(t)x̄3(t)− x̂3(t).

Consider the construction of the matrix J. From Eq. (2.114) we have that

J = MA2−K1(Lr⊗C) = [I2n−H(Lr⊗C)]A2−K1(Lr⊗C) (2.127)

Considering the case Lr1, a particular solution of H is H∗ described by (2.88); substituting it in
the previous equation we get

J = [I2n− (I2⊗ (Bd[(CBd)
TCBd)]

−1(CBd)
T ))(I2⊗C)]A2−K1(I2⊗C)

= [(I2⊗ In)− (I2⊗H∗1 )(I2⊗C)](I2⊗A)−K1(I2⊗C)

= (I2⊗ (In−H∗1C)A)−K1(I2⊗C)

(2.128)

Since J is block diagonal, and there exists K1 such that J is stable, this implies that all the
eigenvalue of J have real part smaller than zero. It is sufficient then that both blocks on the
diagonal have stable eigenvalues. Since the two blocks are identical then there exist a controller
taking the form K1 = I2⊗K∗ that ensures this result. Hence

J = (I2⊗ (In−H∗1C)A)−K1(I2⊗C)

= (I2⊗ (In−H∗1C)A)− (I2⊗K∗)(I2⊗C)

= I2⊗ ((In−H∗1C)A−K∗C)

(2.129)

Where J∗ = (In−H∗1C)A−K∗C ∈ Rn×n is Hurwitz stable. Since the matrix J is block diagonal,
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it is possible to decouple Eq. (2.121), and distinguish the two components of the error

ės(t) = Jes(t)−3K1

[
f̄2(t)

f̄ s
3(t)

]
−3H

[
˙̄f2(t)
˙̄f s
3(t)

]

= (I2⊗ J∗)

[
es

2(t)

es
3(t)

]
−3(I2⊗K∗)

[
f̄2(t)

f̄ s
3(t)

]
−3(I2⊗H∗1 )

[
˙̄f2(t)
˙̄f s
3(t)

]

=

[
J∗es

2(t)−3K∗ f̄2(t)−3H∗1
˙̄f2(t)

J∗es
3(t)−3K∗ f̄ s

3(t)−3H∗1
˙̄f3(t)

] (2.130)

with this new definition of the error dynamics, we rewrite also the residual[
rs

2(t)

rs
2(t)

]
= 3

[
Ces

2(t)+ f̄2(t)

Ces
3(t)+ f̄ s

3(t)

]
(2.131)

So, it is possible to decouple the system and rewrite the conditions for which the error dynamics
and the residual goes to zero or tends to a value different from zero.

1. No Fault 

ės
2(t) = J∗es

2(t)−→ 0

ės
3(t) = J∗es

3(t)−→ 0

rs
2(t) = 3Ces

2(t)−→ 0

rs
3(t) = 3Ces

3(t)−→ 0

(2.132)

2. Fault in agent 1 

ės
2(t) = J∗es

2(t)+3K∗ f s
1(t)+3H∗1 ḟ s

1(t)

ės
3(t) = J∗es

3(t)+3K∗ f s
1(t)+3H∗1 ḟ s

1(t)

rs
2(t) = 3Ces

2(t)−3 f s
1(t)

rs
3(t) = 3Ces

3(t)−3 f s
1(t)

(2.133)

3. Fault in agent 2 

ės
2(t) = J∗es

2(t)−3K∗ f s
2(t)−3H∗1 ḟ s

2(t)

ės
3(t) = J∗es

3(t)−→ 0

rs
2(t) = 3Ces

2(t)+3 f s
2(t)

rs
3(t) = 3Ces

3(t)−→ 0

(2.134)

4. Fault in agent 3 

ės
2(t) = J∗es

2(t)−→ 0

ės
3(t) = J∗es

3(t)−3K∗ f s
3(t)−3H∗1 ḟ s

3(t)

rs
2(t) = 3Ces

2(t)−→ 0

rs
3(t) = 3Ces

3(t)+3 f s
3(t)

(2.135)

And hence in this case it is possible to isolate the fault by evaluating the residuals generated by
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the UIO. In particular, introduce the following logic threshold

∥rs
2∥(t)≥ τ, ∥rs

3∥(t)≥ τ =⇒ f s
1(t) ̸= 0 (Fault in 1);

∥rs
2∥(t)> τ, ∥rs

3∥(t)≤ τ =⇒ f s
2(t) ̸= 0 (Fault in 2);

∥rs
2∥(t)≤ τ, ∥rs

3∥(t)> τ =⇒ f s
3(t) ̸= 0 (Fault in 3);

∥rs
2∥(t)< τ, ∥rs

3∥(t)< τ =⇒ fault-free.

(2.136)

where τ is the threshold value.

In this particular case (L = L1) it was shown that also isolation is possible. Looking at the
previous computation for the case Lr1, it is possible to see that the isolation is possible in the
cases in which the reduced Laplacian Lr obtained by Eq. (2.33) is diagonal. Starting from this
assumption, we want to find what is the structure of the graph that leads to this type of reduced
matrix Lr.
Starting from Lr = NIN−1, where N is the number of nodes, it holds that

T−1
s LTs =

[
0 lT

0 NIN−1

]
(2.137)

it follows that

L = Ts

[
0 lT

0 NIN−1

]
T−1

s

=

[
1 0T

N−1

1N−1 IN−1

][
0 lT

0 αIN−1

][
1 0T

N−1

−1N−1 IN−1

]

=

[
1 0T

N−1

1N−1 IN−1

][
−lT 1N−1 lT

−N1N−1 NIN−1

]

=



−lT 1N−1 l2 l3 . . . ln
(−lT 1N−1−N) l2 +N l3 . . . ln
(−lT 1N−1−N) l2 l3 +N . . . ln

...
...

... . . . ...
(−lT 1N−1−N) l2 l3 . . . ln +N



(2.138)

From the Laplacian matrix L, it is possible to obtain the adjacency matrix A assuming aii = 0 ∀i
and ai j =−li j

A =



0 −l2 −l3 . . . −ln
(lT 1N−1 +N) 0 −l3 . . . −ln
(lT 1N−1 +N) −l2 0 . . . −ln

...
...

... . . . ...
(lT 1N−1 +N) −l2 −l3 . . . 0


(2.139)
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Since the graph is undirected the adjacency matrix A is symmetric, and hence it can be
written as

A =



0 −l2 −l3 . . . −ln
−l2 0 −l3 . . . −ln
−l3 −l2 0 . . . −ln

...
...

... . . . ...
−ln −l2 −l3 . . . 0


(2.140)

And since by Assumption 10 the graph is connected, each li must be different from zero. If by
absurd this was not true, take for example l2 = 0, this would imply that the second column of
the adjacency matrix is equal to zero, and hence, by definition of adjacency matrix, there would
be no edge that connects the agent 2 to another one, and this contradicts the assumption that the
graph is connected.
Since we have deal with a binary adjacency matrix, each li =−1 ∀i, and we get

A =


0 1 . . . 1

1 . . . . . . ...
... . . . . . . 1
1 . . . 1 0

 (2.141)

Namely the graph with all the possible connections among the agents.

Figure 2.4: Example of an undirected graph with 10 nodes and all the possible edges.

With the same objective that motivated this computation, that is to see if it is possible to
isolate the faulty agent, the other two cases can be verified.
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Case Lr = Lr2

Consider the matrix Lr2

Lr2 =

[
3 −1
0 1

]
(2.142)

Expand Eq. (2.119) and substitute the expression of Lr2, in order to obtain the error dynamics
and the residual generated by the UIO

ės(t) = Jes(t)−K1

([
3 −1
0 1

]
⊗ Iny

)[
f̄ s
2(t)

f̄ s
3(t)

]
−H

([
3 −1
0 1

]
⊗ Iny

)[
˙̄f s
2(t)
˙̄f s
3(t)

]

= Jes(t)−K1

[
3Iny −Iny

0 Iny

][
f̄ s
2(t)

f̄ s
3(t)

]
−H

[
3Iny −Iny

0 Iny

][
˙̄f s
2(t)
˙̄f s
3(t)

]

= Jes(t)−K1

[
3 f̄ s

2(t)− f̄ s
3(t)

f̄ s
3(t)

]
−H

[
3 ˙̄f s

2(t)− ˙̄f s
3(t)

˙̄f s
3(t)

] (2.143)

rs(t) =

([
3 −1
0 1

]
⊗C

)
es(t)+

([
3 −1
0 1

]
⊗ Iny

)[
f̄ s
2(t)

f̄ s
3(t)

]

=

[
3C −C

0 C

]
es(t)+

[
3Iny −Iny

0 Iny

][
f̄ s
2(t)

f̄ s
3(t)

]

=

[
3C −C

0 C

]
es(t)+

[
3 f̄ s

2(t)− f̄ s
3(t)

f̄ s
3(t)

] (2.144)

Also in this case it is possible to distinguish four cases, associated with the sensors faults in the
system.

1. No Fault 
ės(t) = Jes(t)−→ 0

rs(t) =

3C −C

0 C

es(t)−→ 0
(2.145)

2. Fault in agent 1 
ės(t) = Jes(t)−K1

−2 f s
1(t)

− f s
1(t)

−H

−2 ḟ s
1(t)

− ḟ s
1(t)


rs(t) =

3C −C

0 C

es(t)+

−2 f s
1(t)

− f s
1(t)

 (2.146)
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3. Fault in agent 2 
ės(t) = Jes(t)−K1

3 f s
2(t)

0

−H

3 ḟ s
2(t)

0


rs(t) =

3C −C

0 C

es(t)+

3 f s
2(t)

0

 (2.147)

4. Fault in agent 3 
ės(t) = Jes(t)−K1

− f s
3(t)

f s
3(t)

−H

− ḟ s
3(t)

ḟ s
3(t)


rs(t) =

3C −C

0 C

es(t)+

− f s
3(t)

f s
3(t)

 (2.148)

In this scenario, as expected, it is possible to perform the FD since the only case in which the
residual converges to zero is the one in which there is no fault.
For what concerns isolation, instead, it is possible to perform it only when the fault affects the
second agent; in fact, in this case, the first component of the residual rs

2 is different from zero,
instead rs

3 tends to zero as t −→ ∞.
It can be noticed that, if the mirror case was considered, namely Lr = Lr3, we would have the
same behaviour but associated with the fault on the third agent, namely rs

2 −→ 0 and rs
3 different

from zero.

To conclude, with the structures of types 2 and 3 as in Fig. 2.3, it is possible to isolate the
fault only if it affects the agent that shares both edges with the other nodes, (i.e. the one in the
middle).
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Case Lr = Lr4

Consider now the matrix Lr4

Lr4 =

[
2 1
1 2

]
(2.149)

Expand Eq. (2.119) and substitute the expression of Lr4 in order to obtain the error dynamics
and the residual associated to the UIO

ės(t) = Jes(t)−K1

([
2 1
1 2

]
⊗ Iny

)[
f̄ s
2(t)

f̄ s
3(t)

]
−H

([
2 1
1 2

]
⊗ Iny

)[
˙̄f s
2(t)
˙̄f s
3(t)

]

= Jes(t)−K1

[
2Iny Iny

Iny 2Iny

][
f̄ s
2(t)

f̄ s
3(t)

]
−H

[
2Iny Iny

Iny 2Iny

][
˙̄f2(t)
˙̄f s
3(t)

]

= Jes(t)−K1

[
2 f̄ s

2(t)+ f̄ s
3(t)

f̄ s
2(t)+2 f̄ s

3(t)

]
−H

[
2 ˙̄f s

2(t)+
˙̄f s
3(t)

˙̄f s
2(t)+2 ˙̄f s

3(t)

] (2.150)

rs(t) =

([
2 1
1 2

]
⊗C

)
ei(t)+

([
2 1
1 2

]
⊗ Iny

)[
f̄ s
2(t)

f̄ s
3(t)

]

=

[
2C C

C 2C

]
es(t)+

[
2Iny Iny

Iny 2Iny

][
f̄2(t)

f̄ s
3(t)

]

=

[
2C C

C 2C

]
es(t)+

[
2 f̄ s

2(t)+ f̄ s
3(t)

f̄ s
2(t)+2 f̄ s

3(t)

] (2.151)

Also in this last scenario, it is possible to distinguish four cases corresponding to the different
sensor fault locations

1. No Fault 
ės(t) = Jes(t)−→ 0

rs(t) =

2C C

C 2C

es(t)−→ 0
(2.152)

2. Fault in agent 1 
ės(t) = Jes(t)−K1

−3 f s
1(t)

−3 f s
1(t)

−H

−3 ḟ s
1(t)

−3 ḟ s
1(t)


rs(t) =

2C C

C 2C

es(t)+

−3 f s
1(t)

−3 f s
1(t)

 (2.153)
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3. Fault in agent 2 
ės(t) = Jes(t)−K1

2 f s
2(t)

f s
2(t)

−H

2 ḟ s
2(t)

ḟ s
2(t)


rs(t) =

2C C

C 2C

es(t)+

2 f s
2(t)

f s
2(t)

 (2.154)

4. Fault in agent 3 
ės(t) = Jes(t)−K1

 f s
3(t)

2 f s
3(t)

−H

 ḟ s
3(t)

2 ḟ s
3(t)


rs(t) =

2C C

C 2C

es(t)+

 f s
3(t)

2 f s
3(t)

 (2.155)

In this case, as before, FD is possible since the residual tends to zero only when there is no
fault, and in the other cases instead it tends to a value different from zero. Looking at this kind
of result we cannot say where the fault in the system, is located namely it is no possible to
perform isolation. If instead of node 1, we choose one of the other node to perform the reduced
Laplacian Lr, we would have a structure like the one of the previous two examples (Lr2 and
Lr3), and hence the fault in the node 1 could be isolated.
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Chapter 3

Consensus problem

In this chapter the synchronization problem for a MAS with a leader is considered. In the first
part a distributed approach that makes use of a priori information about the structure of the net-
work is presented. Subsequently, an adaptive approach that gets rid of the a priori information
is proposed.

3.1 Synchronization problem

For this problem we consider only the case of directed graph topology. For simplicity the case
when the output coincides with the state, namely C = In, is considered. This choice is made in
order to consider also a possible fault in the agents’ sensors. In paper [10] and in Chapter 8 of
[2] a solution to the synchronization problem is presented under a milder assumption, that

Assumption 13. The graph G contains a directed spanning tree with the leader as the root node.

Consider N identical agents with the same dynamics as before, namely

ẋi(t) = Axi(t)+Buui(t)+Bddi(t)+Bu f a
i (t),

yi(t) = xi(t)+ f s
i (t), i = 1, . . . ,N,

(3.1)

Since the C = In and there exists a directed spanning tree for the graph G , it is possible to build
an FDI scheme in order to detect the faults and implement it also in a distributed way.
The condensed system, represented via Kronecker product, is

Ẋ(t) = ANX(t)+BuN(U(t)+Fa(t))+BdND(t),

Y (t) = X(t)+Fs(t),

W (t) = (L⊗C)X(t)+(L⊗ Iny)Fs(t)

(3.2)

Assume that the agent with label 1 is the leader. It is assumed that the control input of the leader
is zero, i.e. u1(t) = 0. As done in Chapter 2 we define a change of coordinates transformation
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matrix T−1 in order to have X −→ T−1X = Xo, where

T−1 := T−1
s ⊗ In and T−1

s =

[
1 0T

N−1

−1N−1 IN−1

]
(3.3)

Applying the transformation T−1 to the vector state X yields

X =


x1

x2
...

xN

 −→ T−1X = Xo =


x1

x̄2
...

x̄N

=

[
x1

X̄

]
(3.4)

And we obtain the same state space representation as in Eq. (2.23):

Ẋo(t) = ANXo(t)+BuNUo(t)+BuNFo
a (t)+BdNDo(t),

Yo(t) = Xo(t)+Fo
s (t),

Wo(t) = (T−1
s LTs⊗ In)(Xo(t)+Fo

s (t))

(3.5)

From the definition of Ts and the fact that L1N = 0 by Lemma 1.3.1, it is easy to check that

T−1
s LTs =

[
0 lT

0 Lr

]
(3.6)

where l ∈ R1×N−1 and Lr ∈ R(N−1)×(N−1). Since G satisfies Assumption 13, it follows by Theo-

rem 1.3.3 and Lemma 1.3.4 that all the eigenvalues of L, except λ1 = 0, have positive real parts.
Expanding Eq. (3.5) using the representation of the Laplacian (3.6), we obtain:[

ẋ1(t)
˙̄X(t)

]
=

[
A 0
0 AN−1

][
x1(t)

X̄(t)

]
+

[
Bu 0
0 BuN−1

]([
u1(t)

Ū(t)

]
+

[
f a
1 (t)

F̄s(t)

])

+

[
Bd 0
0 BdN−1

][
d1(t)

D̄(t)

]
,[

y1(t)

Ȳ (t)

]
=

[
x1(t)

X̄(t)

]
+

[
f s
1(t)

F̄s(t)

]
,[

w1(t)

W̄ (t)

]
=

([
0 l

0 Lr

]
⊗ In

)([
x1(t)

X̄(t)

]
+

[
f s
1(t)

F̄s(t)

])
(3.7)

Define the convergence error as εi(t) = ∥xi(t)−x1(t)∥. Solving the synchronization problem in
a leader-follower setting is equivalent to ensuring that

lim
t→∞

εi(t) = lim
t→∞
∥xi(t)− x1(t)∥= 0, ∀i, i = 2, . . . ,N (3.8)

In this case, since we have defined x̄i(t) = xi(t)−x1(t), solving the problem is equal to ensuring
that ∥X̄(t)∥ −→ 0 as t −→ ∞.
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A static consensus protocol based on the relative state between neighboring agents is

ui(t) = cK̃
N

∑
j=1

ai j(yi(t)− y j(t)), ∀i, i = 2, . . . ,N (3.9)

where c> 0 is a common coupling weight among neighboring agents, K̃ ∈Rnu×N is the feedback
gain matrix. It can be noticed that the above control law is equal to imposing[

u1(t)

Ū(t)

]
=

[
0

−(IN−1⊗ cK̃)W̄ (t)

]
(3.10)

Substituting the expression of Ū(t) in the equation of X̄(t) we get:

˙̄X(t) = AN−1X̄(t)+BuN−1(−(IN−1⊗ cK̃)W̄ (t)+ F̄a(t))+BdN−1D̄(t)

= AN−1X̄(t)+BuN−1(−(IN−1⊗ cK̃)(Lr⊗ In)(X̄(t)+ F̄s(t))+ F̄a(t))

+BdN−1D̄(t)

= (AN−1−BuN−1(IN−1⊗ cK̃)(Lr⊗ In))X̄(t)

−BuN−1(IN−1⊗ cK̃)(Lr⊗ In)F̄s(t)+BuN−1F̄a(t)+BdN−1D̄(t)

(3.11)

Using the property of the Kronecker product (A⊗B)(C⊗D) = (AC⊗BD) (with A, B, C and D

of appropriate dimension), we get

˙̄X(t) = (AN−1−BuN−1(Lr⊗ cK̃))X̄(t)

−BuN−1(Lr⊗ cK̃)F̄s(t)+BuN−1F̄a(t)+BdN−1D̄(t)

= (AN−1− (Lr⊗ cBuK̃))X̄(t)

− (Lr⊗ cBuK̃)F̄s(t)+BuN−1F̄a(t)+BdN−1D̄(t)

(3.12)

The last operation was performed exploiting the fact that by definition BuN−1 = (IN−1⊗Bu). If
the ideal case in which there are no faults nor disturbances is considered, X̄ converges to zero if
and only if the matrix (AN−1− (Lr⊗ cBuK̃)) is Hurwitz stable. We introduce, now, a theorem
that ensures this property.

Lemma 3.1.1. If the graph G satisfies assumption 13, the N−1 agents described by (3.1) reach

leader-follower consensus under the protocol (3.9) with K̃ = −BT
u P−1 and c ≥ 1

mini=2,...,N ℜ(λi)
,

where λi, i = 2, . . . ,N, are the non zero eigenvalues of Lr, and P > 0 is the solution to the

following Linear Matrix Inequality (LMI):

AP+PAT −2BuBT
u < 0 (3.13)

Define g(F̄a(t), F̄s(t), D̄(t)) :=−(Lr⊗cBuK̃)F̄s(t)+BuN−1F̄a(t)+BdN−1D̄(t) which is a lin-
ear function on the variables F̄a(t), F̄s(t), D̄(t), then we can rewrite Eq. (3.12) as:

˙̄X(t) = (AN−1− (Lr⊗ cBuK̃))X̄(t)+g(F̄a(t), F̄s(t), D̄(t)) (3.14)
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Algorithm 3 High-gain LMI design. [2]
Input: a stabilizable pair (A,Bu)
Output: a control gain matrix K̄ and a coupling gain c

1. set P←− any solution to the Linear Matrix Inequality (LMI) AP+PAT −2BuBT
u < 0

2. set K̄←− BT
u P−1

3. set c←− 1/mini=2,...,N ℜ(λi)

Since the two fault signals F̄a(t), F̄s(t) and the disturbance signal D̄(t) are bounded by Assump-

tion 1, it is possible to compute the maximum convergence error between the values of x1(t)

and xi(t) as:

εMAX = max
i=2,...,N
∥D̄∥≤δd ,

∥F̄a∥≤δa, ∥F̄s∥≤δs.

[(AN−1− (Lr⊗ cBuK̃))−1g(F̄a, F̄s, D̄)]i (3.15)

It is worth noticing that the value mini=2,...,N ℜ(λi) is a global information, in the sense that
each follower has to know the topology of the entire graph G in order to compute it. It follows
that the consensus protocol (3.9) is implemented in a distributed way, but with the need to know
a priori information about the structure of the network. In the following an adaptive distributed
consensus protocol that does not need any information about the eigenvalues of the reduced
Laplacian Lr is presented.

3.1.1 Distributed Adaptive Consensus Protocol Design

In this section, consider the case in which each agent has access to the relative states of its
neighbors with respect to itself (i.e, C = In). Based on the relative states of the neighboring
agents, in [10] the following distributed adaptive consensus protocol with Time-Varying (TV)
coupling weights is proposed:

ui(t) = ci(t)ρi(w̄i(t)T P−1w̄i(t))Kw̄i(t),

ċi(t) = w̄i(t)T
Γw̄i(t), i = 2, . . . ,N

(3.16)

where w̄i(t) := ∑
N
j=1 ai j(xi(t)− x j(t))+∑

N
j=1 ai j( f s

i (t)− f s
j (t)), ci(t) denotes the time-varying

coupling weight associated with the ith follower with ci(0) ≥ 1, P > 0 is a solution to the
LMI (3.16), K ∈ Rnu×n and Γ ∈ Rn×n are the feedback gain matrices to be designed, ρi(·)
are smooth and monotonically increasing functions to be determined later which satisfy the
condition ρi(s)≥ 1 for s > 0, and the rest of variables are defined as in (3.9).
It can be noticed that, since it is imposed that C = In the definition of W is the same as in
Chapter 2 and hence it holds that:

W̄ (t) = (Lr⊗ In)X̄(t)+(Lr⊗ In)F̄s(t) (3.17)
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It easy to see that the condition that ensures consensus, namely Eq. (3.8), is equivalent to impose
that W̄ (t) asymptotically converges to zero (in the scenario in which F̄s(t) = 0).
In light of (3.1) and (3.16) we obtain the dynamics of W̄ (t):

˙̄W (t) = (Lr⊗ In)( ˙̄X(t)+ ˙̄Fs(t))

= (Lr⊗ In)[AN−1X̄(t)+BuN−1Ū(t)+BuN−1F̄a(t)+BdN−1D̄(t)+ ˙̄Fs(t)]
(3.18)

Since u1(t)= 0 this implies that ūi(t)= ui(t)−u1(t)= ui(t), hence if we define Ĉ := diag(c2, . . . ,cN),
ρ̂(W ) := diag(ρ2(w̄2(t)T P−1w̄2(t)), . . . ,ρN(w̄N(t)T P−1w̄N(t))), it is possible to write Ū(t) as:

Ū(t) = Ĉρ̂(W )(IN−1⊗K)W̄ (t) (3.19)

Substituting this expression inside (3.18), we obtain:

˙̄W (t) = (Lr⊗ In)[AN−1X̄(t)+BuN−1(Ĉρ̂(W )(IN−1⊗K)W̄ (t))]

+(Lr⊗ In)[BuN−1F̄a(t)+BdN−1D̄(t)+ ˙̄Fs(t)]

= (Lr⊗ In)[(IN−1⊗A)X̄(t)+(IN−1⊗Bu)(Ĉρ̂(W )⊗1)(IN−1⊗K)W̄ (t))]

+(Lr⊗ In)[BuN−1F̄a(t)+BdN−1D̄(t)+ ˙̄Fs(t)]

= (Lr⊗ In)(IN−1⊗A)X̄(t)+(Lr⊗ In)(Ĉρ̂(W )⊗BuK)W̄ (t)

+(Lr⊗ In)[BuN−1F̄a(t)+BdN−1D̄(t)+ ˙̄Fs(t)]

(3.20)

By definition (3.17), we can write X̄(t) as

X̄(t) = (Lr⊗ In)
−1(W̄ (t)− (Lr⊗ In)F̄s(t)) (3.21)

Using the property of the inverse of the Kronecker product, namely (A⊗B)−1 = (A−1⊗B−1),
we get

X̄(t) = (L−1
r ⊗ In)W̄ (t)− F̄s(t) (3.22)

Notice that it is possible to determine the inverse of Lr since it non singular by definition.
Substituting (3.22) inside (3.20) we obtain

˙̄W (t) = (Lr⊗A)((L−1
r ⊗ In)W̄ (t)− F̄s(t))+(LrĈρ̂(W )⊗BuK)W̄ (t)

+(Lr⊗ In)[BuN−1F̄a(t)+BdN−1D̄(t)]+(Lr⊗ In) ˙̄Fs(t)

= (AN−1 +LrĈρ̂(W )⊗BuK)W̄ (t)

+(Lr⊗ In)[BuN−1F̄a(t)+BdN−1D̄(t)+ ˙̄Fs(t)−AN−1F̄s(t)]

(3.23)

Lemma 3.1.2. [10] There exists a positive diagonal matrix G such that GLr +LrT
r G > 0. One

possible G is given by diag(q2, . . . ,qN), where q = [q2, . . . ,qn]
T = (LT

r )
−11N−1.

Now we are able to state the main theorem that ensures synchronization of the system in the
case in which there is no disturbance or faults.
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Theorem 3.1.3. [10] Suppose that the graph G satisfies Assumption 13. Then the leader fol-

lower consensus problem of the agents in (3.1) is solved by the adaptive protocol in (3.16),
with K =−BT

u P−1, Γ = P−1BuBT
u P−1, and ρi(w̄i(t)T P−1w̄i(t)) = (1+ w̄i(t)T P−1w̄i(t))3, where

P> 0 is a solution to the LMI (3.13). Moreover, each coupling weight ci converges to some finite

steady-state value.

Remark 14. [10] A necessary and sufficient condition for the existence of a solution P > 0 of
the LMI (3.13) is that the pair (A,Bu) is stabilizable. Therefore a sufficient condition for the
existence of an adaptive protocol (3.16) satisfying Theorem 3.1.3 is that (A,B) is stabilizable.

Remark 15. [10] The consensus protocol (3.16) can also be designed by solving the algebraic
Riccati equation: AT Q+QA+ I−QBuBT

u Q = 0. In this case matrix K in (3.16) can be chosen
as K =−BT

u Q, Γ = QBuBT
u Q and ρi = (1+ w̄i(t)Qw̄i(t))3. The solvability of the above Riccati

equation is equivalent to that of LMI (3.13).
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Chapter 4

Simulations

In order to verify and validate the algorithms presented in the previous chapter some simulation
are performed using MATLAB Simulink.

As an example we consider a slightly modified version of the one presented in [1]. Consider
a network of 10 aircraft connected to each other. The simulations are performed taking into
account the case of vertical take off and landing, that is associated, after the linearization in
vertical plane, to a model of the type (3.2) with

x =


horizontal velocity

vertical velocity
pitch rate

pitch angle

 u =

[
combined pitch control

longitudinal cyclic pitch angle control

]
(4.1)

where the longitudinal cyclic pitch input controls horizontal movement of the aircraft, while the
combined pitch input controls the vertical movement. In the case of a standard flight with a 135
knots airspeed, the system matrices are chosen as

A =


−0.0366 0.0271 0.0188 −0.4555
0.0482 1.0100 0.0024 4.0208
0.1002 0.3681 0.7070 1.4200

0 0 1 0

 Bu = Bd =


0.4420 0.1761
3.5446 7.5922
5.5200 4.4900

0 0

 (4.2)

Unlike the example from which it takes inspiration from, the output matrix C is assumed to be
equal to the identity (C = I4).
In this context we simulate both the case in which the communication is undirected and the
case in which is directed. Assume that the connections between the aircraft are described by the
graph G depicted in figure 4.1,
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Figure 4.1: Graph of the system.

the associated adjacency matrix is

AG =



0 1 1 0 0 0 0 0 0 0
1 0 1 0 1 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 1 0 1 0 1 0 0 0 0
0 0 0 0 1 0 1 1 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 1 1
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0



(4.3)

Consequently, the Laplacian associated to the graph is

L =



2 −1 −1 0 0 0 0 0 0 0
−1 3 −1 0 −1 0 0 0 0 0
−1 −1 2 0 0 0 0 0 0 0
0 0 0 1 −1 0 0 0 0 0
0 −1 0 −1 3 −1 0 0 0 0
0 0 0 0 −1 3 −1 −1 0 0
0 0 0 0 0 −1 1 0 0 0
0 0 0 0 0 −1 0 3 −1 −1
0 0 0 0 0 0 0 −1 1 0
0 0 0 0 0 0 0 −1 0 1



(4.4)

In order to ensure synchronization, a controller for the whole system is built following (3.9).
Since the graph is undirected, the Laplacian is symmetric, and hence all the eigenvalue are
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real. Since by Assumption 9 the eigenvalue are ordered, the smallest positive eigenvalue is
λ2 = 0.1792, hence we must impose that

c≥ 1
λ2

(4.5)

in this case we impose c = 10
λ2

= 55.811.
Moreover, solving the LMI 3.13 the following possible solution was found

P =


0.457 0.021 0.401 0.171
0.021 6.681 4.011 −0.540
0.401 4.011 5.051 −0.584
0.171 −0.540 −0.584 0.711

 (4.6)

and the corresponding value of the feedback matrix K is

K =−BT P−1 =

[
0.824 0.283 −1.526 −1.238
0.114 −1.163 −0.088 −0.982

]
(4.7)

In order to perform the FDI, we follow the steps of Algorithm 2. First, we divide the network in
groups of three agents, obtaining four groups, see Fig. 4.2.

Figure 4.2: Four groups obtained from the division of the graph.

Since each group is composed by three nodes, in order to perform the FDI it is necessary
to build only two UIOs. Consider first the case in which the fault of the second node must be
excluded, then the matrices are

B−2
u2

=

[
04×2

Bu

]
B2

u2
=

[
Bu

04×2

]
(4.8)

So, the matrices of the observer are computed, following Eq. (2.47); a particular solution for
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H2 is given by Eq. (1.34)

H2 = B2
u[(C2B2

u)
TC2B2

u]
−1(C2B2

u)
T

= B2
u[(B

2
u)

T Bu]
−1(Bu)

T

=


0.012 −0.038 0.103 0T

5

−0.038 0.998 0.004
...

0.103 0.004 0.989 0T
5

05 . . . 05 05×5


(4.9)

Then it is possible to compute M2 as

M2 = I8−H2I8

=


0.9876 0.0385 −0.1038 0T

5

0.0385 0.0015 −0.0040
...

−0.1038 −0.0040 0.0109 0T
5

05 . . . 05 I5


(4.10)

Then it is necessary to find K2
1 , such that J2 is stable. In order to do this we decided to allocate

all the poles of Ji in −5 and obtain

K2
1 =



4.955 0.027 −0.054 −0.442
−0.002 5.001 −0.002 −0.017
0.005 −0.003 5.005 0.046

0 0 1 5
4.9634 0.027 0.018 −0.455
0.0482 6.010 0.002 4.020
0.1002 0.368 5.707 1.420

0 0 1 5


(4.11)

After that, it was checked that all the poles were on the real negative half of the plane, perform-
ing

J2 = M2A2−K2
1 (4.12)

Finally it is computed

K2
2 = J2H2

=


−0.062 0.192 −0.518 0T

5

0.192 −4.992 −0.020
...

−0.518 −0.020 −4.945 0T
5

05 . . . 05 05×5


(4.13)
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And finally the gain K2 is obtained as

K2 = K2
1 +K2

2

=



4.893 0.219 −0.573 −0.442
0.190 0.008 −0.022 −0.017
−0.514 −0.023 0.06 0.046

0 0 1 5
4.963 0.027 0.018 −0.455
0.048 6.010 0.002 4.020
0.100 0.368 5.707 1.42

0 0 1 5



(4.14)

The same computations, considering B3
u (that in this case corresponds to B−2

u ), are done in order
to obtain the value of the UIO matrices associated to the residual r3

a(t).
In all the simulations, the input reference of the leader is fixed at [1 1].

In the first simulation we assumed that there were no errors in the system and we verified
that there was synchronization among the agents.

Figure 4.3: Time evolution of the output yi(t) of the agents without faults.

From Fig. 4.3, where the time evolution of the leader y1(t) is highlighted in black, it is
possible to notice that there is perfect synchronization among the agents. In order to verify if
the residual generator works properly, we suppose that some of the agents actuators have a fault;
in particular, we suppose that at t = 10s there is a fault at agent 2, at t = 30s there is a fault at
agent 6 and at time t = 50s there is a fault at agent 8. All the three fault signals have unitary
amplitude, namely fi = 1.
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Figure 4.4: Time evolution of the output yi(t) of the agents with presence of actuator faults.

Looking at Fig. 4.4 it is possible to notice that, in the presence of faults, synchronization is
not guaranteed. In fact at the time failures occur, the system starts behaving poorly.

Figure 4.5: Residual generated by the four groups of UIO.

As expected, the residual behavior corresponds to the isolation logic established previously
(2.68), and looking only at Fig.4.5 it is possible to identify which agent is affected by the fault.
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Chapter 5

Conclusions

In this thesis the Fault Detection and Isolation (FDI) of linear homogeneous Multi Agent Sys-
tem (MAS) was taken into account and performed through Unknown Input Observer (UIO)s.
In the first chapter a brief introduction to MAS and to the different approaches (centralized,
flooding and distributed) used to solve the problem of consensus was proposed. In addition,
an overview of the different consensus problems that can be found in the literature has been
given. After establishing a general model for linear, continuous time, time invariant, homoge-
neous agents some approaches to the modelling of a fault found in literature were discussed and
finally a model that represents both the faults in the actuator and in the sensor of the agents is
presented.
Since the aim of this thesis is the FDI performed through UIO, the theory behind this kind of
technique was discussed and the choice of the threshold was also discussed.
In the second chapter, the main one, under the assumption that only one agent can be affected
by a fault, a technique to detect the fault in the actuator that makes use of more than N-1 UIOs
(where N refers to the size of the network) was presented. A distributed approach, which sig-
nificantly reduces the size of the UIO used, was also presented.
For what concerns the FDI for the sensor faults, the previous approach was implemented and it
was shown that, since we are dealing with homogeneous agents, it is not possible to perform the
isolation. Despite this, again using a UIO, it was shown that at least the Fault Detection (FD)
was possible, and the computation of a particular case in which N = 3 was done. It was shown
that the isolation of all the agents is possible in the case in which the graph has all the connec-
tions, and this result was extended also to general MASs with N agents. For what concerns the
other cases in which 3 agents are connected only with two edges it was shown that the isolation
is possible only for the agent that shares both edges.

In the third chapter, a leader follower synchronization technique was presented; first in a
distributed way that requires a priori information on the structure of the graph and then through
an adaptive distributed approach that no longer needs this information.
Finally some simulations were performed to verify the results about synchronization and dis-
tributed FDI in the case in which an agent actuator is faulty.
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Appendix A

Some useful definitions and theorems

Lemma A.0.1. [1] The column rank of a matrix
[

V R
Z 0
]

is full if R and Z are full column rank,

where V , R and Z are of appropriate dimension.

Proof. Assume that V ∈Rp×p, R∈Rp×q, Z ∈Rn×p. Let V = (v1,v2, . . . ,vp), R= (r1,r2, . . . ,rq),
and Z = (z1,z2, . . . ,zp).
To verify matrix

[
V R
Z 0
]

is full column rank, consider

α1

[
v1

z1

]
+α2

[
v2

z2

]
+ · · ·+αp

[
vp

zp

]
+β1

[
r1

0

]
+β2

[
r2

0

]
+ · · ·+βq

[
rq

0

]
= 0 (A.1)

where αi and β j are coefficients with i = 1, . . . , p and j = 1, . . . ,q. We need to show that all αi

and β j are equal to zero. From (A.1), it is clearly that α1z1 +α2z2 + · · ·+αpzp = 0 and since Z

has full column rank, those columns are linearly independent, and hence α1 = α2 = · · ·= αp =

0. Hence, β1r1 +β2 + r2 + · · ·+βqrq = 0. As the columns of R are also linearly independent,
we have β1 = β2 = · · ·= βq = 0. Therefore, all αi and β j are equal to zero. This proves that the
columns of matrix

[
V R
Z 0
]

are linearly independent, and hence the matrix has full column rank.
■

Theorem A.0.2 (PBH Criterion). [6] Let Σ = (A,B,C) be an n-dimensional, either continuous-

time or discrete-time, system. Then Σ is reachable if and only if the matrix [A−sIn B ] is of full

row rank for all s ∈ C. If the system is not reachable, the rank of the matrix [A−sIn B ] evaluated

at s is less than n if and only if s is an eigenvalue of the non-reachable subsystem of Σ.

Definition A.0.1 (Stabilizable pair). A system whose non-controllable subsystem is asymptot-
ically stable is called stabilisable.

Definition A.0.2 (Detectable pair). [6] A system whose non-observable subsystem is asymp-
totically stable is called detectable.
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Appendix B

MATLAB and SIMULINK

B.1 MATLAB Code

Matlab code used for the initialization of the parameter and the computation of the matrices for
the UIO for the simulation.

1 clear all

2 close all

3 clc

4
5 %% simulation

6 satH=50;

7 satL=-50;

8 N=10; %Number of agents

9
10 A=[-0.0366 0.0271 0.0188 -0.4555;

11 0.0482 1.0100 0.0024 4.0208;

12 0.1002 0.3681 0.7070 1.4200;

13 0.0000 0.0000 1.000 0.0000 ];

14
15 B=[ 0.4420 0.1761;

16 3.5446 7.5922;

17 5.5200 4.4900;

18 0.0000 0.0000 ];

19
20 Bu=B; % Input matrix

21 Bf=B; % Actuator fault matrix

22
23 C = eye(4);

24
25 D=zeros(4,2);
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26
27 Ref=[1;1];

28
29 %% check for controllability

30 Co = ctrb(A,B);

31 Contr = length(A) - rank(Co);

32
33 Co = ctrb(A',C');

34 Detect = length(A') - rank(Co);

35
36 %% Pole placement for stability of i=1

37 p=[-6.83 -1.01+1.51j -1.01-1.51j -2.55];

38 K1=place(A,B,p);

39
40 %% Graph

41 Adj=[0 1 1 0 0 0 0 0 0 0;

42 1 0 1 0 1 0 0 0 0 0;

43 1 1 0 0 0 0 0 0 0 0;

44 0 0 0 0 1 0 0 0 0 0;

45 0 1 0 1 0 1 0 0 0 0;

46 0 0 0 0 1 0 1 1 0 0;

47 0 0 0 0 0 1 0 0 0 0;

48 0 0 0 0 0 1 0 0 1 1;

49 0 0 0 0 0 0 0 1 0 0;

50 0 0 0 0 0 0 0 1 0 0]; %undirected graph

51
52 Adj=[ 0 1 0 0 0 0 0 0 0 0

53 0 0 1 0 1 0 0 0 0 0

54 1 0 0 0 0 0 0 0 0 0

55 0 0 0 0 0 0 0 0 0 0

56 0 1 0 1 0 1 0 0 0 0

57 0 0 0 0 0 0 1 1 0 0

58 0 0 0 0 0 0 0 0 0 0

59 0 0 0 0 0 1 0 0 1 1

60 0 0 0 0 0 0 0 0 0 0

61 0 0 0 0 0 0 0 0 0 0 ]'; %digraph

62
63 Ts=[ 1, zeros(1,2);

64 -ones(3-1,1), eye(3-1,3-1)]; % Transformation matrix

65
66 Diag=diag(Adj*(ones(N,1)));
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67 L=Diag-Adj; %Laplacian

68 eigL=sort(real(eig(L))); %eigenvalue of the laplacian, ordered

69
70 %% Set the initial condition

71 ic1=0*rand(1,4);

72 ic2=0*rand(1,4);

73 ic3=0*rand(1,4);

74 ic4=0*rand(1,4);

75 ic5=0*rand(1,4);

76 ic6=0*rand(1,4);

77 ic7=0*rand(1,4);

78 ic8=0*rand(1,4);

79 ic9=0*rand(1,4);

80 ic10=0*rand(1,4);

81
82 %% Computation of the controller for the synchronization

83 c_min=10/eigL(2); % Common coupling weight

84
85 G = -B*B';

86 Q = C'*C;

87 P = icare(A,[],Q,[],[],[],G);

88 K=-B'*P; % Controller

89 Gam=P*B*B'*P;

90 K_n=c_min*kron(eye(N),K); % Controller for the whole system

91
92 %% UIO Computation actuator fault, distributed way

93
94 % Computation for i=2

95 A_2=kron(eye(2),A);

96 Bu_2=kron(eye(2), Bu);

97 Bu_minus2=[Bu*0;Bu];

98 Bu_plus2=[Bu;Bu*0];

99 H_2=Bu_plus2*inv(Bu_plus2'*Bu_plus2)*Bu_plus2';

100 M_2=eye(length(H_2))-H_2;

101 p_2=-5*ones(length(M_2*A_2),1);

102 K_1_2=place(M_2*A_2, eye(length(M_2*A_2)), p_2);

103 J_2=M_2*A_2-K_1_2;

104 K_2_2=J_2*H_2;

105 K_2=K_1_2+K_2_2;

106
107 % Computation for i=3
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108 A_2=kron(eye(2),A);

109 Bu_minus3=[Bu;Bu*0];

110 Bu_plus3=[Bu*0;Bu];

111 H_3=Bu_plus3*inv(Bu_plus3'*Bu_plus3)*Bu_plus3';

112 M_3=eye(length(H_3))-H_3;

113 p_3=-5*ones(length(M_3*A_2),1);

114 K_1_3=place(M_3*A_2, eye(length(M_3*A_2)), p_3);

115 J_3=M_3*A_2-K_1_3;

116 K_2_3=J_3*H_3;

117 K_3=K_1_3+K_2_3;

118
119 %% Fault signals

120 %Agent 1

121 Fa1=1;

122 Fat1=10;

123
124 %Agent 2

125 Fa2=0;

126 Fat2=0;

127
128 %Agent 3

129 Fa3=0;

130 Fat3=0;

131
132 %Agent 4

133 Fa4=0;

134 Fat4=0;

135
136 %Agent 5

137 Fa5=0;

138 Fat5=0;

139
140 %Agent 6

141 Fa6=2;

142 Fat6=30;

143
144 %Agent 7

145 Fa7=0;

146 Fat7=0;

147
148 %Agent 8
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149 Fa8=3;

150 Fat8=50;

151
152 %Agent 9

153 Fa9=0;

154 Fat9=0;

155
156 %Agent 10

157 Fa10=0;

158 Fat10=0;

In the following the MATLAB code used for the plot of the graphs.

1 close all

2 clc

3
4 t=out.tout;

5 %% Plot Graph

6 % Whole graph

7 figure

8 plot(digraph(Adj)) % Plot the graph

9 title('Graph of the MAS system')

10
11 %% Plot f the relativa information W

12 W_t=out.W_t;

13 W_t_1=W_t*kron(eye(N),[1; 0; 0; 0]);

14 W_t_2=W_t*kron(eye(N),[0; 1; 0; 0]);

15 W_t_3=W_t*kron(eye(N),[0; 0; 1; 0]);

16 W_t_4=W_t*kron(eye(N),[0; 0; 0; 1]);

17
18 % Whole graph

19 figure

20 plot(t,W_t)

21 grid on

22 grid minor

23 xlabel("t [s]")

24 ylabel("W")

25 title('Relative information of the MAS')

26
27 figure

28 subplot(2,2,1)

29 plot(t,W_t_1)
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30 title('Relative information W_1 of the MAS')

31 grid on

32 grid minor

33 xlabel("t [s]")

34 ylabel("W_1")

35
36 subplot(2,2,2)

37 plot(t,W_t_2)

38 title('Relative information W_2 of the MAS')

39 grid on

40 grid minor

41 xlabel("t [s]")

42 ylabel("W_2")

43
44 subplot(2,2,3)

45 plot(t,W_t_3)

46 title('Relative information W_3 of the MAS')

47 grid on

48 grid minor

49 xlabel("t [s]")

50 ylabel("W_3")

51
52 subplot(2,2,4)

53 plot(t,W_t_4)

54 title('Relative information W_4 of the MAS')

55 grid on

56 grid minor

57 xlabel("t [s]")

58 ylabel("W_4")

59
60 sgtitle('Relative information of the MAS')

61
62 %% Plot of the output Y

63 y_t=out.y_t;

64 y_t_1=y_t*kron(eye(N),[1; 0; 0; 0]);

65 y_t_2=y_t*kron(eye(N),[0; 1; 0; 0]);

66 y_t_3=y_t*kron(eye(N),[0; 0; 1; 0]);

67 y_t_4=y_t*kron(eye(N),[0; 0; 0; 1]);

68
69 % Whole graph

70 figure
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71 plot(t,y_t(:,[1:4]),'k', 'LineWidth',2.5)

72 hold on

73 plot(t,y_t(:,[5:40]))

74 L=legend('y_{1_1}','y_{1_2}','y_{1_3}','y_{1_4}')

75 L.AutoUpdate = 'off'

76 L.NumColumns = 2

77 legend('Location','best')

78 grid on

79 grid minor

80 xlabel("t [s]")

81 ylabel("y")

82 title('Outputs of the MAS')

83
84 % Graph divided by state

85 figure

86 subplot(2,2,1)

87 plot(t,y_t_1(:,1),'k', 'LineWidth',1.5)

88 hold on

89 plot(t,y_t_1(:,[2:10]))

90 title('Output 1 of the MAS')

91 L=legend('y_{1_1}')

92 L.AutoUpdate = 'off'

93 L.NumColumns = 1

94 legend('Location','best')

95 grid on

96 grid minor

97 legend

98 xlabel("t [s]")

99 ylabel("y_1")

100
101 subplot(2,2,2)

102 plot(t,y_t_2(:,1),'k', 'LineWidth',1.5)

103 hold on

104 plot(t,y_t_2(:,[2:10]))

105 title('Output 2 of the MAS')

106 L=legend('y_{1_2}')

107 L.AutoUpdate = 'off'

108 L.NumColumns = 1

109 legend('Location','best')

110 grid on

111 grid minor
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112 xlabel("t [s]")

113 ylabel("y_2")

114
115 subplot(2,2,3)

116 plot(t,y_t_3(:,1),'k', 'LineWidth',1.5)

117 hold on

118 hold on

119 plot(t,y_t_3(:,[2:10]))

120 title('Output 3 of the MAS')

121 L=legend('y_{1_3}')

122 L.AutoUpdate = 'off'

123 L.NumColumns = 1

124 legend('Location','best')

125 grid on

126 grid minor

127 xlabel("t [s]")

128 ylabel("y_3")

129
130 subplot(2,2,4)

131 plot(t,y_t_4(:,1),'k', 'LineWidth',1.5)

132 hold on

133 plot(t,y_t_4(:,[2:10]))

134 title('Output 4 of the MAS')

135 L=legend('y_{1_4}')

136 L.AutoUpdate = 'off'

137 L.NumColumns = 1

138 legend('Location','best')

139 grid on

140 grid minor

141 xlabel("t [s]")

142 ylabel("y_4")

143
144 sgtitle('Output of the MAS')

145
146 %% Actuator residual plot

147 Ra1=out.Ra1;

148 Ra2=out.Ra2;

149 Ra3=out.Ra3;

150 Ra4=out.Ra4;

151 ThrA=0.5*ones(1,length(t));

152
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153 figure

154 subplot(2,2,1)

155 plot(t,Ra1,'LineWidth',2.5)

156 hold on

157 plot(t,ThrA,'k--')

158 title('Residual signal r_a of group 1')

159 grid on

160 grid minor

161 legend('||r^a_2(t)||','||r^a_3(t)||','\tau_a')

162 xlabel("t [s]")

163 ylabel("||r_i(t)||")

164
165 subplot(2,2,2)

166 plot(t,Ra2,'LineWidth',2.5)

167 hold on

168 plot(t,ThrA,'k--')

169 title('Residual signal r_a of group 2')

170 grid on

171 grid minor

172 legend('||r^a_5(t)||','||r^a_6(t)||','\tau_a')

173 xlabel("t [s]")

174 ylabel("||r_i(t)||")

175
176 subplot(2,2,3)

177 plot(t,Ra3,'LineWidth',2.5)

178 hold on

179 plot(t,ThrA,'k--')

180 title('Residual signal r_a of group 3')

181 grid on

182 grid minor

183 legend('||r^a_6(t)||','||r^a_7(t)||','\tau_a')

184 xlabel("t [s]")

185 ylabel("||r_i(t)||")

186
187 subplot(2,2,4)

188 plot(t,Ra4,'LineWidth',2.5)

189 hold on

190 plot(t,ThrA,'k--')

191 title('Residual signal r_a of group 4')

192 grid on

193 grid minor

X



194 legend('||r_9^a(t)||','||r^a_{10}(t)||','\tau_a')

195 xlabel("t [s]")

196 ylabel("||r_i(t)||")

197 sgtitle('Residual signal r_a')

B.2 SIMULINK Scheme

In the following are depicted the various component of the SIMULINK scheme used for the
simulation.

Figure B.1: Group of Multi Agent System (MAS).

Figure B.2: Generic agent of the MAS.
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Figure B.3: Leader of the MAS.

Figure B.4: Group of residual generator.
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Figure B.5: Residual generator.
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