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Introduction

This thesis focuses on estimating the behaviour of a stock market, specifically
the Italian one between June 1973 and April 1998, starting from empirical
data. To achieve this, we employ a model inspired by quantum physics,
known as the Ehrenfest-Brillouin model, which was developed by Paul and
Tatiana Ehrenfest and later enhanced by Leon Brillouin. The original Ehren-
fest urn model was developed in 1907 and, in 1927, Brillouin further enriched
it by introducing Polya distributions. Then, in 1996, in his book titled “New
Approaches to Macroeconomic Modeling”, physicist Masanao Aoki was the
first one to approach the study of macroscopic variations in physical systems
from an economic standpoint. He explored how the collective behaviour of
interacting microeconomic entities could explain the macroscopic properties.
Intriguingly, when certain variables are assigned specific values, the formulas
used to model stock price dynamics demonstrate a remarkable resemblance
to three important distributions observed in quantum physics. So we decide
to use the Ehrenfest-Brillouin model because is a way to analyze the equi-
librium distribution of the agents in the market, hence how the behaviour of
the single agents can impact the behaviour of the market.

Chapter 1: Markov chains are introduced because the entities mentioned
above (for example, in economics, we have agents, firms, and so on) change
their state ruled by Markov-chain probabilistic dynamics. They also follow
a Destruction-Creation process, where the first part, the destruction part, is
called the “Ehrenfest term” and the creation one the “Brillouin term”, the
basis of the Ehrenfest-Brillouin model. Markovian dynamics are character-
ized by the property that the future state of the system depends solely on
its current state, independent of its history, called the “lack of memory”. In
this thesis, Markov chains are useful to:

1. Describe the behaviour of systems that evolve over time.

2. Calculate the transition probability to a future state.

The concepts of Markov chains will then be applied to a practical example,
namely 7 dice being rolled. This will be a valuable example to introduce the
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notations, but also to better understand the concept of destruction-creation,
which is fundamental for understanding the Ehrenfest-Brillouin model. In
Section 1.2, some properties of these chains will be explained furthermore.
In particular, we focus on the finite Markov chain.

Chapter 2: We introduce the Polya distribution. The Polya distribution,
also known as the Polya-Eggenberger distribution, is a probability distribu-
tion that describes the number of occurrences of different categories in a se-
quence of independent trials. It is useful mostly because the equilibrium dis-
tribution in the stock price dynamics (Chapter 3) is the 3-dimensional Polya.
Then, the concept introduced in the previous chapter on the Destruction-
Creation process is revisited and further explored. Specifically, the study of
destruction and creation in a general case, such as in a Polya urn, is un-
dertaken to establish a foundation of formulas and concepts for the rate of
convergence.

Chapter 3: In this final chapter, we apply the mathematical knowledge
covered in the previous chapters to the stock price dynamics in the Italian
stock exchange between June 1973 and April 1998. Initially, the background
in which the model will be applied is explained, demonstrating the final
necessary formulas. In Section 3.1 all the previously introduced mathematical
background is applied to the analysis of data from the Italian stock exchange.
The goal is to estimate the number of active agents in the market (using the
transition probabilities of a Markov chain), market intensity, and the rate of
convergence to equilibrium.



Chapter 1

Markov chains

In this chapter, we introduce the definition of a Markov chain and how it can
be essential in the Ehrenfest-Brillouin model.
This first chapter is based on [1], and the introduction of the terms of de-
struction and creation is from [4]

1.1 Basics on Markov chains

Consider, i.e. in economics, n elements (agents) in g categories (strategies).
The state of the system is described by the equalities X1 = x1, ..., Xn = xn,
where xi denotes the category to which the ith elements belongs, or by the
vector shortcut X(n) = x(n).

Definition 1.1. We can now define a new vector Y(n), that tells us the
number of elements in each category and is written as:

Y(n) = n = (n1, ., ni, .., ng), ni ≥ 0,

g∑
i=1

ni = n (1.1)

and, of course, we must have the sum of every element in Y (n) is n, be-
cause we have defined Y(n) as the vector of the individual description of the
numerousness of each category.

Assume that, during a time interval, the ith element passes from the jth
category to the kth category. How can we describe this movement? For
starters, we think as the ith element abandons the jth population and returns
after a 1-time interval to the kth population.
In Figure 1.1 we have the grey ball, initially in the first category, being
moved to the fourth category. The initial occupation vector, in step one, is

7
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Figure 1.1: Visual representation of a destruction-creation process, from the book [1]. We have the grey
ball, initially in the first category, being moved to the fourth category. In the initial occupation, we have
2 balls in the first box, 1 in the second and 0 in the others (we have 3 balls in the boxes). In the second
step, we removed the grey ball (note that in this second step, we only have 2 balls in the boxes). Then,
in the last step, we put the ball in the 4th box.

n = (2, 1, 0, 0) because we have 2 balls in the first box, 1 in the second and 0
in the others (in the general case we have n balls in the boxes). In the second
step, the occupation vector is n1 = (1, 1, 0, 0), because we removed the grey
ball (note that in this second step, we only have 2 (n− 1 in the general case)
balls in the boxes). Then, in the last step, n4

1 = (1, 1, 0, 1) because we put
the ball on the 4th box. The notation on the vector n is the following:

• if the occupation vector is n the sum of the ni must be n

• if it is nj the sum of the ni must be n − 1 because we removed one
elements from the jth category (called “the subscript”)

• if it is nk
j the sum of the ni, must be n because we removed one element

from the jth category (“the subscript”) and we put it in the kth cat-
egory (“the superscript”), thus we have the same number of elements
as in the first step

If we want to see specifically the occupation vector in a general case:

1. STEP 1: Y
(n)
0 = n = (n1, .., nj, .., nk, .., ng)

2. STEP 2: Y(n−1) = nj = (n1, .., nj − 1, .., nk, .., ng)

3. STEP 3: Y
(n)
1 = nk

j = (n1, .., nj − 1, .., nk + 1, .., ng)
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This change of state could be viewed as the two-component transition:

• the destruction of the object on the j th category in the initial state n
(called the “Ehrenfest’s term”), resulting in the state vector nj as seen
in the second step, which happens with probability

P(nj|n) =
nj

n

• the creation of the object in the kth category given the new state vector
nj, resulting in the final state vector nk

j , with probability

P(nk
j |nj) =

αk + nk − δk,j
α + n+ 1

where α = (α1, ..., αg) and α =
∑g

i=1 αi is the vector of parameters and
δk,i is the usual Kronecker’s delta symbol, taking value 1 when k = j
and zero otherwise. The meaning of αi’s is tied to the probability of
an accommodation to the ith cell, if empty.

Remark 1.1. We have the following 2 properties:

1. The destruction probability is proportional to nj

2. The creation probability is proportional to αk + nk − δk,j, where αk is
the initial weight of the category and nk − δk,j is its current occupation
number after destruction

Definition 1.2. If each change from Ys to Ys+1 is probabilistic, and the
transition probability only depends on the state Ys and not on the full history
Ys−1,Ys−2, ...,Y0, the probabilistic dynamics is said to be a Markov chain,
whose transition probability is a matrix of elements

P(Ys+1 = n‘|Yt = n) = ω(n,n‘) (1.2)

with n,n‘ ∈ Sn
g .

Definition 1.3. If the elements of the matrix ω(n,n‘) do not depend on time
t, the Markov chain is called homogeneus.

Definition 1.4. A stochastic process is a family of random variables

{Xi ∈ S, i ∈ I}

where S is called “state space” and I is the “set of indices”. Xt denotes the
system’s state at the discrete time t.
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Definition 1.5. A family of random variables {Xi ∈ S, i ∈ I}, where S is
discrete and finite, and I is a subset of non-negative integers is called a finite
Markov chain if:

P(X0 =x0, X1 = x1, ..., Xs = xs) =

=P(X0 = x0)P(X1 = x1|X0 = x0) · · ·P(Xs = xs|Xs−1 = xs−1) (1.3)

∀x0, ..., xs ∈ S

1.1.1 A Markov chain for the seven dice

This subsection shows an example of a Markov chain for the seven dice. That
can be very helpful for introducing the new notation and strengthening the
concept of a Markov chain as I showed previously. This example is based on
File [1].
Consider seven dice showing on the sequence

X
(7)
0 = (2, 6, 2, 1, 1, 5, 4)

Then, using the Definition (1.1) of the vector of individual description, we

obtain Y
(7)
0 = (2, 2, 0, 1, 1, 1). The first vector X

(7)
0 tells us which number

is on every dice, the second vector Y
(7)
0 tells us the number of dices that

shows the ith number. Assume now that, at each time step, a die is chosen
at random. Then the die is cast, and the probability of any result is 1

6
. Let

Y
(7)
0 = (2, 2, 0, 1, 1, 1) = n. The probability of a die being chosen in the ith

category is ni

n
(using the notation introduced in Eq.(1.1)). The probability

to get to the intermediate state

Y(6) = (2, 1, 0, 1, 1, 1) = n2 = (n1, n2 − 1, ..., n6)

is 2
7
, because we had 2 dice with the number 2. Casting this die, the proba-

bility of obtaining 1 is 1
6
. Then

P
(
Y

(7)
1 = (3, 1, 0, 1, 1, 1)|Y(7)

0 = (2, 2, 0, 1, 1, 1)
)
=

2

7
· 1
6
=

1

21
(1.4)

In general, we can compute the transition probabilities

P
(
Yt+1 = nj

i |Yt = n
)
=

ni

n
· 1
6

j ̸= i (1.5)

where nj
i = (n1, ..., ni− 1, ..., nj +1, ..., n6) because n=6 hence we are talking

about the dice. If j ̸= i, a true change takes place, and this can occur in
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only one way: selecting a die displaying an i then, after casting it, it displays
a j. But the die could display the same number as before the casting. In
this last case n‘ = n, and this can occur in 6 alternative ways, each of them
through a different destruction ni, with i = 1, ..., 6. So now the Eq. (1.5)
can be rewritten in the following 2 different cases:

• j ̸= i:

then P
(
Yt+1 = nj

i |Yt = n
)
= P(ni|n)P(nj

i |ni) where P(ni|n) = ni

n
is

the destruction term, transforming a vector Y(n) of size n into a vec-
tor Y(n−1), and P(nj

i |ni) is the creation term that transforms a vector
Y(n−1) of size n− 1 into a vector Y(n) of size n.

• j = i:

that’s the probability of no change, so

P
(
Yt+1 = n|Yt = n

)
=

6∑
i=1

ni

n
· 1
6
=

1

6
(1.6)

In this case, all possible sequences of states are those sequences of consecutive
occupation numbers differing by no more than 2:

|n′ − n| =
g∑

i=1

|n′
i − ni| ∈ {0, 2} (1.7)

Therefore the difference is 0 if j = i, so no change, whereas is 2 if j ̸= i.
Given the initial state Y(0), every other possible sequence Y(1), ...,Y(t)|Y(0)

has probability:

P
(
Y1 = y1|Y0 = y0

)
P
(
Y2 = y2|Y1 = y1

)
· · ·P

(
Yt = yt|Yt−1 = yt−1

)
where, if |yt−yt−1| = 2 we use the Eq.(1.5), while if |yt−yt−1| = 0 we are in
a special case, so we use the Eq.(1.6), so the probability of every event can
be determined.
The most relevant objects are the probabilities P

(
Yt = n′|Y0 = n

)
where t is

very large, whose meaning is the probability of the states that can be observed
after many moves. The expression P

(
Yt = n′|Y0 = n

)
can also be calculated

by adding the probabilities of all sequences Y1, ...,Yt−1, connecting Y0 = n
to Yt = n′. After a number of trials bigger enough than the number of the
dice, all dice will be selected at least one time, so the initial state (Y0 = n)
will be cancelled. So it can be defined as a “new” initial state, in this case,
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the state at time t − 1, so that the number of casting is now irrelevant. So
P
(
Yt = n′|Y0 = n

)
does not depend by the initial state Y0 = n, and

lim
t→∞

P
(
Yt = n′|Y0 = n

)
= π(n′) (1.8)

is the multinomial distribution which describes the casting of 7 fair dice.
So the Markov chain reaches its equilibrium distribution π(n′). Another
interesting statistical propriety is the fraction of the time in which the sys-
tem visits any given state as time goes by. Given, for example, the state
y = (6, 0, 0, 0, 0, 0), such the state where all the dice display a 1, its visiting
fraction is the ratio between the number of times the state y appears and
the total number of trials. If t→∞, with t fixed, the fraction of visiting any
state converges to π(n). This property is called ergodicity.

1.2 Finite Markov chains

In this section, dedicated to finite Markov chains, we present several proper-
ties of Markov chains that will prove valuable in the upcoming chapters.

1. Recalling the definition of a Markov chain, written in the Definition
(1.5), is useful to stress that the typical Markovian property is that the
predictive probability

P(Xs = xs|Xs−1 = xs−1, ..., X1 = x1, X0 = x0)

simplifies to

P(Xs = xs|Xs−1 = xs−1, ..., X1 = x1, X0 = x0) = P(Xs = xs|Xs−1 = xs−1)

This means that the probability of a new (next) state depends on only
the actual state and not on the history.

2. The following definition is given:

Definition 1.6. An homogeneous Markov chain is a Markov chain
where P(Xs = j|Xs−1 = i) depends only on i, j and not on s.

The notation is now

P(Xs = j|Xs−1 = i) = w(i, j)

The set of numbers {w(i, j)} where i, j ∈ {1, ...,m}, and m = #S, can
be represented as a square matrix

W = {w(i, j)}i,j=1,...,m
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called the transition matrix. Each row of the matrix represents the
probability of reaching the state j = 1, 2, ...,m starting from the same
state i. So P(Xs = j|Xs−1 = i) = w(i, j) is non-negative and, for any
i,
∑m

j=1w(i, j) = 1, hence W, on the rows, is a stochastic matrix.

3. The probability of reaching state j from state i in r steps is:

w(r)(i, j) = P(Xr = j|X0 = i)

From the “total probability theorem”, all the possible states between
0 and r are considered, so in conclusion:

w(r)(i, j) =
m∑
k=1

w(i, k)w(r−1)(k, j) (1.9)

which is a particular instance of the Chapman - Kolmogorov equation.
From Eq.(1.9), using the formula of matrix multiplication:

W(r) ∗
= W×W(r−1) = W×W×W(r−2) = ... = W×W× · · · ×W︸ ︷︷ ︸

r times

= Wr

where the first equation (*) has been iterated r−2 times. So, the r-step
transition probabilities w(r)(i, j) are the entries of W(r), or equivalently
Wr, the rth power of the transition probability matrix W.

4. Consider the probability that the chain state is j after r steps: con-
ditioned to the initial state i, w(r)(i, j) = P(Xr = j|X0 = i) . If the

initial condition is probabilistic and P
(0)
i = P(X0 = i) as a consequence

of the total probability theorem, it follows:

P
(r)
j = P(Xr = j) =

m∑
k=1

P
(0)
k w(r)(k, j) (1.10)

From matrix theory, Eq.(1.10) is seen as the formula for the mul-
tiplication of a row vector with m components by an m × m ma-
trix. In other words, if P(r) = (P

(r)
1 , ..., P

(r)
m ) represents the equations

P(Xr = 1), ...,P(Xr = m)

then one can write
P(r) = P(0) ×Wr

The simplest case of the Eq.(1.10) is called the Markov equation and
is:

P
(r+1)
j =

m∑
k=1

P
(r)
k w(k, j) (1.11)
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where is written, in the matrix form as:

P(r+1) = P(r) ×W



Chapter 2

Polya distributions and the
Ehrenfest-Brillouin model

In this chapter, we are going to study the Ehrenfest-Brillouin model, such as
the generalization of random “destruction” followed by “creations”, whose
probability is no longer uniform over all the categories. Then we introduce
the Polya process, which is useful in Chapter 3. This second chapter is based
on [1].

2.1 Polya distributions

Definition 2.1. The sequence X1, X2, . . . , Xn with Xi ∈ {1, . . . , g} is a
generized Polya process if the predictive probability of the process is given
by

P(Xm+1 = j|X1 = x1, ..., xm = xm) =
αj +mj

α +m
(2.1)

where

• mj = #{Xi = j, i = 1, ...,m} is the number of occurrences of the jth
category in the evidence (X1 = x1, ..., xm = xm)

• m is the number of observations or trials

As in the usual Polya process:

• αj is a positive integer, representing the number of balls of type (colour)
in the auxiliary Polya urn.

• α is the total number of balls in the urn (or the total weight of the urn
if α ∈ R), so α =

∑g
j=1 αj

15
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Remark 2.1. If αj is positive and real (not an integer), it can be interpreted
as the initial weight of the jth category

Defining pj :=
αj

α
, the Eq.(2.1) can be simply rewritten as:

P(Xm+1 = j|X1 = x1, ..., xm = xm) =
αpj +mj

α +m

=
α

α +m
pj +

m

α +m

mj

m
(2.2)

where pj has an interpretation as the initial probability for the jth category,
so

pj =
αj

α
= P(X1 = j) (2.3)

Considering an infinite number of balls in the urn, such as α → ∞, the
Eq.(2.2) becomes:

lim
α→∞

(
α

α +m
pj +

m

α +m

mj

m

)
= pj (2.4)

so P(Xm+1 = j|X1 = x1, ..., xm = xm)
α→∞
= pj leading to the independent

and identically distributed (i.i.d) multinomial distribution. The generalised
Polya process’s distribution converges to the multinomial process’s distri-
bution where the parameter α tends to infinity (α diverges). When αj is
negative, if |αj| ∈ N (is an integer) and mj ≤ |αj| = |α|pj, the Eq.(2.1) still
represents a probability and can be rewritten as:

P(Xm+1 = j|X1 = x1, ..., xm = xm) =
|α|pj −m

|α| −m
(2.5)

but here the number of observations is limited by |α|, and leads to the hy-
pergeometric distribution, and it is proven in the subsection below.

In the upcoming pages, we will show the process of transitioning from
Eq.(2.5) to the hypergeometric distribution. Let’s start by having an urn with
given composition n = (n1, ..., ng), with the state space {1, ..., g}, where g
denotes different colours present in the urn. Consider a sequence of individual
random variables X1, ..., Xn whose range is the label set {1, ..., g} with the
following predictive probability, as seen in Eq. (2.5):

Pn(Xm+1 = j|X1 = x1, ..., Xm = xm) = Pn(Xm+1 = j|m) =
nj −mj

n−m
(2.6)

With the constraint
∑g

i−=1mi = m, where m ≤ n are the drawn balls, where
the balls mi are of the colour i, (The first m1 is of colour 1, the following m2
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of colour 2, and so on) the probability of the fundamental sequence

X
(m)
f =(X1 = 1, ..., Xm1 = 1, Xm1+1 = 2, ...,

Xm1+m2 = 2, ..., Xm−mg+1 = g, ..., Xm = g) (2.7)

can be find thanks to Eq.(2.6). By iterating Eq. (2.7), we obtain:

Pn(X
(m)
f ) =

n1

n

n1 − 1

n− 1
· · · n1 −m1 − 1

n−m1 − 1
(2.8)

× n2

n−m1

n2 − 1

n−m1 − 1
· · · n2 −m2 − 1

n−m1 −m− 2− 1

× ng

n−m+mg

ng − 1

n−m+mg − 1
· · · ng −mg − 1

n−m− 1

Proposition 2.1. In a more compact form, Eq.(2.8) becomes:

Pn(X
(m)
f ) =

(n−m)!

n!

g∏
i=1

ni!

(ni −mi)!
(2.9)

Proof. Multiplying all the denominators in the Eq.(2.8):

1

n
· 1

n− 1
· · · 1

n−m1 − 1
· · · 1

n−m− 1
=

(n−m)!

n!
(2.10)

In the same way, multiplying the numerators with m1 in the Eq.(2.8):

n1 · (n1 − 1) · · · (n1 −m1 − 1) =
n1!

(n1 −m1)!
(2.11)

Similarly, for the numerators with m2:

n2 · (n2 − 1) · · · (n2 −m2 − 1) =
n2!

(n2 −m2)!
(2.12)

So, by multiplying all the numerators we obtain:

g∏
i=1

ni!

(ni −mi)!
(2.13)

And the formula (2.9) is proven.

The probability in Eq.(2.9) is the same for any individual sequence with
the sampling vector m, and the number of these sequences is given by the
multinomial factor. Therefore:

Pn(m) =
m!∏g

i=1mi!
· Pn(X

(m)
f ) (2.14)
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leading to the hypergeometric distribution

Pn(m) =
m!∏g

i=1mi!

(n−m)!

n!

g∏
i=1

ni!

(ni −mi)!

=
m!(n−m)!

n!

g∏
i=1

ni!

mi!(ni −mi)!

=

∏g
i=1

(
ni

mi

)(
n
m

) (2.15)

The hypergeometric process explained is the simplest case of an n-exchangeable
process.

Proposition 2.2. Using Eq.(2.1), we can find a similarity between Eq.(2.15)
and the formula of the distribution of a Polya process, that is

P(m) = Polya(m;α) =
m!∏g

i=1mi!
·
∏g

i=1 α
[mi]
i

α[m]
=

m!

α[m]
·

g∏
i=1

α
[mi]
i

mi!
(2.16)

Proof. Let’s consider the fundamental sequence X
(m)
f = (1, ..., 1, ..., g, ..., g)

consisting of m1 labels 1 followed by m2 labels 2 and so on, ending with mg

labels of g. The probability of this sequence is now

Pn(X
(m)
f ) =

α1

α

α1 + 1

α + 1
· · · α1 +m1 − 1

α +m1 − 1
(2.17)

× α2

α +m1

α2 + 1

α +m1 + 1
· · · α2 +m2 − 1

α +m1 +m− 2− 1

× αg

α +m1 +m2 + · · ·+mg−1

· αg + 1

α +m1 +m2 + · · ·+mg−1 + 1

× αg +mg − 1

α +m1 +m2 + · · ·+mg − 1

=
α
[m1]
1 · · ·α[mg ]

g

α[m]
(2.18)

Where α[n] is the Pochhammer symbol representing the upper factorial, and
is defined by

α[n] = α(α + 1) · · · (α + n− 1) (2.19)

Remark 2.2. The formula in Eq.(2.16) does not depend on the order of
appearance of the categories. Indeed, the probability of a different sequence
with the same values of m = (m1, ...,mg) would have the same denominator
and identical, yet permuted, terms in the numerator.
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Remark 2.3. The Observation (2.8) means that the Polya process is ex-
changeable and that the finite-dimensional distributions depend only on the
frequency vector m.

2.2 Destructions and creations

If we look into the economics subject, we can see that some entities (i.e.
agents) are supposed to change their state unceasingly, following Markov-
chain probabilistic dynamics. All these situations are characterized by a
dynamical mechanism destroying an entity in a category and re-creating an
entity in another category. Those events depend on the present state of the
whole system. Looking back at the equation 1.5 in the first chapter, we
can now generalize that “destruction-construction mechanism”. As seen in
Chapter 1, we may consider a population made by n entities and g categories.
the state of the system is described by the occupation number vector n =
(n1, ..., ni, .., ng), ni ≥ 0,

∑g
i=1 ni = n. The sum is also denoted by

Sn
g = {n | ni ≥ 0,

g∑
i=1

ni = n} (2.20)

The discrete-time evolution is given by the sequence of variables

Y0 = n(0),Y1 = n(1), ...,Yt = n(t), ... (2.21)

where n(t) belongs to Sn
g . We assumed that Eq.(2.21) describes the realiza-

tion of a homogeneous Markov chain, whose one-step transition probability
is a matrix whose entries are given by Eq.1.5

w(n,nj
i ) = P

(
Yt+1 = nj

i |Yt = n
)

with nj
i , n ∈ Sn

g .

2.3 Occupation numbers as random variables

and the approach to equilibrium

Let the initial state be n. Let’s define D(m) = (d1, .., dg) as the vector that
tells how many elements are selected (in order to be destructed) in any of
the g categories, and let be m =

∑g
i=1 di = m be the total number of the

elements selected. After the destruction, the m elements are redistributed in
the g categories, following the vector C(m) = (c1, .., cg), and again
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∑g
i=1 di =

∑g
i=1 ci = m. In other words, the vector D(m) tells us how many

elements we remove from each category (Destruction), and the vector C(m)

tells us how many elements we put in each category after the destruction
(Creation).

Remark 2.4. In the Ehrenfest-Brillouin model, the destruction always pre-
cedes the creation.

So the process is now, by definition

Yt+1 = Yt + It+1 where It+1 = −Dt+1 +Ct+1 (2.22)

and where It+1 is the vector of the increment.

P(Dt+1 = d |Yt = n) =

∏g
i=1

(
ni

di

)(
n
m

) (2.23)

P(Ct+1 = c |Yt = n,Dt+1 = d) = P(Ct+1 = c | n-d)

=

∏g
i=1

(
αi+ni−di+ci−1

ci

)(
α+n−1

m

) (2.24)

The transition probability

P(Yt+1 = nj
i |Yt = n) = P(It+1 = nj

i − n |Yt = n) (2.25)

is the sum of all paths of the kind

Bm = {(d, c) | − d+ c = nj
i − n} (2.26)

therefore one has

Wm(n
j
i ,n) = P(Yt+1 = nj

i |Yt = n) =
∑
Bm

P(c | n− d)P(d | n) (2.27)

The transition matrix Wm(n,n
′), given by Eq.(2.27) defines Markov chains

with the Polya(n¸α) as invariant distribution. If the only constraint is∑g
i=1 ni = n (see Section 2.5), given that for m = 1, the Markov chain

defined by Eq.(2.27) are irreducible and aperiodic, and even more so is the
same for any m ≤ n; thus the invariant distribution Polya(n¸α) is also the
limiting equilibrium distribution. Moreover, is expected that the rate with
which equilibrium is reached is an increasing function of m. Let’s consider
the marginal description for a fixed category, whose initial weight is β:

Yt+1 = Yt −Dt+1 +Ct+1 = Yt + It+1 (2.28)
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Suppose that Yt = k, and merge the other n − k elements into a single
category, whose initial weight is α − β. The destruction move chooses m
objects from the occupation vector (k, n − k) without replacement, and d
units are removed from the fixed category, whereas m − d are taken away
from the remaining part of the system. The resulting occupation vector after
the destruction move is (k − d, n− k −m+ d).
The creation move consists of m extraction from a Polya urn with initial
composition (β + k − d, α− β + n− k −m+ d), and c elements are created
in the category with initial weight β and m − c elements are created in the
category with initial weight α − β. Given the initial state (k, n − k), the
expected value of D is a function of the starting state Yt = k:

E(D|Yt = k) = m
k

n
(2.29)

As for creations, adding to the evidence the destroyed state (d,m − d), one
gets

E(C|Yt = k,Dt+1 = d) = m
β + k − d

α + n−m
(2.30)

To eliminate d, we have to use the equation

E(C|Yt = k) = E(E(C|Yt = k,Dt+1 = d))

= m
β + k − E(D|Yt = k)

α + n−m

= m
β + k −m k

n

α + n−m
(2.31)

Proposition 2.3. Remembering the definition of It+1 in the Eq.(2.22), using
Eq.(2.29) and Eq.(2.31):

E(It+1|Yt = k) = − mα

n(α + n−m)

(
k − nβ

α

)
(2.32)

Proof. In the following lines, we present proof of the previously stated propo-
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sition, specifically emphasizing the truth of Eq.(2.32).

E(It+1|Yt = k) = −E(Dt+1|Yt = k) + E(Ct+1|Yt = k)

= −E(D|Yt = k) + E(C|Yt = k)

= −mk

n
+m

β + k −m k
n

α + n−m

= m

(
nβ + nk −mk − kα− nk +mk

n(α + n−m)

)
= m

(
nβ +��nk −��mk − kα−��nk +��mk

n(α + n−m)

)
= m

(
nβ − kα

n(α + n−m)

)
= −m

(
kα− nβ

n(α + n−m)

)
= − m

n(α + n−m)

(
kα− nβ

)
= − mα

n(α + n−m)

(
k − nβ

α

)
(2.33)

Remark 2.5. The average increment E(It+1|Yt = k) = 0 if k = nβ
α

:= µ,
which is the equilibrium value for k, and it is meanreverting: it reduces the
deviations away from the equilibrium expected value.

Definition 2.2. The rate of approach to equilibrium is the coefficient

r =
mα

n(α + n−m)
(2.34)

and it depends on the size n, the total initial weight α and the number of
changes m.

Remark 2.6. Setting m = 1 and α that tends to infinity, then r = 1
n
, the

value for the Ehrenfest aperiodic model.

Remark 2.7. The rate in Definition (2.2) is a linear function of m if m≪ n,
and it grows to 1 for m = n.

Remark 2.8. For m = n and r = 1, the destruction completely empties the
system, so that the subsequent creation probability is already the equilibrium
one.
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The following paragraph is not so important per se but is a useful tool
that is used to estimate the weekly and monthly autocorrelation of the daily
returns in Chapter 3. In the limiting case of Remark(2.8), Yt+1 does not
depend on Yt, so the correlation C(Yt+1, Yt) is expected to be 0. Therefore
one can derive the equation

E(It+1|Yt = k) = −r(k − µ)

or, equivalently

E(It+1|Yt = k)− µ = (1− r)(k − µ) (2.35)

Iterating the Eq.(2.35), we obtain

E(Yt+1|Yt = k)− µ = (1− r)s(k − µ) (2.36)

Definition 2.3. The autocorrelation function of the process, known as the
Bravais-Pearson autocorrelation function, once it reaches stationarity is.:

ρ(Yt+s, Yt) = ρ(s) = (1− r)s (2.37)

2.4 A consequence of the hard constraint on

the number of elements

Consider the occupation number random variables Y1, .., Yg, such that yi =
ni. The hard constraint

∑g
i=1 ni = n implies that

V
( g∑

i=1

Yi

)
= 0

Therefore one gets:

0 = V
( g∑

i=1

Yi

)
=

g∑
i=1

V(Yi) + 2

g∑
i=1

g∑
j=i+1

C(Yi, Yj) (2.38)

If the random variables Yi are equidistributed, it turns out that

gV(Yi) + g(g − 1)C(Yi, Yj) = 0 (2.39)

leading to

C(Yi, Yj) = −
1

g − 1
V(Yi) (2.40)

Given that V(Yi)+V(Yj), the Bravais-Pearson correlation coefficient becomes

ρYi,Yj
= − 1

g − 1
(2.41)

In particular, for a dichotomous Polya distribution, one finds that
ρYi,Yj

= −1, and the correlation coefficient vanishes for g →∞.
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2.5 The negative binomial distribution as a

marginal distribution of the general mul-

tivariate Polya distribution

In the general case, the chosen category has weight α1 and the thermostat’s

weight is α−α1. Therefore the term
α
[k]
1

k!
does not simplify, g− 1 is replaced

by α − α1, and the thermodinamic limit1 with the hypotesis of n, α ≫ 1
becomes χ = n

α
. Considering that,for definition

x[m] =
Γ(x+m)

Γ(x)
= x · (x+ 1) · · · (x+m− 1)

one has

(α− α1)
[n−k]

α[n]
=
Γ(α− α1 + n− k)

Γ(α− α1)
· Γ(α)

Γ(α + n)

=
Γ(α + n− α1 − k)

Γ(α + n)
· Γ(α)

Γ(α− α1)
(2.42)

In the limit x much greater than m, Γ(x−m)
Γ(x)

≃ x−m. Therefore one finds

(α− α1)
[n−k]

α[n]
=

αα1

(α + n)α1+k
(2.43)

and multiplying by n!
(n−k)!

≃ nk one has

P(k) ≃NegBin(k;α1, χ)

α
[k]
1

k!

(
1

1 + χ

)α

1

(
χ

1 + χ

)k

k = 0, 1, 2, ... (2.44)

This distribution is called the negative binomial distribution. If α1 = 1 and
α = g, we find a special case, and it is the geometric distribution. If α1 is an
integer, the usual interpretation of the negative binomial random variable is
the description of the (discrete) waiting time of the first α1th success in a
binomial process with parameter p = 1

(1+χ)
, so

P(k) ≃ NegBin(k;α1, χ) ≃ Bin(p)

1We call it the “thermodynamic limit” because it recalls the “thermodynamic limit”
in physics, where n = N →∞ and α = V →∞ as well, and N

V is constant
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The moments of the negative binomial distribution can be obtained from
the corresponding moments of the Polya(n1, n− n1;α1, α− α1) in the limit
n, α ≫ 1, with χ = n

α
. We put here some examples that can be useful on

Eq.(3.10) and Eq.(3.11):

E(n1 = k) = n
α1

α
→ α1χ (2.45)

and

V(n1 = k) = n
α1

α

α− α1

α

α + n

α + 1
→ α1χ(1 + χ) (2.46)

where we suppose that both α and n tend to infinity. Note that if α1 is an
integer, k can be interpreted as the sum of α1 independent and identically
distributed variables, and the expected value and the variance are simply the
sums.
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Chapter 3

An application to stock price
dynamics

In this last chapter, we will discuss an application of the previous model
firstly to the price increments in a stock market and secondly to the Italian
stock exchange between 1973 and 1998. This last chapter is based on [1] and
[3].

We consider a stock market with n agents, each labelled from 1 to n, trading
a single risky asset, which log-price at each time step t is denoted by the
random variable X(t). During each time period, from t − 1 to t, an agent
can decide either to buy, to sell or not to trade.

Definition 3.1. We define the variable Φi that represents the number of
shares requested by the i-th agent. The variable Φi can assume 3 values:

+1 : bullish behaviour
0 : neutral behaviour
−1 : bearish behaviour

where:

• bullish behaviour happens when agent i wants to buy (+1) hoping that
the price of the risky assets will increase

• neutral behaviour happens when agent i decides not to trade (0), thus
not to sell and not to buy

• bearish behaviour happens when agent i wants to sell (-1) hoping that
the price of the risky assets will decrease

27
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Definition 3.2. The aggregate excess demand for the risky asset at time t,
is defined by the sum of Φi at the time t:

D(t) =
n∑

i=1

Φi(t) (3.1)

Remark 3.1. Since Φi = 0 if the i-th agent chooses a neutral behaviour,
D(t) becomes

D(t) = n+ − n− (3.2)

Remark 3.2. Assuming that the price log-return is proportional to D(t),
then we have

∆X(t) = X(t+ 1)−X(t) =
1

η
D(t) =

1

η

n∑
i=1

Φi(t) (3.3)

where on the last equality we used the Eq.(3.1) and η is defined as the excess
demand needed to move the percentage return by one unit.

Without loss of generality, we assume η = 1, so ∆X(t) =
∑n

i=1 Φi(t).
If we want to evaluate the distribution of the return, we have to describe
the joint distribution of {Φi(t)}i=1,..,n. As mentioned before, n agents and 3
different strategies (bullish, bearish, neutral) are needed in this model.

Definition 3.3. The state of the system is written as the vector

n(t) = (n+(t), n−(t), n0(t))

called the occupation vector, which denotes the number of agents who choose
to buy, sell, and not trade. Particularly, the agents n+ and n− are called
active agents, and thanks to the occupation vector n(t) can be treated as a
random variable.

The excess demand D(t) in Eq.(3.2), has now a new interpretation as the
difference between those who want to sell and those who want to buy

D(t) = n+(t)− n−(t)

so the effective demand (3.1) is a function of the occupation vector n(t) de-
fined in Definition 3.3. To determine the transition probabilities of a Markov
chain is necessary to define the parameters: α+, α−, α0,
α = α+ + α− + α0 associated with the three strategies.
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Remark 3.3. Let m be the number of active agents, i.e. the agents who
choose a bullish behaviour or a bearish behaviour, then the percentage of the
agents who decide to trade (either sell or buy) is the ratio between m and the
total number of agents, n:

P =
m

n
=

n+ + n−

n
(3.4)

For positive α’s each chosen agent tends to join the majority(this is
known as herding behaviour). For negative weights (α < 0) the selected
agent tends to behave at odds with the actual majority’s behaviour (known
as contrarian behaviour). For very large weights (|α| → ∞) agents are not
influenced by their environment. If the probabilistic dynamics follows (2.22)
and (2.23), (2.24) and (2.27) the equilibrium distribution is the 3-dim-Polya
(i ∈ {+,−, 0}):

π(n) = π(n+, n−, n0) =
n!

θ[n]

∏
i

α
[ni]
i

ni!
(3.5)

with the constraint n = n+ + n− + n0, n the number of agents.

Definition 3.4. With the hypothesis

α0 →∞, n→∞,

the “thermodynamic limit” is defined as the constant χ:

χ =
n

α
(3.6)

So the Polya distribution in the Eq.(3.5) factories:

π(n+, n−, n0)→ P(n+)P(n−) (3.7)

where

P(n+) =
α
[n+]
+

n+!

(
1

1 + χ

)α+
(

χ

1 + χ

)n+

∼ NegBin(α+, χ) (3.8)

and

P(n−) =
α
[n−]
−

n−!

(
1

1 + χ

)α−( χ

1 + χ

)n−

∼ NegBin(α−, χ) (3.9)

Remark 3.4. The thermodynamic limit corresponds to increasing the num-
ber of agents and the initial propensity to be “neutral”, conserving the average
number of “bulls” and “bears”. So, in formulas, using the Eq.(3.6):
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E(n+) = (n+ + n− + n0)
α+

α+ + α− + α0

= n
α+

α
→ α+χ

E(n−) = (n+ + n− + n0)
α−

α+ + α− + α0

= n
α−

α
→ α−χ

that is surrounded by a “reservoir” of neutral agents, that can provide new
active agents, or absorb them. In order to get the moments for the equilib-
rium distribution of the excess demand note that:

E(n+) = α+χ (3.10)

V(n+) = α+χ(1 + χ) (3.11)

K∗(n+) =
1

α+

(
6 +

1

χ(1 + χ)

)
(3.12)

where K∗ is the kurtosis for the negative binomial distribution, which is large
for α+ small. The same formulas hold true for n−, as long as we replace α−
with α+.

Proposition 3.1. Using the Eq.(3.2) on the second passage:

E(∆X) = E(n+ − n−) = (α+ − α−)χ (3.13)

Given the independence of n+ and n− we obtain:

V(∆X) = V(n+ − n−) = (α+ + α−)χ(1 + χ) (3.14)

and the kurtosis:

K∗(∆X) =
V(n+)

2K(n+) + V(n−)
2K(n−)(

V(n+) + V(n−)
)2

=
1

α+ + α−

(
6 +

1

χ(1 + χ)

)
(3.15)

The Equations (3.13), (3.14) and (3.15) are proven at the end of this chapter,
in Section 3.2. In general, assuming that the skewness of the empirical distri-
bution is negligible, 3 equations connect the moments of the excess demand
distribution to the three parameters α+, α− and χ, that specify the model.
The parameters α+, α− and χ can now be estimated from the mean (3.13),
the standard deviation (3.14) and the excess kurtosis (3.15) of the empirical
distribution of the data. Moreover, the intensity of the market m

n
, namely

the fraction of active agents (ratio in the Eq.(3.4)) can be determined from
the daily autocorrelation.
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3.1 The Italian stock exchange between 1973

and 1998

In this section, we analyze some real data from the Italian stock exchange
between June 1973 and April 1998. The data are taken from [1] and [3]. In
the following table we reported the mean µ̂, the standard deviation σ̂ and
the kurtosis κ̂ for the Italian Stock Exchange as well as daily (d), weekly (w)
and monthly (m) autocorrelation estimates, from June 1973 to April 1998,
divided into a further 6 subperiods:

• I, III, V: normal periods

• II, IV, VI: transition periods

Definition 3.5. We call normal periods the periods characterized by bounded
variation of prices, in other words they correspond to long stable motions.
We call transition periods the ones characterized by strong movements of
stock prices, corresponding to short transitions to a new band.

I II III IV V VI

6.73-8.80 8.80-6.81 6.81-5.85 5.85-5.86 5.86-6.97 6.97-4.98

n.of obs 1870 206 1028 266 2892 187
µ̂ -0.03 0.43 0.00 0.43 0.00 0.25
σ̂ 1.50 3.81 2.30 1.98 1.50 2.26
κ̂ 6.85 5.98 13.48 6.22 14.31 9.27

d autoc 0.14 0.09 0.17 0.06 0.15 -0.08
w autoc 0.02 -0.08 -0.01 -0.05 0.00 -0.03
m autoc 0.02 0.21 0.03 -0.10 -0.03 -0.08

Table 3.1: Italian stock exchange of the daily percentage returns for the market index from June 1973 to
April 1998

In this second table, the estimated values for the parameters α+, α−, χ and
f := m

n
, are shown. We recall being:

• α+, α− : transitions probability of a Markov chain

• χ = n
α++α−+α0

constant

• f := m
n
is the ratio of active agents
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Period Observed Estimated

µ̂ σ̂ κ̂ d α+ α− χ f

I -0.03 1.50 6.85 0.14 0.47 0.50 0.84 0.92
II 0.43 3.81 5.98 0.09 0.67 0.38 1.47 0.96
III 0.00 2.30 13.48 0.17 0.23 0.23 1.79 0.93
IV 0.43 1.98 6.22 0.06 0.75 0.30 0.96 0.97
V 0.00 1.50 14.31 0.15 0.22 0.22 1.41 0.93
VI 0.25 2.26 9.27 -0.08 0.43 0.25 1.39 1.03

Table 3.2: Parameter estimates for the model described, based on the data from (3.1)

Using the estimated values of α+, α− and χ, one gets the exact equilibrium
distribution for bulls and bears. The exact equilibrium distribution of returns
is the distribution of ∆X = n+ + n− where n+ and n− are independent
random variables distributed according to Equations (3.8) and (3.9). This
distribution does not depend on m, or the intensity f = m

n
. However, the

latter quantities are essential for the time evolution of the process. The
parameter m can be derived from the daily autocorrelation (d) in the six
periods. The rate of convergence to equilibrium does depend on f and on
χ = n

α
, where we recall that α = α++α−+α0. So, from the Eq.(2.34) of the

rate of convergence, in the present case, we can write:

r =
f

1 + χ(1− f)
(3.16)

leading to

f =
r + rχ

1 + rχ
(3.17)

The rate is estimated from the empirical value of the daily autocorrelation,
based on Bravais-Pearson autocorrelation, one can write r = 1−d and obtain
an estimate value of f . The weekly and monthly autocorrelations of the daily
returns can be estimated from Eq.(2.37) for s = 5 and s = 20 (where s = 5
are the working days in a week and s = 20 are the working days in a month),
and then we can compare the results to the last rows of the first Table.

Definition 3.6. The Bravais-Pearson autocorrelation coefficient between 2
random variables is defined as

ρX,Y =
C(X, Y )

σXσY

(3.18)
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where σX and σY are the standard deviation of X and Y respectively.

Remark 3.5. Some proprieties of the Bravais-Pearson autocorrelation coef-
ficient are:

• The Bravais-Pearson autocorrelation coefficient is symmetric:

ρX,Y =
C(X, Y )

σXσY

=
C(Y,X)

σY σX

= ρY,X

• If ρX,Y = −1 the random variables X and Y are called perfectly anti-
correlated

• If ρX,Y = 1 the random variables X and Y are called perfectly corre-
lated

• If ρX,Y = 0 the random variables X and Y are called uncorrelated,
meaning that C(X, Y ) = 0 and that E(XY ) = E(X)E(Y )

Proposition 3.2. The Bravais-Pearson autocorrelation coefficient is the ra-
tio between the covariance of two variables and the product of their standard
deviations; thus, it is essentially a normalized measurement of the covariance,
such that the result always has a value between −1 and 1.

Proof. Let W and Z be 2 random variables with moment 2. Then

E(XY )2 ≤ E(X2)E(Y 2)

and can be proved by considering the positive mean

0 ≤ E[(θX + Y )2] ∀θ ∈ R

expanding the mean value

0 ≤ θ2E(X2) + 2θE(XY ) + E(Y 2) ∀θ ∈ R

and solving for the variable θ

∆

4
= E(XY )2 − E(X2)E(Y 2) ≤ 0

Let’s now define 2 new variables, W and Z as{
W = X − E(X)

Z = Y − E(Y )
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Replacing W and Z in the equation E(WZ)2 ≤ E(W 2)E(Z2), we obtain

E((X − E(X))(Y − E(Y )))2 ≤ E((X − E(X))2)E((Y − E(Y ))2)

where E((X − E(X))(Y − E(Y )))2 = C(X, Y )2

and E((X − E(X))2)E((Z − E(Z))2) = σ2
Xσ

2
Y

so
|C(X, Y )| ≤ σXσY

and for the definition

ρX,Y =
C(X, Y )

σXσY

so we have proven

|ρX,Y | ≤ 1 ←→ −1 ≤ ρX,Y ≤ 1

3.1.1 Excess kurtosis for the sum of independent ran-
dom variables

Definition 3.7. The kurtosis of a random variable X is defined as

K(X) =
E[(X − E(X))4]

V2(X)

Let’s define a normally distributed random variable Y . Then the probability
density for Y is:

p(x) = N(x;µ, σ) =
1√
2πσ

exp

(
−(x− µ)2

2σ2

)
Definition 3.8. The kurtosis for a normally distributed random variable is
given by:

KN(X) = 3

Remark 3.6. The value KN(X) = 3 is taken as reference for the excess
kurtosis, defined as:

K∗(X) = K(X)− 3

Definition 3.9. We call a random variable leptokurtic when it has K∗(X) >
0, such as a positive excess kurtosis. We call a random variable mesokurtic
when it has K∗(X) = 0, such as excess kurtosis equals zero. We call a
random variable platykurtic when it has K∗(X) < 0, such as a negative
excess kurtosis
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Remark 3.7. The tails of a leptokurtic random variable are heavier than the
tails of a normal distribution, meaning that extreme events are more likely
to occur than in the normal case.

In the following we now prove Proposition 3.1.

Proof. For simplicity, let’s rename: α+ = a and α− = b.

Proof of the Eq.(3.13):

E(∆X) = E(n+ − n−) = (α+ − α−)χ

Recalling the Equation (3.10): E(n+) = aχ, we have, doing the same proce-
dure, E(n−) = bχ So, for the linearity of the mean:

E(∆X) = E(n+ − n−) = E(n+)− E(n−) = aχ+ bχ = (a+ b)χ

Proof of the Eq.(3.14) :

V(∆X) = V(n+ − n−) = (a+ b)χ(1 + χ)

We recall the Eq.(3.11): V(n+) = α+χ(1 + χ)

V(∆X) = V(n+ − n−) = E
(
(n+ − n−)

2
)
−E

(
(n+ − n−)

)2
=

= E(n2
+ − 2n+n− + n2

−)− E
(
(n+ − n−)

)2
= E(n2

+)− 2E(n+)E(n−) + E(n2
−)− E

(
(n+ − n−)

)2
= E(n2

+)− 2abχ2 + E(n2
−)− (a− b)2χ2

= E(n2
+)−����

2abχ2 + E(n2
−)− a2χ2 +����

2abχ2 − b2χ2

= V(n+) + E(n+)
2 + V(n−) + E(n−)

2 − a2χ2 − b2χ2

= aχ(1 + χ) +���a2χ2 + bχ(1 + χ) +���b2χ2 −���a2χ2 −���b2χ2

= (a+ b)χ(1 + χ)

Proof of the Equation (3.15) :

K∗(∆X) =
1

a+ b

(
6 +

1

χ(1 + χ)

)
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K∗(∆X) = K∗(n+ − n−)
(∗)
=

V(n+)
2K(n+) + V(n−)

2K(n−)(
V(n+) + V(n−)

)2 =

=
a ̸2χ2(1 + χ)2 1

̸a

(
6 + 1

χ(1+χ)

)
+b ̸2χ2(1 + χ)2 1̸b

(
6 + 1

χ(1+χ)

)(
aχ(1 + χ) + bχ(1 + χ)

)2
=

6aχ2(1 + χ)2 + aχ ̸2(1+χ)̸2

����χ(1+χ)
+ 6bχ2(1 + χ)2 + bχ

̸2(1+χ)̸2

����χ(1+χ)

a2χ2(1 + χ)2 + 2abχ2(1 + χ)2 + b2χ2(1 + χ)2

=
6aχ2(1 + χ)2 + aχ(1 + χ) + 6bχ2(1 + χ)2 + bχ(1 + χ)

χ2(1 + χ)2(a2 + b2 + 2ab)

=
6aχ2(1 + χ)2 + aχ(1 + χ) + 6bχ2(1 + χ)2 + bχ(1 + χ)

χ2(1 + χ)2(a+ b)2

=
6������
χ2(1 + χ)2����(a+ b)

������
χ2(1 + χ)2(a+ b)̸2

+
����(a+ b)�����χ(1 + χ)

χ ̸2(1 + χ)̸2(a+ b)̸2

=
1

a+ b

(
6 +

1

χ(1 + χ)

)
The equation is now being proved:

K∗(∆X) = K∗(n+ − n−) =
V(n+)

2K(n+) + V(n−)
2K(n−)(

V(n+) + V(n−)
)2

We call Z = X − Y , where Z = ∆X,X = n+ and Y = n−. Without loss of
generality, we assume that E(X) = E(Y ) = 0. Then we have

(X − Y )4 = X4 − 4X3Y + 6X2Y 2 − 4XY 3 + Y 4

and, if we average, the terms−4X3Y −4XY 3 vanish because E(X) = E(Y ) =
0, (for the linearity of the mean)

E(4X3Y ) = 4E(X)E(Y 3) = 0

and we have

E[(X − Y )4] = E(X4) + 6V(X)V(Y ) + E(Y 4)

and V[(X − Y )4] = (V(X) + V(Y ))2

Now, thanks to the definition of kurtosis, we have that

E(X4) = K(X)V2(X)
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and
E(Y 4) = K(Y )V2(Y )

So we have

K(Z) =
V2(X)K(X) + 6V(X)V(Y ) + V2(Y )K(Y )

(V(X) + V(Y ))2

Recalling the Observation (3.6):

K∗(Z) = K(Z)− 3

=
V2(X)K(X) + 6V(X)V(Y ) + V2(Y )K(Y )

(V(X) + V(Y ))2
− 3

=
V2(X)(K(X)− 3) + V2(Y )(K(Y )− 3)

(V(X) + V(Y ))2

=
V(X)2K∗(X) + V(Y )2K∗(Y )(

V(X) + V(Y )
)2
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Conclusion

At the outset of this thesis, we introduce a simplified problem known as the
Ehrenfest-Brillouin model for 4 urns (refer to Figure 1.1). Subsequently, we
extend this model to a more elaborate scenario involving 7 dice being rolled
on a table (Subsection 1.1.1). The theory of Polya distributions and Markov
chains can be employed in both cases, as the processes exhibit the property
of “lack of memory”. However, these examples serve as a preliminary taste
of the thesis, where a significantly more expansive and intricate model, the
Ehrenfest-Brillouin model takes centre stage. This thesis aims to estimate,
within a stock market, the variables α+ and α−, χ, and f , given the infor-
mation about daily autocorrelation and mean, variance and kurtosis. Each
of these variables represents something within the financial market:

• m represents the number of active agents, and f = m
n

represents the
ratio of active agents to the total number of agents.

• α+ and α− represent the transition probabilities of a Markov chain,
respectively, for buying and selling.

• χ = n
α
is a constant, called the “thermodynamic limit” if both n and α

tend to infinity

The mean, variance and kurtosis analyzed are E(∆X), V(∆X), K(∆X),
where ∆X represents the subtraction between the agents n+ with a bullish
behaviour and the agents n− with a bearish behaviour. In our framework,
we have formulas (see Proposition 3.1) that relate E(∆X), V(∆X), K(∆X)
(observable data), and χ, α+, α− (data that we need to estimate). On the
other hand, we can estimate f = m

n
, where m is the total number of active

agents, from the daily autocorrelation. The variable f can be estimated
starting from the rate of convergence

r =
f

1 + χ(1− f)

39
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and by setting r = 1− d (an estimation based on the Bravais-Pearson auto-
correlation). By inverting the formula for r, we can derive a formula for the
value of f (see Equation 3.17)

Our models are developed within the theory of Polya distribution and
Markov chain particularly in the context of the Ehrenfest-Brillouin model,
and remain essential for developing this thesis as they provide the math-
ematical and statistical framework to be applied in the specific case I am
addressing, which is an economic-financial application of the model. How-
ever, it is interesting to note that initially the Ehrenfest-Brillouin model was
applied in physics. In fact, the equilibrium distribution

π(n) = π(n+, n−, n0) =
n!

θ[n]

∏
i

α
[ni]
i

ni!

can be seen as some multivariate distributions of quantum physics:

• If all αi > 0, the special case of equilibrium distribution for αi = 1 and
α = g is the Bose-Einstein distribution

• If all αi < 0, the equation is the g-dimensional hypergeometric distri-
bution, and for αi = −1 and α = −g is the Fermi-Dirac distribution

• As |α| → ∞, the limit is the multinomial distribution whose symmetric
case is known as the Maxwell-Boltzmann distribution
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