
Università degli Studi di Padova

Dipartimento di Ingegneria dell’Informazione

Master’s Degree in Computer Engineering

Design of a perception system for the
Formula Student Driverless

competition: from vehicle sensorization
to SLAM

Supervisor: Student:

Prof. Alberto Pretto Alessandra Tonin

Co-supervisor: ID number:

Emilio Olivastri, PhD candidate 2027136

Academic year 2022/2023

Acknowledgements

First of all, I wish to express my appreciation to my supervisor,

Professor Alberto Pretto, for the trust and confidence he has be-

stowed upon me, and for giving me the opportunity to challenge

myself with such an amazing project. I am extremely grateful

for the chance to work under his supervision, in the interesting

field of autonomous driving applied to racing scenarios.

Further, I would like to sincerely thank my co-supervisor Emilio

Olivastri, PhD candidate, for his willingness to support and

supervise my work and for the excellent advice he’s given me

throughout the entire project. Working with him has been very

stimulating, and his belief in my abilities has been a constant

source of motivation and inspiration. His precious help has been

fundamental for the completion of this thesis.

“Go hard or go home”

ii

Abstract

Formula Student Driverless is an international racing competition held

among universities, where the vehicles must complete a set of trials with-

out any human intervention.

Together with RaceUP, the Formula Student team of the University of

Padova, this thesis represents the beginning of the project to build an

autonomous prototype to compete in the Driverless Cup in the 2024

season.

Three important aspects of an autonomous system design will be tack-

led: vehicle sensorization, perception, and simultaneous localization and

mapping (SLAM), with the main focus on the development of the last

one.

The proposed approach for the back-end is based on the optimization

of a factor graph, holding information about car poses and landmarks

positions, by exploiting spatial and kinematic constraints between its

vertices. The full back-end pipeline has been tested thoroughly, step

by step, allowing to obtain satisfactory results on the different virtual

tracks used for testing.

Using both modern and classical techniques, we can process information

produced by the stereo camera and the LIDAR, to be able to localize

the colored cones delimiting the track. The estimation of cones positions

serves then as input for other important modules of the car, such as the

control part and the SLAM pipeline.

Finally, a complete dataset has been acquired by properly sensorizing

RaceUP’s last year’s car: having real data represents a helpful resource

to make experiments and validate the system, even without the avail-

ability of the actual vehicle prototype.

iii

iv

Contents

1 Introduction 1

1.1 Problem statement . 1

1.2 Formula Student . 3

1.3 Thesis objectives and outline . 7

2 Related work 9

3 Theoretical background 11

3.1 Perception . 11

3.2 Simultaneous Localization And Mapping (SLAM) 14

4 Simulation environment 17

4.1 Importance of simulation . 17

4.2 EUFSSIM . 18

5 GraphSLAM 23

5.1 Graph construction . 23

5.2 Algorithm implementation . 27

5.2.1 g2o framework . 27

5.2.2 Graph optimization . 29

5.2.3 Motion model . 30

5.2.4 Data association . 32

5.2.5 Loop closure . 32

5.2.6 Additional motion constraint 34

5.3 Algorithm evaluation . 36

5.3.1 Metrics . 37

5.3.2 Experiments and results 39

v

6 Perception building blocks 53

6.1 LIDAR-based cones detection . 53

6.2 Camera-based cones detection . 56

7 Real data acquisition 61

7.1 Car sensorization . 62

7.2 Dataset . 65

8 Conclusion and future works 69

References 71

vi

Chapter 1

Introduction

In the recent years, autonomous driving is gaining increasing attention due to the

numerous benefits it offers. It promises safer and less congested roads and a po-

tential reduction of the environmental impact of human mobility. Furthermore,

the social aspect must not be overlooked: having self-driving means of trans-

portation could provide more freedom of movement to people unable to drive.

Many sectors could exploit the potential of self-driving vehicles: among the

others, we have freight handling, agriculture, or daily traveling. However, social

and regulatory issues are slowing down this paradigm shift in transportation: the

technological complexity behind an autonomous machine makes the diffusion of

these systems quite hard. In most countries, only a few big companies have been

able to obtain permission to do tests or deploy their driverless vehicles on real

roads: for this reason, autonomous driving is mostly applied to safer scenarios,

like agriculture or racing, where interaction with people is minimal.

1.1 Problem statement

The design of a self-driving vehicle requires several different steps, going from

hardware components arrangement to complex software development.

To be able to navigate independently from humans in unknown situations, an

autonomous vehicle needs many different connected modules. Among the others,

perception, localization, and mapping are the fundamental ones. Of course, the

entire software stack would be useless without the aid of a set of sensors, properly

mounted on the car.

Perception can be compared to human senses, since it involves the gathering

of information from the surrounding environment: the capability to perceive the

1

nearby world is at the basis of autonomous navigation since this data is then used

to understand, for example, if an obstacle is on the vehicle’s trajectory or if the

road is making a curve or being straight.

SLAM is the acronym for simultaneous localization and mapping, and it is

probably the most important part of the self-driving pipeline: it aims at the

creation of a map of the environment in which the vehicle is operating, while also

localizing itself in the created map. So the vehicle is able to estimate its own

pose with respect to the world, and the relative uncertainty of that estimate.

As briefly stated before, there are plenty of scenarios in which autonomous

driving technologies can be applied. One of these is the car racing world: in

this work, we will focus on a driverless racing event, part of the Formula Student

competition. The opportunity to work on this project came from RaceUP [1], the

Formula Student team of the University of Padova. For many years, they have

been participating in both national-level and European-level races, but they still

don’t have an autonomous car to compete in driverless events.

In general, the design of a vehicle capable of participating in a high-level

competition is not trivial: many different parts must be perfectly integrated

to make this complex system work in a highly dynamic situation. Moreover,

redundant modules should be provided, to guarantee fault recovery capabilities.

If we consider specifically the RaceUP Driverless case, the project is particu-

larly challenging not only from a technical point of view but also because:

• the autonomous car prototype is not available yet, so the entire development

process must be carried out in simulation or by adapting the electric car

from the last season to fit the driverless race constraints;

• the choice of sensors to be mounted on the vehicle is constrained to univer-

sity funds, so their availability is not ensured in any moment of the design

procedure;

• being this project the first concept of driverless vehicle at all, it is a learn-

by-doing activity for everyone.

As Formula Student is a university competition that may not be widely rec-

ognized among individuals not directly involved in this field, the following section

will provide an overview of this event. Specifically, it will focus on the details

regarding the Driverless category.

2

1.2 Formula Student

Formula Student (also named Formula SAE, from the Society of Automotive

Engineers, the original organizer) is a student competition founded in 1981 with

the aim to design a prototype racing single-seater, meaning a high-performance

Formula-style race car, tailored to participate in nationally and internationally

recognized racing events. The main features of a Formula-style vehicle include

being an open-wheeled, single-seat, and open cockpit, with four wheels that are

not in a straight line [2]. Participating in such an activity is a complete challenge

since students have to conceive, design, fabricate, develop, and compete with

their cars.

Teams can be composed exclusively of university students, having different

backgrounds to provide knowledge in all the required fields: necessary skills in-

volve mechanical, electrical, and software engineering, but also economics, man-

agement, and marketing.

Each team has to build its own cars in compliance with a series of official

rules defining precise characteristics of the chassis, but also constraints aimed at

ensuring safety conditions during the races. Having regulations to follow also

improves the problem-solving capabilities of future engineers, who rarely have

total freedom in the development of their work projects.

Historically, Formula Student started with the development of a combustion

vehicle with a traditional thermal motor, while in 2010 the electrical division

has been introduced: from that year, every team also had to provide a fully

electrically-powered prototype. In 2017, finally, the Driverless division has been

started by the German Formula Student committee: the goal is to design a self-

driving vehicle, able to complete all events without human driver assistance and

without any kind of remote control.

From now on, everything related to Formula Student will implicitly refer to

the driverless race car, since the thesis focuses on designing and developing part

of an autonomous racing system. Moreover, the information given below is valid

for the 2023 competition, as stated in the official documents [2] at the moment

of writing.

A specific regulation, concerning both the car and the track, has been defined

to guarantee the safety of all the participants.

According to the Formula Student Germany Competition Handbook 2023

[2], in all the configurations the tracks will be marked with colored cones (see

figure 1.1): blue on the left side, yellow on the right one, small orange on the

3

Figure 1.1: Official Driverless competition cones.

exit and entry lanes and big orange before and after the start, at the finish and

timekeeping points. Moreover, cones along the driving direction will be at most

5 meters far from each other, and specific or particular zones will be marked with

colored paint.

Before starting the competition, each vehicle is officially checked for rule

compliance through Technical Inspection. As an example, for the autonomous

system, data sheets of all the perception sensors must be provided, together

with the documents certifying that those sensors meet local legislation. Another

important component that is verified to be working is the Remote Emergency

System, a remote-controlled module mounted on the vehicles, that allows the

activation of emergency behaviors. It is activated if at least one of the following

occurs :

• the autonomous vehicle seems to be out of control;

• the vehicle gets visibly damaged (mechanically or electrically);

• the minimum average speed during the track drive event is not respected

(2.5 m/s for the first three laps, and 3.5 m/s for the following ones);

• the presence on the track of something/someone not allowed to be there.

Other inspections include a tilt test, to check the wheels’ contact with the

ground and the presence of fluid leaks. A rain test for the safety of the electrical

system in case of adverse weather conditions.

If the Technical Inspection has been successfully completed, the prototype is

then judged according to two types of tests: static events, to rate cost analysis,

4

business presentation, and engineering design capabilities of the participants, and

dynamic events for the performance and technical reliability.

A brief overview of the two evaluation events is provided now, together with

the official track configuration for the racing events, when available:

1. STATIC EVENTS

Business Plan Presentation: each team has to convince potential investors

or partners to be part of the project, by delivering a comprehensive business

model representing a monetary profit opportunity for the group.

Cost and Manufacturing : the purpose is to evaluate the ability of taking

cost-content trade-off decisions while manufacturing the race car, including

make or buy choices. In doing so, three Cost Report Documents must be

submitted, containing detailed information about every material or com-

ponent needed to construct the vehicle, and specifying the corresponding

cost.

Engineering Design: this event wants to evaluate the effort put into the

engineering process to design the prototype. The team has to explain its

design choices and highlight design features, concepts, or methods that add

value to the vehicle.

2. DYNAMIC EVENTS

Skidpad : an eight-shaped track, figure 1.2, consisting of two pairs of con-

centric circles, has to be cleared twice. This means that the vehicle must

perform two laps around each circle, as well as autonomously enter and exit

from the test area.

Acceleration: the track here is a simple straight line with specific length

and width, figure 1.3, delimited by a starting and a finish line. The event

consists of an acceleration test from a standing start. The primary metric

that is used for evaluating this event is the taken time to complete the track.

Autocross : the autocross track does not have a fixed layout, but it is de-

signed adhering to predefined constraints on the length, width, and number

of curves and straight sections. The goal is to complete two runs consisting

of one lap each, in the minimum possible time. The evaluation is obtained

according to the completion of the aforementioned laps and to the compar-

ison between the elapsed time and the maximum allowed time.

5

Figure 1.2: Skidpad track configuration.

Figure 1.3: Acceleration track configuration.

6

Trackdrive: this event is only for the driverless cup and consists of a closed

loop circuit, shorter than the ones described above, designed according to

some constraints. Teams have to complete ten laps, counted by the vehicle

itself: this means that there will be no explicit signals or indications on the

track, implying that the autonomous system must be able to keep track of

the completed laps. Points received in this test depend on the number of

completed laps, and on the individual elapsed time.

During dynamic events, penalties can be assessed in many different cases.

The most relevant for the self-driving category are knocking over cones, going

outside the track with all four wheels and not re-entering within a certain time, or

stopping in an unsafe manner, meaning outside of the specified area, for example.

1.3 Thesis objectives and outline

The aim of this work is to the develop first version of a simultaneous localization

and mapping module for a Formula Student Driverless race car. Since this part

of the system is strictly connected with other components of the autonomous

stack, my work naturally expands into a deep study of vehicle sensorization and

perception algorithms. The majority of this project has been developed relying

on a simulation platform, described in chapter 4, except for the real sensors

positioning and the data acquisition with the actual car.

Starting from literature research (see chapter 2) on scientific papers and arti-

cles related to autonomous racing scenarios, the state-of-the-art solutions adopted

by other Formula Student teams have been retrieved and studied. Particular rel-

evance has been given to the different sensor setups and to the different proposed

approaches to the mapping problem.

As deeply explained in chapter 5, the final choice for the SLAM back-end sys-

tem has been a graph-based approach, involving the mathematical optimization

of spatial constraints linking vertices of a factor graph. The main idea is to jointly

process odometry and sensors’ observation data to provide an estimation of the

current state of the vehicle and of the position of the surrounding landmarks.

To make the algorithm more consistent with reality, an additional constraint on

the allowed car motion has been added to the graph: considering that a Formula

Student prototype is a non-holonomic system, restrictions on the translational

motions must be imposed. Two different correction approaches have been com-

pared, a global-only optimization, and a local and incremental one. Finally, a

7

nearest-neighbor data association algorithm has been analyzed, to make SLAM

more robust against sensor noise and outliers. Tests have been conducted with

Euclidean distance.

A bit of work has been made also concerning the front-end part of Simul-

taneous Localization and Mapping, aiming at developing a simple perception

module exploiting both images and point clouds. The goal is to recognize the

track-delimiting cones and compute their 3D position in space. The visual cone

detection pipeline is based on a deep learning approach, implementing a fine-

tuned version of YOLOv7 [3] to get the bounding boxes enclosing the aforemen-

tioned landmarks in the stereo camera images. The LIDAR detection pipeline,

instead, is based on a classical segmentation approach, combined with Euclidean

clustering, to spot cone shapes in the received point clouds. Some preliminary

qualitative results will be exposed in chapter 6.

Finally, the third part of this work (chapter 7) will report the experimental

part of the project, consisting of the acquisition of a real and complete dataset,

after the proper sensorization of an official Formula Student car. Real sensors

have been mounted on the prototype in a way as adherent as possible to the setup

studied in simulation. Additionally, a set of sensor drivers have been developed

to synchronize incoming data and to guarantee real-time storage of the received

information.

Even if this may seem to be a common autonomous driving application, con-

sisting in well-studied problems like perception and SLAM, the specific Formula

Student scenario introduces some important challenges to cope with:

• careful and precise sensors data acquisition and processing is needed to deal

with noise and errors introduced by the high speeds required during races;

• hard real-time constraints, with little or no delay at all between data recep-

tion and usage;

• sparseness of the environment, which is characterized only by small traffic

cones delimiting the track, requiring specifically-tailored data processing

algorithms;

• high uncertainty in data association, being that the cones have no discrim-

inating features except for their color.

Some important theoretical background notions, useful to fully understand

the proposed solution, are provided in chapter 3.

8

Chapter 2

Related work

Due to the competition format of Formula Student, it is not easy to find scientific

literature specific to this application, since most of the teams are not willing to

publish their work or to share their research with competitors. Furthermore,

publicly available papers are often describing the first versions of the race cars,

that were used in previous seasons.

However, it is useful to analyze these works to have an idea of the fundamental

algorithms or setups that are currently used by other participants. Especially for

new teams, which are just entering the competition, starting from simpler but

effective systems is probably the best path to follow.

In [4][5][6] AMZ team from ETH Zurich, presents Gotthard and Pilatus, their

cars used in seasons 2018-2021. In those papers, you can see the sensors setup

remaining more or less the same across the years, except for an additional LIDAR

added in 2019, placed on the main hoop together with the cameras. Regarding the

perception module, both systems fuse together a camera-based cones detection

pipeline and a LIDAR-based one. As visual pipeline both cars use a version

of YOLO as detector, while the LIDAR is exploited also to recongnize color by

means of intensity data analysis. If we consider the SLAM module, a substantial

change happened from 2018 car to 2019 one: from a particle filter algorithm,

FastSLAM 2.0 [7], a switch to graphSLAM has been made.

In [8], Austrian team TUW from Wien built a prototype without using a

LIDAR, only with a planar laserscan and the other usual sensors, like camera,

IMU and GPS. Even here, perception is based on a mixed approach, to exploit

images acquired on the track and laserscan points. Perceived data is then used

as input for an Extended Kalman Filter implementation, to build the map of the

track.

9

In [9], KIT team from Germany presents a particular setup, where the sen-

sor suite of the car includes 3 cameras and 4 laser scanners, placed all around

the car. As before, perception is redundant, with two pipelines for camera and

LIDAR data, and a CNN-based approach to detect bounding boxes of the cones.

Regarding the SLAM pipeline, also here an Extended Kalman Filter is imple-

mented, using (x, y, θ) as parameters. Data association exploits the famous Joint

Compatibility Branch and Bound (JCBB) [10] algorithm.

Finally, MIT Driverless team in [9] uses a YOLO-based pipeline to detect

cones, but does not provide much more information about the rest of the system.

Often, more precise and detailed information about the system adopted in a

race car can be found directly on the website of the involved university or team.

This is because most of the work done in this field is not published as research

work.

To have a wider vision of possible approaches worthy to be further studied,

it could be useful also to consult the numerous thesis that are written by univer-

sity students about their prototypes. Of course, taking in mind that thesis are

not published or officially reviewed works, so information needs to be carefully

checked.

The main contribution of this thesis is the development of a simultaneous

localization and mapping module based on graph optimization, to work under

the specific conditions of Formula Student Driverless events. Minor development

also regards a front-end perception system, trying to exploit redundant camera

and LIDAR detection, as observed being the trend of all the other teams.

10

Chapter 3

Theoretical background

3.1 Perception

A simultaneous localization and mapping algorithm usually involves two steps,

the front end, and the back end.

The front end deals with real-time data processing, extracting the most rele-

vant information from the sensor readings that include, in our specific case, spatial

relations and associations between landmarks, as explained in section 5.2.4.

In general, sensors are a crucial part of an autonomous robot, that can be

considered as the senses of the system: they allow gathering information about

the surrounding environment, that can be fused together to control the behavior

of the vehicle. The most common sensors exploited to perceive the environment

are cameras and LIDAR.

LIDAR stands for Light Detection And Ranging, and it belongs to the family

of range-finder sensors. It emits laser beams, that hit obstacles within a certain

distance: the time for the reflected light to return to the receiver is measured,

and distance can be accurately estimated in this way, as depicted in figure 3.1.

The most important parameter to take into consideration, especially in a

scenario like the Formula Student, where the environment does not contain many

elements, is the number of channels. In other words, this corresponds to the

number of laser-beams emitted by the sensor: a higher number of channels, a

higher resolution of the produced scan, see an example in figure 3.2.

This sensor is one of the most used for perceiving obstacles or landmarks in

the surrounding environment and put them on a map.

The other complementary technique is visual-based, meaning that perception

is carried out using images produced by a camera. A camera is a device contain-

11

Figure 3.1: The principle behind LIDAR technology.

Figure 3.2: Two different resolutions sensors, from Velodyne.

12

ing an image sensor that converts light reflected by objects into current signals

producing an image. The basic camera model is the pinhole camera model, de-

picted in figure 3.3. Light passing through the hole is captured by the sensor,

and impressed in an image. A virtual image plane is then added to avoid having

the image visualized upside-down.

Figure 3.3: The pinhole camera model, with added virtual image plane.

In this work, we will deal with a stereo camera, so it is worth spending some

words to introduce this setup.

A stereo system is composed of two or more usually identical cameras, rigidly

mounted and framing the same scene from different points of view. Being known

the rigid body transformation between the two sensors, it is possible to estimate

the depth of a 3D point by using triangulation techniques.

Independently from the sensor, the first operations to do when gathering

perceived data are denoising and undistortion, if necessary.

The second one is to extract and track relevant features, such as points,

corners, lines, or entire regions, that will be used as landmarks for the robot’s po-

sition estimation. Tracking these features means following them across individual

consecutive frames, by establishing a correspondence between what is currently

seen and what we expect to see. This is also known as data association, and it is

of crucial importance to minimize the error of mapping algorithms.

Finally, by means of optimization, the robot’s pose is estimated and the

world map is refined. Correctly assigning data association constraints will allow

the optimization to converge faster to an accurate estimate.

13

3.2 Simultaneous Localization And Mapping

(SLAM)

SLAM stands for simultaneous localization and mapping. It is a widely studied

robotic problem, that finds application whenever a system moves autonomously in

an unknown environment: to reach its goal, the robot must be able to construct

a precise model of the surrounding world and of the trajectory it is pursuing.

Moreover, it must be able to localize itself inside the created map.

To achieve these goals, the robot exploits its sensors to observe the world and

obtain information about the scene (e.g., landmarks). Landmarks will be then

used to create the map and as reference points for the localization.

Being sensor measurements affected by noise, the robot trajectory and the

created map must be described in a probabilistic way.

To formally define the problem [11], at each time instant t, we can define:

• xt: the state vector describing the current position and orientation of the

vehicle;

• ut: the control vector to move from state xt−1 to state xt;

• mi: the vector describing the i-th landmark location;

• zt: the observation the landmarks at time t.

According to this notation, the SLAM problem can be stated as

P (xt,m|z0:t,u0:t) = P (xt, |z0:t,u0:t)P (m|x0:t, z0:t), (3.1)

where writing 0 : t denotes the series of the specified values until time t.

The aforementioned probability distribution, obtained given the recorded ob-

servations and the control inputs until time t, together with the initial state of

the vehicle, is the joint posterior density of the landmark locations and vehicle

state at time t.

From 3.1, it is clear that simultaneous localization and mapping is composed

by two sub-problem, the observation model and the motion model.

The former describes how the sensor measurements are mapped into the

world, meaning the probability of making a certain observation, from a known

vehicle and landmark locations:

P (zt, |xt,m), (3.2)

14

The latter represents how the state evolves in time, meaning how the previous

position and control input lead to the new state :

P (xt, |xt−1,ut), (3.3)

To summarize, the vehicle state and the world map will be continuously

updated with the motion: new landmarks, perceived through sensors, will be

tested for association with already mapped ones. In case of positive outcome,

the two landmarks will be associated, otherwise the new one will be added to the

map.

The current state-of-the-art relies on three main approaches to tackle the

SLAM problem: Kalman filters, particles filters or graphs. Since this thesis

focuses only on the third method, the mathematical formulation of graph-based

SLAM will be formally stated below, according to [12].

The simultaneous localization and mapping problem can be modeled by means

of a graph whose nodes represent the poses of the robot in different time moments,

and edges impose constraints between them. Exploiting various sensors, obser-

vations of the environment are gathered and used to obtain such constraints.

Solving SLAM means creating a map by finding the spatial configuration of

the graph vertices that is most compatible with the measurements represented

by edges.

Figure 3.4: Mathematical configuration of the graph used to represent the SLAM problem.

A common graph configuration for the SLAM problem is depicted in figure

3.4. Each pair of vertices xi and xj is connected by an edge according to the

measurement zij. The expected measurement ẑij is the prediction of the mea-

surement zij given a configuration for the nodes xi and xj. The ellipsoid around

15

zij in figure 3.4 is the information matrix Ωij, representing the uncertainty that

we have on the measurement.

Finally, the error encoded in the edges will be defined as follows :

eij(xi,xj) = ẑij − zij, (3.4)

and it represents, in general, the difference between the expected measurement

and the real measurement.

Defining C as the set of pairs of indices for which an observation exists, the

goal of the SLAM back-end optimizer is to minimize

F (x) =
∑

(ij)∈C

eTijΩijeij (3.5)

in order to find the optimal configuration of the nodes x∗ such as

x∗ = argmin
x

F (x) (3.6)

16

Chapter 4

Simulation environment

4.1 Importance of simulation

A simulation is an imitation, over time, of how a process or a system might work

in the real world. This is possible thanks to models of the involved process,

reflecting its essential traits or behaviors. Any software development activity, in

general, benefits greatly from having a controlled environment for testing and

evaluating the different components.

Referring specifically to the main focus of this thesis, the simultaneous lo-

calization and mapping pipeline, a series of advantages given by the use of a

simulator can be listed.

First of all, a virtual environment provides ground truth data, essential for

proper benchmarking and algorithm evaluation. In SLAM, having such data

means having a precise knowledge of the vehicle’s real position and of landmarks’

configuration. So, by comparing the estimated values with the actual ones, the

accuracy and robustness of the proposed solution can be assessed.

Performance assessment is even more consistent if repeatable experiments can

be carried out: the tested conditions can be precisely replicated thanks to saving

and playing back simulated sensors data. In this way, evaluating the effects of

the different components of the pipeline becomes simpler.

Sensor simulation is another crucial feature, which allows us to realistically

deal with sensors modeling and calibration. By mimicking sensors’ noise, distor-

tion, parameter calibrations, and other aspects influencing SLAM performance,

the behavior in the real world can be studied in advance with respect to the re-

lease time. Moreover, this is extremely useful in cases where the real platform is

not available to make continuous or periodic tests.

17

Safety is a core issue when testing the algorithm in real systems. Especially

when tackling problems such as SLAM, navigation, and control of an autonomous

system, testing the pipeline in the real world can be dangerous, both for the vehi-

cle and for the surroundings. Experiments with different conditions can be safely

performed in the virtual world, without the risk of injuring people or damag-

ing things. So, the amount of errors that could arise when testing in real-world

scenario can be minimized through extensive testing in simulation.

Finally, scalability and rapid testing of many different environmental configu-

rations cannot be underestimated. Having the possibility to validate the solutions

on a variety of cases, without requiring any expensive and time-consuming phys-

ical installation, allows developers to perform deep testing and and evaluate the

accuracy and adaptability of their algorithms.

To conclude, simulation represents a safe, efficient, and cost-effective instru-

ment to develop and validate complex algorithms before releasing them into a

real system.

4.2 EUFSSIM

As reported in section 1.2, Formula Student imposes a precisely-structured but

challenging environment, where the track is delimited by colored cones and is

designed according to specific rules. For this reason, without a realistic simulator,

it would be impossible to reproduce scenarios suited for testing.

The Formula Student team of the University of Edinburgh developed and

made freely available a simulation platform named EUFSSIM (Edinburgh Uni-

versity Formula Student Simulator) [13]. Of course, only a subset of the entire

system has been made open-source. It is based on Gazebo and ROS2 and al-

lows testing software on rule-compliant tracks being part of dynamic events in

the competitions. The platform is modular and customizable, meaning that new

tracks, new vehicle models, and new sensors can be added. Moreover, the en-

vironment is highly-configurable, allowing to change command modes, weather

conditions, and vehicle dynamic/kinematic model. In figure 4.1, it can be seen

an example of a simulated track, with the custom RaceUP car model inserted.

It is composed of a set of ROS packages and plugins exchanging information

according to a state machine structure, designed in compliance with 2020 rules

depicted in figure 4.2. Precisely analyzing such schema goes behind the purpose of

this thesis, in few words it defines conditions to switch among different car states.

18

Figure 4.1: An example of simulated car and track.

For example, if the Emergency Brake System is activated, the Autonomous Sys-

tem enters the emergency state and the Ready To Drive is deactivated, together

with the Tractive System.

A relevant feature for this thesis is the Manual Driving state. As the name

says, it allows to manually drive the vehicle along the track through the provided

Graphical User Interface (GUI) or a keyboard. For our pipeline, indeed, it is not

strictly necessary having the vehicle running by itself: it is sufficient to get sensor

data to perceive the environment and execute all the algorithms.

Coming back to the customization possibilities given by the tool, the Track

Generator feature has been exploited to insert a new track into the simulation.

This track, depicted in figure 4.3, has been specifically designed for the data

acquisition performed with a real car, as will be deeply explained in chapter 7.

This module works when an accurately formatted image, representing the layout

of the new track, is given as input. This image is a png file, with specific pixels

colors in RGBA format encoding the different elements of the track:

• the background of the starting image must be completely white;

• pixels representing yellow cones are encoded with magenta;

• pixels representing blue cones are encoded with blue;

• pixels representing small orange cones are encoded with orange;

• pixels representing big orange cones are encoded with dark orange;

• the pixel representing the car is encoded in green.

19

Figure 4.2: The current state machine on which EUFS simulator is based.

Regarding the green pixel, its alpha value is used for encoding the car heading,

through conversion to an angle in radians.

The last important step to generate a new track is the computation of the

scale pixel value, meaning the (0,0) metadata pixel encoding the dimension of the

racetrack. Its value represents the conversion factor between pixels and meters,

meaning how many square meters a pixel represents. The conversion is made by

taking the pixel value in the range (1, 254), mapping it into a 4-digit base-254

number, and then applying linear interpolation to normalize it into the range

(0.0001, 100) in square meters. This image is then used by the track generation

module, which creates all the necessary files for the simulation of the environment.

The last modification made to the simulation regards the car model: our

custom vehicle has been inserted in place of Edinburgh’s team car, by adapting

RaceUP’s CAD model. Moreover, the sensors mounted on it have been aligned

with our setup, in particular for what concerns the simulation of the LIDAR.

More details on the sensorization of the car will be given in chapter 7.

Going more into technical details, the simulator can be utilized in two con-

figurations, depending if the simulated perception is activated or not. In the

first case, the output of the perception are not raw sensor measurements, but

directly the processed results that one would have applying front-end algorithms,

20

Figure 4.3: The custom track, inserted into the simulator.

like the coordinates of cones’ positions. In the second case, raw sensor data is

available, such as the LIDAR point clouds, to be processed by the user’s percep-

tion pipeline. To clarify this concept, a simple example is presented. If a SLAM

algorithm has to be tested, it only needs a set of coordinates representing the

cones: in this case, the simulated perception is perfect since it directly provides

such data. If, instead, a cone detection algorithm must be evaluated, the user can

deactivate the simulated perception, in order to process raw data from camera

and/or LIDAR.

Data publishing is handled by two plugins, one for cones-related information,

and the other for vehicle data like kinematic state or transformations between

reference frames.

The majority of this thesis has been developed by exploiting the simulated

perception data, in particular cones positions and colors, and odometry data.

About this last information, we started by using the already integrated odometry,

meaning that the simulator gives directly the car pose as output. Then, to make

the proposed solution more adherent to reality, we switched to directly integrating

kinematic commands, as explained in section 5.2.3.

21

22

Chapter 5

GraphSLAM

As explained when reviewing the theoretical background in chapter 3, a SLAM

module is composed of a front-end and a back-end. The main focus of my thesis is

on the latter, so on the component which deals with the refinement of the robot’s

state given the measurements coming from different sensors, and the creation of

a map that represents the surrounding environment.

In the latest years, graph-based back-ends for simultaneous localization and

mapping have become more and more popular due to the advantages with re-

spect to other available solutions. As highlighted in chapter 2, in recent years the

tendency of the most competitive teams is to switch to a graph-based approach,

confirming the more promising results of this algorithm. First of all, the graph-

based formulation of the problem allows to exploit the natural sparseness of the

SLAM problem, making fast problem-specific operation possible. Secondly, the

graph-based SLAM solves the full SLAM problem, optimizing also past informa-

tion. Keeping past information is fundamental for two reasons: it improves the

state estimation, and it makes the optimization process more resilient to outliers.

Finally, being a very general mathematical formulation, it is easy to extend to

particular use cases.

5.1 Graph construction

As a side note before starting the discussion of this chapter, in this context vertex

and node of a graph are used as synonyms.

There are many different types of graph-based optimizable structures, de-

pending mainly on the information that they hold and on the construction tech-

nique.

23

The mathematical basis for all of them is the so-called factor graph.

It is a generic structure, a weighted graph that can hold different types of

nodes and edges altogether, allowing the encoding of a wide set of constraints.

Each node represents a state variable, for example, a robot position or a land-

mark in the environment, while edges represent measurements. Thanks to this

generic structure, optimization is not limited to the vehicle’s state, but can also

be extended to the environment map.

A particular case of factor-graph is the pose graph, shown in figure 5.1: it

contains only vertices representing the robot’s state over time, and edges con-

necting pairs of such poses. When dealing with this type of representation, only

the robot state can be optimized, since it is the only data included in the problem

formulation.

Figure 5.1: The pose graph structure.

In the case of SLAM, we are interested in both estimating the trajectory of

the robot and building a map of the environment, which is usually expressed

as a set of landmarks. Instead of having only vertices related to the state of

the robot, now they are also used for representing landmarks. Similarly, we will

impose landmark and odometry edges, holding their respective observations. The

former connects a vehicle’s pose with all the landmarks observed from that point

in the map, while the latter connects two pose nodes, holding motion data as

measurement. Such structure is depicted in figure 5.2.

Focusing on the Formula Student Driverless scenario, the factor graph is

implemented following the structure reported in figure 3.4 and mathematically

24

Figure 5.2: The factor graph structure.

described in chapter 3. Each landmark node represents a cone position, pa-

rameterized with (x, y) coordinates, while each pose vertex holds the car’s pose

described by (x, y, θ), where θ is an orientation angle denoting the heading of the

vehicle.

Analyzing the graph edges, each of them encodes a spatial constraint between

the two vertices it connects, and in particular, this implementation involves:

• odometry edges linking two consecutive car pose nodes xi and xj;

• odometry edges linking two non-consecutive car poses, also named loop

closure constraints (see section 5.2.5);

• landmark edges, having as extremes a pose vertex and a landmark one.

Later, another custom type of edge will be added to the graph to make the motion

more realistic, as explained in section 5.2.6.

Finally, measurements need to be assigned to each mathematical constraint:

odometry edges are defined by the relative 2D rigid body transformation between

the two poses, while landmark edges hold the relative observation of the landmark

from the current position in the map.

A deeper explanation of the proposed implementation is now reported, giving

more details about the actual graph construction in terms of processing and usage

of incoming sensor data.

In the first experiment, ground truth data coming from the simulator has been

used to populate the graph. Then, once ensured that the system was working at

least in an ideal scenario, noisy data have been added by perturbing cones and

25

car positions with Gaussian noise. The graph construction pipeline is exactly the

same in both cases, so it will be illustrated only once.

The basic idea is to synchronize information coming from the perception

pipeline with the one coming from the odometry of the car, in order to compute

an estimate of the current pose of the vehicle and an estimate of the positions

of the cones observed at each time. For efficiency and processing time reasons,

incoming data has been subject to time quantization according to a parameter

that can be tuned depending on the available computational resources.

First, consider the odometry information processing, to deal with the portion

of the graph encoding the trajectory of the vehicle. This part is very straightfor-

ward since a new pose node is created and inserted into the factor graph whenever

a new car state can be computed: as a brief reminder, the car state is character-

ized by position and orientation in a certain time instant. Edges connecting two

pose vertices are simply characterized by their relative spatial transformation.

Then, consider the insertion into the graph of landmark vertices and edges:

perceived cones’ positions and colors received from the front-end pipeline are

converted into the map reference frame and incorporated into the world model.

An initialization procedure is performed only once when the graph is still

empty. All the colored cones observed during the first scan are directly inserted

as landmark nodes, without further controls. Contextually, a landmark edge

connecting the initial pose with each observation is added, holding the relative

coordinates of the perceived cone with respect to the car reference frame as mea-

surement. This special step is done to avoid pointless checking for data association

for these measurements, given that the vehicle is still in the initial map pose and

there isn’t any landmark yet.

If the graph is already initialized, whenever a new cone is perceived, the data

association algorithm is run. By doing this, we detect if the vehicle is observing

a new landmark or if it is just observing an existing one. Details about how data

association is performed will be explained in section 5.2.4. Depending on the

output of this algorithm, we can distinguish two different ways of modifying the

graph:

• if the observed cone is associated with an existing one, then only a landmark

edge between the current pose and the associated landmark vertex is added;

• if we are not able to associate it with existing landmarks, then a new cone

node is created and added to the graph, together with the corresponding

edge, as explained before.

26

The last thing worth noting about the construction of the factor graph is

the decoupling between data collection and graph construction and modification.

Data collection consists in gathering sensor measurements regarding the perceived

environment and storing them for later use. Graph construction means putting

this data into a mathematical formulation, to construct an optimizable structure

representing the problem.

The idea is to have two separate threads, one that is continuously active in

the foreground and the other one running in the background. The former is in

charge of collecting sensors output and storing it immediately, without the risk

of information loss, while the latter process the queue data in a safe way.

This feature is not fully implemented yet, but a simplified version is used to

handle data collection during the optimization phase, which modifies the struc-

ture of the graph. For this reason, incoming data received when optimization is

running is kept pending until it has been completed. In this way, concurrency

issues that may arise from the simultaneous modification of the structure can be

avoided.

5.2 Algorithm implementation

5.2.1 g2o framework

Before starting with the details about the implemented SLAM algorithm, the

library used for the factor graph optimization will be introduced.

To begin with, we provide an explanation for the crucial role of optimization

in solving SLAM. As depicted in figure 5.3, the estimated trajectory of the ve-

hicle does not align perfectly with the actual trajectory. This discrepancy arises

due to errors introduced by factors such as sensor noise, and accumulated drift.

Consequently, the estimated positions of landmarks also deviate from their ac-

tual locations. The purpose of optimization in SLAM is to tackle this issue. By

establishing mathematical constraints between graph vertices, and leveraging the

motion and measurement models, it becomes possible to minimize the estimation

error.

g2o [15] stands for ”general graph optimization”. It’s an open-source state-of-

the-art general optimization framework, largely exploited to solve many popular

problems related to graph optimization, such as SLAM and bundle adjustment.

The framework generality allows for easy extensibility, making it possible to de-

fine new types of problems, as long as they can be formulated as least squares

27

Figure 5.3: Why we need to optimize: landmarks being observed at different positions along the
robot’s trajectory [14].

Figure 5.4: How to represent an objective function by a graph: each xi is a parameter block, Ωij is
the information matrix of the constraint relating parameters xi and xj , eij is a vector
error function measuring how well xi and xj satisfy the constraint zij .

optimization problems. Being that these problems can be represented as graphs,

as depicted in figure 5.4, defining new problems means that appropriate nodes

and error functions need to be chosen or even defined if they don’t exist already.

Despite being general and extensible, another important advantage given by g2o

is its efficiency, obtained by exploiting the sparse connectivity of the graph and

the particular structure recurring in the aforementioned problems.

In the particular context of this thesis, g2o is used for the creation, handling,

and optimization of the factor graph holding 2D positions of the traffic cones and

2D poses of the car. Going into implementation details, the following data types

are used for the construction of the graph:

• g2o::VertexPointXY are landmark nodes described using the following

state variable xlj = [x, y];

28

• g2o::VertexSE2 are the nodes that are going to be used to represent the

car 2D poses. It encodes the state variable xri = [x, y, θ];

• g2o::EdgeSE2 for odometry edges, that connect two nodes xri and xrj . The

observation Zij is an isometry that encodes the transformation from pose

xri to xrj .

The error that describes the edges is formulated as follows :

eij(xri ,xrj) = (X−1
rj
Xri)Zij, (5.1)

where the uppercase bold notation represents the transformation matrix

encoding the pose of the robot;

• g2o::EdgeSE2PointXY for observation edges, connecting a pose node xri to

a landmark node xlj . The observation

zij = [xl, yl]

is the relative position of the cone with respect to the car. The error that

describes this kind of edge is formulated as follows :

eij(xri ,xlj) = X−1
ri

[

xlj

1

]

− zij. (5.2)

As a brief reminder, in mathematics SE(2) denotes a special Euclidean group of

dimension 2. It is a group of direct Euclidean isometries, that is transformations

in the Euclidean space that preserve the distance between any two points and

the handedness of figures. More formally, given two spaces X and Y , where the

metrics dX and dY are defined, a map f : X −→ Y is called isometry if, for any a,

b ∈ X it holds

dX(a, b) = dY (f(a), f(b)) (5.3)

For this reason, only translations and rotations are allowed in this group, not

reflections [16].

5.2.2 Graph optimization

Optimizing a factor graph means finding the configuration of robot and landmark

positions that is most consistent with the observations in the edges. In this work,

two different ways of executing graph optimization have been studied and tested.

29

The first one involves performing only a global optimization once every a cer-

tain amount of time, or when loop closure has been detected. Global optimization

means that the whole graph is optimized to find the node’s configuration mini-

mizing the error function over the entire map. So, measurements and constraints

provided by all the edges are considered in the computation of the error.

The second technique is an incremental procedure, meaning that local opti-

mization is run once every certain number of pose nodes has been inserted into

the graph. Local optimization means that only a small subset of the graph is

optimized at each time, finding the configuration of nodes that best satisfies the

constraints in a precisely defined neighborhood. In this way, just the last part

of the map is optimized, without taking into consideration the entire trajectory

since the beginning of the motion. In addition, a periodic global optimization is

performed, as in the first case.

The main advantage of the second approach is to detect and correct errors

locally, reducing their impact on the integration along with the vehicle’s motion.

Once the optimizer has corrected a portion of the graph, all the nodes composing

it are set as fixed: this means that those vertices will be no more involved in the

subsequent local optimizations, and their values will be kept unchanged until the

next global optimization is run.

Also from a conceptual point of view, local optimization of relative poses is

more suitable to the scenario we are dealing with, since measurements and car

states are available in real-time.

In both cases, Levenberg-Marquardt has been select as optimization algo-

rithm, in combination with a block solver to resolve the linearized system. This

choice is pretty common when dealing with non-linear optimization problems

since it is a trade-off between the Gauss-Newton method [17], faster but less

robust, and the gradient descent procedure [18], which is more robust but slower.

Qualitative and quantitative results obtained from both approaches will be

exposed in section 5.3.

5.2.3 Motion model

In the specific context of this thesis, and following the Ackermann motion model

[19], the variables exploited for motion integration are:

• the position of the vehicle, represented by x and y coordinates;

• the orientation of the vehicle, represented by the angle θ;

30

• the linear velocity;

• the steering angle.

Together with the car state, we need to retrieve some important kinematic pa-

rameters, fundamental to perform motion integration: car wheelbase, linear ac-

celeration, and steering angle velocity, that is the steering rate of the autonomous

system.

Once the car state and all the necessary parameters are available, odometry

data can be integrated according to the following equations:

ẋ = v ∗ cos θ

ẏ = v ∗ sin θ

v̇ = a

δ̇ = φ

θ̇ = v/W ∗ tan δ

(5.4)

where x, y are the vehicle 2D position coordinates in map frame, v is the

linear velocity, θ is the vehicle orientation angle, a is the linear acceleration, δ is

the steering angle, φ is the steering angle velocity, and W is the wheelbase.

Finally, the new state at time t + 1 can be computed, updating the current

state at time t according to the kinematic model of the system:

xt+1 = xt + ẋ ∗ dt

yt+1 = yt + ẏ ∗ dt

θt+1 = θt + θ̇ ∗ dt

vt+1 = vt + v̇ ∗ dt

δt+1 = δt + δ̇ ∗ dt

(5.5)

where dt is the time passed between sensor readings.

The odometry edges’ measurements are computed according to the kinematic

model aforementioned. The implementation of this model will allow a more direct

transition from the simulator, which was already providing motion integration

using the Ackermann model, to a real application.

31

5.2.4 Data association

Data association tries to solve a correspondence problem. Considering the SLAM

scenario, it is the process of relating observations coming from the sensors with

elements of the environment. It plays a key role in estimation pipelines, strongly

influencing the quality of the convergence of the problem’s result. If the asso-

ciation is not correct, indeed, the error of the system will explode, making the

optimization diverge.

Despite being crucial for the performance of the entire pipeline, many diffi-

culties are encountered when trying to solve it: detection uncertainty, occlusion,

ambiguities, multiple targets, and so on.

Two main approaches are usually applied to tackle the data association prob-

lem, Bayesian or Non-Bayesian. The former computes a full probability distri-

bution from priors, posterior beliefs, and observations, the latter computes a

maximum likelihood estimate from a set of possible solutions.

What we have chosen to apply in this work is Nearest Neighbor filtering, which

belongs to the non-Bayesian family. The idea is to compute the distance between

the expected measurement, computed from the current estimates of landmarks

and poses, and the received one. In our specific scenario, when a cone is observed,

it is matched against all the landmark nodes already in the graph. It is then

associated with the nearest one if their distance is below a certain threshold.

This approach is quite simple to implement, but it may integrate some wrong

measurements and produce overconfident estimates. Despite that, it works pretty

well if the current estimates are accurate enough. Combined with an incremental

local optimization of the graph, results could improve a lot.

From a theoretical point of view, Mahalanobis distance is the more appro-

priate metric to use since it considers position, uncertainty, and correlations.

However, in this thesis, we tested the data association using the Euclidean dis-

tance, which takes into account only the position. As a future step, it would be

interesting to make a comparison between the use of the Euclidean distance and

the use of the Mahalanobis distance for the association.

5.2.5 Loop closure

Loop closure is probably the most crucial task when performing simultaneous

localization and mapping: it has the purpose to identify previously visited loca-

tions and use them to correct the accumulated drift on the trajectory. If a loop

32

Figure 5.5: Example of loop closure.

closure has been detected, the current pose estimate xti will be constrained to a

previous pose xtj , where tj < ti. The constraint consists on adding spatial rela-

tion between the two poses, due to the fact that they are in the same location.

Thanks to this additional constraint, the drift accumulated from tj to ti will be

corrected as shown in figure 5.5. Practically, it consists on adding to the graph

an odometry edge between xti and xtj , which has as a measurement the relative

transformation provided by the loop closure module.

In general scenarios, loop closure is achieved by exploiting camera-based

methods or LIDAR-based ones.

In vision-based techniques, distinctive features, like corners and edges, can be

extracted from camera images exploiting algorithms like SIFT [20], SURF [21],

and ORB [22]. Descriptors of these features can then be matched against the

ones in the previous images, taking as reference a database of features that has

being built over time. If correspondence goes above a certain threshold, then the

two images can be considered framing the same place. For example, using a Bag

Of Words [23] approach, matching the descriptors to visual words of a fixed-size

vocabulary, the autonomous vehicle is able to recognize already visited places.

Similarly, point clouds coming from a LIDAR sensor can be aligned with

a set of previously captured point clouds, that represents a candidate for loop

closure. If the alignment with the minimum score is successful, meaning that the

aforementioned score is under a defined threshold, a loop is detected. Iterative

Closest Point Algorithm [24] is a typical algorithm used to perform point cloud

alignment.

Unfortunately, in our particular scenario, none of these methods gave satisfac-

33

tory results: the presence of large untextured areas, the ambiguity of the cones,

and the extreme sparsity of the point clouds caused by the low-resolution LIDAR

made impossible the successful extraction and matching of relevant features using

classic techniques.

For this reason, in my thesis, the first version of loop closure detector has been

implemented in a very simple and effective way: exploiting the prior knowledge

that we have about the Formula Student racing environment. Since we know that

big orange cones are used to mark the start of the track, once we detect them

as explained in section 5.2.5, an odometry edge between the current pose and

the initial pose of the graph is added. The proposed solution works under the

assumption that the big orange cones are positioned only at the starting line of

the track. A future improvement could be making the module more resilient to

outliers, and to dynamic events that could break our working assumption.

5.2.6 Additional motion constraint

An autonomous platform, whether robot or vehicle, is said to be holonomic if it

can freely move in any direction in space, meaning that the controllable degrees

of freedom are equal to the total degrees of freedom. This particular condition

can be realized thanks to special types of wheels, such as omnidirectional and

Mecanum ones, depicted in figure 5.6a and 5.6b respectively.

A Formula Student single-seater is a non-holonomic vehicle. As a conse-

quence, some movements such as the translations along the perpendicular to the

direction of motion, are not allowed. The odometry constraint that we enforce

on the motion is more general, and it does not consider the banned movements.

A non-holonomic vehicle, indeed, moves along a circumference whose center

is called Instantaneous Centre of Rotation (ICR), as you can see in figure 5.7.

The ICR is defined as the point in the robot frame that instantaneously does not

move in relation to the robot [25].

Therefore, the trajectory of the race car can be decomposed into a sequence

of consecutive displacements around this fixed point and can be parameterized

on the radius of curvature ρ and the traveled angle ω. Formally, ρ is the vector

connecting the center of the rear axis of the car with the ICR, and it is collinear

with the posterior axle itself. ω, instead, is the angle between the vector ρ and

the vector connecting the ICR with the center of the front axle.

To enforce motion around an ICR constraint, a custom type of edge named

g2o::Edge2ICR has been implemented and defined using Eq(5.9) and added to

34

(a) Omnidirectional wheel. (b) Mecanum wheel

Figure 5.6: Examples of wheels for holonomic motion.

Figure 5.7: Simple representation of ICR.

35

the graph. In this way when optimizing, the solutions that have infeasible car

motions will be discarded.

The mathematical derivation of the constraint, added between consecutive

pairs of poses at time t and t+ 1, is as follows:

• compute the relative motion between the two poses

dx = xt+1 − xt

dy = yt+1 − yt

dθ = θt+1 − θt

(5.6)

• compute the motion magnitude

ρ =
√

dx ∗ dx+ dy ∗ dy (5.7)

• compute the expected motion

ḋx = ρ ∗ cos
dθ

2

ḋy = ρ ∗ sin
dθ

2

(5.8)

• compute the residual

eicr(xt, xt+1) =
[

ḋx− dx, ḋy − dy
]

′

(5.9)

Finally, the resulting constraint can be expressed as

eicr(xt, xt+1)
TΩeicr(xt, xt+1) (5.10)

where Ω =

[

1/ρ 0

0 1/ρ

]

is the 2x2 diagonal information matrix.

5.3 Algorithm evaluation

Evaluation of the proposed implementation can be performed both qualitatively

and quantitatively. The idea is to compare the output of the simultaneous local-

ization and mapping algorithm with the ground truth provided by the simulator.

More than comparing the obtained values with the performance reached by other

36

algorithms, the goal of this evaluation is to show the improvements deriving from

the addition of the different blocks, such as the incremental graph optimization.

A true comparison with other benchmarks, by the way, is not actually possible,

since no other implementations of SLAM modules specific to the Formula Student

Driverless scenario are available.

In the first part of this section, metrics used to evaluate the proposed algo-

rithm are illustrated. In the second part, instead, qualitative and quantitative

results arising from the various experiments will be shown.

5.3.1 Metrics

It is necessary to establish a clear distinction between the evaluation of the ac-

quired trajectory and the evaluation of the acquired map concerning the detection

and mapping of cones.

To check the quality of the cones’ positions estimated, the following metrics

are computed:

• ratio between the number of mapped cones and the actual number of cones

in the considered track. This metric will give a first idea about how well the

data association algorithm performed. If the mapped cones are too much

with respect to the ground truth ones, it means that new landmarks are

generated, even when they should be associated with already existing ones.

The possible reasons for this behavior to occur are the following: the error

metric between a new candidate landmark and existing ones is too high

with respect to a threshold, the corresponding threshold is constraining

too tightly the error, or the chosen error metric for the data association

inadequately represents the problem.

• percentage of True Positive, True Negative, False Positive, and False Nega-

tive associations, computed as the ratio between the number of occurrences

of each event and the total number of association tests performed during

the mapping phase.

It is worth spending a few words to deepen the four metrics related to data

association. To compute these values, association tests executed with ideal and

estimated data are compared.

• True Positive(TP): if the association using ideal and estimated information

links the new measurement to the same existing cone.

37

• True Negative(TN): if the association using ideal and estimated information

both agree that the new measurement represents a new cone.

• False Positive(FP): if the association using ideal and estimated information

links the new measurement to a different existing cone. Or also when the

association using ideal information deems that the received measurement

corresponds to a new cone, while instead the one using estimated informa-

tion wrongly associates it to an existing cone.

• False Negative(FN): if the association using ideal information is able to find

a correspondence, while the association using estimated information deems

that the measured cone is actually a new landmark.

Regarding the estimated trajectory, instead, two state-of-the-art metrics widely

used to evaluate SLAM benchmarks are considered: Absolute Pose Error, also

known as Absolute Translation Error, and Relative Pose Error [26].

Absolute Position Error, or APE, measures the error of the vehicle position

with respect to the ground truth trajectory. Before the computation, the two

trajectories must be aligned one with the other, since they can be specified in

arbitrary coordinate frames. With this metric, global consistency is tested, by

checking the absolute error between two trajectories.

Relative Pose Error, or RPE, measures the error of the transformation be-

tween two consecutive robot poses, with respect to the given ground truth relative

transformation. The goal is to check the local consistency of the motion, without

caring about global measurements.

More formally, given a sequence of poses composing the estimated trajectory

P1,,Pn and the ground truth one Q1,,Qn, the relative pose error at time

step i, over the time interval ∆, is defined as :

RPEi = (Q−1
i Qi+∆)

−1(P−1
i Pi+∆) (5.11)

Instead, given an alignment procedure that produces the rigid-body transfor-

mation S, to map the estimated trajectory P1:n into the ground truth trajectory

Q1:n, the absolute trajectory error at time step i is

APEi = Q−1
i SPi (5.12)

38

5.3.2 Experiments and results

Four experiments have been executed to test our proposed SLAM pipeline. For

each of them, qualitative results on both the obtained map and on the estimated

trajectory are presented. In the end, also two tables with quantitative metrics will

be analyzed, to incrementally compare the results of the different configurations.

For the graph images, green dots represent the discretized poses of the vehicle.

Red dots, instead, represent the mapped cones, expressed in the map reference

frame. The orange, blue and yellow markers, finally, are placed on the ground

truth positions of the cones in the track.

The first configuration that has been implemented includes motion integration

according to Ackermann model, ideal data association, loop closure, and global-

only graph optimization. Ideal data association means that observed cones are

tested for association with already mapped ones, by exploiting the ideal ground

truth coordinates provided by the simulator.

Starting from qualitative results, a visualization of the graph produced by

the mapping module is reported in figure 5.8.

As expected, it is easily noticeable how optimization improves the map. This

is due to the constraints given by the data association and the loop closure algo-

rithm, which allows to reduce the drift that was accumulated in the trajectory.

In fact, the start and the end point of the trajectories meet after the optimization

procedure converges.

The superimposition with the ground truth track is not particularly relevant

from a map-quality point of view, since the misalignment is due to a small differ-

ence between the two reference frames. The important aspect is that the shape

of the trajectory is preserved, indicating successful convergence.

By exploiting [27], visual evaluation charts for trajectories have been gener-

ated. In the top left corner of figure 5.9, a visualization of RPE is depicted: the

dashed line is the ground truth trajectory, while the colored one is the estimated

vehicle’s path. Here, the two trajectories have not been aligned, coherently with

the metric’s definition. According to the legend, the more bluish the line, the

lower the RPE. As expected, it is low along the entire trajectory, except from the

last corner where the error is slightly higher. This is due to the fact that there is

a small synchronization issue at the beginning of the simulation.

In the top right corner, instead, APE is shown. The results show that data

integration (motion and landmarks) is handled correctly since the correct shape

of the track is retrieved. It can be seen from the fact that the estimated trajectory

39

(a) Before optimization (b) After optimization

Figure 5.8: EXP1: map and optimization results

is almost perfectly aligned with the reference one in figure 5.9a. In table 5.1 are

reported the different quantitative metrics, that later will be commented on to

confirm the correct execution of the SLAM pipeline.

Lastly, in the bottom part of the figure, a comparison between real and opti-

mized values of the components of the state x, y, and θ is reported. This small

variation between the compared values further confirms our claims.

The second configuration that has been implemented adds the ICR constraint

with respect to the scenario of experiment 1, and is depicted in figure 5.10. As a

brief reminder, ICR is an additional constraint added between pairs of pose nodes

to ensure the executability of the estimated motion for a non-holonomic vehicle.

By looking at the obtained map, results are comparable with respect to the

previous case: the optimization still works well, and the loop is correctly closed.

Analyzing the metrics, ICR is not particularly influent on the relative pose

error, and results on the relative consistency are comparable with the previous

case. The absolute pose error, instead, gives better performance adding this ad-

ditional constraint, reducing the error of about 20 centimeters in mean. Implying

that the constraint has a positive impact on the global consistency of the map.

The third configuration that has been implemented adds the incremental

optimization with respect to the scenario of experiment 2. This means that the

graph is no more optimized only globally, at the end of the lap, when loop closure

is detected. Now, once every a fixed number of new pose nodes have been inserted,

the local optimization is performed on the active portion of the graph, that is

composed mainly by the latest nodes. The method follows a sliding-window style

40

(a) RPE w.r.t. rotation angle (in deg) for
delta=1.0 (m) using consecutive pairs

(b) APE w.r.t. translation part (m) (with
SE(3) Umeyama alignment)

(c) Trajectory

Figure 5.9: EXP1: trajectory results

41

(a) Before optimization (b) After optimization

Figure 5.10: EXP2: map and optimization results

approach. As soon as the latest set of nodes is optimized, they are then set to

fixed, in order to exclude them from the future optimizations, reducing time and

complexity of the problem to solve. With this incremental approach, error is

corrected periodically, allowing the global optimization to converge faster due to

being closer to the optimum value.

As expected, both qualitative and quantitative results show a huge improve-

ment on the performance of the simultaneous localization and mapping algorithm,

resulting in lower trajectory estimation error, and higher quality of the created

map. In particular, observing the graph in 5.12b, an almost perfect estimation

of the cones has been performed in the majority of the track. The high quality

results are also noticeable in 5.13a and 5.13b, where the last corner estimation

reports higher fidelity of the trajectory with respect to the previous cases.

The fourth configuration that has been implemented replaces the ideal data

association with the real one, computed with Euclidean distance. This means

that observed cones are tested for association with already mapped ones, by

comparing the estimated coordinates, and no more the ground truth data. As

expected, here the performance of the system gets worse results, because we

add an error in the association of observations and landmarks, introducing local

minimas in the solution space. This can be immediately noticed by looking at

the optimized graph in 5.14b, where an anomaly remains in the last section of the

track even after the optimization steps. This behaviour confirms that Euclidean

distance is not the most appropriate technique to perform such association, since

it does not consider important aspects like the correlation between the different

42

(a) RPE w.r.t. rotation angle (in deg) for
delta=1.0 (m) using consecutive pairs

(b) APE w.r.t. translation part (m) (with
SE(3) Umeyama alignment)

(c) Trajectory

Figure 5.11: EXP2: trajectory results

43

(a) Before optimization (b) After optimization

Figure 5.12: EXP3: map and optimization results

(a) RPE w.r.t. rotation angle (in deg) for
delta=1.0 (m) using consecutive pairs

(b) APE w.r.t. translation part (m) (with
SE(3) Umeyama alignment)

(c) Trajectory

Figure 5.13: EXP3: trajectory results

44

(a) Before optimization (b) After optimization

Figure 5.14: EXP4: map and optimization results

EXPERIMENT 1 EXPERIMENT 2 EXPERIMENT 3 EXPERIMENT 4
max 6.435884 5.309379 2.850375 10.299785
min 0.002899 0.003774 0.006694 0.004104
mean 0.819888 0.871201 0.729945 0.875245
rmse 1.293808 1.301008 0.952769 1.450978

RPE
[m]

std 1.000861 0.966246 0.612330 1.157273
max 1.629269 1.764260 0.751472 5.490941
min 0.007230 0.007921 0.025071 0.113987
mean 0.421073 0.401338 0.288106 1.076611
rmse 0.545399 0.536665 0.329692 1.399580

APE
[m]

std 0.346638 0.356282 0.160288 0.894278

Table 5.1: Comparison of trajectory metrics in the four experiments.

elements and how the system evolves.

In tables 5.2 and 5.1, numeric data about the aforementioned results are

reported, confirming what has emerged from the plots. In the first one, metrics

about trajectory evaluation are listed, while the second one contains cones-related

values. For each evaluation criterion, the best value among the four experiments

is highlighted in bold.

Now the final setup, the one used in experiment 4, will be tested on two other

virtual tracks taken from the simulator, denoted as TRACK 2 and TRACK 3.

Both qualitative and quantitative results on TRACK 2 show that our approach

can generalize quite well on sufficiently-constrained environments, so it is not

EXPERIMENT 1 EXPERIMENT 2 EXPERIMENT 3 EXPERIMENT 4
Mapped/GroundTruth 113/134 113/134 113/134 115/134
True Positive (TP) 80.11% 81.26% 87.78% 83.11%
True Negative (TN) 3.11% 3.18% 2.88% 3.13%
False Positive (FP) 11.06% 10.11% 8.16% 13.49%
False Negative (FN) 5.72% 5.45% 1.18% 0.26%

Table 5.2: Comparison of cones metrics in the four experiments.

45

(a) RPE w.r.t. rotation angle (in deg) for
delta=1.0 (m) using consecutive pairs

(b) APE w.r.t. translation part (m) (with
SE(3) Umeyama alignment)

(c) Trajectory

Figure 5.15: EXP4: trajectory results

46

dependent on the track shape. In TRACK 3, instead, results are quite worse,

and also the loop closure has not been correctly handled.

In both tracks, all the limitations of our data association algorithm arise:

• in TRACK 2, we map a number of cones that is lower than the actual one,

meaning that we have a lot of false positive associations;

• in TRACK 3, we map a number of cones that is slightly higher than the

actual one, but still acceptable.

Analyzing the resulting trajectories, for TRACK 2 we obtain satisfactory

results both regarding the absolute pose error and the relative pose error, meaning

that the algorithm performs quite well in this track configuration. For TRACK 3,

there is a bigger misalignment with respect to the ground truth trajectory, and

also the loop closure has not been correctly handled. The hypothesis is that

there are not enough constraints in the graph for the optimizer, so the shape is

not retrieved as well as in the previous cases.

Performing a more general analysis, these results confirm what we actually

stated at the beginning of this work: data association is fundamental to have a

robust pipeline. The back-end alone is not able to correct errors deriving from

wrong associations, and the front-end is an essential requirement to have a system

working correctly.

47

TRACK 2 TRACK 3
max 7.559016 5.070571
min 0.052654 0.036058
mean 1.859469 1.025821
rmse 2.344713 1.470736

RPE
[m]

std 1.428305 1.053924
max 3.333464 6.223878
min 0.115991 0.043243
mean 0.800667 1.728495
rmse 0.933397 2.017538

APE
[m]

std 0.479752 1.040560
Table 5.3: Comparison of trajectory metrics for TRACK 2 and TRACK 3

TRACK 2 TRACK 3
Mapped/GroundTruth 92/122 73/71
True Positive (TP) 60.70% 74.82%
True Negative (TN) 0.89% 2.51%
False Positive (FP) 37.74% 21.67%
False Negative (FN) 0.67% 1.00 %

Table 5.4: Comparison of cones metrics for TRACK 2 and TRACK 3

48

(a) Before optimization (b) After optimization

Figure 5.16: TRACK 2: map and optimization results

49

(a) RPE w.r.t. rotation angle (in deg) for
delta=1.0 (m) using consecutive pairs

(b) APE w.r.t. translation part (m) (with
SE(3) Umeyama alignment)

(c) Trajectory

Figure 5.17: TRACK 2: trajectory results

(a) Before optimization (b) After optimization

Figure 5.18: TRACK 3: map and optimization results

50

(a) RPE w.r.t. rotation angle (in deg) for
delta=1.0 (m) using consecutive pairs

(b) APE w.r.t. translation part (m) (with
SE(3) Umeyama alignment)

(c) Trajectory

Figure 5.19: TRACK 3: trajectory results

51

52

Chapter 6

Perception building blocks

Perception is a fundamental task for autonomous driving and usually provides

input data to the localization and mapping algorithms. Developing a full front

end for the SLAM module goes beyond the purpose of this thesis, but some

smaller blocks have been tackled, putting the bases for the actual perception

pipeline. Following the trend that emerged from other teams, the idea of fusing

together LIDAR-based and camera-based detections has been pursued.

The first section of this chapter will focus on LIDAR data processing, to

detect cones from the point clouds taking inspiration from MUR Motorsport

team [28]. For this part, raw sensor data produced by the simulator will be used.

The last section, instead, will deal with image-based cones detection, exploiting

the well-known YOLO object detector.

In both cases, the results are partial and only qualitative, since these modules

are just a draft and are not completely implemented and tested.

6.1 LIDAR-based cones detection

Starting from raw point clouds produced by the LIDAR, the objective is to end

up having the detection of cones, in particular the cylindrical volume in which

each of them is enclosed.

When processing points, however, a problem arises: the LIDAR in our pos-

session has only 16-channels, so its resolution is too low to be able to detect a

cone using the setup described in 7.1. Each of them, indeed, is hit by too few

scanlines, resulting in an insufficient number of points.

For this reason, the first step of the detection algorithm is point cloud accu-

mulation over time: this means that, before processing points, a fixed number of

53

Figure 6.1: Qualitative results of the ground-plane segmentation step.

clouds are accumulated and integrated together, in order to have a denser cloud.

Accumulation is executed by considering the motion of the vehicle over time, in

order to cover a bigger part of the cones’ surface with LIDAR scans.

The second step is to perform segmentation of the point cloud, that will al-

low to distinguish the actual cones from the ground plane. To satisfy real-time

requirements, the segmentation has been performed according to Himmelsbach

et al. [29]. Two smaller sub-problems are addressed: local ground plane estima-

tion and 2D labeling of connected components. It is a fundamental operation for

reducing the computational complexity of the process. Point clouds are not con-

sidered as a whole: the xy-plane is represented as a circle of infinite radius, split

into a certain number of segments. This gives an ordering of points with respect

to their angular component, and we can denote the set of points contained in a

segment S as PS. To discretize also the range component of the points, all the

elements in PS are then mapped into one of the many bins, each one covering a

certain range.

Then, for each segment, line extraction is performed, based on conditions

such as maximum slope and maximum distance from the previous line. Any

point within a designated distance from a line is classified as ground, resulting in

a complete labeling of a scan’s points.

Qualitative results of this step are depicted in 6.1.

After ground removal, filtering and clustering of the remaining data are per-

formed to remove potential outliers and reconstruct the cylindrical volume occu-

pied by a cone. Cylindrical volume reconstruction is a process needed to restore

54

some points belonging to the traffic cones but accidentally removed during the

ground removal step. If these points are inside a cylinder-shaped volume, they are

added back to the corresponding cluster. So, using Euclidean clustering based

on Kd-Tree [30], all the non-ground points are grouped together, according to

some thresholds like the expected number of points. By exploiting the known

dimensions of the cones, the number of expected points in a certain cluster can

be computed as:

E(d) =
1

2
EvEh =

1

2

hc

2d tan(rv
2
)

wc

2d tan(rh
2
)

(6.1)

where:

• d is the distance to the cluster, being
√

x2 + y2 + z2 with (x, y, z) centroid

of the cone;

• rv is the vertical resolution of the LIDAR;

• rh is the horizontal resolution of the LIDAR;

• wc is the width of the cone;

• hc is the height of the cone.

Once all the clusters have been retrieved and filtering has been applied, their

centroids can be computed and used as an estimate of the cones’ positions.

The high-level pseudocode for this approach is reported here:

Algorithm 1 Cones detection from point clouds

Input: Raw LIDAR point clouds
Output: 3D positions of cones
accumulate n point clouds over time
perform cloud segmentation
perform points labeling (ground, non-ground)
remove non-ground points
perform Euclidean clustering
perform cylindrical volume reconstruction
compute each cluster’s centroid to have estimated cone position

A limit of this approach is observed when cones are occluded one by each

other, cases in which the algorithm is not able to detect all the cones because the

LIDAR beams cannot hit hidden objects.

55

Figure 6.2: Qualitative results of cylindrical volume reconstruction step.

An example showing the computed cylinders can be seen in figure 6.2. As you

can notice, two spurious detections appear in that image: this is caused by the

LIDAR hitting the structure of the front wing of the car, and should be removed

with future developments of this pipeline.

Anyway, the proposed solution gives satisfactory results, as shown in figure

6.3: a complete track lap has been completed here, and the majority of the ground

truth cones, depicted in blue and yellow, have been correctly detected.

A further improvement of the proposed solution would come from a point

cloud pre-processing step, to remove distortion caused by the velocity of the

motion.

6.2 Camera-based cones detection

To process stereo images acquired with RaceUP’s single-seater, a deep learning

approach has been selected. More specifically, real-time detection of cones de-

limiting the track is performed by exploiting YOLOv7 [3]. The goal is to detect

cones, together with their color, and provide a bounding box enclosing each of

the detected landmarks.

YOLO is a state-of-the-art real-time object detector, trained entirely on MS

COCO dataset [31], without pre-trained weights. With respect to previous ver-

56

Figure 6.3: Qualitative results of the complete detection pipeline on a lap.

sions, it highly reduces the number of parameters of the model and the number

of computations. This algorithm optimizes both the architecture and the train-

ing phase, introducing some modules called bag-of-freebies, to improve detection

accuracy without increasing the inference cost.

The general-purpose model has been fine-tuned on the FSOCO dataset [32],

to detect the different official cones used in Formula Student events. Many teams

participating in this competition have contributed to the release of such dataset,

which contains images of real racing scenes, framed during driverless events or test

sessions. Annotations involve both bounding boxes and instance segmentation,

provided for 11572 and 1517 images, respectively.

The choice of performing the fine-tuning on this dataset has been dictated by

different reasons:

• FSOCO in the only Formula Student-specific dataset available;

• many teams contributed to this, providing a huge variety of testing and

event sites;

• images come from a variety of sensor setups, meaning that the detection is

57

(a) Left image. (b) Right image.

Figure 6.4: YOLO cones detection from stereo images.

not sensor-dependant;

• images have been framed in diverse lighting conditions, to tackle even chal-

lenging scenarios.

The performance reached by the YOLO model on our stereo camera images

is beyond our expectations, especially in frames with high underexposure/over-

exposure problems, as can be seen in figures 6.4 and 6.5.

After the completion of the detection phase, a simple 3D pose estimation

algorithm is run, to retrieve the three-dimensional cones coordinates in the real

world, starting from their pixel coordinates.

Exploiting the bounding boxes produced by YOLO, stereo matching is per-

formed. So, for each bounding box in the left image, the center is computed, to

average the variance of the drawn rectangle. Perform a search along the epipolar

line, evaluating the class of the detection, its confidence score, and the size of

the bounding box. This last check is used to discard cones that are too far since

we want to process only the ones nearby the car. Then, the disparity d between

the centers of the matched bounding boxes is computed. This value allows to

retrieve the depth of each point using the formula z = (f ∗ b)/d where f is the

focal length and b is the baseline of the camera.

Now that the 2-dimensional image coordinates and depth of each cone have

been retrieved, a perspective transformation is used in order to project each point

in the 3-dimensional space.

When doing some first quantitative evaluation of the results, a limit of our

sensor emerged: the disparity that we get is not fine-grained enough, so even a

small displacement of one pixel between the two cones leads to an error of almost

58

(a) Left image. (b) Right image.

Figure 6.5: YOLO cones detection from challenging stereo images.

half a meter on the final positioning. The simpler way to solve this issue is to use

a stereo camera more suited for this kind of task.

The high-level pseudo-code for the described algorithm is stated below:

Algorithm 2 Basic 3D pose estimation algorithm

Input: YOLO bounding boxes enclosing cones
Output: 3D positions of cones
for each bounding box in the left image do

compute the center of the rectangle
search along the epipolar line for a bounding box in the right image
if correspondence is found then

compute disparity between the two
compute the depth
use a perspective transformation to reproject in 3D

end if
end for

59

60

Chapter 7

Real data acquisition

In order to test the proposed SLAM and perception in a real scenario, a real

dataset is needed. The last part of the thesis will be focused on how to prepare a

data acquisition campaign. It was all made possible thanks to the RaceUP team,

which has made available SG-e 05 (fig. 7.1), their electric single-seater from the

last season.

Figure 7.1: SG-e 05 car from RaceUP team, used for real data acquisition.

The vehicle is a traditional electrical car used in dynamic events, so it is not

an autonomous prototype. For this reason, it has been properly sensorized to be

as similar as possible to the self-driving vehicle that will compete in the events.

Since this car has not been built having in mind the driverless category, sensor

placement must be adapted to the actual structure of the car.

In the next sections, an accurate explanation of the entire dataset acquisition

process, starting from the choice of sensors to use, will be given.

61

Figure 7.2: The surface envelope defined on the FSG rules: sensors cannot be placed outside this
space.

7.1 Car sensorization

Car sensorization is a crucial task, it doesn’t only include the process of deciding

where and how to place the sensors in the car, but also which sensors to use. The

goal is to try to obtain the most suited configuration for a real racing situation. An

example of such sensors is depicted in figure 7.3: a Velodyne VLP16 16-channels

LIDAR, a Bumblebee2 RGB stereo camera, an XSens MTi Inertial Measurements

Unit (IMU), and two M8P RTK-GPS modules from UBlox.

The choice of sensors to use has been heavily constrained by the current avail-

ability of resources, both regarding RaceUP funds and university funds. For this

reason, all the sensors have been borrowed from other projects, so they will not be

the ones actually installed on the prototype for the next year’s events. In other

words, they have been exploited for proof of concept and the data acquisition

campaign, but the actual car will mount a different sensor set.

When allocating space in the car for the sensors, many constraints need to

be taken into account. Among the others, the most important are:

• the official Formula Student regulation, defining specific restrictions such

as the external envelope that needs to enclose the vehicle and all its com-

ponents (see fig. 7.2);

• mechanical and technical constraints, meaning that the shape and the de-

sign of the car are already fixed and they were not meant for this sce-

nario. For example, sensors cannot occlude the driver’s sight, they cannot

be placed too close to some other components or above too weak elements;

• maximization of their effectiveness, meaning maximization of the field of

view, minimization of avoidable noise like vibrations, and so on.

62

(a) Velodyne VLP16 LIDAR
(b) Bumblebee2 stereo camera

(c) XSens MTi IMU (d) UBlox M8P GPS module

Figure 7.3: The complete set of sensors installed in the car.

63

(a) Scan with LIDAR on the front wing. (b) Scan with LIDAR on main hoop, tilted.

Figure 7.4: Qualitative evaluation of different LIDAR placements.

The most difficult components to position were the LIDAR and the camera,

being the most important sensors among the set and also the most sensitive to

noise or to external interference.

To qualitatively evaluate their possible positioning, the EUFS simulator has

been exploited, as depicted in figure 7.4. Thanks to one of the features of the

simulator, we are not only able to simulate the raw sensor, but we are free to

place the sensors into different positions, whenever necessary.

By looking at the other teams’ cars, the possible placements have been re-

stricted to a choice among two configurations. The first one puts the stereo

camera on the main hoop of the car, just above the driver’s head, and the LI-

DAR in the front wing, nearby the ground. The second one places the two sensors

together on the main hoop, in a unique support enclosing both of them.

The camera positioning has been almost a forced choice, due to the nature of

this sensor but also because all other vehicles follow this trend. For the LIDAR,

instead, there is a bit more freedom, having a 360 degrees field of view. Placing it

on the front wing results in a better detection of the base of the cones, since it is

closer to ground level and so more laser beams hit the targets. Placing it on the

main hoop gives the advantage of almost completely removing the lateral field of

view occlusion, which persists instead on the front wing due to the structure of

the wing itself.

The optimal placement of the LIDAR sensor has been evaluated using the

visualization of the point clouds described in section 4, and a simple cone extrac-

tion algorithm. In the end, also due to mechanical constraints difficult to remove,

the placement on the top of the main hoop has been selected.

By the way, the common point that emerged from this study has been the

inclination. To maximize the field of view of the sensor, meaning to maximize

the number of laser beams actually hitting the asphalt or the cones instead of the

64

Figure 7.5: Front, side, and back view of the developed sensors support.

horizon, a 5 degrees pitch angle was the ideal solution.

For this reason, a sketch of the support to hold those sensors has been designed

as a two layers component, having one inclined plane for the Velodyne and one

plain support for the stereo camera as shown in figure 7.5.

The current positioning is temporary, meaning that it has been designed to

adapt to the current electric car, and tries to imitate as faithfully as possible

a driverless set-up. The final setup surely will result from a deeper study of

aerodynamic efficiency, vibrations reduction, and stability of the entire structure.

The sensor’s support was made movable so it could be removed during non-

driverless events, to have the minimum collision-free space between the driver’s

helmet and the sensors, required by the regulation.

7.2 Dataset

The scope of mounting the sensors on the vehicle was to be able to collect a

Formula Student autonomous race scenario dataset.

After the car was ready, the next steps were: to create a custom track, made

to be compliant with the autonomous category rules, and to collect as much data

as possible. Colored cones have been placed according to the shape depicted in

figure 7.6.

To have a ground truth reference for the data, four spurious cones have been

placed on the corners of a square enclosing the track: the resulting square has

been measured, to have an idea about the size of the track. This information

was later exploited for estimating the ground truth position of the cones from an

aerial image, containing the entire track, acquired from a drone.

With the same drone, also images of a checkerboard have been acquired to

perform the calibration of its camera. Both individual and pairwise calibration

of the other sensors, instead, has not been made in advance: using tools such as

65

Figure 7.6: Aerial view of our track. The cones on the right image have been enhanced, for better
shape understanding.

AutoCalib [33] and Kalibr [34] [35] [36], it will be performed later on.

From a software point of view, a fundamental step for the preparation of the

actual data acquisition is the development of ROS2-wrapped stand-alone drivers

to perfectly integrate each sensor with the system. Drivers are low-level software

components used to connect and communicate with the hardware of the sensor,

to retrieve data, and then save it.

Due to the amount of information to record, and the high dynamicity of the

situation, the main focus is on the real-time storage requirements. Minimiza-

tion of the delay between the data production and storage, indeed, is crucial to

minimize data loss during the acquisition.

To get data as soon as available, every ROS node handling a sensor got its

scheduler priority set to 99, meaning real-time. To save it without any slowdown,

an empty data folder has been mounted in the Random Access Memory (RAM)

and used as temporary storage. Always to reduce the delay in data saving, camera

images have been saved in greyscale instead of RGB.

For the actual dataset acquisition, three ROS bags have been registered during

the day. Each bag consists of three laps around the track, the first one at low

speed, and the other two at higher velocity. In the last lap, some cones have been

voluntarily hit, to introduce also some noisy data.

Moreover, other data has been recorded by driving on the same track, but in

the opposite direction, meaning both in clockwise and counter-clockwise way.

The acquired dataset, being a real set of sensor measurements, is expected

to contain some challenges. In particular, due to the weather conditions of the

acquisition day, there has been a noticeable camera exposure change along the

track. Since our sensor doesn’t have the possibility to auto-regulate gain and

66

exposure time according to the environmental light, underexposure/overexposure

is experienced when changing the direction of motion, for example on corners.

For the moment, usage of the acquired dataset is limited to two situations:

• cones detection with YOLO, as will be explained in section 6.1;

• parsing of data retrieved from the CAN line of the vehicle, concerning the

part holding kinematic information of the car, like speed, acceleration, and

steering.

Finally, the acquired dataset has been made available to the RaceUP team

for further testing of perception modules, such as the front end of the SLAM

pipeline.

67

68

Chapter 8

Conclusion and future works

In this thesis we tackled many problems inside a challenging autonomous racing

scenario: the SLAM problem, the perception pipeline, the sensorization of a real

vehicle, and the acquisition of a dataset.

We started by explaining key concepts about SLAM and its solution based

on graph structures. We then presented the challenges that arise by referring

specifically to the Formula Student case, highlighting the limits of commonly

used approaches.

We then focused on the core of the work, the SLAM module based on factor

graph optimization, which was used for obtaining a refined estimate of the car’s

state and a map of the surrounding environment.

In conclusion, the reported experimental results are satisfactory, and demon-

strate the effectiveness of the proposed system, providing also useful information

about strengths, limitations, and applicability of the analyzed techniques

Of course, there is still a margin for improvement and future research in this

work: enhancing the robustness and reliability of the whole perception system,

optimizing computational efficiency, and addressing complex scenarios, such as

adverse weather conditions, remain key challenges that warrant further investi-

gation. Moreover, making data association more robust by replacing Euclidean

distance with the Mahalanobis one could be a good choice, to deal with uncer-

tainty and correlation of the considered values. Finally, it would be interesting

to investigate the actual real-time capabilities of the proposed solution, since it

should run on a real vehicle participating in a competition.

69

70

References

[1] Raceup, 2023.

[2] Formula Student Germany. Fsg competition handbook 2023 and fsg rules 2023,

2023.

[3] Chien-Yao Wang, Alexey Bochkovskiy, and Hong-yuan Liao. Yolov7: Trainable

bag-of-freebies sets new state-of-the-art for real-time object detectors. 07 2022.

[4] Sirish Srinivasan, Inkyu Sa, Alex Zyner, Victor Reijgwart, Miguel Valls, and

Roland Siegwart. End-to-end velocity estimation for autonomous racing. IEEE

Robotics and Automation Letters, PP:1–1, 08 2020.

[5] Juraj Kabzan, Miguel de la Iglesia Valls, Victor Reijgwart, Hubertus Fran-

ciscus Cornelis Hendrikx, Claas Ehmke, Manish Prajapat, Andreas Bühler,

Nikhil Bharadwaj Gosala, Mehak Gupta, Ramya Sivanesan, Ankit Dhall, Eu-

genio Chisari, Napat Karnchanachari, Sonja Brits, Manuel Dangel, Inkyu Sa, Re-

naud Dubé, Abel Gawel, Mark Pfeiffer, Alexander Liniger, John Lygeros, and

Roland Siegwart. AMZ driverless: The full autonomous racing system. CoRR,

abs/1905.05150, 2019.

[6] Leiv Andresen, Adrian Brandemuehl, Alex Honger, Niclas Vodisch, Hermann

Blum, Victor Reijgwart, Lukas Bernreiter, Lukas Schaupp, Jen Chung, Math-

ias Bürki, Martin Oswald, Roland Siegwart, and Abel Gawel. Accurate mapping

and planning for autonomous racing. pages 4743–4749, 10 2020.

[7] Michael Montemerlo, Sebastian Thrun, Daphne Koller, and Ben Wegbreit. Fast-

slam 2.0: An improved particle filtering algorithm for simultaneous localization

and mapping that provably converges. Proc. IJCAI Int. Joint Conf. Artif. Intell.,

06 2003.

[8] Marcel Zeilinger, Raphael Hauk, Markus Bader, and Alexander Hofmann. Design

of an autonomous race car for the formula student driverless (fsd). 05 2017.

[9] Sherif Nekkah, Josua Janus, Mario Boxheimer, Lars Ohnemus, Stefan Hirsch, Ben-

jamin Schmidt, Yuchen Liu, David Borb’ely, Florian Keck, Katharina Bachmann,

71

and Lukasz Bleszynski. The autonomous racing software stack of the kit19d.

ArXiv, abs/2010.02828, 2020.

[10] J. Neira and J.D. Tardos. Data association in stochastic mapping using the joint

compatibility test. IEEE Transactions on Robotics and Automation, 17(6):890–

897, 2001.

[11] H. Durrant-Whyte and T. Bailey. Simultaneous localization and mapping: part i.

IEEE Robotics Automation Magazine, 13(2):99–110, 2006.

[12] Giorgio Grisetti, Rainer Kümmerle, Cyrill Stachniss, and Wolfram Burgard. A

tutorial on graph-based slam. IEEE Transactions on Intelligent Transportation

Systems Magazine, 2:31–43, 12 2010.

[13] University of Edinburgh. Eufs simulator.

[14] Hugh Durrant-whyte and Tim Bailey. Simultaneous localization and mapping:

Part i. Robotics Automation Magazine, IEEE, 13:99 – 110, 1995.

[15] Rainer Kümmerle, Giorgio Grisetti, Hauke Strasdat, Kurt Konolige, and Wol-

fram Burgard. G2o: A general framework for graph optimization. In 2011 IEEE

International Conference on Robotics and Automation, pages 3607–3613, 2011.

[16] Jose-Luis Blanco. A tutorial on SE(3) transformation parameterizations and on-

manifold optimization. Technical Report 012010, University of Malaga, 2010.

[17] Ferris M.C. A Gauss Burke, J.V. Newton method for convex composite opti-

mization. mathematical programming. Robotics Automation Magazine, IEEE,

13:179–194, 07 2006.

[18] Sebastian Ruder. An overview of gradient descent optimization algorithms. ArXiv,

abs/1609.04747, 2016.

[19] Helmut Hlavacs. A 2d car physics model based on ackermann steering. 2006.

[20] Tony Lindeberg. Scale Invariant Feature Transform, volume 7. 05 2012.

[21] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf: Speeded up robust

features. volume 3951, pages 404–417, 07 2006.

[22] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. Orb: An

efficient alternative to sift or surf. In 2011 International Conference on Computer

Vision, pages 2564–2571, 2011.

[23] Wisam Qader, Musa M. Ameen, and Bilal Ahmed. An overview of bag of

words;importance, implementation, applications, and challenges. pages 200–204,

06 2019.

72

[24] Paul Besl and H.D. McKay. A method for registration of 3-d shapes. ieee trans

pattern anal mach intell. Pattern Analysis and Machine Intelligence, IEEE Trans-

actions on, 14:239–256, 03 1992.

[25] Lionel Clavien, Michel Lauria, and François Michaud. Instantaneous centre of ro-

tation estimation of an omnidirectional mobile robot. In 2010 IEEE International

Conference on Robotics and Automation, pages 5435–5440. IEEE, 2010.

[26] Jrgen Sturm, Nikolas Engelhard, Felix Endres, Wolfram Burgard, and Daniel Cre-

mers. A benchmark for the evaluation of rgb-d slam systems. pages 573–580, 10

2012.

[27] Michael Gruppo. evo, a python package for evaluation of odometry and slam.

[28] MUR Motorsport. Real-time cone detection with lidar.

[29] M. Himmelsbach, Felix v. Hundelshausen, and H.-J. Wuensche. Fast segmenta-

tion of 3d point clouds for ground vehicles. In 2010 IEEE Intelligent Vehicles

Symposium, pages 560–565, 2010.

[30] Jon Louis Bentley. Multidimensional binary search trees used for associative

searching. Commun. ACM, 18(9):509–517, sep 1975.

[31] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick,

James Hays, Pietro Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár.

Microsoft coco: Common objects in context, 2015.

[32] Niclas Vödisch, David Dodel, and Michael Schötz. Fsoco: The formula student ob-

jects in context dataset. SAE International Journal of Connected and Automated

Vehicles, 5(12-05-01-0003), 2022.

[33] Aditya Vaishampayan. Autocalib.

[34] Joern Rehder, Janosch Nikolic, Thomas Schneider, Timo Hinzmann, and Roland

Siegwart. Extending kalibr: Calibrating the extrinsics of multiple imus and of indi-

vidual axes. In 2016 IEEE International Conference on Robotics and Automation

(ICRA), page 4304–4311. IEEE Press, 2016.

[35] Paul Furgale, Joern Rehder, and Roland Siegwart. Unified temporal and spatial

calibration for multi-sensor systems. In 2013 IEEE/RSJ International Conference

on Intelligent Robots and Systems, pages 1280–1286, 2013.

[36] Jérôme Maye, Paul Furgale, and Roland Siegwart. Self-supervised calibration for

robotic systems. In 2013 IEEE Intelligent Vehicles Symposium (IV), pages 473–

480, 2013.

73

