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Introduction

Figure 1. The 20 foot horn-detector that was used to discoverer the CMB radiation.

Modern Cosmology is based on the belief that the place we occupy in the universe is in no
way special. This is known in literature as the cosmological principle and it is one of the
pillars of the Standard Model of Big Bang Cosmology, also known as the ΛCDM model. In
the years, the ΛCDM model has been widely studied and the fundamental parameters that
describe it have been constrained through several, different experimental measurements, one
of the most powerful being that of the Cosmic Microwave Background (CMB) anisotropies.
The first prediction of the CMB dates back to 1948, by Alpher & Hermann [1], and it was
serendipitously discovered by Penzias and Wilson in 1964 (see figure 1). Penzias and Wilson,
who were set out to measure radio signals from the Milky Way, initially did not understand
the nature of what they had measured. Later, Princeton scientists, who were looking for
that signal, correctly interpreted the finding of Penzias and Wilson as the CMB. After that,
many experiments were designed to look for its characteristics but the real breakthrough came
only in the 1990s, when the Cosmic Background Explorer (COBE) satellite [2] made the first
measurements of the CMB energy spectrum, showing that it is well described by a black-body
function with a mean temperature of ∼ 3 K. The COBE data were joined in 2003 by the
first results from NASA’s Wilkinson Microwave Anisotropy Probe (WMAP) [3], improved
upon by analysis of data added every 2 years and culminating in the 9-years results [4]. In
2013 the first results [5] from the third generation CMB satellite, ESA’s Planck mission, were
released and were later followed by the 2015 [6, 7] and the final 2018 Planck data release
[8, 9]. Even though observations indicates that the properties of the CMB are consistent
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with the predictions of the ΛCDM model, enticing evidence of several unexpected statistical
features (anomalies) has emerged from both the WMAP and Planck full-sky measurements.
Given the a posteriori nature of their detection, a conservative explanation is that these
observed anomalous features are simply statistical flukes of our realisation of the ΛCDM
model. However, despite their relative modest statistical significance, their number, the fact
that they are not related in a obvious manner and the fact that (almost all of) these features
are detected only at the largest angular scales motivate the quest for an underlying physical
explanation. One possibility to explain them is that they might be related to local physics
effects, namely there is a pernicious foreground that contaminates the CMB and leads to the
observed anomalies, but the most exciting possibility is that some or all of these anomalies
have a cosmological origin. If that were the case, an understanding of their nature could
point us to new physics beyond the Standard Cosmological Model, thus possibly shedding
light on the exact mechanism operating during the very first epochs of the Universe. In this
Thesis we will explore some of these anomalous features, presenting a description of each
of them, along with evidence and methods for detection, aiming to provide an up-to-date
review of the main models and explanations proposed in literature, focusing in particular on
the possibility that such anomalies are related to non-Gaussian features of the primordial
cosmological perturbations arising from inflationary models in the Early Universe.

Thesis Outline

The structure of this Thesis is organised as follows. In Chapter 1 we review the theoretical
framework of physical and observational Modern Cosmology, the Standard Model of Big
Bang Cosmology. Its short-comings and the elegant solution provided to these puzzles by
cosmic inflation, which also provide a compelling mechanism to explain the generation of
primordial density fluctuations, are also discussed. Particular attention is devoted to the
treatment of single-field models of slow-roll inflation. In Chapter 2 we review the theory
of cosmological perturbations, thus setting up the theoretical framework needed to provide
a rigorous treatment of primordial density fluctuations. The issue of gauge-dependence is
discussed, the definition of gauge-invariant quantities is introduced and the calculations of
Chapter 1 are revised. In Chapter 3 we review the treatment of the Cosmic Microwave
Background temperature and polarisation anisotropies. The basic methods for the description
and simulation of CMB data are also introduced and a brief summary of past, present and
upcoming CMB surveys is provided. In Chapter 4 we introduce the concept of primordial
non-Gaussianity (PNG). The most well-known and studied types of PNG are discussed and
the definitions of inflationary bispectrum and trispectrum are given. The impact of non-
Gaussianity on the CMB anisotropies is discussed and some useful analytical results for the
CMB trispectrum are reported. In Chapter 5 we explore the CMB large-scale anomalies. A
description of some of these anomalies, along with evidence and methods for detection, is
provided. A qualitative and non-exhausting summary of some of the cosmological mechanisms
related to the large-scale structure or to inflationary physics proposed in the literature to
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explain them is also presented. In Chapter 6 we explore the connection between the CMB
anomalous features and non-Gaussianity in the primordial fluctuations. In particular, the
analytical framework proposed by Adhikari et al. in [10], the results of the subsequent
analysis [11] and the phenomenological approach illustrated by Hansen et al. in [12] are
discussed. In Chapter 7 we further discuss the implications of the CMB large-scale anomalies
for Early Universe physics, focusing in particular on the work of Byrnes et al. who, in [13,
14], report results for a special set of inflationary scenarios that can generate the CMB power
asymmetry. For completeness, the results of the analysis on specific physical models for the
CMB anomalous features performed by the Planck collaboration in [15] using the Planck 2018
temperature and polarisation data are also reported. Finally, the main points and results of
this Thesis are summarised in the Conclusions.
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Chapter 1
Big Bang Cosmology and Inflation

Notation

In this Thesis we will assume for the signature of the metric gµν the mostly positive one
i.e. (−,+,+,+). We will also use natural units i.e. c = ~ = 1. Other notation conventions
adopted will be introduced when needed.

1.1 The Standard Model of Big Bang Cosmology

The simplest cosmological model which currently fits the experimental observations is the
Standard Model of Big Bang Cosmology, also known as the ΛCDM model, based on the
theory of General Relativity, presented by A. Einstein in 1915. Its main assumptions are
the cosmological principle, which states that the Universe is homogeneous and isotropic on
sufficiently large scales; that the Universe was once much hotter and denser and it has been
expanding since early times; and that the dynamics is governed by the Einstein’s equations.
The only geometry compatible with the constraints of homogeneity and isotropy is the one
described by the Friedmann-Lamaitre-Robertson-Walker (FLRW) metric, with line-element
given by

ds2 = gµνdx
µdxν = −dt2 + a2(t)

[
dr2

1− kr2 + r2
(
dθ2 + sin2 θdφ2

)]
(1.1)

where gµν is the metric tensor, t is the cosmic time, (r, θ, φ) are the comoving spherical
coordinates and a(t) is the scale factor. The parameter k is known as the curvature parameter
and determines the curvature of 3-dimensional spatial hypersurfaces. It can can normalised
to take three possible values corresponding to the possibility that the Universe can be flat
(k = 0), open (k = −1) or closed (k = +1). According to the theory of General Relativity, the
metric gµν that describes the Universe satisfies the Einstein’s equations:

Gµν = Rµν −
1
2Rgµν = 8πGTµν (1.2)

where Rµν , the Ricci tensor, and R = gµνRµν , the Ricci scalar, describe the curvature of
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the space-time and are collective denoted as Gµν , the Einstein tensor. G is the gravitational
constant and Tµν is the energy-momentum tensor, which depends on the energy components
featuring the Universe. In the case of the FLRW metric, these components are assumed to be
perfect fluids and the expression for the energy-momentum tensor is

Tµν = (ρ+ P )uµuν + Pgµν (1.3)

where ρ is the energy density, P the isotropic pressure and uµ the fluid four-velocity, subjected
to the constraint gµνuµuν = −1. Plugging the FLRW metric (1.1) and the expression for
the energy-momentum tensor (1.3) into the Einstein equations (1.2) we obtain the evolution
equations for the cosmic fluid, known in literature as the Friedmann equations:

H2 = 8πG
3 ρ− k

a2 (1.4)

Ḣ +H2 = −4πG
3 (ρ+ 3P ) (1.5)

where H is the Hubble expansion rate, defined as

H(t) = ȧ

a
(1.6)

and ρ = ∑
i ρi and P = ∑

i Pi are, respectively, the total energy density and pressure of the
Universe, which include the contributions from all existing cosmological constituents. From
the Bianchi identities DµG

µν , or by employing energy-momentum conservation, we can then
obtain the continuity equation:

ρ̇+ 3H(ρ+ P ) = 0 (1.7)

from which we can read off the scaling of the energy density with the scale factor, given by

ρ(a) = ρ0

(
a

a0

)−3(1+w)
(1.8)

Figure 1.1 illustrates the evolution of the energy density during the expansion of the Universe.
In the ΛCDM model one assumes the Universe to have five basic components: Dark Energy
(DE), responsible for driving the current expansion; Dark Matter (DM), that is pressureless,
stable and interacts with regular matter only gravitationally; regular matter, that behaves
just like it does on Earth; photons, that we observe as the Cosmic Microwave Background;
Neutrinos, that are almost massless and stream as non-interacting, relativistic particles at
the time of recombination. At different times, some of these species contribute as relativistic
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components, referred to as radiation, with equation of state wr = Pr/ρr = 1/3, or as
non-relativistic components, referred to as matter, with equation of state wM ≈ 0. Many
observational clues points towards the DE component being described by an equation of state
wΛ = −1 with ρΛ = constant i.e. by a cosmological constant.

Figure 1.1. Energy density as a function of scale factor for different constituents of the universe:
non-relativistic matter (∝ a−3), radiation (∝ a−4), and a cosmological constant. The epoch at which
the energy densities of matter and radiation are equal is aeq, while the epoch at which the densities of
matter and cosmological constant match is aΛ. All are in units of the critical density today.

According to Planck, the Universe’s predominant constituents today are Dark Matter and
Dark Energy which account for, respectively, 26% and 69% of its mass/energy budget, with
regular (baryonic) matter contributing to the remaining 5% [16]. Note that it is customary to
describe the composition of the Universe introducing dimensionless density parameters:

Ωi ≡
ρi
ρc

(1.9)

where

ρc = 3H2(t)
8πG (1.10)

is the critical energy density, defined as the total energy density of a flat Universe at a given
time. We can rewrite the first Friedmann equation (1.4) in terms of the density parameters as

∑
i

Ωi + Ωk = 1 (1.11)

where the sum is over all the different species in the Universe and Ωk = − k
a2H2 is the curvature
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density. From Planck’s measurements of the CMB we get the following constraints (at the
68% CL) on the present day values of the density parameters of the main components of the
Universe [9]:

ΩBh
2 = 0.0224± 0.0002

ΩDMh
2 = 0.1200± 0.0012

ΩΛ = 0.3153± 0.0073

(1.12)

where h is defined such that the Hubble parameter today is given by

H0 = 100hKms−1Mpc−1 (1.13)

The Planck collaboration finds H0 = (67.4±0.5)Kms−1Mpc−1 at 68% CL [9], which is however
in tension at about 5σ with the latest local determination by the SH0ES collaboration, which
instead finds H0 = (73.04 ± 1.04)Kms−1Mpc−1 at 68% CL [17]. This problem is known in
literature as the Hubble tension and for an up-to-date review on the topic we refer the reader
to [18].

1.2 Shortcomings of the Standard Big Bang Cosmology

The Standard Cosmological Model provides an excellent description of the thermal history of
the Universe. It explains, with high accuracy, the Cosmic Microwave Background, the abun-
daces of light elements and the evolution of the Universe after the Big Bang Nucleosynthesis.
There are, however, a few intriguing facts that it fails to provide explanations to.

1.2.1 The Flatness Problem

Several cosmological surveys at different scales and by different probes observe the present
Universe to be spatially flat, without being any apparent reason for it to be so. The first
Friedmann equation (1.11) implies:

Ωtot − 1 = k

a2H2 (1.14)

Since in Standard Cosmology the scale factor behaves like a ∝ tp with p = 1/2 for radiation
and p = 2/3 for non-relativistic matter, the comoving Hubble radius rH = (aH)−1 grows with
time and, as a consequence, |Ωtot − 1| must diverge with time. Hence, in the context of the
Standard Cosmological Model, explaining the quasi-flatness observed today would require an
extreme fine-tuning of Ωtot near 1 in the Early Universe.
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1.2.2 The Relic Density Problem

It is believed that very shortly after the Big Bang the Universe was described by Grand
Unified Theories (GUTs). In these theories, at very high temperatures, such as those found
in the instants after the Universe was created, the strong, weak, and electromagnetic forces
were indistinguishable from each other. These theories imply that the very early Universe
should produce extremely massive particles, much more massive than any presently known
particle, known as magnetic monopoles, and that there should be many such monopoles in
the Universe today. However, no one has ever found evidence for such a particle.

1.2.3 The Horizon Problem

The comoving particle horizon dH(t) is defined as the maximal distance that can be covered
by a light-ray in a cosmic time t:

dH(t)
a(t) =

∫ t

0

dt′

a(t′) =
∫ a

0

da′

a′
1
aH

(1.15)

Since the comoving Hubble radius grows with time, equation (1.15) tells us that, sooner or
later, all the scales will enter the horizon. In other words, the fraction of the Universe in
causal contact around the observer grows bigger and bigger in time. We observe the Cosmic
Microwave Background to exhibit nearly the same statistical properties, in particular the
same temperature T , up to very tiny fluctuations, over regions of space that have never been
in causal contact before. These regions are indeed separated by distances that are much larger
than the largest distance travelled by light in all the history of the Universe.

1.3 Inflation

Inflation consists of a rapid exponential expansion of the Universe at early times that not only
provides a solution to the aforementioned problems of the Standard Big Bang Cosmology,
but it also provides a compelling mechanism to explain the generation of the primordial
density perturbations, which serve as initial conditions to the process of hierarchical structure
formation. The key assumption of inflation, as illustrated in Figure 1.2, is that at early times
the comoving Hubble radius rH , instead of increasing, decreases in time. The decreasing of
rH implies that ṙH < 0 and the corresponding condition is that

ä(t) > 0 (1.16)

meaning that the Universe must undergo a phase of accelerated expansion. Equation (1.5)
tells us that such a period of accelerated expansion is possible if and only if the cosmic fluid

9



has a negative pressure, with equation of state:

P < −1
3ρ (1.17)

An example of such a fluid is the cosmological constant Λ, which has equation of state
P = −ρ. However, the cosmological constant is not a good candidate to drive inflation since
it causes an exponential expansion that never ends. Instead, we want inflation to end at
some point, allowing rH to grow again. This is because if the accelerated expansion were to
go on forever, all of the components of the Universe would be extremely diluted, therefore
preventing anything to happen.

Figure 1.2. Plot of the comoving Hubble radius as a function of time. All scales of cosmological
interest were larger than the Hubble radius until a ' 10−5. However, at sufficiently early times, all
scales of interest were smaller than the Hubble radius and thus were causally connected. Similarly, at
later times, the scales of cosmological interest are back within the Hubble radius. Figure adapted from
[19, 20].

1.4 Inflation as driven by a Slowly-rolling Scalar Field

In most current models of inflation, the exponential expansion is driven by the potential
energy density V (ϕ) of a scalar field, ϕ, called the inflaton, with action:

S =
∫
d4x
√
−gL =

∫
d4x
√
−g

[
−1

2g
µν∂µϕ∂νϕ− V (ϕ)

]
(1.18)

where g is the determinant of the metric tensor gµν . By varying the action with respect to
the field ϕ we obtain the Klein-Gordon equation:

�ϕ = ∂V

∂ϕ
(1.19)
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where � is the covariant D’Alembert operator:

�ϕ = 1√
−g

∂ν
(√
−ggµν∂µϕ

)
(1.20)

In a FLRW universe, described by the metric (1.1), the Klein-Gordon equation (1.19) reduces
to

ϕ̈+ 3Hϕ̇− 5
2ϕ

a2 + Vϕ(ϕ) = 0 (1.21)

where Vϕ(ϕ) is defined as the derivative of the energy potential with respect to ϕ. The term
3Hϕ̇ tells us that due to the expansion of the Universe the scalar field, rolling down its
potential, is subjected to a friction. The energy-momentum tensor associated to the scalar
field ϕ is given by

Tµν = − 2√
−g

δS

δgµν
= ∂µϕ∂νϕ+ gµν

[
−1

2g
αβ∂αϕ∂βϕ− V (ϕ)

]
(1.22)

Let us now observe that the inflaton field can be split as ϕ(t,x) = ϕ0(t) + δϕ(t,x) where
ϕ0 is the classical background field i.e. the expectation value of the inflaton on the initial
homogenous and isotropic state, and δϕ(t,x) are the quantum fluctuations around ϕ0. This
separation is justified by the fact that the quantum fluctuations are negligible when looking
at the classical evolution i.e.

〈δϕ2(t,x)〉 � ϕ2
0(t) (1.23)

The classical background field ϕ0 behaves like a perfect fluid with energy density and isotropic
pressure given by

ρϕ = ϕ̇2

2 + V (ϕ) (1.24)

Pϕ = ϕ̇2

2 − V (ϕ) (1.25)

Recalling that inflation requires the pressure being negative, if we assume:

V (ϕ)� ϕ̇2 (1.26)
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we obtain the following condition:

Pϕ ' −ρϕ (1.27)

This result tells us that indeed a scalar field which energy is dominant in the Universe and
which potential energy dominates its kinetic term gives inflation.

1.4.1 Classical Dynamics

Figure 1.3. Example of a slow-roll inflaton potential. Acceleration occurs when the potential energy
of the field, V (ϕ), dominates its kinetic energy, 1

2 ϕ̇
2. Figure adapted from [20].

Let us now focus on the evolution of the classical bagkground field ϕ0. The equation of motion
(1.21), for an homogeneous field, is given by

ϕ̈+ 3Hϕ̇+ Vϕ(ϕ) = 0 (1.28)

if we impose the condition (1.26) on equation (1.28), the scalar field slowly rolls down its
potential. Such a period of slow-roll can be achieved if the inflaton is in a region where the
potential is sufficiently flat (see Figure 1.3). In this case, we expect the ϕ̈ term to be negligible.
Assuming the energy density of the universe dominated by the potential energy of the inflaton
field, the first Friedmann equation (1.4) becomes:

H2 ' 8πG
3 V (ϕ) (1.29)

and neglecting the ϕ̈ term, the equation of motion (1.28) reduces to

3Hϕ̇ = −Vϕ(ϕ) (1.30)
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From equation (1.30), using the result (1.29), we read off the flatness conditions:

ϕ̇2 � V (ϕ) =⇒
V 2
ϕ

V
� H2 (1.31)

ϕ̈� 3Hϕ̇ =⇒ Vϕϕ � H2 (1.32)

1.4.2 Slow-roll Parameters

In order to give predictions related to specific models and to compare them with each other
and with observations, the slow-roll regime dynamics is quantified by means of the so-called
slow-roll parameters ε and η:

ε = − Ḣ

H2 = 4πGϕ̇2

H2 ' 3
2
ϕ̇2

V (ϕ) '
1

16πG

(
Vϕ
V

)2
(1.33)

η = Vϕϕ
3H2 '

1
8πG

Vϕϕ
V

(1.34)

A successful period of inflation requires the slow-roll parameters to be ε, η � 1. As soon
as these conditions fail, inflation ends. The scalar field will then reach the minimum of the
potential and will start to oscillate around it. By this time, any other contribution to the
energy density of the Universe has been redshifted away by the expansion. However, we know
that the Universe must be repopulated by hot radiation. This is achieved by reheating: the
inflaton ϕ not only starts to oscillate around its minimum but it also begins to decay to
lighter relativistic particles, thus allowing us to recover the well established prediction of the
Standard Big Bang Model.

1.4.3 Number of e-foldings

Defining inflation as a period of rapid exponential expansion of the Universe is not sufficient
to solve the aforementioned problems. We must ensure that inflation lasts long enough that a
small, smooth patch of size smaller than the Hubble radius can grow to encompass at least
the entire observable Universe. To quantify how much the Universe expands we introduce the
number of e-foldings:

N =
∫ tf

ti
dtH(t) = ln

(
a(tf)
a(ti)

)
(1.35)

where ti and tf are, respectively, the time corresponding to when inflation starts and ends. It
can be proven that in order to be successful, inflation must last more than about 60 e-foldings.
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1.5 Generating Primordial Perturbations during Inflation

We will now discuss the generation and the evolution of the quantum fluctuations of the inflaton
field δϕ(t,x). This is extremely important, since these fluctuations are associated to the
primordial density perturbations which survive at the end of inflation and provide the initial
conditions for the process of hierarchical structure formation. Our current understanding of
the origin of structure is that, once the Universe became matter dominated, primeval density
inhomogeneities were amplified by gravity and grew into the structures we observe today.
For structure formation to occur via gravitational instability, there must have been small,
pre-existing fluctuations on scales which entered the Hubble horizon during the radiation and
matter-dominated epochs. Inflation provides a causal mechanism to generate these density
perturbations since, as we have seen, a key ingredient of inflation is the fact that during the
inflationary expansion the Hubble comoving radius instead of increasing decreases with time.
As a consequence, soon the wavelength of the quantum fluctuations exceeds the size of the
horizon and, due to the expansion, it gets stretched to super-horizon scales. What happens
next is that, since causal processes can not happen on super-horizon scales, the quantum
fluctuations get frozen to some non-zero value δϕ, while their wavelength grows exponentially.
Later, when inflation ends and the Hubble comoving radius begins to increase again, the
fluctuations eventually re-enter the horizon either during the matter or radiation-dominated
epoch, thus providing the initial conditions for the process of structure formation.

1.5.1 Quantum Fluctuations of a Scalar Field during a de Sitter Stage

We begin our discussion considering the case of a scalar field ϕ (the inflaton) with effective
potential V (ϕ) in a pure de Sitter stage, during which the Hubble parameter H is constant.
From the equation of motion for the scalar field (1.21), including the perturbations δϕ, we
obtain, at linear order, the following equation:

δ̈ϕ+ 3H ˙δϕ− 5
2δϕ

a2 + Vϕϕδϕ = 0 (1.36)

It is convenient at this point to switch to the conformal time τ , related to the cosmic time t
through dτ = dt/a(t). The previous equation, switching to conformal time, therefore becomes:

δϕ
′′ + 2a

′

a
ϕ
′ −52δϕ+ a2Vϕϕδϕ = 0 (1.37)

where prime here denotes the derivative with respect to the conformal time. Redefining now
the field δϕ(τ,x) as

δϕ̂(τ,x) = a(τ)δϕ(τ,x) (1.38)
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and introducing the creation and annihilation operators ak and a†k, we can promote the field
δϕ̂ to an operator which can be decomposed as

δϕ̂(τ,x) =
∫

d3k

(2π)3

[
uk(τ)âke−ik·x + u∗k(τ)â†ke

ik·x
]

(1.39)

These creation and annihilation operators satisfy the standard commutation relations:

[ak, ak′ ] = 0, [ak, a†k′ ] = δ(3)(k− k′) (1.40)

and the modes uk(τ) are normalised so that they satisfy the condition

u∗ku
′
k − uku∗

′
k = −i (1.41)

From equation (1.37), using the decomposition (1.38), we get that

δϕ̂
′′ − a

′′

a
δϕ̂−52δϕ̂+ a2Vϕϕδϕ̂ = 0 (1.42)

from which, going to Fourier space and using that |δϕ̂k| = |uk|, we read off that the modes
uk(τ) obey the equation of motion:

u
′′
k(τ) +

[
k2 − a

′′

a
+M2

ϕa
2
]
uk(τ) = 0 (1.43)

where M2
ϕ = Vϕϕ is the effective mass of the scalar field. This equation is equivalent to the

one of an harmonic oscillator with a frequency changing in time due to the expansion of the
Universe. Let us observe that, at very short distances, the modes uk(τ) must reproduce the
form for the ordinary flat space-time quantum field theory. This implies that, well within the
horizon, in the limit k/aH →∞, the modes should approach plane waves of the form:

uk(τ)→ exp−ikτ√
2k

(1.44)

In the case of a pure de Sitter stage, equation (1.43) has an exact solution. However, before
recovering it, let us study its limiting behaviour on super-horizon and sub-horizon scales,
considering for simplicity the massless case i.e. M2

ϕ = Vϕϕ = 0. On sub-horizon scales
(k � aH), the k2 term is the dominant one and equation (1.43) thus reduces to

u
′′
k(τ) + k2uk(τ) = 0 (1.45)
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The solution is simply a plane wave of the form:

uk(τ) = e−ikτ√
2k

(1.46)

This result implies that the field δϕk, on sub-horizion scales, oscillates with a decreasing
amplitude that depends on the inverse of the scale factor a(τ) as follows:

|δϕk| =
1

a(τ)
√

2k
(1.47)

In the opposite limiting case, on super-horizon scales (k � aH), the a′′/a term is the dominant
one. Thus equation (1.43) reduces to

u
′′
k(τ)− a

′′

a
uk(τ) = 0 (1.48)

This equation admits two solutions, a growing and a decaying mode:

uk(τ) = B+(k)a(τ) +B−(k)a−2(τ) (1.49)

As the Universe expands, the decaying mode gets suppressed by the a−2 factor and thus can
be neglected. The amplitude of the growing mode, B+(k), can be fixed by matching (the
absolute value of) the solution (1.49) to the plane wave solution (1.46) at horizon-crossing i.e.
at k = aH, obtaining that

|B+(k)| = 1
a(τ)
√

2k
= H√

2k3
(1.50)

This result tells us that the quantum fluctuations of the field δϕk, on super-horizon scales,
are constant and with amplitude

|δϕk| =
|uk|
a(τ) = H√

2k3
(1.51)

Let us now briefly sketch how to derive the exact solution for equation (1.43). It can be
proven that in a pure de Sitter stage equation (1.43) can be recast as follows:

u
′′
k(τ) +

[
k2 − ν2 − 1/4

τ2

]
uk(τ) = 0 (1.52)
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where

ν2 =
(

9
4 −

M2
ϕ

H

)
(1.53)

Equation (1.52) is a Bessel equation, whose general solution, for real ν, is known to be of the
form:

uk(τ) =
√
−τ

[
c1(k)H(1)

ν (−kτ) + c2(k)H(2)
ν (−kτ)

]
(1.54)

where H(1)
ν and H(2)

ν are, respectively, the Hankel functions of first and second kind. If we now
impose that on sub-horizon scales (−kτ � 1) the solution matches the plane wave solution
expected in a flat space-time, knowing the asymptotic behaviour of the Hankel functions,
setting c2(k) = 0 and

c1(k) =
√
π

2 ei(ν+ 1
2)π2 (1.55)

we get that

uk(τ) =
√
π

2 ei(ν+ 1
2)π2√−τH(1)

ν (−kτ) (1.56)

In particular, we are interested in the asymptotic behaviour of the solution when the fluctuation
is well outside the horizon (−kτ � 1). On super-horizon scales, since

H(1)
ν (−kτ � 1) ∼

√
2
π
ei
π
2 2(ν− 3

2) Γ(ν)
Γ(3

2)
(−kτ)−ν (1.57)

we get that the fluctuations of a scalar field δϕk with a non-vanishing mass are not exactly
constant and have amplitude

|δϕk| = 2(ν− 3
2) Γ(ν)

Γ(3
2)

H√
2k3

(
k

aH

) 3
2−ν

(1.58)

Let us notice that the above asymptotic solution is valid for values of the scalar field mass
Mϕ 6 3/2H, meaning that fluctuations of the scalar field can be generated on super-horizon
scales only if the scalar field is light. This is because it can be shown that for very massive
scalar fields the fluctuations of the field remain in the vacuum state and do not produce
perturbations on cosmological relevant scales. If the scalar field is very light, remembering
the definition for the slow-roll parameter η introduced in the previous sections, we can make
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an expansion of the solution (1.58) to lowest order in η = (M2
ϕ/3H2)� 1 to find

|δϕk| =
H√
2k3

(
k

aH

) 3
2−ν

(1.59)

with 3
2 − ν ' η.

1.5.2 Quantum Fluctuations of a Scalar Field in a quasi-de Sitter Stage

The results we obtained so far, however, are approximate ones. During the inflationary
expansion the Hubble rate is not exactly constant, but changes with time as Ḣ = −εH2.
Therefore, considering a scalar field with a very small effective mass, from the definition of
conformal time:

a(τ) ' − 1
H

1
τ(1− ε) (1.60)

where ε is the inflationary slow-roll parameter, we get that

a
′′

a
= a2H2

(
2 + Ḣ

H2

)
' 2
τ2

(
1 + 3

2ε
)

(1.61)

Plugging this result into equation (1.43) we obtain again a Bessel equation where now ν, to
lowest order in the slow-roll parameters, is given by

ν ' 3
2 + ε− η (1.62)

1.5.3 Correlation Functions and Power Spectrum

To compare theoretical predictions to observations, we need to introduce some observable
quantities to characterise the properties of the fluctuations. The fluctuations are described
by a quantum field δϕ(t,x), representing the amplitude of the fluctuations in each point of
the space-time. Even though the ensemble average of these fluctuations is zero by definition,
they are correlated through different points in the space-time. Assuming the perturbations
δϕ(t,x) being Gaussian distributed, the 2-point correlation function specifies all the statistical
properties of the perturbations. To find the quantities we are looking for, let us therefore
begin by considering the 2-point correlation function of the Fourier transform of a generic
stochastic field δ(t,x):

〈δ(k1, t)δ(k2, t)〉 = (2π)3P (k)δ(3)(k1 + k2) (1.63)
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Where our convention for the Fourier transform is:

δ(x, t) =
∫

d3k
(2π)3 e

ik·xδ(k, t)

δ(k, t) =
∫
d3xe−ik·xδ(x, t)

(1.64)

The quantity P (k), defined through equation (1.63), is the power spectrum and it measures
the amplitude of the fluctuations at a given scale k. This can be easily proven observing that
the mean square value of the stochastic field δ(t,x), in real space, is given by

〈δ2(t,x)〉 =
∫

d3k

(2π)3P (k) =
∫

dk

2π2k
2P (k) =

∫
dk

k
P(k) (1.65)

where P(k) is the dimensionless power spectrum, defined by

P(k) = k3

2π2P (k) (1.66)

The slope of the power spectrum is described by its associated spectral index n(k), defined as

n(k)− 1 ≡ d lnP(k)
d ln k (1.67)

If n = 1, we have what is called an Harrison-Zel’dovich spectrum for which the amplitude of
the fluctuations does not depend on the cosmological scale k. If instead the spectral index
deviates from unity, the power spectrum P(k) can be written with respect to some pivot scale
k0 as

P(k) = A(k0)
(
k

k0

)n−1
(1.68)

where A is the amplitude of the perturbations. In the case of the quantum fluctuations of the
inflaton field δϕ(t,x), the 2-point correlation function is given by

〈δϕk1δϕ
∗
k2〉 = (2π)3|δϕk|2δ(3)(k1 + k2) (1.69)

therefore, by comparing equation (1.69) to equation (1.63), we identify

P (k) = |δϕk|2 = |uk|
2

a2 −→ P(k) = k3

2π2
|uk|2

a2
(1.70)
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On super-horizon scales, recalling the result for the amplitude of the fluctuations of the scalar
field δϕk, given by equation (1.59), we get that the dimensionless power spectrum is given by

P(k) =
(
H

2π

)2 ( k

aH

)3−2ν
(1.71)

where, a in a quasi-de Sitter stage, 3− 2ν ' 2η − 2ε.
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Chapter 2
Theory of Cosmological Perturbations

In Chapter 1 we have shown how, from the quantum fluctuations of a scalar field, primordial
density perturbations are generated during an inflationary period. However, in our compu-
tations there is actually an inconsistency: we perturbed our scalar field in an unperturbed
space-time. In the case of the inflaton field, taking into account perturbations in the metric
tensor is particularly important. The fact that inflaton field drives the inflationary expansion
means that it dominates the energy density of the Universe at that time. This entails that any
perturbation in the inflaton field δϕ implies a perturbation of the energy-momentum tensor
δTµν that, through Einstein’s equations, implies a perturbation in the metric tensor δgµν . On
the other hand, perturbations in the metric tensor affect the evolution of the inflaton field δϕ
through the perturbed Klein-Gordon equation (1.19) since

�ϕ = 1√
−g

∂ν
(√
−ggµν∂µϕ

)
(2.1)

which will then vary the metric again, and so on. Therefore, the following sections will be
primarily devoted to set up the framework needed to revise our calculations and thus provide
a more rigorous treatment of the primordial density perturbations. Note that unless otherwise
specified we will work with conformal time τ .

2.1 Perturbing the Metric Tensor

Let us begin by writing down the perturbations on a spatially flat FLRW background. The
components of a perturbed spatially flat FLRW metric can be written as follows:

g00 = −a2(τ)
[
1 + 2

∞∑
r=1

1
r! Φ̂

(r)(τ,x)
]

g0i = a2(τ)
∞∑
r=1

1
r! ω̂

(r)
i (τ,x)

gij = a2(τ)
[(

1− 2
∞∑
r=1

1
r! Ψ̂

(r)(τ,x)
)
δij +

∞∑
r=1

1
r! χ̂

(r)
ij (τ,x)

]
(2.2)
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where r keeps track of the perturbation order and thus the functions Φ̂(r), ω̂(r)
i , Ψ̂(r) and χ̂(r)

ij

stand for the r-th order perturbations to the metric. These perturbations are usually split
according to their transformation properties into their scalar, vector and tensor parts, where
the scalar parts are related to a scalar potential, the vector parts are related to transverse
vectors and the tensor parts are related to transverse traceless tensors. In particular, the Φ̂(r)

and Ψ̂(r) perturbation functions have only a scalar part and the ω̂(r)
i and χ̂(r)

ij ones can be
decomposed as

ω̂
(r)
i = ∂iω

(r)
|| + ω

(r)
i⊥ (2.3)

χ̂
(r)
ij = Dijχ

(r)
|| + ∂iχ

(r)
j⊥ + ∂jχ

(r)
i⊥ + χ

(r)T
ij (2.4)

where ω(r)
|| and χ

(r)
|| are two scalars, ω(r)

i⊥ and χ
(r)
i⊥ are two transverse vectors i.e. ∂iω(r)

i⊥ =
∂iχ

(r)
i⊥ = 0, χ(r)T

ij is a symmetric, transverse and trace-free tensor and

Dij = ∂i∂j −
1
3δij5

2 (2.5)

is a trace-free operator. Let us observe that, at least at linear order, the scalar, vector and
tensor modes are decoupled from each other and thus evolve independently.

2.2 Gauge Dependence

Before proceeding further with our discussion, an important remark is in order. In the
perturbation theory of General Relativity one considers a space-time, the perturbed space-time,
assumed to be close to a simple, symmetric space-time, and the background space-time, that
in our case of interest is the FLRW space-time. The perturbation δT in a given quantity is
then defined as the difference between the physical value of T , computed on the perturbed
space-time, and the background unperturbed value T0. To compare the physical value of T
with the reference value T0, it is necessary to establish a map i.e. a one-to-one correspondence
between the perturbed and the background space-time. Such a map represents a gauge choice
and a change in the map corresponds to a gauge transformation. From the point of view of a
set of coordinates, a change in the gauge means a change of the coordinates and, since General
Relativity is a theory based on the freedom of changing locally the system of coordinates, the
gauge choice is not unique. This implies that the perturbations δT on the background value
T0 will transform after a change of the coordinates, thus acquiring different values which are
nonetheless on equal footing. One possible way to solve this issue of gauge-dependence, which
holds at any order of the perturbations, is to choose a gauge and perform our calculations in
that gauge. But what does it mean to choose a gauge?

22



Let us consider an infinitesimal coordinate transformation:

x̂µ = xµ − ξµ(r) (2.6)

where ξµ(r) is a vector field defining the gauge transformation. In particular, the function ξ0
(r)

selects constant τ -hypersurfaces i.e. the time-slicing, while the function ξi(r) selects the space
coordinates within these hypersurfaces. These two functions can be decomposed as

ξ0
(r) = α(r)

ξi(r) = ∂iβ(r) + di(r), ∂id
i
(r) = 0

(2.7)

From a practical point of view choosing a gauge means fixing, order by order, two scalars
α(r), β(r) and one vector di(r). If we now expand a generic tensor T , defined in the perturbed
space-time, around its background value T0 as follows:

T (τ, xi) = T0 + δT (τ, xi) (2.8)

then its perturbation δT will transform under a gauge transformation as

δ̃T = δT + LξT0 (2.9)

where Lξ is the Lie derivative along the vector ξµ. Therefore, for example, the perturbation
in the energy density δρ would transform as

δ̃ρ = δρ+ ρ
′
0α (2.10)

Another possible way to circumvent this gauge-dependence problem consists in identifying
combinations of perturbations which are gauge-invariant. The first to propose a gauge-invariant
treatment of the perturbations at linear order was Bardeen in his seminal work [21]. Central
to Bardeen’s paper were two scalar potentials, dubbed Bardeen potentials, that govern the
evolution of the scalar perturbations and are given by the following combinations:

Φ = Φ̂ + 1
6 5

2 χ|| +
a
′

a
ω|| −

1
2
a
′

a
χ
′

||

Ψ = Ψ̂ + ω
′

|| +
a
′

a
ω|| −

1
2

(
χ
′′

|| +
a
′

a
χ
′

||

) (2.11)

It is interesting to observe that in the Poisson gauge, defined by the two scalar conditions
ω|| = 0 and χ|| = 0 and the vector condition χi⊥ = 0, the expressions for the two Bardeen

23



potentials reduce to

Φ = Φ̂

Ψ = Ψ̂
(2.12)

In the next section we will give the expression of another relevant gauge-invariant quantity, the
curvature perturbation on spatial slices of uniform energy density, allowing us to understand
how, for example, a gauge-invariant quantity can be found by selecting unambiguously a
proper time-slicing.

2.3 Curvature Perturbation on Spatial Slices of Uniform Den-
sity

Let us begin by introducing the intrinsic spatial curvature on hypersurfaces of conformal time
τ that, for a flat FLRW Universe, is given by

(3)R = 4
a2 5

2 Ψ̃ (2.13)

where, for simplicity of notation, we defined

Ψ̃ = Ψ̂ + 1
6 5

2 χ (2.14)

The combination Ψ̃ is usually referred to as the curvature perturbation but, being defined only
on a given slicing, is not a gauge-invariant quantity. Indeed, under a change of the time-slicing
τ → τ + α, we have that

Ψ̃→ Ψ̃−Hα (2.15)

where H = a
′
/a is the Hubble parameter in conformal time. If we now consider the slicing of

uniform energy density, defined as the slicing where there is no perturbation in the energy
density i.e. δρ = 0, then from the equation (2.10) we have that

α = δρ

ρ′0
(2.16)

Therefore, the curvature perturbation Ψ̃ on uniform density perturbation slices will be given
by

Ψ̃
∣∣
ρ

= Ψ̃ +Hδρ
ρ′0

(2.17)
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This quantity is clearly gauge-invariant and is usually denoted in literature as follows:

− ζ ≡ Ψ̃
∣∣
ρ

= Ψ̃ +Hδρ
ρ′0

(2.18)

2.3.1 Adiabatic and Entropy Perturbations

The gauge-invariant curvature perturbation whose expression is given by equation (2.18) was
first introduced by Bardeen, Steinhardt and Turner [22] as a conserved quantity on large
scales for adiabatic perturbations. Adiabatic perturbations are such that a net perturbation
is produced in the energy density and (via the Einstein’s equations) also in the intrinsic
spatial curvature. Since neither the energy density nor the intrinsic spatial curvature are
gauge-invariant, it’s straightforward to understand the utility of using the quantity ζ to
characterise such perturbations. The notion of adiabaticity thus applies when, in the physical
space-time, the properties of a fluid can be described uniquely in terms of its energy density ρ.
In the same way, one can define a non-adiabatic (entropy) perturbation of a given quantity T ,
simply extracting that part of the perturbation that does not depend on the energy density.
In general, this can be done considering the value of the perturbation δT on hypersurfaces of
uniform energy density:

δT
∣∣
n−ad ≡ δ̃T

∣∣
ρ

(2.19)

since, when T = T (ρ), this quantity will vanish for adiabatic perturbations. Given that the
entropy perturbations do not induce any inhomogeneities in the energy density and thus on
the intrinsic spatial curvature, they are also known in literature as isocurvature perturbations.

2.4 Power Spectrum of the Curvature Perturbation

Assuming inflation to be driven by a scalar field, we have already seen how its potential
energy will dominate the energy density of the Universe during that time. As we shall see
in a moment, the quantum fluctuations of the inflaton field generate adiabatic curvature
perturbations and thus our aim in this section will be to calculate the primordial curvature
perturbation generated on large scales and its power spectrum. Let us begin our discussion by
revising our calculation of the amplitude of the quantum fluctuations of the inflaton, taking
this time into account also the perturbations in the metric tensor. With this goal in mind, we
introduce a gauge-invariant quantity, the so-called Sasaki-Mukhanov variable, that accounts
for both the metric and the inflaton perturbations:

Qϕ = δϕ+ ϕ
′

H
Ψ̃ (2.20)

In the spatially flat gauge, defined by the requirements that Ψ̂ = 0 and χ = 0, if one redefines
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Qϕ as Q̂ϕ = a(τ)Qϕ, one finds that the Klein-Gordon equation (1.37) in Fourier space reads
off [23]:

Q̂ϕ
′′

+
[
k2 − a

′′

a
+M2a2

]
Q̂ϕ = 0 (2.21)

where, to lowest order in the slow-roll parameters, the effective mass of the inflaton field is
given by

M2
ϕ = Vϕϕ = 3η − 6ε (2.22)

Since this equation is of the same form of equation (1.43), we can solve it using the same
procedure adopted in the previous sections, eventually finding that on super-horizon scales
and at lowest order in the slow-roll parameters the amplitude of the quantum fluctuations of
the inflaton is given by

|Qϕ| =
H√
2k3

(
k

aH

) 3
2−ν

(2.23)

with ν ' 3
2 + 3ε − η. To calculate the curvature perturbation on large scales we can now

introduce the curvature perturbation on comoving hypersurfaces whose definition, in the case
of a scalar field, is given by

R = Ψ̃ + H
ϕ′
δϕ (2.24)

It can be proven that the curvature perturbation on comoving hypersurfaces R and the
uniform energy density curvature perturbation −ζ are simply related by

− ζ = R+ 2ρ
9(ρ+ p)

(
k

aH

)2
Φ̂ (2.25)

and that in particular, on super-horizon scales, R ' −ζ [23]. From the definition of the
Sasaki-Mukhanov variable (2.20) it is evident that

R = H
ϕ′
Qϕ (2.26)

Thus, recalling the expression for the dimensionless power spectrum of the quantum fluctuations
of the scalar field on super-hozion scales, given by equation (1.71), switching back to cosmic
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time t we obtain that the power spectrum for the curvature perturbations on large scales is
given by

PR(k) =
(
H2

2πϕ̇

)2 (
k

aH

)3−2ν
'
(
H2

2πϕ̇

)2

∗
(2.27)

where the asterisk denotes quantities evaluated at the epoch a given perturbation mode leaves
the horizon during inflation i.e. at horizon crossing k = aH. Notice also that this result tells
us that, on super-horizon scales, the perturbation mode is constant. In particular, since in the
spatially flat gauge −ζ = H(δρ/ρ′0), it is clear that the curvature mode allow us to connect
the primordial perturbations produced during inflation to observable quantities. We conclude
our discussion with the computation of the spectral index of the power spectrum (2.27) which,
to lowest order in the slow-roll parameters, in given by

ns − 1 = 3− 2ν = 2η − 6ε (2.28)

Current results from CMB data tell us that the spectrum is very close to an Harrison-Zel’dovich
one, with ns = 0.965± 0.004 at 68% CL [9].

2.5 Gravitational Waves from Inflation

We have seen how the quantum fluctuations of the inflaton field, via the Einstein’s equations,
induce perturbations in the metric tensor and how these perturbations can be split into their
scalar, vector and tensor part according to their transformation properties. Before concluding
our discussion we should now spend a few words on the tensor perturbations since these
tensor perturbations constitute a stochastic background of Gravitational Waves (GW). A
stochastic background of waves is a set of continuous waves, fully characterised by their
statistical properties. These GW consist of a signal coming from every direction in the sky
and having a whole spectrum in the frequency domain and thus differ from the signal coming
from astrophysical sources, which come from a specific direction in the sky and is peaked at a
specific frequency at coalescence. Let us begin by considering a generic symmetric three-tensor
hij . In general, a symmetric three-tensor has six degrees of freedom. However, as we have
already seen, tensor perturbations are traceless and transverse and thus there remain only
two physical degrees of freedom, corresponding to two polarisation states, that are usually
denoted as λ = +,×. Going to Fourier space and introducing the polarisation tensors ελij ,
having the following properties:

εij = εji , kiεij = 0 , εii = 0 (2.29)

27



we can decompose the tensor perturbations hij as follows:

hij(x, τ) =
∑
λ

∫
d3k

(2π)3 e
ik·xhλ(k, τ)ελij(k) (2.30)

One can prove that the two degrees of freedom of the tensor modes hλ(k, τ) propagate as
two massless, minimally coupled scalar fields ϕλ, with hλ =

√
32πGϕλ. This implies that hλ

satisfies the equation of motion of a massless scalar field in a FLRW background and thus we
can conclude that, on large scales, the amplitude of the tensor modes scales as

|hλ| =
√

32πG|ϕλ| =
√

32πG H√
2k3

(
k

aH

) 3
2−ν

(2.31)

where, to lowest order in the slow-roll parameters, 3
2 − ν ' −ε. On super-horizon scales the

fluctuations are constant and, as usual, a way to characterise them is via the calculation of
the power spectrum, which is given by

PT(k) =
(
k3

2π2

∑
λ

|hλ|2
)

= 8
M2

P

(
H

2π

)2 ( k

aH

)−2ε
(2.32)

where we introduced the definition of reduced Planck mass M−2
P = 8πG. We can then define

the tensor spectral index as

nT ≡
d lnPT(k)
d ln k = −2ε (2.33)

The spectrum of the tensor perturbations is nearly scale-invariant. Furthermore, the amplitude
of the tensor modes depends only on the Hubble rate during inflation, which in turn depends
only on the energy scale V 1/4 of the inflaton potential. This means that a detection of a
stochastic background of GWs would provide us with a direct measurement of the energy scale
of inflation, a crucial piece of information towards our understanding of the Early Universe.

2.6 The Consistency Relation

The results we obtained for the scalar and tensor perturbations induced by single-field slow-roll
inflation allow us to predict an important consistency relation for such models. Let us begin
by introducing the definition of the so-called tensor-to-scalar ratio, which yields the amplitude
of the tensor modes with respect to the scalar ones at some pivot scale k0:

r = AT(k0)
As(k0) (2.34)

28



Recalling the expression for the slow-roll parameter ε given in equation (1.33), one can easily
prove that the amplitude of the scalar perturbations As can be rewritten as

As(k0) = H2

M2
Pπε

(2.35)

thus implying that

r ' 16ε (2.36)

From this result, recalling the expression for the tensor spectral index (2.33), we get the
following consistency relation:

r ' −8nT (2.37)

The current datasets provide only upper bounds on the tensor-to-scalar ratio r, with the
state-of-the-art on (r, nT) represented by the set of bounds obtained by Akrami et al. [15]
and Tristam et al. [24] for what regards, respectively, the tensor spectral index nT and
the tensor-to-scalar ratio r. In [15], using data from the Planck Release 3 (PR3) [25]
in the form of the publicly available likelihoods (referred to in Figure 2.1 as “PL18”), in
combination to the BICEP2/Keck Array (“BK15”) [26] and the “LV15” [27] GWs LIGO-
Virgo-KAGRA interferometers datasets, Akrami et al. found the following set of bounds on
(r, nT): r0.01

1 < 0.066 and −0.76 < nT < 0.52 at the 95% CL. In [28], Tristam et al. updated
the constraint on the tensor-to-scalar ratio r, keeping the tensor spectral index nT fixed to the
value predicted from the single-field slow-roll consistency relation (2.37). In particular, they
used a combination of the BICEP3/Keck Array (“BK18”) B-mode data [29] and the Planck
Release 4 (PR4) E and B-mode polarisation data [28], finding an upper limit of r0.01 < 0.034
at the 95% CL, which tightens to r0.01 < 0.032 when considering also BAO and CMB lensing
data. Recently, these results have been updated by Galloni et al., who in [30], considering
combinations of different datasets from BICEP/Keck, Planck and the LIGO-Virgo-KAGRA
collaboration (see Figure 2.1), found the following bounds on the tensor sector, with the
one on the tensor-to-scalar ratio being the most stringent one to date: r0.01 < 0.028 and
−1.37 < nT < 0.42 at the 95% CL, obtained using a combination of the PR3 and PR4
(referred to in Figure 2.1 as “PL21”), BK18 and the LV21 [31] datasets.

1Here the subscript 0.01 denotes the pivot scale, that is k0 = 0.01 Mpc−1.
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Figure 2.1. Summary of the 95% CL intervals for r0.01 and nT obtained by Galloni et al. in [30] considering different combinations of datasets. Figure
adapted from [30].



Chapter 3
The Cosmic Microwave Background

At the time of Big Bang Nucleosynthesis, the primordial plasma consisted of photons, free
electrons and ionised nuclei (mostly protons). Photons and electrons were tightly coupled by
means of Compton scattering:

e− + γ ↔ e− + γ (3.1)

In turn, the electrons strongly interacted with the protons via Coulomb scattering:

e− + p+ ↔ e− + p+ (3.2)

Electromagnetic reactions, such as those forming and ionising neutral hydrogen, kept photons
and baryons in equilibrium:

e− + p+ ↔ H + γ (3.3)

As the Universe expanded and cooled down, these reactions became less and less efficient,
leading to

e− + p+ → H + γ (3.4)

This process is usually referred to as recombination. By this time, since the electrons were
no longer relativistic, the photon-electron scattering was governed by Thomson scattering,
with constant cross section σT and rate Γγ ∼ neσT . As the number density of the free
electrons ne dropped, the mean free path of the photons became larger than the size of the
horizon. The photons decoupled from matter and the Universe became transparent. This
occurred at a temperature Trec ≈ 0.26 eV, corresponding to a redshift of zrec ≈ 1100. These
photons have since freely streamed through the Universe and we observe them today as the
Cosmic Microwave Background (CMB) radiation. Observations show that the CMB is well
described by a black-body function having a mean temperature T0 = 2.7255± 0.0006 K [32]
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and contains temperature anisotropies at the 10−5 level over a wide range of angular scales.
These anisotropies are usually split into two types:

• primary anisotropies, due to effects that happened prior or during photon decoupling;

• secondary anisotropies, due to the interactions of the decoupled CMB photons with the
content of the Universe during its post-recombination history.

In the following, however, we are going to restrict ourselves only to those anisotropies that
come from the fact that during recombination the CMB photons were tightly coupled to the
baryons.

3.1 Temperature Anisotropies

The CMB anisotropies are commonly described in terms of small temperature fluctuations
Θ(x, n̂, τ), where x is the spatial coordinate, n̂ denotes the direction of the incoming photons
and τ is the conformal time. It should be noted that, deriving from quantum fluctuations,
Θ(x, n̂, τ) is a random field and thus it can’t be predicted in a deterministic way. In other words,
what we actually observe is its statistical distribution. Since the temperature fluctuations lie
over the surface of a sphere, for which the spherical harmonics define an orthonormal basis,
the field Θ(x, n̂, τ) is usually decomposed as follows:

Θ(x, n̂, τ) =
∞∑
`=0

∑̀
m=−`

a`m(x, τ)Y`m(n̂) (3.5)

Being the spherical harmonics orthogonal, all of the information is encoded in the coefficients
a`m. Using the orthonormality property of the spherical harmonics:

∫
dn̂Y`m(n̂)Y ∗`′m′(n̂) = δ``′δmm′ (3.6)

we can infer the harmonic coefficients for the temperature field Θ(x, n̂, τ):

a`m(x, τ) =
∫
dΩn̂Θ(x, n̂, τ)Y ∗`m(n̂) (3.7)

The ΛCDM model makes very simple predictions for the statistical properties of the harmonic
coefficients. Assuming the temperature fluctuations being a Gaussian real-valued random
field, the coefficients a`m are complex Gaussian variables with vanishing mean and non-zero
covariance:

〈a`m〉 = 0; 〈a∗`′m′a`m〉 = δ``′δmm′C` (3.8)

The angled brackets here denote an ensemble average over many different realisations of
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the Universe. The quantity C` is usually referred to as the angular power spectrum and it
measures how much fluctuation exists on a given angular scale. This is because, assuming the
temperature field being Gaussian distributed, all the statistical information on the anisotropies
is contained in the variance C`. Because of statistical isotropy, coefficients a`m with the same `
but differentm are extracted from the Gaussian distribution with the same variance. Therefore,
a commonly used estimator for the angular power spectrum is given by

C` = 1
2`+ 1

∑
m

|a`m|2 (3.9)

It should be noted, however, that since for each multipole ` there are 2` + 1 modes to
average over, this estimator fails to capture the underlying variance for the largest fluctuations
(corresponding to small `). This implies that only for large multipoles ` (corresponding to
small scales) we have enough statistical power to accurately estimate the angular power
spectrum and thus associated to the estimation of the angular power spectrum there is an
intrinsic uncertainty. This fundamental uncertainty is referred to as cosmic variance and it is
quantified by

(∆C`
C`

)
cv

=
√

2
(2`+ 1) (3.10)

Note that cosmic variance constitutes a fundamental limitation of cosmological observations
and it cannot be overcome by building more precise instruments.

The relevant quantity that we extract from CMB temperature maps is the 2-point temperature
correlation function. The angular power spectrum defined in harmonic space can be related
to the 2-point CMB correlation function in real space simply by

C(θ) = 〈Θ(n̂1)Θ(n̂2)〉 = 1
4π

∞∑
`=0

(2`+ 1)C`P`(n̂1 · n̂2) (3.11)

where n̂1 · n̂2 = cos θ and P`(cos θ) are the Legendre polynomials of degree `. It remains
therefore to discuss how the primordial density fluctuations of the CMB photons at the LSS
relate to the observed anisotropies. Let us consider the observed photon perturbation at a
given time. In Fourier space, this can be expressed in terms of multipole moments Θ`(k, τ):

Θ(x, p̂, τ) ≡
∫

d3k
(2π)3 e

ik·x
∞∑
`=0

(−i)`(2`+ 1)Θ`(k, τ)P`(µ) (3.12)

where p̂ denotes the direction of the incoming photons, µ is a variable which denotes the cosine
of the angle between the wavevector k̂ and the photon direction p̂. We are now interested in
the temperature anisotropies observed today (τ0) and at our location (x0) as a function of
the direction n̂ in the sky. Since a photon observed in the direction n̂ had to be travelling in
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the direction p̂ = −n̂, we have that

Θ(x = x0, p̂ = −n̂, τ = τ0) = Θ(n̂) ≡ ∆T
T0

(n̂) (3.13)

Introducing now the CMB radiation transfer function g`(k), defined such that

Θ`(k, τ0) = g`(k)ζ(k) (3.14)

where ζ is the gauge-invariant curvature perturbation we introduced in Chapter 2, we obtain
from equation (3.12) the following expression for the observed temperature fluctuation:

Θ(n̂) =
∫

d3k
(2π)3 e

ik·x0
∞∑
`=0

(−i)`(2`+ 1)g`(k)ζ(k)P`(µ) (3.15)

From the addition theorem for the spherical harmonics it is known that

P`(µ) = 4π
2`+ 1

∑̀
m=−`

Y ∗`m(k̂)Y`m(n̂) (3.16)

Therefore, substituting equation (3.16) into equation (3.15), we get that

Θ(n̂) = 4π
∫

d3k
(2π)3 e

ik·x0
∞∑
`=0

(−i)`g`(k)ζ(k)
∑̀
m=−`

Y ∗`m(k̂)Y`m(n̂) (3.17)

Equating equation (3.5) and equation (3.17), we obtain the following definition for the
harmonic coefficients of the CMB temperature multipoles:

a`m = 4π(−i)`
∫

d3k
(2π)3 e

ik·x0g`(k)ζ(k)Y ∗`m(k̂) (3.18)

Using equation (3.18) we get that the explicit expression for the 2-point angular correlation
function is given by

〈a`ma∗`′m′〉 = (4π)2(−i)`+`′
∫

d3k
(2π)3

∫
d3k′

(2π)3 e
i(k+k′)·x0g`(k)g`′(k)Y ∗`m(k̂)Y`′m′(k̂

′)〈ζ(k)ζ(k′)〉

(3.19)

Recalling that 〈ζ(k)ζ(k′)〉 = (2π)3δ(3)(k+ k′)Pζ(k) and exploiting the properties of the Dirac
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delta, equation (3.19) becomes:

〈a`ma∗`′m′〉 = (4π)2(−i)`+`′
∫

d3k
(2π)3Pζ(k)g`(k)g`′(k)Y ∗`m(k̂)Y`′m′(k̂

′) (3.20)

Using now the orthonormality property of the spherical harmonics (3.6) and the second of
equation (3.8), we get that

〈a`ma∗`′m′〉 = δ``′δmm′C` = (−i)`+`′ 2
π

∫
dkk2Pζ(k)g`(k)g`′(k)δ``′δmm′ (3.21)

thus obtaining the following key result for the angular power spectrum of the CMB:

C` = 2
π

∫
dkk2Pζ(k)g2

` (k) (3.22)

This result tells that the radiation transfer function g`(k) provides a map from the primordial
density perturbations power spectrum Pζ(k) to the angular power spectrum of the observed
CMB anisotropies. To compute the explicit expression for the radiation transfer function, we
should follow the free-streaming evolution of the CMB photon perturbations from decoupling
(τrec) to today (τ0). This evolution is described by the Boltzmann equation1 and by solving
it, one finds that the explicit expression for the radiation transfer function is given by

g`(k) ≈ (Θ0 + Φ)rec j` [k(τ0 − τrec)]

+ i (vb)rec
(
j`−1 [k(τ0 − τrec)]− (`+ 1)j` [k(τ0 − τrec)]

k(τ0 − τrec)

)
+
∫ τ0

τrec
dτe−τ(τ)

(
Ψ′ + Φ′

)
j` [k(τ0 − τrec)]

(3.23)

where (f)τrec = f(k, τrec)/ζ(k) and (τ0 − τrec) is defined as the conformal distance along
the line-of-sight. The j` [k(τ0 − τrec)] are the spherical Bessel functions, which describe the
projection from Fourier space to the harmonic space. Let us now spend a few of words on the
physical meaning of the three terms that appear in the expression for the radiation transfer
function (3.23). The first one is called the Sachs-Wolfe (SW) term. It gets two contributions:
the first captures the intrinsic temperature fluctuations arising from perturbing the thermal
distribution of the photons; the second one accounts for the gravitational redshifting that
occurs when the photons climb out a potential well at LSS. The second term in equation
(3.23) is referred to as the Doppler term. It takes into account the shift in the photons
energy due to the fact that the electrons in the photon-baryon fluid are not at rest when the
photons scatter off them. Finally, the last term in equation (3.23), dubbed the Integrated

1A full treatment of the Boltzmann equation is beyond our scopes, but a sketch of the main results for the
free-streaming evolution of the photon perturbations can be found in Appendix A.
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Sachs-Wolfe (ISW) term, captures the effect of gravitational redshifting from the evolution of
the potentials along the line-of-sight, from recombination until today, and thus it’s actually a
source of secondary CMB anisotropies. The integrated effect receives two main contributions,
referred to as the early ISW effect and the late-time ISW effect. The early ISW effect occurs
shortly after recombination, when the photons leave the LSS, and is due to the evolution
of the gravitational potentials as the Universe transitions from being radiation-dominated
to be matter-dominated. The late-time ISW effect is instead due to the evolution of the
gravitational potentials during the Dark Energy epoch at low-redshift (z . 1) and thus it is
restricted only to the largest scales. A sketch of how all of these terms contribute to the CMB
temperature angular power spectrum is presented in Figure 3.1.

Figure 3.1. Sketch of the different contributions to the CMB temperature angular power spectrum.
Also shown is the contribution from tensor perturbations (GW), with an arbitrary normalisation.
Figure adapted from [33].

Estimates of the CMB angular power spectrum from a selection of the most recent available
experimental results are shown in Figure 3.2. The strongest constraints presently available
come from the Planck satellite data, although the smaller scale results from the Atacama
Cosmology Telescope (ACT) and South Pole Telescope (SPT) experiments are beginning to
add meaningful constraining power. Comparison between the datasets show consistency and
the band powers shown are in very good agreement with a ΛCDM model. Notice also that one
starts measuring the power spectrum at ` = 2. This is because the monopole ` = 0 coincides
with the CMB mean temperature T0 and since all mapping experiments involve difference
measurements, they are insensitive to this average level. The dipole ` = 1, with amplitude
3.3621± 0.0010 mK [8], is interpreted as due to the Doppler boosting of the monopole, caused
by the Solar System motion relative to the nearly isotropic black-body background. Being a
frame-dependent quantity, it tells us our velocity with respect to the rest frame of the CMB
and it is nowadays routinely used as a primary calibrator for CMB mapping experiments.
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Figure 3.2. Compilation of recent CMB angular power spectrum measurements from which most
cosmological inferences are drawn. The upper panel shows the power spectra of the temperature and
E-mode and B-mode polarisation signals, the next panel the cross-correlation spectrum between T and
E, while the lower panel shows the lensing deflection power spectrum. Different colours correspond to
different experiments, each retaining its original binning. For Planck, ACTPol, and SPTpol, the EE
points with large error bars are not plotted. The dashed line shows the best-fit ΛCDM model to the
Planck temperature, polarisation, and lensing data. See [8] for details and references. Figure adapted
from [8].

From both Figure 3.1 and 3.2, it is clear that we can discuss the underlying physics for the
CMB angular power spectrum distinguishing four main regions in `:

• the horizon scale, or more precisely the angle subtended by the Hubble radius at the
LSS, corresponds to ` ≈ 100. For 10 . ` . 100 we observe the so-called Sachs-Wolfe
plateau: as a result of gravitational redshifting and intrinsic temperature fluctuations at
these scales the anisotropies have not evolved significantly and thus directly reflect the
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initial conditions. The net effect on the temperature fluctuations is [34]:

Θ(n̂) = −1
3Φ∗(n̂) −→ Θ`(k) = −1

3Φ∗(k)j`(kx0) (3.24)

where Φ is Bardeen’s gravitational potential and the ’∗’ means that the potential is
evaluated at the LSS. Plugging this into equation (3.18) we get that the harmonic
coefficients a`m become:

a`m = −4π
3 (−i)`

∫
d3k

(2π)3 e
ik·x0j`(kx0)Φ∗(k)Y ∗`m(k̂) (3.25)

Thus, following the same procedure of the previous section, we get that at these scales
the angular power spectrum is given by

〈a`ma∗`′m′ 〉 = 2
9π

∫
dkk2j2

` (kx0)PΦ(k)δ``′δmm′

CSW` = 2
9π

∫
dkk2j2

` (kx0)PΦ(k)
(3.26)

where the apex SW means that we are working in the Sachs-Wolfe approximation. Since
the power spectrum of Bardeen’s gravitational potential is given by PΦ(k) = A

k4−ns with
normalisation A and scalar spectral index ns, the integral in equation (3.26) can be
rewritten as

∫
dkk2j2

` (kx0)PΦ(k) = A

∫
dkkns−2j`(kx0) (3.27)

This integral admits an analytical solution in terms of Euler Gamma functions:

A

∫
dkkns−2j`(kx∗) = A2ns−4π

Γ
(
`+ ns

2 −
1
2

)
Γ (3− ns)

Γ
(
`+ 5

2 −
ns
2

)
Γ2 (2− ns

2
) (3.28)

If one assumes that the power spectrum PΦ(k) is scale-invariant i.e. ns = 1, using the
properties of the Gamma functions and the particular value Γ

(
3
2

)
=
√
π

2 , one gets for
the angular power spectrum in the Sachs-Wolfe approximation the following result:

CSW` = 2A
9π

[
2−3π

Γ(`)
Γ(`+ 2)

4
π

]
= A

9π
Γ(`)

` (`+ 1) Γ(`)

= A

9π
1

` (`+ 1)

(3.29)

That is, the quantity ` (`+ 1)CSW` is constant. At late times, during the epoch of Dark

38



Energy dominance, the time variation of the gravitational potentials leads to an upturn
in the C`s in the lowest multipoles (` . 10), which therefore rise above the SW plateau.
Since this effect comes from the line integral of the gravitational potentials, it is referred
to as the Integrated Sachs-Wolfe rise. Let us also observe that the tensor perturbations
produced during inflation can generate temperature anisotropies through the integrated
effect of the locally anisotropic expansion of space. Since tensor modes redshift away
when they re-enter the horizon, they contribute only to the largest scales and thus
we can assume that a fraction of the low-` signal could also come from a primordial
Gravitational Wave contribution (see Figure 3.1);

• at angular scales 100 . ` . 1000 the structure in the anisotropy spectrum is a conse-
quence of gravity-driven acoustic oscillations occurring before the atoms in the Universe
became neutral. Before recombination the CMB photons were tightly coupled to the
baryons in the primordial plasma. During that epoch regions of higher density, seeded
by the quantum fluctuations produced at the end of inflation, attracted the baryons,
further increasing over-densities and decreasing under-densities. However, due to the
presence of photons in the plasma, the radiation pressure counteracted the gravitational
attraction and the fluid expanded, up until the point where gravity dominated again.
This created a pattern of expansion and contraction, thus producing acoustic waves.
When recombination happened and the photons decoupled from baryons, the acoustic
waves left an imprint in the CMB photons that we observe today as an harmonic series
of peaks;

• at scales ` & 1000 we observe the so-called damping tail. The spectrum is damped
mainly due to residual diffusion of photons, which smooths structures with scales smaller
than the photons mean free path (Silk damping). Furthermore, recombination is not
instantaneous and the LSS has actually a finite width, leading to further damping of the
anisotropies at the highest `s, corresponding to scales smaller than the ones subtended
by the LSS width.

3.2 Polarisation Anisotropies

Thomson scattering of photons with a quadrupole anisotropy off electrons at the LSS induces
a linear polarisation in the CMB radiation (see Figure 3.3) at the 10−6 level. From its angular
distribution we can get meaningful cosmological information, complementary to the one we
extract from the CMB temperature anisotropies. Unlike the temperature (which is a scalar
under rotations about n̂), the CMB polarisation is coordinate dependent and therefore it
can not be decomposed into spherical harmonics. In particular, the polarisation is a spin-2
field. One way of describing it is by means of the Stokes parameters Q and U, which can be
combined into two complex quantities:

P (n̂) = (Q± iU) (n̂) (3.30)
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Figure 3.3. Generation of CMB linear polarisation via Thomson scattering. An incoming quadrupole
radiation in the x − y plane gets scattered off by an electron in the origin, resulting in a linearly
polarised wave in the z-direction.

that transform under rotations around the n̂ axis as spin-2 variables. These quantities can
then be decomposed into spin-2 weighted spherical harmonics ±2Y`m(n̂) as follows:

(Q± iU) (n̂) =
∑
lm

a
(±2)
`m ±2Y`m(n̂) (3.31)

If we now define

aB`m = i

2
(
a

(2)
`m − a

(−2)
`m

)
aE`m = −1

2
(
a

(2)
`m + a

(−2)
`m

) (3.32)

we can introduce two independent and invariant quantities, dubbed E-mode and B-mode,
that allow us to split the polarisation pattern into a part that comes from a divergence
(corresponding to the E-mode) and one with a curl (corresponding to the B-mode), given by

E(n̂) =
∞∑
`=2

∑̀
m=−`

aE`mY`m(n̂) (3.33)

B(n̂) =
∞∑
`=2

∑̀
m=−`

aB`mY`m(n̂) (3.34)

Examples of E-mode and B-mode polarisation patterns that are observed in CMB maps are
presented in Figure 3.4.
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Figure 3.4. Examples of E-mode and B-mode polarisation patterns in CMB maps.

Figure 3.5. CMB power spectra of temperature anisotropy (top), E-mode polarisation (middle)
and B-mode polarisation (bottom). The solid lines show the angular power spectra for the best-fit
ΛCDM model in the presence of a scale-invariant tensor perturbation with r = 0.004. The thin dashed
line shows the contribution to the B-mode spectrum from a scale-invariant tensor perturbation with
r = 0.004. Also shown are a summary of present measurements of CMB power spectra (coloured
points) and the expected polarisation sensitivity of LiteBIRD (black points). Figure adapted from [35].

The existence of this linear polarisation of the CMB radiation in principle allows for six different
observable power spectra. However, since under parity transformation the temperature T
and the E-modes transform differently than the B-modes, the CTB` and CEB` power spectra
are zero. Therefore we are left with just four observables: CTT` , CTE` , CEE` and CBB` . In
Figure 3.5 we show the theoretical estimates for the CMB power spectra of temperature
anisotropy T, E-mode and B-mode polarisation using the best-fitting ΛCDM model from
Planck. Also shown is the expected polarisation sensitivity of LiteBIRD (see Section 3.5.2).
Like with temperature, the polarisation C`s exhibit a series of acoustic peaks generated by
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the oscillating photon-baryon fluid. CEE` has peaks that are out of phase with those in CTT` .
This is because the EE power spectrum is determined by the dipole of the photon distribution
(i.e. the fluid velocity), while the TT power spectrum is a combination of the monopole
and the dipole, with the monopole being the dominant contribution. Moreover, since the
dipole is less affected by the photon diffusion, CEE` is less damped on small scales than CTT`
is. The TE part of the polarisation and temperature patterns (see middle panel of Figure
3.2) come from correlations between density and velocity perturbations on the LSS, which
can be both positive and negative, and is of larger amplitude than the EE signal. There is
no polarisation Sachs-Wolfe effect, and hence no large scale plateau. However, scattering
during a recent period of reionisation can create a polarisation ‘bump’ at large angular scales.
Reionisation happened long after recombination, at some redshift zi, and it is characterised
by the integrated Thomson scattering optical depth:

τ =
∫ zi

0

dt

dz
dzne(z)σT (3.35)

Current measurements [9] set this parameter to τ = 0.054± 0.007. Let us conclude with an
important final remark. Since the scalar perturbations have no handedness, the B-modes power
spectrum can only be sourced by tensor perturbations. This implies that a determination of
a non-zero B-mode signal would allow us to measure the contribution from the primordial
Gravitational Waves produced during inflation. However, not only the signal is expected to
be rather weak, but the quest for the measurement of a B-mode polarisation signal is further
complicated by the fact that the gravitational lensing of CMB photons2 by the LSS sources
B-modes from E-modes.

3.3 The HEALPix Pixelisation Scheme

So far we have been discussing the CMB anisotropies from a theoretical point of view. A
CMB experiment, however, has a finite resolution which depends on the resolving power of
the instrument employed and thus the CMB data have to be represented in a discrete form on
the sphere. This is achieved through a discretisation or pixelisation algorithm. The one which
stands out as the most used in recent times for CMB studies is HEALPix. HEALPix [36] is an
acronym for Hierarchical Equal Area and isoLatitude pixelisation. Indeed, the requirements
on which this pixelisation scheme is built are the following:

1. the data base must have a hierarchical structure. To put it simply, this means
that the data elements which are nearby in the surface of the sphere are also nearby in
the structure of the data base;

2The large scale structure between the LSS and the observer gravitationally lenses the temperature and
polarisation CMB anisotropies, resulting in the shuffling of the observed locations of the CMB hot and cold
spots to slightly different positions. The shuffling of the positions of the E-mode polarisation pattern generates
B-modes.
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2. the discrete elements of the partition must have equal areas. This facilitates
any integral discretisation since the area factor can just be factored out;

3. the discrete area elements on the sphere must have an iso-Latitude distri-
bution. This property is critical for computational speed of all operations involving
evaluation of spherical harmonics.

A HEALPix pixel is identified by three variables: its numbering scheme (RING or NESTED),
its resolution or size parameter and its pixel index. The RING numbering scheme orders the
pixels from the north pole to the south pole along each iso-latitude ring. In the NESTED
scheme, instead, pixels that are close in the map are also close in the data. The resolution
or size parameter is given by Nside = 2k with k an integer number. The total number of
pixels for each map is Npix = 12N2

side and the pixel index p varies from 0 to Npix − 1. An
orthographic view of the HEALPix partition of the sphere is shown in Figure 3.6.

Figure 3.6. Orthographic view of HEALPix partition of the sphere. Moving clockwise from the
upper left panel the grid is hierarchically subdivided with the grid resolution parameter equal to
Nside = 1, 2, 4, 8, and the total number of pixels equal to Npix = 12, 48, 192, 768. All pixel centres are
placed on 4 × Nside − 1 rings of constant latitude and within each panel the areas of all pixels are
identical. Figure adapted from [36].

3.3.1 Conventions

Let us consider a band-limited function on the sphere f(n̂), where band-limited means that
there is insignificant signal power in the modes ` > `max. This function can be decomposed
into spherical harmonics Y`m as follows:

f(n̂) =
`max∑
`=0

∑̀
m=−`

a`mY`m(n̂) with a`m =
∫
dΩn̂f(n̂)Y ∗`m(n̂) (3.36)
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Representing f(n̂) in the HEALPix pixelisation scheme means sampling it to Npix positions
n̂p, each characterised by its pixel index p. The sampled function values f(n̂p) can then be
used to create a zero-th order estimator for the harmonic coefficients a`m, given by

â`m = 4π
Npix

Npix−1∑
p=0

f(n̂p)Y ∗`m(n̂p) (3.37)

where we assume an equal weight 4π/Npix for each pixel. From these pixelated â`m we can
then define the pixelated angular power spectrum Ĉ`, as usual estimated by

Ĉ` = 1
2`+ 1

∑
m

|â`m|2 (3.38)

3.3.2 The Pixel Window Function

In HEALPix the sampled function values f(n̂p) are obtained by averaging the field f(n̂) over
each pixel. Therefore the field value at each pixel is given by

f(n̂p) =
∫
dΩn̂wp(n̂)f(n̂) (3.39)

where wp(n̂) is equal to the inverse of the pixel area within the pixel and 0 outside, so that∫
dΩn̂wp(n̂) = 1. Now we can use the expansion of f(n̂) into spherical harmonics (3.36) to

rewrite the sampled function values (3.39) as follows:

f(n̂p) =
∑
`m

a`mw`m(n̂p) (3.40)

where

w`m(n̂p) =
∫
dΩn̂wp(n̂)Y`m(n̂) (3.41)

is defined as the spherical harmonic transform of the pixel p. The exact computation of the
integral above is in general too difficult to carry out, nonetheless this issue can be circumvented
in different ways. One way consists in considering a pixel size such that the pixel is actually
small compared to the signal correlation length. With this assumption we can ignore the pixel
structure and simply assume that w`m(n̂p) = w`(n̂p)Y`m(n̂p), where

w`(n̂p) =

 4π
2`+ 1

∑̀
m=−`

|w`m(n̂p)|2
1/2

(3.42)

is the m-averaged window function, which does not depend on the position of the pixel in the
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sky. If we now assume all pixels being identical, we can introduce an effective pixel window
function, defined as the average of w`(n̂p) over each pixel:

w` ≡

 1
Npix

Npix−1∑
p=0

w2
` (n̂p)

1/2

(3.43)

With this definition, we can rewrite the expansion into spherical harmonics of the sampled
function values as follows:

f(n̂p) =
∑
`m

apix`mY`m(n̂p) (3.44)

where the harmonic coefficients apix`m = a`mw`. This allows us to relate the angular power
spectrum associated to the pixelated map Ĉ` to the one associated the underlying continuous
signal C` as

Ĉ` = w2
`C` (3.45)

This result tells us that, since the power spectrum is modulated by w2
` , whenever we compare

the simulated maps with data it is important to keep track of the pixel window function.

3.4 Masking

Figure 3.7. Planck’s 2018 component separation common mask for temperature data. Figure adapted
from [37].

When considering the description and simulation of CMB data, one has to take into account
that experimentally, due to foreground effects or lack of complete coverage in the scanning
strategy, we can not get data in every direction in the sky. The information about the
excluded directions in the sky is encoded in the numerical simulations making use of masks.
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Figure 3.7 shows Planck’s 2018 common mask for temperature data. In this case, the mask
is a binary object which can be mathematically represented by a map, W (n̂), taking pixel
values 0 (masked or excluded) and 1 (seen or included) at each position n̂p. When masking is
considered, the temperature fluctuation field can be decomposed into spherical harmonics as

W (n̂)Θ(n̂) =
`max∑
`=2

∑̀
m=−`

ã`mY`m(n̂) (3.46)

where the expansion coefficients ã`m, being the cut-sky representation of the true harmonic
coefficients a`m, are known as pseudo-a`m and are defined as follows:

ã`m =
∫
dΩn̂W (n̂)Θ(n̂)Y ∗`m(n̂) (3.47)

Using these pseudo-a`m we can then generalise the definition of the estimator (3.9) to
accommodate for the mask, obtaining the so-called pseudo-C`:

C̃` = 1
2`+ 1

∑
m

|ã`m|2 (3.48)

Following [38, 39], it can be shown that the cut-sky 2-point correlation function can be written
as

Ccut(θ) = 2πA(θ)
∑
`

(2`+ 1)C̃`P`(cos θ) (3.49)

where the normalisation coefficient A(θ) depends on the mask and it may be calculated in
harmonic space as

A(θ) = 2π
∑
`

(2`+ 1)w`P`(cos θ) (3.50)

where

w` = 1
2`+ 1

∑
m

|w`m|2 (3.51)

and the w`m are defined as harmonic coefficients of the spherical harmonics expansion of the
mask:

W (n̂) =
∑
`m

w`mY`m(n̂) (3.52)
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Finally, since Ccut(θ) is a function defined on the interval −1 6 cos θ 6 1, it can be expanded
in a Legendre polynomials series as follows:

Ccut(θ) =
∑
`

2`+ 1
4π Ccut

` P`(cos θ) (3.53)

For a statistically isotropic universe, the ensemble averaged of the pseudo-C` (3.48) is related
to the ensemble averaged of the Ccut

` through a mode coupling matrix [40]. Therefore, in this
case, Ccut

` provides an unbiased estimator of the theoretical (full-sky) angular power spectrum
(3.9).

3.5 CMB Surveys

Figure 3.8. Illustration showing the evolution in the precision of full-sky CMB anisotropy mea-
surements comparing COBE, WMAP, and Planck. Source https://photojournal.jpl.nasa.gov/
catalog/PIA16874.

Many experiments were designed to look for the characteristics of the CMB. The earliest
attempts, however, were limited by the sensitivity of the instruments employed. The real
breakthrough came only in the 1990s when the Cosmic Background Explorer (COBE) mission
made the first measurement of the CMB energy spectrum, showing that the CMB is well
described by a black-body function having a mean temperature T0 = 2.7255 ± 0.0006 K
[32]. The COBE satellite was also the first to observe tiny departures from the homogenous
black-body temperature T0 along the line-of-sight. Although the COBE satellite confirmed
the predictions of Big Bang Cosmology and provided important insight on the origin of the
Universe, it had poor angular sensitivity and resolution. Therefore in 2001 NASA launched a
subsequent satellite, WMAP. WMAP had 45 times the sensitivity and 33 times the angular
resolution of COBE, leading to results of unprecedented accuracy and precision. A third
generation CMB satellite, ESA’s Planck, was then launched in 2009. After completing seven
sky surveys, and upon exhaustion of its helium coolant, it was switched off in 2013. Figure
3.8 illustrates the evolution in the precision of the full-sky CMB anisotropies measurements
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from COBE to Planck.

3.5.1 The Planck Mission and its Full-sky Maps

The main objective of the Planck mission, defined in 1995, was to measure the temperature
fluctuations in the CMB with an unprecedented accuracy set by fundamental astrophysical
limits, thereby aiming to extract all of the cosmological information embedded in the CMB
temperature anisotropies [41]. Even though Planck was not initially designed to measure
to high accuracy also the CMB polarisation anisotropies, during its development it was
significantly enhanced in this respect, and nowadays Planck’s measurement of both temperature
and polarisation anisotropies in the CMB constitutes a cosmological framework that will remain
the standard for many years to come. The Planck satellite carried two scientific instruments,
the High Frequency Instrument (HFI) and the Low Frequency Instrument (LFI), which allowed
it to scan the microwave and sub-millimetre sky, producing deep, high-resolution, full-sky
maps in nine frequency bands from 30 to 857 GHz. A summary of the principal technical
characteristics of the Planck mission in comparison to COBE and WMAP is presented in
Table 3.1.

Table 3.1. Summary of the principal technical characteristics of the Planck mission in comparison to
COBE and WMAP.

Mission Spectral Range [GHz] Bands FWHM `max

COBE 31.5− 90 3 420’ 30
WMAP 23− 94 5 12’ 1000
Planck 30− 857 9 5’ 3000

Since in addiction to the primary anisotropies the sky emission contains also several other
astrophysical components, which differ by their dependence on frequency as well as their
spatial properties, by making measurements at multiple frequency the Planck team was
able to characterise the foregrounds and thus reduce their contamination of the primary
CMB anisotropies. Note that the foregrounds can be divided in two categories: the galactic
foreground and the compact sources foreground; the first is responsible for contamination
on large scales, while the second dominates small scales. The approaches used to clean the
CMB maps from the foreground are four: Commander, NILC, SEVEM and SMICA. For details on
these methods and how the foreground components are modeled, we refer the reader to [9,
37]. Figure 3.9 shows Planck 2018 SMICA full-sky CMB anisotropy maps for temperature and
polarisation data. Since the polarisation signal is smaller in amplitude than the temperature
one, to increase its legibility it is shown with a relatively low angular resolution of 5◦. Tests
on the Planck data shows that even though the primary anisotropies are extremely close
to Gaussian-distributed, there are several noteworthy features with a significance of 2− 3σ
appearing at the largest observed angular scales that seem to indicate that there exists a
moderate degree of deviation from the statistical predictions of the standard ΛCDM model
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[42, 43, 44]. The existence of these features, the so-called large scale anomalies of the CMB, is
uncontested, since they are detected both by WMAP and Planck, which have quite different
systematics, and thus must be regarded as features of the CMB temperature sky. Nonetheless,
given the modest significances at which they deviate from the ΛCDM model and the a
posteriori nature of their detection, the main question is wether or not this features are
unusual enough for physical explanations to be sought. In Chapter 5 we shall return on this
topic, aiming to provide a description of some of these anomalies, along with evidence and
methods for detection.

Figure 3.9. Planck CMB full-sky maps. The top panel shows the 2018 SMICA temperature map. The
bottom panel shows the polarisation field as rods of varying length superimposed on the temperature
map, both smoothed to 5◦. This smoothing is done for visibility purposes. Both CMB maps have
been masked and inpainted in regions where residuals from foreground emission are expected to be
substantial. This mask, mostly around the Galactic plane, is delineated by a grey line in the full
resolution temperature map. Figure adapted from [44].
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3.5.2 The Next Stage of CMB Research

The progress in the measurement of the CMB temperature and polarisation anisotropies
achieved by Planck validated the predictions of the ΛCDM model, providing the most precise
estimates to date of its six main cosmological parameters (see Table 3.2) and the tightest
constraints on its possible extensions. Nonetheless, many unanswered questions still remain.
For example: what is the exact mechanism responsible for the generation of fluctuations in
the Early Universe? Assuming inflation to be responsible for the generation of such primordial
fluctuations, what are its actual properties and how does it end? What is Dark Matter? Are
there additional, light relic particles? What is causing the current accelerated expansion of
the Universe? Given the pivotal role of CMB measurements in shaping our understanding of
the Universe so far, we do expect further observations of the CMB anisotropies to play a key
role in answering those questions as well.

Table 3.2. The 6-parameter ΛCDM model that best fits the combination of data from Planck CMB
temperature, polarisation and lensing power spectra, and their 68% confidence limits.

Parameter

Baryon density today ΩBh
2 0.0224± 0.0002

Cold Dark Matter density today ΩDMh
2 0.1200± 0.0012

Observed angular size of the sound horizon at recombination 100θMC 1.0409± 0.0003
Thomson scattering optical depth τ 0.0544± 0.0073
Initial super-horizon amplitude of curvature perturbations ln(1010As) 3.044± 0.014
Scalar spectral index ns 0.965± 0.004

Since Planck has effectively mined all relevant information in the primary temperature
anisotropies, reaching the cosmic-variance-limit at both large and intermediate angular scales,
the focus of CMB research is now turning to precise measurements of polarisation and secondary
effects, such as CMB lensing [8]. As far as the field of ground-based CMB experiments is
concerned, we are currently in “Stage 3”3 and transitioning to “Stage 4” experiments (CMB-
S4). This next generation of experiments is characterised by a rich and diverse set of scientific
goals organised into four major themes: primordial GWs and inflation; the dark Universe;
mapping matter in the cosmos; and the time-variable mm-wave sky [45]. An important and
unique feature of CMB-S4 is the use of multiple telescopes across multiple sites, namely the
geographical South Pole and the Atacama Desert in Chile. Specifically, CMB-S4 is designed
to exploit the natural conditions of these two sites: during winter, the lack of daily sunsets
and sunrises makes the South Pole’s atmosphere extremely stable thus allowing ultra-deep
observations of small patches of the sky; due to its high-altitude and dryness, the Atacama
Desert site allows instead for ultra-wide and deep survey of up to 80% of the sky. The current
experimental efforts at these two sites, namely the POLARBEAR/Simons Array [46] and

3Ground-based CMB experiments are classified according to their number of detectors. “Stage 3” experiments
have O(10000) detectors. “Stage 4” experiments are designed to have O(100000) detectors.
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the BICEP/Keck [47] series of experiments, are already being consolidated into two major
precursors of CMB-S4, the Simons Observatory [48] and the South Pole Observatory4, which
are expected to act as pathfinders for “Stage 4” experiments, providing technical and scientific
data to continue to inform their design and operation. From space, the LiteBIRD (Lite
satellite for the study of B-mode polarisation and Inflation from cosmic background Radiation
Detection) mission [35] will map polarisation fluctuations in the CMB over the full-sky to
search for the signature of GWs from inflation. Expected to launch in the late 2020s for a
3-year mission, the LiteBIRD satellite is designed to survey the full-sky in 15 frequency bands
from 34 to 448 GHz, with a combined polarisation sensitivity of 2µK-arcmin and angular
resolution of 31 arc-min (at 140 GHz) [35]. Its capabilities are therefore complementary to
those of ground-base experiments: thanks to its broad frequency range, LiteBIRD is expected
to provide valuable foreground information to ground-based experiments which, on the other
hand, can improve LiteBIRD’s observations with high-resolution lensing data. A (tentative)
timeline of current, upcoming and proposed ground-based, satellite and sub-orbital CMB
experiments from 2020 to 2040 is presented in Figure 3.10.

Figure 3.10. Timeline of current, upcoming and proposed ground-based (in brown and light blue),
satellite and sub-orbital (in grey) CMB experiments. Figure adapted from [49].

4The South Pole Observatory is a coordinated effort between the South Pole Telescope (SPT) and BI-
CEP/Keck collaborations. It will use the synergies of these two experiments to search for a primordial GWs
signal in the presence of galactic and gravitational lensing foregrounds with unprecedented sensitivity.
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Chapter 4
The Non-Gaussian Landscape

4.1 Beyond the Power Spectrum

Despite evidence that inflation has occurred, rather little is known about its actual properties.
Was inflation driven by one or more fields? What form did the potential take? What about
the kinetic term? What about the energy scale of inflation? What was the actual mechanism
through which the universe became radiation populated at the end of inflation? In the last
few years several alternative scenarios to the one provided by the slowly-rolling inflaton field
have been proposed. The best way to discriminate between these different classes of models
would be to study the statistical properties of the primordial fluctuations they generate
during inflation. This is because the simplest model of inflation, where by simplest we mean
single-field models of slow-roll inflation, with a canonical kinetic term and a Bunch-Davies
choice for the vacuum state, produce perturbations extremely close to Gaussian, with a tiny
deviation from Gaussianity of order of the slow-roll parameters [50]. The reason why standard
single-field models of slow-roll inflation predicts a tiny level of non-Gaussianity is that, as we
have seen in Chapter 1, in order to achieve a period of accelerated expansion, the inflaton
potential must be very flat and the flatness of the potential implies a suppression of the
inflaton self-interactions, along with any other source of non-linearity, leaving only the inflaton
gravitational interactions as a source of non-Gaussianity. This fact allow us to discriminate
between the so-called standard scenario of inflation and other classes of inflationary models,
which instead produce specific and predictable types of non-Gaussianity [23].

4.1.1 The Bispectrum

The lowest-order statistic that can distinguish Gaussian and non-Gaussian perturbations
is the 3-point correlation function, or its harmonic counterpart, the bispectrum, defined as
follows:

〈Φ(k1)Φ(k2)Φ(k3)〉 = (2π)3δ(3)(k1 + k2 + k3)BΦ(k1, k2, k3) (4.1)

Here the potential Φ is defined in terms of the comoving curvature perturbation ζ on super-
horizon scales by Φ ≡ 3

5ζ, thus corresponding, during the epoch of matter domination, to
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Bardeen’s gauge-invariant gravitational potential. Indeed, one can prove that, on large scales
or during the epoch of matter domination (w = 0), the gauge-invariant curvature perturbation
ζ and Bardeen’s gravitational potential Φ are related by [23]

Φ = −3 + 3w
5 + 3wR = 3 + 3w

5 + 3wζ (4.2)

The bispectrum BΦ(k1, k2, k3) measures the correlation among three perturbations modes
and due to the assumptions of rotational and translational invariance depends only on the
magnitudes of the three wavevectors ki, which satisfy the triangle inequalities. In general, the
bispectrum can be written as

BΦ(k1, k2, k3) = fNLF (k1, k2, k3) (4.3)

where fNL is the so-called non-linearity parameter, a dimensionless parameter which measures
the amplitude of non-Gaussianity, and F (k1, k2, k3) is the so-called shape function, which
depends on the type of triangle formed by the three wavevectors. Figure 4.1 illustrates possible
configurations.

Figure 4.1. Momentum configurations corresponding to (a) equilateral, (b) squeezed, (c) folded
triangle shapes. Figure adapted from [51].

Different shapes are linked to different, well motivated classes of inflationary models. For
example:

• the so-called local non-Gaussianity is characterised by a signal that peaks in squeezed
triangles with k1 � k2 ' k3 and it is a typical signature of multi-field models of inflation.
Such models include the case of multiple-field inflation, in which inflation is driven by
more than one scalar field, as well as scenarios featuring the presence of additional light
degrees of freedom which remain sub-dominant during the inflationary expansion. In
these models the non-Gaussianity in the curvature perturbations is generated via a
transfer on super-horizon scales of initial isocurvature perturbations to the adiabatic
(curvature) perturbations, accompanied by non-linearities in the transfer mechanism
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itself. The local bispectrum is given by [52, 53, 54, 55, 56, 57]

Blocal
Φ (k1, k2, k3) = 2f localNL [PΦ(k1)PΦ(k2) + PΦ(k1)PΦ(k3) + PΦ(k2)PΦ(k3)]

= 2A2
sf

local
NL

[
1

k4−ns
1 k4−ns

2
+ cycl.

]
(4.4)

where PΦ(k) = A
k4−ns is the Bardeen’s gravitational potential power spectrum with

normalisation A and scalar spectral index ns. The local form of non-Gaussianity is
so-called because a typical example of a curvature perturbation which can generate the
bispectrum of equation (4.4) is the standard local form of the gravitational potential
[58, 53, 57]:

ΦNG(x) = ΦL(x) + f localNL

(
Φ2
L(x)− 〈Φ2

L(x)〉
)

(4.5)

where ΦL is the linear Gaussian gravitational potential and the term 〈Φ2
L(x)〉 ensures

that the perturbation has zero mean;

• the equilateral non-Gaussianity is characterised by a signal that peaks for triangle
configurations with k1 ' k2 ' k3. It is typical of single-field models of inflation with a
non-canonical kinetic term, models with higher-derivative interactions for the inflaton
field or models arising from effective field theories. The equilateral bispectrum is well
approximated by the template [59]:

Bequil
Φ (k1, k2, k3) = 6A2

sf
equil
NL

{
1

k4−ns
1 k4−ns

2
− 1
k4−ns

2 k4−ns
3

− 1
k4−ns

3 k4−ns
1

− 2
(k1k2k3)2(4−ns)/3 +

[
1

k
(4−ns)/3
1 k

2(4−ns)/3
2 k4−ns

3
+ 5 perms.

]}
(4.6)

• the orthogonal non-Gaussianity is characterised by a signal with a positive peak at the
equilateral configuration and a negative peak at the folded configuration. It is typical,
for example, of single-field models of inflation with a non-canonical kinetic term or with
higher-derivative interactions. The orthogonal bispectrum is well approximated by the
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template [60]:

Bortho
Φ (k1, k2, k3) = 6A2

sf
ortho
NL ×

{
− 3
k4−ns

1 k4−ns
2

− 3
k4−ns

2 k4−ns
3

− 3
k4−ns

3 k4−ns
1

− 8
(k1k2k3)2(4−ns)/3 +

[
3

k
(4−ns)/3
1 k

2(4−ns)/3
2 k4−ns

3
+ 5 perms.

]}
(4.7)

• the folded (or flattened) non-Gaussianity is characterised by a signal that peaks for
triangle configurations with k1 + k2 ' k3. It is typical of single-field models with a
non-Bunch-Davies choice for the vacuum state or models with general higher-derivative
interactions. The flattened bispectrum is usually parametrised by the template [61]:

Bflat
Φ (k1, k2, k3) = 6A2

sf
flat
NL

{
1

k4−ns
1 k4−ns

2
+ 1
k4−ns

2 k4−ns
3

+ 1
k4−ns

3 k4−ns
1

+ 3
(k1k2k3)2(4−ns)/3 +

[
1

k
(4−ns)/3
1 k

2(4−ns)/3
2 k4−ns

3
+ 5 perms.

]}
(4.8)

Al of these inflationary models predict |fNL| � 1 and thus yield primordial non-Gaussianity
with an amplitude much bigger than the one predicted in the simplest models of single-field
inflation, for which it has been shown that the level of non-Gaussianity is proportional to the
slow-roll parameters i.e. fNL ∼ O(η, ε) [62, 50].

4.1.2 The Trispectrum

The 4-point correlation function, or its harmonic counterpart, the trispectrum, can also provide
information on the mechanism that gave rise to the primordial curvature perturbations. The
primordial trispectrum is defined as follows:

〈Φ(k1)Φ(k2)Φ(k3)Φ(k4)〉 = (2π)3δ(3)(k1 + k2 + k3 + k4)TΦ(k1, k2, k3, k4) (4.9)

The contributions to the trispectrum are usually described in terms of two non-linearity pa-
rameters, τNL and gNL: τNL is often related to f2

NL-type contributions, while gNL is interpreted
as the amplitude of cubic non-linearities in the primordial gravitational potential. In terms of
field interactions τNL and gNL correspond, respectively, to a scalar-exchange and a contact
interaction term (see Figure 4.2).
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Figure 4.2. Diagrammatic representation of field interactions corresponding, respectively, to the τNL
and gNL contributions to the trispectrum. Figure adapted from [63].

Similarly to the bispectrum, the local-type trispectrum, which typically arises in multi-field
models of inflation, has been extensively studied in literature. The simplest local trispectrum
is given by the template:

T local
Φ (k1, k2, k3, k4) = 25

9 τ
local
NL [PΦ(k1)PΦ(k2)PΦ(k13) + 11 perms.]

+ 6glocalNL [PΦ(k1)PΦ(k2)PΦ(k3) + 3 perms.]
(4.10)

where kij ≡ |ki + kj |. Note that the local τNL-trispectrum is characterised by a signal that
peaks in quadrilateral configurations with one of the diagonals much smaller than the other
side i.e. K � k1 ' k2 ' k3 ' k4, usually referred to as the squeezed-diagonal or collapsed
shape; the local gNL-trispectrum is instead characterised by a signal that peaks in diagonal
configurations with k1 ' k2 � k3 ' k4, usually referred to as the double-squeezed shape. One
easy way to generate the trispectrum of equation (4.10) is to consider

ΦNG(x) = ΦL(x) + f localNL

(
Φ2
L(x)− 〈Φ2

L(x)〉
)

+ glocalNL Φ3
L(x) (4.11)

where, as usual, ΦL is the linear Gaussian gravitational potential. In this case, one has that

τNL =
(6

5f
local
NL

)2
(4.12)

However, in general, the τNL-trispectrum amplitude can be larger. Employing the Cauchy-
Schwarz identity, Suyama and Yamaguchi proved that in general the following inequality holds
[64]:

τNL ≥
(6

5f
local
NL

)2
(4.13)
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It’s in the simplest inflationary scenarios that the inequality (4.13) saturates to an equality,
thus implying that larger values of τNL hint to a more complicated inflationary dynamics.

4.2 Running non-Gaussianity

The non-linearity parameter fNL, as defined in equation (4.5), is a constant modulating the
second order term of the Bardeen’s gravitational potential expansion. Even though this is a
good approximation in many models, it is in general not exact. Many inflationary scenarios
predict a scale-dependence of the bispectrum, also known in literature as the running of the
bispectrum (see e.g. [51, 65]), which can arise due to multiple-field effects i.e. from multiple
fields contributing to the curvature perturbation, due to non-linearity in the evolution of modes
on super-horizon scales or due to a non-trivial field space-time metric. The scale-dependence
is often parametrised as a power-law:

fNL −→ f0
NL

(
K

k0

)nfNL
(4.14)

where K is the overall scale corresponding to the triangle configuration, generally defined as
the arithmetic mean of the three wavenumbers ki1, f0

NL is the amplitude of fNL measured at
some pivot scale k0 and nfNL is a constant which, in analogy to the spectral index (1.67), can
be defined as

nfNL ≡
d ln |fNL(k)|

d ln k (4.15)

Strictly speaking, being defined with respect to only one scale, this is valid for equilateral
configurations only, for which the three momenta ki are equal. However, in [65] it has
been shown that the scale-dependence of fNL is actually independent on the shape of the
triangle configuration it describes, provided one considers variations where all sides of the
triangle are rescaled by a same constant factor i.e. ki → αki. In [65], Byrnes et al. also
studied the running of the trispectrum, computing the scale-dependence of the non-linearity
parameters τNL and gNL. In particular, they showed that for single-source models of inflation
the scale-dependencies of τNL and fNL are related by

nτNL = 2nfNL (4.16)

Notice that the above result is analogous to the consistency relation (4.12) and thus it provides
a useful consistency check.

1In [66], Sefusatti et al. propose an alternative parametrisation of the overall scale K as the geometric mean
of the three wavenumbers which, due to the separability property of the geometric mean, allows for a much
simpler numerical implementation of the associated CMB estimator.
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4.3 Non-Gaussianity in the CMB

The observed statistics in the CMB, as we have seen in Chapter 3, are the multipole moments
of the temperature and polarisation fields which, at linear order, are related to the underlying
primordial fluctuations Φ(k) as follows2:

ax`m = 4π(−i)`
∫

d3k
(2π)3 Φ(k)gx` (k)Y ∗`m(k̂) (4.17)

where x = T,E denote, respectively, the temperature and E-mode polarisation fluctuations
and gx` (k) is the CMB radiation transfer function. Equation (4.17) clearly implies that
any non-Gaussianity in the primordial fluctuations gets transferred to the observed CMB
anisotropies3. The most common way to look for non-Gaussianity in the CMB consists in
studying the angular n-point harmonic spectrum, 〈a`1m1a`2m2 ...a`nmn〉. However, in reality
one cannot actually measure the ensemble average of the angular n-point harmonic spectrum,
but only one realisation, a`1m1a`2m2 ...a`nmn , which is very noisy. Therefore one wants to find
a way to average it somehow to reduce the noise and, as we shall see in a moment, this can
be achieved by simply assuming the Universe to be statistically isotropic. If one requires the
CMB temperature and E-mode polarisation fields to be statistically isotropic, one gets that
the angular n-point spectrum must obey the following condition:

〈a`1m1a`2m2 ...a`nmn〉 =
∑
all m′

〈a`1m′1a`2m′2 ...a`nm′n〉D
(`1)
m′1m1

D
(`2)
m′2m2

...D
(`n)
m′nmn

(4.18)

where D = D(α, β, γ) is the Wigner D-matrix, which describes a rotation for the Euler angles
α, β and γ, and thus the matrix element D(`)

m′m = 〈`′,m′|D|`,m〉 describes a finite rotation of
an initial state represented by ` and m into a final state represented by `′ and m′. Therefore
the condition given by equation (4.18) implies that one can average the angular spectrum over
mi with appropriate weights, that we are going to explicitly evaluate for the angular 3-point
and 4-point harmonic spectra following the method illustrated by W. Hu in [67]. The idea
in [67] is to seek for a rotationally invariant representation of the angular n-point harmonic
spectrum, proceeding as follows. Each pair of rotation matrices D(`a)

m′ama
D

(`b)
m′
b
mb

is coupled into

2From now on we assume that our location x0 ≡ 0, so that the exponential in equation (3.18) becomes
eik·x0 = 1.

3However, it should be noted that if one were to measure a significant non-Gaussian signature in the CMB,
the origin of the signature may not necessarily be primordial, since non-Gaussianity in the CMB can also
be generated by secondary sources (e.g. the combined ISW-lensing effect) and/or foreground sources (e.g.
extragalactic radio sources) [23].
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a single rotation matrix D(L)
M ′M using the group multiplication property

D
(`a)
m′ama

D
(`b)
m′
b
mb

=
∑
L

∑
M ′M

(2L+ 1)(−1)M+M ′D
(L)
M ′M

×
(
`a `b L

ma mb −M

)(
`a `b L

m′a m′b −M ′

)
(4.19)

where the matrix appearing in the right hand side of equation (4.19) is the Wigner 3-j symbol
(see appendix B). Once the product D(`1)

m′1m1
D

(`2)
m′2m2

...D
(`n)
m′nmn

is reduced to the product of a
pair of rotation matrices, one seeks the form of the angular n-point harmonic spectrum that
reduces this pair of matrices to the orthogonality condition for the Wigner D-matrix, that is:

∑
mn

(−1)m′n−mnD(`n)
Mmn

D
(`n)
−m′n−mn = δMm′n (4.20)

4.3.1 The Angular Bispectrum

The angular 3-point harmonic spectrum or bispectrum, consists of three harmonic transforms,
a`1m1a`2m2a`3m3 . The requirement of statistical isotropy on the CMB implies that the angular
bispectrum must obey the following condition

〈a`1m1a`2m2a`3m3〉 =
∑
all m′

〈a`1m′1a`2m′2a`3m′3〉D
(`1)
m′1m1

D
(`2)
m′2m2

D
(`3)
m′3m3

(4.21)

Using the group multiplication property (4.19), equation (4.21) reduces to

〈a`1m1a`2m2a`3m3〉 =
∑
all m′

〈a`1m′1a`2m′2a`3m′3〉
∑
L

∑
M ′M

(2L+ 1)(−1)M+M ′

×
(
`1 `2 L

m1 m2 −M

)(
`1 `2 L

m′1 m′2 −M ′

)
D

(L)
M ′MD

(`3)
m′3m3

(4.22)

To reduce this relation to the orthogonality condition (4.20), one must seek a form for the
angular 3-point harmonic spectrum such that the sum over m′1,m′2 must be proportional to
δ−M ′m′3δL`3 .
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A good guess, as we shall prove in a moment, is [67]:

〈a`1m′1a`2m′2a`3m′3〉 =
(
`1 `2 `3

m′1 m′2 m′3

)
〈B`1`2`3〉 (4.23)

Substituting equation (4.23) into equation (4.22) and recalling the orthogonality identity of
the Wigner 3-j symbol

∑
m1m2

(
`1 `2 `3

m1 m2 m3

)(
`1 `2 `′3
m1 m2 m′3

)
=
δ`3`′3δm3m′3

2`3 + 1 (4.24)

it’s straightforward to see that equation (4.22) reduces to

〈a`1m1a`2m2a`3m3〉 =

= 〈B`1`2`3〉
∑
m′3

∑
L

∑
M ′M

(
`1 `2 L

m1 m2 −M

)
δ−M ′m′3δL`3(−1)M+M ′D

(L)
M ′MD

(`3)
m′3m3

=

= 〈B`1`2`3〉
∑
M

(
`1 `2 `3

m1 m2 M

)∑
m′3

(−1)M−m′3D(L)
m′3M

D
(`3)
m′3m3

=

= 〈B`1`2`3〉
∑
M

(
`1 `2 `3

m1 m2 −M

)
δ−Mm3 =

= 〈B`1`2`3〉
(
`1 `2 `3

m1 m2 m3

)

(4.25)

thus proving that equation (4.23) is indeed the rotationally invariant solution we are looking
for. Note that the Wigner 3-j symbol as defined above describes the coupling of two angular
momenta states, (`1,m1) and (`2,m2), forming a coupled state (`3,m3). In particular,
`1, `2 and `3 form a triangle, thus implying that B`1`2`3 must satisfy the triangle condition
|`i − `j | ≤ `k ≤ `i + `j for all permutation indices, with the parity invariance of the angular
correlation function also demanding `1 +`2 +`3 = even. The orientation of the triangle formed
by `1, `2 and `3 is represented by m1,m2 and m3, with m1 +m2 +m3 = 0. Under a rotation
of the system, the Wigner 3-j symbol transforms the ms, preserving however the configuration
of the triangle. Similarly, the rotational invariance of the angular bispectrum demands that
same triangle configurations give the same amplitude for the bispectrum regardless of its
orientation. Figure 4.3 sketches one of the possible angular bispectrum configurations.

4.3.2 The Angular Trispectrum

The angular 4-point harmonic spectrum or trispectrum, consists of four harmonic transforms,
a`1m1a`2m2a`3m3a`4m4 . The requirement of statistical isotropy implies that:
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Figure 4.3. Angular bispectrum configuration. Figure adapted from [23].

〈a`1m1a`2m2a`3m3a`4m4〉 =
∑
all m′

〈a`1m′1a`2m′2a`3m′3a`4m′4〉D
(`1)
m′1m1

D
(`2)
m′2m2

D
(`3)
m′3m3

D
(`4)
m′4m4

(4.26)

We begin our search for a rotationally invariant representation of the angular 4-point harmonic
spectrum by reducing each pair of rotation matrices, D(`1)

m′1m1
D

(`2)
m′2m2

and D(`3)
m′3m3

D
(`4)
m′4m4

, using
the group multiplication property (4.19) thus obtaining

〈a`1m1a`2m2a`3m3a`4m4〉 =
∑
all m′

〈a`1m′1a`2m′2a`3m′3a`4m′4〉

×
∑
L12

∑
M ′12M12

(2L12 + 1)
(
`1 `2 L12

m1 m2 −M12

)(
`1 `2 L12

m′1 m′2 −M ′12

)
(−1)M12+M ′12D

(L12)
M ′12M12

×
∑
L34

∑
M ′34M34

(2L34 + 1)
(
`3 `4 L34

m3 m4 −M34

)(
`3 `4 L34

m′3 m′4 −M ′34

)
(−1)M34+M ′34D

(L34)
M ′34M34

(4.27)

To reduce equation (4.26) to the orthogonality condition (4.20), one must seek a form of the
angular trispectrum such that the sum over m′1,m′2 and m′3,m′4 are proportional, respectively,
to δL12Lδ−M ′12−M and δL34Lδ−M ′34M

. A good guess, in this case, is [67]:

〈a`1m′1a`2m′2a`3m′3a`4m′4〉 =
∑
LM

(
`1 `2 L

m′1 m′2 −M

)(
`3 `4 L

m′3 m′4 M

)
(−1)M 〈Q`1`2`3`4

(L)〉 (4.28)

One can prove that this is indeed the rotationally invariant solution we are looking for by
similar calculations to those proving the angular bispectrum (4.23) to be so. Substituting
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equation (4.28) into equation (4.27) and using the orthogonality identity of the Wigner 3-j
symbol (4.24), it’s straightforward to see that equation (4.27) reduces to

〈a`1m1a`2m2a`3m3a`4m4〉 =

=
∑
LM

∑
L12

∑
M ′12M12

∑
L34

∑
M ′34M34

〈Q`1`2`3`4
(L)〉

(
`1 `2 L12

m1 m2 −M12

)(
`3 `4 L34

m3 m4 −M34

)

× δL12Lδ−M ′12−MδL34Lδ−M ′34M
(−1)M34+M ′34(−1)M12+M ′12(−1)MD(L12)

M ′12M12
D

(L34)
M ′34M34

=

=
∑

L12M12

∑
M34

(−1)M12〈Q`1`2`3`4
(L)〉

(
`1 `2 L34

m1 m2 −M12

)(
`3 `4 L34

m3 m4 −M34

)

×
∑
M

(−1)M34+MD
(L12)
MM12

D
(L12)
−MM34

=

=
∑

L12M12

∑
M34

(−1)M12〈Q`1`2`3`4
(L)〉

(
`1 `2 L34

m1 m2 −M12

)(
`3 `4 L34

m3 m4 −M34

)
δM12−M34 =

=
∑

L12M12

(−1)M12〈Q`1`2`3`4
(L)〉

(
`1 `2 L34

m1 m2 −M12

)(
`3 `4 L34

m3 m4 M12

)

(4.29)

where, to reach the last line, we used the fact that (−1)M12+M = (−1)−M12−M . Like the
angular 3-point harmonic spectrum, the angular 4-point harmonic spectrum depends on
Wigner 3-j symbols, which provide selection rules for the possible configurations of the angular
trispectrum. Figure 4.4 sketches one of these possible configurations: by construction `1, `2
and L and `3, `4 and L form two triangles in a quadrilateral of sides `1, `2, `3 and `4, with L
representing one of its diagonals. If one assumes `1 ≤ `2 ≤ `3 ≤ `4, then the value of L lies in
max(`2 − `1, `4 − `3) ≤ L ≤ min(`2 + `1, `4 + `3), with the parity invariance of the angular
correlation function demanding that `1 + `2 +L = even and `3 + `4 +L = even. Another hint
on the fact that the multipoles (`1, `2, `3, `4) must close to form a quadrilateral is given by
the mi: from the first Wigner 3-j symbol we have that m1 +m2 −M = 0 and similarly from
the second one we have that m3 +m4 +M = 0, thus implying that m1 +m2 +m3 +m4 = 0.
Let us also observe that, in general, the averaged angular trispectrum 〈Q`1`2`3`4

(L)〉 consists of
two parts. The first part is the so-called non-connected or disconnected one, which describes
the contribution from Gaussian fields and is given by [67]

〈Q`1`2`3`4
(L)〉disconnected = (−1)`1+`3

√
(2`1 + 1)(2`3 + 1)〈C`1〉〈C`3〉δ`1`2δ`3`4δL0

+ (2L+ 1)〈C`1〉〈C`2
[
(−1)`1+`3+Lδ`1`2δ`3`4 + δ`1`4δ`2`3

] (4.30)

The other part is the so-called connected part, whose expectation value is exactly zero for
Gaussian fields and thus it’s the part sensitive to non-Gaussianity. Note that if `1 ≤ `2 ≤ `3 ≤
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`4, the disconnected part of the trispectrum is non-zero only if L = 0 or `1 = `2 = `3 = `4.
Therefore, when L 6= 0 or `1 6= `2 6= `3 6= `4, one would expect the angular trispectrum to
comprise of the connected part only. However, this is true only if one considers the full sky.
This is because on the incomplete sky the disconnected part of the trispectrum leak power to
other modes for which all `s are different.

Figure 4.4. Angular trispectrum configuration. Figure adapted from [23].

In [67], W. Hu also illustrates an alternative construction for the angular 4-point harmonic
function that automatically enforces on it the desired rotational, permutation and parity
symmetries. One begins by observing that the connected part of the angular trispectrum can
be written in the following form, which is explicitly symmetric in the three unique pairings,
(`1, `2), (`1, `3) and (`1, `4):

〈a`1m1a`2m2a`3m3a`4m4〉c =

=
∑
LM

(−1)MP `1`2`3`4
(L)

(
`1 `2 L

m1 m2 −M

)(
`3 `4 L

m3 m4 M

)
+ (`2 ↔ `3) + (`2 ↔ `4)

(4.31)

The three unique pairings, (`1, `2), (`1, `3) and (`1, `4) yield alternate representations of the
angular 4-point spectrum (4.28). Since each representation is constructed by adding angular
momenta, according to the theory of angular momentum each representation is complete and
thus they are not independent. In particular, the representations yielded by the pair (`1, `3)
and (`1, `4) can be related to the one yielded by the pair (`1, `2) through Wigner 6-j symbols
(see appendix B.4) via

Q`1`3`2`4
(L) =

∑
L′

(−1)`1+`2

{
`1 `2 L

`3 `4 L′

}
Q`1`2`3`4

(L′) (4.32)
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Q`1`4`3`2
(L) =

∑
L′

(−1)L+L′
{
`1 `2 L

`3 `4 L′

}
Q`1`2`3`4

(L′) (4.33)

Using the relations (4.32) and (4.33), one can therefore project the pairs (`1, `3) and (`1, `4)
in equation (4.31) onto the (`1, `2) basis to give:

T `1`2`3`4
(L) = P `1`2`3`4

(L) + (2L+ 1)
∑
L′

[
(−1)`2+`3

{
`1 `2 L

`3 `4 L′

}
P `1`3`2`4

(L′)

+ (−1)L+L′
{
`1 `2 L

`3 `4 L′

}
P `1`4`3`2

(L′)
] (4.34)

where with T `1`2`3`4
(L) we denote the connected part of the angular trispectrum, Q`1`2`3`4

(L). At
this point, one notices that within each unique pair there are four possible permutations of
the ordering, but that the quantity P`1`2`3`4(L) is not invariant under `1 ↔ `2 or `3 ↔ `4,
since due to the properties of the Wigner 3-j symbol it instead satisfies

P `1`2`3`4
(L) = (−1)ΣUP `2`1`3`4

(L) = (−1)ΣLP `1`2`4`3
(L) (4.35)

with ΣU = `1 + `2 + L and ΣL = `3 + `4 + L. To make it symmetric, one introduces the
so-called reduced trispectrum, denoted by T , such that P `1`2`3`4

(L) can written in the following
form:

P `1`2`3`4
(L) = T `1`2`3`4

(L) + (−1)ΣUT `2`1`3`4
(L) + (−1)ΣLT `1`2`4`3

(L) + (−1)ΣU+ΣLT `2`1`4`3
(L) (4.36)

The reduced trispectrum, T `1`2`3`4
(L), is defined as arbitrary function of the angular trispectrum’s

arguments with the requirement of being invariant under the exchange of its lower and upper
indices, that is:

T `1`2`3`4
(L) = T `3`4`1`2

(L) (4.37)

Parity invariance is then finally enforced on T `1`2`3`4
(L) by simply requiring the reduced function

to also obey

T `1`2`3`4
(L) = T `2`1`4`3

(L) (4.38)
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4.4 Some (Useful) Analytical Results for the CMB Trispectrum
from Inflation

In this section we derive some analytical predictions for the CMB trispectrum from inflation
that will come handy later on. Let us begin by computing the explicit expression for the
connected part of the angular 4-point correlation function from primordial non-Gaussian
initial conditions. Recalling the expression for the multipole moments a`m as a function of
the primordial perturbation Φ(k) given by equation (4.17), we get that

〈a`1m1a`2m2a`3m3a`4m4〉c =

= (4π)4(−i)`1+`2+`3+`4
∫

d3k1
(2π)3

∫
d3k2
(2π)3

∫
d3k3
(2π)3

∫
d3k4
(2π)3 g`1(k)g`2(k)g`3(k)g`4(k)

× Y ∗`1m1(k̂1)Y ∗`2m2(k̂2)Y ∗`3m3(k̂3)Y ∗`4m4(k̂4)〈Φ(k1)Φ(k2)Φ(k3)Φ(k4)〉c

(4.39)

In this context, as we shall prove in a moment, instead of using for the connected part of the
Φ 4-point correlation function a similar definition to the one given by equation (4.9), it is
much more useful to write:

〈Φ(k1)Φ(k2)Φ(k3)Φ(k4)〉c = (2π)3
∫
d3Kδ(3)(k1+k2+K)δ(3)(k3+k4−K)TΦ(k1, k2, k3, k4;K)

(4.40)

Exploiting the definition (4.40), we get that the connected part of the angular 4-point
correlation function relates to the primordial trispectrum via

〈a`1m1a`2m2a`3m3a`4m4〉c =

= (4π)4(−i)
∑4

i=1 `i

∫ 4∏
i=1

(
d3kig`i(ki)Y ∗`imi(k̂i)

)
×
∫
d3Kδ(3)(k1 + k2 + K)δ(3)(k3 + k4 −K)TΦ(k1, k2, k3, k4;K)

(4.41)

Note that equation (4.40) tells us that the wavevectors (k1,k2) and K and (k3,k4) and
K form two triangles in a quadrilateral of sides k1,k2,k3,k4, with K representing one of
its diagonals (see Figure 4.5). It is however clear that triangles may be formed by using
different combinations of the wavevectors. The usefulness of this definition therefore lies in
making implicit the fact that the symmetries for exchange of Φ(ki) and Φ(kj) in the Φ 4-point
correlation function are identical to the symmetries for exchange of fields in the CMB 4-point
correlation function, thus implying that we can follow for the primordial trispectrum a similar
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decomposition process to the one used in the previous section for the evaluation of the CMB
angular trispectrum, that is we can write for TΦ the following expression, which is explicitly
symmetric under the exchanges k2 ↔ k3 and k2 ↔ k4 [68, 69]:

TΦ(k1, k2, k3, k4;K) = PΦ(k1, k2, k3, k4;K)+

+
∫
d3K′

[
δ(3)(k3 − k2 −K + K′)PΦ(k1, k3, k2, k4;K ′)

+ δ(3)(k4 − k2 −K + K′)PΦ(k1, k4, k3, k2;K ′)
] (4.42)

where the quantity PΦ is constructed out of a reduced Φ-trispectrum, denoted by TΦ, as follows:

PΦ(k1, k2, k3, k4;K) = TΦ(k1, k2, k3, k4;K) + TΦ(k2, k1, k3, k4;K)

+ TΦ(k1, k2, k4, k3;K) + TΦ(k2, k1, k4, k3;K)
(4.43)

Therefore, we are now going to do, is to compute the reduced trispectrum T `1`2`3`4
(L), which

can be obtained from the reduced Φ-trispectrum, TΦ, by simply replacing TΦ in the relation
(4.41). It should be noted that it suffices to perform the calculation for one combination of
multipoles `i, corresponding to a given combination of wavevectors ki, since all the other
contributions to the CMB trispectrum can be simply obtained by permuting the symbols.

Figure 4.5. Quadrilateral defined by the four wavevectors ki, with K representing one of its diagonals.
Figure adapted from [69].
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To proceed with the calculation, we first of all expand the Dirac delta over spherical harmonics.
Using the identities:

δ(3)(k) = 1
(2π)3

∫
d3reir·k

eir·k = 4π
∞∑
`=0

∑̀
m=−`

i`j`(kx)Y ∗`m(k̂)Y`m(r̂)
(4.44)

we obtain the following representation for the Dirac delta

δ(3)(k) = 1
2π2

∫
d3r

∞∑
`=0

∑̀
m=−`

i`j`(kx)Y ∗`m(k̂)Y`m(r̂) (4.45)

Therefore, using equation (4.45) and the following properties of the spherical harmonics:

Y ∗`m(n̂) = (−1)mY`−m(n̂)∫
dn̂Y ∗`m(n̂)Y`′m′(n̂) = δ``′δmm′

∫
dn̂Y`1m1(n̂)Y`2m2(n̂)Y`3m3(n̂) =

√
(2`1 + 1)(2`2 + 1)(2`3 + 1)

4π

×
(
`1 `2 `3

0 0 0

)(
`1 `2 `3

m1 m2 m3

)
(4.46)

we eventually get that equation (4.41) becomes

〈a`1m1a`2m2a`3m3a`4m4〉c =

=
( 2
π

)5∑
LM

(−1)M
∫
dr1r

2
1

∫
dr2r

2
2

∫
dk1...

∫
dk4

∫
dK (k1k2k3k4K)2 jL(Kr1)jL(Kr2)

× [j`1(k1r1)g`1(k1)] [j`2(k2r1)g`2(k2)] [j`3(k3r2)g`3(k3)] [j`4(k4r2)g`4(k4)]

×
(
`1 `2 L

m1 m2 −M

)(
`3 `4 L

m3 m4 M

)
TΦ(k1, k2, k3, k4;K)h`1`2Lh`3`4L

(4.47)
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where we defined

h`1`2`3 ≡

√
(2`1 + 1)(2`2 + 1)(2`3 + 1)

4π

(
`1 `2 `3

0 0 0

)
(4.48)

Remembering now equation (4.31), we get that

T `1`2`3`4
(L) =

( 2
π

)5 ∫
dr1r

2
1

∫
dr2r

2
2

∫
dk1...

∫
dk4

∫
dK (k1k2k3k4K)2 jL(Kr1)jL(Kr2)

× [j`1(k1r1)g`1(k1)] [j`2(k2r1)g`2(k2)] [j`3(k3r2)g`3(k3)] [j`4(k4r2)g`4(k4)]×

× TΦ(k1, k2, k3, k4;K)h`1`2Lh`3`4L
(4.49)

This is a very general result, which holds true for any given model of non-Gaussianity. For
example, let us consider the simple case of the local non-gaussian initial conditions as given
by equation (4.11), that is:

ΦNG(x) = ΦL(x) + f localNL

(
Φ2
L(x)− 〈Φ2

L(x)〉
)

+ glocalNL Φ3
L(x) (4.50)

Going to Fourier space, we can decompose ΦNG(x) into a linear and a nonlinear part, so that

ΦNG(k) = ΦL(k) + ΦNL(k) (4.51)

where the nonlinear curvature perturbation ΦNL(k) is defined by

ΦNL(k) ≡ ΦA(k) + ΦB(k)

= f localNL

[∫
d3p

(2π)3 ΦL(k + p)Φ∗L(p)− (2π)3δ(3)(k)〈Φ2
L(x)〉

]

+ glocalNL

∫
d3p1
(2π)3

d3p2
(2π)3 Φ∗L(p1)Φ∗L(p2)ΦL(p1 + p2 + k)

(4.52)

where

〈Φ2
L(x)〉 =

∫
d3k

(2π)3PΦ(k) (4.53)

The connected part of the Φ 4-point correlation function receives leading order contributions
of the form 〈ΦA(k1)ΦA(k2)ΦL(k3)ΦL(k4)〉 and 〈ΦB(k1)ΦL(k2)ΦL(k3)ΦL(k4)〉, which give,

69



respectively, the following leading order contributions to the reduced Φ-trispectrum [68, 69]:

TΦ,A(k1, k2, k3, k4;K) =
(
2f localNL

)2
PΦ(K)PΦ(k1)PΦ(k3) = 25

9 τNLPΦ(K)PΦ(k1)PΦ(k3)
(4.54)

TΦ,B(k1, k2, k3, k4;K) = glocalNL [PΦ(k2)PΦ(k3)PΦ(k4) + PΦ(k1)PΦ(k2)PΦ(k4)] (4.55)

Substituting the expressions (4.54) and (4.55) into equation (4.49), we get that the reduced
CMB trispectrum is given by

T `1`2`3`4
(L) = TA`1`2`3`4

(L) + TB`1`2`3`4
(L) (4.56)

with

TA`1`2`3`4
(L) = 25

9 τNL
∫
dr1dr2r

2
1r

2
2FL(r1, r2)α`1(r1)β`2(r1)α`3(r2)β`4(r2)h`1`2Lh`3`4L

TB`1`2`3`4
(L) = glocalNL

∫
drr2β`2(r)β`4(r) [α`1(r)β`3(r) + α`3(r)β`1(r)]h`1`2Lh`3`4L

(4.57)

where

FL(r1, r2) = 2
π

∫
dKK2PΦ(K)jL(Kr1)jL(Kr2)

α`(r) = 2
π

∫
dkk2g`(k)j`(kr)

β`(r) = 2
π

∫
dkk2PΦ(k)g`(k)j`(kr)

(4.58)

To compute the coefficients α`(r) and β`(r) we would need the explicit expressions for the
primordial power spectrum PΦ(k) and the CMB radiation transfer function g`(k). The
computation of both is usually carried out numerically with Boltzmann solvers i.e. codes
which solve the system of Boltzmann equations describing the evolution of the perturbations
once they re-enter the horizon during the post-inflationary epoch, such as CAMB [70] or CLASS

[71]. Notice that the calculations we just carried out for the case of local non-Gaussian
initial conditions as given by equation (4.11) can be easily generalised to the case of running
non-Gaussianity: that is, one can prove by similar calculations that the reduced CMB
trispectrum can still be written in the form of equation (4.57), with the only difference
being in the definition of the α`(r) and/or β`(r) coefficients, that get modified to include the
scale-dependence of the non-linearity parameters.
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4.5 Constraints on Primordial Non-Gaussianity

Planck’s measurements of the CMB temperature and E-mode polarisation anisotropies cur-
rently provide the most robust constraints on some of most well-known and studied types of
primordial non-Gaussianity. It should be noted, however, that in addition to the analysis of
the standard local, equilateral, and orthogonal shapes, the Planck collaboration analyses also
a large number of additional cases, such as scale-dependent feature and resonance bispectra,
running fNL models, isocurvature primordial Non-Gaussianity and parity-breaking models [72].
Combining estimates obtained from different bispectrum estimators, the latest Planck’s data
release provides the following constraints on the local, equilateral and orthogonal bispectrum
amplitudes (at the 68% CL) [72]:

f localNL = −0.9± 5.1

f equilNL = −26± 47

forthoNL = −38± 24

(4.59)

In [72], making use of the data analysis framework developed by Smith et al. in [73], the
Planck collaboration also provides updated constraints on different trispectrum shapes. In
particular, they provide the following constraint on the local gNL-trispectrum amplitude:

glocalNL = (−5.8± 6.5)× 104 (68% CL) (4.60)

Until recently, the best empirical constraint on the primordial τNL-trispectrum amplitude
came instead from the Planck 2013 nominal-mission temperature data. In particular, it was
obtained for the collapsed shape [74]:

τNL < 2.8× 103 (95% CL) (4.61)

Using the latest Planck mission temperature and polarisation data, in [75] Marzouk et al.
updated this constraint, finding a significantly tightened one:

τNL < 1700 (95% CL) (4.62)

Note that since in general local-type non-Gaussianity is most easily understood as a large-scale
modulation of small-scale power on the CMB sky, both results were not obtained from a
4-point correlation function estimator but making use of statistical anisotropy estimators (see
e.g. [76]).
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Chapter 5
Cosmic Microwave Background Anomalies

As we have seen in the Chapter 3, from both WMAP and Planck full-sky measurements it has
emerged enticing evidence of some features at the largest angular scales that seem to suggest
a deviation from the fundamental assumptions of homogeneity and isotropy of our Universe.
In this Chapter we are going to explore some of these CMB large-scale anomalies, providing a
description of each of them, along with evidence and methods of detection. In particular we
are going to discuss:

1. the lack of large-angle correlations;

2. the hemispherical power asymmetry;

3. the alignment of low multipole moments;

4. the point-parity asymmetry;

5. the cold spot.

To quantify any observed departure from the underlying theory, the first step consists in
choosing an observable that will serve as indicator of the anomaly. The statistical significance
of the anomaly is quantified in terms of the so-called p-value. In statistics, given a null
hypothesis (in this case the ΛCDM model), the p-value is defined as the probability with
which a certain phenomenon can occur (see Figure 5.1). The smaller the p-value, the greater
the statistical significance, since a small p-value tells us that the null hypothesis should be
ruled out. The Planck collaboration computed the p-values of the chosen observables from the
simulation of a large number of random realisations of the CMB temperature map from the
probability distribution of the ΛCDM model, so that, for example, if only five simulations out
of a thousand lead to a value of the observable which is at least as extreme as the observed
value, they would report a p-value of 0.5% for that observation. However, note that since
there are many tests that can be performed on the data to assess a violation of statistical
isotropy, there is an high probability of finding some spurious signals with a seemingly high
significance. This is because even a statistically isotropic CMB sky is a realisation of an
underlying statistical process corresponding to many independent random variables. Therefore,
when assessing the statistical significance of an anomaly, in order to avoid claiming a false
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detection, one needs to take into account also this issue, which is referred to by particle
physicists as the “look else-where” effect (LEE).

Figure 5.1. An illustration of the concept of p-value. The figure shows the probability distribution of
a certain observable X according to the null hypothesis (in black). The value of X actually observed is
shown in red. The grey shaded area is the p-value of the observed value of X. Figure adapted from [77].

5.1 Lack of Large-Angle Correlations

Suppressed correlations at the largest observed angular scales, in contrast to what is predicted
in the ΛCDM model, were first noticed in the COBE data [78]. Later, both WMAP and
Planck data confirmed that the 2-point angular correlation function

C(θ) = 〈Θ(n̂1)Θ(n̂2)〉 (5.1)

where the average is over all pairs of pixels with n̂1 · n̂2 = cos θ, is very close to zero on
scales above ∼ 60◦. Figure 5.2 shows the 2-point correlation function from Planck 2013 data,
computed in pixel space, for the full-sky and with two masks. The most striking feature of
the cut-sky C(θ) is that all of them are nearly zero for scales above ∼ 60◦, except for some
anti-correlation for 180◦. This is also true for the full- sky curve, even though less so. To be
more quantitative about these observations, in their first year data, the WMAP team [79]
introduced the S1/2 statistic, which measures the deviation of the 2-point correlation function
from zero:

S1/2 =
∫ 1/2

−1
[C(θ)]2 d (cos θ) (5.2)

Depending on the details of the analysis, p-values consistently below 0.5% have been obtained,
some even below 0.01%.
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The Planck team, in their latest results release [44], extended the analysis also to polarisation
data, considering the statistic proposed by Copi et al. [80]:

SXY (θ1, θ2) =
∫ cos θ1

cos θ2

[
CXY (θ)

]2
d (cos θ) (5.3)

where X,Y can denote either the temperature T or the two Stokes parameters U , Q and
CXY (θ) is the corresponding 2-point correlation function. Note that this statistic is a
generalisation of the S1/2 statistic computed from the temperature correlation function where
the considered limits of the separation angle range are θ1 = 60◦ and θ2 = 180◦.

Figure 5.2. 2-point correlation function from Planck’s 2013 SMICA map, adapted from [39]. The
black dotted line represents the best-fitting ΛCDM model. The shaded, cyan region is the 68% cosmic
variance confidence interval. Included from the SMICA map are the C(θ) calculated on the full-sky (the
black, solid line) and from two cut skies using the U74 mask (the green, dash-dotted line) and the
KQ75y9 mask (the red, dashed line).

The values for the STT1/2 statistic for the Planck 2018 data with resolution Nside = 64 show a
lack of correlation on large angular scales with a significance consistent with the one found by
Copi et al. for the Planck 2015 data [39]. The p-values for the temperature maps are found
to be slightly larger than those determined from the 2015 data set, but this can be caused
either by changes in the masks or systematic effects in the simulations. The results for the
CMB maps estimated using the component separation methods Commander, SMICA, NILC and
SEVEM, are presented in Table 5.1. Note that the sense of the p-value differs from the one
reported in [39].
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Table 5.1. Values for the STT1/2 statistic for the Planck 2018 data and the associated probabilities of
obtaining values for the Planck fiducial ΛCDM model at least as large of the ones observed.

Map STT1/2[µK4] probability [%]

Planck Comm. 1209.2 > 99.9
Planck SMICA 1142.4 > 99.9
Planck NILC 1156.6 > 99.9
Planck SEVEM 1146.2 > 99.9

Since a possible explanation for the lack of correlation in the temperature maps is that is due
to the small observed value of the quadrupole, the analysis for the STT1/2 statistic was then
repeated after removing the best-fit quadrupole from the temperature maps. The corresponding
probabilities, presented in Table 5.2, indicate that the low power in the quadrupole does
contribute to the lack of large-angle correlations. However, Copi et al. [81] observe that the
lack of correlations cannot be explained by a lack of quadrupole power alone. All modes below
` 6 5 contribute to this, by combining to cancel with each other and with higher order modes.

Table 5.2. Probabilities of obtaining values for the STT1/2 statistic for the Planck fiducial ΛCDM model
at least as large of the ones observed after removing the best-fit quadrupole from the temperature maps.

Map probability [%]

Planck Comm. 96.0
Planck SMICA 96.2
Planck NILC 96.1
Planck SEVEM 96.1

Copi et al. [80] also pointed out that the cross-correlation between temperature and polarisation
data can be used to determine wether or not the lack of large-angle correlations is due to a
statistical fluke of the ΛCDM cosmology. Specifically, assuming the statistical fluke hypothesis
to be true, given that the temperature and polarisation signal are partially correlated the STQ

statistic would also likely be small on large angular scales. Copi et al. [80] have determined that
in 99% of their constrained realisations based on the properties of the WMAP seven-year data,
assuming the statistical fluke hypothesis to be true, STQ(48◦, 120◦) 6 1.403µK4. Therefore a
value of the measured statistic exceeding this limit would allow the fluke hypothesis to be
ruled out. The values for this statistic for the Planck 2018 data and their corresponding
p-values are presented in Table 5.3. These results are significantly smaller and thus the
statistical fluke hypothesis cannot be ruled out. We conclude our discussion on the lack of
large-angle correlations with an important remark. A point that is widely overlooked is that,
as reported in [39], the 2-point angular correlation function C(θ) as discussed above is actually
the dipole and monopole subtracted 2-point angular correlation function, C`>2(θ). A physical
explanation for the smallness of S1/2 is likely to predict that C(θ) is small, not just C`>2(θ).
However, a cosmological (i.e. non-Doppler) dipole of the size predicted in the best-fit ΛCDM
model would completely dominate S1/2. Therefore in order to have a small C(θ), it is required

76



a constraint on the cosmological contribution C1 . 200µK2 � 〈CΛCDM
1 〉 ' 3300µK2. Since

this happens less than 0.5% of the time in the ΛCDM model with standard cosmological
parameters, if a low C1 were observed, that would indeed be compelling evidence of a physical
origin for the small value of the S1/2 statistic.

Table 5.3. Values for the STQ(48◦, 120◦) statistic for the Planck 2018 data and the associated
probabilities of obtaining values for the Planck fiducial ΛCDM model at least as large of the ones
observed.

Map STQ(48◦, 120◦)[µK4] probability [%]

Planck Comm. 0.20 83.3
Planck SMICA 0.07 97.0
Planck NILC 0.11 93.3
Planck SEVEM 0.26 82.9

5.2 Hemispherical Power Asymmetry

Figure 5.3. Original evidence for the hemispherical power asymmetry, adapted from [82]. The three
jagged lines show the binned angular power spectrum computed over the all unmasked sky (dashed
line), the northern hemisphere (solid line) and the southern hemisphere (dotted line). Northern and
southern hemisphere are defined with respect to the best-fit axis for the WMAP first year data. The
histogram and the two grey areas around it denote the mean and the 68% and 95% confidence regions
from Gaussian random simulations.

Evidence for an hemispherical power asymmetry emerged in the analysis of WMAP first year
data [83, 82]. It was found that the angular power spectrum, when estimated locally at different
positions on the sphere, appears not to be isotropic (see Figure 5.3). In particular, the power
spectrum calculated for the hemisphere centred at galactic coordinates (l, b) = (273◦,−20◦)
was larger than the one calculated in the opposite hemisphere over the multipole range
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` = 2 − 40, with the axis of maximum asymmetry found to lie close to the ecliptic plane.
Eriksen et. al [82] confirmed the asymmetry extending the analysis also to the computation
of N-point correlation functions for the northern and southern ecliptic hemispheres, finding
that they give indeed different results. In [82] and in subsequent analysis the agreement of
the correlation functions of the CMB estimates with the fiducial cosmological model was
quantified using a simple χ2 statistic. Considering that the χ2 statistic in itself can act as a
measure of the fluctuation level, the degree of asymmetry between the two hemispheres was
then quantified by a parameter defined as the ratio of the two χ2 values. In 2013 [42], the
Planck collaboration repeated this analysis by computing four N-point correlation functions
on the northern and southern ecliptic hemispheres for the Planck 2013 temperature maps
with resolution Nside = 64, finding results in agreement with those of Eriksen et al. [82].
In particular it was shown that the p-values for the χ2 statistic for the 3-point and 4-point
correlation functions in the northern hemisphere were especially large, with a significance
> 99%, exceeding 99.9% for the pseudo-collapse 3-point one. The Planck 2015 analysis [43]
confirmed these high levels of significance, specifically observing that “the northern hemisphere
correlation functions are relatively featureless (both the 3- and 4-point functions lie very close
to zero), whereas the southern hemisphere functions exhibit a level of structure consistent
with Gaussian simulations”. Surprisingly, in their 2018 analysis, the Planck collaboration no
longer observed the high significance level for the pseudo-collapse 3-point function for the
temperature map in the northern hemisphere, as reported in the 2013 and 2015 Planck data
sets [42, 43]. The Planck collaboration states that this discrepancy “may be a consequence
of the use of different masks in the various analyses, or of the improved treatment of poorly
determined modes in the estimated correlation matrix used for the computation of the χ2

statistic”. However, the fact that the anomaly was consistently observed in both the WMAP
data and the two previous Planck data releases, strongly suggests that the changes in the
mask or the improvement in the analysis might have removed important information in the
data, that would instead significantly contribute to the anomaly.

5.2.1 Dipole Modulation and Directionality

A phenomenological model for the hemispherical power asymmetry has been proposed by
Gordon et al. [84]. The asymmetry is modeled in terms of a dipole modulation of the
temperature field as follows:

Θ(n̂) = [1 +A (n̂ · p̂)] Θ0(n̂) (5.4)

where Θ(n̂) and Θ0(n̂) are, respectively, the modulated and unmodulated (isotropic) CMB
temperature fluctuations, n̂ is an arbitrary direction in the sky and A and p̂ are the dipolar
modulation amplitude and direction of maximum asymmetry. This phenomenological model
has been tested with both WMAP [85, 86] and Planck data [42, 43, 44]. In particular, to assess
the level of dipole asymmetry in the CMB sky different analyses relying on different estimators
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have been performed. The use of different estimators is crucial, since they are sensitive to
different systematics effects and their use allow to probe different regions of parameter space,
thus reducing the impact of the a posteriori correction.

Pixel-based and QML Likelihood Analyses

A pixel-space likelihood analysis has been performed on the WMAP 3-year [85] and 5-year
data [86]. The Planck collaboration, in their 2013 [42] and 2015 [43] data releases, performed
a similar analysis, considering only large angular scales. The results were found to be all
consistent, thus demonstrating also robustness between experiments. In particular, the
result for Planck 2015 release, using the Commander map with resolution Nside = 32, was
A = 0.066±0.021 with p̂ pointing in the direction (l, b) = (230◦,−16◦)±24◦. In their 2015 [43]
and 2018 [44] releases, the Planck collaboration performed also an harmonic-space analysis,
using the quadratic maximum likelihood (QML) estimator introduced by Moss et. al [87]. It
should be stressed that the QML analysis in multipole space was purely a phenomenological
one, with no attempt to connect to any real-space modulation. The technique exploits the fact
that the dipole modulation of any cosmological parameter is equivalent to the coupling of ` to
`± 1 modes in the CMB covariance matrix at leading order. In particular, a scale-invariant
modulation from `min = 2 to a variable maximum multipole `max was considered. In the 2015
release, it was observed that the obtained p-values of the fitted modulation amplitude as
a function of `max for the temperature data showed several peaks, at `max ≈ 40, `max ≈ 67
and `max ≈ 240. The dip at `max ≈ 67, with a p-value 0.9− 1.0%, corresponds to the low-`
dipole modulation that has been the focus of most attention in the literature. In 2018 the
Planck collaboration extended this analysis also to polarisation data, with the temperature
data results found to be consistent with previous analyses. The polarisation data results
showed a mildly significant asymmetry at ` ≈ 250, appearing featureless elsewhere, and seem
consistent with statistical isotropy. The results for the amplitude and direction for the low-`
dipole-asymmetry signal from the QML analysis for the range ` = 2−64 were found consistent
between the 2015 and 2018 releases (see Table 5.4).

Table 5.4. Amplitude and direction for the low-` dipole-asymmetry signal from the QML analysis for
the range ` = 2− 64 for Planck 2015 and 2018, using the Commander temperature maps.

Map Amplitude Direction (l, b) [deg]

Planck 2015 0.063+0.025
−0.013 (213,−26)± 28

Planck 2018 0.070+0.032
−0.015 (221,−22)± 31

Angular Clustering of the Power Distribution

In their analysis of the 5-year WMAP data, Hansen et. al [88] searched for a dipolar
power asymmetry performing a simple test in which the power spectrum was computed on a
number of discs of various sizes and binned into independent blocks of 100 multipoles, from
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` = 2 to ` = 600. Each block was then used to look for a dipolar asymmetry in the power
distribution. The six ` ranges considered showed evidence of a consistent dipole direction. This
procedure, however, was highly CPU-intensive and thus their 2013 data release [42], the Planck
collaboration chose to perform a similar test, following the modified approach developed by
Axelsson et al. [89] as applied to the 9-year WMAP data. The power spectrum amplitude
was estimated on 12 non-overlapping patches of the sky in `-bins of 16 multipoles each, then
each block was fitted for a dipolar asymmetry in the power distribution. In particular, the
alignment of the dipole directions between the different multipole blocks was used to construct
a measure of the power spectrum asymmetry. The significance of the asymmetry was then
assessed comparing the clustering of the dipole directions evaluated for the different scales
to that observed in simulated maps. They found that the dipole directions at high and low
multipoles are strongly correlated up to ` ≈ 600, with weakening significance for ` > 500. They
also showed that the ratio of the power spectra computed in the two opposite hemispheres
defined by the asymmetry axis for ` = 2− 600 was not statistically anomalous. This same
analysis was performed in the Planck 2015 data release [43], considering bin sizes between
∆` = 8 and ∆` = 32 for the multipole range ` = 2− 1500. In agreement with the results in
[42], a large degree of alignment was seen at least up to `max ≈ 600. However, in contrast
to the earlier results, the p-values were found to remain low for `max > 750. Specifically,
depending on the bin size and component separation method, they found p-values as low as
< 0.04%. Thus, both the 2013 and 2015 results suggest that, beyond a dipole modulation of
power on large angular scales, some form of directional asymmetry continues on small scales,
and seem to indicate that the directions of dipolar asymmetry are correlated between large
and small scales. Since the nature of the asymmetry is unknown, the Planck collaboration
performed also a Rayleigh statistic (RS) based analysis as a generic test for directionality. An
asymmetry was found on scales larger than `max ≈ 240, and the minimum p-value obtained
by the data was 0.1 − 0.2%, to be compared with the 0.9 − 1.0% obtained for the dipole
modulation amplitude at `max ≈ 67. The preferred direction for `max ≈ 240 was found to be
(l, b) = (208◦,−29◦), approximately 20◦ away from the dipole modulation direction determined
by the QML analysis for the multipole range ` = 2 − 64 (see Table 5.4). In the 2018 data
release, the Planck collaboration extended the analysis also to polarisation data, adopting the
same approach for the estimation of the dipole alignment as applied in their 2015 data release
[43]. The results for the significance of the temperature alignment as a function of `max was
found to be consistent with previous analyses up to `max ≈ 1000, with p-values below 1% for
all multipoles. The results for the EE polarisation signal seems to indicate the presence of
some alignment, beginning at `max ≈ 150, reaching a p-value below 1% and extending up
to `max ≈ 250, corresponding to the multipole range where the alignment in temperature
also starts to be seen. Furthermore, it was observed that not only the EE and TT dipoles
clustered among themselves, but they also appear to be clustered towards the same direction.
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Variance Asymmetry

An alternative method for the searching of a dipolar power asymmetry was proposed by
Akrami et al. [90], who applied a pixel-space local variance estimator to WMAP 9-year
and Planck 2013 temperature data. This approach was motivated by its conceptual and
implementational simplicity, its directly intuitive interpretation and by the fact that, being
defined in pixel space, it provides useful complementarity to other harmonic-based methods. In
particular, they measured the local variance of the CMB temperature fluctuations over patches
of various sizes and position on the sky. Then, they compared the measured values with
the ones obtained from statistically isotropic simulations. For the 2013 Planck temperature
maps, they found that none of the 1000 available simulations had a larger variance than that
estimated from the data. This suggested the presence of an asymmetry at a significance of
at least 3.3σ, with a preferred direction (l, b) = (212◦,−13◦), in good qualitative agreement
with other studies. This method was also adopted by the Planck collaboration and applied to
the 2015 [43] and 2018 [44] temperature maps analyses. In the 2015 analysis it was applied
to the full-resolution (Nside = 2048) temperature maps, finding significantly low p-values,
although the significance levels and preferred directions showed slight differences for different
disc radii. The highest significance was found for 8◦ discs, with p-values less than 0.1%. In
2018 the method was applied to both the full and low-resolution (Nside = 64) temperature
maps, extending the analysis also to the scalar E-mode polarisation data. The results for the
full-resolution temperature maps were found to be consistent with that of the 2015 analysis.
An overall lower level of significance, compared to the one of full-resolution maps, was instead
found for the low-resolution ones, with the smallest p-values obtained for the 4◦ discs. The
results obtained from the application of the local variance analysis to the low-resolution
E-mode polarisation maps when 4◦ discs are used are presented in Table 5.5. The preferred
directions for the E-mode polarisation data, as shown in Figure 5.4, are found to be intriguingly
close to those determined for the temperature data.

Figure 5.4. Local-variance dipole directions for the low-resolution Planck 2018 component-separation
temperature (left) and E-polarisation (right) maps Commander (red), NILC (orange), SEVEM (green) and
SMICA (blue), when 4◦ discs are used. For reference, the north ecliptic pole (NEP), the south ecliptic
pole (SEP) and the preferred dipole modulation axis (labelled as low-`) derived from the temperature
data through the QML analysis are shown. Figure adapted from [44].
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Table 5.5. Local-variance dipole directions and p-values for the variance asymmetry of the four
component-separated Planck 2018 E-mode polarisation maps with resolution Nside = 64 when 4◦ discs
are used.

Map p-value [%] Direction (l, b) [deg]

Planck Comm. 0.7 (217,−10)
Planck SMICA 5.5 (219,−19)
Planck NILC 5.8 (219,−16)
Planck SEVEM 0.4 (240,−7)

Peak Distribution Asymmetry

Localised anomalies in the CMB sky can be searched for by testing how the statistical
properties of local extrema (or peaks) would vary in patches of the sky as a function of their
location. It is indeed expected for the asymmetry measured by the QML estimator to be
mirrored by a slight difference in the temperature and polarisation peak distributions in
the corresponding positive and negative hemispheres. The peak distributions were therefore
analysed by the Planck collaboration in both their 2015 [43] and 2018 [44] data releases. In
the 2015 analysis, the temperature peaks were selected using a disc of radius 70◦ centred at
(l, b) = (225◦,−18◦) (corresponding to the dipole modulation found in the SMICA temperature
map) and its corresponding antipodal disc. For maps filtered with a 40’ FWHM GAUSS filter
the distribution of the peaks for the positive-direction disc was found in general agreement
with the full sky results, while that for the negative-direction was marginally different. In
2018, the same analysis was performed, extending it also to polarisation data. For a 600’
filtering scale a marginal difference between the data and the simulations was observed in the
negative-direction, consistently with the one observed for the temperature data in the 2015
analysis.

5.2.2 Low Variance in the Northern Hemisphere

A low value for CMB variance was first observed in WMAP data [91]. Since variance is
nothing but a weighted sum of the angular power spectrum of the fluctuations over all the
multipoles, this feature can be regarded as an indirect signature of a power asymmetry. The
WMAP observation was confirmed by the Planck collaboration [42, 43], with a p-value of
0.5 − 1.0% for the temperature maps with resolution Nside = 16, depending wether or not
a look-elsewhere effect is considered. In particular, the Planck 2013 analysis [42] showed,
using both full-resolution (Nside = 2048) and low-resolution (Nside = 16) maps, that the low
variance was localized in the northern ecliptic hemisphere, with a p-value of ∼ 0.1%. No
updates on these significance levels have been provided by the 2015 and 2018 Planck data
releases [43, 44] .
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5.3 Alignments of Low Multipole Moments

Figure 5.5. Quadrupole and octopole multipole vectors for the DQ corrected Planck 2013 SMICA
map in the Galactic coordinates, adapted from [92]. The background shows the quadrupole+octopole
pattern. The multipole vectors are shown as circles, in red and labelled ’Qv’ for the quadrupole and
in black and labelled ’Ov’ for the octopole. The directions of the oriented-area vectors defined in
equation (5.7) w(`;i,j) are shown as squares. The quadrupole oriented-area vector, is shown in red
and labelled ’Qa’, the octopole oriented-area vectors are shown in black and labelled ’Oa’. Since the
multipole vectors are only determined up to a sign each vector appears twice in the figure and the
oriented-area vectors have only been plotted in the southern hemisphere to avoid cluttering the plot.
The maximum angular momentum dispersion direction for the octopole, n̂3, is shown as the black
star. Since n̂2 = ŵ(2;1,2) it is also represented by the red square. The direction of n̂2 without the DQ
correction is shown as the red diamond. For reference also shown in the figure is the ecliptic plane
(black line), the locations of the north (NEP) and south (SEP) ecliptic poles, and the direction of our
motion with respect to the CMB (dipole).

A significant alignment between the orientation of the quadrupole (` = 2) and the octopole
(` = 3) has been first reported by Tegmark et al. [93], who observed it in the WMAP first
year temperature data. This is in clearly in contrast with what is predicted by the standard
ΛCDM model, according to which the CMB is an isotropic random field and the quadrupole
and the octopole are expected to be uncorrelated. The issue of alignment was discussed in
greater detail by de Oliveira-Costa et al. [94]. To assess the significance of the alignment, de
Oliveira-Costa et al. computed the axis n̂` around which the angular momentum dispersion,
given by

[∆L(n̂)]2` =
∑
m

m2|a`m(n̂)|2 (5.5)

was maximised. It should be stressed that in equation (5.5) the a`m(n̂) denotes the spherical
harmonic coefficient of the CMB map in a rotated coordinate system with the z-axis in
the n̂-direction. The alignment was quantified by studying the quantity |n̂2 · n̂3|. The
preferred axes for the quadrupole n̂2 and the octopole n̂3 were found to be both roughly in the
(l, b) = (−110◦, 60◦) direction, giving |n̂2 · n̂3| ≈ 0.9838, corresponding to a separation of 10.3◦,
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with a p-value of ≈ 1.6%. Furthermore, de Oliveira-Costa et al. also found that the quadrupole
and the octopole are anomalous on their own. The quadrupole was found surprisingly low,
with a significance of about 5%. The octopole was found unusually planar, with roughly
the same significance. In [95, 92] Copi et al. proposed an alternative method for studying
this alignment based on multipole vectors. These multipole vectors form, as the spherical
harmonics, an irreducible representation of the rotation group SO(3) and thus they provide
a different basis for expanding any scalar function on the sphere. Within this approach, in
particular, each multipole order ` is represented by ` unit vectors, {v̂(`;j)|j = 1, ..., `}, pointing
in directions on the sky and an overall magnitude A(`) = |v(`;j)|, such that, for example, the
dipole ` = 1 would be decomposed as

Θ1(n̂) ≡ A(1)
(
v̂(1;1) · n̂

)
(5.6)

The ` unit vectors are used to define oriented-area vectors, which define a set of planes:

w(`;i,j) = v̂(`;i) × v̂(`;j) (5.7)

The alignment of these planes with a given direction n̂ in the sky is checked by studying the
quantity Aj = |wj · n̂| and then quantified by the S and T statistics, defined as

S = 1
n

n∑
j=1

Aj , T = 1
n

n∑
j=1

(1−Aj) (5.8)

where the sum is over a set of oriented-area vectors and wj denotes one of the vectors. In
[92] Copi et al. searched for alignments in the seven and nine-year WMAP and Planck 2013
temperature data. In particular, the WMAP ILC cleaned maps and the Planck SMICA, NILC

and SEVEM maps were used. In their analysis Copi et al. [92] applied both the multipole vector
method they devised and the original approach described by de Oliveira-Costa [94]. They
found that the statistics from the maximum angular dispersion and the multipole vectors
both showed strong evidence for a mutual alignment of the quadrupole and the octopole, with
p-values for at least as much alignment observed occurring in realisations of the ΛCDM model
dropping to less than 0.5% once the kinematic (Doppler) quadrupole was removed. They
also found that the alignment of the quadrupole and the octopole with the dipole direction
appears to be even more robust than their mutual alignment, with p-values of less than 0.4%
for all maps and with both the S and T statistics. It was also found the quadrupole and the
octopole are jointly perpendicular to the ecliptic plane, with p-values ranging from 2% to
4% depending on the map considered, and to the north galactic pole (NGP), with p-values
ranging from 0.8% to 1.6%. Applying the Planck Doppler-quadrupole (DQ) corrections to
the Planck SMICA, NILC and SEVEM cleaned maps lead to results for the alignments even more
unlikely in the ΛCDM model, thus strengthening the significance of the results. Figure 5.5
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provides a visual summary of the observed anomalies and shows the results found for the
multipole vectors of the quadrupole and the octopole, the corresponding oriented-area vectors,
their maximal angular dispersion directions n̂` and some special directions.

5.4 Point-Parity Asymmetry

The CMB temperature fluctuation field Θ(n̂) can be considered as the sum of even and odd
parity functions:

Θ(n̂) = Θ+(n̂) + Θ−(n̂), with Θ±(n̂) = Θ(n̂)±Θ(−n̂)
2

(5.9)

Using the spherical harmonics decomposition (3.5) and the parity property of the spherical
harmonics Y`m(n̂) = (−1)`Y`m(−n̂), one can show that

Θ±(n̂) =
∑
`m

a`mY`m(n̂)Γ±(`) (5.10)

where Γ+(`) = cos2(`π/2) and Γ−(`) = sin2(`π/2). According to the ΛCDM model, on the
largest scales (corresponding to the Sachs-Wolfe plateau in the temperature power spectrum,
where `(`+ 1)C` ≈ constant), the Universe should be parity neutral with no particular parity
preference exhibited by the CMB fluctuations. However, an odd point-parity preference
was first noted in the WMAP data by Land et al. [96], even though, given their statistical
estimator, they found that the statistical significance for this feature was not very high. The
point-parity asymmetry analysis was later extended by Kim & Naselsky [97, 98, 99] to the
WMAP three, five and seven-year data. To assess the significance of the parity asymmetry
Kim & Naselsky proposed the following statistics:

g(`max) = P+(`max)
P−(`max) (5.11)

where P±(`max) are defined as the sum of C`[`(`+ 1)/2π] over multipoles for the even and
the odd maps respectively. The ratio g(`max) of WMAP data for various `max is shown in
Figure 5.6. In particular, it was found that the parity asymmetry in the WMAP7 data at
multipoles 2 6 ` 6 22 was the most anomalous, with p-value 0.0031%.
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Figure 5.6. The ratio g(`max) of WMAP data, adapted from [98].

In a subsequent analysis, Naselsky et al. [100] investigated the directional properties of the
CMB parity asymmetry for the WMAP7 data, finding that the direction of maximal (minimal)
parity asymmetry, for multipole moments up to ` ∼ 20, was parallel (perpendicular) to the
direction singled out by the CMB kinematic dipole. Later, the Planck collaboration, following
the same approach of Kim & Naselsky, investigated the parity asymmetry for the Planck 2013
[42], 2015 [43] and 2018 [44] low-resolution (Nside = 32) temperature maps. The analyses
confirmed the results found by Kim & Navelsky [97, 98, 99] for WMAP7 but also found that
the significance of the asymmetry depends on the maximum monopole chosen and peaks for
`max ≈ 20− 30. In their 2018 [44] data release the Planck collaboration extended to analysis
also to polarisation data, following a similar approach to the one applied to the temperature
maps. No significant anomaly was found, but it should be stressed that the low signal-to-noise
of the Planck polarisation data over the range of scales considered has been a limiting factor
for the analysis.

5.5 The Cold Spot

The cold spot is a large region in the CMB map with an angular radius of about 5◦ − 10◦,
centred at Galactic coordinates (l, b) = (210◦,−57◦). It is characterised by and unusually
low temperature with a mean temperature decrease ∆T ≈ −100 µK and it is surrounded by
an hot ring [101, 102, 103]. It was first detected in the WMAP 1-year data by Vielva et. al
[104], who performed a wavelet analysis of the Gaussianity of CMB data applying a technique
based on the Spherical Mexican Hat Wavelet (SMHW). In particular, Vielva et al. found
that the SMHW coefficients for angular scales of about ∼ 10◦ on the sky presented an excess
of kurtosis, while the skewness1 was consistent with zero. The finding of Vielva et al. was

1In statistics, skewness is a measure of the asymmetry of the probability distribution of a real-valued random
variable about its mean, while kurtosis is a measure of whether the data are heavy-tailed or light-tailed relative
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reassessed in subsequent analyses (see e.g. [105, 106]) and later confirmed in Planck data [42,
43, 44]. Its statistical significance, depending on the statistical method applied to assess it
(see e.g. [101, 102, 103]) is 2− 4σ and the inconsistency with the CMB Gaussian simulation
has a p-value of about 1% [107].

5.6 (Short) Summary of the Findings from Planck

The analysis of the temperature maps from WMAP and Planck data showed consistent
evidence for anomalous features in the CMB, with an overall significance of 2 − 3σ. The
analysis of polarisation data, performed by the Planck collaboration on their 2018 data set,
showed no evidence for a lack of large-angle correlations, an hemispherical power asymmetry
in the N-point correlations functions and peak distributions and for a violation of the point-
parity symmetry predicted by the ΛCDM model. However, the searching for a dipolar power
asymmetry signature in polarisation data found, using the variance asymmetry estimator, an
intriguing alignment of the preferred directions of the E-mode polarisation and temperature
data. Due to the low signal-to-noise of the data the Planck collaboration was not able to
draw firm conclusions on whether or not this alignment might be more than a coincidence
and thus related to some underlying physical mechanism. A summary of the findings from
the Planck satellite data we discussed in the previous sections is presented in Table 5.6.

Table 5.6. Summary of the findings discussed in the previous sections from the Planck satellite data.
Note that the sense of the p-value differs between some of the analyses.

Feature p-value Data Reference

2-point correlation STT1/2 > 99.9% Planck 18 Comm. map [44]
2-point correlation STT1/2 (no quadr.) 96.0% Planck 18 Comm. map [44]

hemispherical power asymmetry > 99% Planck 13, 15, 18 [42, 43, 44]
hemispherical variance asymmetry 6 0.1% Planck 15, 18 [43, 44]
low variance in the northern hemi-
sphere

6 1% Planck 13 [42]

dipolar modulation 6 1% Planck 13, 15, 18 [42, 43, 44]

quadrupole-octopole alignment 6 0.5% Planck 13 [92]
` = 1, 2, 3 alignment 6 0.4% Planck 13 [92]

odd parity preference `max ≈ 20− 30 6 1% Planck 18 [44]
odd parity preference `max = 27 6 0.3% Planck 18 with 15 common mask [44]

cold spot 6 1% Planck 15 [43]

to a normal distribution.
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5.7 The Quest for an Explanation

Given the a posteriori nature of their detection, a conservative explanation is that the observed
CMB anomalous features are due to a statistical fluke of our realisation of the ΛCDM model.
However, despite their relative modest statistical significance, the number of these features,
the fact that they are not related in a obvious manner and the fact that (almost all of them)
are detected only at the largest angular scales, motivate the quest for an underlying physical
explanation. One possibility to explain the CMB anomalous features is that they might be
related to local physics effects, namely there is a pernicious foreground that contaminates the
CMB and leads to the observed anomalies. In particular, physical well motivated foregrounds
that might effect or even be the cause of the anomalies are the Solar System (see e.g. [108,
109]) and the Milky Way (see e.g. [110]). Recently, Luparello et al. [111] reported the finding
of new CMB foreground associated with extended galactic haloes and the extent to which this
foreground may impact the CMB fluctuations and be responsible for the observed large-scale
anomalies has been studied by Hansen et al. in [112]. However, the fact that the CMB
anomalous features show up at more or less the same statistical significance in both Planck
and WMAP foreground cleaned maps2 constitutes in general a major argument against a
foreground-related explanation. Another possibility is that the observed anomalies have a
cosmological origin. This possibility is the most exciting, because it implies new physics
beyond the standard ΛCDM model. Therefore, in the following sections, we will provide a
short and non-exhaustive qualitative summary of some of the cosmological mechanisms that
have been proposed to explain the CMB large-scale anomalies.

5.7.1 Large-scale Structure Explanations

In principle the local structure of the Universe i.e. over/under-densities in the dark matter
distribution within tens or hundred of Megaparsecs from our location, could be responsible
for some of the alignments. In particular, one possibility is that the observed alignments are
induced by the Integrated Sachs-Wolfe (ISW) or, in the non-linear regime, the Rees-Sciama
effect. As we have seen in Chapter 3, the ISW effect is one of the contributions to the Cosmic
Microwave Background temperature fluctuations and it arises from the time-dependance of
the gravitational potentials as the photons propagate from the last scattering surface to us.
The same mechanism responsible for the ISW effect is referred to as the Rees-Sciama (RS)
effect when considering the non-linear evolution of the gravitational potentials. Rakić et al.
[113] explored the possibility that the local RS effect could induce a correlation between the
dipole and higher multipoles, assuming for the local superstructure spherical symmetry. They
found, as they expected, some alignments among the low multipoles. However, they also found
that these alignments are not in agreement with those observed in the data. In [114], Inoue &
Silk explored instead the possibility that the Cosmic Microwave Background is affected by the
RS effect for local voids at redshift z . 1, finding that not only such a structure can account

2WMAP and Planck missions not only have different observational strategies, but use also different data
reduction methods.
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for both the planarity of the octopole and the alignment of the quadrupole and the octopole,
but also the cold spot in the Galactic southern hemisphere can be explained by such a large
void at redshift z ∼ 1. An argument against explaining the observed alignments via a ISW or
RS effect is that it is simply unlikely that this effect could match the signal and the pattern
of the primordial CMB [92]. The idea that the cold spot could be due to an anomalously
large spherical under-dense region of unknown origin, on the line of sight between us and the
LSS, has also been repeatedly revised in literature. Rudnick et al. [115] have claimed that
there is a cold spot in the NRAO VLA Sky Survey (NVSS) which is statistically significant
and aligned with the cold spot found in both WMAP and Planck. However, after including
systematic effects and carefully accounting for the effect of a posteriori choices when assessing
the statistical significance, no evidence was found for an NVSS cold spot [116]. Recently,
using the data from the WISE-2MASS survey, a low density (supervoid) region centred at
redshift z ∼ 0.2 and lying in the direction of the CMB cold spot has been detected [117, 118].
In particular, it has been claimed that this supervoid is capable of accounting for the cold
spot temperature profile through the RS effect [118]. This claim has been however refuted by
Nadathur et al. [102], who argue that the maximum temperature effect that this void could
produce on the CMB is not sufficient to cause the observed cold spot.

5.7.2 Inflationary Explanations

The high-precision measurements of CMB anisotropies from both WMAP and Planck are in
agreement with the predictions of single-field models of inflation. However, the anomalous
features consistently observed at the largest angular scales pose a challenge to such models,
which in order to generate them should be either modified or rejected. Within the class of
single-field models of inflation one possibility to generate some of these features consists in
briefly modifying the slow-roll dynamics of the inflaton field to accommodate for a breaking
of scale invariance. This can be achieved either by introducing a step in the inflaton potential
(see e.g. [119, 120, 121, 122]), allowing an inflection point in the potential (see e.g. [123, 124,
125]) or by imposing kinetic/fast slow-roll initial conditions for the dynamical evolution of
the inflaton field (see e.g. [126, 127, 128, 129]). Even though all of these approaches give rise
to localised features in the primordial power spectrum, which usually provide an improved
quality of fit to the observations, a generic problem related to an explanation for the CMB
anomalies along this line is that some of these models introduce a new fine tuning. Another
possibility to generate some of the anomalous CMB features consists in considering models
violating statistical isotropy. The most common strategy for incorporating the breaking of
statistical isotropy into inflation is to consider some form of multi-field inflation, using one of
the directions orthogonal to the direction of slow-roll as a modulating field. In the specific case
of the dipolar asymmetry, however, there are a number of aspects which make an explanation
along this line difficult and thus must be taken into account when attempting model building.
Since most extra fields in multi-field models of inflation become disordered in a nearly scale-
invariant way, obtaining the required modulation is usually problematic. Moreover, to respect
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the constraints on the non-Gaussian parameter fNL, one must avoid that the modulating field
leave a direct imprint on the temperature anisotropies. Finally, the measured amplitude for
the dipolar asymmetry exhibits a strong scale-dependence. It is also interesting to point out
that the apparent breaking of statistical isotropy suggested by the anomalous CMB features
can also be an artefact of primordial non-Gaussianity. Along this line, relevant is the work
of Schmidt & Hui [130], Byrnes et al. [14, 13] and Adhikari et al. [10, 11], who proposed
non-Gaussian models (based on the early proposals by Gordon et al. [84], Erickcek et al.
[131] and Dvorkin et al. [132]) to explain the power asymmetry, and Hansen et al. [12], who
assume for six of the most extensively studied CMB anomalous features to have a common
cosmological origin and look for toy models that can naturally reproduce them. In particular,
Schmidt & Hui [130] have shown that the coupling between a long-wavelength mode a shorter
one, induced by non-Gaussianity, could manifest in the observation of a preferred direction
in the sky. However, the model proposed by Schmidt & Hui fails to actually reproduce the
observed asymmetry: this is because the (modulated) power spectrum which arises in their
model depends on the direction of k because the long-wavelength modes in our particular
realisation of the Universe statistically pick out certain directions and, as pointed out in [133,
134], the asymmetry can not arise due to a preferred direction in P (k) but must be attributed
to a spatial modulation of power across the observable Universe3. In [10], Adhikari et al.
performed a systematic study of the power asymmetry expected in the CMB if the primordial
fluctuations are non-Gaussian and exist on scales larger than we can observe, showing that
scale-dependent modulations are a generic feature of non-Gaussian models and that such
modulations can naturally reproduce the observed power asymmetry. Subsequently, in [11],
Adhikari et al. shown that a large-scale power asymmetry may also arise in models with local
trispectra and strong scale-dependent τNL amplitudes. In [14, 13], Byrnes et al. extended
previous calculations, which were restricted only to one or two-source scenarios, computing
the response of the 2-point correlation function to a long-wavelength perturbation in models
characterised by a near-local bispectrum, showing that the amplitude and scale-dependence of
the observed power asymmetry are actually sourced by a combination of response functions.
Finally, in [12], inspired by the additional non-linear terms in the gravitational potential that
appear in models of inflation, Hansen et al. search for isotropic but non-Gaussian models,
where the non-Gaussianity is the origin of the apparent deviations from statistical isotropy
seen in the data, aiming to phenomenologically determine the properties that a physical model
able to explain them should exhibit. The connection between primordial non-Gaussianity
and the CMB large-scale anomalies, along with the possible implications of these anomalous
features for Early Universe physics, will be further explored in the next two Chapters.

3This point will be further clarified in Chapter 6.
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Chapter 6
CMB Anomalies as Signatures of Non-Gaussianity

6.1 Non-Gaussian Modulation of the Power Spectrum

When one has access only to a finite volume of the Universe, isotropy and Gaussianity are
not really two independent criteria for the statistics of the primordial fluctuations [135], thus
implying that if one assumes non-Gaussianity for fluctuations of wavelengths much bigger
than the size of the observable Universe, then one expects some level of statistical anisotropy
to naturally arise in the observed sky. The analytical framework proposed by Adhikari et
al. in [10], which is going to be the subject of the next few sections, allows us to calculate,
through a cosmic-variance analysis, the distribution of expected deviations from isotropy in
any isotropic, non-Gaussian model. An interesting point is that this framework incorporates
the most successful proposals to explain the power asymmetry, even those that were not
initially formulated as non-Gaussian models. This is because, if one assumes to maintain the
hypothesis of statistical isotropy, then the power asymmetry can be modeled by a fluctuation
in some long-wavelength modulating field coupled to some primordial cosmological parameter
[134] and, in a way, this is a sort of non-Gaussianity, since it implies the coupling of a
long-wavelength fluctuation to short-wavelength ones.

6.1.1 Statistical Anisotropies from Local Non-Gaussian Initial Conditions

In an homogenous and statistically isotropic Universe, as we have already seen in Chapter
1, the 2-point correlation function of a generic stochastic Gaussian field φ(x) depends only
on the magnitude of the separation between the two points and is defined as the Fourier
transform of the power spectrum:

〈
φ

(
x− r

2

)
φ

(
x + r

2

)〉
≡
∫

d3k
(2π)3 e

ik·rPφ(k) (6.1)

However, as pointed out in [133, 134], an hemispherical power asymmetry cannot arise by
simply dropping the assumption of isotropy, which would result for the power spectrum in a
dependence on the direction of k. This is because, being the fluctuations real, the Fourier modes
of k and −k are related in such a way that the only multipole moments ` giving contributions
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to the modulation would be even, thus forbidding a dipole modulation for the temperature
field. The arising of the asymmetry must therefore be attributed to a spatial modulation of
power across the observable Universe, that we can model introducing a position dependence
in the power spectrum i.e. Pφ(k)→ Pφ(k,x), which allows for contributions from both even
and odd multipole moments. We will now proceed to prove that such an inhomogeneous
power spectrum naturally arises in non-Gaussian models where short-wavelength modes are
coupled to long-wavelength ones. Let us begin our discussion by assuming that at some early
time, after reheating but prior to the decoupling of photons from the primordial plasma, a
large volume of the Universe VL is filled with adiabatic (curvature) fluctuations, described by
an isotropic but non-Gaussian statistics. For the sake of simplicity, in the following we will
assume that the fluctuations are described by the standard local form of the gravitational
potential with constant non-linearity parameter fNL given by equation (4.5):

Φ(x) = φ(x) + fNL
(
φ2(x)− 〈φ2(x)〉

)
(6.2)

where Φ(x) is Bardeen’s gravitational potential and φ(x) is a random Gaussian field. Going
to Fourier space, the convolution theorem tells us that the Fourier transform of a product of
functions is the Fourier transform of the convolution of the functions, thus implying that the
Fourier modes of the non-Gaussian field are related to those of the Gaussian field by

Φ(k) = φ(k) + fNL

∫
d3q

(2π)3 [φ(k− q)φ(q)− 〈φ(k− q)φ(q)〉] (6.3)

The 2-point correlation function of the non-Gaussian field is therefore given by

〈
Φ
(
x− r

2

)
Φ
(
x + r

2

)〉
=
∫

d3k
(2π)3

∫
d3k′

(2π)3 〈Φ(k)Φ(k′)〉ei(k+k′)·xei(k−k′)· r2

= Z1 + fNLZ2 + f2
NLZ3

(6.4)

The integral Z1 simply gives the following contribution:

Z1 =
∫

d3k
(2π)3

∫
d3k′

(2π)3 〈φ(k)φ(k′)〉ei(k+k′)·xei(k−k′)· r2

=
∫

d3k
(2π)3

∫
d3k′

(2π)3

[
(2π)3Pφ(k)δ(3)(k + k′)

]
ei(k+k′)·xei(k−k′)· r2

=
∫

d3k
(2π)3Pφ(k)eik·r

(6.5)
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The integral Z2, instead, reads off:

Z2 =
∫

d3k
(2π)3

∫
d3k′

(2π)3 e
i(k+k′)·xei(k−k′)· r2

×
[∫

d3q′
(2π)3 〈φ(k)φ(k′ − q′)φ(q′)− φ(k)〈φ(k′ − q′)φ(q′)〉〉

+
∫

d3q
(2π)3 〈φ(k− q)φ(q)φ(k′)− 〈φ(k− q)φ(q)〉φ(k′)〉

]

=
∫

d3k
(2π)3

∫
d3k′

(2π)3 e
i(k+k′)·xei(k−k′)· r2

×
[∫

d3q′
(2π)3 〈φ(k)φ(k′ − q′)φ(q′)〉+

∫
d3q

(2π)3 〈φ(k− q)φ(q)φ(k′)〉
]

(6.6)

where we used that

〈φ(k)〈φ(k′ − q′)φ(q′)〉〉 = 〈φ(k)〉〈φ(k′ − q′)φ(q′)〉 = 0 (6.7)

since 〈φ(k)〉 = 0. Similarly, the Z3 integral gives:

Z3 =
∫

d3k
(2π)3

∫
d3k′

(2π)3 e
i(k+k′)·xei(k−k′)· r2

×
∫

d3q′
(2π)3

∫
d3q

(2π)3

[
〈φ(k− q)φ(q)φ(k′ − q′)φ(q′)〉

− 〈φ(k− q)φ(q)〉〈φ(k′ − q′)φ(q′)〉
]

(6.8)

When we consider the statistics in a volume VL →∞, being φ a random Gaussian field, the
contribution from Z2 to the 2-point correlation function vanishes and thus, in that case, the
power spectrum is corrected just by the term proportional to f2

NL which, if the non-Gaussianity
is weak, is small. However, if we instead consider the statistics in a finite sub-volume VS � VL,
corresponding in size to our observable Hubble volume, then we have that if the mode q
corresponds to a long-wavelength mode and the modes k and k′ are well within the sub-volume
VS, then

〈φ(q)φ(k)φ(k′)〉|VS = φ(q)〈φ(k)φ(k′)〉|VS 6= 0 (6.9)

that is, while φ(k) and φ(k′) remains randomly distributed in the sub-volume VS, φ(q) is no
longer stochastic and takes a particular value, corresponding to a particular realisation of the
field that constitutes the background of a particular Hubble volume. Therefore, assuming
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the Fourier mode φ(q) to be stochastic only if |q| > kmin = π/rCMB with rCMB defined as the
comoving distance to the last scattering surface, we get that the integrals Z2 and Z3 reduce
to:

Z2 =
∫
|k|>kmin

d3k
(2π)3Pφ(k)eik·r

∫
|q|<kmin

d3q
(2π)3φ(q)

[
eiq·(x+ r

2) + eiq·(x− r
2)]

= 2
∫
|k|>kmin

d3k
(2π)3Pφ(k)eik·r

∫
|q|<kmin

d3q
(2π)3φ(q) cos

(q · r
2

)
eiq·x

(6.10)

Z3 =
∫
|k|>kmin

d3k
(2π)3Pφ(k)eik·r

{∫
|q|<kmin

d3q
(2π)3φ(q)

[
eiq·(x+ r

2) + eiq·(x− r
2)]}2

= 4
∫
|k|>kmin

d3k
(2π)3Pφ(k)eik·r

{∫
|q|<kmin

d3q
(2π)3φ(q) cos

(q · r
2

)
eiq·x

}2
(6.11)

These results tells us that the position dependence of the power spectrum arises from the
factor eiq·x, thus implying that the inhomogeneous power spectrum PΦ,VS(k,x) will be nearly
constant on scales that are well within VS i.e. on scales shorter than 1/|q|. Therefore, if we
restrict the 2-point correlation function to separations such that q · r� 1, in which case the
term cos (q · r/2) ∼ 1, we get that the inhomogeneous power spectrum PΦ,VS(k,x) is given by

PΦ,VS(k,x) = Pφ(k)
[
1 + 4f̄NL

∫
|q|<kmin

d3q
(2π)3φ(q)eiq·x

]
(6.12)

where the locally observed non-linearity parameter, f̄NL, is given by

f̄NL = fNL + f2
NL

∫
|q′|<kmin

d3q′
(2π)3φ(q′)eiq′·x (6.13)

Notice that for fNL > 0 and a positive background fluctuation, the net effect of the correction
arising from the 4-point φ-function is to make the statistics in any finite sub-volume VS � VL

appear less Gaussian than they are in the large volume VL; conversely, a negative fNL and
background fluctuation would make the statistics in the smaller volume appear more Gaussian.
The imprint of the inhomogeneous power spectrum (6.12) on the CMB can be described in
terms of a multipole expansion as follows:

PΦ,VS(k, n̂) = Pφ(k)

1 + f̄NL

∞∑
`=0

∑̀
m=−`

g`mY`m(n̂)

 (6.14)

where Y`m are the spherical harmonics and n̂ denotes the direction of observation of the
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incoming photons. To find the explicit expression for the harmonic coefficients g`m we make
use of the expansion of the exponential eiq·x into spherical harmonics, given by

eiq·x = 4π
∞∑
`=0

∑̀
m=−`

i`j`(qx)Y ∗`m(q̂)Y`m(n̂) (6.15)

where j`(qx) are the Bessel functions and x = xn̂ specifies the position of the observed
fluctuation. Substituting equation (6.15) into equation (6.12) and neglecting the correction
arising from the 4-point function we get that the harmonic coefficients g`m are given by

g`m = 16πi`
∫
|q|<kmin

d3q
(2π)3 j`(qx)φ(q)Y ∗`m(q̂) (6.16)

Even though the quantity g`m has a fixed value in any single sub-volume VS, when averaged
over all the sub-volumes in the larger volume VL, 〈g`m〉|VL = 0. On the other hand, the
expected covariance in the large volume VL is non-zero:

〈g`mg∗`′m′〉|VL = 256π2(−i)`′i`
∫
|q|<kmin

d3q
(2π)3 j`(qx)j`′(qx)Pφ(q)Y ∗`m(q̂)Y`′m′(q̂)

= 32
π

∫
|q|<kmin

dqq2j2
` (qx)Pφ(q)δ``′δmm′

(6.17)

At this point it is straightforward to study the monopole (` = 0) and dipole (` = 1)
contributions to the power spectrum in the parametrisation of equation (6.14). The monopole
contribution is given by

A0 = fNLg00Y00(n̂) = fNL
g00

2
√
π

(6.18)

For a constant fNL, the effect of the monopole contribution A0 is to shift the amplitude of the
isotropic power spectrum Pφ(k) on all scales and thus it’s not observationally distinguishable.
The dipole contribution to the power spectrum in the parametrisation of equation (6.14) is
instead given by

A1 = fNL
∑

m=−1,0,1
g1mY1m(n̂) (6.19)

where the g1m coefficients are Gaussian distributed with zero mean and expected covariance

〈g1mg
∗
1m〉 = 64π

∫
|q|<kmin

dq

q

[sin(qx)
(qx)2 −

cos(qx)
qx

]2
Pφ(q) (6.20)
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Since what we are actually interested in is the dipole modulation of the observed power
spectrum in the CMB sky, we absorb the unobservable monopole contribution into the
isotropic power spectrum redefining

Pφ(k)→ P obs
φ (k) = Pφ(k)

[
1 + fNL

g00
2
√
π

]
(6.21)

and thus we get that the observed modulated power spectrum in the parametrisation of
equation (6.14) is given by

P obs
Φ,VS(k,n) = P obs

φ (k)

1 + fobsNL
∑

m=−1,0,1
g1mY1m(n̂)

 (6.22)

where

fobsNL ≡
fNL

1 + fNL
g00
2
√
π

(6.23)

is defined as the observed amplitude of local non-Gaussianity within our Hubble volume1.
Now, when we consider the power asymmetry generated by the random realisation of super-
horizon perturbations, we have no a priori choice for the preferred direction of modulation.
Therefore, in this case observations of the dipole power modulations are reported in terms
of the amplitude of dipole modulation in the direction of maximum asymmetry. Let us
therefore consider the decomposition of such a direction into any three orthonormal directions
(d1,d2,d3) on the CMB sky, each corresponding to a particular realisation of the coefficients
g1m, and measure the dipole modulation amplitude Ai as seen in the selected orthonormal
direction for each sky, such that the observed power spectrum of equation (6.22) rewrites as:

P obs
Φ,VS(k,n) = P obs

φ (k) [1 + 2Ai cos θ] (6.25)

where cos θ = di · n̂. Each contribution to the dipole modulation from the non-Gaussianity is
given by

Ai = 1
4

√
3
π
fobsNL g10 (6.26)

1The shift in the isotropic power spectrum due to the monopole contribution induces also a shift in the
value of the non-linearity parameter fNL as defined from the bispectrum template of equation (4.4)

Blocal, obs
Φ (k1, k2, k3) = 2fobs

NL
[
P obs

Φ (k1)P obs
Φ (k2) + 2 perm.

]
= 2fNL

[
1 + fNL

g00

2
√
π

] [
P obs
φ (k1)P obs

φ (k2) + 2 perm.
] (6.24)
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and is normally distributed, with zero mean and standard deviation

σfobs
NL

= 1
4

√
3
π
fobsNL 〈g10g

∗
10〉1/2 (6.27)

The total modulation amplitude A for the observed (or simulated) CMB sky is then given by

A =
√
A2

1 +A2
2 +A2

3 (6.28)

The probability distribution function (pdf) of A is the χ distribution with three degrees of
freedom (also known as the Maxwell distribution):

pχ(A, σ) =
√

2
π

A3

σ3 e
− A2

2σ2 (6.29)

where σ =
(
σ2
fobs

NL
+ σ2

G

) 1
2
and the quantity σ2

G, defined as the variance of the Ai in Gaussian
CMB maps, is measured from numerical realisations of Gaussian Sachs-Wolfe CMB maps.
The variance σ2

fobs
NL

is instead given by equation (6.27), from which it is directly computed for
a given value of fNL. Figure 6.1 shows that the distribution of the asymmetry amplitudes
obtained from the CMB realisations are in good agreement with the χ distribution given by
equation (6.29).

Figure 6.1. Left panel: distribution of power asymmetry Ai (in a particular direction di) measured
in 10000 simulated CMB sky as described in the text. Right panel: distribution of the amplitude of
power asymmetry A from the simulated Gaussian and non-Gaussian maps. Figure adapted from [10].

But how do the predictions of this simple non-Gaussian model compare to the observed power
asymmetry in the CMB sky? Adhikari et al. point out that it’s not possible to directly
compare the amplitudes obtained for their Sachs-Wolfe realisations with the observed values
of the power asymmetry. The only way to make a connection is by using the p-value of the
asymmetry. For a given measurement of A and the normalised pdf for A, given by equation
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(6.29), the p-value is simply defined as [10]

∫ ∞
A

dA′pχ(A′, σ) (6.30)

i.e. as the probability that the observed value of the asymmetry amplitude is greater than
some threshold value A. What was found is that an asymmetry amplitude of A = 0.055
is approximately 3.3σ i.e. it has a p-value of 0.001 with respect to the distribution of A
obtained in the simulated Gaussian Sachs-Wolfe CMB maps (see Figure (6.2)), result which is
approximately equal to the more recent reports on the power asymmetry [43, 44].

Figure 6.2. The p-value for different values of the asymmetry amplitudes A in a local non-Gaussian
model as a function of the value of |fobs

NL |. Figure adapted from [10].

6.1.2 Generalising the Local Ansatz

The results obtained in the previous section for single-source non-Gaussian models can be
easily generalised to the case of two-field models. Let us therefore consider a two-field extension
of equation (6.2):

Φ(x) = φ(x) + σ(x) + fσNL

(
σ2(x)− 〈σ2(x)〉

)
(6.31)

where φ(x) and σ(x) are two random and uncorrelated Gaussian fields and one assumes that
only the field σ(x) has local-type non-Gaussianity. Going to Fourier space, the modes of the
non-Gaussian field Φ are related to those of the two Gaussian fields by

Φ(k) = φ(k) + σ(k) + fσNL

∫
d3q

(2π)3 [σ(k− q)σ(q)− 〈σ(k− q)σ(q)〉] (6.32)
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Following the same procedure as illustrated in the previous section, we eventually get that the
2-point correlation function of the non-Gaussian field in a finite sub-volume VS, neglecting the
correction arising from the 4-point σ-function, is given by

〈
Φ
(
x− r

2

)
Φ
(
x + r

2

)〉 ∣∣∣∣
VS

≈

≈
∫
|k|>kmin

d3k
(2π)3Pφ(k)eik·r +

∫
|k|>kmin

d3k
(2π)3Pσ(k)eik·r

+ 4fσNL
∫
|k|>kmin

d3k
(2π)3Pσ(k)eik·r

∫
|q|<kmin

d3q
(2π)3σ(q) cos

(q · r
2

)
eiq·x

]
(6.33)

Restricting the 2-point correlation function to separations such that q · r� 1, we get that the
inhomogeneous power spectrum PΦ,VS(k,x) is given by

PΦ,VS(k,x) = Pφ,σ(k)
[
1 + 4ξfσNL

∫
|q|<kmin

d3q
(2π)3σ(q)eiq·x

]
(6.34)

where Pφ,σ(k) = Pφ(k) + Pσ(k) is the mean power spectrum in the larger volume VL and the
quantity ξ is defined as the fraction of power in the field σ i.e.

ξ ≡ Pσ
Pφ,σ

(6.35)

In this model, the non-linearity parameter fσNL relates to the non-Gaussian amplitude defined
from the local bispectrum template of equation (4.4) as fσNL = fNL/ξ

2 [136]. Therefore,
equation (6.34) can be also rewritten as:

PΦ,VS(k,x) = Pφ,σ(k)
[
1 + 4fNL

ξ

∫
|q|<kmin

d3q
(2π)3σ(q)eiq·x

]
(6.36)

As seen in the previous section, the imprint of this inhomogeneous power spectrum on the
CMB can be described in terms of a multipole expansion:

PΦ,VS(k, n̂) = Pφ,σ(k)

1 + fNL

∞∑
l=0

∑̀
m=−`

gσ`mY`m(n̂)

 (6.37)

where the harmonic coefficients gσ`m are given by

gσ`m = 16π
ξ
i`
∫
|q|<kmin

d3q
(2π)3 j`(qx)σ(q)Y ∗`m(q̂) (6.38)
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As in the case of the single-source model, the quantity gσ`m has a fixed value in any single sub-
volume VS and when averaged over all the sub-volumes in the larger volume VL, 〈gσ`m〉|VL = 0.
The expected covariance in the large volume VL is non-zero and given by

〈gσ`mg
σ,∗
`′m′〉|VL = 256π2

ξ2 (−i)`′i`
∫
|q|<kmin

d3q
(2π)3 j`(qx)j`′(qx)Pσ(q)Y ∗`m(q̂)Y`′m′(q̂)

= 32
π

1
ξ2

∫
|q|<kmin

dqq2j2
` (qx)Pσ(q)δ``′δmm′

= 1
ξ
〈g`mg`′m′〉|VL,ξ=1

(6.39)

that is, for the same amplitude of non-Gaussianity observed in the Φ field, the expected
covariance of the non-Gaussian modulations in the two-field scenario increases by a factor of
1/ξ compared to the single-source (ξ = 1) one. As in the single-source scenario, the monopole
(` = 0) contribution to the inhomogeneous power spectrum in the parametrisation of equation
(6.37) is not observationally distinguishable and thus can be absorbed in the definition of the
isotropic (mean) power spectrum Pφ,σ, that is:

Pφ,σ(k) −→ P obs
φ,σ (k) = Pφ,σ(k)

[
1 + fNL

gσ00
2
√
π

]
(6.40)

and thus the observed modulated power spectrum can be written as:

P obs
Φ,VS(k, n̂) = P obs

φ,σ (k)

1 + fobs,σNL
∑

m=−1,0,1
gσ1mY1m(n̂)

 (6.41)

where we defined

fobs,σNL ≡ fNL

1 + fNL
gσ00
2
√
π

(6.42)

What we argued in the previous section on the power asymmetry arising from random
realisations of super-horizon perturbations applies also in the case of the generalised local
model given by equation (6.31). Thus, considering again the decomposition of the direction of
maximum asymmetry in any three orthonormal directions (d1,d2,d3) on the CMB sky and
measuring the dipole amplitude Aσi as seen in the selected orthonormal direction for each sky
such that the observed power spectrum can be rewritten as

P obs
Φ,VS(k, n̂) = P obs

φ,σ (k) [1 + 2Aσi cos θ] (6.43)

one gets that each contribution to the dipole modulation from the non-Gaussianity in the
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two-field scenario is given by

Aσi = 1
4

√
3
π
fobs,σNL gσ10 (6.44)

and the amplitude Aσi is normal distributed, with zero mean and standard deviation

σ
fobs,σ

NL
= 1

4

√
3
π
|fobs,σNL |〈gσ10g

σ,∗
10 〉

1/2

= 1√
ξ

[
σfobs

NL

]
ξ=1

(6.45)

This result tells us that if one considers scenarios such that ξ < 1, then it’s easier to generate
the observed hemispherical power asymmetry for smaller values of fobsNL .

6.1.3 Beyond the Local Ansatz

In the previous sections we have demonstrated that a dipolar asymmetry is to be expected in
models with local-type non-Gaussianity. The scenarios we considered, however, can reproduce
the observed asymmetry only if we restrict to the largest scales. Indeed, in order to get a
power asymmetry compatible with the data, both the amplitude of the asymmetry and the
amplitude of the non-Gaussianity must sharply decrease on smaller scales. In particular, the
fact that the asymmetry falls off on small scales implies that shorter scales are more weakly
coupled to super-horizon scales than larger scales are. In the generalised local scenario as
given by equation (6.31) one could generate a scale-dependent asymmetry simply considering
a scale-dependent power fraction i.e. ξ → ξ(k) since, as can be deduced from the power
spectrum in the parametrisation of equation (6.34), a decreasing value of ξ(k) for large k
would imply for the modulation of the power spectrum to decrease as well. The question
now is whether or not there exist a different non-Gaussian model that could reproduce the
observed asymmetry. The answer, as we shall see, turns out to be positive and the plan
for this section is to demonstrate first of all that scale-dependent modulations are a generic
feature of non-Gaussian models. In order to do that, in the following we will consider the
model proposed by Baytaş et al. in [137]. The idea in [137] is to build the non-Gaussian
field Φ(x) from a series of non-local functionals of a Gaussian random field φ(x) such that in
Fourier space the modes of the non-Gaussian field are related to those of Gaussian one by

Φ(k) = φ(k) + fNLΦ2(k) + gNLΦ3(k) + ... (6.46)

where Φ2(k) and Φ3(k) are given by
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Φ2(k) = 1
2!(2π)3

∫
d3q1

∫
d3q2 [φ(q1)φ(q2)− 〈φ(q1)φ(q2)〉]

×N2(q1,q2,k)δ(3)(k− q1 − q2)

Φ3(k) = 1
3!(2π)6

3∏
i=1

∫
d3qi

φ(q1)φ(q2)φ(q3)−
3∑
i=1
k 6=j 6=i

φ(qi)〈φ(qj)φ(qk)〉


×N3(q1,q2,q3,k)δ(3)(k− q1 − q2 − q3)

(6.47)

and the n-th order term in the expansion (6.46) is defined by

Φn(k) = (2π)3

n!

n∏
i=1

∫
d3qi
(2π)3 [φ(q1)...φ(qn)−F(φ(q1)...φ(qn))]

×Nn(q1, ...,qn,k)δ(3)(k− q1 − ...− qn)
(6.48)

The structure of the subtracted functions F(φ(q1)...φ(qn)) in the above expressions ensures
that the mean of Φn(k) is zero, that is 〈Φn(k)〉 = 0, and that from each term we only get
contributions to the connected part of the (tree-level) n-point correlation function. The kernels
Nn(q1, ...,qn,k) are symmetric in their n entries qn and can be chosen to reproduce any
(tree-level) (n+ 1)-point correlation function. To study how the level of isotropy breaking
is enhanced in such a model when we consider the statistics in a given sub-volume VS, we
can split the Fourier space modes into long (kl < kmin) and short-wavelength (ks & kmin) ones
[137, 138]. That is, we can write each of the integrals in equation (6.46) as:

∫
d3q

(2π)3 −→
∫
|q|<kmin

d3q
(2π)3 +

∫
|q|&kmin

d3q
(2π)3 (6.49)

For example, the integrals in the Φ2(k) term in equation (6.46) are split as follows:

Φ2(k) −→
∫
|q1|<kmin

d3q1
(2π)3

∫
|q2|<kmin

d3q2
(2π)3

+
∫
|q1|<kmin

d3q1
(2π)3

∫
|q2|&kmin

d3q2
(2π)3 + (q1 ↔ q2)

+
∫
|q1|&kmin

d3q1
(2π)3

∫
|q2|&kmin

d3q2
(2π)3

(6.50)

When considering the statistics in any finite sub-volume VS the long-long term in the above
expansion is just a constant. Therefore, when we write down the full expression for the modes
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of the non-Gaussian field well within the sub-volume, we can drop all of the terms of this kind,
meaning that the only terms of interest are the long-short and short-short ones. With this in
mind, performing the long-short mode split for each of the integrals in all of the Φn(k) terms
in equation (6.46), we can write the following expression for the modes of the non-Gaussian
field as observed in the sub-volume VS:

Φobs(k) = φ(k)
[
1 + 2fNLZ(1)

2 (k) + 3gNLZ(2)
3 (k) + ...

]
+
[
fNLZ

(0)
2 + 3gNLZ(1)

3 (k) + ...
]

+
[
gNLZ

(0)
3 (k) + ...

]
+ ...

(6.51)

where the quantity Z(i)
n (k) corresponds to a Φn term with i integrals over super-horizon modes,

that is:

Z(i)
n (k) = (2π)3

n!

n−i∏
`=1

(∫
|q`|&kmin

d3q`
(2π)3

)
n∏

`=n−i+1

(∫
|q`|<kmin

d3q`
(2π)3

)
Nn(q1, ...,qn,k)

× [φ(q1)...φ(qn)−F(φ(q1)...φ(qn))] δ(3)(k− q1 − ...− qn)

(6.52)

and the numerical pre-factors account for the fact that the integrals in Φn(k) are symmetric
in the qn, so that equal contributions come from choosing any of the momenta to be the long-
wavelength ones. From equation (6.51) it’s clear that the statistics in the sub-volume depend
on parameters that control the size of all higher-order, tree-level correlations. Therefore,
in general, the observed anisotropy is probing features of both the bispectrum and the
trispectrum, and possibly beyond [11].

Statistical Anisotropies from General Bispectra

The statistical shift to the small-volume power spectrum is given by the linear term in equation
(6.51), which regroups all the terms with a single integral over a sub-horizon mode. Following
the same procedure as in the case of the local and generalised local ansatz, we get that the
2-point correlation function of the non-Gaussian field in a finite sub-volume VS, taking into
account for the moment only the correction arising from the 3-point function and restricting
ourselves to separations such that q · r� 1, gives that

PΦ,VS(k,x) ≈ Pφ(k)
[
1 + 2fNL

∫
|q|<kmin

d3q
(2π)3φ(q)N2(q,−k,q− k)eiq·x

]
(6.53)

It is clear from the above result that scale-dependent power modulations are indeed a generic
feature of non-Gaussian models beyond the local ansatz, being the k-dependence encoded in
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the kernel N2. In particular, the quadratic kernels for the local, equilateral and orthogonal
bispectrum templates given, respectively, by equations (4.4), (4.6) and (4.7), are given by
[137]

N local
2 = 2

N equil
2 = 4q2 − 2kq

k2

Northo
2 = 2q2

k2

(6.54)

The imprint of the inhomogeneous power spectrum (6.53) on the CMB can be described, as
usual, in terms of a multipole expansion with harmonic coefficients g`m given in this case by

g`m(k) = 8πi`
∫
|q|<kmin

d3q
(2π)3 j`(qx)φ(q)N2(q,−k,q− k)Y ∗`m(q) (6.55)

As in the case of the local and generalised local models discussed in the previous sections,
the quantity g`m has a fixed value in any single sub-volume VS and when averaged over all
the sub-volumes in the larger volume VL, 〈g`m〉|VL = 0. The expected covariance in the large
volume VL is non-zero and given by

〈g`mg∗`′m′〉|VL = 8
π

∫
|q|<kmin

dqq2j2
` (qx)Pφ(q) [N2(q,−k,q− k)]2 δ``′δmm′ (6.56)

If we consider either the kernel for equilateral or orthogonal-type non-Gaussianity it is
straightforward to see that both the monopole (` = 0) and the dipole (` = 1) contributions to
the modulated power spectrum are observable. For example, Figure 6.3 shows the expected
dipolar modulation of the power spectrum for large amplitude local, equilateral and orthogonal-
type non-Gaussianity: the magnitudes of the modulations are smaller compared to the local
case and thus for the effect to be interesting a very large amplitude of f equilNL or forthoNL is
required.

Statistical Anisotropies from a Large Collapsed-limit Trispectrum

What would now happen if we were to take into account also the contribution from higher-order
correlation functions? In general, the presence of correlations beyond the bispectrum can
alter the shape of lower-order functions in any finite sub-volume [137, 138]. As pointed out by
Adhikari et al. in [11], particularly relevant for the observed power asymmetry is the case of
non-Gaussian models where the collapsed limit of the 4-point function, parametrised by τNL,
is larger than it would be from the simple local ansatz given by equation (6.2). An interesting
example of this type, that naturally gives a scale-dependent dipolar asymmetry, is that of the
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Figure 6.3. The expected dipolar modulation of the power spectrum for large amplitude local,
equilateral and orthogonal-type non-Gaussianity. Figure adapted from [10].

quasi-single field inflationary model [139] which features a massless inflaton ϕ field weakly
coupled to a massive extra scalar field σ. The collapsed-limit trispectrum of quasi-single field
models of inflation has the form [140]:

TΦ(k1, k2, k3, k4) = 4τNLPΦ(k1)PΦ(k3)PΦ(k12)
(

k12√
k1k3

)3−2ν
+ perms. (6.57)

with ν ≡ (9/4 − m2
σ/H

2)1/2, where mσ is the mass of the additional scalar field, which
determines the scaling of the collapsed-limit trispectrum, and H is the Hubble rate during
inflation. In the language of the model (6.51), such an example would require us to consider
an additional cubic kernel N3 to subtract-off the sub-leading contribution from the quadratic
kernel N2 and add back the same shape, but with an appropriately scaled coefficient [138].
By doing that, we would eventually get that for such a non-Gaussian model the shift to the
small-volume power spectrum is given by [141]

PΦ,VS ≈ Pφ(k)
[
1 + 4√τNL

∫
d3q

(2π)3φ(q)
( q√

k

) 3
2−ν

eiq·x
]

(6.58)

105



The imprint of this inhomogeneous power spectrum on the CMB fluctuations can be described,
as usual, in terms of a multipole expansion with harmonic coefficients and expected variance
in the larger volume in this case given by

g`m(k) = 16πi`√τNL
∫

d3q
(2π)3 j`(qx)φ(q)

( q√
k

) 3
2−ν

Y ∗`m(q̂)

〈g`mg∗`′m′〉 = 32
π
τNL

∫
dqq2j2

` (qx)Pφ(q)
( q√

k

)3−2ν
δ`′`δm′m

(6.59)

Figure 6.4 shows the expected dipolar (` = 1) and quadrupolar (` = 2) modulations of the
power spectrum for such a non-Gaussian model choosing the trispectrum amplitude to be
τNL = 105 and assuming mσ = 0.9H i.e. ν = 1.2.

Figure 6.4. Expected dipolar (` = 1) and quadrupolar (` = 2) modulations of the power spectrum for
a non-Gaussian model characterised by a large trispectrum in the collapsed limit. Also shown is the
expected dipolar modulation for the same model with a massless σ (i.e. ν = 1.5) and assuming for the
τNL-amplitude the empirical constraint from Planck 13 nominal-mission temperature data [74]. Figure
adapted from [141].

6.1.4 Statistical Anisotropies from a Scale-Dependent Local Bispectrum

Now that we have demonstrated that scale-dependent modulations are a generic feature of
non-Gaussian models we will attempt to construct a scenario more likely to be preferred by
the data starting from the results we obtained in Section 6.1.1. To match the scale dependence
of the observed power asymmetry, we first of all require the strength of the coupling between
sub-horizon and long-wavelength background modes to be scale-dependent.
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This scale-dependence can be parametrised by introducing two bispectral indices, such that
the inhomogeneous power spectrum observed in our sky can be written as:

PΦ,VS(k,x) = Pφ(k)
[
1 + 4fNL(k0)

(
k

k0

)nf ∫
|q|<kmin

d3q
(2π)3

(
q

k0

)α
φ(q)eiq·x

]
(6.60)

Here the parameter nf captures the scale-dependence in our observed sub-volume VS and the
parameter α captures the scale-dependence of the coupling strength to the long-wavelength
modes. In particular, nf < 0 turns off the power asymmetry on short scales, whilst the
parameter α < 0 results in an enhancement of the sensitivity of the model to infrared modes.
Notice that even though we used fNL to denote the coefficient in equation (6.60) a similar
expression can be derived from higher-order correlation functions. Since to constrain both
the parameters in equation (6.60) we would need more than one additional measurement2

and here we consider only the large-scale power suppression in the temperature data, we
restrict ourselves to the case with just one additional parameter, setting α = 0. Let us then
consider the case of a local-type bispectrum with amplitude depending on the scale of the
short-wavelength mode k as:

fNL(k) = f0
NL

(
k

k0

)nfNL
(6.61)

where, as we have already seen in the Chapter 4, f0
NL is the amplitude of fNL measured at

some pivot scale k0 and nfNL is a constant, which in the parametrisation of equation (6.60)
coincides with the parameter nf. Following the procedure illustrated in the previous sections,
it is straightforward to see that such a scale-dependent local-type non-Gaussian model not
only gives rise to a scale-dependent power asymmetry, but it also generates a scale-dependent
modulation of the power spectrum amplitude that can provide a possible explanation to an
anomalous power deficit in the low-` (` < 40) multipoles range observed in both WMAP
and Planck temperature data with a significance of 2 − 3σ (see e.g. [145, 42]). Figure 6.5
shows the effects of such a simple scale-dependent non-Gaussian model in the bispectrum (top
panel), the power asymmetry amplitude (middle panel) and the modulation of the isotropic
power spectrum amplitude (bottom panel).

2For example, one could get additional data from large-scale polarisation measurements [142], from galaxy
surveys [143] or from 21-cm fluctuations [144].
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Figure 6.5. Plot of fNL, σfNL(Ai) and σmonofNL
(A0) for a number of super-horizon e-folds of Nextra = 50

as a function of the multipole number ` for a simple non-Gaussian model given by fNL(`) = 50(`/60)−0.64.
A different choice for f0

NL only rescales the lines above. Figure adapted from [10].

We conclude by observing that the scale-dependent modulation generated by the scale-
dependent local-type non-Gaussian model as given by equation (6.61) can also be interpreted
in terms of an asymmetry in the spectral index of the observed power spectrum PΦ,VS , that is:

d lnPΦ,VS

d ln k

∣∣∣∣∣
k0

= (ns − 1)φ + nfNL

∆P (k0,x)
1 + ∆P (k0,x) (6.62)

where (ns − 1)φ is the (scalar) spectral index of the Gaussian field φ and

∆P (k0,x) = 4f0
NL

∫
|q|<kmin

d3q
(2π)3φ(q)eiq·x (6.63)

is the super cosmic variance contribution.

6.2 Non-Gaussian Covariance of Statistical Estimators

In [11], Adhikari et al. extend their analysis on the modulation effect of scale-dependent
primordial non-Gaussianity in the CMB fluctuations to non-Gaussian models with scale-
dependent local-type trispectra and a large collapsed-limit signal, and they do so by computing
covariances of statistical estimators of 2-point functions. This approach, whilst in a way
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similar to the one introduced in [10] and discussed in the previous sections3, is more general,
since it allows to simultaneously consider the effect on the modulations expected in the CMB
polarisation and forecast the improvement in trispectrum constraints when adding polarisation
data.

6.2.1 Dipolar Asymmetry from a Scale-dependent Trispectrum

The role of polarisation data in helping pin down whether or not the observed dipolar
asymmetry is of primordial origin has been previously discussed in literature: in [142], for
example, Contreras et al. attempt to construct position- or k-space models that naturally
give a scale-dependent dipolar asymmetry, making use of a statistical estimator to extract the
modulation parameters for a given model from data or simulations. Somewhat similarly, in
[11] Adhikari et al. write down the general expressions for the covariances of dipole modulation
estimators in presence of a trispectrum and use them to generate realisations of the estimators
and study the expected constraints by using Planck 2015 temperature and E-mode polarisation
data. As we have already seen in Section 5.2.1, the statistics of the observed power asymmetry
in a finite volume can be modeled as a spatial modulation of the observed CMB temperature
fluctuations. That is, one can write the temperature fluctuation field as follows:

Θ(n̂) = [1 +A (n̂ · p̂)] Θ0(n̂) (6.64)

where n̂ is the direction of observation, p̂ is the direction of the asymmetry and A is the
amplitude. The dipole dependence on the direction can be expressed in terms of ` = 1
spherical harmonics as follows [146]:

A (n̂ · p̂) = 2
√
π

3 (A+Y1−1(n̂)−A−Y1+1(n̂) +AzY10(n̂)) (6.65)

where A± ≡ (Ax ± iAy)/
√

2. Exploiting the fact that in harmonic space a dipole modulation
is equivalent to the coupling of ` to ` ± 1 modes, one can then define the following dipole
modulation estimators [11]:

∆X̂wx
0 (`) = 1

(2`+ 1)
√
Cww` Cxx`+1

∑̀
m=−`

aw,∗`m a
x
`+1,m

∆X̂wx
1 (`) = 1

(2`+ 1)
√
Cww` Cxx`+1

∑̀
m=−`

aw,∗`m a
x
`+1,m+1

(6.66)

3In [11], Adhikari et al. use a framework where the observed power asymmetry arises spontaneously as
the result of looking at a sub-volume of a larger space whose fluctuations are described by an isotropic but
non-Gaussian statistics, exactly as in [10].
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where w, x can either be T,E, describing the temperature and E-mode fluctuations respectively,
and the C`s are the CMB angular power spectra of the best-fit Cosmology. For models in
which a CMB power asymmetry is generated by explicitly changing the power spectrum, the
mean of the estimators ∆X̂M , with M = 0, 1, is non-zero i.e. 〈∆X̂M 〉 6= 0. On the other hand,
in models characterised by a significant level of non-Gaussianity in the primordial fluctuations,
it is possible for the assumption of global statistical isotropy to hold i.e. 〈∆X̂M 〉 = 0, with
the expected cosmic variance of the CMB dipolar modulation enhanced by correlations
between modes having different wavelengths [10]. Note that the ∆X̂0(`) are real, whilst
the ∆X̂1(`) are complex, with ∆X̂−1(`) = −∆X̂∗1 (`), and thus among the two estimators
there are three degrees of freedom determining the amplitude and the direction of the dipole
modulation. Furthermore, to map the definitions (6.66) to the Cartesian components of the
dipole modulation parameter A, as defined in equation (6.65), one has to take into account
additional `-dependent factors. For large `, these factors approach constant values, such that
[11]:

Ax ≈ 2Re∆X̂1, Ay ≈ 2Im∆X̂1, Az ≈
5
4∆X̂0 (6.67)

Assuming the primordial fluctuations to be Gaussian distributed, the covariance of the dipole
modulation estimators is given by

〈∆X̂wx
M (`)∆X̂yz

M ′(`
′)〉 = δMM ′δ``′

2`+ 1
Cyz` C

xz
`+1√

Cww` Cxx`+1C
yy
`′ C

zz
`′+1

(6.68)

If the fluctuations are non-Gaussian, the covariance of the dipole modulation estimators
depends instead on a particular configuration of the CMB trispectrum, that is

〈∆X̂wx
M (`)∆X̂yz

M ′(`
′)〉|NG = δMM ′

∑`
m,m′=−`〈aw`ma

x,∗
`+1,m+Ma

y,∗
`′m′a

z
`′+1,m′+M ′〉c

(2`+ 1)(2`′ + 1)
√
Cww` Cxx`+1C

yy
`′ C

zz
`′+1

(6.69)

where the subscript c denotes the connected part of the CMB trispectrum. To compute the
CMB trispectrum, we now follow one of the methods illustrated by W. Hu in [67] and already
introduced in Chapter 4: that is, we construct the CMB trispectrum from a “reduced function”
which automatically enforces on the angular 4-point harmonic spectrum the desired rotational,
permutation and parity symmetries, and whose explicit expression depends on the specific
model of the primordial trispectrum. In [11], Adhikari et al. consider a scale-dependent local
τNL-trispectrum of the form [65]:

TΦ(k1, k2, k3, k4) = τ0
NL

(
k2k4
k0

)n
[PΦ(k1)PΦ(k3)PΦ(k13) + 11 perms.] (6.70)

where kij = |ki + kj |, n describes the scale-dependence of the trispectrum amplitude and
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τ0
NL is the amplitude at some pivot scale k0, assumed to be k0 = 0.05 Mpc−1. Similar to the
calculations carried out in Section 4.4 for the simple case of the local non-Gaussian initial
conditions as given by equation (4.11), we get that the reduced trispectrum in this case is
given by

T `1`2`3`4
(L) = τ0

NL

∫
dr1dr2r

2
1r

2
2FL(r1, r2)αw`1(r1, n)βx`2(r1)αy`3(r2, n)βz`4(r2)h`1`2Lh`3`4L (6.71)

where

FL(r1, r2) = 4π
∫

dK

K
PΦ(K)jL(Kr1)jL(Kr2)

αw` (r, n) = 2
π

∫
dkk2

(
k

k0

)n
gw` (k)j`(kr)

βx` (r) = 4π
∫

dk

k
PΦ(k)gx` (k)j`(kr)

(6.72)

where gx` (k) is the CMB radiation transfer function and j`(kr) are the spherical Bessel
functions. Note that the angular power spectrum Cwx` can also be written as an integral over
the comoving distance r, using the quantities α`(r, n) and β`(r) as defined above:

Cwx` =
∫
drr2αw` (r, 0)βx` (r) (6.73)

Numerically evaluating the reduced trispectrum of equation (6.71) using CAMB [70] to obtain
the explicit expression for the CMB transfer functions g`(k), Adhikari et al. computed the
non-Gaussian covariances for the dipole estimators (6.69). Then, they proceeded to use the
full covariance matrix for the dipole modulation estimators to generate realisations of the
modulation estimators ∆X̂M for various values of τNL and n. The full covariance matrix
(including the fsky scaling for partial sky coverage and the noise power spectra) is given by

C = 〈∆X̂wx
M (`)∆X̂yz

M ′(`
′)〉

= 1
(2`+ 1)fsky

δMM ′√
Cww` Cxx`+1C

yy
`′ C

zz
`′+1

×

δ``′C̃wy` C̃xz`+1 + 1
2`′ + 1

∑̀
m,m′=−`

〈aw`ma
x,∗
`+1,m+Ma

y,∗
`′m′a

z
`′+1,m′+M ′〉c


(6.74)

where M,M ′ = 0, 1, w, x, y, z can be T,E, and C̃wy` = Cwy`,CMB +Cwy`,noise, with the noise power
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spectrum for Planck is approximated using the specifications for two channels as in [147],
assuming fsky = 0.65. Making use of the realisations of the modulation estimators ∆X̂M they
obtained from equation (6.74), Adhikari et al. measured the best-fit dipole amplitude and
scale-dependence, (A,n), by fitting to a phenomenological `-dependent model given by

A(`) = A(`0)
(
`

`0

)n
(6.75)

where they choose `0 = 300. Based on the distribution of (A,n) they obtained, they choose
their fiducial scale-dependent trispectrum parameters values to be τNL = 2×104 and n = −0.68.

Figure 6.6. Expected `-dependent amplitude of dipole modulation for a scale-dependent trispectrum
as given by equation (6.70) for the chosen fiducial parameters values: τNL = 2× 104 and n = −0.68.
For reference, it is also plotted the best-fit `-dependent dipole modulation amplitude obtained by Aiola
et al. in [146], by fitting the Planck 2013 temperature data to the phenomenological model (6.75).
Figure adapted from [11].

Figure 6.6 shows the expectation value of the non-Gaussian contribution to the dipole
modulation amplitude, given by

〈A(`)〉|NG ≡
√
〈A2

x(`)〉|NG + 〈A2
y(`)〉|NG + 〈A2

z(`)〉|NG (6.76)

using the fiducial (τNL, n) values. Note that here A(`) corresponds to the dipole modulation
amplitude as given by equation (6.65). From Figure 6.6 we can see that a scale-dependent
trispectrum can generate a scale-depedent dipole modulation of the CMB temperature
fluctuations similar to the best- fit values found by [146]. Furthermore, we can see that in
general the polarisation asymmetry amplitude is larger than that of the temperature: the
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reason is that temperature multipoles get contribution from a wider range of scales, and each
modulation multipole roughly traces the average level of modulation over this range of scales.
However, if one were to postulate a scale-dependence of the modulation amplitude which
increases at smaller scales (i.e. n > 0), the temperature modulation amplitudes on average
would be larger than the polarisation modulation amplitudes [11].

6.2.2 Isotropic Power SpectrumModulation from a Scale-dependent Trispec-
trum

In [11], Adhikari et al. observe that a scale-dependent trispectrum with a large collapsed-limit
has also other interesting modulating effects on the temperature and polarisation fluctuations
than the one discussed in the previous section, since it also modulates the isotropic angular
power spectrum of the CMB. In particular, the presence of a non-zero connected trispectrum
induces a covariance between measured angular power spectra at widely separated multipoles:

C(Ĉ`, Ĉ`′) = 2C2
`

2`+ 1δ``
′ + 1

(2`+ 1)(2`′ + 1)
∑̀

m,m′=−`
〈a`ma`−ma`′m′a`′−m′〉c (6.77)

where

Ĉ` = 1
2`+ 1

∑̀
m=−`

a∗`ma`m (6.78)

Let us consider again the scale-depedent τNL-trispectrum as given by equation (6.70): the
isotropic power modulation, given by the second term in equation (6.77), that arises from
such a trispectrum is infrared-divergent, because the integral

FL=0(r) ∝
∫

dK

K
PΦ(K)j2

0(Kr) (6.79)

receives contributions from arbitrary large wavelength modes. Therefore, in order to study
any possible modulations of the isotropic power spectrum arising from the scale-dependent
trispectrum (6.70) we need to assume an infrared cut-off Kmin. Furthermore, we also need to
assume a form for the primordial power spectrum PΦ(K) at large scales. Assuming the near
scale-invariant form (i.e. ns ≈ 1) of the primordial power spectrum to be valid at all scales
K & Kmin, we get that for Kminr � 1 the integral (6.79) can by approximated as follows [11]:

FL=0(r) ≈ 4πAΦ

∫ ∞
Kmin

dK

K
j2
0(Kr) ≈ 4πAΦ ln

( 1
Kminr

)
(6.80)
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With this approximation, we obtain that for `, `′ � 2 the non-Gaussian covariance term in
equation (6.77) is given by [11]

CNG(Ĉ`, Ĉ`′) ≈ τNL
AΦN
π

∫
dr1r

2
1α`(r1, n)β`(r1)

∫
dr2r

2
2α`′(r2, n)β`′(r2) (6.81)

where

N = ln
( 1
KminrCMB

)
(6.82)

with rCMB defined as the comoving distance to the last scattering surface. Figure 6.7
shows the fractional non-Gaussian contribution to the power spectrum covariance (6.77) for
(τNL, n) = (2× 104, n = −0.68) and a chosen value of N .

Figure 6.7. Left panel: Diagonal component of the non-Gaussian term in the power spectrum
covariance (6.77) as a fraction of the Gaussian term for (τNL, n) = (2× 104, n = −0.68) and N = 40.
Right panel: Example of how the inferred spectral index ns can be significantly biased high if the
observed power deficit at large scales is due to a scale-depedent trispectrum and the non-Gaussian
covariance term (6.81) is ignored in the CMB analysis. For details on the analysis we refer the reader
to [11]. Figure adapted from [11].

In standard cosmological analyses, where one assumes the primordial fluctuations to be
Gaussian distributed, the second term in equation (6.77) is ignored. However, in [11] Adhikari
et al. point out that in the case that the primordial fluctuations do have a scale-dependent
trispectrum but one follows the standard cosmological analysis, ignoring the non-Gaussian
covariance term in equation (6.77) results in the inference of cosmological parameters that
are significantly biased. This is exemplified in the right panel of Figure 6.7: an increasing
correlation between the angular power spectra C` can explain the anomalous power deficit in
the low-` multipoles range observed in the CMB temperature data. If one assumes the low-`
power deficit to be due to a scale-dependent trispectrum with (τNL, n) = (2× 104, n = −0.68),
the decreasing strength of the correlations at larger multipoles means that the inferred value of
the spectral index ns is shifted higher than its true value. In particular, Figure 6.7 shows that
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realisations of the C` for the non-Gaussian model (6.70) with (τNL, n) = (2× 104, n = −0.68)
and the additional parameter N = 40 can have large-scale power lower than the true value
and that, in that case, a CMB analysis ignoring the non-Gaussian covariance term (6.81)
produces a biased high estimate of the spectral index ns.

6.3 Searching for Isotropic, Non-Gaussian Phenomenological
Toy Models

In [12] Hansen et al. propose an alternative approach to the one illustrated by Adhikari et al.
in [10, 11]. Whilst the approach of Adhikari et al. relies on the assumption that the observed
power asymmetry can be modeled in terms of a dipolar modulation and arises spontaneously
as the result of looking at a sub-volume of a larger volume, filled with fluctuations described
by an isotropic but non-Gaussian statistics, the approach of Hansen et al. does not relay in
the presence of any long-wavelength field. The authors assume that six of the most extensively
studied CMB anomalous features, namely:

1. the hemispherical power asymmetry which, as we have seen, has been modeled in terms
of a dipole modulation of an isotropic sky and it is detected by Planck at scales ` < 60
with a significance of 2− 3σ;

2. the fact that despite the dipolar modulation being detected only on large scales, it has
been shown that the spatial distribution of power on the sky is correlated over a wider
range of multipoles i.e. some form of directional asymmetry continues on small scales,
with the preferred directions of the dipolar power distribution appearing to be aligned
between multipoles;

3. the cold spot, a large, cold region in the CMB map with an angular radius of about
5◦ − 10◦, centred at Galactic coordinates (l, b) = (210◦,−57◦) and surrounded by an hot
ring, which has been detected with a significance of 2− 4σ;

4. the anomalous power deficit in the low-` (` < 40) multipoles range observed in both
WMAP and Planck temperature data with a significance of 2− 3σ;

5. the significant alignment between the orientation of the quadrupole (` = 2) and the
octopole (` = 3) multipole moments;

6. the point-parity asymmetry, that is the fact that on large angular scales, the C` values
for the even multipoles have been found to be consistently lower than those for odd
multipoles.

have a common cosmological origin and search for a class of isotropic, non-Gaussian phe-
nomenological toy models, where the non-Gaussianity is responsible for the apparent deviation
from statistical isotropy observed in the data, that are able to reproduce them. It should be
stressed that Hansen et al. do not attempt to derive a physical model that can be fitted to
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the data. Their scope is to guide the theoretical research effort by proposing a general form
for a non-Gaussian term that might be the origin of the observed CMB anomalies.

6.3.1 A gNL-like Toy Model

In general, as we have seen in Chapter 4, inflationary models may have second-order (i.e. fNL-
like) and third-order (i.e. gNL-like) terms in the primordial gravitational potential. However,
Hansen et al. observe that despite the fact that scale-dependent fNL and τNL models may
reproduce some of the anomalous features listed above (for example, as it has been shown
by Adhikari et al. in [10, 11], they can reproduce the anomalies 1. and 4.), they would not
generally reproduce also the other anomalies, since in order to do that an enhancement of
the original Gaussian fluctuations would be required. This is not easily achievable in either
models: for fNL-like models, whilst positive fluctuations would be enhanced, the negative
ones would be erased, and thus, for example, it would be difficult to reproduce the anomalies
5. and 6. Furthermore, models with a second-order fNL term would give rise to an excess
skewness and not the excess kurtosis observed in the CMB anomalous cold spot; in the case
of τNL models, the enhancement required to reproduce anomalies other than the large-scale
power asymmetry is instead difficult due to the fact in such models the non-Gaussian term is
strongly influenced by a second, uncorrelated field. Therefore, in [12], Hansen et al. consider
the case of scale-dependent gNL-like models, proposing the following phenomenological toy
model to reproduce the anomalies:

T (θ, φ) = TG (θ, φ) + β
[
TG (θ, φ)T 2

F (θ, φ)
]filtered

= TG (θ, φ) + β
∑
`m

g`Y`m(θ, φ)
∫
dΩ′Y ∗`m(θ′, φ′)TG(θ′, φ′)T 2

F (θ′, φ′)
(6.83)

where TG (θ, φ) is an isotropic Gaussian CMB realisation, β is the modulation amplitude, w`
and g` are two filter functions, corresponding to specific scale-dependences of the primordial
gNL-trispectrum, and

TF (θ′, φ′) =
∑
`m

w`Y`m(θ, φ)
∫
dΩ′Y ∗`m(θ′, φ′)TG(θ′, φ′) (6.84)

6.3.2 Reproducing the CMB Anomalous Features

The extent to which the anomalies are present in simulations of the toy model (6.83) is
determined by the filters w` and g` and the amplitude β, which can be tuned to test whether
or not the CMB anomalous features can be reproduced. Hansen et al. observe that not
all simulations will reproduce all of the anomalies, with some simulations not showing any
sign of anomalous features at all. Nonetheless, in their analysis, Hansen et al. show that a
gNL-like non-Gaussian term of the form (6.83) can indeed reproduce anomalies from 1. to 6.
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For example, Figure 6.8 shows the mean power spectrum of their simulated toy model CMB
maps (in green) compared to the Planck best-fit theoretical ΛCDM model [7] (in red): one
can clearly see how the phenomenological toy model (6.83) reproduces the anomaly 4. (i.e.
the low-` power deficit) and the anomaly 6. (i.e. the point-parity asymmetry) for the lowest
multipoles, corresponding to the largest angular scales.

Figure 6.8. Angular power spectrum estimated from Planck data (in black) [148]; mean power
spectrum of 1000 non-Gaussian simulations (in green); angular power spectrum of Planck best-fit
ΛCDM model [7] (in red). The blue, shaded area represents the 2σ error bars from [148]. Figure
adapted from [12].

Figure 6.9 shows the filters functions w` and g` (solid black line) that are used for the majority
of the results in [12]. Also shown are additional examples of filters that can reproduce most (or
all) of the anomalies. In particular, the black line filters are constructed from a combination
of step functions to obtain the following general properties:

• the oscillations in the lowest multipoles of w` reproduce the point-parity asymmetry for
the largest scales; the filter w` then incrementally rises up to a plateau around ` = 21,
allowing the model to reproduce the large trough observed in the power spectrum at
this scale. Since for ` > 27 the observed power spectrum is no longer anomalously low
with respect to the one of the best-fit model, the filter w` can be zero for all higher
multipoles;

• for the lowest multipoles (that is, up to ` = 27) the filter g` is negative in order to
suppress the power at the largest scales; furthermore, a strong negative value at ` = 2 is
not only required to ensure a small quadrupole but also to generate correlations with
the octopole, thus reproducing the anomaly 5. At ` = 27, the filter suddenly becomes
positive, and in order to reproduce the anomaly 2., it needs to be non-zero up to ` ∼ 1500.
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Figure 6.9. The filters w` (left panel) and g` (right panel), shown as a solid black line, used in the
majority of the results in [12]. Also shown are additional examples of filters that can reproduce most
or all of the anomalies. Figure adapted from [12].

The actual process of reproducing the anomalies in the simulated toy model maps can then
be summarised as follows:

1. one must apply the filter w` to the original (simulated) Gaussian map;

2. then, the filtered CMB map just obtained must be squared;

3. the original Gaussian map is then modulated by means of the squared filtered CMB
map, thus generating the non-Gaussian term;

4. the g` filter is then applied to the non-Gaussian term, so that it is ensured that the
anomaly 2. does not become too pronounced at small scales;

5. finally, the non-Gaussian term is added to the original Gaussian CMB map to obtain
the non-Gaussian CMB map.

Hansen et al. observe that the spectrum used for generating the original Gaussian map is
unimportant, since the anomalous CMB features can be reproduced using either a Sachs-
Wolfe or pure white noise spectrum. Figure 6.10 shows the non-Gaussian term (middle panel)
obtained for a simulated Gaussian map (top panel) with more large-scale power in the northern
hemisphere, using a dimensionless4 amplitude βdimensionless = 4.4 × 106 and the black filter
functions of Figure 6.9. Also shown is the non-Gaussian map (bottom panel) resulting from
the addition of the non-Gaussian term to the original Gaussian map: notice, in particular, the
presence of a cold spot surrounded by an hot ring (highlighted in the figure by a black circle).

4With dimensionless amplitude, Hansen et al. refer to the amplitude β determined when the maps are
made dimensionless after dividing equation (6.83) by 2.73 K.
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Figure 6.10. Top panel: example of simulated Gaussian map, with the circle denoting the hemisphere
with the most large-scale power; middle panel: the non-Gaussian term obtained for said Gaussian map
following the procedure described in the text; bottom panel: the non-Gaussian map resulting from the
addition of the non-Gaussian term to the original Gaussian map. Figure adapted from [12].
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Chapter 7
On the Implications of CMB Anomalies for Early
Universe Physics

When we introduced the CMB large-scale anomalies, back in Chapter 5, we provided a brief
summary of some of the cosmological mechanisms related to Early Universe physics that
have been proposed in literature to explain them, discussing also the difficulties that such
proposals have encountered. In this last Chapter we are going to spend a few words more
on the topic, focusing in particular on the work of Byrnes et al. who, in the Letter [13] that
accompanies the paper [14], report results for a special set of inflationary scenarios that can
generate the CMB power asymmetry. We will then conclude our discussion by reporting
results from the Planck collaboration who, in [15], test specific physical models for the CMB
anomalous features using the Planck 2018 temperature and polarisation data.

7.1 Power Asymmetry from a Scale-dependent Inflationary
Bispectrum

The starting point of the analysis of Byrnes et al. in [13, 14] is the work of Aiola et al. who,
using the Planck 2013 temperature data, demonstrated that the observed power asymmetry
can be approximately fit by a position-dependent power spectrum at the last scattering surface
of the form [146]:

Pobs(k) ≈ k3P (k)
2π2 (1 + 2A(k)n̂ · p̂ + ...) (7.1)

where p̂ is the direction of maximum asymmetry, n̂ is an arbitrary direction in the sky and
A(k) is the asymmetry amplitude which Aiola et al. found to roughly scale as k−0.5. One
of the interesting inflationary scenarios proposed to account for this anomaly is the one
proposed by Erickcek et al. in [131]. In [131], Erickcek et al. observe that single-field models
of slow-roll inflation can not generate the observed asymmetry without violating constraints
to the homogeneity of the Universe and that, on the other hand, multi-field models of inflation
can produce the anomaly without violating the homogeneity constraints. In particular, they
suggest that the modulation (7.1) could be generated during an inflationary epoch if the
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small-scale 2-point ζ function at wavenumber k is modulated by perturbations of much longer
wavelength via local-type non-Gaussianity. In the last decade, many efforts have been made
to quantify this effect, with Kanno et al. [149], Lyth [150] and Kobayashi et al. [151] showing
that, if one ignores the expected scale-dependence of the bispectrum suggested by the strong
scaling of A(k), an inflationary origin of the observed asymmetry would require:

|a20|
6.9× 10−6

|fNL|
10 ' 6

(
A

0.07

)2
β (7.2)

where a20 is the quadrupole of the CMB temperature anisotropy, measured at |a20| ≈ 6.9×10−6,
and the parameter β is a model-dependent number, which would typically be rather larger
than one. This result suggests that the idea of an inflationary origin, at least if produced
by the mechanism suggested by Erickcek et al., should be abandoned since it would require
|fNL| & 60, which is clearly in tension with observations. To evade this, equation (7.2) could be
weakened by tuning our position on the long-wavelength background to reduce the parameter
β. However, Byrnes et al. observe that this approach would introduce a fine-tuning even less
likely than the anomaly it seeks to explain. An alternative way out of this lies instead in the
requirement that A(k) varies with scales. It could happen that the bispectrum amplitude is
large on long-wavelengths but runs small at shorter ones, so that equation (7.2) might then
apply only for a small number of wavelength configurations. Therefore, what Byrnes et al.
aim to in [13], is to provide an analysis of the CMB temperature bispectrum generated by a
scale-dependent inflationary bispectrum compatible with the modulation A(k). In particular,
they do so by constructing an explicit model that can be contrived to match all current
observations and also serves as a useful example to explain why it is so difficult to built a
viable inflationary model.

7.1.1 Biasing the 2-point ζ Function by a Long-wavelength Mode

To generate the observed asymmetry Byrnes et al. focus on the simplest possibility that the
non-Gaussian fluctuations are present just in one species, dubbed σ. The first question Byrnes
et al. ask themselves in [13] is thus how, within a given volume VS enclosed inside a larger
volume VL � VS filled with statistically isotropic and homogenous fluctuations, the 2-point ζ
function would respond to the presence of a large-amplitude long-wavelength background of
σ modes, δσ(x), with wavenumber kL � kS ∝ 1/λS. To address this they make use of the
operator product expansion (OPE), a general method that can be used to study the biasing
of any n-point function. Neglecting all gradient-suppressed terms in the expansion, Byrnes et
al. found that if the power spectrum P (k) within the larger volume VL satisfies the following
relation:

〈ζ(k1)ζ(k2)〉|L = (2π)3δ(3)(k1 + k2)P (k) (7.3)
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then, within the smaller volume VS, it is possible to write [14]:

P (k,x)|S = P (k) (1 + δσ(x)ρσ(k) + ...) (7.4)

where they introduce the linear response function ρσ, defined as follows [13]:

ρσ(k) ≡ 1
P (k)

d lnP (k)
dσ

(7.5)

In particular, they found that the OPE gives that [14]:

ρσ(k) ≈ 1
P (k)

[
Σ−1(kL)

]
σσ
Bσ(k, k, kL) if k � kL (7.6)

where Σσσ is the power spectrum of the σ fluctuations computed within the larger volume,
that is:

〈σ(k)σ(k′)〉|L = (2π)3δ(3)(k + k)Σσσ(k) (7.7)

and Bσ is the bispectrum of the mixed correlation function defined by:

〈σ(k3)ζ(k1)ζ(k2)〉|L = (2π)3δ(3)(k1 + k2 + k3)Bσ(k1, k2, k3) (7.8)

The spatial variation of the long-wavelength background fluctuations can then be modeled as
follows [14]:

δσ(x) ≈ EP1/2
σ (kL) cos (kL · x + ϑ) (7.9)

where Pσ is the dimensionless σ power spectrum, the factor E labels the “exceptionality” of
the amplitude, with E = 1 being typical and E � 1 being substantially larger than typical,
and the phase ϑ varies between realisations. As we have seen in Chapter 3, at the largest
angular scales the anisotropies in the CMB angular power spectrum are due to the Sachs-Wolfe
effect and directly reflects the conditions at the last scattering surface (LSS). Therefore, in
order to reproduce these anisotropies, the smaller volume VS must be located on the LSS. In
other words, VS must be located at a comoving distance xLSS, for which x = xLSSn̂. If we
now parametrise the wavenumber kL as:

kL = 2π
xLSS

αp̂ (7.10)

where p̂ is a unit vector and the parameter α is taken to be less than one, so that the walenght
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associated to kL is somewhat longer than xLSS, then equation (7.4) gives [13]:

P (k,x)|S = P (k)
(

1− C(k)− 2A(k) p̂ · x
xLSS

+ ...

)
(7.11)

where the quantities A(k) and C(k), are defined by [13]:

A(k) = παEP1/2
σ (kL)ρσ(k) sinϑ

C(k) = −EP1/2
σ (kL)ρσ(k) cosϑ = −A(k)

πα
cotϑ

(7.12)

Lyth [152, 150] and Kobayashi et al. [151], who studied the biasing of the 2-point ζ function
in the special case of single-source models of slow-roll inflation, obtained results equivalent to
equation (7.12) with Pσ(k) replaced by the amplitude of the ζ fluctuations and [13]

ρσ(k) = 12
5 fNL(k, k, kL) if k � kL (7.13)

Here fNL(k1, k3, k3) is the reduced bispectrum of the 3-point ζ function, given by:

6
5fNL(k1, k2, k3) = B(k1, k2, k3)

P (k1)P (k2) + 2 cycl. perms. (7.14)

which in the squeezed limit (k ∼ k1 ∼ k2 � kL = k3) reduces to:

6
5fNL(k, k, kL) ≈ B(k, k, kL)

2P (kL)P (k) (7.15)

Furthermore, in [152, 150] Lyth suggested that the quantity C(k) could be used to explain
another anomalous CMB feature, namely the lack of power on the largest angular scales. This
would be particularly desirable since a viable explanation for the CMB power asymmetry
should also explain at least another anomaly [153]. However, if that were the case, one
would have to ensure that C(k) does not depress power too strongly at small ` by imposing a
stringent constraint on α which would clearly be an obstacle for construction of viable models.

7.1.2 Building a Successful Model

Once resolved the question of how the 2-point ζ function responds to the presence of a long-
wavelength background of σ modes, Byrnes et al. proceed to consider different inflationary
scenarios, aiming to construct an explicit model that can produce a ρσ function with suitable
amplitude and scale-dependence. The first case they consider is that of single-source scenarios,
for which the bispectrum in squeezed and equilateral configurations is equal [154, 155] and
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thus the response function reduces to:

ρσ = 12
5 fNL(k, k, k) (7.16)

Since in the single-source scenario the asymmetry is independent of the scaling of the σ power
spectrum, one has that:

A(k) ∼ fNL(k, k, k) (7.17)

In [65] Byrnes et al. showed that, if the scaling is not too large, the scale-dependence of the
reduced bispectrum can be computed as follows:

d lnA(k)
d ln k ∼ d ln |fNL(k, k, k)|

d ln k = 5
6fNL

√
r

8
M2

PV
′′′

3H2 (7.18)

where r is the tensor-to-scalar ratio, M2
P = (8πG)−1/2 is the reduced Planck mass and H is

the Hubble expansion rate. Therefore, to achieve in such a scenario the required strong scaling
of the asymmetry amplitude A(k), Byrnes et al. postulate that M2

PV
′′′/3H2 � 1. However,

within a few e-folds, this requirement would typically result in an unacceptably large slow-roll
ησ parameter, as usual defined by:

ησ = Vσσ
3H2 (7.19)

that would spoil the observed near scale-invariance of the power spectrum. Furthermore,
as pointed out by Byrnes & Tarrant [156], who studied the scale-dependence of fNL in the
specific case of a self–interacting curvaton scenario, this would also give rise to many other
difficulties. These difficulties include a logarithmic running of the reduced bispectrum with k,
which is not an acceptable fit to the scale-dependent modulation of A(k) found by Aiola et al.
in [146], and the fact that since equation (7.18) is only large when fNL is suppressed below its
natural value, both the amplitude of the gNL-trispectrum and the quadrupolar modulation of
the small-scale ζ power spectrum would be too large. Therefore, in light of these difficulties,
Byrnes et al. choose not to pursue single-source scenarios further and instead proceed to
consider the case of multiple-source scenarios, for which a large slow-roll ησ parameter does
not necessarily spoils the scale-invariance of the power spectrum. In particular, they consider
the case of multiple-source scenarios in which a single source dominates the 3-point ζ function.
In this scenario the response function reads off [14]:

ρσ(k) ∼ fNL(k, k, kL) ∼ f1/2
NL (k, k, k) ∼ Pσ(k)

P(k) (7.20)
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Therefore, the scale-dependence of the asymmetry is given by [13]:

d lnA(k)
d ln k ∼ 1

2
d ln |fNL(k, k, k)|

d ln k ∼ d ln
d ln k

(Pσ(k)
P(k)

)
≈ 2ησ − (ns − 1) (7.21)

where P(k) is the small-scale dimensionless ζ power spectrum, (ns − 1) is the observed scalar
spectral index and ησ is the slow-roll parameter defined by equation (7.19). Byrnes et al.
observe that if one could achieve a constant ησ ≈ −0.25 during the inflationary expansion,
then it would be possible to produce an acceptable power law for the asymmetry amplitude.
This possibility is throughly explored in [14], where Byrnes et al. consider the following
potential with a narrow hilltop at σ = 0:

V (ϕ, σ) = V (ϕ)
(

1− 1
2
m2
σσ

2(N)
M2

P

)
(7.22)

where the inflaton ϕ is taken to dominate the energy density and thus drives the inflationary
expansion. The σ field is assumed to initially lie near the hilltop so that its kinetic energy is
subdominant. As inflation goes on, the σ field will roll down the hill and, assuming ησ to be a
constant, its evolution will be described by:

σ(N) ≈ σ∗e−ησN (7.23)

where ’∗’ means that a quantity is evaluated at the initial time and N measures the number
of subsequent e-folds. To ensure that the kinetic energy of σ remains subdominant one must
prevent it rolling to large field values. This implies that σ∗ must be chosen very close (but
not too much close) to the hilltop, where its evolution is dominated by quantum diffusion
rather than classical evolution. To ensure that σ∗ stays outside the diffusion regime, it suffices
to require that the classical motion in a single e-fold dominates the quantum motion i.e.
|dσ/dN | � δσ/δN ∼ H∗/(2π). This, in combination with the requirement that σ must
remain subdominant during inflation, gives that:

|σ∗| &
√
ε∗ϕP(k)MP

ησ
(7.24)

where εϕ is the first slow-roll parameter of the inflaton field, as usual defined by:

εϕ = M2
P

2

(
Vϕ
V

)2
(7.25)

However, if one considers typical values of ε ∼ O(10−2) and imposes ησ = −0.25, equation
(7.24) gives that at inflationary exit |σ(60)| & 100MP which is way too large. One could try to
solve this problem by tuning the value of ε. However, since σ does contribute to ε during the
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inflationary expansion, this approach would result in a reduction of the bispectrum amplitude
to a tiny value and/or in σ to contaminate the power spectrum, thus spoiling scale-invariance.
To avoid these issues, Byrnes et al. allow a step in the inflationary potential, so that ησ can
evolve. In particular, they consider the potential [14]:

V (ϕ, σ) = V0

(
1 + 1

2ηϕ
ϕ2

M2
P

)(
1 + 1

2ησ(N) σ
2

M2
P

)
(7.26)

where the scale V0 should be chosen to match the normalisation of the ζ power spectrum and
ησ(N) is parametrised as follows:

ησ(N) = η2 − η1
2 tanh

(
σ − σc
σstep

)
+ η1 + η2

2 − σc
σstep

η2 − η1
2

[
1 + tanh

(
σ − σc
σstep

)]
(7.27)

The step in the potential, centred at σ = σc and assumed to have a small characteristic width
σstep, allows the ησ parameter to rapidly interpolate between two different values, dubbed
η1 and η2, chosen by Byrnes et al. to be, respectively, η1 = −0.25 and η2 = −0.08. In their
numerical computations Byrnes et al. take V0 ≈ 10−14M4

P and work in a regime where the
fluctuations of the ϕ field dominate the Gaussian part of the primordial perturbations. To
make sure of obtaining an acceptable value of the scalar spectral index ns, they fix ηϕ ≈ −0.02.
The chosen initial conditions at N = 0 are ϕ∗ = 0.01MP and σ∗ = 8.94427× 10−8MP. Finally,
the ησ transition is taken to occur at σc = 3.445 × 10−6MP with width σstep = 10−10MP,
roughly corresponding to 15 e-folds. Using this set of parameters, Byrnes et al. compute
estimates of the response functions on isosceles configurations with squeezing k3/kt < 0.1,
where kt ≡ k1 + k2 + k3. In particular, they do so by combining equation (7.6) with numerical
computations for the 2-point and 3-point correlation functions of the model (7.26). Their
results are plotted in Figure 7.1. The ϕ response function is reasonably close to scale-invariance,
while the σ response function exhibits a strong scale-dependence that can be approximately
fit by the power law [14]:

ρσ(k) ≈ 5600
(

k

k`=1

)−0.405
(7.28)

where k`=1 = 1/1400 Mpc−1 corresponds to ` ≈ 1. Equation (7.28) exhibits a scale-dependence
that is a roughly acceptable match to the one of the asymmetry amplitude A(k). The reduced
bispectrum fNL(k1, k2, k3) computed on the same configurations used to estimate the response
functions (also shown in Figure (7.1)) exhibits a similar scaling behaviour, with spectral index
−0.404 [14]. What now remains to be checked is whether of not the bispectrum amplitude
is compatible with the observational constraints reported by the Planck collaboration. It
should be stressed, however, that these constraints are limits on the amplitude of scale-
independent templates averaged over many configurations and thus can not be related directly
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Figure 7.1. The ρϕ (in red) and ρσ (in blue) response functions computed for the step model (7.26)
as a function of the approximate multipole ` = 1400k Mpc, corresponding to the wavenumber k.
Also shown is the reduced bispectrum amplitude fNL(k1, k2, k3) (in purple) computed on the same
configurations used to estimate the response functions. Figure adapted from [14].

to a bispectrum with a strong scale-dependence [14]. To assess how the estimator for local,
equilateral and orthogonal non-Gaussian amplitudes would respond to the bispectrum produced
by the model (7.26), Byrnes et al. construct a Fisher matrix estimate. They numerically
compute ∼ 5× 106 bispectrum configurations covering the multipole range ` ∼ 1− 7000 and
use them to predict the observed angular temperature power spectrum. What they found
is that the amplitudes that would be measured for a bispectrum generated by the model
(7.26) (with the aforementioned choices for the values of its parameters) are of order unity. In
particular, they obtain the following estimates [14]:

f localNL = 0.25, f equilNL = 0.6, forthoNL = −1.0 (7.29)

which are well within the observational limits reported in Section 4.5. Byrnes et al. conclude
their discussion by observing that although the bispectrum used in their analysis to obtain
the results (7.29) strictly applies for the model (7.26), they believe it to be a good proxy
for any inflationary explanation of the power asymmetry that uses a large η parameter to
generate the observed scale-dependence. Finally, it should be stressed that having being
successful in constructing a model that gives a response function with an acceptable amplitude
and scale-dependence for the asymmetry A(k) doesn’t mean that an inflationary explanation
should automatically be attractive. To make the model successful, Byrnes et al. have been
forced to make a number of arbitrary choices on the initial and final values of the effective σ
mass, ησ(N), and on the location and the rapidity of the transition it undergoes. Furthermore,
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it’s also unclear whether or not the model (7.26) can be embedded within a viable Early
Universe scenario.

7.2 Planck’s Constraints on Physical Models for CMB Anoma-
lies

Having now reached the end of our discussion on the topic of the CMB large-scale anomalies as
signatures of non-Gaussianity, in this last section we report (for completeness of information)
results from the Planck collaboration who, in [15], test specific physical models for the CMB
anomalous features using the Planck 2018 temperature and polarisation data.

7.2.1 Models with Suppressed Power at Large Scales

The anomalous power deficit in the low-` (` < 40) multipoles range observed in the temperature
data might be explained by models with suppressed primordial perturbations below a given
cut-off scale kc. In particular, this effect may be due to fluctuations at the largest observable
scales being generated at the onset of inflation after a prior era of kinetic or radiation
domination, or due to the presence of some feature (such as a kink) in the inflaton potential.
Within these scenarios, the (dimensionless) primordial power spectrum can be analytically
approximated as follows [15]:

lnPR(k) = lnP0(k) + lnY(y) (7.30)

where y = k/kc and Y(y) is a function with lnY(y)→ 0 in the limit k � kc that describes
the shape of the cut-off and the transition to a power-law spectrum at smaller scales. To
compute the CMB angular power spectra for feature models, the Planck collaboration employs
a modified version of CAMB. For all combinations of feature models and data, the parameter
space is then sampled using a nested sampling algorithm as implemented in MultiNest [157].
The improvement in the fit due to the introduction of a feature is quantified by the effective
∆χ2 ≡ −2(lnLΛCDM− lnLfeature). The Bayesian evidence [158] against the base ΛCDM model
is also computed.

Model 1: Pre-inflationary Kinetic Domination (KD)

If the inflationary phase is preceded by a fast rolling stage, we have that the cut-off function
reads off [126]:

YKD(y) = π

16y|C(y)−D(y)|2 (7.31)
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where

C(y) = e−iy
[
H

(2)
0

(
y

2

)
−
(1
y

+ i

)
H

(2)
1

(
y

2

)]
D(y) = eiy

[
H

(2)
0

(
y

2

)
−
(1
y
− i
)
H

(2)
1

(
y

2

)] (7.32)

with H(2)
0 and H(2)

1 denoting, respectively, the Hankel function of the second kind with order
0 and 1. The best-fit effective ∆χ2 and logarithm of the Bayes factors with respect to a
featureless power spectrum obtained by the Planck collaboration for the KD cut-off model
are reported in Table 7.1.

Table 7.1. Best-fit effective ∆χ2 and logarithm of the Bayes factors with respect to a featureless
power spectrum obtained by the Planck collaboration for the KD cut-off model.

TT EE TT,TE,EE

∆χ2 −1.2 0.0 −0.9
lnB 0.0 −0.2 0.0
ln10(kc) −3.70 −4.98 −3.72

Model 2: Pre-inflationary Radiation Domination (RD)

If the inflationary phase is preceded by a radiation-dominated phase, we have that the cut-off
function reads off [159]:

YRD(y) = 1
4y4

∣∣e−2iy(1 + 2iy)− 1− 2y2∣∣2 (7.33)

The best-fit effective ∆χ2 and logarithm of the Bayes factors with respect to a featureless
power spectrum obtained by the Planck collaboration for the RD cut-off model are reported
in Table 7.2.

Table 7.2. Best-fit effective ∆χ2 and logarithm of the Bayes factors with respect to a featureless
power spectrum obtained by the Planck collaboration for the RD cut-off model.

TT EE TT,TE,EE

∆χ2 −0.2 −4.7 0.0
lnB −0.8 0.0 −0.7
ln10(kc) −4.87 −3.48 −4.86
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Model 3: Strobinsky

A kink in the inflaton potential lead to a cut-off function approximately given by [160]:

Ykink(y) = 1− (3R− 1)1
y

[(
1− 1

y2 sin 2y + 2
y

cos 2y
)]

+ 9
2(R− 1)2 1

y2

(
1 + 1

y2

)[
1 + 1

y2 +
(

1− 1
y2

)
cos 2y − 2

y
sin 2y

] (7.34)

where the parameter R denotes the the ratio of the slopes of the inflaton potential before and
after the kink. The best-fit effective ∆χ2 and logarithm of the Bayes factors with respect to a
featureless power spectrum obtained by the Planck collaboration for the kink cut-off model
are reported in Table 7.3.

Table 7.3. Best-fit effective ∆χ2 and logarithm of the Bayes factors with respect to a featureless
power spectrum obtained by the Planck collaboration for the kink cut-off model.

TT EE TT,TE,EE

∆χ2 −2.1 −7.4 −1.1
lnB −0.4 0.1 −0.4
ln10(kc) −3.05 −3.48 −3.91
R −0.02 0.33 −0.22

Conclusions

Of note are the relatively high values of the RD and kink cut-off models for polarisation-only
data. However, the Planck collaboration shows that the best-fit parameters and spectra do
not match their counterparts in the temperature data at all, thus strongly suggesting that
this is not a physical effect (see Figure 30 in [15]). The Bayesian evidence for all combinations
of models and data lies between barely worth mentioning (0− 0.5) and substantial (0.5− 1)
evidence against the feature models on the Jeffreys scale [161]. This implies that the Planck
2018 data do not show a preference for the feature models here considered.

7.2.2 Models for Statistical Anisotropy in the Primordial Fluctuations

In the simplest models violating statistical isotropy, some of the CMB anomalies, such as the
power asymmetry, are modeled in terms of a modulation of the temperature field:

Θ(n̂) = [1 + f(n̂)] Θ0(n̂) (7.35)

where Θ(n̂) and Θ0(n̂) are, respectively, the modulated and unmodulated (isotropic) CMB
temperature fluctuations, n̂ is an arbitrary direction in the sky and f(n̂) denotes the modulating
field. If f(n̂) = A(n̂ · p̂), we have the case of a dipolar modulation with amplitude A and
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direction p̂. However, we can also consider higher-order modulations (e.g. a quadrupolar
modulation1), or mixed modulations (e.g. modulations by a scale-invariant field). Alternatively,
we can consider modulations of the position or k-space fluctuations.

Case 1: Curvaton Modulation Model

To explain the observed power asymmetry, the modulated curvaton model [163] employs a
gradient in a background curvaton field. In particular, within this scenario, the curvaton field,
via a coupling κ, produces nearly scale-invariant CDM isocurvature (CDI) fluctuations as well
as a fraction ξ of adiabatic (curvature) fluctuations, with ξ also providing a measure of the
amplitude of dipolar modulation. The fraction of CDI fluctuations can be written in terms of
these two parameters as follows [163]:

βCDI = 9κ2ξ

1 + 9κ2ξ
(7.36)

Using the dipolar asymmetry estimators defined in [164], the Planck collaboration finds the
posteriors for the modulation parameters κ and ξ. Their results are shown (in red) in Figure
7.2. Also shown (in blue) are the isotropic constraints i.e. constraints from the power spectra
via equation (7.36), as well as joined constraints (in black). Despite a substantial amount
of the asymmetry (as measured by the parameter ξ) can be captured by the model, the
asymmetry and the isotropic posteriors only weakly overlap. Furthermore, no evidence for
asymmetry (i.e. no preference for ξ > 0) is exhibited by the joint constraints, which treat the
isotropic and asymmetry data as independent.

Case 2: Position or k-space Modulation Models

As discussed in [142], position or k-space models that generate a scale-dependent dipolar
asymmetry can be constructed employing the formalism introduced in [165]. The idea is to
take a portion of the primordial adiabatic fluctuations, dubbed R̃lo(x) and restricted mainly
to large scales, to be spatially linearly modulated [165]:

R̃lo(x) = Rlo(x)
(

1 +A
x · p̂
xLSS

)
(7.37)

where Rlo(x) is statistically isotropic with power spectrum P lo
R(k), A is the modulation

amplitude, p̂ is the direction of the modulation and xLSS is the comoving distance to the
LSS. This leads to a covariance of the total temperature or polarisation anisotropy multipoles
given, to first order in the modulation amplitude, by [165]:

〈a`ma∗`′m′〉 = C`δ``′δmm′ +
δC``′

2
∑
M

∆XMξ
M
`m`′m′ (7.38)

1Such a modulation can be used, for example, to explain the observed alignment of the quadrupole and the
octopole [162, 84].
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Figure 7.2. Posteriors for the curvaton modulation model parameters κ and ξ. Contours enclose 68%
and 95% of the posteriors. Figure adapted from [15].

where δC``′ ≡ 2(C lo
` + C lo

`′ ), ∆XM denotes the multipole decomposition of A(n̂ · p̂) and the
coupling coefficients ξM`m`′m′ are defined by:

ξM`m`′m′ ≡
√

4π
3

∫
dΩn̂Y`′m′(n̂)Y1M (n̂)Y ∗`m(n̂) (7.39)

For the scale-dependence of the asymmetry spectrum P lo
R(k), in [15] three phenomenological

forms are considered:

1. a tanh model whose asymmetry spectrum, on scales larger than a given cut-off scale kc,
approaches that of the ΛCDM model, P0

R(k):

P lo
R(k) = 1

2P
0
R(k)

[
1− tanh

( ln k − ln kc
∆ ln k

)]
(7.40)

2. a power-law model:

P lo
R(k) = P0

R(k)
(
k

klo0

)nlo
s −1

(7.41)

where nlos and klo0 are, respectively, the tilt and pivot scale of the modulation. In
particular, the Planck collaboration consider the case nlos ≤ ns and takes klo0 = 1.5 ×
10−4 Mpc−1;
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3. a model with a linear gradient in the scalar tilt ns:

C lo
` = −∆ns

2
dC`
dns

(7.42)

Using the maximum likelihood estimators for the modulation defined in [164], the Planck
collaboration analyses the quantity Ôj0, defined as the ratio of the maximum likelihood for
a given modulation model j to that of the ΛCDM model. What they found is that, for
the models considered, the Planck 2018 temperature and polarisation data do not help to
decide wether or not we have a physical modulation, with p-values of 30%, 43% and 57% for,
respectively, the tanh, power-law and ns-gradient models, relative to statistically isotropic
polarisation simulations.

Case 3: Quadrupole Modulation Models

In general, for models that give a quadrupolar direction dependence in the primordial power
spectrum we have that [15]:

PR(k) = P0
R(k)

[
1 + g(k)

(
k̂ · p̂

)2
]

(7.43)

which can be rewritten as follows:

PR(k) = P0
R(k)

[
1 + 1

3g(k) +
∑
m

g2m(k)Y2m(k̂)
]

(7.44)

where

g2m(k) ≡ 8π
15 g(k)Y ∗2m(p̂) (7.45)

with g2m(k) satisfying g2,−m(k) = (−1)mg∗2m(k). In their analysis, the Planck collaboration
parametrises the scale-dependence of the modulation as a power law with pivot scale k∗ =
0.05 Mpc−1 and spectral index q, that is:

g(k) = g∗

(
k

k∗

)q
(7.46)

Constraints on the modulation parameters are obtained by forming quadratic maximum-
likelihood estimates, ĝ2m, for the data and simulations (for details on the analysis refer to
[164, 15]). The same analysis is then performed for a completely general form of quadrupolar
modulation [15]:

PR(k) = P0
R(k)

[
1 +

∑
m

g2m

(
k

k∗

)q
Y2m(k̂)

]
(7.47)
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The g∗ values for the model (7.44), obtained by minimising the χ2, are reported in Table 7.4.
Also shown are the associated p-values, defined as the fraction of isotropic simulations with
larger |g∗| than the data. For the model (7.47), results for the quantity g2 ≡

√∑
m |g2m|2/5,

as well as the associated p-values, are reported in Table 7.5. For brevity, the only results
shown are those obtained from SMICA foreground-cleaned maps. In all cases, as quantified by
the p-values, there is no significant detection of a quadrupolar modulation and the data are
consistent with cosmic variance in a statistically isotropic sky.

Table 7.4. Minimum-χ2 g∗ values and p-values for the quadrupolar modulation (7.44) determined
from the SMICA foreground-cleaned maps. The TT results use the multipole range ` = 2− 1200, while
the EE use ` = 2− 850.

TT EE TT + EE

q g∗ p value [%] g∗ p value [%] g∗ p value [%]

−2 −6.83× 10−5 75.7 1.23× 10−4 54.7 −6.90× 10−5 75.0
−1 −8.56× 10−3 64.7 1.44× 10−2 30.0 −6.15× 10−3 86.0
0 1.08× 10−2 82.7 3.17× 10−2 55.3 1.07× 10−2 83.0
1 7.77× 10−3 82.7 5.09× 10−2 24.0 7.75× 10−3 82.3
2 4.92× 10−3 78.3 5.62× 10−2 17.0 4.92× 10−3 78.7

Table 7.5. As Table 7.4, but for the quantity g2 ≡
√∑

m |g2m|2/5 for the quadrupolar model (7.47).

TT EE TT + EE

q g2 p value [%] g2 p value [%] g2 p value [%]

−2 3.30× 10−5 82.3 9.00× 10−5 27.0 3.32× 10−5 81.0
−1 4.34× 10−3 66.0 6.81× 10−3 40.0 3.24× 10−3 87.0
0 7.65× 10−3 51.7 1.79× 10−2 45.7 7.62× 10−3 51.7
1 5.39× 10−3 58.0 2.95× 10−2 12.7 5.38× 10−3 58.3
2 3.15× 10−3 58.7 3.39× 10−2 6.0 3.15× 10−3 58.7
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Conclusions

The Standard Cosmological Model, also known as the ΛCDM model, currently provides
the best-fit theoretical framework of physical and observational Modern Cosmology. In the
years, its six main cosmological parameters (see Table 3.2) have been constrained through
several, different experimental measurements, one of the most powerful being that of the
Cosmic Microwave Background (CMB) temperature and polarisation anisotropies. Even
though observations show that the statistical properties of the CMB are consistent with
the predictions of the ΛCDM model, both WMAP and Planck have detected some features
(anomalies) at the largest angular scales that seem to suggest a deviation from the fundamental
assumptions of global statistical isotropy and Gaussianity of the ΛCDM model. Our first
objective in this Thesis was to explore some of these anomalous features, namely:

• the lack of large-angle correlations i.e. the fact that the temperature 2-point angular
correlation function averaged over the complete sky

C(θ) = 〈Θ(n̂1)Θ(n̂2)〉, n̂1 · n̂2 = cos θ (7.48)

is found to be smaller than expected on scales above ∼ 60◦;

• the hemispherical power asymmetry i.e. the fact that the CMB angular power spectrum,
when estimated locally at different positions on the sky, appears not to be isotropic.
This asymmetry has been modeled in terms of a dipole modulation of the temperature
field [84]:

Θ(n̂) = [1 +A (n̂ · p̂)] Θ0(n̂) (7.49)

where Θ(n̂) and Θ0(n̂) are, respectively, the modulated and unmodulated (isotropic)
CMB temperature fluctuations, A is the dipolar modulation amplitude and p̂ is the
direction of maximum asymmetry;

• the alignment of low multipole moments i.e. the fact that the orientation of the
quadrupole (` = 2) and the octopole (` = 3) of the CMB are found to be significantly
aligned;

• the point-parity asymmetry i.e. the fact that on large angular scales, the values for the
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CMB angular power spectrum for even multipoles have been found to be consistently
lower than those for odd multipoles;

• the cold spot i.e. the presence in the CMB sky map of a large region, centred at
Galactic coordinates (l, b) = (210◦,−57◦) and with an angular radius of about 5◦ − 10◦,
characterised by an usually low temperature ∆T ≈ −100 µK and surrounded by an hot
ring.

For each of these anomalous features in Chapter 5 we reported a summary of all evidence,
from the earliest analyses performed on WMAP temperature data to the latest results from
the Planck collaboration who, in [44], presented a first comprehensive attempt at assessing the
isotropy of the Universe via an analysis of the Planck 2018 full-sky polarisation data. Despite
not finding any evidence in the polarisation data for a lack of large-angle correlations, an
hemispherical power asymmetry and a violation of point-parity symmetry, the searching for a
dipolar asymmetry signature found an intriguing alignment between the preferred directions
of the E-mode polarisation and temperature data (see Figure 5.4). Given the a posteriori
nature of the detection of these features, the most conservative explanation for them is that
they are simply statistical flukes of our realisation of the ΛCDM model. However, despite the
fact that none of them reaches individually a significance of 5σ (regarded in particle physics as
the discovery threshold), their number and their (almost) exclusive occurrence at the largest
angular scales motivate the quest for a possible underlying physical explanation, the most
exciting possibility being that some of all of these features have a cosmological origin. Our
second objective in this Thesis was therefore to provide an up-to-date review of some of the
main cosmological mechanisms that have been proposed in literature to explain them. With
this goal in mind in Chapter 5 we also provided a brief, qualitative summary of some of these
proposals and the difficulties they have encountered, focusing in particular on the following
proposals:

• mechanisms related to the local structure of our Universe e.g. the Integrated Sachs-Wolfe
or (in the non-linear regime) the Rees-Sciama effect [113, 114];

• mechanisms which entail a breaking of scale-invariance during inflation e.g. single-field
models of inflation with kinetic/fast slow-roll initial conditions [126] or a step [119] in
the potential;

• mechanisms which entail a breaking of statistical isotropy during inflation due e.g. to
some stochastic modulating field or primordial non-Gaussianity.

The possibility that the (apparent) breaking of statistical isotropy suggested by the CMB
anomalous features may be an artefact of non-Gaussianity in the primordial perturbations
(PNG) is particularly enticing and was throughly explored in Chapter 6. As we have seen
in Chapter 4, where we first introduced the concept of PNG, the definition of bispectrum
and trispectrum, the most-well known and studied types of PNG and discussed its impact on
the CMB temperature and polarisation anisotropies, different classes of inflationary models
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produce specific and predictable types of non-Gaussianity. Therefore, if we were to measure
a significant non-Gaussian signature in the CMB, we may be able to discriminate among
competing inflationary scenarios2 thus possibly shedding light on the exact mechanism at work
during the very first epochs of the Universe. On the topic of CMB anomalies as signatures of
PNG relevant is the work of Schmidt & Hui [130] and Adhikari et al. [10, 11], who proposed
models for the CMB power asymmetry, and Hansen et al. [12], who assumed for six of most
extensively studied anomalies to have a common, cosmological origin and searched for a class
of toy models that can naturally reproduce them. In particular, Schmidt & Hui [130] showed
that the coupling between a long-wavelength mode a shorter one, induced by non-Gaussianity,
could manifest in the observation of a preferred direction in the sky3. In [10], Adhikari et al.
performed a systematic study of the power asymmetry expected in the CMB if the primordial
fluctuations are non-Gaussian and exist on scales larger than we can observe, showing that
scale-dependent modulations are a generic feature of non-Gaussian models and that such
modulations can naturally reproduce the observed power asymmetry. Subsequently, in [11],
Adhikari et al. showed that a large-scale power asymmetry may also arise in models with
local trispectra and strong scale-dependent τNL amplitudes. Finally, in [12], inspired by the
additional non-linear terms in the gravitational potential that appear in models of inflation,
Hansen et al. searched for isotropic but non-Gaussian models, where the non-Gaussianity
is the origin of the apparent deviations from statistical isotropy seen in the data, aiming
to phenomenologically determine the properties that a physical model able to explain them
should exhibit. However, none of these proposals address the issue of finding a physical model
that can be fitted to the data. In this regard relevant is the work of Byrnes et al. [14, 13]
who extended previous calculations, which were restricted only to one or two-source scenarios,
computing the response of the 2-point correlation function to a long-wavelength perturbation
in models characterised by a near-local bispectrum. In particular, Byrnes et al. showed that
the amplitude and scale-dependence of the observed power asymmetry are actually sourced
by a combination of response functions and attempted to construct an explicit model that
could produce a response with suitable amplitude and scale-dependence to match current
observations. Despite being successful in this ordeal (see Section 7.1.2), Byrnes et al. observe
that this doesn’t mean that an inflationary explanation for the CMB power asymmetry should
automatically be attractive since to construct a successful model they were forced to make
several arbitrary choices and whether or not their model could actually be embedded within a
viable Early Universe scenario still remains to be seen. To conclude our discussion, in Section
7.2 we reported results from the Planck collaboration who, in [15], tested physical models for
the CMB anomalous features using the Planck 2018 temperature and polarisation data. No
statistically significant evidence was found in favour of any of the scenarios considered over
the ΛCDM model, but that doesn’t mean that one should give up on the possibility that the

2We may be able to do so because, as we have seen in Chapter 4, if we were to measure such a signature
the origin of the signature may not necessarily be primordial.

3The model proposed by Schmidt & Hui, however, induces a dependence on the direction of k in the
primordial power spectrum P (k), from which the observed asymmetry can not arise [133, 134]. In light of this
issue, we didn’t spend more than a few words discussing it.
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observed CMB large-scale anomalies may have a primordial origin. Our expectation for the
future is that upcoming precision measurements of the CMB polarisation (see Section 3.5.2),
along with other observations, such as large scale structure surveys and the analysis of other
potential CMB foregrounds, will provide us with the tools to eventually solve the puzzle of
these anomalous features.
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Appendix A
The Boltzmann Equation

To study the formation and evolution of CMB fluctuations we have to follow a complicated
set of interactions between different species. The main tool used to do that is the Boltzmann
equation. For each species a there is a Boltzmann equation that describes the evolution of its
distribution function fa and that can be written in the following abstract form

dfa
dt

= C [{fb}] (A.1)

Equation (A.1) contains a collisionless part, dfa/dt, which accounts for the effect of gravity
on the distribution function fa, and a collision term, C [{fb}], which accounts for interactions
with other species in the universe. In the following we are going to focus only on the evolution
of the distribution function for photons fγ . Since the photons most strongly interact with
electrons, the Boltzmann equation we will be interested in is

dfγ
dt

= C [{fγ , fe}] (A.2)

Let us observe that, since the electrons are strongly coupled to the baryons, it actually
makes no difference thinking of the right-hand side of the Boltzmann equation (A.2) as the
photon-electron or photon-baryon coupling.

A.1 The Collisionless Boltzmann Equation for Photons

The ultimate source of spatial fluctuations in the photon distribution is gravity. Its effects are
described by the collisionless Boltzmann (or Liouville) equation which controls the evolution
of the distribution function fγ as the photons stream along their geodesics. In a relativistic
space-time fγ = fγ(xµ, pµ) with pµ = dxµ/dλ and the collisionless Boltzmann equation reads

dfγ
dλ

= pµ
∂fγ
∂xµ

− Γµαβp
αpβ

∂fγ
∂pµ

= 0 (A.3)

where Γµαβ is the Christoffel symbol. In a FLRW the distribution function simplifies to
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fγ = fγ(E, t) and equation (A.3) reduces to

dfγ
dλ

= E
∂fγ
∂t
− ȧ

a
|p̂|2∂fγ

∂E
(A.4)

Let us now consider small perturbations in the metric and introduce in the photon distribution
function a direction and position dependent temperature perturbation Θ(x, p̂, t)

fγ(x, p, p̂, t) =
{

exp
[

p

T (t) (1 + Θ(x, p̂, t))

]
− 1

}−1
(A.5)

Then at linear order, in the Poisson gauge, after performing some calculations, the Boltzmann
equation (A.4) will read

dfγ
dλ

∣∣∣∣
(1)

= −p∂f
(0)
γ

∂t

[
∂Θ
∂t

+ p̂i

a

∂Θ
∂xi
− ∂Ψ

∂t
+ p̂i

a

∂Φ
∂xi

]
(A.6)

where f (0)
γ is the zero-th order distribution function, given by

f (0)
γ =

[
exp

{
p

T

}
− 1

]−1
(A.7)

A.2 The Boltzmann Equation for Interacting Photons

Photons as the LSS interacted with the no longer relativistic electrons via Thomson scattering

e−(q) + γ(p)↔ e−(q′) + γ(p′) (A.8)

The collision term for this interaction reads

C [fγ(p)] = −p∂f
(0)
γ

∂t
neσT [Θ0 −Θ(p̂) + p̂ · vb] (A.9)

where vb is the baryon velocity, which tells us how fast the electrons, that are tightly coupled
to the baryons, are moving; ne is the free electrons number density; σT is the Thomson
scattering cross section and Θ0 is monopole moment of the photon distribution, defined as
the integral of the photon perturbation at any given point over all photon directions

Θ0 ≡
1

4π

∫
dΩp̂Θ(x, p̂, t) (A.10)

Equating now equations (A.6) and (A.9), we get that the Boltzmann equation for the
interacting photons is given by

142



Θ̇ + p̂i

a

∂Θ
∂xi
− Ψ̇ + p̂i

a

∂Φ
∂xi

= neσT [Θ0 −Θ(p̂) + p̂ · vb] (A.11)

At this point it is convenient to switch to the conformal time τ , in terms of which the above
equation is rewritten

Θ′ + p̂i
∂Θ
∂xi
−Ψ′ + p̂i

∂Φ
∂xi

= neσTa [Θ0 −Θ + p̂ · vb] (A.12)

where the prime as usual denotes the time derivative with respect to the conformal time. A
partial differential equation of this form is usually solved in Fourier space. Before going to
Fourier space, let us however introduce a new variable, that we denote as µ = k̂ · p̂, defined as
the cosine of the angle between the wavevector k̂ and the photon direction p̂. Let us also
observe that, in general, in Cosmology the velocities all point in the same direction of the
wavevector, meaning that p̂ · vb ≡ µvb, and introduce the definition of optical depth

τ(τ) ≡
∫ τ0

τ
dτ
′
neσTa (A.13)

With these definitions, going to Fourier space, the Boltzmann equation for the interacting
photons reads

Θ′ + ikµΘ−Ψ′ + ikµΦ = −τ ′ [Θ0 −Θ + µvb] (A.14)

Note that we choose not to employ a different notation for the Fourier-space fields. The
appearance of µ automatically means that the equation is written in Fourier space.

A.3 Free-streaming Solution

In the previous section we have found convenient to introduce the monopole moment of the
photon distribution Θ0. Analogously, we can introduce an `th multipole moment for the
temperature perturbation field, defined as

Θ`(k, τ) = 1
(−i)`

∫ µ

−µ

dµ

2 P`(µ)Θ(k, µ, τ) (A.15)

where P`(µ) is the Legendre polynomial of order `. In this way, the photon perturbations
can then be described either in terms of Θ(k, µ, τ) or by a hierarchy of multipole moments
Θ`(k, τ). Our objective will now be to sketch the derivation of the solution for the photon
multipole moments today, Θ`(k, τ0), at recombination.
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By subtracting τ ′Θ from both sides of equation (A.14), and introducing the so-called source
function Ŝ, defined as

Ŝ ≡ Ψ′ − ikµΦ− τ ′ [Θ0 + µvb] (A.16)

we obtain the following equation

Θ′
(
ikµ− τ ′

)
Θ = Ŝ (A.17)

By performing some manipulations, one can prove that the solution for the photon anisotropies
today is

Θ(k, µ, τ0) =
∫ τ0

0
dτŜ(k, µ, τ)eikµ(τ−τ0)−τ(τ) (A.18)

This solution can easily be turned into an equation for each multipole Θ`(k, τ): it suffices to
multiply both sides by the Legendre polynomial P` and then integrate over µ, giving

Θ`(k, τ0) = (−1)`
∫ τ0

0
dτŜ(k, τ)e−τ(τ)j` [k(τ − τ0)] (A.19)

where j` [k(τ − τ0)] are the Bessel functions. It is now useful to introduce the visibility function

g(τ) = −τ ′(τ)e−τ(τ) (A.20)

defined such that
∫
dτg(τ) = 1, so it can be thought of as the probability that a photon last

scattered at the time τ . In terms of the visibility function, the source function reads

Ŝ(k, τ) ≈ g(τ) [Θ0(k, τ) + Φ(k, τ)] + i

k

d

dτ
[vbg(τ)] + e−τ(τ)

[
Ψ′(k, τ) + Φ′(k, τ)

]
(A.21)

Being the optical depth τ very large early on, this probability, due to the exponential e−τ(τ), is
zero for τ before recombination. After recombination, the prefactor −τ ′(τ), corresponding to
the scattering rate, drops and thus this probability becomes again very small. Hence, we can
consider the visibility function as a Dirac delta peaked on some time instant τ∗. Substituting
the expression for the source function (A.21) into equation (A.19), introducing the above
approximation for the visibility function and integrating over the Dirac delta and using that
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vb ≡ −3iΘ at τ∗, we get the following result for the multipole moments today Θ`(k, τ0):

Θ`(k, τ0) ≈ (Θ0(k, τ∗) + Φ(k, τ∗)) j` [k(τ0 − τ∗)]

+ 3Θ1(k, τ∗)
(
j`−1 [k(τ0 − τ∗)]− (`+ 1)j` [k(τ0 − τ∗)]

k(τ0 − τ∗)

)
+
∫ τ0

0
dτe−τ(τ)

(
Ψ′ + Φ′

)
j` [k(τ0 − τ∗)]

(A.22)
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Appendix B

Wigner 3-j symbol

B.1 Definition

The Wigner 3-j symbol, given by

(
`1 `2 `3

m1 m2 m3

)
(B.1)

is related to the Clebsh–Gordan coefficients which describe coupling of two angular momenta
in quantum mechanics. In quantum mechanics, ` is the eigenvalue of the angular momentum
operator L = r× p, that is L2Y`m = `(`+ 1)Y`m, while m is the eigeinvalue of the z-direction
component of the angular momentum, that is LzY`m = mY`m. In particular, the Wigner 3-j
symbol as defined in equation (B.1) describes a set of three angular momenta L1, L2 and L3

forming a triangle, meaning that L1 + L2 + L3 = 0. Since the three angular momenta form a
triangle, they have to satisfy triangle conditions i.e.

|Li − Lj | ≤ Lk ≤ Li + Lj (B.2)

where Li = |Li|. The triangle conditions (B.2) also imply the following selection rules on
`1, `2, `3 and m1,m2,m3:

|`i − `j | ≤ `k ≤ `i + `j

m1 +m2 +m3 = 0
(B.3)
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B.2 Symmetries

The Wigner 3-j symbol (B.1) is invariant under even permutations, meaning that

(
`1 `2 `3

m1 m2 m3

)
=
(
`3 `1 `2

m3 m1 m2

)
=
(
`2 `3 `1

m2 m3 m1

)
(B.4)

whilst, if `1 + `2 + `3 = odd, it changes phase for odd permutations, e.g.

(−1)`1+`2+`3

(
`1 `2 `3

m1 m2 m3

)
=
(
`2 `1 `3

m2 m1 m3

)
(B.5)

furthermore, if `1+`2+`3 = odd, the phase also changes under a transformationm1+m2+m3 →
−(m1 +m2 +m3), that is

(
`1 `2 `3

−m1 −m2 −m3

)
= (−1)`1+`2+`3

(
`1 `2 `3

m1 m2 m3

)
(B.6)

This last property implies that if there is no z-direction component of the angular momentum
in the system i.e. mi = 0, then the Wigner 3-j symbol

(
`1 `2 `3

0 0 0

)
(B.7)

is non-zero only if `1 + `2 + `3 = even.

B.3 Orthogonality

The Wigner 3-j symbol has the following orthogonality properties which, by definition, are
consistent with the orthonormality of the angular momentum eigenstate vectors and the
unitarity of the Clebsh-Gordon coefficients:

∑
all m

(
`1 `2 `3

m1 m2 m3

)2

= 1 (B.8)

∑
`3m3

(2`3 + 1)
(
`1 `2 `3

m1 m2 m3

)(
`1 `2 `3

m′1 m′2 m3

)
= δm1m′1

δm2m′2
(B.9)

∑
m1m2

(
`1 `2 `3

m1 m2 m3

)(
`1 `2 `′3
m1 m2 m′3

)
=
δ`3`′3δm3m′3

2`3 + 1 (B.10)
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B.4 Wigner 6-j symbol

The Wigner 6-j symbol, given by

{
`1 `2 `3

`′1 `′2 `′3

}
(B.11)

describes the coupling of three angular momenta and it is related to the Wigner 3-j symbol
(B.1) through

(−1)`′1+`′2+`′3

{
`1 `2 `3

`′1 `′2 `′3

}(
`1 `2 `3

m1 m2 m3

)
=
∑
all m′

(−1)m′1+m′2+m′3

(
`1 `′2 `′3
m1 m′2 −m′3

)

×
(

`′1 `2 `′3
−m′1 m2 m′3

)(
`′1 `′2 `3

−m′1 −m′2 m3

)
(B.12)

By using the orthogonality condition (B.8) one also has the following relation:

(−1)`′1+`′2+`′3

{
`1 `2 `3

`′1 `′2 `′3

}
=

∑
all mm′

(−1)m′1+m′2+m′3

×
(
`1 `2 `3

m1 m2 m3

)(
`1 `′2 `′3
m1 m′2 −m′3

)

×
(

`′1 `2 `′3
−m′1 m2 m′3

)(
`′1 `′2 `3

−m′1 −m′2 m3

)
(B.13)
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