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Abstract

The ability to predict the next activity or attributes of an ongoing case is becoming increasingly
important in today’s businesses. Processes need to be monitored in real-life time to predict the
remaining time of an open case, or to be able to detect and prevent anomalies before they have
a chance to impact the performances. Moreover, financial regulations and laws are changing,
requiring companies’ processes to be increasingly transparent. Process mining, supported by
deep learning techniques, can improve the results of internal audit activities. The task of pre-
dicting the next activity can be used to point out traces at risk that need to be monitored. In
this way, companies are aware of the current state of operations and can take resolution ac-
tions in time. In recent years, this problem has been tackled using deep learning techniques,
such as Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN) and
Long Short-Term Memory (LSTM) neural networks, achieving consistent results. The first
main contribution of this thesis consists of a generation of a process mining dataset based on
the Purchase-to-Pay (P2P) process. The SAP tables structure is taken into account since it is
the most popular management software in today’s companies. By introducing anomalies, the
simulated dataset can be seen as a realistic representation of a company’s operational activi-
ties. The second contribution of the thesis is an investigation of deep learning techniques that
exploit information from both temporal data and static features, applied to the previously gen-
erated dataset. The neural networks are then used to predict future events characteristics of
running traces. Finally, we discuss real-life application of the results and present future work
proposals.
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1
Introduction

In recent years, companies have faced a series of challenges that have highlighted their vulner-
ability [1]. One major event that had a profound impact on companies was the COVID-19
pandemic. The outbreak of the virus resulted in global restrictions and lockdown measures,
forcing many businesses to reduce their production chains and operations [2]. This disrup-
tion had far-reaching consequences, affecting industries across various sectors. Additionally,
the recent raw material crisis caused meaningful breakdowns for many industries that rely on
specific resources for the production [3]. This situation also led to an increase in energy price
that resulted in high expenses for manufactures [4], which have proven to be unattainable for
many small businesses. These challenges have underscored the need for companies to adapt
and find innovative solutions to mitigate the risks associated with such disruptions.

In addition to the challenges faced by companies, in recent years there has been a growing
demand for a different kind of information. Customers and society have become more con-
scious of the environmental impact of the products they consume [5] [6] [7]. What is the
journey of the items we buy at the supermarket and howmuch is its environmental impact? Is
this business resilient enough to face unexpected events, such as COVID-19 pandemic? How
efficient is the customer service of this company? Adaptation to changing demands, environ-
mental consciousness, business resilience, and customer service are essential considerations for
companies that aim to thrive in the current dynamic business landscape. In this framework,
emerging technologies such as process mining can provide valuable support on this journey of
transformation and optimization [8] [9] [10].
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Modern supply chains are characterized by such a complex structure that often precludes
the possibility to understand their overall organization. A large company includes numerous
processes involving hundreds of different entities and enterprise systems [11]. Generally, busi-
nesses handle information exchange through email, paper sheets or using several systems that
are oftennot directly interactingwith eachother. The risk of information losses aswell as impu-
tation errors is high and solving them can be complex and time-consuming [12]. In addition to
internal anomalies, extreme events such as earthquakes, global crises, droughts, price increases,
can put the entire supply chain at risk [13].

Nowadays, every company records data about their processes. This information is usually
stored in large databases and used to make high-level analysis, such as retrieving the total num-
ber of orders and their net value over a span time. Despite the amount of data available, compa-
nies have not yet evolved into data-driven organizations [14]. Using process mining platforms
it is possible to get a clearer view of business processes so as to investigate their bottlenecks,
and improving and reorganizing current processes [15] [16] [17] [18]. Moreover, coupling
process mining with deep learning techniques allows to predict the progress of ongoing pro-
cesses [19] [20] [21], or to simulate processes following changes [22] [23] [24]. These technolo-
gies have been shown to provide numerous benefits, including lowering production costs and
time, increasing product reliability, reducing manual workload and decreasing money losses
due to data inconsistencies.

This work focuses on the use of deep learning techniques applied to process mining for pre-
dictive monitoring problems. Specifically, it is shown how these tools can be used to prevent
anomalies in open processes, by anticipating possible failures. First, we provide an introduc-
tion to process mining as a powerful tool to improve the performance of companies. Secondly,
the focus is shifted towards process prediction, exploring the latest advancements in the field
of deep learning techniques. To facilitate the experimentation and evaluation of process pre-
diction models, we introduce a dataset specifically designed. The dataset is a realistic repre-
sentation of a company’s operational activities, enabling experiments to analyze and compare
different predictionmodels. Then, we apply themethodologies introduced to the dataset, com-
paring the results obtained. We discuss the performance of difference deep learningmodels the
prediction task and highlights any notable findings or insights. Lastly, we conclude with a dis-
cussion on future work that outlines potential avenues for further research and development
in the field of process prediction and suggests areas where improvements can be made.
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1.1 ProcessMining

Event log
Human 

knowledge+

Data
Science

Process
Science

PROCESS
MINING

Figure 1.1: Process mining acts as a bridge between data science and process science. It applies the human knowledge
to add details to the event log and it derives information about the actual state of processes directly from business data
(event log).

Process mining is a process management technique that aims to support business processes
through the analysis of the event log. As shown in Fig. 1.1, it represents a bridge between data
science and process science, since the former does not take the process into account, whereas the
latter tends to be model-driven [25, Chapter 1]. Process mining seeks to use data to improve
end-to-end processes. The core of process mining is the event log, which is a structured ordered
database that contains information about every activity that happened in the process.

We take as an example a retailer company, which receives product orders and ships the goods
to the buyer. The ideal process of each purchased item is the one shown on the left panel
of Fig. 1.2, where each item goes through a series of planned activities without encountering
any issues. But real-life processes contain anomalies. For example, the buyer may not have
enough money in his bank account to proceed with payment, or the requested product may
not be in stock. A large number of variables can interfere with the ideal process and can lead
to different and sometimes unwanted scenarios, such as the one shown on the right panel of
Fig. 1.2. Process mining target is to reconstruct, analyze and understand the real process based
on the available data, rather than on the ideal designed process [25, Chapter 2].

Companies often have an overall understanding of their ideal internal processes, but they
may lack in awareness of all possible variants that can occur. As a result, they tend to address
problems times to times without establishing a systematic approach or without investigating
the root causes of the anomalies [26]. However, business data contains valuable information.

3



Order received

Order confirmed

Payment sent

Goods preparation
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Payment sent

Goods preparation

Goods shipment
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Goods received

Payment cancelled

Order blocked

Change order

Payment rejected

Goods shipment 
delay

IDEAL PROCESS REAL PROCESS

Figure 1.2: Example of a company process. Process on the left shows the ideal course of an order, whereas on the right it
is shown the same process but of an order which encounters several anomalies (marked in red) along the way, that lead to
different reworks.

Process mining techniques help relate event data to the process model, allowing the companies
to discover the actual processes, and to evaluate and enhance the existing ones.
Process mining can exploit its full potential when used in real time, rather than being ap-

plied on past and completed events [25, Chapter 10]. This is referred as operational support.
An example of its application is auditing, which refers to the evaluation of organizations and
their processes. Audit activities check whether business processes are executed within certain
boundaries set by managers, governments, and other stakeholders [27]. By applying process
mining techniques in an operational support way, we can detect inconsistencies as soon as they
occur, enabling real-time resolution and mitigating risks.

Compared to data mining andmachine learning techniques, process mining is based on the
fact that its instances are end-to-end processes. Inside each singular cases, events are correlated
to each other in a sequential way. It is possible to use data mining and machine learning tech-
niques to support process mining, but they need to be adapted in order to be used with the
different data structures. Many similarities with the natural language processing (NLP) field
exist, but substantial differences remain [28], such as the vocabulary size, the length of traces,
and the presence of overlapping activities.
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One of the main challenges of process mining research is the lack of datasets to evaluate per-
formances on [29]: companies do not make their data available because they contain transac-
tional data, customers’ personal information and other confidential records. Moreover, compa-
nies’ data are often of low quality: they contain inconsistencies, missing fields, and formatting
errors. As a result, apply deep learning algorithms to process mining data is non trivial. First
it is necessary to perform various preprocessing and cleaning operations that require expert
support [30] [31].

1.1.1 Life-cycle of a ProcessMining project

Typically, every process mining project goes through a series of well-defined steps before it suc-
ceeds inmaking improvements in companies. Projects can run for years and require the support
of several figures with different skill sets, such as data analysts, business experts, IT architects.
One of themost important figures is the process owner, who should be able to describe the high-
level process, the supporting information systems, the transactions involved in the databases,
and the critical points in the process. Data extraction and transformation becomes difficult
if one is not fully familiar with the systems in use. Therefore, data experts must support the
project since each company uses different set of systems and platforms, with custom field labels
and custom data types. Business experts, on the other hand, can identify which changes to im-
plement for process improvement and standardization, as well as ensure compliance with the
latest regulations.

Usually, a process mining project goes through the following stages [32]:

• Planning phase: identification of the objectives of the projects and the questions that
need to be answered. During this phase, we take a first look at the data available and
understand which of them are useful for the purpose of the investigation and how are
they related to each other.

• Extraction & Transformation phase: extraction of the chosen data from the source sys-
tems and transformation in the target format. This phase can be very time-consuming
and wasteful, as there is a large amount of data available to companies and most of it is
not used for the project purpose. Moreover, each company has its own data type format
and its own support systems. During this phase we define the relationship between the
tables and we create the event log.

• Discovery phase: using process mining discovery techniques, we create the data model
from the event log without any a-priori information. This is one of the key steps of the
project, as the data model represents the true/ideal track that events follow.
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• Conformance phase: comparison of the event log with an existing process / model. This
phase aims to check if what happens in reality conforms the ideal process and vice versa.

• Enhancement phase: using information hidden in the event log, we investigate possible
improvements and eventually we implement them. These can be, for example, a change
in the process model tomake it more similar to what actually happens, or the implemen-
tation of an automatism.

● Objectives
● Questions
● First look at the data

● Extraction and transformation of 
data from source systems

● Creation of the event log

● Creation of the data model
● Analysis of the processes

● Comparison between event log 
model and actual model

● Investigation of bottlenecks
● Investigation of possible 

improvements

PLANNING
PHASE

EXTRACTION & 
TRANSFORMATION PHASE

DISCOVERY
PHASE

CONFORMANCE 
PHASE

ENHANCEMENT 
PHASE

Figure 1.3: Life‐cycle of a process mining project

The last three steps represent the core of processmining. During the discovery phase, we can
visualize the as-is process and discover bottlenecks that cause slowdowns or productivity losses.
For example, we can estimate the percentage of rework, i.e., instances that require duplicate
working and thus that cause delays. The conformance phase can be faced using three differ-
ent approaches, as shown by Wil Van der Aalst [33]. An example of the first approach is the
footprint, which is basically amatrix containing relationships and dependencies between events.
The second approach is basedon the concept of replay, whichmeans replicating instances of the
event log on the model basic, to see which traces are allowed by the model (normativemodel),
or how well the model is able to describe what is happening in the systems (descriptivemodel).
The third possible approach consists on computing an optimal alignment between each trace
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and a model allowed path. In the enhancement phase, we take into account the results ob-
tained in the previous stages to make changes. For example, we can modify the process if we
observed that it is unable to replicate most of the observed traces, or we can make changes to
solve bottlenecks or delays.

1.1.2 Event Log

The main ingredient of process mining is the event log, which is a table containing process
instances and their attributes. In order to exist, an event log must consist of at least 2 columns,
which are the cases column and the event column. The first one refers to the ID of process cases,
whereas the second contains the name or the code of the recorded activity / event. It is usually
present a third columnwhich refers to the events timestamp. An example of a simple event log
is shown in Tab. 1.1.

CASE ID ACTIVITY TIMESTAMP

1 A 12-12-2022
1 B 13-12-2022
1 C 16-12-2022
1 D 17-12-2022
2 A 12-12-2022
2 D 15-12-2022
2 C 20-12-2022

Table 1.1: Example of an event log. In this case we have two process instances (1 and 2), four possible activities (A, B, C, D)
and the timestamps of the activities. Case IDs must be unique and must refers to a single instances of the process.

Each row of the event log refers to a single event, which is composed of several attributes,
such as case ID, activity name and timestamp of the activity. Events are ordered in a sequential
way and case IDs must refer to a single instance of the process, since they represent single data
points that flow through the process. Process mining techniques analyze the traces present in
the event log in order to discover the process directly from the data coming from the systems,
rather than analyzing the ideal process, which is often not representative.

In order to be able to reason about event logs and to precisely specify the requirements for
them, we formalize various notations [25, Chapter 5]:

Definition 1.1.1 (Event). An event e ∈ E is a tuple e = (c, a, F)where a ∈ A is the name of
the activity, c ∈ C is the case ID and F is a set of attributes of the event, such as the timestamp,
the personwho executed the activity, the cost, the duration, etc. E represents the event universe
i.e., the set of all possible events.
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In Tab. 1.1, each event is a tuple made by (case_id, activity_name, timestamp).
Each event can have various attributes associated to it, for example the starting and ending

timestamp or the name of the resource that executed it. We define the event attributes as fol-
lows:

Definition 1.1.2 (Event attribute). Let n ∈ AN be an attribute over the set of attribute names.
We denote as#n(e) the value of attribute n for event e.

For example, a set of possible event attributes is:

• #timestamp(e): timestamp associated to event e.

• #resource(e): resource associated to event e.

• #cost(e): cost associated to event e.

The sequence of the activity for each case is called trace, defined as follows:

Definition 1.1.3 (Trace). Let E ∗ be the set of all possible sequences over E . A trace t =

⟨e1, ..., en⟩ ∈ E ∗, is a sequence of events, or a process instance.

Traces that follow the same sequence of process activities belong to the same process variant.
Each variant differs from the others in at least one activity execution. Process variants can also
represent a single process instance.

Each trace belongs to a single case, which can have attributes:

Definition 1.1.4 (Case attribute). Let C be the case universe, i.e., the set of all possible cases.
We denote as#n(c) the value of attribute n for case c.

The difference between event attributes and case attributes is that the former vary along the
trace as they refer to a single event, while the latter are fixed for each trace. An example of
possible case attributes are:

• #country(c): country associated to case c.

• #material(c): material associated to case c.

• #priority(c): priority associated to case c.

Finally, we define the event log as the set of traces T ⊆ E ∗:
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Definition 1.1.5 (Event log). An event log is a set of traces T ⊆ E ∗ such that each event
appears at most once in the entire event log.

It is important to observe that the event log is not present within the enterprise databases,
but it is built starting from them. Experts (process owners, data scientists, etc.) have to iden-
tify the main process activities, which may or may not be already listed in an process model.
Then, for each activity one must associate the database fields that identify the occurrence of
the activity. For example, the activity “Creation Order” is associated with an “Order ID” and
the “Creation Date” field, which may be found in different tables. Moreover, each activity can
then be associated with attributes, which can be hundreds. In addition to the creation of the
activities, it is necessary to construct the Case ID field, which is the process instance identifier.
We usually create it by connecting several fields, for example “Country” - “Order ID” - “Invoice
Number”. This ensures that each case is unique, since different tables extracted from different
systems may have duplicate names that do not refer to the same process instance.

1.1.3 ProcessModel

Since the event log provides the data point of view, the process model highlights a process-
centric view. The purpose of process models is to document and provide process knowledge.
Even if the ideal process does not represent what really happens, there are some information
that are fundamental for the process but may not be written in the data. For example, in a
particular process, activity B must be always follow activity A, and activity C is not allowed if
activity D has happened. Or also, activity A needs to be always performed by user 1001. The
event log does not explicitly contains these information, as this is very likely to contain rule vio-
lations, yet these must be taken into account when conducting process analysis. A hand-made
process model can be translated into machine language using some particular notations for
model operational processes, such as Petri Net, BPMN,UML, and EPCs. The aim of these no-
tations is to allow the visualization of processes and procedures in a standard and user-friendly
representation [25, Chapter 3]. Usually process models include the following elements:

• Events: events that starts, changes or completes a process, such as message, timer, error,
signal, etc.

• Activities: activities performed by the system or by a person.

• Decision points: points that shape the process according to conditions or events.
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• Pools and lanes: represent stakeholders in the process, such as a particular person or a
department.

Aprocessmodel can also include additional information such as thedurationof a subprocess
or activities attributes. An example of BPMNmodel is shown in Fig. 1.4.

Working
group
active

Friday
at 6 PM

Pacific Time

Check status of 
working group

Send current 
issue list

Working group
still active ?

Yes

No

Issue list

Figure 1.4: Example of a BPMN process model. We can identify the starting event “Working group active”, followed by
an intermediate timer event. Next, we have the activity “Check status of working group”, which leads to the exclusive
gateway that has two possible results. In case the working group is still active, the event “Send current issue list” happens
and the process comes back to the first intermediate timer event. If the gateway result is “No”, then the process ends. The
model shows that the data object “Issue list” is necessary for the event “Send current issue list” to occur.

1.1.4 Process Discovery

Nowadays, most process models used by companies are not based on real data, but are made
by hand from knowledge and experience [25, Chapter 3]. This approach involves several prob-
lems, the most important of which is the fact that resulting models do not represent what ac-
tually happens. Moreover, these models tend to be influenced by the subjectivity of a person,
who may not be perfectly familiar with all the steps of the process. Process mining algorithms
for process discovery aim to solve these problems by building a process model from real data
present in the event logs.

In order to perform this task, it is not enough to build a model that allows the execution of
all the traces contained in the event log, because this would include anomalous paths. More-
over, given the large number of possible variants, the resulting model would be impossible to
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understand. We refer to it as Spaghetti process (Fig. 1.5). In a process discovery task it is there-
fore necessary to reach a compromise between overfitting and underfitting. In the first case, the
model is able to generalize most of the traces in the event log, but it often results in an overly
complicated model. In the second case, the resulting model is simple and easy to understand,
but it is unable to replicate most of the traces.

Process discovery algorithms task is to find a trade-off between the following four quality
criteria [25, Chapter 6]:

• Fitness: the model should allow for the behavior seen in the event log. A model with a
high fitness score is able to replay most of the traces in the log.

• Precision: themodel should not allow for a behavior that is completely unrelated towhat
was seen in the event log. Precision score is related to underfitting.

• Generalization: the model should generalize the example behavior seen in the event log.
Generalization is related to overfitting.

• Simplicity: themodel should be as simple as possible. It quantifies the complexity of the
model.

Figure 1.5: Section of a Spaghetti process. When visualizing all the activities and links between activities in a business
process, the result is often an overly complicated process.

The task of process discovery can be represented as follows: we assume that there is a set
of activities A . The goal is to decide which activities need to be executed, in what order and
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which are the conditions that govern them. The two main challenges of process discovery are
the presence of noise in the event log, i.e., rare and infrequent behavior, and the lack of nega-
tive samples [25, Chapter 6]. The latter refers to the fact that the log only provides example
of possible behaviors and we do not have explicit examples of not allowed traces. Maybe a par-
ticular path is possible but it just never happens before. Because of this, human knowledge is
fundamental in supporting the creation of a process model.

1.1.5 Performance Analysis

Event logs canbeused to check thequality of an existingprocess, for examplebyquantifying the
performance of the current state of operations. Generally, each company defines a set of Key
Performance Indicators (KPIs), which are monitoring indicators that assess the performance
and the quality of processes. An example of set of typical KPIs that can be used by a company
are [34] [35] [36]: amount of waste in production, rework rate, customer satisfaction, lead
time standard, net order value, sales growth rate, and efficiency of teamwork.

Companies often rely on external platforms to monitor indicators, such as Celonis or SAP
Signavio [37]. These platforms provide tools for real-timemonitoring of KPI values and allow
the creation of highly customized dashboards that can contain graphs, messages, and others in-
formative objects. Moreover, they provide the implementation of notification systems that can,
for example, send messages to designated users to alert them of anomalies. Some of these plat-
forms are also able to identify the root cause of the anomalies and propose the users solutions
for its timely resolution.

1.2 DataMining

Datamining is the process of searching, discovering and extracting patterns from large rawdata
sets using data analysis techniques. The extracted information is usually used to improve the
processes fromwhich it is derived [38]. Oneof themost frequent use involves the improvement
of customer experience [39]. In this particular case, for example, it is possible to analyze the
conversations consumers have with staff or with bots on a website by using NLP techniques
that canperform sentimental analysis of reported conversations [40]. Moreover, it is possible to
derive data regarding users navigation on the website to find out, for example, that a particular
research or form is time-consuming to find or fill out. The results of these analysis can be used
to propose improvements. Data mining has similar goals and methods to process mining, but

12



the data it uses for analysis is not part of a process.
Data mining input is a table, where rows are referred to as instances and columns are called

variables. Variables can be of two types: categorical, such as color or car type, and numerical,
which is a continuous value. Since we can not directly use raw data as input for data mining
algorithms as they may have nonstandard formatting, data are typically preprocessed. Starting
from a process mining dataset, it is possible to perform a feature extraction, which refers to the
operation of convert an event log into a data mining dataset. Feature extraction is mainly used
to perform clustering operations on the data in order to derive additional information about
the data being used. For example, it is possible to find that two types of material from different
vendors belong to the same cluster and thus are somehow related each others, as they may go
through similar processes.

Data mining techniques can be classified in two main categories: supervised learning and
unsupervised learning. Supervised learning assumes the data to be labeled and the goal is to
find a function that can label each data point according to some rule, by minimizing a de-
fined error function. Supervised learning techniques can be divided in classification and re-
gression. In a classification task, the label can assume a set of predefined values, whereas in a
regression task the label is a numerical value. Unsupervised learning assumes the data not to be
labeled and it aims to divide data into similar group according to some functions. The most
used supervised learning algorithms are [41] [42]: k-Nearest Neighbors, Linear Regression,
Logistic Regression, Support Vector Machine (SVM), Decision Trees, and Neural Networks.
On the other hand, unsupervised learning cover field such as Clustering [43] (K-Means, DB-
SCAN), AnomalyDetection [44] (Isolation Forest), andDimensionality reduction [45] (Prin-
cipal Component Analysis, t-Distributed Stochastic Neighbor Embedding).

1.2.1 Metrics of a classification problem

Given a supervised machine learning problem, we want to evaluate the performance of a clas-
sifier. This problem is nontrivial since it does not exist a universal metric that can be used [46].
Let’s consider, for example, the confusion matrix of a binary classification problem, as shown
inFig. 1.6. The diagonal of thematrix represents the correct predictions: TruePositive (TP) are
the positive label predicted as positive and TrueNegative (TN) are the negative label predicted
as such. The other two elements represent the incorrect classification: False Positive (FP) repre-
sents the outcomes predicted as positive but that are negative in reality, and the False Negative
(FN) are the outcomes predicted as negative incorrectly. The confusion matrix can show the
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number of the predicted outcomes, the ratio computed over the whole number of samples, the
ratio computed over true values, or the ratio computed over predicted labels, depending on the
chosen normalization. A good classifier has a high number of elements over the diagonal and
few in other positions.

Predicted values

Positive Negative

True
values

Positive True Positive
(TP)

False Negative
(FN)

Negative False Positive
(FP)

True Negative
(TN)

Figure 1.6: Confusion matrix for a binary classification problem. Rows refer to the true label, whereas columns refer to the
predicted one. There exists four possible outcomes.

Which metric to use to evaluate the performance depends on the problem we are investigat-
ing [47]. Sometimes we are interested in achieving the highest possible accuracy, whereas in
other occasions we are more interested in the accuracy of the positive labels. In some problems
it is important to punish misclassifications of only one label and not both [48], for example in
the case of a test for a disease. In this case, in fact, it is important that the test accurately detects
diseased subjects but it is not important if it detects false positives, since it is enough to run
the test a second time to reveal the error. Another key aspect to consider is the class balance, as
some metrics may return a high value when in fact the classifier is failing in the prediction task.
The most commonly used classification metrics are shown below [49].

Accuracy is the most widely used metric in classification problems. It can be computed as
follows:

accuracy =
TP+ TN

TP+ FP+ FN+ TN
. (1.1)

It represents the ratio of correct classification made by the predictor. The main limitation
concerns imbalanced data, since in this case we can achieve a high accuracy score but one label
can be total misclassified.

Another popular metric is precision, given by

precision =
TP

TP+ FP
, (1.2)

which quantify the ratio of correct classification over the positive predicted samples. This met-
ric quantify the rate of positive prediction that are actually positive. Precision is used to quan-
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tify a classifier where the number of False Positive must remains low.

A similar metric to precision is the recall, defined as:

recall =
TP

TP+ FN
, (1.3)

which differs from precision because the ratio is computed over the positive true samples. Re-
call quantifies how well the classifier is able to identify actual positive. For example, we have a
facial-recognition device that has the task to detect criminals. It is very important that this de-
vice is able to recognize any criminal that he sees, and therefore has a high score of True Positive
and a low score of False Negative. In this example, recall can be a first metric to be used since it
is not influenced by the amount of False Positive.

Since precision and recall are similar but computed over different total number of samples,
a trade off between these two can represent an appropriate metric for the evaluation of the
performance of a classifier. For this reason, we compute the F1 score, which is the harmonic
mean between precision and recall, computed as follows:

F1 =
2× precision× recall
precision+ recall

. (1.4)

When approaching a binary classification task with imbalance class and where all labels have
equal importance, previous scores can lead to inappropriate results [50]. TheGeometricMean
score (G-mean) can be used to overcome the problem. If one class is total misleading, the G-
Mean score is equal to 0. It is evaluated using:

G−Mean =
√
specificity× recall, (1.5)

where specificity is given by:

specificity =
TN

TN+ FP
. (1.6)

Another importantmetrics is theAUC-ROC,which stands forAreaUnder theCurve (AUC)
ReceiverOperatorCharacteristic (ROC).ROC is the plot of the cumulative distribution func-
tion of the TP against the FP at various threshold values. An example of the ROC curve can be
seen in Fig. 1.7. The AUC is the area under the ROC curve. An AUC value near 1 represent
a good classifier, whereas a value near 0.5 is the value of a random classifier. For a multiclass
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classification problem, the AUC-ROC curve is usually evaluated as a weighted mean of the
AUC-ROC for each label.
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Figure 1.7: Receiver Operator Characteristic (ROC) curve for a Multi‐Class Classification. For each predicted label, the
ROC is computer as ”Class vs the Rest”. For the evaluation of the classifier, usually the weighted mean of all AUC for each
class is computed.

ProbabilityMetrics

In a classification problem, sometimes we are interested in evaluating the probability estima-
tion accuracy performance, instead of the classified label. In this case, we can evaluate the per-
formance using probability metrics, also known as scoring rules, which quantify how the pre-
dicted probability distribution matches the known probability distribution. The most used
scoring rules are the log-loss and the Brier score.
The log-loss (cross-entropy loss for a multiclass classification problems) is a local scoring rule,

meaning that the level of accordancemust be determined only bywhat is actually observed [51].
The cross-entropy loss of the predicted probability distribution ŷ, given the true probability
distribution y, is the following:

L(ŷ, y) = −
1
N

N∑
i=0

R∑
j=0

yij log(oij). (1.7)

In this equation,N is the total number of predicted samples, R is the total number of classes,
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oij is the predicted probability of digit j for sample i and yij is the true probability of the class j
for sample i. When the target are one-hot encoded label, the only non-zero term is the one of
the true label. All others prediction probabilities have zero weight in the loss evaluation.

The log-loss will explode if we observe an event that have 0 true probability, meaning an
impossible event. This problem is overcome by the Brier score, which measures the mean
squared difference between the predicted probability distribution and the true probability dis-
tribution [52]. The Brier score is given by:

BS(ŷ, y) =
1
N

N∑
i=0

R∑
j=0

(oij − yij)2. (1.8)

The choice of the probabilitymetric depends on the type of error onewant to consider. The
log-lossmetric is concentrated on the difference between the true and the predicted probability,
whereas the Brier score takes into account also the probability distribution of the rest of the
labels.
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2
Predictive Process Monitoring

Predictive process monitoring is a technique that combines process mining and predictive ana-
lytics to forecast process attributes, such as the next activity or the remaining time of a process.
Firstly, we exploit process mining techniques to analyze historical process data in order to un-
derstand the actual process flow, identify patterns, and extract relevant information [53]. This
analysis provides insights into the process behavior and it can uncover inefficiencies, bottle-
necks, and compliance violations. Once understood the process course, we apply predictive
analytics techniques to build models trained using historical process data.

Companies can use the predictive models to forecast process outcomes, estimate process
performances, detect anomalies, and predict the likelihood of certain events occurring in the
future [54] [55]. This enable organizations to proactively identify and prevent process issues or
deviations [56] [57]. By leveraging predictive insights, businesses can optimize their processes
and improve operational efficiency.

2.1 Literature Review

Several works exist in literature about the predictive process monitoring task. However, re-
searchers use very different techniques and evaluation datasets, making the comparison and
the generation of a baseline approach challenging. In the work by Rama-Maneiro et al. [58],
the authors provide a systematic literature review of the most used deep learning techniques.
In their work, 10 different approaches are tested over 12 publicly available process logs, evaluat-
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ing the results on different prediction tasks, such as next activity, activity suffix, and remaining
time. Outcomes show that approaches that achieve the highest scores are the ones proposed by
Hinkka et al. [59], Pasquadibisceglie et al. [53], Tax et al. [60], andCamargo et al. [61]. Results
highlight that overall using attributes as inputs to the models may not benefit the predictive
task, suggesting to incrementally add the attributes and observe their effects. Moreover, hyper-
parameters optimization does not appear to have a significant impact in model scores. Finally,
approaches that perform a direct prediction of the remaining time achieve better results than
approaches that sum up the next activity time until the last activity. Regarding the neural net-
work architecture, Recurrent Neural Networks (RNNs) outperform Convolutional Neural
Networks (CNNs), even if the latter are usually faster in training.

The systematic literature review done by Neu et al. [62] focuses the attention towards en-
coding methods and neural network architectures. The work highlights that it does not exist
a universal approach to encode process mining data. For instance, it is possible to process cat-
egorical data using either one-hot encoding or via embedding methods. When the number of
categories is large (more than 20), the latter leads to better results. The study further distin-
guishes regression tasks, primarily concerned with time-based prediction, from classification
tasks, which revolve around activities or event features. Results indicate that incorporating
more input features generally leads to improved performances. Moreover, the review empha-
sizes the importance of addressing the issue of imbalanced classes, suggesting that further inves-
tigations are necessary to better understand and tackle this problem.

One of themost usedneural network type for predictive processmonitoring task is theLong-
ShortTimeMemory (LSTM)neural network. In thework conductedbyTax et al. [60], LSTM
networks achieve better results than previous experiments, establishing the proposed architec-
ture as a starting point for future researches. The study focuses on the evaluation of suffix
traces and the remaining time of a trace by continuously iterating the next event prediction.
The network inputs are one-hot encoded activities and three temporal information variables,
representing the time difference from the previous activity, the time of the day and the day of
theweekwhen the activity is performed. Three different architecture setups are tested: the first
one is specific to each prediction task, and the other two involvemulti-task learning approaches.
Camargo et al. [61] provide a similar research, comparing three differentLSTMneural network
architectures for two tasks: reproducing an event-log and predicting outcomes. Unlike previ-
ous works, this study uses categorical encoding for processing inputs such as the activity, the
resource performing the activity, and the timestamp of the activity. The three architectures dif-
fer in how information is shared across these categories. The first one is specialized, i.e. LSTM
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layers are not shared across the three main channels. The second architecture is categorical
shared, i.e. the activity and resource information is shared across LSTM layers but not the time
information. Finally, the third one is fully shared. Both studies by Camargo et al. and Tax
et al. highlight that the shared model outperforms the specific model when evaluated using
Damerau–Levenshtein andMAEmetrics.

The work by Navarin et al. [55] tackles the task of predicting the remaining time of the
process using LSTMneural networks, achieving better performance than [60]. In comparison
to the previous study, the model proposed is able to deal with repeated activities, can take into
account event attributes, and has lower training times.

Convolutional Neural Networks’ (CNNs) ability to capture spatial dependencies in data
can be exploited to tackle the predictive task. By mapping a categorical variable to a vector rep-
resentation, CNNs are able to capture meaningful relationships. The work conducted by Di
Mauro et al. [63] explores the usage of 1-dimensionalCNNarchitectures in the prediction task,
by investigating the possibility of CNNs to outperform RNN architectures. Authors encode
activities using embedding layers. Results suggest that 1-dimensional CNN architectures have
longer effective memory and can achieve comparable or superior performance to traditional
RNN architectures, while being computationally more efficient.

The research carried out by Pasquadibisceglie et al. [53] provides another investigation on
the usage of CNNs in predicting scenarios. They focus on exploring a novel process data en-
gineering scheme that transforms temporal data into spatial representations. This approach
opens up new possibilities for leveraging CNNs’ strengths in capturing spatial dependencies.
However, one limitation highlighted in the study pertains the prediction of non-frequent activ-
ities. To address this limitation, the work suggests to employ oversampling techniques. These
can involve, for example, the artificial increase of the representation of undersampled activities
in the training data. By balancing the data distribution, it is possible to improve the predictive
performance for non-frequent activities.

Metzger et al. [64] highlight two important limitations when using RNN architectures for
prediction tasks. Firstly, they address the issue of cycles in activities, which refer to the repetition
of a portion of the process. Traditional forecast methods are unable to predict activity cycles,
especially when predicting the trace suffix using an iterative approach. Moreover, this produces
an accumulation of prediction errors. To overcome this limitation, the proposed solution fo-
cuses on directly predicting the final process outcome, which leads to better results. Secondly,
the study highlights the challenge posed by parallel activities in the prediction task. Authors
propose a solution that encodes parallel branches as an activity attribute. However, this ap-
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proach only results in a marginal improvement. Furthermore, in order to address the problem
of imbalanced classes, the paper suggests the usage of the Matthews Correlation Coefficient
(MCC) as an accuracy score. The MCC better reflects the real-life complexity of imbalanced
class distributions and provides a more comprehensive evaluation of prediction performance.

Given the large number of event attributes in business event-log, the work of Hinkka et
al. [59] explores a clustering technique that can be used to take advantage of any additional
information. The proposed approach offers a trade-off between prediction accuracy and com-
putational time. The user can define the maximum number of clusters, and thus the length of
the resulting one-hot encoding. The input vector used embeds the cluster labels, alongwith the
event and its attributes. Authors test the approach on five different datasets. Results achieved
reveal that in four out of five experiments, applying the clustering technique to the attributes
input vectors produces superior results compared to encoding event attribute values alone.

Evermann et al. [28] propose a predictive approach inspired by NLP, given the similarity
between the prediction targets. This study treats the activity sequences as a word and gener-
ates the neural network inputs by encoding the attributes through an embedding space. One
unique aspect of this approach is that the temporal information is incorporated using fixed
time steps of 1 minute. For example, if activity A lasts for 3minutes, then it is encoded as AAA
in the sequence representation.

Some relevant anomaly detection studies on business process dataset are presented by Lahan
et al. [65] and Nolle et al. [66]. In the former, authors employ a LSTM neural network for a
two-step research. In the first step, authors train a LSTMmodel on the prediction task of the
next activity in a sequence. In the second step, they use the trained model to predict the next
activity for eachwindowof fixed length in the traces. After predicting all the activities in a trace,
authors assign an anomaly score to each predicted event. If the trace has at least one anomaly
score above a certain threshold, then the trace is considered anomalous. The study evaluates the
performance of the methods using the F1 score, that provides an assessment of the algorithm’s
ability to detect anomalies effectively.

Nolle et al. [66] conduct a similar work using autoencoder architectures. In the study, au-
thors encode activities using one-hot encoding, and train the autoencoder on the entire set of
traces. Then, they use the network to reproduce the traces. Bymeasuring theMean SquaredEr-
ror between the reproduced traces and the real trace, it is possible to identify anomalous traces
and the activity that causes the anomaly.

22



2.2 Deep Learning techniques for prediction task

In recent years, there has been a widespread application of deep learning and neural network
techniques in prediction tasks. Among these, the most used are Recurrent Neural Networks
and their derivatives, such as Long Short-TermMemory andGated Recurrent Units networks,
as well as Convolutional Neural Networks. We can train these models on different types of in-
puts andoutputs. This results in amultitude of approaches that canbeused to tackle predictive
tasks. Some examples of the most frequently used models are [67, Chapter 15]:

• Sequence-to-Sequence (seq2seq): this model takes a sequence as input and produces a
sequence as output. We use this model to predict values at each time step.

• Sequence-to-Vector (seq2vec): this model takes a sequence as input and produce a vector
as output. We use this model to forecast several steps ahead simultaneously. It can be
used as an encoder. In this case it transforms the input into a fixed-length vector called
the context vector or hidden state.

• Vector-to-Sequence (vec2sec): this model takes the same vector multiple times as input
and produces a sequence as output. It can be used as a decoder. In this case, it takes the
context vector as the initial hidden state and generates the output sequence step by step.
At each time step, the decoder uses the previous generated output as input to predict the
next step in the sequence.

• Autoencoder: this model takes a sequence as input and produces a sequence as output.
In this case, the input sequence is transformed in a lower-dimensional vector by an en-
coder, and then again in a higher-dimensional sequence by a decoder.

Different types of forecast require different models. For instance, in next activity prediction
tasks, we can use either a seq2vec or seq2seqmodel. The former provides an immediate forecast,
whereas the lattermake aprediction for each time step. In this case, the next activitywe consider
is the last one. For trace suffix prediction, we can use a seq2vecmodel to predict the next activity
iteratively [60]. Alternatively, we can train a seq2seqmodel to predict next values at each time
step. This approach offers the advantage of incorporating error gradients from multiple time
steps, enhancing training stability and speed [67, Chapter 15].

Sequence-to-Sequence models and autoencoders are typically used in language generation
tasks [68], chatbot applications [69], translation tasks [70], and speech recognition [71]. In
these scenarios, a text is provided as an input sequence and the model generates a correspond-
ing output text that could be, for instance, a translated version of the original text or an answer
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to a question. On the other hand, a seq2vec model can be employed for dimensionality reduc-
tion [72], sequence embeddings [73], sentiment analysis, feature classification [74], and the
prediction of the next word in a sentence.

2.2.1 RecurrentNeural Networks
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Figure 2.1: Recurrent neural networks unfold over time. The output of the hidden node serves as input for the same node
in the subsequent time steps. In this way the network creates a temporal information that is shared across all time steps.

Recurrent Neural Networks are ones of the most widely used types of neural network in
problems involving sequential data. RNNsapplicationvaries from language translation, speech
recognition, stock price prediction, and activity prediction [75]. The main feature of RNNs
is their ability to utilize previous outputs as inputs to the same nodes, making them able to
capture temporal information from preceding steps. Fig. 2.1 shows a RNN unit unfold over
time.

The state of the node, represented as ht, and the output, represented as ot, at time step t, are
computed using the following equations:

ht = φ(U⊺xt + V⊺ht−1 + b)

ot = W⊺ht + c

ŷt = ϕ(ot),

(2.1)

where xt is the input vector at the current time step t; ht−1 is the state vector of the previous time
step t − 1; ot is the output vector at time step t; ŷt is the output of the network at time step t,
that is simply ot transformed using an activation function that depends on the problem nature.
The other termsU,V, andW are the weight matrices of the terms, whereas b and c are the bias
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vectors. φ is the state activation function, which is usually the tanh; ϕ is the activation function
of the last layer, which for example can be a softmax for a probabilistic interpretation.

In a RNN, each state of the previous time steps influences the future ones. Essentially, a
neuron generates an output, and then feeds the output back to itself. For example, we consider
the sequence ⟨A,B,C⟩. The aim of the problem is to find the probability of the next activity
in the sequence, that can be activity D, E or F.

1. At time step t = 0, the node receives the first activity A as input encoded in x0. The
state of the node changes to h0 and the node produces an output o0.

2. At the second time step, the node takes the activity B as a vector x1 and combines it with
the previous state h0, which contains information about activity A. Then it generates an
output o1.

3. Similarly, at the third time step, the node takes input x2 and h1, producing an output o2
that encapsulates information about the entire sequence.

4. Finally, the network transforms the last output o2 into a probabilistic vector using the
softmax activation function, producingy2̂, which is a vector representing theprobability
of each possible activity happening at the next time step.

Regarding the outputs ot, we are only interested in the last one. The intermediate steps only
serve the purpose of updating the state ht.

In recurrent neural networks, we perform the weights updating using a technique called
backpropagation through time (BPTT) [76]. Backpropagation is commonly used in super-
vised learning problems to minimize the error of a neural network by updating the weights
of its nodes. In standard backpropagation, we propagate the input through the network and
then we evaluate the error between the network output and the expected output according to
a chosen loss function. Then we compute the derivatives of the weights with respect to the
loss function and update the weights in a way that minimizes the error. BPTTworks similarly
to standard backpropagation, but in addition it has the complexity of dependencies across pre-
vious time steps. As a result, we need to differentiate the error function with respect to the
previous state, allowing the gradients to flow backward across time steps. To facilitate this, we
unroll the network over time and we apply regular backpropagation. In this context, ot rep-
resents the output of a cell at a specific time step, while ŷt represents the output of the entire
network at time step t. Given the loss function:

L(ŷ, y) =
T∑
t=1

Lt(ŷt, yt), (2.2)
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the backpropagation through time updates the weights as follows:
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∂ŷt
∂ot

∂ot
∂W

∂L
∂V

=
T∑
t=1

t+1∑
k=1

∂Lt+1
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(2.3)

RNNs face twomajor limitations: the vanishing and exploding gradient [77], and the short-
term memory problems. The former arises due to the BPTT algorithm, which can result in
deep and unrolled RNNs, that lead to unstable gradients. When gradients become extremely
small, weights are not updated effectively, preventing the network from reaching the mini-
mum (vanishing gradient). Whereas, when gradients are too large, weights updates become
excessively large, causing the gradient to diverge (exploding gradient). The short-term mem-
ory problem occurs when RNNs are trained on long sequences. In such cases, the network
tends to forget information from earlier inputs in the sequence as it progresses. This limitation
threatens the RNN’s ability to capture long-term dependencies. To address these issues, vari-
ants of RNNs have been developed, including Long Short-Term Memory (LSTM) [78] and
Gated Recurrent Units (GRU) neural networks [79].

2.2.2 Long Short-TermMemory

Long Short-Term Memory (LSTM) neural networks are a type of RNN that effectively ad-
dresses the short-termmemory problem. They accomplish this by incorporating a cell state, de-
noted as ct, which enables the learning of long-term dependencies. Unlike traditional RNNs
that rely solely on the previous state ht−1, LSTMs employ a more complex architecture with
gated structures. These allow to control the flow of information in and out of the cell state,
using the sigmoid activation function [78]. An output close to 0 means that the information
is disregarded, while an output close to 1 means that the information is preserved. A detailed
view of a LSTM unit can be seen in Fig. 2.2. Its input consists of the current time step input
xt, the hidden state ht−1, and the cell state ct−1 from the previous time step. In comparison, a
standard recurrent cell misses the cell state component.

The operation of a LSTM cell can be described step-by-step as follows [67, Chapter 15]:

1. In the first step, the input xt and the state of the previous time step ht−1 pass through the
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Figure 2.2: Long Short‐Term Memory unit in detail and unrolled. We show the composition of a LSTM unit, where we can
identify the various gates and their activation functions used to select or discard information.

forget gate, that produces the output ft. Here the gate selects which information from
the cell state to keep and which to throw away.

2. In parallel, the input xt and the state of the previous time step ht−1 are used to compute
it and gt. Later these values pass through the input gate, which decides which values are
updated and which values can be added to the cell state.

3. Then, the unit updates the cell state ct accordingly to the previous decisions.

4. Finally, the output gate takes as input ot, which is the output of the layer, and the current
cell state ct. Then, it decides which information should be read and output at this time
step, producing ŷt = ht.

The equations that govern the process are the following:

ft = σ(W⊺
xfxt +W⊺

hfht−1 + bf)

it = σ(W⊺
xixt +W⊺

hiht−1 + bi)

ot = σ(W⊺
xoxt +W⊺

hoht−1 + bo)

gt = tanh(W⊺
xgxt +W⊺

hght−1 + bg)

ct = ft ⊗ ct−1 + it ⊗ gt
ŷt = ht = ot ⊗ tanh(ct),

(2.4)
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where thematricesWx· andWh· are theweightmatrices of eachof the four layers f, i, o, and g, for
their connection to the input vector xt and to the previous short-term state ht−1, respectively.

LSTM cells have the ability to identify and retain crucial information by storing it within
the long-termmemory state and retrieving it when necessary [80]. This characteristic explains
the success of LSTM networks in capturing long-term patterns within various types of data,
including time series, texts, audio recordings. LSTMs contribute toperformance improvement
in tasks such as languagemodeling [81], speech recognition [82],machine translation [83], and
sentiment analysis [84].

2.2.3 Gated Recurrent Unit
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ht+1
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Figure 2.3: Gated Recurrent Unit in details and unrolled. Inside the unit, we can identify the various gates and their activa‐
tion functions used to select or discard information. In comparison with the LSTM unit, the GRU unit has less gates and it
does not have the cell state.

The Gated Recurrent Unit (GRU) is a simplified variant of the LSTM cell that replaces the
three gates (input gate, forget gate, and output gate) with just two gates: the reset gate and the
update gate [79]. The reset gate controls how much of the past information contained in the
previous output vector ht−1 is disregarded or forgotten. On the other hand, the update gate
determines howmuch of the new information should be incorporated into the current hidden
state. Fig. 2.3 shows a GRU unit in details.
The operation of a GRU cell can be described as follows [67, Chapter 15]:

1. In the first step, the reset gate takes as input the previous output ht−1 and the current
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input xt and produces as output rt. The gate selects how much of the past information
to forget.

2. Meanwhile, the same inputs are passed to the update gate, that produces as output zt.
The gate selects howmuch of the new information should be used to update the current
state.

3. Then, the cell uses the output of the reset gate to compute the candidate hidden state ht̂,
which is the previous hidden state minus the blocked information.

4. Finally, the output of the cell ŷt = ht is computed as a trade-off between the current
memory content ht̂ and the previous output ht−1.

The equations that govern the process are the following:
zt = σ(W⊺

xzxt +W⊺
hzht−1 + bz)

rt = σ(W⊺
xrxt +W⊺

hrht−1 + br)

ht̂ = tanh(W⊺
xhxt +W⊺

hh(rt ⊗ ht−1) + bh)

ŷt = ht = zt ⊗ ht−1 + (1− zt)⊗ ht̂,

(2.5)

where the matricesWx· andWh· are the weight matrices of each of the three layers z, r, and h,
for their connection to the input vector xt and to the previous output vector ht−1, respectively.

GRU-based networks are capable of capturing dependencies over longer sequences while
being computationally less complex than LSTM cells [85]. GRUs have been widely used and
have demonstrated strong performance in tasks involving sequential data analysis, such as nat-
ural language processing [86] and speech recognition [87].

While it may not completely eliminate the problem, the GRU architecture helps to over-
come the vanishing gradient issue compared to traditional RNNs [77][88]. Its gates allow the
cell to reset or forget past information, while controlling the flow of new information into the
hidden state.

2.2.4 Autoencoder

Autoencoder is a different type of neural network architecture that can be used in unsupervised
and semi-supervised learning with temporal data. It is capable of learning a hidden representa-
tion of the data by framing the unsupervised task as a supervised one, where the network input
is used as target. In this way, the network is in charge of reconstructing the input.
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Figure 2.4: Autoencoder architecture. The first half represents the encoder, which projects the input into a lower‐
dimensional representation, encoded in the bottleneck layer. The second half of the architecture is the decoder, which
projects the lower‐dimensional representation of the bottleneck layer into the original dimension of the input. An autoen‐
coder aims to reconstruct the input.

Autoencoders consist of two main parts: the encoder and the decoder. A schematic repre-
sentation is shown in Fig. 2.4. The encoder learns a lower-dimensional representation of the
input, while the decoder recovers the original input. The power of autoencoders lies in the
bottleneck layer, which is the lower-dimensional hidden layer and the last layer of the encoder.
The number of nodes in this layer determines the encoding dimension of the input. A com-
mon use of autoencoders is as a dimensionality reduction tool [89] [90]. After training the
autoencoder, the bottleneck layer can be used as input in unsupervised or supervised problems.
In this way, autoencoders are capable of learning non-linear hidden correlations, unlike other
dimensionality reduction methods that rely on linear projections.

Autoencoders have various applications, including inputs reconstruction anddenoising [91]
[92] [93]. Moreover, they can be used for the purpose of anomaly detection [94] [95] [96]. In
this case, the network is trained to learn its reconstruction patterns. When an anomaly input
is passed to the network, the resulting reconstruction error is be high, indicating that the sam-
ple is anomalous. The problem can be mapped in a semi-supervised learning task by setting
a certain threshold that defines which samples are considered anomalous, or by selecting only
anomaly-free samples as inputs.

30



2.3 Process Forecasting

Neural network architectures previously described can be used to forecast process outcomes.
In this context, a wide variety of targets exists, which can be divided mainly into classification
tasks or regression tasks [58]. Regarding the former category, the most common predicted
features include next activity [53] [59] [61] [63] [28][65] , activity suffix [60] [61] [65] [66],
event and case attributes [97]. On the other hand, the main important regression targets are:
timestamp of next activity [60] [98], remaining time of a trace [55] [60] [61], and duration of
activities [28].

Future prediction is usually framed to a supervised learning framework. In next activity
prediction tasks, the output of the neural network is a probability vector associated with each
possible outcome. The next activity is simply taken by applying the argmax function. How-
ever, this approach may not be optimal for trace suffix problems as it often fails to consider
anomalies, leading to potential loops of activities. In this case, employing random sampling
instead of argmax leads to a higher andmore accurate performance, as it reproduces the actual
trace more frequently [28] [61].

Studies use different metrics to evaluate the performance of the models. In the next activ-
ity prediction task, the most used metric is accuracy [53] [61], that provides a measure of the
ability of model to predict the true label. On the other hand, regarding the activity suffix task,
many studies rely on the Damerau-Levenshtein distance metric [28] [58] [60]. This metric
takes into account the parallel nature of activities and quantifies the minimum number of in-
sertions, deletions, substitutions, and transpositions (swapping of adjacent symbols) required
to transform one string into another. It provides a comprehensive measure of the dissimilarity
between the predicted suffix and the actual suffix.

Concerning time-based prediction tasks, researches prefer theMean Absolute Error (MAE)
over alternatives such as Mean Squared Error (MSE) [55] [60] [61], since the latter tends to
amplify the impact of outliers, whereas the formerprovides amoredirectmeasure of the average
prediction error.
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3
Dataset

Process mining datasets typically consist in event logs that capture the sequences of activities,
their timestamps, and other relevant information related to real-world processes. While almost
every company stores data about internal processes, the majority of this information is consid-
ered confidential and can not bemade publicly accessible. Therefore, only a limited amount of
process mining datasets are available online andmost of the researches in the field is conducted
using the same ones.

For thepurpose of thiswork,we create aProcure-to-Pay (Purchase-to-Pay) dataset fromscratch.
We use the dataset for the production of a process mining demo within the Celonis platform.
Celonis provides various tools for data analysis, including process discovery, conformance and
checking algorithms. In addition, the platform provides a Python environment that allows the
implementation of machine learning and deep learning techniques, as well as preprocessing or
data cleansing scripts.

As a starting point, we consider the SAP table format, as it is the most widely used system in
the business world. We randomly simulate information contained in some specific SAP tables
fields. Every name, number, date, and information in the dataset is fictional and created using
random generators. Subsequently, we relate the tables to each other using foreign keys and we
generate the data model in order to create the event-log.
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3.1 Procure-to-Pay process

Procure-to-Pay, also known as Purchase-to-Pay (P2P), is a series of steps that describe the end-
to-end business process of requesting, purchasing, receiving, and paying for goods from exter-
nal suppliers [99]. The process involves two entities: the buyer, which is the company holding
the P2P process, and the vendors, which are the companies selling the products or services re-
quired by the buyer. The process can be summarized as follows [100]:

1. Needs identification: the buyer identifies goods or services it wants to buy. This demand
can arise from various sources, such as operational requirements, project demands or
maintenance needs.

2. Creating Purchase Requisition (PR): the buyer creates a requisition for the goods or ser-
vices it needs. This internal process includes comparing pricing and terms from dif-
ferent vendors and consulting the purchase history. Purchase requisitions usually in-
clude price, quantity, and any other relevant information. Requests are reviewed and
approved by appropriate authorities within the organization.

3. Sending purchase request: once the purchase is approved internally, the buyer sends a
purchase request to the vendor. This request includes details of the desired goods or
services, such as quantity or material type.

4. Shipping and invoicing: the vendor ships goods to the buyer and sends an invoice for
payment. Invoices typically include agreed-upon price and any applicable terms.

5. Payment: the buyer processes the invoice and makes the payment to the vendor accord-
ing to agreed-upon terms.

6. Receiving goods: after payment is made, the buyer receives the goods from the vendor,
completing the procurement process.

Every company has its own Procure-to-Pay variant: each business handles requests, pricing,
and terms in a unique way [99]. Typically, the end-to-end process involves different systems,
which are usually not efficiently connected with each other. This results in inconsistent data
across the entire chain [101]. For instance, requests may be sent via email and then manually
entered into management systems by employees, resulting in potential data entry errors. Price
informationmaybe outdated or different from that providedby the supplier. Additional terms
and conditions may be included in certain systems but not in others. Purchase requisitions
may be approved by users who are not designated for such activities, causing potential issues.
These deviations from the desired process can result in significant losses, ranging fromfinancial
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penalties to the payment of incorrect prices for wrong quantities of products. Additionally,
companies waste a considerable amount of time on manual work to correct inconsistencies.
While errors can not be completely avoided, they can be minimized.

Internal auditing plays a crucial role in ensuring consistency of information throughout the
chain and compliance with relevant regulations [27]. It identifies areas where errors occur and
quantifies financial and time losses resulting from these inefficiencies. By addressing these is-
sues, companies can enhance their Procure-to-Pay processes. This helps organizations reduce
financial risks, improve overall efficiency, control costs, andmaintain positive supplier relation-
ships. Automation and technology solutions, such as procurement software or Enterprise Re-
source Planning (ERP) systems, can be used to enhance efficiency and effectiveness of the P2P
process. Moreover, process mining techniques can provide smart-insights based on simulation
and predictive monitoring that may increase audit efficiency [102].

3.2 SAP Standard Tables

Systems, Applications, and Products in Data Processing (SAP) is one of the most widely used
Enterprise Resource Planning (ERP) software by companies. ERP systems are designed to
effectively collect, organize, and store business processes, facilitating the continuous and cen-
tralized flow of data. Within SAP, data management is accomplished through a standardized
set of tables that encompass various fields and levels of detail. A SAP table refers to a database
table that stores specific data, such as master data, transactional data, and configuration data,
within a SAP system [103]. Each one of them corresponds to a specific entity or object within
the SAP system, such as customers, vendors, materials, purchase orders, sales orders, etc. Ta-
bles are interconnectedwith each other through foreign keys to establish relationships between
different entities. For instance, some tables store high-level information about orders, while be-
ing connected to tables that contain detailed information about each individual order. Usually
companies do not use all available SAP tables and they often customise them to meet specific
requirements.

For the creation of the dataset used in thiswork, we take inspiration fromdifferent SAP table.
We build tables EKKO, EKPO, EBAN, RSEG, RBKP, EKDS, JSEG, P0002, and MARA. It
follows a brief description of each table:

• EKKO: header of the Purchase Orders (POs). It contains high-level information about
orders.
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• EKPO: it contains details of the Purchase Orders Item present in EKKO.

• EBAN: it contains details of the Purchase Requisitions.

• RBKP: header of the invoices. It contains high-level information about invoices.

• RSEG: it contains details of the invoices present in RBKP.

• EKDS: custom table that contains the changing in price or quantity of the order in
EKPO.

• JSEG: custom table that contains the changing in status of the order items.

• P0002: staff master data. It contains information about employees.

• MARA: it contains information about the material that can be bought.

Some of the table fields used are the standard one provided by SAP, whereas others were
invented on purpose.

3.3 Dataset creation

We simulate the dataset of an industrial company divided into six plants, referring to work-
places situated in different countries. The P2P process of the company concerns the purchase
of materials for production. We begin the simulation of the dataset by creating tables P0002
andMARA.

We consider 100 different materials, categorized into 8 material groups. Each material is as-
sociatedwith one of the 19 different vendors. Additionally, eachmaterial has certain attributes,
including a standard price, expected days for shipment, and expected days for delivery. A ma-
terial can be free-pass or not. The former means that it can be purchased without the need of a
PR, whereas the latter means the contrary. Using this information we create theMARA table,
whose first rows can be seen in Tab. 3.1.

The P0002 table contains the staff master data. Each employee is assigned to one of the
six different plants. Each plant has one designated person, referred to as the supervisor, who is
responsible for purchase requisitions approval. First rowsofP0002 table canbe seen inTab. 3.2.

The two tables just described are created once and kept fixed for any simulation. On the
contrary, the others depend on parameters that can be adjusted, allowing some flexibility in

36



MATNR MATKL MEINS NETPR PEINH RKDST PLIFZ PLICZ LIFNR NAME1

10615744 TPM1 PCS 5 EUR NA 2 8 30003467 Office Supplies
11159536 TPM1 PCS 1 EUR NA 2 6 30003467 Office Supplies
11788404 TPM1 PCS 6 EUR NA 2 8 30003467 Office Supplies
13405872 TPM1 PCS 3 EUR NA 2 5 30003467 Office Supplies
13505536 TPM1 PCS 7 EUR NA 2 9 30003467 Office Supplies
15353960 TPM1 PCS 2 EUR NA 2 7 30002348 Material Delivery S.p.A
16177764 TPM1 KG 4 EUR NA 2 4 30002348 Material Delivery S.p.A
17231232 TPM1 PCS 5 EUR NA 2 6 30002348 Material Delivery S.p.A
18608880 TPM1 PCS 1 EUR NA 2 5 30002348 Material Delivery S.p.A
19297648 TPM1 PCS 2 EUR NA 2 8 30002348 Material Delivery S.p.A
19474160 COLA KG 986 EUR x 10 4 48114031 FeV SRL
19816724 COLA PCS 521 EUR x 3 5 32952574 FoodFY
20667944 COLA KG 463 EUR x 7 6 73419740 Green Company
21595928 COLA PCS 83 EUR x 2 5 43088822 PA Inc.
22818912 COLA KG 636 EUR x 10 5 50759436 O.R.T.O.

Table 3.1: First rows of the MARA table. Fields are defined as follows: material ID (MATNR), material group (MATKL), base
unit of measure (MEINS), net price in purchasing document (NETPR), price unit (PEINH), PR needed indicator (RKDST),
expected days for shipment (PLIFZ), expected days for deliver (PLICZ), vendor ID (LIFNR), vendor name (NAME1).

PERNR ERNAM NAME2 NACHN EMAIL WERKS MATKL

22179495 Marta Lombardi Marta Lombardi marta.lombardi@demo.it US10 COLA
53251766 Andrea Bruno Andrea Bruno andrea.bruno@demo.it BR10 COLA
23246292 Marco Bianchi Marco Bianchi marco.bianchi@demo.it CN10 COLA
33607135 Sara Romano Sara Romano sara.romano@demo.it JP11 COLA
63821277 Gabriele Russo Gabriele Russo gabriele.russo@demo.it DE10 COLA
30090592 Giulia Russo Giulia Russo giulia.russo@demo.it IN10 COLA
84141246 Luca Gallo Luca Gallo luca.gallo@demo.it BR10 EDSA
23329589 Sara Russo Sara Russo sara.russo@demo.it US10 EDSA
49485597 Anna Costa Anna Costa anna.costa@demo.it CN10 EDSA
58569539 Gabriele Rossi Gabriele Rossi gabriele.rossi@demo.it DE10 EDSA
59231227 Gabriele Romano Gabriele Romano gabriele.romano@demo.it JP11 EDSA
86162838 Giulia Moretti Giulia Moretti giulia.moretti@demo.it IN10 EDSA
49826393 Sara Costa Sara Costa sara.costa@demo.it IN10 MPLF
20837115 Riccardo Fontana Riccardo Fontana riccardo.fontana@demo.it CN10 MPLF

Table 3.2: First rows of the P0002 table that shows the supervisors. Fields are defined as follows: employee ID (PERNR),
employee name (ERNAM), employee first name (NAME2), employee last name (NACHN), employee email (EMAIL), plant ID
(WERKS), material group of the supervisor (MATKL).
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the simulation and the possibility of generating datasets with varying characteristics. Some of
these variables include the number of orders to be simulated, the range of dates of the simula-
tion, the number of items per order, and the anomalies ratio. The latter determines frequency
or likelihood of errors occurring within simulated data, such as incorrect pricing, missing in-
formation, or other inconsistencies.
Following we report the simulation process of the dataset:

• Purchase Orders (POs): we simulate 5000 unique orders with dates ranging from Jan-
uary 1, 2019, to December 31, 2022.

• Items per order: for each order, we determine the number of items it contains by ran-
domly sampling values from a beta distribution. This introduce variability in the num-
ber of items present in each order.

• Quantity ordered: for each item, we assign a random integer between 1 and 100 repre-
senting the quantity ordered.

• Item price: for each item, we retrieve the item price from theMARA table.

• Employee and plant: we associate each order with the employee who created it and with
the employee’s plant.

• PurchaseRequisitions (PRs): for each item that needs it, we generate the purchase requi-
sition. These are created by gathering items based onmaterial group, plant, and creation
date. Each requisition is associated with the name of the supervisor responsible for ap-
proval.

• PR creation date: for each item that needs it, we set the PR creation date as the day after
the order creation date.

• Change status date: for each item that needs the PR, we determine the change status
date (rejected or approved) as a random number of days after the PR creation date.

• Sent to vendor date: we determine the date when the PO is sent to the vendor based on
a random number of days after the change status date. If the material does not require a
PR (free-pass material), this date coincides with the order creation date.

• Shipment and delivery: we simulate the shipping and delivery of items. For each item,
we choose dates as random days around the expected shipping and delivery days, both
of which are contained in the MARA table.

By following these steps, we populate the EKKO, EKPO, and EBAN tables. First rows of
EKPO and EBAN tables can be seen in Tab. 3.3 and Tab. 3.4.

Regarding the invoicing process, we follow these steps:
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EBELN EBELP MATNR MENGE DELGE MEINS NETPR PEINH LCWED SEDAT

1000015 1 13505536 87 87 PCS 7 EUR 2019-01-21 2019-01-08
1000010 1 16177764 84 83 KG 4 EUR 2019-01-25 2019-01-21
1000008 1 11788404 12 12 PCS 6 EUR 2019-02-05 2019-01-24
1000008 2 13405872 18 18 PCS 3 EUR 2019-02-05 2019-01-24
1000008 3 16177764 79 79 KG 4 EUR 2019-02-05 2019-01-28
1000007 1 17231232 29 29 PCS 5 EUR 2019-01-29 2019-01-21
1000003 1 10615744 52 52 PCS 5 EUR 2019-02-05 2019-01-24
1000012 1 18608880 39 39 PCS 1 EUR 2019-02-12 2019-01-31
1000012 2 10615744 97 97 PCS 5 EUR 2019-02-12 2019-01-31
1000017 1 19297648 56 56 PCS 2 EUR 2019-02-12 2019-01-31
1000005 1 75603272 80 80 PCS 320 EUR 2019-02-05 2019-01-24
1000006 1 11788404 71 71 PCS 6 EUR 2019-02-08 2019-01-24
1000014 1 16177764 98 98 KG 4 EUR 2019-02-01 2019-01-28
1000016 1 17231232 64 64 PCS 5 EUR 2019-02-06 2019-01-28
1000009 1 13405872 76 76 PCS 3 EUR 2019-01-22 2019-01-15

Table 3.3: First rows of a partial EKPO table. Fields are defined as follows: PO number (EBELN), PO item number (EBELP),
material number (MATNR), ordered quantity (MENGE), delivered quantity (DELGE), PO UOM (MEINS), material net price
(NETPR), price unit (PEINH), latest possible goods receipt (LCWED), shipping date (SEDAT).

BANFN BNFPO BADAT EBELN EBELP BSAKZ MENGE MEINS NETPR PEINH

467282 1 2019-01-02 1000001 3 x 79 KG 618 EUR
168159 1 2019-01-02 1000002 3 x 93 PCS 915 EUR
567413 1 2019-01-02 1000002 4 x 46 PCS 605 EUR
188381 1 2019-01-02 1000003 2 x 49 PCS 916 EUR
370400 1 2019-01-02 1000004 2 x 86 PCS 159 EUR
535829 1 2019-01-03 1000004 2 x 90 PCS 159 EUR
478603 1 2019-01-02 1000005 1 x 79 PCS 320 EUR
217952 1 2019-01-03 1000005 1 x 80 PCS 320 EUR
885684 1 2019-01-02 1000005 2 x 62 PCS 605 EUR
148540 1 2019-01-03 1000006 2 x 89 PCS 845 EUR
252315 1 2019-01-14 1000006 2 x 89 PCS 853 EUR
204181 1 2019-01-03 1000006 3 x 86 KG 702 EUR
714809 2 2019-01-04 1000009 2 x 73 PCS 159 EUR
919363 1 2019-01-04 1000010 2 x 64 PCS 554 EUR
459783 1 2019-01-08 1000010 2 x 63 PCS 554 EUR

Table 3.4: First rows of the EBAN table. Fields are defined as follows: PR number (BANFN), PR item number (BNFPO), PR
date (BADAT), PO number (EBELN), PO item number (EBELP), PR control indicator (BSAKZ), ordered quantity (MENGE),
PO UOM (MEINS), material net price (NETPR), price unit (PEINH).
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• Invoice creation: we create invoices grouping POs by weeks, vendor, and plant. Invoices
refer to POs from the previous week.

• Invoice receipt date: we randomly assign the invoice receipt date as Monday, Tuesday,
or Wednesday. This introduces variability in the invoice reception.

• Invoice expiration date: we set the expiration date of each invoice as 21 days after the
invoice receipt date.

• Invoice payment date: we randomly determine the invoice payment date, which occurs
around the expiration date.

For each invoice, we extract details such as quantity, price, and plant from the related order
in the EKPO table. This ensures consistency between invoices and the corresponding orders.
The steps previously described populate the RSEG and the RBKP tables. First rows of RSEG
table can be seen in Tab. 3.5.

BELNR BUZEI EBELN EBELP MATNR MENGE BSTME NETPR PEINH WERKS

5329562 1 1000015 1 13505536 87 PCS 7 EUR CN10
9552201 3 1000004 1 18608880 67 PCS 1 EUR CN10
5665158 1 1000011 1 17231232 23 PCS 5 EUR DE10
7970906 2 1000002 2 11159536 69 PCS 1 EUR IN10
6250996 3 1000002 1 18608880 12 PCS 1 EUR IN10
9332695 1 1000001 1 11788404 69 PCS 6 EUR JP11
8799348 1 1000009 1 13405872 76 PCS 3 EUR DE10
7421958 3 1000016 1 17231232 64 PCS 5 EUR BR10
7421958 2 1000014 1 16177764 98 KG 4 EUR BR10
5019336 4 1000006 1 11788404 71 PCS 6 EUR BR10
9332695 2 1000001 2 13405872 4 PCS 3 EUR JP11
6250996 2 1000017 1 19297648 53 PCS 2 EUR IN10
7970906 1 1000012 2 10615744 97 PCS 5 EUR IN10
6250996 1 1000012 1 18608880 39 PCS 1 EUR IN10
5019336 3 1000003 1 10615744 52 PCS 5 EUR BR10

Table 3.5: First rows of the RSEG table. Fields are defined as follows: invoice number (BELNR), invoice item number
(BUZEI), PO number (EBELN), PO item number (EBELP), material number (MATNR), ordered quantity (MENGE), PO UOM
(BSTME), material net price (NETPR), price unit (PEINH), plant ID (WERKS).

3.3.1 Anomalies simulation

Until now,wehave simulateddata representing the ideal process. However, to reflect real-world
scenarios, we need to introduce anomalies that affect the data. These include:
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• Three way mismatch: we simulate changes in quantities and prices that are not always
updated in every table. This can result in inconsistencies between invoices and orders.
The EKDS table captures these changes.

• Missing Purchase Requisitions: we delete a certain number of entries from the EBAN
table. This indicates that some PRs are missing.

• Purchase Requisitions rejected but item bought: we define specific PR to be rejected,
even though the corresponding articles are still bought.

• Late payments, shipments, and deliveries: invoices and goodsmay be paid, shipped, and
delivered late, deviating from the expected timelines.

Second and third anomalies refer to the name ofMaverick Buying. A Maverick Buying oc-
curs when an organization makes a purchase without adhering to predetermined terms and
procedures [104]. It typically involves bypassing authorized purchasing channels and making
direct purchases from unauthorized suppliers or vendors.

The amount of these anomalies vary according to plant. Tab. 3.6 reports the anomaly ratios
used for the simulation of our dataset. Rates define different types of events and anomalies.
First of all, they determine the number of orders that go through “Change Price” and “Change
Quantity” activities. Secondly, they characterize the possible discordance between values con-
tained in tables, the ratio of deleted and rejected purchase requisitions, the ratio of Maverick
Buying, and the delay of the invoice payment.

PLANT ANOMALY RATE

IN10 30%
US10 25%
DE10 20%
CH10 15%
BR10 10%
JP11 1%

Table 3.6: Anomaly rate for each plant.

3.3.2 Activity Tables

The main ingredient of process mining is the event log, which we refer to as Activity Table in
the Celonis platform. We create Activity tables by associating each activity with its execution
time and by ordering them. Activities are not explicitly present in enterprises datasets, but they

41



need to be defined by a process expert, as already discussed in Sec. 1.1.2. Tab. 3.7 contains the
list of possible activities of our model and the fields involved in their definition.

AnActivity table needs to be related to a Case table, which contains all unique Case IDs. In
our dataset, the Case tables are EKPO and RSEG. Therefore, we create two Activity tables:

• Activity table forPurchaseOrders (_CEL_PP_ACTIVITIES): this table captures events
related to purchase orders, such as the PR approval cycle, and shipment and delivery
from the vendor. The table includes information such as activity ID, order ID, activity
description, its timestamp, employee involved, plant, and any other relevant detail. First
rows of the table are shown in Tab. 3.8.

• Activity table for Invoices (_CEL_PP_ACTIVITIES_INVOICES): this table captures
events related to the invoices process. It may include information such as activity ID,
invoice ID, activity description, its timestamp, etc. First rows of the table are shown in
Tab. 3.9.

These Activity tables help track and analyze actions and events that occur within the pur-
chase order and invoicing processes. They provide a comprehensive view of the activities per-
formed, allowing for better process understanding, analysis of bottlenecks or inefficiencies, and
identification of patterns or anomalies.
After an initial simulation of the first set of data, we implement an online orders creation by

setting up a script that runs once a day. By doing so, the simulation can accurately represent
the dynamic nature of a real-time P2P process. While we simulate future dates in the back-end
environment, we do not report them in the front-end to maintain a realistic online process.
This allows the creation of open traces, which represent orders that are still in progress and have
not been completed yet. As each day passes, we reevaluate and carry dates in the front-end
environment accordingly. This ongoing simulation helps capture the evolving nature of the
process, enabling analysis of real-time data and evaluation of performance metrics on a day-to-
day basis.

3.3.3 DataModel

The process of creating the event log is not the final step in the data load procedure in a process
mining platform. We need to indicate relationships between tables by connecting their fields
through primary and foreign keys. This enables the use of queries that define, for example,
Key Performance Indicators (KPIs), Key Risk Indicators (KRIs), or Filters that can propagate
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ACTIVITY TABLE FIELDS TIMESTAMP
FIELD DESCRIPTION

Create Purchase Order Item EKKO
EKPO

EKKO.WERKS
EKKO.EBELN
EKPO.EBELP

EKKO.AEDAT Order creation

Create Purchase Requisition
Item

EKKO
EKPO
EBAN

EKKO.WERKS
EKKO.EBELN
EKPO.EBELP

EBAN.BADAT PR creation

Purchase Requisition Item: Ac-
cepted

EKKO
EKPO
EBAN

EKKO.WERKS
EKKO.EBELN
EKPO.EBELP
EBAN.BSAKZ

EBAN.ERDAT PR accepted when EBAN.BSAKZ= x

Purchase Requisition Item: Re-
jected

EKKO
EKPO
EBAN

EKKO.WERKS
EKKO.EBELN
EKPO.EBELP
EBAN.BSAKZ

EBAN.ERDAT PR rejected when EBAN.BSAKZ ̸= x

Change Price
EKKO
EKPO
EKDS

EKKO.WERKS
EKKO.EBELN
EKPO.EBELP
EKDS.NETPR

EKDS.UDATE Change price of the item when EKDS.NETPR
not null

Change Quantity
EKKO
EKPO
EKDS

EKKO.WERKS
EKKO.EBELN
EKPO.EBELP
EKDS.MENGE

EKDS.UDATE Change quantity of the item when
EKDS.MENGE not null

Purchase Order Item: Sent to
Vendor

EKKO
EKPO

EKKO.WERKS
EKKO.EBELN
EKPO.EBELP

EKPO.DRDAT PR accepted (if necessary) and item sent to vendor

Late Shipment EKKO
EKPO

EKKO.WERKS
EKKO.EBELN
EKPO.EBELP
EKPO.SEDAT

EKPO.LEWED
Item late when the expected shipment date
EKPO.LEWED is earlier than the shipment date
EKPO.SEDAT

Goods Shipped EKKO
EKPO

EKKO.WERKS
EKKO.EBELN
EKPO.EBELP

EKPO.SEDAT Item shipped

Late Delivery EKKO
EKPO

EKKO.WERKS
EKKO.EBELN
EKPO.EBELP
EKPO.ITDAT

EKPO.LCWED
Item late when the expected delivery date
EKPO.LCWED is earlier than the delivery date
EKPO.ITDAT

Record Goods Issue EKKO
EKPO

EKKO.WERKS
EKKO.EBELN
EKPO.EBELP

EKPO.ITDAT Item received

Record Invoice RBKP
RSEG

RBKP.WERKS
RBKP.BELNR
RSEG.BUZEI

RBKP.BLDAT Invoice received

Due Date Passed RBKP
RSEG

RBKP.WERKS
RBKP.BELNR
RSEG.BUZEI
RBKP.BPDAT

RBKP.BUDAT
Overdue invoice when the expiration date
RBKP.BUDAT is earlier than the payment date
RBKP.BPDAT

Cleared Invoice RBKP
RSEG

RBKP.WERKS
RBKP.BELNR
RSEG.BUZEI

RBKP.BPDAT Invoice paid

Table 3.7: Activity creation. The first column refers to the activity name, the second and the third to the tables and their
fields involved in the activity, respectively. The fourth column refers to the field taken into account for the timestamp
definition and the last column provides a description of the activity and how it is defined.
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CASE KEY WERKS EBELN EBELP ACTIVITY EVENTTIME SORTING

BR10-1000003-1 BR10 1000003 1 Create Purchase Order Item 2019-01-01 10000
BR10-1000003-1 BR10 1000003 1 Change Quantity 2019-01-01 11000
BR10-1000003-1 BR10 1000003 1 Purchase Order Item: Sent to Vendor 2019-01-01 15000
BR10-1000003-1 BR10 1000003 1 Late Shipment 2019-01-18 21000
BR10-1000003-1 BR10 1000003 1 Goods Shipped 2019-01-24 20000
BR10-1000003-1 BR10 1000003 1 Record Goods Issue 2019-02-05 23000
BR10-1000003-2 BR10 1000003 2 Create Purchase Order Item 2019-01-01 10000
BR10-1000003-2 BR10 1000003 2 Create Purchase Requisition Item 2019-01-02 12000
BR10-1000003-2 BR10 1000003 2 Purchase Requisition Item: Approved 2019-01-03 13000
BR10-1000003-2 BR10 1000003 2 Purchase Order Item: Sent to Vendor 2019-01-08 15000
BR10-1000003-2 BR10 1000003 2 Goods Shipped 2019-01-18 20000
BR10-1000003-2 BR10 1000003 2 Record Goods Issue 2019-02-05 23000
BR10-1000006-1 BR10 1000006 1 Create Purchase Order Item 2019-01-02 10000
BR10-1000006-1 BR10 1000006 1 Change Quantity 2019-01-02 11000
BR10-1000006-1 BR10 1000006 1 Purchase Order Item: Sent to Vendor 2019-01-02 15000

Table 3.8: First rows of _CEL_PP_ACTIVITIES table. Fields are defined as follows: case ID (CASE KEY), plant ID (WERKS),
PO number (EBELN), PO item number (EBELP), activity name (ACTIVITY), activity time (EVENTTIME), activity sorting
order (SORTING).

CASE KEY WERKS BELNR BUZEI ACTIVITY EVENTTIME SORTING

BR10-4936455-1 BR10 4936455 1 Record Invoice 2019-12-03 10200
BR10-4936455-1 BR10 4936455 1 Cleared Invoice 2019-12-17 10400
BR10-4941636-1 BR10 4941636 1 Record Invoice 2019-12-30 10200
BR10-4941636-1 BR10 4941636 1 Cleared Invoice 2020-01-10 10400
BR10-4943181-1 BR10 4943181 1 Record Invoice 2020-10-27 10200
BR10-4943181-1 BR10 4943181 1 Cleared Invoice 2020-11-12 10400
BR10-4943181-2 BR10 4943181 2 Record Invoice 2020-10-27 10200
BR10-4943181-2 BR10 4943181 2 Cleared Invoice 2020-11-12 10400
BR10-4943181-3 BR10 4943181 3 Record Invoice 2020-10-27 10200
BR10-4943181-3 BR10 4943181 3 Cleared Invoice 2020-11-12 10400
BR10-4943181-4 BR10 4943181 4 Record Invoice 2020-10-27 10200
BR10-4943181-4 BR10 4943181 4 Cleared Invoice 2020-11-12 10400
BR10-4943181-5 BR10 4943181 5 Record Invoice 2020-10-27 10200
BR10-4943181-5 BR10 4943181 5 Cleared Invoice 2020-11-12 10400
BR10-4943181-6 BR10 4943181 6 Record Invoice 2020-10-27 10200

Table 3.9: First rows of _CEL_PP_ACTIVITIES_INVOICES table. Fields are defined as follows: case ID (CASE KEY), plant ID
(WERKS), invoice number (BELNR), invoice item number (BUZEI), activity name (ACTIVITY), activity time (EVENTTIME),
activity sorting order (SORTING).
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across every table that contains affected objects. The set of correlations between fields is re-
ferred to as the datamodel. Loading the data model ensures consistency across data, including
uniqueness of primary keys and establishment of one-to-many (1 : N) relationships. The data
model resulting from the simulated dataset can be seen in Fig. 3.1.

Figure 3.1: Data model for the simulated dataset. In the center there is the Case table EKPO, which is connected with
almost every other tables with 1 : N andN : 1 connections. The second Case table is the RSEG, which is connected with
the invoices Activity table, RBKP and EKPO. Table P0002 is present three times with different names in order to allow the
creation of some particular queries.

3.3.4 Process Explorer and Variant Explorer

Using the Celonis tool called Process Explorer, we can obtain a clear and comprehensible pic-
ture of the resulting processes. One of itsmain characteristics is flexibility to expand or collapse
the number of activities and links displayed. Additionally, it allows us to connect multiple pro-
cesses together and visualize them in a user-friendly picture. An example of a process view of
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the dataset given by the Process Explorer is shown in Fig. 3.2.
Another useful Celonis feature is the Variant Explorer, which enables to select and visualize

specific process variants. The first variant represents the most frequently replayed trace and
usually the ideal process. In our case, as shown in Fig. 3.3, the first variant reflects the ideal
process flow of not free-pass materials.

By exploiting the visual capabilities of the Celonis tools, we get a simplified view of the ideal
process:

1. An employee creates an order, which can contain multiple items. Some items may re-
quire a purchase requisition (PR) before they can be bought.

2. Theorderedquantity ormaterial pricemay changeduring theprocess. Quantity changes
can occur due to internal requirements, while price changes can result from seller up-
dates of the material price list. If a material is not free-pass, any quantity or price change
requires a new PR, deprecating the previous one. Items can only be purchased if the last
valid PR is approved, otherwise the purchase cannot proceed.

3. Once the supervisor approves the item, the order is sent to the vendor for processing.

4. Vendors share with the buyer invoices related to items grouped by week. The company
has 21 days to pay these invoices.

5. Vendors typically wait for all items ordered during the previous week before shipping
the goods.

Different variants can exist within the process. For example, an itemmay be sent to vendors
after a change in price or quantity, or even after the PR is rejected. These variations reflect the
potential complexities and deviations that can occur within the procurement process in reality.

3.4 Features encoding

Features present in a business dataset can be categorized as either categorical or numerical.
On the other hand,we can encode categorical features using one-hot encodingor embedding

techniques. In our experiments, we test both encoding methods. One-hot encoding purpose
is to represent each category as a binary vector, where all elements are zero except for the index
corresponding to the category, which is set to one. Using this technique, a sequence of activities
such as ⟨A, B, C ⟩ is encoded as:

A︷ ︸︸ ︷
[[1, 0, 0],

B︷ ︸︸ ︷
[0, 1, 0],

C︷ ︸︸ ︷
[0, 0, 1]] .
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Figure 3.2: Process Explorer example of the simulated dataset. Different colors refer to different processes. It is possible
to choose to “close” one process in order to visualize only the other one. This capability is particularly valuable for investi‐
gating different departments within a company and understanding their specific subprocesses. In this particular view we
show all the activities and links of the simulated dataset.
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Figure 3.3: Variant Explorer example of the simulated dataset. The left panel shows the first variant, whereas the right one
shows variants from 1 to 5. It is possible to select which variants one wants to display.

However, this data representation only captures categorical information and does not consider
temporal aspect, such as the time duration between activities.
Instead, we use embedding to convert categorical features into a fixed-length vector of de-

fined size. In many cases, it is impractical to use one-hot encoding for features with a large
number of unique values, as it leads to sparse matrices. For example, in a NLP problem the
vocabulary size is typically very large. In this case, embedding techniques enable to capture
relevant information while reducing data dimensionality, allowing for more efficient and effec-
tive processing and analysis [105]. In Tab. 3.10 we report the cardinalities of the features used
in our work.

FEATURE CARDINALITY

Activity 11
Purchase Requisition (PR) 2
Plant ID 6
Vendor ID 19
Material Group 8
Material ID 100

Table 3.10: Categorical features used and their cardinality.
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Regarding the embedding encoding for categorical features, we test twodifferent approaches.
In the first one, we adopt a separate neural network for each category. Neural networks take
the integer encoded categories as input and pass it through a Keras [106] Embedding layer
with an output dimension of (1, out_dim). Then, networks reshape the output to (, out_dim)

and concatenate it with all the others. Finally, the resulting vector is fed into the main neural
network for the prediction task. In the second approach, we concatenate all categorical features
and then we pass the resulting vector to an Embedding layer with an output dimension of
(n_categories, out_dim), then reshaped to (, n_categories× out_dim).

Embedding layers are set to trainable = True, which means that they are updated during the
training process. The layers capture relationships, dependencies, and similarities between dif-
ferent categorical values based on the output of the entire neural network, without relying on
one-hot encoding. For example, we consider a dataset that contains the annual income for indi-
viduals. Wehave additional categorical features such as gender and region. These two categories
may not have a direct relationshipwith each other, but they are correlated once considering the
third variable, the total income. Natural Language Processing problems usually rely on embed-
ding methods, since categorical variables such as words or tokens, need to be embedded into
lower-dimensional representations because of the vocabulary size.

3.5 Resulting dataset

For the purpose of the experiments conducted in this work, we select a series of field from the
created tables:

• Case ID: a join of Plant ID, PONumber and PO ItemNumber.

• Activity Name: name that characterizes the activity.

• Eventtime: time at which the activity is performed.

• Sorting: order of the activity.

• User Name: name of the employee responsible of the activity.

• RKDST: flag for free-pass material.

• NAME1: Vendor ID.

• ELIKZ: flag for closed or open trace.
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• MATKL: itemmaterial group.

• MATNR: itemmaterial number.

• MAVP: flag for Maverick Buying anomaly.

• TWMS: flag for three way mismatch anomaly.

We merge the two processes together since we want to consider them as subprocesses of the
same one. Some activities may not refer to a specific action or event, but they are informative.
In this way, an end user can have a rapid overview of event information. For example, “Late
Shipment”, “Late Delivery” and “DueDate passed” activities occur if the dataset records a par-
ticular combination of fields. Nevertheless, in any case, no data nor field is recorded following
the occurrence of these events. Therefore, wemap these activities in features for prediction pur-
poses and remove them from the Activity table. Then, we separate the closed orders from the
open ones. The dataset resulting from our simulation is composed as follows: 10409 PO items
(process instances) and 93028 activities for the closed orders, 198 PO items and 1363 activities
for the open orders.

Then, we proceed to the encoding phase. We map each trace into a one-hot encoded ma-
trix and each case attribute into either a one-hot encoding or a categorical encoding, depend-
ing on the performed experiment. We transform the activity timestamp information in a dif-
ference in time between the previous activity and the actual one, and next we scale it using
StandardScaler.

Neural networks forpredictiveprocessmonitoring aimat learningprediction foropen traces,
therefore we transform traces into partial traces. In this way, the network is capable of learning
dependencies in every step of the process. For each trace of length n, we create a partial trace
for each windows seq[0] : seq[k]with 0 ≤ k ≤ n− 1 and seq[k+ 1] as target. For example, if we
have a trace ⟨A,B,C,D ⟩with n = 4, the partial traces resulting are ⟨A ⟩with target B, ⟨A,B ⟩
with target C, and ⟨ A,B,C ⟩ with target D. In terms of network inputs, we transform the full
trace:

A︷ ︸︸ ︷
[[1, 0, 0, 0],

B︷ ︸︸ ︷
[0, 1, 0, 0],

C︷ ︸︸ ︷
[0, 0, 1, 0],

D︷ ︸︸ ︷
[0, 0, 0, 1]]

50



into:

A︷ ︸︸ ︷
[[1, 0, 0, 0]] −→

B︷ ︸︸ ︷
[0, 1, 0, 0]

A︷ ︸︸ ︷
[[1, 0, 0, 0],

B︷ ︸︸ ︷
[0, 1, 0, 0]] −→

C︷ ︸︸ ︷
[0, 0, 1, 0]

A︷ ︸︸ ︷
[[1, 0, 0, 0],

B︷ ︸︸ ︷
[0, 1, 0, 0],

C︷ ︸︸ ︷
[0, 0, 1, 0]] −→

D︷ ︸︸ ︷
[0, 0, 0, 1] .

By considering every possible partial trace, we create 75050 process instances.
Since each trace has a different length, we need to pad each sample to make it suitable to be

used as input by the neural network. We pad each partial trace with respect to the longest one,
using vectors of zeros of sizes (lengthmax − lengthtrace, 11), where 11 is the number of different
activities and 22 is lengthmax. At this point, we separate our dataset in training set of length
45030, validation set of length 15010, and test set of length 15010.
An example of a trace encoding process can be seen in Fig. 3.4
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Figure 3.4: Trace encoding using additional attributes. On the left panel is shown the trace and the one‐hot encoding of
the activities. On the right panel are shown inputs for the neural network, which are the trace encoded and padded and
additional features regarding the trace.
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4
Experiments and Results

In the second chapter we presented the predictive process monitoring problem. Nowwe want
to apply the deep learning techniques introduced before to the simulated dataset. Experiments
are divided into several groups. First of all, we investigate the task of predicting the next activ-
ity using different types of neural networks and different architectural configurations. After
performing the first set of experiments, we select a specific architecture and we start adding fea-
tures as inputs to the model and observe how performances vary. We apply different types of
encodingmethods to additional features. Finally, we explore different prediction tasks, such as
predicting the execution time of the next activity and estimating the probability of anomalies.

We perform the experiments using deep learning API Keras. Its Functional API allows us
to build arbitrary model architectures with multiple inputs and outputs. We train models for
60 epochs with a batch size of 64, except where indicated otherwise. We select the number
of epochs based on the observation that most models reach saturation after few epochs, typ-
ically around 20-30. For each experiment, we save the model with the smallest loss function
value, evaluated over the validation set across the epochs. Then, we compare results obtained
by performing prediction on the test set.

4.1 Next Activity prediction

End users can exploit deep learning models to predict the likelihood of upcoming events for
open traces. This allows them to prioritise orders that have a high probability of containing

53



anomalous activity at the next step. To accomplish this, we focus our task on evaluating pre-
diction probabilities using scoring rules, previously illustrated in Sec. 1.2.1. We build a custom
weighted version of the categorical cross-entropy to be used as loss function and to effectively
evaluate models predictions. Weights used in this metric are based on the target activity fre-
quencies in the training set. The approach is particularly beneficial for forecasting uncommon
activities since it assigns greater importance to correctly predicting less frequent events. In fact,
in process mining these are often associated with anomalies, therefore assigning them greater
weight helps improve model performances in detecting such outliers.
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Figure 4.1: Confusion matrices comparison with and without the weighted categorical cross‐entropy. Matrices are nor‐
malized over true labels. The left panel shows the confusion matrix trained using the standard categorical cross‐entropy
function, whereas on the right panel we can see the prediction of the model trained using the weighted categorical cross‐
entropy function. The first model never predicts activities “Change Price” and “Purchase Requisition Item: Rejected”, which
are instead present in the second confusion matrix.

Fig. 4.1 shows a comparison between confusionmatrices generated by twomodels using the
same architecture, but trained using different loss functions. The left panel shows the predic-
tion results of the model trained using the standard categorical cross-entropy, while the right
panel shows the confusion matrix generated by the model trained using the weighted loss ver-
sion. The first model hardly predicts non frequent activities such as “Change Price”, “Change
Quantity” and “Purchase Requisition Item: Rejected”. The secondmodel predictions, on the
other hand, are more balanced.

In a multiclass classification task, researches mostly use the softmax activation function to
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convert neural networks output logits into probability values. However, sometimes this leads
to overconfident or miscalibrated predictions. To overcome this issue, we calibrate the neural
network using a post-processing technique known as Temperature Scaling. This method aims
to refine the softmax activation function andmake output probabilitiesmore accurately reflect
the true likelihood [107]. GivenN possible classes, Temperature Scaling transforms the logits
oi in the following probability distribution:

P(ŷ) =
eo/T

N∑
i=0

eoi/T
, (4.1)

where the parameter T is the one that minimizes the loss function.

In this set of experiments, we train networks in the task of predicting the next activity. We
explore various aspects, such as changing model architectures, varying the number of neurons
per layer, selecting different input features and feature encoding methods. By experimenting
different neural network configurations, we aim to compare the most used deep learning ap-
proaches. Furthermore, we want to apply the resulting models to open traces in order to pro-
vide an online operational supporting framework for end users in a process mining platform.

Selected models have a similar structure. Firstly, the activity input, encoded in one-hot vec-
tor, passes through a Masking layer, which has the task of masking the padding vectors, and
then goes through hidden layers. Finally, the output part consists in a Dense layer with 11
nodes, representing the possible activities in the dataset. Then, we apply the softmax activa-
tion function, which computes the probability of each activity occurring at the next step in
the process. We train models using the weighted categorical cross-entropy loss function. For
optimization, we use the Adam optimizer with a learning rate of 0.0001. After the training
phase, we evaluate models by applying the Temperature Scaling method over the Dense layer
output, before the softmax activation function.
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4.1.1 Architecture exploration

InputLayer

input: output:

[(None, 22, 11)] [(None, 22, 11)]

Masking

input: output:

(None, 22, 11) (None, 22, 11)

SimpleRNN

input: output:

(None, 22, 11) (None, 16)

Dense

input: output:

(None, 16) (None, 11)

Softmax

input: output:

(None, 11) (None, 11)

Figure 4.2: RNN_arch_1 model architecture. Other standard model architectures are the same but the SimpleRNN
layer is replaced by LSTM and GRU layers. In this particular case, the hidden layer has 16 nodes and the argument
return_sequence is set to False, since its the last temporal layer.

In the architecture exploration experiment, we investigate the performance of different neu-
ral networks for the prediction task. We use architecture such as RNN, LSTM, GRU, and
autoencoder-based. An example of a model representing the first three networks categories is
illustrated in Fig. 4.2.

Regarding the autoencoder-based network, we first train an autoencoder in the task of re-
constructing input sequences. Its first hidden layer is a SimpleRNN layer with the parameter
return_sequence set to True. This makes the layer output one hidden state for each input
time step. Thebottleneckoutput is an-dimensional vector that is repeatedusingRepeatVector
layer tomatch the input dimension. The last hidden layer is the same as thefirst one. Later there
is a TimeDistributed layer acting on a Dense layer with 11 neurons. In this way, the network
produces an output for every single time step, allowing the output to match the input. The
autoencoder learns to encode the input into a lower-dimensional representation and then to
decode it back to the original format. After the autoencoder training, we extract its bottleneck
layer, which captures the compressed representation of the input sequences. Finally, we use
this layer as input for a feedforward neural network. The overall process is depicted in Fig. 4.3.

Results

InTab. 4.1we provide a summary of the results achieved from the architecture exploration. We
report only models that did not show signs of overfitting. These are identified by analyzing the
learning curves, one of which can be seen in Fig. 4.4. Neural networks have different number
of trainable parameters, but they reach similar performances.

The second autoencoder-based architecture achieves the lowest loss value among the other
models, but the total number of trainable parameters is higher. In addition, autoencoder-based
models require to be trained for more epochs before reaching loss function saturation. On the

56



}

}
ENCODER

DECODER

BOTTLENECK

Figure 4.3: autoencoder_arch_1 model architecture. The left panel shows the autoencoder trained in the task of reproduc‐
ing the inputs. The bottleneck layer learns a 8‐dimensional representation of the activity vectors, and it is then used as
input of the feedforward neural network shown on the right panel. In the second networks, the Functional layer is set
to non trainable because node weights have already been defined in the first network.

other hand, it is important to note that the first part only needs to be trained once, and that the
number of parameters of the second part is significantly lower than in the other models.

LSTM layers have a significantly higher number of parameters than others, but this only
results in a small performances improvement. In our case, since traces are not too long, RNN
layers are able to deal with the amount of information availablewithout encountering the short
memory problem. For real-world datasets it may be necessary to use more complex layers.
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NETWORKNAME INPUT
FEATURES

PREDICTED
FEATURES

HIDDEN
LAYERS

TRAINABLE
PARAMETERS LOSS

RNN_arch_1 Activity Activity RNN 16 635 0.841
RNN_arch_2 Activity Activity RNN 32 1771 0.840
GRU_arch_1 Activity Activity GRU 16 1579 0.848
GRU_arch_2 Activity Activity GRU 32 4683 0.836
LSTM_arch_1 Activity Activity LSTM 16 1979 0.842
LSTM_arch_2 Activity Activity LSTM 32 5995 0.839

autoencoder_arch_1∗ Activity Activity
RNN 16 encoder
RNN 8 bottleneck
RNN 16 decoder

99 (1235) 0.836

autoencoder_arch_2∗ Activity Activity
RNN 32 encoder
RNN 16 bottleneck
RNN 32 decoder

187 (4123) 0.834

∗ model trained for 200 epochs.

Table 4.1: Architecture exploration summary results. We reported only not overfitted models. Regarding the autoencoder‐
based architectures, the number of parameters in brackets is the one of the autoencoder network (the one of the left panel
in Fig. 4.3), whereas the other is the one of the first part.

0 20 40 60
Epoch

1.00

1.25

1.50

1.75
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2.25

Lo
ss

Model Loss

Train
Validation

Figure 4.4: RNN_arch_1 loss learning curves on the training and validation set over the epochs.

4.1.2 Features exploration

In this experiment, we investigate the impact of incorporating additional features to neural net-
works inputs. Since the loss values of theprevious experimentwere similar, we selectRNN_arch_1
as themain fixed architecture for this experiment given the fact that it has the lowest complexity
among all.

Non-temporal features do not require to be fed to temporal layers such as SimpleRNN, there-
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fore we pass them only to the final Dense layer of the network. An example of the model ar-
chitecture with additional non-temporal inputs can be seen in Fig. 4.5. On the contrary, the
temporal feature, representing the time difference between activities, needs to be incorporated
into temporal layers, just like traces inputs. To achieve this, we concatenate activity vectors
and time feature vectors in different ways, depending on the model. An example of a model
architecture with time feature inputs can be seen in Fig. 4.6.

InputLayer
input:

output:

[(None, 22, 11)]

[(None, 22, 11)]

Masking
input:

output:

(None, 22, 11)

(None, 22, 11)

SimpleRNN
input:

output:

(None, 22, 11)

(None, 16)

Concatenate
input:

output:

[(None, 16), (None, 1)]

(None, 17)

InputLayer
input:

output:

[(None, 1)]

[(None, 1)]

Dense
input:

output:

(None, 17)

(None, 11)

Softmax
input:

output:

(None, 11)

(None, 11)

Figure 4.5: feature_pr model architecture. Additional inputs can be
inserted using Keras Functional API. The input is concatenated to the
output of the SimpleRNN layer and the resulting vector is passed to
the final layers.
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Figure 4.6: feature_time_4 model architecture. We treat the time
feature as a temporal feature as well as the activity input. The out‐
puts of the SimpleRNN layers are then merged together using a
Concatenate layer. In this particular network, it is present an addi‐
tional Dense layer before the output layers.

Results

Experiments results indicate that including case attributes in themodel training phase generally
leads to an improvement in its performance. Specifically, the addition of the PR feature, which
has value 0 when the item does not require a PR and value 1 when it is needed, leads to a lower
loss function value. This attribute condenses a significant amount of information into a single
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binary number. By incorporating it, models become better equipped to identify which activi-
ties are likely to occur andwhich are not. A comparison between confusionmatrices ofmodels
trainedwith andwithout additional input features can be seen in Fig. 4.7. Themost important
improvement is the classification of the activity “Create Purchase Requisition Item”, which is
well predicted in the second model, but not in the first. The main difference between process
variants concerns materials that do or do not require PR.Most of the additional features carry
this information.
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Figure 4.7: Comparison between confusion matrices of models trained with (right panel) and without (left panel) attributes
as input. The second confusion matrix shows an important improvement in the prediction of the activity “Create Purchase
Requisition Item activity”, which is an attribute contained in the majority of the features. Overall the predictions of the
second model are more accurate than the ones of the first.

On the other hand, the inclusion of time feature do not result in a noticeable improvement
in models performances. This outcome was expected, as in our dataset the temporal attribute
is directly correlated with process activities in a standard manner and it does not provide any
additional information. In a real-world scenario, for example, an accumulation of delays in the
activities execution time can potentially increase the likelihood of failures occurring. Tab. 4.2
shows a summary of the results obtained during experiments involving the addition of non-
temporal features, whereas results about the inclusion of time features are provided in Tab. 4.3.
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NETWORKNAME
INPUT
FEATURES

PREDICTED
FEATURES

HIDDEN
LAYERS

TRAINABLE
PARAMETERS

LOSS

feature_pr Activity, PR Activity RNN 16 646 0.792
feature_plant Activity, Plant Activity RNN 16 701 0.805
feature_vendor Activity, Vendor Activity RNN 16 844 0.787
feature_matgroup Activity, Mat Group Activity RNN 16 723 0.791
feature_material Activity, Mat Number Activity RNN 16 1735 0.789

Table 4.2: Feature exploration summary results. The number of trainable parameters of the networks is similar and
changes only according to the input dimension of the feature used. The model that reaches the lowest loss score is fea‐
ture_vendor. It is important to notice that attributes share mutual information. For example, the vendor attribute contains
information about PR, since some vendors only sell free‐pass materials.

NETWORKNAME
INPUT
FEATURES

PREDICTED
FEATURES

HIDDEN
LAYERS

TRAINABLE
PARAMETERS

LOSS

feature_time_1 Activity, Timestamp Activity RNN 16 shared 651 0.844

feature_time_2 Activity, Timestamp Activity
RNN 16 act
RNN 16 time

811 0.840

feature_time_3 Activity, Timestamp Activity
RNN 16 act
RNN 8 time

803 0.847

feature_time_4 Activity, Timestamp Activity
RNN 16 act
RNN 16 time
Dense 16 shared

1451 0.824

Table 4.3: Time feature exploration summary results. Adding other temporal layers leads to an increase in the models
complexity. In this case, in order to reach a lower score than the vanilla model, it is necessary to add a Dense layer as
hidden layer. Adding more temporal layers does not result in improving performances, but only in adding complexity.

4.1.3 Multiple features and encoding exploration

Until now, we processed categorical features using one-hot encoding method. One of its main
issue is that the resulting vector could be a large sparse matrix. Therefore, we conduct exper-
iments comparing different encoding methods and different input features. Specifically, we
focus on four main architecture types: the first one is one-hot encoding-based fully shared, the
second is one-hot encoding-based specialized, the third one is embedding-based fully shared,
the last one is embedding-based specialized. In fully shared architectures, we concatenate fea-
tures together at the beginning and consider them as one vector when applying the encoding
methods. In specialized architectures, on the other hand, we apply encoding methods to sep-
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arate features. We test different configurations of the four main architectures, including vari-
ations in the number of nodes and in the dimensionality of the Embedding layers. Fig. 4.8
shows an example of the first model architecture type.
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Figure 4.8: One‐hot encoding shared model architecture. We process temporal features as in the network feature_time_4.
The output of the temporal shared Dense layer is concatenated along with every case attribute. We pass the resulting
vector of size 150 through an intermediate Dense layer and then through the usual output layers.

Results

We start by exploring different attributes combinations as input by observing their contribu-
tion in themodel performances. Initially, we add features thatmostly decrease the loss function
in the previously experiment. A summary of the results achieved is reported in Tab. 4.4. When
adding time and plant features, the loss substantially reduces, whereas it remains stable when
adding material group and PR attributes. This may be due to the fact that some attributes
share the majority of information, and thus their combination only adds complexity. On the
other hand, model multi_feature_5 achieves better results because the plant attribute carries
new information and therefore helps the model in the activity prediction.
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Regarding the encoding exploration, the main results obtained from the experiments are
summarized in Tab. 4.5. Outcomes indicate that one-hot outperforms the use of embedding
as encoding method. This finding suggests that in our specific scenario the neural network
is capable of effectively handling the one-hot encoded features. This may be due to the fact
that the features cardinalities are not excessively large. Therefore models do not need to learn
a hidden representation, that can result in increasing complexity. However, it is worth noting
that it is possible to design an embedding model that can be trained only once and then reused
for prediction tasks. This leads to a lower number of trainable parameters in the subsequent
stages of the network, contributing to its efficiency. Moreover, in a real-world scenario the
number of unique values for attributes can be thousands. In this case, embedding may be
necessary.

NETWORKNAME INPUT
FEATURES

PREDICTED
FEATURES

HIDDEN
LAYERS

TRAINABLE
PARAMETERS LOSS

multi_feature_1 Activity, Vendor, Mat
Number Activity RNN 16 1944 0.787

multi_feature_2 Activity, Vendor, Mat
Number, Time Activity

RNN 16 act
RNN 16 time
Dense 16 shared

2760 0.761

multi_feature_3
Activity, Vendor, Mat
Number, Time, Mat
Group

Activity
RNN 16 act
RNN 16 time
Dense 16 shared

2848 0.764

multi_feature_4
Activity, Vendor, Mat
Number, Time, Mat
Group, PR

Activity
RNN 16 act
RNN 16 time
Dense 16 shared

2859 0.764

multi_feature_5
Activity, Vendor, Mat
Number, Time, Mat
Group, PR, Plant

Activity
RNN 16 act
RNN 16 time
Dense 16 shared

2925 0.717

Table 4.4: Multiple feature exploration summary results. The last model, that includes all possible attributes, reaches the
lowest loss function value. When adding the time feature, we change the architecture to match the one of feature_time_4.
In any case, additional non‐temporal attributes are concatenated to the output of the temporal Dense layer and the
resulting vector is used as input to the last Dense layer, as shown in Fig.4.8.

4.2 Multioutput prediction

In a predictive process monitoring task, we are not only interested in the next activity that can
occur, but also in the prediction of cases attributes, such as the time at which the next activity
will occur, the resource that will perform it, etc. We approach the problem by training our
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NETWORKNAME INPUT
FEATURES

PREDICTED
FEATURES

HIDDEN
LAYERS

TRAINABLE
PARAMETERS LOSS

all_features_emb_1
Activity, PR, Plant,
Vendor, Mat Group,
Mat Number, Time

Activity

RNN 16 act
RNN 16 time
Dense 16 shared
Embedding(50)NT shared

10723 0.721

all_features_emb_2
Activity, PR, Plant,
Vendor, Mat Group,
Mat Number, Time

Activity

RNN 16 act
RNN 16 time
Dense 16 shared
Embedding(n_class//2)NT

8036 0.718

all_features_ohe_1
Activity, PR, Plant,
Vendor, Mat Group,
Mat Number, Time

Activity
RNN 16 act
RNN 16 time
Dense 16 shared

3867 0.713

all_features_ohe_2
Activity, PR, Plant,
Vendor, Mat Group,
Mat Number, Time

Activity
RNN 16 act
RNN 16 time
Dense 16 shared

5227 0.714

Table 4.5: Feature and encoding exploration summary results. The first model has the highest number of trainable param‐
eters because of the shape of the Embedding output, which is (5, 50). Generally, embedding‐based networks have a
higher number of trainable parameters but this do not results in higher scores.

network in the task of performing multiple output prediction.
We start by predicting the next activity and the time difference of its execution. We tackle

the time feature prediction as a regression problem. Therefore this output does not require the
final Softmax layer but only a Dense 1 layer. We use the Mean Absolute Error as loss func-
tion. Then, we approach the problem of classifying the Maverick Buying in a supervised way.
Finally, we introduce the prediction of traces activities encoded as attributes (“Late Shipment”,
“Late Delivery” and “Late Payment”), along with the three way mismatch anomaly. These are
classification predictions and therefore we use an output similar to the activity one, but with
a Sigmoid activation function as last layer and the binary cross-entropy as loss function. We
apply an appropriate Temperature Scalingmethod also to these outputs. An example of a used
model architecture is shown in Fig. 4.9.

Results

Tab. 4.6 reports a summary of the loss values obtained. Even if we need to train models for
more epochs to reach similar loss values, results obtained by training the network on multiple
outputs are lower than those obtained by training the network on a single output. This mainly
concerns time prediction. Moreover, single outputmodels tend to overfitmore than the others.
Learning curves are shown in Fig. 4.10 and Fig. 4.11. We do not report the learning curves for
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Figure 4.9: Multioutput prediction model architecture. We used all attributes as inputs. The outputs of this model are
next activities (Dense 11 layer), next activity execution time (Dense 1 layer) and Maverick Buying anomaly (Dense 1
layer). First and last outputs are passed to Softmax and Sigmoid activation functions, respectively, because they are
classification tasks.

the activity predictions since they are similar to the ones observed for single output models.
Fig. 4.12 and Fig. 4.13 display models confusion matrices of the additional prediction tasks.

Learning curves of some target continue to decrease even after 200 epochs. This suggests the
need to trainmodels formore epochs, but at risk of overfitting, or to increase the complexity of
the network. One of the main problem of this multioutput approach is that adjusting one pre-
dictionmay result in overfitting another. It can be difficult to find the rightmodel architecture
and reach a compromise between all predictions.

Predictions of features related to delay activities and the three way mismatch anomaly are
significantly less accurate than others. Regarding the firsts, this may be due to the fact that
we did not simulate related dates based on specific vendors or materials, but mostly randomly.
The second anomaly, on the other hand, is related to activities “Change Price” and “Change
Quantity”, which are plant-based, but its ratio is fixed for every material and vendor. In a real-
world scenario these characteristics can have a stronger correlation with case attributes.
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Figure 4.10: multi_output_4 learning curves of time, Maverick Buying and 3‐way‐mismatch anomaly predictions. The loss
function for the first prediction task is MAE, whereas for the lasts we use the binary cross‐entropy loss. The loss function
of the time prediction continues decreasing after 200 epochs, but increasing the number of parameters of training for
more epochs results in overfit.
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Figure 4.11: multi_output_4 learning curves of Late Shipment, Late Delivery and Late Payment. The model is trained using
binary cross‐entropy. For the second prediction task, the model overfit.
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NETWORKNAME PREDICTED
FEATURES

TRAINABLE
PARAMETERS

ACT
LOSS MAE MAVP

LOSS
TWMS
LOSS

LATES
LOSS

LATEP
LOSS

LATED
LOSS

multi_output_1∗ Activity, Time 3884 0.720 0.442

multi_output_2∗ Activity, Time,
Mav. buying 3901 0.718 0.450 0.159

multi_output_3∗

Activity, Time,
Mav. buying,
3-way-mism., Late
ship., Late paym.,
Late del.

4513 0.717 0.454 0.1587 0.533 0.543 0.426 0.466

multi_output_4∗

Activity, Time,
Mav. buying,
3-way-mism., Late
ship., Late paym.,
Late del.

4771 0.714 0.453 0.156 0.533 0.537 0.425 0.462

∗ model trained for 200 epochs.

Table 4.6: Multioutput prediction summary results. We test different feature predictions, such as next activity time execu‐
tion, Maverick Buying, 3‐way‐mismatch, Late Payment, Late Shipment and Late Delivery, using different model architec‐
tures. Models overfit for some prediction tasks.
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Figure 4.12: multi_output_4 Maverick Buying and Three‐way‐mismatch confusion matrices.
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Figure 4.13: multi_output_4 anomalies confusion matrices, in order: Late Shipment, Late Delivery, and Late Payment.
Results obtained are worse than in other prediction tasks.
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5
Conclusion and further works

The main contribution of this thesis is to illustrate a process mining application, with focus
on the utilization of deep learning for predictive process monitoring. The work is part of a
larger demoproject aimed at showcasing processmining applications and strengths to potential
customers.
The dataset presented in this thesis serves as a simplified representation of a real enterprise

dataset, providing a foundation for further implementations and explorations. We can add
further tables and fields to enhance the complexity of the process and better mimic real-world
scenarios. By introducing new fields, it becomes possible to leverage these additional features
for deep learning purposes, enabling more comprehensive analysis and prediction tasks. The
expansion can also involve incorporating new anomalies, such as random variations and miss-
ing data, thereby reflecting the challenges faced in real business environments. Moreover, this
dataset can be valuable for training new users on process mining platforms, in particular with
regard to extraction and transformation phase. Indeed, this phase, which involves extracting
relevant information from raw event logs and transforming it into a suitable format for analysis,
is often refined through experience.
In the deep learning experiments conducted, the evaluation approach was centered around

the probability distribution rather than solely focusing on the most likely activity prediction.
Models tend to predominantly predict the most likely variant, which typically corresponds to
the process without anomalies. But this would be useless in a predictive process monitoring
operation. By evaluating probability distributions, we focus the attention on the models pre-
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dictions rather than on the actual outcome. Moreover, we employed a weighted loss function
which assigns higher weights to the rarer activities during training. By giving more emphasis
to these activities, models are encouraged to pay closer attention to them and provide more ac-
curate predictions for their occurrence. The outcome of using a weighted loss function is that
predictions exhibit a greater variance in activity prediction compared to when a standard loss
function is used. By emphasizing the probability distribution and incorporating a weighted
loss function, models become more sensitive to the presence of anomalies and can provide a
more comprehensive understanding of the underlying process dynamics. This approach en-
ables a more nuanced analysis and prediction, allowing for better anomaly detection and miti-
gation in real-world business processes.

Models developed for the activity prediction task demonstrate the capability to capture pro-
cess anomalies in a supervisedmanner, particularly anomalies thatmanifest as deviations in the
order of activities. This outcome is significant as such anomalies are commonly encountered
in real-world business processes and are often detected through manual inspection by human
experts. Results achieved in the multioutput prediction task are not optimal, especially those
concerning the prediction of delay activities and three way mismatch. This is because of the
data used, which were not specifically designed for this type of prediction. Further studies
need to be carried out in the field of multioutput prediction, especially regarding model archi-
tectures and data encoding. However, the intention was to show the possibility of creating
models capable of predictingmore than one feature at the same time, even of a different nature
(numerical and categorical). We have shown that it is possible to exploit process knowledge
and encode information contained in activities into classes. In general, each process must be
analysed in order to create the most suitable predictive monitoring model.

The ability of models to detect and predict anomalies with a high degree of confidence pro-
vides valuable insights and contributes to process improvement efforts. It enables the creation
of a simple and straightforward indicator that can be integrated into a processmining platform,
serving as an alert mechanism for end users. The indicator serves as a valuable tool for decision-
making, allowing users to take appropriate actions to address potential anomalies before they
escalate or impact the overall process performance. By leveraging themodel’s predictions, users
can be promptly notified about the likelihood of process anomalies occurring in ongoing or
open traces. An example of an application of a predictive process monitoring model is shown
in Fig.5.1 and Fig.5.2. These figures represent a table contained in the Celonis platform. We
performmultioutput predictions on open traces using amodel presented in Sec.4.2. Then, we
load the results in the process mining platform and display them using tables that the platform
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provides. An end user can use these tables in order to visualize the risk levels of open traces. If
an order has a high anomalies ratio associated anomalies, the user can select it anddecide to send
an email or message to the supervisor. Moreover, it is possible to configure action flows that
are automatically triggered whenever an order exceeds a certain risk threshold. Using process
mining platforms, the possibilities for anomaly management are almost endless.

Figure 5.1: Celonis table containing next activities prediction. We decide to report only anomalous activities and the next
time in day at which the activity may be performed.

Figure 5.2: Celonis table containing anomalies prediction. It is shown the possibility to apply action and trigger action
flows that allows companies to solve anomalies instantly.

Oneof themost important study that canbe conducted is approaching theproblem through
unsupervised techniques. In this way, it becomes possible to partially eliminate the reliance on
complex and incomplete process documentation, pre-defined labels or prior knowledge of ex-
pected process behavior. This approach is particularly valuable in situations where the process
documentation is scarce or not up to date, as it can adapt and learn from the data itself. Un-
supervised techniques offer the advantage of flexibility and adaptability, allowing the system
to continuously learn and improve as new data stream in. Mastery of these techniques enables
the identification of anomalies in real-time or near real-time, providing early detection and
proactivemeasures to address potential issues before they escalate. Implementing unsupervised
techniques in process mining opens up new possibilities for automating anomaly detection, re-
ducing reliance on manual analysis and improving the overall efficiency and effectiveness of
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process monitoring. It empowers organizations to gain valuable insights from their data, en-
hance decision-making processes, and ensure smooth and optimized operations.
Further work can be conducted to study the social network aspect of the process. By incor-

porating additional information about employees, organizational structure, roles, and other
relevant factors, it becomes possible to analyze the interactions and relationships among indi-
viduals in the company. One valuable approach is to examine the activity executives and use
that information to construct a social network of the company. In large companies with mul-
tiple branches and operations in different countries, understanding the social network can be
particularly crucial. It allows for the identification of communication gaps, inefficiencies, or
structural issues that may impede effective collaboration and hinder the smooth execution of
processes. By uncovering these bottlenecks and failures, organizations can take proactive mea-
sures to address them and optimize their operations.
Process mining is a multidisciplinary field that requires the involvement of various experts

with different backgrounds and knowledge. In a business context, it is crucial to incorporate all
available information into the process investigation in order to fully leverage the technologies
potential. This information can be derived from the process model itself, as well as from the
company dataset or through interviews with process owners. This comprehensive approach is
necessary because modern processes and supply chains are highly complex, involving numer-
ous entities. Furthermore, many companies have not yet fully embraced recent technological
advancements and process standardization practices. The increasing complexity of modern
processes necessitates the modernization of existing processes and systems to handle and ana-
lyze the vast amount of information present in today’s databases. This thesis addresses these
challenges by highlighting the importance of integrating processmining techniqueswith all the
available knowledge and points out the need for companies to adopt advanced technologies to
support efficient and effective analysis of business processes.
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