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Introduction

This paper addresses the topic of meta-analysis, a statistical tool often used in systematic

literature reviews to obtain a numerical estimate of the effect of interest. In addition

to a general introduction to the statistical methodology, we have chosen to focus on

one particular aspect, namely the use of meta-analysis in the context of small samples.

Because the observations in meta-analysis are summary statistics obtained from previous

analyses, small samples can be understood as a small number of studies with a sufficient

number of participants in each study, a sufficient number of studies with a small number

of participants in each of them, or both conditions simultaneously. Unfortunately, there

are no available statistical methods for the last case.

The first chapter presents the theoretical foundations of this fascinating statistical tech-

nique. Classical models such as the Common Effect (CE) and the Random Effect (RE)

models are discussed. In addition, their main extensions to include covariates, such

as meta-regression models and mixed effects models, are examined. The key assump-

tions underlying these models are emphasized, as some of them are very problematic

in the context of small samples. In addition, advanced methods that can be used to

obtain reliable estimates in the context of small numbers of studies are presented. These

methods include the use of maximum likelihood theory, the application of second-order

asymptotic theory, and some nonparametric techniques such as permutation testing and

bootstrapping. The final part of the chapter presents the basic and best-known meth-

ods for empirically evaluating the assumptions underlying the model and assessing the

presence of publication bias.

Chapter 2 presents a practical application of the methods discussed in Chapter 1 using

an example data set from 2021 published by Jones et collegues (Jones et al., 2021). This

application focuses on sex differences in adaptation to resistance training. The first

part of the chapter describes the methodology of the systematic literature review and

explains the procedures used by the authors to derive the effect measures. The second
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part presents the results of six different analyses in which the effect measure expresses

the difference between males and females in post-pre changes following a resistance

training program. The authors focused on upper limb muscle strength, lower limb

muscle strength, and muscle size. This division was suggested primarily by the number

of studies reporting each specific effect measure. For each ”category”, results were

analyzed using the raw difference score. In addition, to reduce the effect of greater

males body size, the effect measure was normalized to its baseline value before the

administration of the training protocol.

Chapter 3 focuses on the integrated likelihood. A general introduction to the method

and a comprehensive overview of its implementation in the context of meta-analysis is

followed by a practical application using the same data set as in Chapter 2. This method

proves particularly useful when working with a meta-analysis where the number of

studies is sufficient but the sample size within each study is small. In fact, the integrated

likelihood eliminates any nuisance parameter through integration, but accounting for the

uncertainty linked to the eliminated parameters. It is also computationally convenient

and numerically more stable because the elimination is done by averaging rather than

maximization.

Overall, this thesis provides an exploration of meta-analysis, including its theoretical

foundations, advanced techniques for small sample sizes, and empirical evaluation of

assumptions and biases. Chapter 4 serves to summarize the findings and compare the

results obtained with the selected dataset to the original study. A discipline-specific

interpretation of the results is also provided.



Chapter 1

Introduction to meta-analysis

1.1 A brief introduction to meta-analysis through

its history

Meta-analysis is a quantitative method of summarizing information from different sources,

usually presented in aggregate form. In England, for example, it was used to model local

authority data on tonsillectomy rates in children under 15 years of age from 2009 to

2011 (Suleman et al., 2010; Senn, 2016). However, it is much more commonly used in

research practice, particularly in the social sciences, psychology, and medicine. Accord-

ing to historical research, the roots of meta-analysis can be traced to the 18th and 19th

centuries, when Laplace and Gauss began to distinguish between observations within a

given study and summary results between different studies (O’rourke, 2007). However,

the first statistical approach to the subject is attributed to Pearson in 1904, who was

asked to compare infection and mortality rates among soldiers who did or did not volun-

teer for typhoid vaccination in different regions of the British Empire (Pearson, 1904).

In the original manuscript, Pearson provided two tables in which he calculated the corre-

lation coefficient between vaccination and mortality or immunity as a measure of effect,

as well as an estimate of within-study uncertainty. The pooled estimate presented was

then the average of the within-study correlation coefficient, but was presented only as a

point estimate. One could argue that the first real application concerns Josef Goldberg

(Winkelstein, 1998) in 1907, who addressed the risk of urinary tract infection in typhoid

fever (Goldberger, 1907). The dispute is based on the definition to be given to the

term meta-analysis. In fact, Goldberg was the first to use four criteria that characterize

modern meta-analysis. First, he conducted a comprehensive review of the literature to

5



6 Section 1.1 - A brief introduction to meta-analysis through its history

identify 44 relevant studies. Then he selected the studies to be included in his work

based on a specific criterion: the use of a newly developed technique called the serum

agglutination test. In the third step, he summarized the information from the selected

papers in a table and then performed the statistical analysis, calculating the average

bacteriuria rate. It cannot be overlooked that the criteria for selecting the studies to

be included in the final synthesis had a major impact on reducing what is now called

heterogeneity. Indeed, the 44 selected studies showed a large variability, with infection

rates ranging from 0 to 1 (with the extreme values included). One might suspect that

the type of test used in the original investigation is a moderator variable. In their histor-

ical review, Chalmers, Hedges, and Cooper suggested that Goldberg’s work highlights

the need to distinguish two different methodological challenges in research synthesis,

namely, taking measures to reduce bias and considering whether meta-analysis can be

used to reduce statistical imprecision (Chalmers et al., 2002). This historical debate

inevitably leads us to clarify some definitions that we will use from here on. According

to the Dictionary of Epidemiology, meta-analysis is defined as ”a statistical analysis of

results from separate studies, examining sources of differences in results among studies,

and leading to a quantitative summary of the results if the results are judged suffi-

ciently similar or consistent to support such synthesis”(Porta, 2014). It should not be

confused with systematic review, which is ”a review of the scientific evidence which

applies strategies that limit bias in the assembly, critical appraisal, and synthesis of

all relevant studies on the specific topic...” (Porta, 2014). In essence, we will use the

term meta-analysis to identify a set of statistical procedures, whereas systematic re-

view might involve meta-analysis but is not a statistical technique. The contribution

of the eugenicist Ronald Fisher is more than notable as we continue our story. He first

suggested that ”although few or none [studies] can be claimed individually as signifi-

cant, yet the aggregate [estimate] gives an impression that the probabilities are on the

whole lower than would often have been obtained by chance”(Fisher, 1932, page 99)

and then developed a technique for combining the p-value of independent tests of the

same hypothesis (Fisher, 1932). He also worked in agriculture and reported an analysis

of multiple trials that showed that the effect of fertilizers varied by year and location

(Fisher, 1935). In the history of meta-analysis, there are at least a few other events

that should be mentioned. In this thesis we will mainly deal with two types of models,

the CE and the RE models. Both will be formally introduced in the following sections,

asking the reader for an act of patience to finish the historical narrative. The latter was

first proposed by Cochran in 1937 (Cochran, 1937) and its first application dates from

1938 (Yates & Cochran, 1938). Cochran developed this model to combine individual
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experiments with different degrees of precision, relying on Fisher’s work on experiments

with the same degree of precision (Fisher, 1935). As a reminder, Fisher’s work was in

turn based on Airy’s book (Airy, 1861). As we shall see, the RE model became popular

with the publication of an approximation method for the Cochran model by Der Simo-

nian and Laird (DerSimonian & Laird, 1986). The first application of meta-analysis in

medicine dates from 1980 and was used to evaluate the effect of aspirin on the risk of

recurrence of myocardial infarction after the first (Elwood, 2006). This application is

particularly well known because it demonstrates the efficacy of a drug, although all of

the randomized controlled trials included did not yield statistically significant results.

Peto was the statistician responsible for the analysis and a few years later proposed

using the (fixed) weighted mean to pool studies when the treatment effect varied (Peto,

1987), taking a position in favor of the CE model. Another milestone worth mentioning

is the first article dealing with publication bias, i.e., the decision to publish or reject an

article based on the direction of the results. in 1959, Sterling noted that psychological

journals had an offbeat ”publication policy” that led to a strange dichotomy:

• ”Experimental results will be printed with a greater probability if the relevant test

of significance rejects H0 for the major hypothesis with Pr(E|H0) ≤ .05 than if

they fail to reject H0 at that level” or

• ”The probability that an experimental design will be replicated becomes very small

once such an experiment appears in print” (Sterling, 1959).

To the end of the paragraph, Gene Glass must be mentioned as the person who first

proposed the term meta-analysis as ”the statistical analysis of a large collection of

analysis results from individual studies for the purpose of integrating the findings”

(Glass, 1976). However, to be unbiased and to give voice to the critique, it is right

to recall Feinstein who coined one of the favorite terms of the editor of this paper,

”statistical alchemy for the 21st century” (Feinstein, 1995).

1.2 Set-up of meta-analysis

In modern meta-analyses, a collection of studies is analyzed, and the analyst work

with a data set that includes at least one effect measure and one uncertainty measure for

each study. The approach assumes that each study, indexed by i = 1, . . . , K, provides

an estimate yi of the effect measure and a standard error si representing the uncertainty

associated with the estimate. The effect measure yi estimates the true effect measure
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in the i-th study, denoted βi. Note that pairwise univariate meta-analysis allows only

one effect measure per study, although there are extensions that allow the introduc-

tion of more than one effect measure per study, provided some assumptions are made

about the within-trial variance matrix. In addition, the included studies are consid-

ered independent. Sometimes this assumption may seem an exaggeration, especially if

the meta-analysis includes studies from the same research team or if, for example, a

correlation is suspected between effect sizes collected in the same nation.

1.3 The within-studies model

The first step in pairwise meta-analysis is the definition of a within-study model.

Typically, we have

Yi ∼ N (βi, s
2
i ). (1.1)

With this model we more or less explicitly assume that (Jackson & White, 2018):

1. Yi is an unbiased estimate of βi;

2. the variance of the within-study model is known and equal to s2i ;

3. the shape of the within-study model distribution is normal.

However, we are in the realm of approximations. Even in the most idyllic scenario, in

which the meta-analysis we are working on is not subject to publication bias or other

types of bias, it is possible that the effect measure under consideration is subject to

transformation bias. For example, the logit transformation of an unbiased incidence

measure would be biased because it is a nonlinear transformation of an unbiased quan-

tity (Jensen’s inequality). To some extent, these considerations invalidate assumption

number 1. Moreover, assumption number 2 implies that the standard methodology ig-

nores the uncertainty of the within-study variances. The approximation is based on

the central limit and the Slutsky theorem (Jackson, 2009), and it is generally accepted

if the sample of the i-th study is large enough. However, it should be noted that the

within-study variance formula is often only an approximation, depending on the effect

measure considered. In addition, assumption 2 hides a second assumption, namely that

yi and s
2
i are uncorrelated. This can be a problem, consider for example the case where

Yi = log(Ai/Bi

Ci/Di
) and s2i = 1

Ai
+ 1

Bi
+ 1

Ci
+ 1

Di
, where a particularly small value of Bi

implies Cor(Yi, S
2
i ) > 0. Another notable example concerns meta-analyses in which the

definition of the population of interest is particularly broad and subgroups with varying
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degrees of treatment efficacy can be identified. In this case, if the authors of the orig-

inal studies perform a sample size calculation, it is likely that in studies where higher

treatment efficacy is suspected, the sample size will be smaller. Since s2i is an inverse

function with respect to sample size, any larger yi would be associated with larger s2i and

vice versa, effectively creating a correlation. Assumption number 3 is never technically

appropriate. Partly because it depends on the nature of the outcome. For example,

a variety of alternative models have been proposed for event outcome (Stijnen et al.,

2010). But in general, Yi | µi ∼ N (µi, s
2
i ) is false if we assume Yi | µi ∼ N (µi, σ

2
i ),

where σ2
i is the true variance of the distribution. In fact, the pivotal distribution for the

confidence interval on µi should be a Student’s t (Jackson & White, 2018).

1.4 The common-effect model

Once a within-studies model has been assumed, a between studies model must be

introduced, so that a summary effect measure can be provided. The most well known

between study model is based on the assumption of a constant (or common) general

expected value, that is βi = β, ∀i = 1, . . . , K. This assumption gives the CE model

Yi ∼ N (β, s2i )

Cov (Yi, Yj) = 0, ∀i, j = 1, ..., K,
(1.2)

or equivalently,

Yi = β + ϵi with ϵi ∼ N (0, s2i )

Cov (ϵi, ϵj) = 0 ∀i, j = 1, ..., K.
(1.3)

1.4.1 Estimation

The only parameter that needs to be estimated in model (1.2) is β. The weighted least

squares method can be used for this purpose, and the resulting estimator is equivalent

to the maximum likelihood estimator. It follows:

β̂CE =

∑K
i=1 Yi · wi,CE
∑K

i=1wi,CE
, (1.4)

then
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wi,CE =
1

√

∑K
i=1 s

2
i

. (1.5)

The standard error of the estimator β̂CE is equal to

se(β̂CE) =
1

√

∑K
i=1wi,CE

, (1.6)

and its asymptotic distribution for K → ∞ is

β̂CE ∼ N (β, se(β̂CE)). (1.7)

The distributional assumption can be justified as a linear combination of normal ran-

dom variables with constant coefficients. However, this assumption is primarily made

for convenience, as the weights in the equation (1.5) are known only because s2i is as-

sumed to be known (Jackson & White, 2018). Additionally, as discussed in section 1.3,

the weighted least squares estimation may not be unbiased if yi and s
2
i are correlated

(Jackson & White, 2018). From a different perspective, the justification for normality

is based on the first-order asymptotic theory using the likelihood approach.

1.4.2 Confidence intervals and hypothesis test

Using the asymptotic result presented in equation (1.7), a Wald-type confidence

interval of level α can be derived as follows

ICWald(α) :
{

β̂CE − z1−α/2 · se(β̂CE), β̂CE + z1−α/2 · se(β̂CE)
}

,

where z1−α/2 denotes the (1 − α)/2 quantile of a standard normal distribution. More-

over, given a hypotheses set H0 : β = 0 against H1 : β ̸= 0, the statistic ZCE =

β̂CE/se(β̂CE) ∼ N (0, 1), hence the null hypothesis will be rejected for
∣

∣Zobs
CE

∣

∣ ≥ Z1−α/2,

where Zobs
CE is the observed value of the statistic.

1.4.3 Heterogeneity

In the CE model, the term heterogeneity is used when the effect measures included

in the meta-analysis are not all estimates of a common parameter. More formally, the

interest is to evaluate the null hypothesis H0 : βi = β, ∀i = 1, . . . , K, which represents

the main assumption of the CE model. The Cochran’s Q-statistic could be used for the

purpose (Cochran, 1937, 1954) and it is defined as
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Q =
K
∑

i=1

wi,CE(Yi − β̂CE)
2 H0∼ χ2

K−1. (1.8)

However, the distributional results only holds approximately when s2i , ∀i = 1, . . . , K

are assumed to be known. It should be noted that the test has a low power.

1.4.4 Criticisms and limitations of the model

The main criticism against the use of the CE model concerns the assumption of

homogeneity of effects between the different studies. If this were not checked, the

estimator would be rather a weighted average with weights proportional to the inverse

of the study variance, which turns out to be a function of sample size and could have

consequences depending on how the sample size was determined in the original studies.

Indeed, it can be chosen arbitrarily or depend on the effect expected by the researcher

(and therefore determined by an appropriate calculation). In the first case, it would

no longer be possible to interpret the weights and therefore the estimator. In the

second case, the correlation between yi and the weights implies that the weighted least

squares estimator would be biased. The second and main criticism against the use of

the CE model concerns the validity of the within-study model (1.1). Even assuming

that the within-study distribution is normal, the model holds as long as the si are good

approximations of the true standard errors and, in turn, this is guaranteed somehow as

long as the sample size of the study is sufficiently large. Finally, it should be noted that

all the inference procedures for the model (1.2) hold accurately only if the number of

study K is large enough.

1.5 The random-effect model

Although historically the RE model has seen an independent development from the

CE model (Cochran, 1937), to date it is proposed as the main alternative if heterogeneity

is suspected among the included effect measures. In fact, the model introduces an

additional parameter, namely τ 2, with the aim of quantifying the amount of between

studies heterogeneity. In this section, the model will be presented according to the

standard formulation proposed by (DerSimonian & Laird, 1986). Particularly, the RE

model is defined according to the following two-stage sampling procedure
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βi ∼ N (β, τ 2),

Yi|βi ∼ N (βi, s
2
i ),

Cov (Yi, Yj) = 0, ∀i, j = 1, ..., K.

(1.9)

Hence, marginally it holds

Yi ∼ N (β, τ 2 + s2i ). (1.10)

In fact, denoting the probability density function with p(·), the previous result follows

from the marginalization on β,

p(yi) =

∫

βi∈Sβ

p(yi|βi)p(βi)dβi,

where Sβ stands for the support of β.

In addition, as a result of the Normal distribution being a scale-location family, it results

equivalently:

Yi = β + δi + ϵi,

with δi ∼ N (0, τ 2), ϵ ∼ N (0, s2i );

Cov (δi, δj) = 0, Cov(ϵi, ϵj) = 0. ∀i ̸= j, i, j = 1, ..., K,

Cov (δi, ϵj) = 0 ∀i, j = 1, ..., K.

(1.11)

Note that if τ 2 = 0, the model reduces to the CE model. However, the main difference

from the CE model is that the true effect of the single study is not constant among all

studies but it is a realization of a normal random variable centered in β. Therefore, the

objective is to estimate the center of the effect distribution, represented by β, allowing

an intrinsic variability of the phenomenon, described by τ 2 and named heterogeneity.

1.5.1 Estimation

In the RE model the unknown to-be-estimated parameter is the bidimensional

(β, τ)T ∈ R× R
+.
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A review of the most commonly used methods to estimate the parameter of interest will

be proposed next. Note that generally the component of main interest is β and τ 2 rep-

resents a nuisance parameter. However, it is undeniable that τ 2 plays an important role

in the interpretation of meta-analysis results and especially in the process of technology

transfer, where prediction intervals are of primary importance. Almost all estimation

methods proceed with separate components, first estimating τ̂ 2 and only then β̂RE using

τ̂ 2 to compute the weights.

1.5.1.1 Standard approach

The best-known approach to estimate the two-dimensional (β, τ 2)T parameter is a

two-step procedure in which an estimator for τ 2 is first obtained using the method

of moments and then an estimator for β is derived, assuming τ 2 to be known and

by plugging-in the estimated τ̂ 2 into the RE weights. To obtain the τ 2 estimator,

(DerSimonian & Laird, 1986) began rewriting Cochran’s Q-statistic (1.8) to apply the

method of moments. Specifically,

QCE =
K
∑

i=1

wi,CE(Yi − β̂CE)
2

=
K
∑

i=1

wi,CE

{

(Yi − β)− (β̂CE − β)
}2

=
K
∑

i=1

wi,CE(Yi − β)2 − (β̂CE − β)2
K
∑

i=1

wi,CE.

(1.12)

The last equivalence can be obtained simply by developing the square of the binomial

and using the fact that

β̂CE =

∑K
i=1 Yiwi,CE
∑K

i=1wi,CE
⇐⇒

K
∑

i=1

wi,CEYi = β̂CE

K
∑

i=1

wi,CE.

The expected value of QCE with respect to Yi under the RE model is
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E{QCE} =
K
∑

i=1

wi,CEE{(Yi − β)2} − E{(β̂CE − β)2}
K
∑

i=1

wi,CE =

=
K
∑

i=1

wi,CE Var (Yi)− V ar
(

β̂CE

)

K
∑

i=1

wi,CE =

=
K
∑

i=1

wi,CE(w
−1
i,CE + τ 2)−

∑K
i=1w

2
i,CE(w

−1
i,CE + τ 2)

(
∑K

i=1wi,CE)
2

K
∑

i=1

wi,CE =

= K − 1 +

{

K
∑

i=1

wi,CE −
∑K

i=1wi,CE)
2

∑K
i=1wi,CE)

}

τ 2.

(1.13)

Note that under the CE model the weights are given by wi,CE = 1
s2i
, and that the

variances are calculated under the RE model as

Var (Yi) = s2i + τ 2, Var
(

β̂CE

)

=

∑K
i=1 Var (Yi)w

2
i,CE

(
∑K

i=1wi,CE)
2

.

By equating the right hand side of the (1.13) with QCE in (1.8), and solving for τ 2, it

results

ˆτ 2DL = max

{

0,

∑K
i=1wi,CE(Yi − β̂CE)

2 − (K − 1)
∑K

i=1wi,CE −∑K
i=1w

2
i,CE/

∑K
i=1wi,CE

}

. (1.14)

The τ̂ 2DL estimator is a special case of the general method of moments (Kacker, 2004).

Considering a set of weights ai with the following properties,

ai ≥ 0, 0 ≤ ai
∑K

i=1 ai
≤ 1;

the Q statistic can be defined as

Qa =
K
∑

i=1

ai(Yi − β̂a)
2,

where βa =
∑K

i=1 aiYi/
∑K

i=1 ai. Assuming that the underlying generative model is the

RE model, we have

E {Qa} =
K
∑

i=1

ai(s
2
i + τ 2)−

K
∑

i=1

a2i (s
2
i + τ 2)/

K
∑

i=1

ai, (1.15)
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hence by equating Qa to its expectation in equation (1.15), the estimator of τ 2 becomes

τ̂2a = max

{

0,

∑K
i=1 ai(Yi − β̂a)

2 − (
∑K

i=1 ais
2
i −

∑K
i=1 a

2
i s

2
i /
∑K

i=1 ai)
∑K

i=1 ai −
∑K

i=1 a
2
i /
∑K

i=1 ai

}

. (1.16)

The calculation follows those in (1.12) and (1.13). Interestingly, eight out of the sixteen

methods reviewed by Veroniki et al. (2016) to estimate τ 2 fall under the framework

presented in this paragraph. Moreover, it is straightforward to verify that the CE

model is retrieved using ai = s−2
i .

One last interesting note concerns the Paule-Mandel estimator (Paule & Mandel, 1982).

In fact, if ai = 1/(τ 2 + s2i ), which are the optimal but unknown weight, the (1.15)

becomes:

E {Qa} =
K
∑

i=1

(s2i + τ 2)

s2i + τ 2
−

K
∑

i=1

(s2i + τ 2)

(s2i + τ 2)2
/

K
∑

i=1

(s2i + τ 2)−1

= K − 1.

(1.17)

An estimating equations can be derived as

Q(τ 2)− (K − 1) =
K
∑

i=1

{

Yi − ˆβ(τ 2)

τ 2 + s2i

2}

= 0, (1.18)

and the latter can be solved in τ 2 via an iterative algorithm.

1.5.1.2 Maximum likelihood estimation

Alternatively, Hardy & Thompson (1996) proposed an estimator based on likelihood

theory. It is particularly important to note that since s2i are assumed to be known, the

likelihood function depends only on the two-dimensional parameter (β, τ 2)T . To obtain

the estimator, we consider the likelihood function of a multivariate normal distribution:

L(β, τ 2|y1, . . . yK) =
K
∏

i=1

1
√

2π(τ 2 + s2i )
e
−

(yi−β)2

2(τ2+s2
i
) . (1.19)

The log-likelihood is defined as

ℓ(β, τ 2|y1, . . . yK) = logL(β, τ |y1, . . . yK) =
K
∑

i=1

1

2
log 2π(τ 2 + s2i )−

K
∑

i=1

(yi − β)2

2(τ 2 + s2i )
.

(1.20)
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Calculating the partial derivatives with respect to the parameters, we obtain the score

function







ℓ′(β) = ∂
∂β
l(β, τ 2) = −∑K

i=1
(yi−β)

(τ2+s2i )
,

ℓ′(τ 2) = ∂
∂τ2
l(β, τ 2) =

∑K
i=1

1
2(τ2+s2i )

+
∑K

i=1
(yi−βi)

2

2(τ2+s2i )
2 .

(1.21)

Therefore, equating the first component of (1.21) to zero, the estimator for β is given

by

β̂RE(τ
2) =

∑K
i=1 yi · wi,RE
∑K

i=1wi,RE
, (1.22)

where

wi,RE =
1

√

∑K
i=1(s

2
i + τ 2)

.

Note that the estimator β̂RE(τ
2) can be considered to be in a closed form only if τ 2 = τ̂ 2

is plugged-in. Conversely, it is not possible to obtain a closed form for the estimator of

τ 2 and numerical procedure must be used (e.g. the Newton-Rapson algorithm). For the

purpose, a convenient rearrangement is (Hardy & Thompson, 1996):

τ̂ 2 =

∑K
i=1

{ŷi−β(τ
2)}2−s2i

(s2i+τ̂
2)2

∑K
i=1

1
(s2i+τ̂

2)2

. (1.23)

The mean and the variance of a Normal distribution are well known to be orthogonal

(i.e. the diagonal element of the Fisher information matrix are zeros). Hence, the

standard error of the estimator ˆβ(τ 2) is obtained by the square root of the first diagonal

element of the (observed) information matrix reciprocal. Let

− ∂2

∂β2
ℓ(β) =

K
∑

i=1

1

s2i + τ 2
, (1.24)

the standard error of the estimator β(τ 2) is equal to

se(β̂RE(τ
2)) =

1
√

∑K
i=1wi,RE

(1.25)

So, although the parameter of interest is β and an estimator in a closed form is available,

it is mandatory to obtain at least one estimate of τ 2 for both, the calculation of the
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point estimate and its standard error.

1.5.1.3 Profile maximum likelihood

Given a two-dimensional parameter (β, τ 2)T , where β represents the component of

interest and τ is a nuisance parameter, the profile likelihood can be defined as (Murphy

& Van der Vaart, 2000):

ℓp(β) = max
τ2

ℓ(β, τ 2), (1.26)

where l(β, τ 2) is the log likelihood function for the RE model, formula (1.20). If tau were

the parameter of interest, the profile maximum likelihood estimator could be obtained

as

ℓp(τ
2) = max

β
ℓ(β, τ 2). (1.27)

However, the definition of τ 2 as the parameter of interest and β as the nuisance could

be at least debatable, although it is used as a mere technique to obtain a confidence

interval for heterogeneity. Unfortunately, a closed form in both the cases is not available

and the optimization problem has to be solved iteratively (Hardy & Thompson, 1996).

1.5.1.4 Restricted maximum likelihood

The maximum likelihood estimate of variance components has been found to be

negatively biased (Harville, 1977) and an unbiased estimate can be obtained with an

approach based on the REML (Patterson & Thompson, 1971). However, it should be

noted that the maximum likelihood estimate typically has lower mean squared error.

In order to present the approach as generally as possible, it is preferred to introduce

the vector notation typically used for mixed-effect models. In fact, the RE model can

be considered a form of mixed effects model with the peculiarity that the sigmai are

known.

Consider following mixed effect model:

Y ∼ NK(Xβ,Σ) where Σ =
m
∑

i=1

σ2
iZiX

T
i + σ2Kn, (1.28)

and X is a K × p matrix of rank r ≤ p, and Σ is positive define a K ×K matrix. The

REML maximize the likelihood of Ky with K chosen so that KX = 0. It follows that

E [Ky] = KXβ = 0 and K is required to be full rank and with the maximal number

of rows possible.
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A full-rank matrixK with maximal number of rows such thatKXβ = 0, is an (K − r)×
K. Furthermore, K must be of the form K = C (K−H) where C specifies a full-rank

transformation of the rows of K−H and H = X
(

XTX
)−1

XT. The proof can be found

in (Rencher & Schaalje, 2008, page 487). Please note that there are an infinite K and

the derived likelihood would be equivalent.

The method is well known as residual maximum likelihood. In fact, the vector (K−H)Y

is the vector of model residuals and KY = C (K−H)Y one of its linear combination.

The quantity kjX with kj elements of K are known as error contrasts (Harville, 1977).

The distribution of KY is

KY ∼ NK−r

(

0,KΣKT
)

. (1.29)

K is a matrix of known constant (as it is a function of X which is known) and so (1.29)

can be derived from the well-known property of the multivariate normal distribution.

The REML conists in the maximization of the likelihood of Ky which depends only

from the variance component parameter. The classical likelihood method can be used

to derive an estimator for each m+1 variance component. Iterative technique could be

necessary to solve the derived equation.

With respect to the RE model, the REML is equivalent to the marginal log-likelihood

function for the residuals (Guolo, 2012) and can be written as

ℓREML(τ
2) = −1

2

K
∑

i

log σ̂2 + τ 2 − 1

2

K
∑

i

1

σ̂2 + τ 2
− 1

2

K
∑

i

(yi − β̂)2

σ̂2 + τ 2
. (1.30)

giving the estimate for τ 2 of

τ̂ 2REML =
{(yi − β̂)2 − σ̂2

i }/(σ̂i2 + τ 2)2
∑K

i 1/(σ̂2 + τ 2)2
+

1
∑K

i 1/(σ̂i
2 + τ 2)2

, (1.31)

often approximated as (Guolo, 2012)

τ̂ 2REML ≈
∑K

i {K(K − 1)−1(yi − β̂)2 − σ̂2
i }/( ˆσ2

i + τ 2)2
∑K

i 1/(σ̂i
2 + τ 2)2

. (1.32)

1.5.2 Confidence intervals and hypothesis tests on β

The rationale behind standard method for obtaining a interval estimate on β is built

as follows:
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β̂RE(τ
2) ∼ N (β, se(β̂RE(τ

2))), (1.33)

where

se(β̂(τ 2)) =

(

K
∑

i=1

wi,RE

)−1/2

and

wi,RE = (τ 2 + s2i )
−1.

Therefore, it is sufficient to plug-in an estimate of τ , for instance using the τ̂ 2DL proposed

in (1.14). Then, a Wald-type confidence interval of level α can be obtained as

ICWald(α) :
{

β̂RE(τ̂
2)− z1−α/2 · se(β̂RE(τ̂ 2)), β̂RE(τ̂ 2) + z1−α/2 · se(β̂RE(τ̂ 2)

}

,

where z1−α/2 denotes the (1 − α)/2 quantile of a standard normal distribution. For

a bilateral hypotheses test with an hypotheses test of the form H0 : β = 0 against

H1 : β ̸= 0, the statistic ZRE = β̂RE(τ̂
2/se(β̂RE(τ̂

2) can be used. Under the null

hypothesis, it follows a standard normal distribution. The null hypothesis is rejected at

level α when
∣

∣Zobs
RE

∣

∣ > Z1−α/2, where Z
obs
RE is the observed value of the statistic.

However, in the RE model part of the error (the between-study heterogeneity) is not

known and has to be estimated. Through the inferential procedure described above,

the uncertainty behind the estimate of τ 2 is not taken into account. As a result, this

additional source of error would potentially affect the coverage of the confidence intervals

for β. Moreover, noticing that standard errors depend non-linearly on τ 2, even if the

estimate of τ 2 is unbiased, this exact property cannot be translated to hold for the

standard error themselves.

The profile likelihood (1.26) offers an immediate solution to the problem eliminating

the nuisance parameter τ 2 via maximization. A confidence interval of level α can be

obtained by solving

pl(β) > pl(β̂))− χ2
1,1−α, (1.34)

while the hypothesis H0 : β = 0 can be tested using the profile log-likelihood ratio test

−2(pl(0)− pl(β̂)) ∼ χ2
1, (1.35)
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where 0 is the value of β under the null hypothesis. Obviously, researchers who wanted

to proceed in this way, would have to give up making inferences about τ 2. A third

method, named Hartung-Knapp-Sidik-Jonkman correction, could be also considered.

Briefly, let

Z =
β̂ − β

1/
√

∑K
i=1wi

∼ N (0, 1),

Q =
K
∑

i=1

wi(yi − β̂)2 ∼ χ2
K−1,

Z ⊥ Q, then

Z

Q
=

β̂ − β
√

∑K
i=1wi(yi − β̂)2/((K − 1)

∑K
i=1wi)

∼ tK−1.

(1.36)

where wi are the true weights using the true τ 2. At this point is sufficient to plug-in the

estimated weights. Note that the denominator of the ratio Z/Q is an unbiased estimate

of the standard error of β̂ if the weights are known and that the confidence interval

are wider using the t-distribution. Therefore, a confidence interval of level α can be

obtained as

IC(α) :
{

β̂RE(τ̂
2)− tK−1,1−α/2 · seHKSJ(β̂RE(τ̂ 2)),

β̂RE(τ̂
2) + tK−1,1−α/2 · seHKSJ(β̂RE(τ̂ 2))

}

where seHKSJ(β̂)RE =
√

∑K
i=1wi(yi − β̂)2/{(K − 1)

∑K
i=1wi} and tK−1,1−α/2 is the

quantile 1 − α/2 of a Studen’s t distribution with K − 1 degrees of freedom. The

hypothesis H0 : β = 0 can be tested using the statistics T = Z/Q defined in (1.36) and

the null hypothesis is rejected at level α when
∣

∣T obs
∣

∣ > TK−1,1−α/2, where T
obs is the

observed value of the statistic.

1.5.3 Confidence intervals and hypothesis tests on τ 2

Concerning τ 2, a systematic review found nine different methods to provide confi-

dence intervals (Veroniki et al., 2016). In this paragraph we will consider three of the

most commonly used. Interestingly, in their original publication, DerSimonian & Laird

(1986) did not provide the confidence interval for τ 2.
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Based on likelihood theory, if the number of studies K is large, a Wald-type confidence

interval of level α can be derived as

ICWald(α) :
{

τ̂ 2 − z1−α/2 · se(τ 2), τ̂ 2 + z1−α/2 · se(τ 2)
}

,

where z1−α/2 denotes the (1 − α)/2 quantile of a standard normal distribution. The

normality assumption of the limiting distribution of τ 2 however, is highly debatable with

small sample size, particularly for the assimetric shape of the variance distribution. To

address the issue Hardy & Thompson (1996) proposed a confidence interval based on

the profile likelihood ratio statistic and an interval of level α can be obtained by solving

iteratively the following equation:

ℓp(β̂(τ
2), τ 2) > ℓp(β̂(τ̂

2), τ̂ 2)− χ2
1,1−α, (1.37)

where ℓp(·) has been defined in (1.27). The third method has been proposed by Viecht-

bauer (2007) and it is based on a generalization of the Q-statistic to the RE model.

Particularly, denoting with Q(τ 2) the Q-statistic under the RE, we have

Q(τ 2) =
K
∑

i

Yi − β̂RE
τ 2 + s2i

∼ χ2
K−1. (1.38)

Indicating with χ2
K−1,α/2 and χ

2
K−1,1−α/2 the α/2 and the 1−α/2 of a χ2

K−1 distribution,

it follows that P (χ2
K−1,α/2 ≤ Q(τ 2) ≤ χ2

K−1,1−α/2) = 1−α. Using the inversion principle

(Casella & Berger, 2021, Page 420)) it follows that the lower and upper bound of the

confidence intervals are

{

Q(τ̃ 2lower) = χ2
K−1,1−α/2, Q(τ̃ 2upper = χ2

K−1,α/2

}

.

To calculate τ̃ 2lower and τ̃ 2upper it is sufficient to increase iteratively τ 2 until the value is

reached. However, to respect the τ 2 parameter space, only non negative values can be

provided. If Q(0) < χ2
K−1,α/2, the interval is set to the null set. Please note that it

is possible that the confidence interval does not actually contain the estimate of the

between-study variance, except if the Paule-Mandel estimator is used (Viechtbauer,

2010b).

1.5.4 Heterogeneity

The studies considered in a meta-analysis exhibit several elements of diversity. In-

deed, the authors may have employed different designs, sampled from different reference
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populations, or implemented interventions of varying duration or effect. Higgins &

Thompson (2002) refer to these characteristics as methodological or clinical heterogene-

ity, distinct from statistical heterogeneity. The latter exists when the true effect being

evaluated differs between studies. In the RE model, the statistical heterogeneity is rep-

resented by the parameter τ 2, which is the variance of the distribution of the true effects.

However, given that a variance is not a pure number, it does not allow for heterogene-

ity comparisons across meta-analyses based on different effect measures. Furthermore,

lacking an upper limit, it is difficult to interpret its extent. Higgins & Thompson (2002)

assumed the RE model with the within study variances σ2
i = σ2, ∀i = . . . , K and

proposed three different statistics of the type f(β, τ 2, σ2, K), based on the following

principles:

1. f(β, τ 21 , σ
2, K) > f(β, τ 22 , σ

2, K) if τ 21 > τ 22 ;

2. f(a+ bβ, τ 21 , σ
2, K) = f(β, τ 22 , σ

2, K) for any a, b (scale invariance);

3. f(β, τ 21 , σ
2, K1) = f(β, τ 22 , σ

2, K2) for any K1 and K − 2 (size invariance).

It follows that the measure of heterogeneity should not involve β (criterion 2) and

K(criterion 3) and it should increase monotonically with τ 2. Moreover, the second

criteria suggests the use of a function of the ratio τ 2/σ2. Note that they do not require

the measure to be independent from the within study variability. With the assumption

made in so far, it can be written:

τ̂ 2DL = σ2

(

Q

K − 1
− 1

)

,

vCE =
σ2

K
,

vRE ≈ σ2 + τ 2

K
,

where Q is the value of the common effect Cochran’s statistic defined in (1.8). Moreover,

let ρ = τ 2/σ2, it follows

ρ+ 1 =
τ 2 + σ2

σ2
.

And substituting τ 2 with τ̂ 2DL we obtain

H2 =
Q

K − 1
.
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A second measure proposed by the authors is R2 and particularly

σ2 = K · vCE,
(σ2 + τ 2) = K · vRE,

R2 = ρ+ 1 =
τ 2 + σ2

σ2
=
vRE
vCE

.

Finally, the third measure considered was defined as follows:

ρ

1 + ρ
=

τ 2

τ 2 + σ2
.

Doing the plug-in with the estimated quantities, we obtain:

I2 =
τ̂ 2

τ̂ 2 + σ̂2
.

A generalization to meta-analysis with different precision is straightforward for H2 and

R2 as they do not involve explicitly σ2. However, Higgins & Thompson (2002) proposed

the use of the ”typical” within-study variance s2 to generalized I2. Using the result in

(1.13), it follows that

E[H2] =
τ 2 + s2

s2
,

where:

s2 =

∑K
i wi,CE(K − 1)

(
∑K

i wi,CE)
2 −∑K

i w
2
i,CE

.

The I2 statistic can then be written as

I2 =
H2 − 1

H2
.

The interpretation of these statistics is straightforward. H2 represents the relative

excess of Q over its degree of freedom. Since E{Q} = k− 1 in absence of heterogeneity,

H = 1 indicates homogeneity of the treatment effect. R can be interpret as the inflation

of the confidence interval for a single summary estimate under a random effect model

compared with a fixed effect model. A value of 1 indicates the same inference under

the two model. Finally, we could refer to I2 as the proportion of total variation in the

estimates of the treatment effect that it is due to heterogeneity between studies, if s2 is

considered a typical value for the within study variance.
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The prediction interval is another tool that helps to understand the impact of hetero-

geneity. It represents an interval wherein there is a probability of 0.95 that the effect of

a new study will fall within. It can be derived as follows:

β̂ ∼ N (β, se(β̂)2),

βnew ∼ N (β, τ 2),

(βnew − β̂)
√

τ 2 + se(β̂)2
∼ N(0, 1)

(1.39)

However the true τ 2 is unknown and the common practice is to use a tK−2 as reference

distribution. The Wald-type prediction interval of level α can be written as:

PIWald(α) =

{

β̂ − t1−α/2,K−2 ·
√

τ̂ 2 + se(β̂)2,

β̂ + t1−α/2,K−2 ·
√

τ̂ 2 + se(β̂)2
}

1.5.5 Criticism and limitation

Given that the within-study model is a component of the RE model, the same criti-

cism discussed in the section (1.2) applied. Additionally, the assumption that the studies

are independent replications drawn from a Gaussian distribution is not widely accepted

(Rice et al., 2018). For example, the symmetry of the distribution of effect sizes might be

questionable. However, despite this limitation, the model does enable the quantification

and examination of heterogeneity.

1.6 Meta-regression and mixed-effect model

Study-level covariates are frequently accessible in meta-analyses, and their inclusion

can be valuable for elucidating the statistical heterogeneity observed. An illustrative

case is evident when conducting a meta-analysis on the impact of a medical treatment,

where the duration of treatment is incorporated as a study-level covariate. To accom-

modate the modeling of the effect measure as a function of study-level covariates, the

meta-analysis model can be extended using the meta-regression model. Both these

models can be understood and generalized within the framework of linear mixed-effects
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models, providing a comprehensive approach to investigating heterogeneity in meta-

analytic studies. Although models with more complex structures can be used, the most

immediate extension of the meta-analysis model is one that includes dependence on

covariates only in the linear predictor of the mean. Hence, a mixed-effect model can

defined as follows:

Yi = β0 + β1xi1 + · · ·+ βqxiq + δi + ϵi,

with δi ∼ N (0, τ 2), ϵ ∼ N (0, s2i );

Cov (δi, δj) = Cov (ϵi, ϵj) = 0. ∀i ̸= j, i, j = 1, ..., K,

Cov (δi, ϵj) = 0 ∀i, j = 1, ..., K,

(1.40)

where the xij with j = 1, . . . , q are moderator variables. The present specification

allows to explain the heterogeneity by means of a predictor linear in the parameters but

not necessarily in the moderator variables (study-level covariates). The meta-regression

model is obtained if τ = 0. The inferential procedures follow those previously seen for

the RE model, adjusting the number of degrees of freedom according to the number of

moderators.

1.7 Higher-order asymptotic approximation

The results presented in sections 1.5.1.2 and 1.5.1.3 rely on a first-order asymptotic

approximation, which may raise concerns when dealing with small sample sizes. It is

worth noting that in the context of meta-analysis, a small sample size corresponds to

a limited number of included studies. Consequently, the within-study model is still

assumed to be valid in such cases.

Consider the signed version of likelihood ratio statistics used in (1.34) to compute the

confidence interval for β. Given the parameter ψ = (β, τ 2), we assume to be interested

in the inference on β. Hence, τ 2 qualifies as a nuisance parameter. We have that:

rp(β) = sign(β − β̂)

√

lp(ψ̂)− lp(ψ̃) (1.41)

where ψ̂ = (β̂, τ̂ 2)T is the unconstrained (maximum likeliood) estimate of ψ and ψ̃ =

(β̂, τ̂ 2β)
T is the constrained maximum likelihood estimate of ψ fixed β. Asymptotically

it has been demonstrated that rp(β) ∼ N (0, 1) and confidence interval for β can be

calculated as zalpha/2 < rp(β) < z1−alpha/2.
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To increase the accuracy of the asymptotic approximation, the following modification

has been proposed by Barndorff-Nielsen (1986)

r∗p(β) = rp(β) +
1

rp(β)
log

u(β)

rp(β)
, (1.42)

where u(β) is a function of the observed information evaluated at the unconstrained

maximum likelihood estimate and the sample space derivatives of likelihood quantities

with respect to the maxium likelihood estimates (Guolo, 2012). However, outside of the

exponential model the calculation of u(β) is impractical as it is difficult to determine

an ancillary statistics.

A valid solution is the use of Skovgaard (1996) approximation of the (1.42), defined as

r̄p(β) = rp(β) +
1

rp(β)
log

u(β)

rp(β)
. (1.43)

In fact, it does not require the specification of the ancillary statistic and the evaluation of

the sample space derivatives. Moreover, the (1.42) has a standard normal approximation

up to an error of order O(n−3/2 in the moderate-deviation case and O(n−1 in the large-

deviation case, while the (1.43) up to an error of order O(n−1 in the moderate-deviation

case and O(n−1/2 in the large-deviation case.

The approximation is exact in a full exponential family and the (1.43) becomes

r̄p(β) = rp(β) +
1

rp(β)
log

ū(β)

rp(β)
, (1.44)

where ū(β) is

ū(β) =
[

S−1q
]

β
|ĵ|1/2 |̂i|−1|S|+ |j̃λ,λ|−1/2, (1.45)

and ĵ is the expected and î the observed information, both evaluated in the maximum

likelihood estimate ψ̂. j̃λ,λ is a block of the expected information matrix, corresponding

to λ and evaluated at the constrained maximum likelihood estimate ψ̃. Finally, [S−1q]β

is the component of the vector S−1q corresponding to β, where:

S = Covψ1

(

∂lp(ψ1)

∂ψ
,
∂lp(ψ2)

∂ψ

) ∣

∣

∣

∣

ψ1=ψ̂,ψ2=ψ̃

and

q = Covψ1

[

∂lp(ψ1)

∂ψ
, lp(ψ1)− lp(ψ2)

] ∣

∣

∣

∣

ψ1=ψ̂,ψ2=ψ̃

.
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The Skovgaard’s statistic is particularly useful in meta-analysis as the random effect

meta-regression cannot be seen as an exponential family, except if σ̂2
i = σ̂2∀i = 1, ..., K

and as a consequence the use of the original Barndoff-Nielsen’s approximation is im-

practical.

Given the model (1.10) and taking ψ = (β, τ 2)T , let β̂ and τ̂ 2 the unconstrained maxi-

mum likelihood estimates and β̃ and τ̃ 2 the respective constrained maximum likelihood

estimate, the S matrix in the Skovgaard’s statistic is

S =

[

Sββ Sβτ2

Sτ2β Sτ2τ2

]

=

[

∑K
i=1 (σ̂

2
i + τ̃ 2)

−1 ∑K
i=1(β̂ − β̃) (σ̂2

i + τ̃ 2)
−2

0
∑K

i=1 (σ̂
2
i + τ̃ 2)

−2
/2

]

and q is a vector of two components equal to

q =

[

qβ

qτ2

]

=





∑K
i=1(β̂ − β̃) (σ̂2

i + τ̃ 2)
−1

−∑K
i=1

{

(σ̂2
i + τ̂ 2)

−1 − (σ̂2
i + τ̃ 2)

−1
}

/2



 .

Given the meta-regression model (1.40) with p covariates, the matrix S is a (p+1)×(p+1)

matrix

S =

[

∑K
i=1XiX

T
i (σ̂2

i + τ̃ 2)
−1 ∑K

i=1XiX
T
i (β̂ − β̃) (σ̂2

i + τ̃ 2)
−2

0
∑K

i=1 {2 (σ̂2
i + τ̃ 2)}−1

]

,

and q is a (p+ 1) components vector:

q =





∑K
i=1XiX

T
i (β̂ − β̃) (σ̂2

i + τ̃ 2)
−1

−∑K
i=1

{

(σ̂2
i + τ̂ 2)

−1 − (σ̂2
i + τ̃ 2)

−1
}

/2



 .

The exact calculation are reported in Guolo (Appendix A, 2012).

From the results of the simulations presented in the article Guolo (2012) note that the

Skovengard’s correction achieves nominal 95% coverage of confidence intervals for β in

the meta-analysis random effect model and for β1 in a single covatiate meta-regression

model even with relatively small number of studies (less than 10) and regardless of the

value of τ 2. In addition, the Skovengard’s statistic seems to perform particularly better

than the REML and profile likelihood even considering the empirical coverage of the

confidence intervals for the parameter τ 2. In fact, the empirical coverage of 95% is

guaranteed with a number of studies less or equal to 15, regardless of the value of τ 2

(Guolo, 2012).



28 Section 1.9 - Non-parametric approaches

1.8 Other small sample corrections

1.8.1 Bartlett’s correction

The asymptotic distribution of the likelihood ratio statistic rp(β)
2 is χ2

1 distribution.

To construct a 1−α confidence interval for β, one can solve the equation rp(β)
2 ≤ χ2

1,1−α.

Furthermore, hypothesis testing can be performed by comparing rp(β)
2 to the quantile

χ2
1,1−α. It is important to note that this test relies on first-order asymptotics, and the

accuracy of the χ2
1 approximation may be affected by small sample sizes. To address this

issue, the Bartlett’s correction is introduced as (1 + A)−1rp(β)
2, where A represents a

function of both between and within study variances. The development of a generalized

formula for the Bartlett’s correction in the mixed linear model was carried out by Zucker

et al. (2000), and the specific formula for the meta-regression mixed effect model can

be found in the Appendix of Huizenga et al. (2011).

1.9 Non-parametric approaches

The non-parametric approach have been proposed to circumvent the distributional

assumption and the criticism associated with it (Jackson & White, 2018). These ap-

proaches offer advantages in terms of robustness, particularly in the face of model

misspecification. However, it is important to note that non-parametric methods can

be computationally intensive and may have reduced statistical power, due to the less

amount of information introduced in the model.

1.9.1 Permutation test

The permutation method can be used to test a specific hypothesis. In fact, the

test statistics is calculated for each of the M permutation and the process is possible

because data are exchangeable under the hypothesis of no effect. The two sided p-value

is obtained by doubling the proportion of permutation statistics that exceed the value

of the observed statistic. The application in meta-analysis proposed by Follmann &

Proschan (1999), is quite simple and it consist of permuting the signs of effect sizes as

positive and negative value are considered equally likely under the null hypothesis. In

meta-regression, the approach can be applied permuting the row of the design matrix as

under the null hypothesis there is no relationship between the covariate and the measure

of effect (Higgins & Thompson, 2004) suggest permuting the rows of the design matrix.

The permutation method has several limitation as it may not achieve conventional levels
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of statistical significance such as 0.05 when the number of studies is small (Viechtbauer,

2010a). For instance, when n = 5, the smallest possible P-value is 0.0625, and when

K = 6, it is 0.031. When the number of studies included is too large, the method can

be computationally intensive and require a considerable amount of time to evaluate all

the possible permutation. The main advantage however, is that it can be used with any

statistics of interest.

1.9.2 Resampling

The resampling method aim to estimate the distribution of the test statistic from

the data. Huizenga et al. (2011) consider a form of residual resampling for testing the

significance of β. Particularly, the following steps have been applied:

1. the mixed effect meta-regression model (1.40) is fit on the data and the desired

statistics is computed. (Huizenga et al., 2011) test the significance coefficient of

beta using Z = β̂j/se(β̂j), where se(β̂j) is the standard error of β̂j obtained with

the maximum likelihood method.

2. set β̂j = 0 and compute the reduced model residuals as ri = yi − ŷi, where ŷi is

the predicted yi under the reduced model where βj = 0.

3. for h from 1 to B:

a. resample K times without replacement the residuals ri,

b. add each ri to the model for yi,

c. name ∆ the matrix containing the between study variances, i.e. the element

δi in the model (1.40). The diagonal element of the estimated ∆, i.e δ̂i has

to be reordered matching the order of the resampled residual ri.

d. fit the full model (with βj not equal to zero) on the data and compute the

Z∗
h = β̂j/se(β̂j) statistic.

4. the p-value can be calculated a the proportion of Z∗
h > Z.

The resampling procedure does not require any distributional assumption and so it is

robust against many types of misspecification. However, the maximum amount of unique

permutation is K and so the p-values are multiple of 1/K!. Hence, the minimum p-

value attainable is 1/K! (Huizenga et al., 2011). In other words, the number of study

K could affect the precision of the conclusions. Other resampling methods are available

in the literature, for example Van Den Noortgate & Onghena (2005) proposed four
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different types of bootstrap. Two of them were non-parametric, i.e. the case and the

error bootstrap, while the other two were parametric, i.e. the effect size and raw data

bootstrap. Given that Van Den Noortgate & Onghena (2005) suggested not to use the

case bootstrap in meta-analysis and that the other three types of bootstrap gave similar

results, we limit ourself to describe one of the parametric approaches. The effect size

bootstrap is based on the model (1.40) and it consist of repeating B times the following

steps:

1. estimate the model (1.40) on the data;

2. draw a set of K δ∗i from N (0, τ̂ 2), which is the distribution of the random intercept

of the mixed effect meta-regression model;

3. generate the new true effect measure as β̂∗
i = β̂0 + β̂1xi1 + · · ·+ β̂qxiq + δ∗i ;

4. draw a set of K residuals as R∗
i ∼ N (0, σ̂2

i ), where σ̂2
i is estimated as σ̂2

i =
Ni

ni,Eni,C
+

β̂∗

i

2Ni
(according to (Hedges, 1981)) and ni,C is the sample size of the

control group, ni,E of the experimental one and Ni = ni,C + ni,E for the i − th

study.

5. calculated the y∗i = β̂∗
i + r∗i , with r

∗
i realization of R∗

i .

The parametric bootstrap assumes that the model is correctly specified as well as the

random effect and error distribution. Once the boostrap distribution has been derived,

different types of confidence intervals are availables. A complete discussion can be found

in the paper of Carpenter & Bithell (2000).

1.10 Checking model assumptions

Because the two-stage meta-analysis model is based on several assumptions, it is

recommended that an empirical analysis be conducted to evaluate the extent to which

the assumptions of the model are met. This will help to ensure the validity of infer-

ential conclusions . In this section, we focus on the between-study level assumptions

and assume that the within-study level assumptions are met. In reality, violations of

the within-study model are more likely to be the result of decisions made during the

planning and data extraction phases of the meta-analysis than of statistical decisions.

For example, when dealing with binary data, the choice of effect measure and its trans-

formation (e.g., log odds ratio) directly affects the speed of convergence to a normal

distribution.
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1.10.1 Model fit and between-studies normality assumption

Considering the general case of the mixed-effects meta-regression model specified in

(1.40), the internally stundentized residuals can be defined as

ri =
yi − µ̂i

V ar(yi − µ̂i)

where µ̂i is the estimated of E [Yi|β0, β1, . . . , βqxiq] which can be written as µ̂i = β̂0 +

β̂1xi1+ · · ·+ β̂qxiq. The sampling variance of the residuals is equal to V ar(yi− µ̂i) = (1−
hi)(s

2
i +τ

2), where hi is the i-th diagonal element of the H matrix and it is well known in

the linear model theory as ”leverage”. The H is defined as H = X(XTW̃TX)−1XTW̃,

with X being the K × q model matrix and W̃ = [diag(1/(s2i + τ 2))] , ∀i = 1, . . . , K.

The W̃ is the weighted least square weight matrix. In a meta-regression model, outliers

can potentially inflate the estimate of τ 2, leading to small residuals and at the same

time they can pull µi toward themselves, reducing the numerator. For this reason, Lv

(1985) proposed the external studentized residuals for the fixed effect model. They are

also known as deleted residuals in fact Viechtbauer & Cheung (2010) defined them as

ti =
yi − µ̂i(−i)

V ar(yi − µ̂i(−i))
=

yi − µ̂i(−i)
V ar(s2i + τ̂ 2(−i) + V ar(µ̂i(−i)))

where µ̂i(−i)) is the predicted average for the study i from the estimated model excluding

the i-th study. In the second equality, the term τ̂ 2(−i) indicates the estimate of τ 2 from the

model excluding the i-th study and V ar(µ̂i(−i)) is the estimated variance of µ̂i(−i) from

the model that excludes the i-th study. The simplification is justified considering that yi

and µ̂i(−i) are not correlated. If the studies followed the assumed model, the studentized

deleted residuals approximately follow a normal distribution N (0, 1). Therefore, in the

plot (i, ti), only 5% of the points should lie outside the bounds of ±ϕ−1(0.975), where

ϕ−1(·) indicates the quantile function of a standard normal distribution. Similarly, the

quantile-quantile plot against a standard normal distribution can be useful for visually

checking the goodness of fit. A formal assessment of the normality assumption can be

carried out with any test suitable for the purpose, for example the Shapiro-Wilk or the

Kolmogorov-Smirnov. Moreover, as explained by Viechtbauer & Cheung (2010), the

studentized deleted residuals formalize a test for outlier. Given the model (1.40), we

assumed one study not following it. In particular, the outlier study ĩ follows a model

with conditional expected value

E {Yi|xĩ1, . . . xĩ1} = β0 + β1xĩ,1 + · · ·+ βqxĩ,q + λ,



32 Section 1.10 - Checking model assumptions

where λ is the fixed amount by which the study ĩ shifted away from the true model. The

hypothesis of H0 : λ = 0 can be tested adding a dummy variable to the model which

takes the value of 1 only for the ĩ-th study. The statistics to test the hypothesis would

be the standardized deleted residual of the ĩ-th study.

1.10.2 Influential studies

While a few outliers may not create undue problems, it is necessary to recognize

whether a study affects the model’s predictions, or the estimation of the parameters

of interest. The statistics of interest to evaluate the issue fall under the name of case

deletion diagnostics and in this section we will follow the discussion made in Viechtbauer

& Cheung (2010). A point to start is

DFFITSi =
µ̂i − µ̂i(−i)

√

hi

(

vi + τ̂ 2(−i)

)

,

which is the difference between the predicted average effect for the i-th estimated in-

cluding or not the study itself. The difference is standardized by the standard error µ̂i,

calculated replacing τ̂ 2 with τ̂ 2(−i). The statistic resemble the standardized mean differ-

ence, in fact it quantifies how much the two prediction differs, including and excluding

the i-th study, in standard deviation unit. Going more in depth, a Cook’s distance

similar measure is given by

Di =
(

β̂ − β̂(−i)

)T (

XT W̃X
)(

β̂ − β̂(−i)

)

=
K
∑

i

(

µ̂i − µ̂i(−i)
)2

vi + τ̂ 2

where β̂(−i) denotes the vector of parameter estimates from the fitted model after dele-

tion of the i-th study. It can be interpreted as the Mahalanobis between the predicted

values with and without the i-th study. Furthermore, the join confidence region of the

regression coefficients is defined by

(β̂ − β)T
(

XT W̃X
)

(β̂ − β) = χ2
pT ,1−α

with p′ = p+1. Therefore, a value ofDi equal to χ
2
p′,1−α indicates that the deletion of the

i-th study would move the parameter estimates to the edge of a (1−α) joint confidence

region based on the complete data. Based on Cook & Weisberg (1982) worrisome values

are defined as the Di > χ2
p, 0.5.
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To examine the influence of the i-th study on the regression coefficient the following

statistic has been proposed:

DFBETASij =
β̂j − β̂j(−i)

√

(

XT W̃(−i)X
)−1

[jT jT ]

where
(

XT W̃(−i)X
)−1

[j′j′]
denotes the value of the (j+1) th diagonal element of the matrix

(

XT W̃(−i)X
)−1

and W̃(−i) = diag
[

1/
(

v1 + τ̂ 2(−i)

)

, 1/
(

v2 + τ̂ 2(−i)

)

. . . , 1/
(

vk + τ̂ 2(−i)

)]

.

The formula can be simplified to

DFBETASi =
(

µ̂− µ̂(−i)

)

√

√

√

√

k
∑

l=1

w̃l(−i)

in the random-effects model, where w̃I(−i) = 1/
(

vl + τ̂ 2(−i)

)

.

The influence of the i-th study can also be examined by means of the change in the

variance–covariance matrix of the parameter estimates when excluding the study from

the model fitting. The ratio of the generalized variance is defined as

COVRATIOi =
det
{

Var
(

β̂(−i)

)}

det{Var(β̂)}
and a value below 1 is suspicious as it indicates that the removal of the i-th study lead

to a more precise estimate of the model coefficient.

If τ 2 is of interest, it may be informative to examine the influence of outlier on its

estimate too. The effect of the removal of the i-th study can be evaluated using

Ri = 100×
(

τ̂ 2 − τ̂ 2(−i)
)

/τ̂ 2

quantifying the percent change in the estimate of τ 2 when the i-th study is excluded

relative to the estimated amount of (residual) heterogeneity when all the studies are

included.

1.11 Publication bias

The validity of conclusions drawn from a meta-analysis is affected by publication and

outcome reporting bias. A meta-analysis is intended to be a comprehensive synthesis of

all available evidence, but some studies may not be included if the authors misreported
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their results or if the study was not published. As a result, the estimate of the meta-

analysis may not reflect the true effect of the treatment (in a broad sense). Some

statistical methods have been developed to examine the presence of these two types of

bias; the following are the most widely used, although probably not the most effective.

1.11.1 Estimation of the number of unpublished studies

The fail-safe N method aims to calculate the number of studies with negative results

needed to transform the meta-analysis result into non-significant. Given a set of studies

i = 1, . . . , K and considering the hypothesis H0 : βi = 0, we can consider the statistics

Zs =

∑K
i=1 zi√
K

zi = Φ−1(pi)

and pi, the p-value of the i-th study. Under the null hypothesis H0 : βi = 0 ∀i,
Z ∼ N(0, 1). To not reject the null hypothesis we should have:

∑K
i=1 zi√
K +N

≤ Zα

N >

(

∑K
i=1 zi

Zalpha

)2

−K = K

(

Zs
Zα

)2

−K,

(1.46)

where N is the number of studies necessary to change the conclusion of the meta-

analysis.

Note that while the denominator in the first line of the (1.46) is increased by N , the

sum at the numerator remains indexed in K. The reason is that we add trial with a true

effect of zero. The major limitations of this method are that it relies only on p-values

and that the missing studies have an exact zero effect.

1.11.2 Funnel plots

The Funnel plot graphs pairs of (yi,
√

(s2i + τ 2)
−1
), but any kind of precision measure

(such as variance or sample size) can be used in the ordinate axis. Using the standard

deviation, the boundary lines have a slope of 1/Φ−1(1 − α/2). Generally, the plot is

drawn with a vertical line corresponding to the estimate of the average effect among the

plotted studies. In the interpretation of the Funnel plot, it should be considered the
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assumption of a common average among the plotted studies. If there were one or more

important moderators, the single units would be clustered and the interpretation would

not be valuable in term of asymmetry. In addition, if an effect measure is used such that

the variance depends on the effect (e.g. odds ratio), there will be a natural asymmetry in

the graph. To improve the reading and interpretation of the plots, the Contour-enhanced

funnel plots (Peters et al., 2008) have been proposed. Under the normality assumption

of the treatment effect, the significance of any effect size can be calculated from the

effect size and the standard error (the two axis of the plot). Thus, contours representing

conventional “milestone” levels of statistical significance (e.g., < 0.01, < 0.05, < 0.1)

can be defined and regions associated with these significance levels plotted. Note that

the contour enhance funnel plot is centered on zero and not on the model estimate.

1.11.3 Egger’s regression test

The appearance of the funnel plot is largely determined by the effect of chance, so

several statistics have been created to assess whether the association between the size of

the effect measure and the chosen precision measure is greater than would be expected

by pure effect of chance. According to Egger et al. (1997) the following model can be

estimated

E [Zi] = β0 + β1(1/si).

where zi = yi/si. In Egger’s original formulation, the hypothesis to be tested was

H0 : β0 = 0. Under the null hypothesis, the slope of Egger’s regression would be equal

to the joint effect and β0 = 0 because the smallest study would have an effect close

to zero and a small standard error. The test is equivalent to estimating the weighted

regression of yi on si, where the weighting for 1/si and the coefficient β1 is the parameter

of interest. In this sense, the regression model can also be run with s2i instead of si. The

main limitation is that the Egger approach does not test the publication bias hypothesis,

but only the asymmetry of the funnel plot. It is therefore necessary to rule out other

possible causes of the asymmetry before the results of the test can be used as evidence

in favour or against publication bias.

1.11.4 Trim and fill

The trim-and-fill method is a non-parametric approach that try to idenfity and cor-

rect the funnel plot asymmetry. The algorithm works as follows (Chapter 13, section

13.8, page295, Schmid et al. (2020)):
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1. Order the observed treatment effects by size and potentially re-code them so that

the missing studies have negative effects corresponding to asymmetry on the left

hand side of the funnel plot;

2. Estimate the mean treatment effect, β, using a common or random-effects model;

3. Estimate the number of unpublished studies, u;

4. Trim off or remove the u most extreme studies causing asymmetry

5. Re-estimate β and u using the trimmed data, repeating the trimming process until

u stabilizes;

6. Replace the trimmed studies and impute their missing counterparts symmetrically

about β;

7. Calculate a final adjusted estimate of β using both observed and imputed studies.

It results that the imputed studies are symmetric in the effect but opposite in direction

to the u studies chosen to be omitted in order to make the plot symmetric. It is known

that in step 3 different methods can be used, for example u is estimated as one less

than the number of positive effects that are larger than the absolute value of the most

negative effect. The weaknesses of the method are the strong assumption, in fact it

assumes:

• that funnel plot asymmetry (small-study effects) occurs only because of publica-

tion bias, ignoring all the other mechanisms;

• the existance of a symmetric target funnel plot.



Chapter 2

Application to a case study

2.1 Introduction to the dataset

In this chapter we will use the methods described in Chapter 1 to reproduce and further

investigate the statistical analysis of a paper published in 2021 by Jones and colleagues

(Jones et al., 2021). The original dataset is available on the The Open Science Frame-

work (OSF) repository (https://osf.io/afn3y/). The aim of the meta-analysis is

to assess sex-related differences in adaptations to resistance training and specifically

in older adults. The research design is globally well structured, and we will indicate

the key methodological (nonstatistical-mathematical) details below. A brief paragraph

describing resistance training and the key variables governing exercise prescription will

also be provided before the results are presented.

2.2 Resistance training in older adults

Resistance training is defined as ”a specialized method of conditioning, which in-

volves the progressive use of a wide range of resistive loads and a variety of training

modalities designed to enhance health, fitness, and sports performance” (Faigenbaum

et al., 2009). It is also commonly known as ”strength training” or ”weight training”.

When prescribing resistance training exercises, several crucial variables must be taken

into account, including relative and absolute intensity, proximity to failure, frequency,

volume, velocity, and exercise selection (Scott et al., 2016). Relative and absolute inten-

sity refer to the magnitude of the resistance moved, either in absolute terms (e.g., weight

on the bar) or relative to a benchmark (e.g., one-repetition maximum). Proximity to

37
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failure represents the number of repetitions that can be performed before reaching fail-

ure. The literature has presented multiple definitions of failure (Steele et al., 2017), but

due to the heterogeneity in its definition (and the inaccurancy in reporting it), Jones

and collegues (Jones et al., 2021) could not extract this variable from all the study.

Frequency relates to the number of training sessions conducted per week, while volume

pertains to the total number of sets and repetitions performed for each exercise. Exer-

cise selection involves choosing specific exercises that target the desired muscle group as

the prime mover. Finally, extensive research has been conducted on periodization and

models of progression in resistance training (of Sports Medicine et al., 2009). Sarcope-

nia, characterized by a gradual loss of muscle mass, strength, and muscle performance

accompanied by alterations in muscle fibers, poses a significant concern for older adults

(Frontera et al., 2000). This condition represents a prominent public health issue due

to its association with adverse events and subsequent illness in later stages of life (Du

et al., 2019), disability (Fielding et al., 2011), and an increased risk of falls (Yeung et al.,

2019). Resistance training is the preferred exercise modality (and the gold standard) for

accrual of skeletal muscle (Schoenfeld, 2010), with adaptations possible throughout the

lifespan, even in nonagenarians (Fiatarone et al., 1990). Moreover, this exercise modality

significantly contributes to healthy aging, positively impacting diverse health-oriented

and performance-related outcomes. Consequently, it is endorsed and recommended by

the World Health Organization and the National Strength and Conditioning Associa-

tion for older adults (Bull et al., 2020; Fragala et al., 2019). Nevertheless, investigating

the physiological differences in response to resistance training programs between sexes

remains of utmost interest. Gender-specific dissimilarities have been observed in in-

flammatory responses subsequent to muscle-damaging eccentric exercise (Stupka et al.,

2000), the recovery time course following resistance training (Flores et al., 2011), and

muscle fiber size and composition (Haizlip et al., 2015). Given the extensive body of

literature accumulated in recent years on the subject, Jones et al. made the decision to

undertake a meta-analysis, which was subsequently published as Jones et al. (2021)

2.3 Methodological details in the dataset construc-

tion phase

2.3.1 Literature search, inclusion and exclusion criteria

The literature search was conducted using five well-recognized and well-established

electronic databases:
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• Web of Science,

• Science Direct,

• SPORTDiscus,

• CINAHL,

• MEDLINE.

The authors identified 7560 abstracts but the total amount of full text included was 30 (2

of them by manual search). The retrieved articles were included if they were prospective

Resistance Training (RT) trial, published in English and including participants older

than 50 years old. In physiology a well-recognize cut-off age to differentiate between

adults and older adults is 65 years old, however the choice was justify assuming that

hormonal alteration due to menopause might limit the effect of RT before the usual

target age. Finally, only dynamic RT intervention, where men and women performed

the same program, were considered. The exclusion criteria mostly encompass medical

conditions, injury or failing in reporting the outcomes.

2.3.2 Outcomes selection

The adaptations to the training stimulus were represented by three constructs:

• maximal upper-body strength;

• maximal lower-body strength;

• muscle size.

Scientific investigations often report multiple realizations of these outcomes because

muscle strength is assessed on different movements (and possibly with different tech-

niques) and ”muscle size” can be evaluated at least at local or whole body level. To

maintain the stochastic independence of the effect sizes across different studies, outcome

extraction hierarchies have been adopted. For maximum strength the authors proceed

from less-skilled bi-articular movement, to bi-articular skilled movement, to single joint

exercise. The direct assessment was always the preferred test modality. For ”muscle

size” the technique with the highest construct validity was chosen and the whole body

assessment was preferred to the local one. However, when the training protocol was

specific to a body region and both whole and local assessment were available, the more

protocol-specific one would be chosen. Hierarchies are deterministic rules to guarantee
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the stochastic independence between the measure of effect from different studies. How-

ever, this solution did not address the the presence of studies with multiple outcome

due to multiple experimental groups. Regarding the latter detail, its handling by the

authors has not been clarified. However, two effect measures for the same study, are

sometimes present in the dataset. In this paper, the possible dependence of these ef-

fects has been ignored, well aware that it constitutes a limitation. However, it allows to

reproduce the original results and the comparison with the exposed methods.

2.3.3 Data extraction

Since all the studies included adopted a longitudinal design, at least one measure

before and one after the administration of the intervention protocol was available. For

each outcome of interest, the mean and standard deviation of the absolute and relative

changes from baseline for male and female were extracted. When the standard deviation

was not available, it was calculated as (Higgins & Deeks, 2011)

σ̂d,ij =
√

σ̂2
pre,ij + σ̂2

post,ij − 2 · (ρ̂pp,ij · σ̂pre,ij · σ̂2
post,ij),

where σ̂d,ij is the estimated standard deviation of the post − pre differences of the

outcome i in the study j, σ̂pre,ij is the estimated standard deviation of the pre score,

σ̂post,ij is the estimated standard deviation of the post score and ρ̂pp,ij is the estimated

correlation between the pre and post values. In case where ρ̂pp,ij was not available, the

authors plugged-in a value derived from the studies with enough information to obtain

a correlation estimate. Firstly, they estimated ρ̂pp,ij as (Higgins & Deeks, 2011)

ρ̂pp,ij =
σ̂2
pre,ij + σ̂2

post,ij − σ̂2
pp,ij

2 · σ̂pre,ij · σ̂pre,ij
, (2.1)

where σ̂pp,ij is the estimated standard deviation of the change scores. Due to the paucity

of study reporting all the information necessary to compute the within group post-pre

correlation (equation 2.1), males and females data were pooled. Secondly, they used the

following estimator:

ρ̂∗pp,ij = med(ρ̂pp,ij)− 0.1

where med(·) indicates the sample median. A sensitivity analysis were performed forcing

ρ̂∗pp,ij = 0.5. The Table 2.1 reports the estimated ρ̂∗pp,ij values used in the original

publication.
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Table 2.1: Estimated pre-post correlation values

Outcome ρ̂∗pp,ij
Upper-body strength 0.78
Lower-body strength 0.70
Muscle size 0.87

Unfortunately, the authors do not offer theoretical justification of the estimator used to

σ̂pp,ij.

2.3.4 The measure of effect

Once the group-level data were obtained, the Hedge’s g (Hedges, 1981) was computed

as the study-level effect measure. The statistic is a standardized mean difference defined

as

yij = c · µ̂male,ij − µ̂female,ij
σ̂p

,

with

σ̂p =

√

(nmale,ij − 1)σ̂d,male,ij + (nmale,ij − 1)σ̂d,female,ij
nmale,ij + nfemale,ij − 2

,

and

c = 1− 3

4m− 1
· yij,

where m = nmale,ij +nfemale,ij − 2, µ̂male,ij is the estimated average difference post− pre

in the outocome j, nmale,ij is the sample size of the group and hatσd,female,ij is the

estimated standard deviation of the post − pre differences in the male group and the

same applies to female. The constant c is a correction for small sample size to obtained

an unbiased estimate of the effect measure. The variance of the effect measure can be

computed as (Hedges, 1981)

s2ij =
2

mi

·
(

1 +
y2ij
4

)

.

From now on, the study-level data will be indicated as (yi, s
2
i ) because the number of

outcomes j is different for each study and therefore a univariate model for each research

question was proposed.
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2.4 Auxiliary variables

The working dataset is encoded in an excel file named ”Data 190620.xslx” and con-

tains multiple variables. In addition to effect measures and labels useful in identifying

the studies included in the meta-analysis, the variables considered are:

• training, which represents the type of training performed during the study. It is

divided into ”upper body,” ”lower body,” and ”full body.”

• duration, which indicates the duration of the study in weeks;

• metareg intensity, which indicates the number of repetitions per week by adding

up each exercise;

• metareg intensity, which indicates the intensity expressed as a percentage of

the 1RM (the maximum weight lifted for a single repetition in a given exercise);

• metareg frequency, which indicates the weekly training frequency;

• metareg exercise, which indicates the number of exercises;

• metareg sets, which indicates the average number of sets per exercise.

2.5 Analysis of the relative changes in upper body

muscle strength

The RE model estimated on the relative change in upper body muscle strength is

based on the results of 7 studies and 160 individuals, of whom 80 are female. The

point estimate of the parameter of interest is β̂ = −0.29, with an associate 95% confi-

dence interval equal to (−0.62, 0.04). Accordingly, the p-value for the test of the null

hypothesis of no effect is p = 0.09. Therefore, the null hypothesis that there is no differ-

ence between males and females in upper body strength gain cannot be rejected when

the change is expressed relative to baseline. The Cochran’s Q test is not significant

(Q = 6.60, df = 6, p = 0.36) and thus the hypothesis of a common true effect is not

rejected. However, as explained earlier, this could be due to a lack of statistical power,

and given the limited number of included studies, it is better to discuss the results of

the RE model than to estimate the CE one. Nevertheless, the statistic indicating the

percentage of variance explained by heterogeneity is I2 = 4.90%, indicating that the

main source of variance is due to within-study variability. The results obtained so far
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are based on the standard method for estimating RE models introduced by DerSimo-

nian & Laird (1986). Moreover, the point estimate of the nuisance parameter obtained

with the method of moments is τ 2 = 0.10, with an associate 95% confidence interval

of (< 10−4, 1.13), calculated using the method of Viechtbauer (2007). The results pre-

sented so far were shown in the forest plot in Figure 2.1. Given the small percentage

of remaining heterogeneity and the small number of included studies, it does not seem

reasonable to estimate a meta-regression model.
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Figure 2.1: Forest plot depicting the results of a meta-analysis investigating the dif-
ference between males and females in relative changes in upper body muscle strength
after a resistance training intervention. The forest plot displays the effect size esti-
mates for each individual study along with their corresponding 95% confidence in-
tervals. The size of each square corresponds to the weight assigned to each study
according to the RE formulation. The overall effect size estimate based on the ran-
dom effect model proposed by DerSimonian & Laird (1986) is represented by the
diamond at the bottom, with its width indicating the 95% CI. Cochran’s Q statistic,
a measure of heterogeneity and the Rhosenthal’s fail-safe number of study needed to
obtain a non-significan effect are reported in the bottom left corner. Abbreviations:
SD, Standard Deviation; p, p-value; df, degrees of freedom
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2.5.1 Evaluation of model assumption and influential values

According to Figure 2.2a, the standardized deleted residuals of the model are normally

distributed. The Shapiro-Wilk test to support the graphical analysis, being not signifi-

cant (W = 0.91, p = 0.37). Moreover, the graph in Figure 2.2b shows that none of the

standardized deleted residuals is particularly high, as they all fall within the range of

(−1.96, 1.96).
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Figure 2.2: Evaluation of the normality assumption on the standardized deleted
residuals for the model evaluating the difference between males and females in relative
changes in upper body muscle strength after a resistance training intervention.

None of the studies appear to be influential. Indeed, all DFFITSi values (Figure 2.3a)

are below their limit 1.22, Cook’s distances (Figure 2.3c) are all below χ2
0.5,p+1 = 1.39,

and all dfbsi < |1| (Figure 2.3b). It is worth noting that the covariance ratio (Figure

2.3a) is always greater than 1, indicating that the uncertainty underlying the fixed

effects β estimates increases when one of the included studies is excluded. The increase

is particularly relevant when Study 5, corresponding to ”McCartney et al (60-70 y)”, is

excluded because it is the largest among those included. Figure 2.3e shows the change

in the estimate of heterogeneity (τ 2) when the i-th study is excluded. It can be observed

that the removal of ”McCartney et al. (60-70 y)” leads to a substantial inflation of τ 2.”

2.5.2 Evaluation of risk of publication bias

Looking at the contour-enhanced funnel plot in Figure 2.4a, there seems to be a slight

indication of publication bias, as one would expect a larger number of studies with

negative and significant effect sizes. However, Egger’s test for asymmetry of the funnel

plot is not significant (Z = 1.06, p = 0.29). Figure 2.4b shows the Egger regression line

calculated using standard error and sample variance as predictors.
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Figure 2.3: Evaluation of the influential studies on the study predict average value,
on the β coefficints and on τ2 on the model investigating the difference between
males and females in relative changes in upper body muscle strength after a resistance
training intervention. The statistics are plotted against a study progressive number.

Figure 2.4c shows the contour-enhanced funnel plot where the number of missing trials

was added to achieve symmetry using the trim and fill method. The results support

the conclusion that there is a lack of studies with negative effect sizes and relatively

high standard errors. It is also noteworthy that the sensitivity analysis for asymmetry

performed with the trim and fill method yields β̂ = −0.34 with a 95% confidence interval

of (−0.65,−0.03), which slightly changes the conclusions of the meta-analysis. Finally,

Rosenthal’s fail-safe N calculation is equal to zero because the estimated effect is not

statistically significant (Figure 2.1).

2.5.3 Comparison with more advanced methods

A comparison with the other methods proposed in Chapter 1 is also presented, both to

understand the sensitivity of the β and τ 2 estimates and to assess the robustness of the

inference performed.

As can be seen in Table 2.2, the point estimate of the intercept of the model is particu-

larly robust to the choice of method used. In fact, the method proposed by DerSimonian

& Laird (1986), the maximum likelihood estimation, the restricted maximum likelihood
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Figure 2.4: Publication bias assessment evaluated via contour enhanced funnel plot
in the model investigating the difference between males and females in relative changes
in upper body muscle strength after a resistance training intervention. The Egger
regression ’functions’ are reported for si and s2i .

estimation (REML), and Paule-Mandel’s method yield similar results. This is not sur-

prising since the estimator β̂ is the same with exception of the weights used, which

vary between methods based on τ 2. The percentage of heterogeneity in the model is

very small, as indicated by previous analyses, and therefore has little effect on the β

estimate. Similarly, the standard errors of β̂ in the different models differ based on τ 2

and therefore also appear very similar.

The confidence intervals for β also yield the same conclusion, with similar endpoints and

comparable width, except for the Hartung-Knapp-Sidik-Jonkman method (see Table

2.3).

It should also be noted that the p-values to assess the significance of the intercept test

in the model are mostly consistent with the confidence intervals. Table 2.4 shows that

the Hartung-Knapp-Sidik-Jonkman method indeed provides the highest p-value. Fur-

thermore, it is interesting to note that the p-value calculated using the permutation test
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Table 2.2: Point estimate and standard error of β of the RE model fitted to estimate
the difference between males and females in relative changes in upper body muscle
strength after a resistance training intervention, obtained by DerSimonian & Laird
(1986), the maximum likelihood method (ML), the restricted maximum likelihood
method (REML) and the Paule-Mandel estimator (PM).

Estimator Estimate Standard Error
DL -0.29 0.17
ML -0.30 0.16
REML -0.29 0.17
PM -0.29 0.17

Table 2.3: Confidence intervals lower limit (LL), upper limit (UL) and width for
the effect β of the RE model fitted to estimate the difference between males and
females in relative changes in upper body muscle strength after a resistance train-
ing intervention, obtained by DerSimonian & Laird (1986), the maximum likelihood
(ML Wald) and the restricted maximum likelihood (REML Wald) using the Wald’s
methods, the maximum likelihood (ML prof Wilks) and the restricted maximum like-
lihood (REML prof Wilks) using Wilks’ method, the Hartung-Knapp-Sidik-Jonkman
estimator, and the profile likelihood Skovgaard’s method (prof Wilks Skovgaard).

Estimator LL UL Width
DL Wald -0.62 0.05 0.67
ML Wald -0.61 0.02 0.63
REML Wald -0.62 0.04 0.65
ML prof Wilks -0.61 0.02 0.63
REML prof Wilks -0.62 0.04 0.65
Hartung-Knapp-Sidik-Jonkman -0.68 0.15 0.82
prof Wilks Skovgaard -0.62 0.09 0.72

is similar to those calculated using maximum likelihood based methods, indicating that

the conclusions are robust to deviations from the assumption of normality of the true

study effects. Finally, consider that the p-value calculated using the Skovgaard’s statis-

tic is particularly high, indicating that the first-order approximation of the likelihood

ratio test is not reliable due to the small number of included studies.

The point estimate of τ 2 is also very similar among the methods used, with comparable

standard errors, see Table 2.5. This is likely due to the negligible amount of heterogene-

ity. However, it should be noted that although the estimate is close to the lower limit

of the parameter space, the standard error is considerable.
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Table 2.4: Significance test on the parameter β of the RE model fitted to esti-
mate the difference between males and females in relative changes in upper body
muscle strength after a resistance training intervention, obtained by DerSimonian &
Laird (1986), the Hartung-Knapp-Sidik-Jonkman method, the maximum likelihood
(ML Wald) and the restricted maximum likelihood methods (REML Wald) using the
Wald’s statistic, the profile maximum likelihood method (ML prof Wilks) and the
Skovgaard’s method using the Wilk’s test, the Wilk’s method with Bartlett’s correc-
tion and the permutation method.

Method p
DL 0.08
Hartung-Knapp-Sidik-Jonkman 0.21
ML Wald 0.07
REML Wald 0.08
ML prof Wilks 0.11
Skovgaard 0.27
Bartlett 0.17
Permutations 0.11

Table 2.5: Point estimate and standard error of τ2 of the RE model fitted to estimate
the difference between males and females in relative changes in upper body muscle
strength after a resistance training intervention, obtained by DerSimonian & Laird
(1986), the maximum likelihood method (ML), the restricted maximum likelihood
method (REML) and the Paule-Mandel estimator (PM).

Estimator Estimate Standard Error
DL 0.02 0.12
ML < 10−4 0.09
REML 0.01 0.11
PM 0.02 0.12

2.6 Analysis of the absolute changes in upper body

muscle strength

The RE model estimated to test the sex effect in the absolute change in upper body

muscle strength is based on the same number of studies and participants as the model

on the relative differences. The point estimate of the parameter of interest is β̂ = 0.48,

with an associate 95% confidence interval of (< 10−4, 1.82), using the Viechtbauer (2007)

method. Accordingly, the p-value for the test of the null hypothesis of no effect is

p = 0.02. Therefore, the null hypothesis of no difference between males and females can

be rejected.

The Cochran’s Q test is not significant (Q = 8.92, df = 6, p = 0.18) and thus

the hypothesis of a common true effect is not rejected. The percentage of variance

explained by heterogeneity is I2 = 29.6%, indicating that the main source of variance is
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due to within-study variability but that heterogeneity is considerably higher than in the

previous model. Hence, considering the slightly higher point estimate of the I2 statistics

and the discussion about the Cochran’s Q test, we prefer not to estimate the CE model.

Moreover, the point estimate of the nuisance parameter obtained with the method of

moments is τ 2 = 0.08, with an associate 95% confidence interval of(−0.18, 0.23), with

the negative endpoint typically set equal to 0. The results presented so far were shown

in the forest plot in Figure 2.5.
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Figure 2.5: Forest plot depicting the results of a meta-analysis investigating the dif-
ference between males and females in absolute changes in upper body muscle strength
after a resistance training intervention. The forest plot displays the effect size esti-
mates for each individual study along with their corresponding 95% confidence in-
tervals. The size of each square corresponds to the weight assigned to each study
according to the RE formulation. The overall effect size estimate based on the ran-
dom effect model proposed by DerSimonian & Laird (1986) is represented by the
diamond at the bottom, with its width indicating the 95% CI. Cochran’s Q statistic,
a measure of heterogeneity and the Rhosenthal’s fail-safe number of study needed to
obtain a non-significan effect are reported in the bottom left corner. Abbreviations:
SD, Standard Deviation; p, p-value; df, degrees of freedom
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Figure 2.6: Evaluation of the normality assumption on the standardized deleted
residuals for the model evaluating the difference between males and females in absolute
changes in upper body muscle strength after a resistance training intervention.

2.6.1 Evaluation of model assumption and influential values

According to Figure 2.6a, the standardized deleted residuals of the model are normally

distributed. The Shapiro-Wilk test to support the graphical analysis, being not signif-

icant (W = 0.94, p = 0.65). Moreover, the graph in Figure 2.6b shows that only one

standardized deleted residuals is above the limit 1.96. Under the normality hypothesis,

the 5% of the residuals are expected to exceed those limits, and thus what is observed

could be compatible with what is expected. In fact the 5% of 7 is 0.35 and if we had

multiple sample of this size from the same normal distribution, we would expect some

of them to have any value above 1.96 or below −1.96 and some of them with one value

outsome of the threeshold.

The study of ”Lexell et al. [75]” appears to be an influential value. In fact, in addition

to the standardized deleted residual above the limit threshold, also its Cook’s distance

(Figure 2.7c) seems particularly elevated. The influence analysis showed that its removal

decrease the estimate of β (Figure 2.7b) and the amount of heterogeneity (Figures 2.7d

and 2.7e). However, even removing the influential study, the model intercept remains

significantly different from zero (β̂ = 0.34, se(β̂) = 0.17, p = 0.05), while the point

estimate of τ 2 by the method of moments becomes exactly zero. For this reason and

given the limited sample size, it is not considered interesting to perform meta-regression

analyses in order to explain the heterogeneity of the effect, as it is mainly attributable

to unique study characteristics of ”Lexell et al. [75]”.
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Figure 2.7: Evaluation of the influential studies on the study predict average value,
on the β coefficints and on τ2 on the model investigating the difference between males
and females in absolute changes in upper body muscle strength after a resistance
training intervention. The statistics are plotted against a study progressive number.

2.6.2 Evaluation of risk of publication bias

Looking at the contour-enhanced funnel plot in Figure 2.8a, there seems to be a slight

indication of publication bias, as one would expect a larger number of studies with

negative not significant effect sizes and the Egger’s test for asymmetry is significant

both using variance (Z = 2.1, p = 0.04) or the standard error (Z = 2.0, p = 0.04) as a

predictor(Figure 2.8b). However, the trim and fill methods suggest that the estimated

number of missing study on the left is zero (Figure 2.8c). Finally,the Rosenthal’s fail-

safe N calculation suggested that 18 studies with nil effects are needed to have a non-

significan estimate of β (Figure 2.5).

2.6.3 Comparison with more advanced methods

The discussion of the robustness of the point estimate of β and its standard error with

respect to the estimation method is similar to that in Section 2.5.3. The values are

given in Table 2.6.
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Figure 2.8: Publication bias assessment evaluated via contour enhanced funnel
plot in the model investigating the difference between males and females in abso-
lute changes in upper body muscle strength after a resistance training intervention.

Table 2.6: Point estimate and standard error of β of the RE model fitted to estimate
the difference between males and females in absolute changes in upper body muscle
strength after a resistance training intervention, obtained by DerSimonian & Laird
(1986), the maximum likelihood method (ML) and the restricted maximum likelihood
method (REML) and the Paule-Mandel (PM) est.

Estimator Estimate Standard Error
DL 0.49 0.21
ML 0.45 0.18
REML 0.48 0.20
PM 0.49 0.21

It should also be noted that the p values used to assess the significance of the intercept

test are all consistent in the model (Table 2.8), and the only one that is not significant is

obtained using the Skovgaards’s statistic, suggesting that the first-order approximation

of the likelihood ratio test is not reliable because of the small number of studies included.

However, the discrepancy between Skovgaard’s p-value and the other p-values is much

smaller compared to the previous example.
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Table 2.7: Confidence intervals lower limit (LL), upper limit (UL) and width for
the effect β of the RE model fitted to estimate the difference between males and
females in absolute changes in upper body muscle strength after a resistance train-
ing intervention, obtained by DerSimonian & Laird (1986), the maximum likelihood
(ML Wald) and the restricted maximum likelihood (REML Wald) using the Wald’s
methods, the maximum likelihood (ML prof Wilks) and the restricted maximum like-
lihood (REML prof Wilks) using Wilks’ method, the Hartung-Knapp-Sidik-Jonkman
estimator, and the profile likelihood Skovgaard’s method (prof Wilks Skovgaard).

Estimator LL UL Width
DL Wald 0.09 0.89 0.81
ML Wald 0.11 0.80 0.69
REML Wald 0.09 0.88 0.79
ML prof Wilks 0.11 0.80 0.69
REML prof Wilks 0.09 0.88 0.79
Hartung-Knapp-Sidik-Jonkman 0.04 0.99 0.94
prof Wilks Skovgaard 0.09 0.95 0.86

Table 2.8: Significance test on the parameter β of the RE model fitted to esti-
mate the difference between males and females in absolute changes in upper body
muscle strength after a resistance training intervention, obtained by DerSimonian &
Laird (1986), the Hartung-Knapp-Sidik-Jonkman method, the maximum likelihood
(ML Wald) and the restricted maximum likelihood methods (REML Wald) using the
Wald’s statistic, the profile maximum likelihood method (ML prof Wilks) and the
Skovgaard’s method using the Wilk’s test, the Wilk’s method with Bartlett’s correc-
tion and the permutation method.

Method p
DL 0.02
Hartung-Knapp-Sidik-Jonkman 0.03
ML Wald 0.01
REML Wald 0.02
ML prof Wilks 0.02
Skovgaard 0.05
Bartlett 0.04
Permutations 0.01

Also, the discussion of the robustness of the estimator of τ 2 is analogous to Section 2.5.3,

but for none of the methods is the point estimator exactly equal to zero, see Table 2.9.
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Table 2.9: Point estimate and standard error of τ2 of the RE model fitted to estimate
the difference between males and females in absolute changes in upper body muscle
strength after a resistance training intervention, obtained by DerSimonian & Laird
(1986), the maximum likelihood method (ML), the restricted maximum likelihood
method (REML) and the Paule-Mandel estimator (PM).

Estimator Estimate Standard Error
DL 0.09 0.17
ML 0.02 0.11
REML 0.08 0.16
PM 0.11 0.18

2.7 Analysis of the relative changes in lower body

muscle strength

The RE model estimated on the relative effect measures of differences between males

and females in the relative change in lower body muscle strength is based on the re-

sults of 34 studies and 1196 individuals, of whom 630 are female. The point estimate

of the parameter of interest is β̂ = −0.21, with an associate 95% confidence interval

of(−0.33,−0.10). Accordingly, the p-value for the test of the null hypothesis of no effect

is close to 0, p < 0.001. Therefore, the null hypothesis that there is no difference be-

tween males and females in lower body strength gain can be rejected when the change

is expressed relative to baseline.

The Cochran’s Q test is not significant (Q = 24.59, df = 34, p = 0.88) and thus

the hypothesis of a common true effect is not rejected. The I2 statistic is equal to zero,

confirming the absence of heterogeneity. The point estimate of the nuisance parameter

obtained with the method of moments is τ 2 = 0 and the associated standard error

(obtained with likelihood theory) is 0.02, indicating that the uncertainty behind the

estimate of the heterogeneity is small. The forest plot is presented in the Figure 2.9.

2.7.1 Evaluation of model assumption and influential values

According to the Figure 2.10a, the standardized deleted residuals of the model appears

to follow a normal distribution. The Shapiro-Wilk test to support the graphical analysis,

being not significant (W = 0.95, p = 0.14). Moreover, the graph in Figure 2.10b shows

that none of the standardized deleted residuals is particularly high, as they all fall within

the range of (−1.96, 1.96).
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Figure 2.9: Forest plot depicting the results of a meta-analysis investigating the dif-
ference between males and females in relative changes in lower body muscle strength
after a resistance training intervention. The forest plot displays the effect size esti-
mates for each individual study along with their corresponding 95% confidence in-
tervals. The size of each square corresponds to the weight assigned to each study
according to the RE formulation. The overall effect size estimate based on the ran-
dom effect model proposed by DerSimonian & Laird (1986) is represented by the
diamond at the bottom, with its width indicating the 95% CI. Cochran’s Q statistic,
a measure of heterogeneity and the Rhosenthal’s fail-safe number of study needed to
obtain a non-significan effect are reported in the bottom left corner. Abbreviations:
SD, Standard Deviation; p, p-value; df, degrees of freedom
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Figure 2.10: Evaluation of the normality assumption on the standardized deleted
residuals for the model evaluating the difference between males and females in relative
changes in lower body muscle strength after a resistance training intervention.
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Two effect measures stand out as influential values, namely ”Sood et al. [81]” and ”Walts

et al. [83]”. Although these do not influence the values predicted by the model (Figure

2.11a ) or even the coefficients (Figure 2.11b), the COV RATIOi is particularly greater

than one if these studies are removed. It is not complex to explain the reason for this,

since in the RE model the weights of the two studies are 9.69% and 15.37%, respectively.

In fact, the two studies have very low within-study variance, and considering that the

τ 2 estimate is zero, the weights coincide with those of the CE model. Thus, the two

studies are ”outliers” in terms of the precision of the effect measure, and the reason is

related to the sample size, see Figure 2.9).
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Figure 2.11: Evaluation of the influential studies on the study predict average value,
on the β coefficints and on τ2 on the model investigating the difference between
males and females in relative changes in lower body muscle strength after a resistance
training intervention. The statistics are plotted against a study progressive number.

While there is no particular reason to remove the two studies, the β estimate obtained

their removal is β̂ = −0.24, se(β̂)) = 0.07, p < 0.001, not changing the inference.

2.7.2 Evaluation of risk of publication bias

Looking at the contour-enhanced funnel plot in Figure 2.12a, there seems to be indica-

tion of publication bias, as one would expect a larger number of studies with positive

and not significant effect sizes. However, Egger’s test for asymmetry of the funnel plot
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is not significant neither using the standard error (Z = −1.29, p = 0.20) nor the vari-

ance (Z = −1.34, p = 0.18) as regressors. Figure 2.12b shows the Egger regression line

calculated using standard error and sample variance as predictors.
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Figure 2.12: Publication bias assessment evaluated via contour enhanced funnel
plot in the model investigating the difference between males and females in relative
changes in lower body muscle strength after a resistance training intervention.

Figure 2.12c shows the contour-enhanced funnel plot where the number of missing trials

was added to achieve symmetry using the trim and fill method. The results support the

idea that studies with positive not significant effect size are missing, indicating the lack

of 5 studies. The sensitivity analysis performed with the trim and fill method yields

β̂ = −0.1507 with a 95% confidence interval of (−0.26,−0.04), which sligthly change

the inferential conclusion in term of magnitude but not direction. Finally, Rosenthal’s

fail-safe N calculation is equal to 156.

2.7.3 Comparison with more advanced methods

The point estimate of β and its standard error are identical for DerSimonian & Laird

(1986), maximum likelihood, restricted maximum likelihood, and Paul-Mandel methods.
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This is not surprising given that all methods use a plug-in of τ̂ 2 in estimating β, and

τ̂ 2 = 0 for all of them. Accordingly, the confidence intervals for β are all very similar

with almost the same amplitude (Table 2.10) and the p-value of all evaluated methods

is close to zero at the second decimal place.

Table 2.10: Confidence intervals lower limit (LL), upper limit (UL) and width for
the effect β of the RE model fitted to estimate the difference between males and
females in relative changes in lower body muscle strength after a resistance train-
ing intervention, obtained by DerSimonian & Laird (1986), the maximum likelihood
(ML Wald) and the restricted maximum likelihood (REML Wald) using the Wald’s
methods, the maximum likelihood (ML prof Wilks) and the restricted maximum like-
lihood (REML prof Wilks) using Wilks’ method, the Hartung-Knapp-Sidik-Jonkman
estimator, and the profile likelihood Skovgaard’s method (prof Wilks Skovgaard).

Estimator LL UL Width
DL Wald -0.33 -0.10 0.23
ML Wald -0.33 -0.10 0.23
REML Wald -0.33 -0.10 0.23
ML prof Wilks -0.33 -0.10 0.23
REML prof Wilks -0.33 -0.10 0.23
Hartung-Knapp-Sidik-Jonkman -0.39 -0.08 0.30
prof Wilks Skovgaard -0.33 -0.10 0.23

Table 2.11: Point estimate and standard error of τ2 of the RE model fitted to es-
timate the difference between males and females in relative changes in lower body
muscle strength after a resistance training intervention, obtained by DerSimonian &
Laird (1986), the maximum likelihood method (ML), the restricted maximum likeli-
hood method (REML) and the Paule-Mandel estimator (PM).

Estimator Estimate Standard Error
DL < 10−4 0.03
ML < 10−4 0.02
REML < 10−4 0.02
PM < 10−4 0.03

2.7.4 Meta-regression

The exploratory bivariate scatter plots for each covariates are presented in Figure

2.13. The variable metareg exercise was excluded from the analysis as it measures the

concept of volume similarly to metareg weekly repetitions but with less precision.

Furthermore, it was observed that the variable training consistently showed higher val-

ues in full-body programs compared to lower-body programs, likely due to the inclusion

of a greater total number of exercises. In fact, in a full-body program, the number of

muscles trained is higher. However, training was included in the initial metaregression
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model since there was a suspected interaction with metareg intensity.The model se-

lection was performed using backward regression based on the p-value criterion, without

correcting for multiple comparisons.
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Figure 2.13: Bivariate exploratory analysis of the relationship of the most interesting
covariates with respect to the measure of effect of the single study in the analysis
of relative changes in upper body strength. The size of the points in the box is
proportional to the weights of the CE model.
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Yi =β0 + β1training + β2metareg weekly repetitions+

+ β3training×metareg weekly repetitions + β4duration+

+ β5metareg intensity + β6metareg frequency + δi + ϵi.

Except for training, which is a binary variable, all the other variables are continuous.

Then the backward selection led to the identification of a considerably simpler model

with the following linear predictor:

Yi = β0 + β1metareg weekly repetitions + δi + ϵi.

The results of the selection are available in the code. The estimated value of τ 2 is

τ̂ 2 = 0, and the p-value of the Cochran’s Q test is particularly high (Q = 15.79, df =

33, p = 0.99), indicating that the hypothesis homogeneity of the true effects cannot

be rejected. The estimated model yields a coefficient of β̂0 = 0.0194 with a Wald 95%

confidence interval of (−0.17, 0.21), and a slope of β̂1 = −0.07× 10−2 with a Wald 95%

confidence interval of (−0.12 × 10−2,−0.02 × 10−2). Hence, the slope is significantly

different from zero. The meta-regression line is represented in Figure 2.14. As the

weekly volume increases, the effect size becomes increasingly negative, favoring females.

In other words, the difference between males and females in relative changes in muscle

strength is a function of volume and it appears to be more pronounced and favorable

for women at higher training volumes. This moderator is also capable of explaining the

heterogeneity present in the intercept only meta-analysis model.

Furthermore, the model does not exhibit significant deviations from the assumption

of normality. The Shapiro-Wilk test conducted on the standardized deleted residuals

is not significant (W = 0.95, p = 0.14). None of the studies appears to be influential.

However, since the estimate of τ̂ 2 = 0, the model reduces to the CE model, and therefore

the weights are highly correlated with the study’s sample size. The studies ”Fernandez

et al. (3 d/wk),” ”Leenders et al.,” and ”Walts et al.” are considered suspicious as

their removal causes an inflation of the COV RATIOi above the value of 1.25. As for

the last two studies, it is clear that the motivation is related to the weight 1/σi × 100.

Specifically, ”Leenders et al.” has a weight of 4.43%, and ”Walts et al.” has a weight

of 15.37%, ranking as the third and first highest weights, respectively. However, the

removal of these three studies does not change the estimate of τ 2 at the second decimal

place or the value of the slope. In fact, we have β̂1 = −0.08 × 10−2 with a Wald 95%

confidence interval of (−0.14× 10−2,−0.02× 10−2), which does not alter the inferential
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Figure 2.14: Estimated model variation of the effect measure yi as a function of
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.

conclusions.

Tables 2.12, 2.13, 2.14, 2.15 report respectively the estimates of the β coefficients, their

confidence intervals, the significance test for each coefficient and the estimate of τ 2 using

the methods employed in all previous analyses. It should be noted that the inferential

conclusions remain unchanged.

2.8 Analysis of the absolute changes in lower body

muscle strength

The RE model estimated to test the sex effect in the absolute change in lower body

muscle strength is based on the same number of studies and participants as the model

on the relative differences. The point estimate of the parameter of interest is β̂ = 0.33,

with an associate 95% confidence interval of (0.19, 0.47). Accordingly, the p-value for the

test of the null hypothesis of no effect is p < .01× 10−2. Therefore, the null hypothesis

of no difference between males and females can be rejected.
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Table 2.12: Point estimate and standard error of β0 and β1 of the meta-regression
mixed effect model estimated on the difference between males and females in rela-
tive changes in lower body muscle strength after a resistance training intervention,
obtained by DerSimonian & Laird (1986), the maximum likelihood method (ML),
the restricted maximum likelihood method (REML) and the Paule-Mandel estimator
(PM).

Coefficient Estimator Estimate Standard Error
β0 DL 0.02 0.10
β0 ML 0.02 0.10
β0 REML 0.02 0.10
β0 PM 0.02 0.10
β1 DL −0.07× 10−2 0.02× 10−2

β1 ML −0.07× 10−2 0.02× 10−2

β1 REML −0.07× 10−2 0.02× 10−2

β1 PM −0.07× 10−2 0.02× 10−2

Table 2.13: Confidence intervals lower limit (LL), upper limit (UL) and width for
the effect β0 and β1 in the meta-regression model fitted on the relative changes in
lower body muscle strength after a resistance training intervention, obtained by Der-
Simonian & Laird (1986), the maximum likelihood (ML Wald) and the restricted
maximum likelihood (REML Wald) using the Wald’s methods, the maximum like-
lihood (ML prof Wilks) and the restricted maximum likelihood (REML prof Wilks)
using Wilks’ method, the Hartung-Knapp-Sidik-Jonkman estimator, and the profile
likelihood Skovgaard’s method (prof Wilks Skovgaard).

Coefficient Estimator LL UL Width
β0 DL Wald −0.17 0.21 0.38
β0 ML Wald −0.17 0.21 0.38
β0 REML Wald −0.17 0.21 0.38
β0 ML prof Wilks −0.17 0.21 0.38
β0 REML prof Wilks −0.17 0.21 0.38
β0 Hartung-Knapp-Sidik-Jonkman −0.21 0.28 0.49
β0 prof Wilks Skovgaard −0.17 0.21 0.38
β1 DL Wald −0.12× 10−2 −0.02× 10−2 0.10× 10−2

β1 ML Wald −0.12× 10−2 −0.02× 10−2 0.10× 10−2

β1 REML Wald −0.12× 10−2 −0.02× 10−2 0.10× 10−2

β1 ML prof Wilks −0.12× 10−2 −0.02× 10−2 0.10× 10−2

β1 REML prof Wilks −0.12× 10−2 −0.02× 10−2 0.10× 10−2

β1 Hartung-Knapp-Sidik-Jonkman −0.14× 10−2 −0.02× 10−2 0.11× 10−2

β1 prof Wilks Skovgaard −0.12× 10−2 −0.02× 10−2 0.10× 10−2
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Table 2.14: Significance test on the parameter β0 and β1 of the meta-regression
mixed effect model estimated on the difference between males and females in relative
changes in lower body muscle strength after a resistance training intervention, ob-
tained by DerSimonian & Laird (1986), the Hartung-Knapp-Sidik-Jonkman method,
the maximum likelihood (ML Wald) and the restricted maximum likelihood meth-
ods (REML Wald) using the Wald’s statistic, the profile maximum likelihood method
(ML prof Wilks) and the Skovgaard’s method using the Wilk’s test, the Wilk’s method
with Bartlett’s correction and the permutation method.

Method β0 β1
DL 0.84 0.30× 10−2

Hartung-Knapp-Sidik-Jonkman 0.77 0.76× 10−2

ML Wald 0.84 0.30× 10−2

REML Wald 0.84 0.30× 10−2

ML prof Wilks 0.84 0.30× 10−2

Skovgaard 0.66 0.19× 10−2

Bartlett 0.85 0.42× 10−2

Permutations 0.35 < 10−4

Table 2.15: Point estimate and standard error of τ2 in the meta-regression mixed
effect model fitted to estimate on relative changes in lower body muscle strength
after a resistance training intervention, obtained by DerSimonian & Laird (1986),
the maximum likelihood method (ML), the restricted maximum likelihood method
(REML) and the Paule-Mandel estimator (PM).

Estimator Estimate Standard Error
DL < 10−4 0.03
ML < 10−4 0.02
REML < 10−4 0.02
PM < 10−4 0.03

The Cochran’s Q test is not significant (Q = 47.45, df = 34, p = 0.06) and thus

the hypothesis of a common true effect is not rejected. The percentage of variance

explained by heterogeneity is I2 = 18.5%, indicating that the main source of variance

is due to within-study variability but that heterogeneity is considerably higher than in

the previous model.

Moreover, the point estimate of the nuisance parameter obtained with the method of

moments is τ 2 = 0.03, and a maximum likelihood standard error se(τ̂ 2) = 0.04. The

results presented so far were shown in the forest plot in Figure 2.15.

2.8.1 Evaluation of model assumption and influential values

According to the Figure 2.16a, the standardized deleted residuals of the model are

normally distributed. The Shapiro-Wilk test to support the graphical analysis (which is
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Figure 2.15: Forest plot depicting the results of a meta-analysis investigating the dif-
ference between males and females in absolute changes in lower body muscle strength
after a resistance training intervention. The forest plot displays the effect size esti-
mates for each individual study along with their corresponding 95% confidence in-
tervals. The size of each square corresponds to the weight assigned to each study
according to the RE formulation. The overall effect size estimate based on the ran-
dom effect model proposed by DerSimonian & Laird (1986) is represented by the
diamond at the bottom, with its width indicating the 95% CI. Cochran’s Q statistic,
a measure of heterogeneity and the Rhosenthal’s fail-safe number of study needed to
obtain a non-significan effect are reported in the bottom left corner. Abbreviations:
SD, Standard Deviation; p, p-value; df, degrees of freedom

rather limited due to the small number of studies), being not significant (W = 0.97, p =

0.41). The graph in Figure 2.16b shows that four standardized deleted residuals are

above 1.96 or below −1.96. This could cast doubt on the hypothesis of normaility as

one would expect at most two points beyond the indicated limits, however it is not

considered particularly serious given the result of the formal test.

The study of ”Holviala et al. [54]” appears to be an influential value, particularly for

the heterogeneity estimation. In fact, if it were removed, the point estimate of τ 2 would

be equal to zero (Figures 2.17e and 2.17d). It also affects the estimation of beta, in fact

if removed the point estimate is β̂ = 0.37 (se(β̂) = 0.06), see Figure 2.17b.
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Figure 2.16: Evaluation of the normality assumption on the standardized deleted
residuals for the model evaluating the difference between males and females in absolute
changes in lower body muscle strength after a resistance training intervention.
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Figure 2.17: Evaluation of the influential studies on the study predict average value,
on the β coefficints and on τ2 on the model investigating the difference between males
and females in absolute changes in lower body muscle strength after a resistance
training intervention. The statistics are plotted against a study progressive number.
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2.8.2 Evaluation of risk of publication bias

Looking at the contour-enhanced funnel plot in Figure 2.18a, there seems to be no

lackness of points, indicating no suspect for systematica bias. The Egger’s test for

asymmetry is not significant both using variance (Z = −0.44, p = 0.66) or the stan-

dard error (Z = −0.34, p = 0.74) as a predictor (Figure 2.18b). However, the trim and

fill methods suggest that the estimated number of missing study on the left is 2 (Figure

2.18c) and with a significant and large effect size. Finally,the Rosenthal’s fail-safe N cal-

culation suggested that 297 studies with nil effects are needed to have a non-significant

estimate of β (Figure 2.15).
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Figure 2.18: Publication bias assessment evaluated via contour enhanced funnel
plot in the model investigating the difference between males and females in absolute
changes in lower body muscle strength after a resistance training intervention.

2.8.3 Comparison with more advanced methods

Considering that the results are absolutely similar to those obtained in Section 2.7.3,

for simplicity the discussion is omitted. However, for the interested reader, they are
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reported in the code on lines 1059-1099.

2.8.4 Meta-regression

The exploratory bivariate scatter plots are presented in Figure 2.19. From their

observation and considering what has been discussed in Section 2.7.4 the following initial

meta-regression mixed effect model (of the type described in the equation 1.40) was

proposed:

Yi =β0 + β1training + β2metareg weekly repetitions+

+ β3training×metareg weekly repetitions + β4duration+

+ β5metareg intensity + β6metareg frequency + δi + ϵi,

where all the variables are continous, except for training which is a dummy.

Then the backward selection led to the identification of a considerably simpler model

with the following linear predictor:

Yi = β0 + β1metareg weekly repetitions + δi + ϵi.

The results of the selection are available in the code. The estimated value of τ 2 is τ̂ 2 = 0,

and the p-value of the Cochran’s Q test is particularly high (Q = 33.24, df = 33, p =

0.46), indicating that the hypothesis homogeneity of the true effects cannot be rejected.

The estimated model yields a coefficient of β̂0 = 0.64 with a Wald 95% confidence

interval of (0.45, 0.83), and a slope of β̂1 = −0.09 × 10−2 with a Wald 95% confidence

interval of (−0.14× 10−2,−0.04× 10−2). Hence both, the intercept β0 and the slope β1

are significantly different from zero. The meta-regression line is represented in Figure

2.20, where it is evident that as the weekly volume increases, the effect size becomes

increasingly negative, favoring females. The moderator is also capable of explaining the

heterogeneity present in the intercept only meta-analysis model.

Furthermore, the model does not exhibit significant deviations from the assumption

of normality. The Shapiro-Wilk test conducted on the standardized deleted residuals

is not significant (W = 0.97, p = 0.41). The study ”Leenders et al.” seems to be an

influential value, in fact its standardized deleted residuals is above 2, the dffits value is

above its threeshold of 3 ∗
√

(p/(k − p) = 0.74 and the Cook’s distance is greater than

χ0.5,p+1 = 2.37. Moreover, the COV RATIOi for ”Leenders et al.”, Fernandez et al. (3

d/wk)” and ”Walts et al.” is greated than 1.25, as in the previous analysis. It is worth
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Figure 2.19: Bivariate exploratory analysis of the relationship of the most interesting
covariates with respect to the measure of effect of the single study in the analysis
of relative changes in lower body strength. The size of the points in the box is
proportional to the weights of the CE model.
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Figure 2.20: Estimated model variation of the effect measure yi as a function of
the number of weekly repetitions in the dataset of the absolute changes in lower body
muscle strength. The size of the circle is proportional to 1/(s2i + τ̂2)

.

noting that ”Leenders et al.” impact the estimated of the the slope but not the intercept,

while the other two studies did not. However, the removal of ”Leenders et al.” did not

change practically the estimated value of β to the fourth decimal place. In fact, we have

β̂1 = −0.08×10−2 with a Wald 95% confidence interval of (−0.14×10−2,−0.03×10−2),

which does not alter the inferential conclusions.

The Tables 2.16, 2.17, 2.18 and 2.19 report respectively the estimates of the β co-

efficients, their confidence intervals, the significance test for each coefficient and the

estimate of τ 2. It should be noted that the inferential conclusions remain unchanged.

2.9 Analysis of the relative changes in muscle size

The RE model estimated on the relative effect measures of differences between males

and females in the relative change in muscle size is based on the results of 30 studies

and 1064 individuals, of whom 560 are females. The point estimate of the parameter of

interest is β̂ = 0.1, with an associate 95% confidence interval of(−0.04, 0.23). Accord-

ingly, the p-value for the test of the null hypothesis of no effect is p = 0.16. Therefore,
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Table 2.16: Point estimate and standard error of β0 and β1 of the meta-regression
mixed effect model estimated on the difference between males and females in abso-
lute changes in lower body muscle strength after a resistance training intervention,
obtained by DerSimonian & Laird (1986), the maximum likelihood method (ML),
the restricted maximum likelihood method (REML) and the Paule-Mandel estimator
(PM).

Coefficient Estimator Estimate Standard Error
β0 DL 0.64 0.10
β0 ML 0.64 0.10
β0 REML 0.64 0.10
β0 PM 0.64 0.10
β1 DL -0.92× 10−3 0.24× 10−3

β1 ML -0.92× 10−3 0.24× 10−3

β1 REML -0.92× 10−3 0.24× 10−3

β1 PM -0.92× 10−3 0.24× 10−3

Table 2.17: Confidence intervals lower limit (LL), upper limit (UL) and width for
the effect β0 and β1 in the meta-regression model fitted on the absolute changes in
lower body muscle strength after a resistance training intervention, obtained by Der-
Simonian & Laird (1986), the maximum likelihood (ML Wald) and the restricted
maximum likelihood (REML Wald) using the Wald’s methods, the maximum like-
lihood (ML prof Wilks) and the restricted maximum likelihood (REML prof Wilks)
using Wilks’ method, the Hartung-Knapp-Sidik-Jonkman estimator, and the profile
likelihood Skovgaard’s method (prof Wilks Skovgaard).

Coefficient Estimator LL UL Width
β0 DL Wald 0.44 0.83 0.39
β0 ML Wald 0.45 0.83 0.38
β0 REML Wald 0.45 0.83 0.38
β0 ML prof Wilks 0.45 0.83 0.38
β0 REML prof Wilks 0.45 0.83 0.38
β0 Hartung-Knapp-Sidik-Jonkman 0.39 0.99 0.60
β0 prof Wilks Skovgaard 0.45 0.83 0.38
β1 DL Wald −0.44× 10−3 −0.14× 10−2 0.96× 10−3

β1 ML Wald −0.44× 10−3 −0.14× 10−2 0.96× 10−3

β1 REML Wald −0.44× 10−3 −0.14× 10−2 0.96× 10−3

β1 ML prof Wilks −0.44× 10−3 −0.14× 10−2 0.96× 10−3

β1 REML prof Wilks −0.44× 10−3 −0.14× 10−2 0.96× 10−3

β1 Hartung-Knapp-Sidik-Jonkman −0.35× 10−2 −0.17× 10−2 0.14× 10−3

β0 prof Wilks Skovgaard −0.44× 10−3 −0.14× 10−2 0.96× 10−2
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Table 2.18: Significance test on the parameter β0 and β1 of the meta-regression
mixed effect model estimated on the difference between males and females in absolute
changes in lower body muscle strength after a resistance training intervention, ob-
tained by DerSimonian & Laird (1986), the Hartung-Knapp-Sidik-Jonkman method,
the maximum likelihood (ML Wald) and the restricted maximum likelihood meth-
ods (REML Wald) using the Wald’s statistic, the profile maximum likelihood method
(ML prof Wilks) and the Skovgaard’s method using the Wilk’s test, the Wilk’s method
with Bartlett’s correction and the permutation method.

Method β0 β1
DL 0.10× 10−9 0.16× 10−3

Hartung-Knapp-Sidik-Jonkman 0.63× 10−5 0.31× 10−2

ML Wald 0.10× 10−9 0.16× 10−3

REML Wald 0.10× 10−9 0.16× 10−3

ML prof Wilks 0.84× 10−7 0.19× 10−3

Skovgaard 0.10× 10−5 0.68× 10−3

Bartlett 1.00× 10−6 0.32× 10−3

Permutations < 10−4 < 10−4

Table 2.19: Point estimate and standard error of τ2 in the meta-regression mixed
effect model fitted to estimate on absolute changes in lower body muscle strength
after a resistance training intervention, obtained by DerSimonian & Laird (1986),
the maximum likelihood method (ML), the restricted maximum likelihood method
(REML) and the Paule-Mandel estimator (PM).

Estimator Estimate Standard Error
DL 0.92× 10−3 0.03
ML 0.14× 10−5 0.02
REML 0.07× 10−5 0.02
PM 0.11× 10−2 0.03

the null hypothesis that there is no difference between males and females in upper body

strength gain cannot be rejected when the change is expressed relative to baseline.

The Cochran’s Q test is not significant (Q = 34.21, df = 29, p = 0.23) and thus the

hypothesis of a common true effect is not rejected. Nevertheless, the the point estimate

of the statistic indicating the percentage of variance explained by heterogeneity is I2 =

10.4%, indicating that the main source of variance is due to within-study variability.

Moreover, the point estimate of the nuisance parameter obtained with the method of

moments is τ 2 = 0.01, with an associate 95% confidence interval of (0, 0.17), using

Viechtbauer (2007). The results presented so far were shown in the forest plot in Figure

2.21.
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Figure 2.21: Forest plot depicting the results of a meta-analysis investigating the
difference between males and females in relative changes in muscle size after a resis-
tance training intervention. The forest plot displays the effect size estimates for each
individual study along with their corresponding 95% confidence intervals. The size of
each square corresponds to the weight assigned to each study according to the RE for-
mulation. The overall effect size estimate based on the random effect model proposed
by DerSimonian & Laird (1986) is represented by the diamond at the bottom, with its
width indicating the 95% CI. Cochran’s Q statistic, a measure of heterogeneity and
the Rhosenthal’s fail-safe number of study needed to obtain a non-significan effect
are reported in the bottom left corner. Abbreviations: SD, Standard Deviation; p,
p-value; df, degrees of freedom

2.9.1 Evaluation of model assumption and influential values

According to the Figure 2.22a, the standardized residuals are not arranged according

to a normal distribution, particularly with respect to the right tail of the distribution.

However, the Shapiro-Wilk test does not support these conclusions, as it is definitely

not significant (W = 0.98, p = 0.69). Moreover, the plot in Figure 2.22b shows that

only 3 points have a standardized deleted residual beyond the limits of 1.96 or −1.96,

which turns out to be 10% of the points, although this does not raise any particular

suspicion since the sample of 30 studies is not that large.

From the graphs in Figure 2.23, no single study is configured as influential. However,

unlike previous analyses, the graph of the COV RATIOi in Figure 2.23d shows how



Chapter 2 - Application to a case study 73

−2 −1 0 1 2

−
2

−
1

0
1

2

Normal Q−Q Plot

Theoretical Quantiles

S
a
m

p
le

 Q
u
a
n
ti
le

s

(a) Residuals Q-Q plot

−
2

−
1

0
1

2

rstudent

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

(b) residuals vs study numbers

Figure 2.22: Evaluation of the normality assumption on the standardized deleted
residuals for the model evaluating the difference between males and females in relative
changes in muscle size after a resistance training intervention.

removing studies one by one has two opposite effects on covariance, depending on which

study is considered. Particularly, the value of τ 2 in the model calculated after one-to-one

removal of the studies ”Charbonneau et al (ID) [65],” ”Leenders et al [73],” ”McCartney

et al (70-80 y) [55],” and ”Tanton et al [82]” is τ̂ 2 = 0, suggesting that some commonality

in these studies could lead to heterogeneity in the meta-analysis. Note, however, that

the amount of overall heterogeneity is small and not significant.

Note also that the weight of ”Walts et al [83]” is particularly high (12%), suggesting that

this study is particularly influential in estimating the effect. Such a high weighting is

partly due to the fact that the estimate of τ 2 is small and not significant, thus regressing

the model on the CE model. In addition, the study has a significantly larger sample

size than the other included studies. It is well explain in the Chapter 1 that the weights

of the CE model are the reciprocal of the standard error and that the standard error is

a function of sample size.

2.9.2 Evaluation of risk of publication bias

Looking at the contour-enhanced funnel plot in Figure 2.24a, there seems to be a lack

of study with positive large effect size and large standard error. The Egger’s test for

asymmetry of the funnel plot partially confirms the conclusion, in fact it is significant

with variance as predictor (Z = −2.07, p = 0.04) but not with standard error (Z =

−1.79, p = 0.07). Figure 2.24b shows the Egger regression line calculated using standard

error and sample variance as predictors.

Figure 2.24c shows the contour-enhanced funnel plot where the number of missing trials

was added to achieve symmetry using the trim and fill method. The results support the
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Figure 2.23: Evaluation of the influential studies on the study predict average value,
on the β coefficints and on τ2 on the model investigating the difference between males
and females in relative changes in muscle size after a resistance training intervention.
The statistics are plotted against a study progressive number.

graphical analysis, suggesting the lack of 6 studies on the right side of the plot. It is also

noteworthy that the sensitivity analysis for asymmetry performed with the trim and fill

method yields β̂ = 0.18 with a 95% confidence interval of (0.03, 0.33), which changes

the conclusions of the meta-analysis, indicating that the relative gain in muscles size

favours male against female. Finally, Rosenthal’s fail-safe N calculation is equal to zero

because the estimated effect in the model based only on the data is not statistically

significant (Figure 2.21).

2.9.3 Comparison with more advanced methods

As can be seen in Table 2.20, the point estimate of the intercept of the model is particu-

larly robust to the choice of method used. In fact, the method proposed by DerSimonian

& Laird (1986), the maximum likelihood estimation, the restricted maximum likelihood

estimation (REML), and Paule-Mandel’s method yield similar results. This is not sur-

prising since the estimator β̂ is the same with exception of the weights used, which

vary between methods based on τ 2. The percentage of heterogeneity in the model is

very small, as indicated by previous analyses, and therefore has little effect on the β
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Figure 2.24: Publication bias assessment evaluated via contour enhanced funnel
plot in the model investigating the difference between males and females in relative
changes in muscle size after a resistance training intervention.

estimate. Similarly, the standard errors of β̂ in the different models differ based on τ 2

and therefore also appear very similar.

Table 2.20: Point estimate and standard error of β of the RE model fitted to
estimate the difference between males and females in relative changes in muscle size
after a resistance training intervention, obtained by DerSimonian & Laird (1986),
the maximum likelihood method (ML), the restricted maximum likelihood method
(REML) and the Paule-Mandel estimator (PM).

Estimator Estimate Standard Error
DL 0.09 0.07
ML 0.11 0.06
REML 0.10 0.07
PM 0.09 0.07

The confidence intervals for β also seem to offer a common interpretation, with similar

endpoints and comparable width, except for the Hartung-Knapp-Sidik-Jonkman method

(refer to Table 2.21).
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Table 2.21: Confidence intervals lower limit (LL), upper limit (UL) and width for the
effect β of the RE model fitted to estimate the difference between males and females
in relative changes in muscle size after a resistance training intervention, obtained by
DerSimonian & Laird (1986), the maximum likelihood (ML Wald) and the restricted
maximum likelihood (REML Wald) using the Wald’s methods, the maximum like-
lihood (ML prof Wilks) and the restricted maximum likelihood (REML prof Wilks)
using Wilks’ method, the Hartung-Knapp-Sidik-Jonkman estimator, and the profile
likelihood Skovgaard’s method (prof Wilks Skovgaard).

Estimator LL UL Width
DL Wald -0.05 0.23 0.28
ML Wald -0.02 0.23 0.24
REML Wald -0.04 0.23 0.27
ML prof Wilks -0.02 0.23 0.24
REML prof Wilks -0.04 0.23 0.27
Hartung-Knapp-Sidik-Jonkman -0.11 0.25 0.36
prof Wilks Skovgaard -0.06 0.23 0.29

It should also be noted that all the p-values are larger than 5%.

Table 2.22: Significance test on the parameter β of the RE model fitted to es-
timate the difference between males and females in relative changes in muscle size
after a resistance training intervention, obtained by DerSimonian & Laird (1986), the
Hartung-Knapp-Sidik-Jonkman method, the maximum likelihood (ML Wald) and the
restricted maximum likelihood methods (REML Wald) using the Wald’s statistic, the
profile maximum likelihood method (ML prof Wilks) and the Skovgaard’s method us-
ing the Wilk’s test, the Wilk’s method with Bartlett’s correction and the permutation
method.

Method p
DL 0.16
Hartung-Knapp-Sidik-Jonkman 0.45
ML Wald 0.09
REML Wald 0.16
ML prof Wilks 0.18
Skovgaard 0.91
Bartlett 0.22
Permutations 0.07

The point estimate of τ 2 is also very similar among the methods used, with compa-

rable standard errors (see Table 2.23). This is likely due to the negligible amount of

heterogeneity.

2.9.4 Meta-regression

The exploratory bivariate scatter plots are presented in Figure 2.25. Note from Figure

2.25a that there is only one study where participants are training only the ”upper body”.
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Table 2.23: Point estimate and standard error of τ2 of the RE model fitted to
estimate the difference between males and females in relative changes in muscle size
after a resistance training intervention, obtained by DerSimonian & Laird (1986),
the maximum likelihood method (ML), the restricted maximum likelihood method
(REML) and the Paule-Mandel estimator (PM).

Estimator Estimate Standard Error
DL 0.02 0.04
ML < 10−4 0.02
REML 0.01 0.03
PM 0.03 0.04

Moreover, in the previous analysis, none of study was focused on upper body training

only. From the scatter plot observation and considering what has been discussed in

the Section 2.7.4 the following initial meta-regression mixed effect model (of the type

described in the equation 1.40) was proposed:

Yi =β0 + β1training + β2metareg weekly repetitions+

+ β3training×metareg weekly repetitions + β4duration+

+ β5metareg intensity + β6metareg frequency + δi + ϵi,

where all the variables are continuous, except for training which is a dummy. Al-

though the same initial model has been proposed as in previous meta-regressions,

from the observation of Figures 2.25d and 2.25e, it is quite certain that the variables

metareg intensity and metareg frequency will be excluded from the final model.

Moreover, from the observation of the graph in Figure 2.25c, it actually seems that the

slope of the line is different for those who train only the lower body compared to those

who train the whole body and that the slope may not be linear.

Then the backward selection led to the identification of a considerably simpler model

with the following linear predictor:

Yi = β0 + β1metareg weekly repetitions + β2duration + δi + ϵi.

The results of the selection are available in the code. The estimated value of τ 2 is

τ̂ 2 = 0, and the p-value of the Cochran’s Q test is particularly high (Q = 25.68, df =

27, p = 0.54), indicating that the hypothesis homogeneity of the true effects can-

not be rejected. The estimated model yields a coefficient β̂0 = 0.09 with a Wald

95% confidence interval of (−0.15, 0.33), β1 = −0.07 × 10−2 with a a Wald 1 − α =

0.95 confidence interval of (−0.13 × 10−2,−0.02 × 10−2) and a β2 = −0.02 with a a
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Figure 2.25: Bivariate exploratory analysis of the relationship of the most interesting
covariates with respect to the measure of effect of the single study in the analysis
of relative changes in lower body strength. The size of the points in the box is
proportional to the weights of the CE model.
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Figure 2.26: Estimated model variation of the effect measure yi as a function of
the number of weekly repetitions in the dataset of the relative changes in muscle size.
The size of the circle is proportional to 1/(s2i + τ̂2)

.

Wald 1 − α = 0.95 confidence interval of (0.22 × 10−2, 0.03 × 10−2). Hence, although

the intercept of the model is not significantly different from zero, the coefficient for

metareg weekly repetitions and duration are. The interpretation of the model is

quite straighforward: the effect estimates decrease with when the number of weekly

repetitions increase, meaning that it favours female. On the other side, the increase in

the study duration seems to favour males. The marginal model showing the relation-

ship between metareg weekly repetitions and the effect estimate yi is reported in

Figure 2.26, while Figure 2.27 shows the relationship with duration. The moderator is

also capable of explaining the heterogeneity present in the intercept only meta-analysis

model.

Furthermore, the model does not exhibit significant deviations from the assumption of

normality. The Shapiro-Wilk test conducted on the standardized deleted residuals is

not significant (W = 0.98, p = 0.78). The diagnosis of influential studies identifies three

possible studies with outliers in at least one of dffits, COV RATIOi and dfbetas. The

three the studies ”Maddalozzo and Snow (Moderate),” ”McCartney et al. (60-70 y)”

and ”McCartney et al. (70-80 y)” have a COV RATIOi greater than 1.5, however, the
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Figure 2.27: Estimated model variation of the effect measure yi as a function of the
number of study duration in the dataset of the relative changes in muscle size. The
size of the circle is proportional to 1/(s2i + τ̂2)

.

variance of τ 2 is such that to the second decimal place results in τ̂ 2 = 0. ”Maddalozzo

and Snow (Moderate)” and ”McCartney et al. (70-80 y)” present a value of diifs greater

than 3 ×
√

(p/K − p) = 1, indicating that their removal is influential on the model

predictions. Cook’s distances are also found to be high compared to the other studies,

although well below their limit of χ0.5,p+1. ”Maddalozzo and Snow (Moderate)” is also

inflential in estimating β1 and ”McCartney et al. (70-80 y)” in estimating β2, with a dfbs

greater than 1. Their removal change the inferential conclusion, in fact β̂1 = −0.07×10−2

with a Wald 95% confidence interval of (−0.15× 10−2, < ×10−4) and the respective p-

value is p = 0.07, while β̂2 = 0.44 × 10−2 with a Wald 95% confidence interval of

(−0.02, 0.03) and the respective p-value is p = 0.7327. These results indicate that

duration can be removed from the model. Doing it in the reduced dataset leads to

β̂0 = 0.25 with a Wald 95% confidence interval of (0.05, 0.46) and β̂1 = −0.06 × 10−2

with a Wald 95% confidence interval of (−0.11 × 10−2,−0.01 × 10−2). The intercept

results significantly different from zero and positive, indicating that protocol with low

volume still favours male. The slope is reduced but the direction of the interpretation

is not changed.
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Table 2.24: Point estimate and standard error of β0 and β1 of the meta-regression
mixed effect model estimated on the difference between males and females in relative
changes in muscle size after a resistance training intervention, obtained by DerSimo-
nian & Laird (1986), the maximum likelihood method (ML), the restricted maximum
likelihood method (REML) and the Paule-Mandel estimator (PM).

Coefficient Estimator Estimate Standard Error
β0 DL 0.09 0.12
β0 ML 0.09 0.12
β0 REML 0.09 0.12
β0 PM 0.09 0.12
β1 DL −0.07× 10−2 −0.03× 10−2

β1 ML −0.07× 10−2 −0.03× 10−2

β1 REML −0.07× 10−2 −0.03× 10−2

β1 PM −0.07× 10−2 −0.03× 10−2

β2 DL 0.02 0.01
β2 ML 0.02 0.01
β2 REML 0.02 0.01
β2 PM 0.02 0.01

The Tables 2.24, 2.25, 2.26 and 2.27 report respectively the estimates of the β co-

efficients, their confidence intervals, the significance test for each coefficient and the

estimate of τ 2.

2.10 Analysis of the absolute changes in muscle size

The RE model estimated on the absolute change between males and females in muscle

size is based on the results of 28 studies and 1040 individuals, of whom 548 are female.

The point estimate of the parameter of interest is β̂ = 0.45, with an associate 95%

confidence interval of(0.23, 0.67). Accordingly, the null hypothesis of no effect can be

rejected (p < .01× 10−2).

The Cochran’s Q test is significant (Q = 63.57, df = 27, p =< .01 × 10−2) and thus

the hypothesis of a common true effect is rejected. The percentage of variance explained

by heterogeneity is I2 = 62.1%, indicating that the main source of variance is due to

between-study variability.

Moreover, the point estimate of the nuisance parameter obtained with the method of

moments is τ 2 = 0.20, and 95% confidence interval is (< 10−4, 0.49), using the method

of Viechtbauer (2007). The results presented so far were shown in the forest plot in

Figure 2.28.
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Table 2.25: Confidence intervals lower limit (LL), upper limit (UL) and width for
the effect β0 and β1 in the meta-regression model fitted on the relative changes in
muscle size after a resistance training intervention, obtained by DerSimonian & Laird
(1986), the maximum likelihood (ML Wald) and the restricted maximum likelihood
(REML Wald) using the Wald’s methods, the maximum likelihood (ML prof Wilks)
and the restricted maximum likelihood (REML prof Wilks) using Wilks’ method,
the Hartung-Knapp-Sidik-Jonkman estimator, and the profile likelihood Skovgaard’s
method (prof Wilks Skovgaard).

Coefficient Estimator LL UL Width
β0 DL Wald -0.15 0.33 0.48
β0 ML Wald -0.15 0.33 0.48
β0 REML Wald -0.15 0.33 0.48
β0 ML prof Wilks -0.15 0.33 0.48
β0 REML prof Wilks -0.15 0.33 0.48
β0 Hartung-Knapp-Sidik-Jonkman -0.33 0.40 0.73
β0 prof Wilks Skovgaard -0.15 0.33 0.48
β1 DL Wald −0.01× 10−1 −0.02× 10−2 0.01× 10−1

β1 ML Wald −0.01× 10−1 −0.02× 10−2 0.01× 10−1

β1 REML Wald −0.01× 10−1 −0.02× 10−2 0.01× 10−1

β1 ML prof Wilks −0.01× 10−1 −0.02× 10−2 0.01× 10−1

β1 REML prof Wilks −0.01× 10−1 −0.02× 10−2 0.01× 10−1

β1 Hartung-Knapp-Sidik-Jonkman −0.01× 10−1 0.02× 10−3 0.01× 10−1

β1 prof Wilks Skovgaard −0.01× 10−1 −0.02× 10−3 0.01× 10−1

β2 DL Wald 0.02× 10−1 0.031 0.03
β2 ML Wald 0.02× 10−1 0.031 0.03
β2 REML Wald 0.02× 10−1 0.031 0.03
β2 ML prof Wilks 0.02× 10−1 0.03 0.03
β2 REML prof Wilks 0.02× 10−1 0.03 0.03
β2 Hartung-Knapp-Sidik-Jonkman −0.03× 10−1 0.03 0.04
β2 prof Wilks Skovgaard 0.02× 10−1 0.03 0.03

Table 2.26: Significance test on the parameter β0 and β1 of the meta-regression
mixed effect model estimated on the difference between males and females in relative
changes in muscle size after a resistance training intervention, obtained by DerSi-
monian & Laird (1986), the Hartung-Knapp-Sidik-Jonkman method, the maximum
likelihood (ML Wald) and the restricted maximum likelihood methods (REML Wald)
using the Wald’s statistic, the profile maximum likelihood method (ML prof Wilks)
and the Skovgaard’s method using the Wilk’s test, the Wilk’s method with Bartlett’s
correction and the permutation method.

Method β0 β1 β2
DL 0.48 0.02 0.01
Hartung-Knapp-Sidik-Jonkman 0.84 0.09 0.06
ML Wald 0.48 0.02 0.01
REML Wald 0.48 0.02 0.01
ML prof Wilks 0.48 0.02 0.01
Skovgaard 0.02 0.01 0.01
Bartlett 0.53 0.03 0.01
Permutations 0.20 0.01 0.01
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Table 2.27: Point estimate and standard error of τ2 in the meta-regression mixed
effect model fitted to estimate on relative changes in muscle size after a resistance
training intervention, obtained by DerSimonian & Laird (1986), the maximum like-
lihood method (ML), the restricted maximum likelihood method (REML) and the
Paule-Mandel estimator (PM).

Estimator Estimate Standard Error
DL < 10−4 0.03
ML < 10−4 0.02
REML < 10−4 0.02
PM < 10−4 0.03
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Figure 2.28: Forest plot depicting the results of a meta-analysis investigating the
difference between males and females in absolute changes in muscle size after a resis-
tance training intervention. The forest plot displays the effect size estimates for each
individual study along with their corresponding 95% confidence intervals. The size of
each square corresponds to the weight assigned to each study according to the RE for-
mulation. The overall effect size estimate based on the random effect model proposed
by DerSimonian & Laird (1986) is represented by the diamond at the bottom, with its
width indicating the 95% CI. Cochran’s Q statistic, a measure of heterogeneity and
the Rhosenthal’s fail-safe number of study needed to obtain a non-significan effect
are reported in the bottom left corner. Abbreviations: SD, Standard Deviation; p,
p-value; df, degrees of freedom
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2.10.1 Evaluation of model assumption and influential values

According to the Figure 2.29a, the standardized deleted residuals of the model are

not normally distributed, with a main detachment in the top-right corner of the plot.

The Shapiro-Wilk test to support the graphical analysis, being highly significant (W =

0.90, p = 0.01). The graph in Figure 2.29b shows that two standardized deleted residuals

is above the limit of 1.96. Under the normality hypothesis, the 5% of the residuals are

expected to exceed those limits, and thus what is observed could be compatible with

what is expected. In fact the 5% of 28 is 1.4. However, the evidence against normality

obtained from the Shapiro-Wilk test and the normal qq-plot are enough to doubt about

on this assumption.
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Figure 2.29: Evaluation of the normality assumption on the standardized deleted
residuals for the model evaluating the difference between males and females in absolute
changes in muscle size after a resistance training intervention.

As for the influential values, we can see that none of the studies has an impact on the

β estimate (Figure 2.30). However, looking at the COV RATIOi figure (Figure 2.30d),

it is clear that removing the studies ”McCartney et al. (60-70 y) [55]” and ”McCartney

et al. (70-80 y) [55]” significantly reduces the estimate of τ 2 and, more importantly,

removing ”McCartney et al. (70-80 y) [55]” implies τ̂ 2 < ×10−4.

2.10.2 Evaluation of risk of publication bias

Looking at the contour-enhanced funnel plot in Figure 2.31a, there seems to be an

indication of asimmetry, as one would expect a larger number of studies with positive and

significant effect size and relatively big standard error. The Egger’s test for asymmetry

is not significant both using variance (Z = −1.76, p = 0.08) or the standard error

(Z = −1.51, p = 0.13) as a predictor(Figure 2.31b), not confirming our observations.

However, the trim and fill methods suggest that the estimated number of missing study
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Figure 2.30: Evaluation of the influential studies on the study predict average value,
on the β coefficints and on τ2 on the model investigating the difference between males
and females in absolute changes in muscle size after a resistance training intervention.
The statistics are plotted against a study progressive number.

on the bottom right corner is 7, see Figure 2.31c). In accordance with the Trim and

Fill sensitivity analysis, the results of the meta-analysis would be slightly different, not

in direction but in magnitude (β̂ = 0.64, with a 95% confidence interval is (0.41, 0.86)).

Finally,the Rosenthal’s fail-safe N calculation suggested that 415 studies with nil effects

are needed to have a non-significant estimate of β (Figure 2.28).

2.10.3 Comparison with more advanced methods

The discussion of the robustness of the point estimate of β and its standard error with

respect to the estimation method is similar to that in Section 2.5.3. The values are

given in Table 2.28.

It should also be noted that all the p values used to assess the significance of the intercept

test are significant at the third decimal place (Table 2.30), hence we can conclude that

the effect robust and that the detachment from the normality are not a concern to

establish the significance of the test.
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Figure 2.31: Publication bias assessment evaluated via contour enhanced funnel
plot in the model investigating the difference between males and females in absolute
changes in muscle size after a resistance training intervention.

Table 2.28: Point estimate and standard error of β of the RE model fitted to
estimate the difference between males and females in absolute changes in muscle size
after a resistance training intervention, obtained by DerSimonian & Laird (1986),
the maximum likelihood method (ML), the restricted maximum likelihood method
(REML) and the Paule-Mandel estimator (PM).

Estimator Estimate Standard Error
DL 0.45 0.11
ML 0.45 0.11
REML 0.45 0.11
PM 0.45 0.11

Also, the discussion of the robustness of the estimator of τ 2 is analogous to Section

2.5.3, but for all the methods the amount of heterogeneity is substantial in this model,

see Table 2.31.
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Table 2.29: Confidence intervals lower limit (LL), upper limit (UL) and width for the
effect β of the RE model fitted to estimate the difference between males and females
in absolute changes in muscle size after a resistance training intervention, obtained by
DerSimonian & Laird (1986), the maximum likelihood (ML Wald) and the restricted
maximum likelihood (REML Wald) using the Wald’s methods, the maximum like-
lihood (ML prof Wilks) and the restricted maximum likelihood (REML prof Wilks)
using Wilks’ method, the Hartung-Knapp-Sidik-Jonkman estimator, and the profile
likelihood Skovgaard’s method (prof Wilks Skovgaard).

Estimator LL UL Width
DL Wald 0.24 0.66 0.42
ML Wald 0.23 0.67 0.43
REML Wald 0.23 0.67 0.44
ML prof Wilks 0.23 0.67 0.43
REML prof Wilks 0.23 0.67 0.44
Hartung-Knapp-Sidik-Jonkman 0.21 0.68 0.47
prof Wilks Skovgaard 0.21 0.67 0.45

Table 2.30: Significance test on the parameter β of the RE model fitted to esti-
mate the difference between males and females in absolute changes in muscle size
after a resistance training intervention, obtained by DerSimonian & Laird (1986), the
Hartung-Knapp-Sidik-Jonkman method, the maximum likelihood (ML Wald) and the
restricted maximum likelihood methods (REML Wald) using the Wald’s statistic, the
profile maximum likelihood method (ML prof Wilks) and the Skovgaard’s method us-
ing the Wilk’s test, the Wilk’s method with Bartlett’s correction and the permutation
method.

Method p
DL 0.01× 10−2

Hartung-Knapp-Sidik-Jonkman 0.02× 10−2

ML Wald 0.05× 10−3

REML Wald 0.01× 10−2

ML prof Wilks 0.05× 10−2

Skovgaard 0.08× 10−2

Bartlett 0.07× 10−2

Permutations 0.05× 10−2

2.10.4 Meta-regression

The exploratory bivariate scatter plots are presented in Figure 2.32. As for the

analysis of the relative changes in muscle size, there is only one study training only the

”upper body”. The following initial meta-regression mixed effect model (of the type

described in the equation 1.40) was proposed:
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Table 2.31: Point estimate and standard error of τ2 of the RE model fitted to
estimate the difference between males and females in absolute changes in muscle size
after a resistance training intervention, obtained by DerSimonian & Laird (1986),
the maximum likelihood method (ML), the restricted maximum likelihood method
(REML) and the Paule-Mandel estimator (PM).

Estimator Estimate Standard Error
DL 0.16 0.09
ML 0.19 0.09
REML 0.20 0.09
PM 0.20 0.10

Yi =β0 + β1training + β2metareg weekly repetitions+

+ β3training×metareg weekly repetitions + β4duration + β5UpperBody+

+ β6metareg intensity + β7metareg frequency + +δi + ϵi,

where all the variables are continuous, except for training and UpperBody which are

dummy variables.

The backward selection led to the identification of the following linear predictor:

Yi =β0 + β1metareg weekly repetitions+

+ β2training + β3duration+

+ β4training×metareg weekly repetitions

+ β5UpperBody + δi + ϵi.

The results of the selection are available in the code. Please note that UpperBody is an

dummy variable indentifying the only study that training the upper boby, i.e. ”Tanton

et al.”. The estimated value of τ 2 is τ̂ 2 < ×10−4, and the p-value of the Cochran’s Q test

is particularly high (Q = 26.95, df = 22, p = 0.21), indicating that the hypothesis

homogeneity of the true effects cannot be rejected. The estimated model is presented

in the Table 2.32.

The interaction coefficient β4 explains the the different response to training volume

between studies involving the lower body and those involving the upper body. Note

also that the range of variation in training volume is significantly smaller in studies

involving only the lower body. In addition, an effect for type of training is present,

even taking into account the difference in volume. Finally, the test on the single study
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Figure 2.32: Bivariate exploratory analysis of the absationship of the most interest-
ing covariates with respect to the measure of effect of the single study in the analysis
of absolute changes in muscle size. The size of the points in the box is proportional
to the weights of the CE model.
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Variable β Standard error Z-value p
intrcpt -0.31 0.38 -0.83 0.41
Lower 1.34 0.39 3.42 0.06× 10−2

Upper 0.63 0.53 1.19 0.23
repetitions −0.06× 10−2 0.04× 10−2 -1.68 0.09
duration 0.04 0.01 3.91 −0.1× 10−2

Lower:repetitions −0.04× 10−1 −0.01× 10−1 -3.25 −0.01× 10−1

Table 2.32: Results of the regression model after the selection of variables for abso-
lute changes in muscle size. Abbreviations: p, p-value

Variable β Standard error Z-value p
intrcpt -0.41 0.48 -0.85 0.40
Lower 1.49 0.48 3.09 0.02× 10−2

Upper 0.71 0.55 1.29 0.20
repetitions −0.03× 10−2 0.06× 10−2 -0.54 0.59
duration 0.04 0.01 2.89 0.03× 10−2

Lower:repetitions −0.05× 10−2 0.14× 10−2 -3.24 0.01× 10−2

Table 2.33: Results of the regression model after the selection of variables for abso-
lute changes in muscle size after the removal of the influential studies.

involving the upper body is not significant, indicating that this is not an influential value.

Again, the introduction of covariates is sufficient to explain the heterogeneity present

in the model. Furthermore, the model does not exhibit significant deviations from the

assumption of normality. The Shapiro-Wilk test conducted on the standardized deleted

residuals is not significant (W = 0.98, p = 0.80) and only the residuals of the study

”Fernandez et al. (3 d/wk)”, ”Mackey et al.” and ”Maddalozzo and Snow (Moderate)”

are above the cut-off value of 1.96. However, the same studies possess high value of

diffits, very close to the limit of 1.57 and the Cook’s distances are very high with

respect to the other studies. Note that ”Fernandez et al. (3 d/wk)” and ”Mackey et

al.” are also found to be significantly influential for estimating the regression coefficient

for the variable metareg weekly repetitions, presenting a value of dfbs greater than

1, while ”Maddalozzo and Snow (Moderate)” is found to be influential for estimating

the coefficient of duration. It is also worth noting that the estimate of τ 2 is particularly

sensitive to the removal of one of the studies. Note, however, that at most you have τ̂ 2 =

0.20 should you remove the ”Sood et al.” study. The removal of the on the influential

studies led to the coefficient estimation in Table 2.33. Removing the influential values

shows that the largest difference lies in metareg weekly repetitions which is no longer

significant. The p-value increases from p = 0.09 to p = 0.59. However, it is preferred

not to remove it from the model, since the interaction still remains significant.

Tables 2.34, 2.35, 2.36 and 2.37 report respectively the estimates of the β coefficients,

their confidence intervals, the significance test for each coefficient and the estimate of
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Table 2.34: Point estimate and standard error of β0 and β1 of the meta-regression
mixed effect model estimated on the difference between males and females in absative
changes in muscle size after a resistance training intervention, obtained by DerSimo-
nian & Laird (1986), the maximum likelihood method (ML), the restricted maximum
likelihood method (REML) and the Paule-Mandel estimator (PM).

Coefficient Estimator Estimate Standard Error
β0 DL -0.31 0.40
β0 ML -0.31 0.38
β0 REML -0.31 0.38
β0 PM -0.31 0.41
β1 DL −0.06× 10−2 0.04× 10−2

β1 ML −0.06× 10−2 0.04× 10−2

β1 REML −0.06× 10−2 0.04× 10−2

β1 PM −0.06× 10−2 0.04× 10−2

β2 DL 1.36 0.43
β2 ML 1.34 0.39
β2 REML 1.34 0.39
β2 PM 1.36 0.44
β3 DL 0.04 0.01
β3 ML 0.04 0.01
β3 REML 0.04 0.01
β3 PM 0.04 0.01
β4 DL −0.45× 10−2 0.16× 10−2

β4 ML −0.44× 10−2 0.14× 10−2

β4 REML −0.44× 10−2 0.14× 10−2

β4 PM −0.45× 10−2 0.16× 10−2

β5 DL 0.63 0.56
β5 ML 0.64 0.53
β5 REML 0.64 0.53
β5 PM 0.63 0.57

τ 2. It should be noted that the inferential conclusions remain unchanged.
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Table 2.35: Confidence intervals lower limit (LL), upper limit (UL) and width for
the effect β0 and β1 in the meta-regression model fitted on the absative changes in
muscle size after a resistance training intervention, obtained by DerSimonian & Laird
(1986), the maximum likelihood (ML Wald) and the restricted maximum likelihood
(REML Wald) using the Wald’s methods, the maximum likelihood (ML prof Wilks)
and the restricted maximum likelihood (REML prof Wilks) using Wilks’ method,
the Hartung-Knapp-Sidik-Jonkman estimator, and the profile likelihood Skovgaard’s
method (prof Wilks Skovgaard).

Estimator Estimator LL UL Width
β0 DL Wald -1.09 0.47 1.56
β0 ML Wald -1.05 0.43 1.48
β0 REML Wald -1.05 0.43 1.48
β0 ML prof Wilks -1.05 0.43 1.48
β0 REML prof Wilks -1.05 0.43 1.48
β0 Hartung-Knapp-Sidik-Jonkman -1.25 0.64 1.89
β0 prof Wilks Skovgaard -1.05 0.43 1.48
β1 DL Wald −0.14× 10−2 0.02× 10−2 0.15× 10−2

β1 ML Wald −0.14× 10−2 0.01× 10−2 0.15× 10−2

β1 REML Wald −0.14× 10−2 0.01× 10−2 0.15× 10−2

β1 ML prof Wilks −0.14× 10−2 0.01× 10−2 0.15× 10−2

β1 REML prof Wilks −0.14× 10−2 0.01× 10−2 0.15× 10−2

β1 Hartung-Knapp-Sidik-Jonkman −0.15× 10−2 0.04× 10−2 0.20× 10−2

β1 prof Wilks Skovgaard −0.14× 10−2 0.02× 10−2 0.15× 10−2
β2 DL Wald 0.52 2.20 1.68
β2 ML Wald 0.57 2.11 1.54
β2 REML Wald 0.57 2.11 1.54
β2 ML prof Wilks 0.57 2.11 1.54
β2 REML prof Wilks 0.57 2.11 1.54
β2 Hartung-Knapp-Sidik-Jonkman 0.30 2.47 2.17
β2 prof Wilks Skovgaard 0.57 2.11 1.54
β3 DL Wald 0.02 0.06 0.04
β3 ML Wald 0.02 0.06 0.04
β3 REML Wald 0.02 0.06 0.04
β3 ML prof Wilks 0.02 0.06 0.04
β3 REML prof Wilks 0.02 0.06 0.04
β3 Hartung-Knapp-Sidik-Jonkman 0.01 0.06 0.05
β3 prof Wilks Skovgaard 0.02 0.06 0.04
β4 DL Wald −0.75× 10−2 −0.14× 10−2 0.61× 10−2

β4 ML Wald −0.71× 10−2 −0.18× 10−2 0.54× 10−2

β4 REML Wald −0.71× 10−2 −0.18× 10−2 0.54× 10−2

β4 ML prof Wilks −0.71× 10−2 −0.18× 10−2 0.54× 10−2

β4 REML prof Wilks −0.71× 10−2 −0.18× 10−2 0.54× 10−2

β4 Hartung-Knapp-Sidik-Jonkman −0.87× 10−2 −0.04× 10−2 0.83× 10−2

β4 prof Wilks Skovgaard −0.71× 10−2 −0.18× 10−2 0.54× 10−2

β5 DL Wald -0.47 1.74 2.21
β5 ML Wald -0.41 1.68 2.09
β5 REML Wald -0.41 1.68 2.09
β5 ML prof Wilks -0.41 1.68 2.09
β5 REML prof Wilks -0.41 1.68 2.09
β5 Hartung-Knapp-Sidik-Jonkman -0.70 1.96 2.66
β5 prof Wilks Skovgaard -0.41 1.68 2.09
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Table 2.36: Significance test on the parameter β0 and β1 of the meta-regression
mixed effect model estimated on the difference between males and females in absative
changes in muscle size after a resistance training intervention, obtained by DerSi-
monian & Laird (1986), the Hartung-Knapp-Sidik-Jonkman method, the maximum
likelihood (ML Wald) and the restricted maximum likelihood methods (REML Wald)
using the Wald’s statistic, the profile maximum likelihood method (ML prof Wilks)
and the Skovgaard’s method using the Wilk’s test, the Wilk’s method with Bartlett’s
correction and the permutation method.

Method β0 β1 β2 β3 β4 β5

DL 0.41 0.09 0.06× 10−2 0.01× 10−2 0.12× 10−2 0.23
Hartung-Knapp-Sidik-Jonkman 0.53 0.27 0.01 0.45× 10−2 0.03 0.35
ML Wald 0.41 0.09 0.06× 10−2 0.01× 10−2 0.12× 10−2 0.23
REML Wald 0.41 0.09 0.06× 10−2 0.01× 10−2 0.12× 10−2 0.23
ML prof Wilks 0.41 0.09 0.06× 10−2 0.01× 10−2 0.16× 10−2 0.23
Skovgaard 0.40 0.07 0.06× 10−2 0.06× 10−2 0.05× 10−1 0.23
Bartlett 0.41 0.10 0.08× 10−2 0.02× 10−2 0.02× 10−2 0.24
Permutations 0.19 0.04 < 10−4 0.05× 10−2 0.15× 10−2 0.13

Table 2.37: Point estimate and standard error of τ2 in the meta-regression mixed
effect model fitted to estimate on absative changes in muscle size after a resistance
training intervention, obtained by DerSimonian & Laird (1986), the maximum like-
lihood method (ML), the restricted maximum likelihood method (REML) and the
Paule-Mandel estimator (PM).

Estimator Estimate Standard Error
DL 0.03 0.05
ML < 10−4 0.02
REML < 10−4 0.03
PM 0.04 0.05





Chapter 3

Integrated likelihood inference in

meta-analysis

3.1 Small studies in meta-analysis

This chapter focuses on small sample inference in meta-analysis as a consequence of small

samples within each study. Indeed, one of the basic assumptions of the standard meta-

analysis model is that the within-study variance is assumed to be known, specifically

σ2
i = s2i , ∀i = 1, . . . , K. This assumption holds when the study sample is sufficiently

large, because s2i is an unbiased and consistent estimator of σi. In case of small within-

study sample size if the uncertainty in the estimation of σ2
i is not considered, then

results can be misleading. Several solutions have been proposed in the literature of

two-stage approaches to meta-analysis: the use of a population-averaged study specific

variance (Böhning et al., 2002), the use a non parametric estimator of the between-

study variance that consider the within-study variance (Malzahn et al., 2000), the use

of shrinkage approaches for variance estimation (Di Gessa, 2008) and an improvement

of the likelihood results using the second-order asymptotic on likelihood ratio statistic

(Sharma & Mathew, 2011). Some authors reasoned on the advantages of using the

standardized mean difference in place of the un-standardized version to incorporate

within-study variances directly in the effect measure (Johnson & Huedo-Medina, 2013).

This chapter will present an approach based on integrated the likelihood (Bellio & Guolo,

2016), which eliminates variance components by integrating the likelihood function. It

should be noted that other solutions are possible, such as the use of limit meta-analysis,

which is a model that allows the effect of small studies to be estimated under appropriate

assumptions (Rücker et al., 2011).

95
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3.2 Integrated likelihood

Consider a statistical model dependent on a k-dimensional parameter θ, partitionable

into θ = (ψ, λ)T , and assume that the parameter of interest is the p-dimensional ψ, while

λ is a (k − p)-dimensional nuisance parameter. Let L(θ) = L(ψ, λ) be the likelihood

function of the statistical model. The inference on the parameter of interest can always

be based on the average of the likelihood functions L(ψ, λ) with respect to a function

of weights π(λ|θ) (Chapter 8, Section 8.4, Severini, 2000). Note that although π(λ|θ) is
often referred to as a ’conditional prior density’, it need not to be a probability density

function in order to apply this method (Severini, 2007). Let Λ the space of all admissible

λ. The integrated likelihood is defined as

LInt(ψ; π) = log

∫

Λ

L(ψ)π(λ)dλ. (3.1)

The integrated log likelihood function can be expressed as ℓInt(ψ; π) = logLInt(ψ; π)

and may be utilized as well for inference purposes. It should be noted that, while the

method is quite general and can be applied to any parametric model, the resulting

integrals may be complex to compute. The integrated likelihood approach offers a

distinct advantage over other pseudo-likelihoods, such as the profile likelihood, in that

it obtains the likelihood of the parameter of interest L(θ) by averaging rather than

maximization, which renders it numerically more stable. Moreover, when a conditional

or marginal likelihood function is available, it often corresponds to a integrated likelihood

function with respect to a specific weighting function (Severini, 2000).

3.2.1 Desirable properties

In the present context, integrated likelihood will be employed in a non-Bayesian

inference framework. To ensure its suitability for non-Bayesian inference, it is important

to obtain certain desirable properties, which can be achieved by selecting an appropriate

weights function π(λ|θ). The rationale for this selection, as outlined below, is based on

Severini (2000).

The first consideration in selecting the weight function π(λ|ψ) is that it should be

chosen so that if γ is a nuisance parameter ’unrelated’ to ψ, then γ and ψ should be

independent under π(λ|ψ). In this context, the term ’unrelated’ has a specific meaning:

namely, that the maximum likelihood estimator of γ fixed ψ, denoted as γ̂ψ, should be

approximately constant as a function of ψ. More precisely, we can define:

• γ ’weekly unrelated’ to ψ if γ̂ψ = γ̂ +O(n−1) for moderate deviations of ψ;
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• γ ’strongly unrelated’ to ψ if γ̂ψ = γ̂ +O
(

n−1/2
)

O(|ψ − ψ̂|).

Note that orthogonal nuisance parameters are weekly but not strongly unrelated to the

parameter of interest.

For the second desirable requirement, consider the factorizing likelihood in the form

L(θ) = L1(ψ)L2(γ). Accordingly, L1(ψ) can be used as the likelihood for the inference

on ψ. Hence, function π(λ | ψ) should be chosen so that the unrelated parameters are

independent. With this solution, the integrated likelihood for the inference on ψ would

correspond to L1(ψ).

A third consideration for the integrated likelihood is that it should exhibit the frequen-

tist properties of a genuine likelihood function, at least approximately. These include

satisfying the two Bartlett identities, which are known as score and information unbi-

asedness. However, if π(γ | ψ) does not depend on ψ:

• E {ℓ′Int(ψ);ψ, λ} = O (n−1), if γ is weakly unrelated to ψ,

• E
{

ℓ′′Int(ψ) + ℓ′Int(ψ)ℓ
′
Int(ψ)

T; θ
}

is also O (n−1), if γ is strongly unrelated to ψ,

suggesting that π(λ | ψ) should be chosen so that, if a nuisance parameter γ is strongly

unrelated to ψ, then ψ and γ are independent under π(λ | ψ).
A fourth consideration is that the integrated likelihood should be not sensitive to the

choice of the prior density. In other words, the inferential results should be the same

disrespectfully to the prior choice. Consider the Laplace approximation of the integrated

likelihood reported by Severini (2007):

Lint(ψ) =

∫

Λ

L(ψ, λ)π(λ | ψ)dλ = cLp(ψ)
∣

∣

∣
−ℓλλ

(

ψ, λ̂ψ

)∣

∣

∣

−1/2

π
(

λ̂ψ | ψ
)

{

1 +O
(

n−1
)}

,

where c denotes a constant not depending on ψ and ℓλλ(ψ, λ) = ∂2ℓ(ψ, λ)/∂λ∂λT. It

suggests that

• if γ is weakly unrelated to ψ and π(γ | ψ) does not depend on ψ, then, for ψ in the

moderate deviation range, LInt(ψ) does not depend on the form of π(γ), if terms

of order n−1 are ignored,

• If γ is strongly unrelated to ψ, then, in addition, LInt(ψ) does not depend on the

form of π(γ) for ψ in the large deviation range, if terms of order n−1/2 are ignored.
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The last desirable property is that the integrated likelihood remains invariant under the

re-parametrization of the parameter of interest. It is noteworthy that this property does

not impose any constraints on the selection of the weight function.

The desirability of these properties suggests the use of a re-parametrization such that

the new nuisance parameter ϕ is strongly unrelated with ψ and the choice of a weight

function for ϕ, namely π(ϕ|ψ) that does not depend on π(ψ). So the integrated likelihood

takes the following form

LInt(ψ) =

∫

L̃(ψ, ϕ)π(ϕ)dϕ. (3.2)

where L̃(ψ, ϕ) is the re-parametrized likelihood function.

3.2.2 Strongly unrelated nuisance parameter

Choosing which re-parameterization to adopt for the nuisance parameters is not

trivial, as it is well known that the integrated likelihood function varies with the adopted

parameterization. As an illustration, example 8.36 in Severini (2000) is reported. Let

Yi
iid∼ N (µ, σ), ∀i = 1, . . . , N , where µ is the parameter of interest and σ is the nuisance

parameter, and a uniform density is used as the weighting function, π(σ|µ) = 1. The

integrated likelihood function results

LU(µ, σ) =

∫ ∞

0

σ−n exp

{

− 1

2σ2

n
∑

i

(yi − µ)2

}

dσ

=

{

1 +
(µ− ȳ)2

σ̂2

}−(n−1)/2

,

where ȳ = 1
n

∑n
i yi, σ̂

2 = 1
n

∑n
i (yi− ȳ)2 and LU is used to highlight the uniform weight.

Please note that the model is parametrized in term of (µ, σ)T and not (µ, σ2)T . If the

model parametrized in terms of (µ, σ2)T was considered, the likelihood function would

have been

LU(µ, σ
2) =

{

1 +
(µ− ȳ)2

σ̂2

}−(n−2)/2

,

whereas if we considered the model in terms of (µ, log(σ))

LU(µ, log σ) =

{

1 +
(µ− ȳ)2

σ̂2

}−n/2

.
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To fulfill the requirements mentioned in the previous paragraph, a data-dependent re-

parameterization of the nuisance parameters, known as the zero-score-expectation pa-

rameterization, was suggested by Severini (2007). This parameterization involves ob-

taining a parameter ϕ ≡ ϕ(ψ, λ; ψ̂), by solving the equation:

E
{

ℓλ(ψ, λ); ψ̂, ϕ
}

≡ E {ℓλ(ψ, λ);ψ0, λ0}
∣

∣

∣

(ψ0,λ0)=(ψ̂,φ)
= 0. (3.3)

It is necessary to fix the value of (ψ, λ, ψ) and solving for ϕ yields ϕ(ψ, λ;ψ)T . It has

been shown in the Appendix 1 of Severini (2007) that ϕ̂ = λ̂ and that ϕ is strongly

unrelated to ψ. Please note that a data-dependent parameter in the likelihood function

is not a source of problems as the data are considered fixed. The full rationale behind the

derivation of the parameter ϕ is explained in the original publication (Severini, 2007).

It is useful to dwell on the following properties of the integrated likelihood obtained by

the zero-score-expectation re-parameterization. As exposed in Severini (2007),

• supposed a model in which the likelihood factorizes in the form L1(ψ)L2(γ). The

parameter ϕ is dependent on ψ and λ only through γ(ψ, λ), which means that

LInt(ψ) ∝ L1(ψ) for any π(ϕ) such that 3.1 is finite.

• LInt(ψ) is score and information unbiased to the order O(n−1).

• For a fixed type of prior, such as a uniform prior, LInt(ψ) is parameterization

invariant to order O(n−1/2) for fixed ψ and to order O(n−1) for ψ = ψ̂+O(n−1/2).

3.2.3 Likelihood ratio statistics based on integrated likelihood

The log-likelihood ratio statistic is a primary inference tool in likelihood theory since

it is re-parameterization invariant and provides confidence intervals that respect the

parametric space boundaries. In the context of integrated likelihood, as stated in Sev-

erini (2010), a similar statistic is defined as

RInt = sign(ψInt − ψ)
√

2{LInt(ψInt)− LInt(ψ)}, (3.4)

where ψInt represents the maximizer of the integrated log likelihood for ψ. The test is

apparently preferable to the profile likelihood test when the nuisance parameter has large

dimensions due to computational problems related to the maximization. The quantity

RInt is obtained using a type of integration commonly used in Bayesian inference, and

so any Bayesian software can help in its computation (Severini, 2010).
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Indicating with R the profile log likelihood ratio statistics, Severini (2010) showed that

RInt = R + O(n1/2). Hence RInt is asymptotically normally distributed. Moreover, it

has been demonstrated that RInt can be modified to be normally distributed at the

second order and the modification is well described in Severini (2010). An approximate

confidence interval of level α can be obtained as:

LInt(ψ) > LInt(ψInt)− Z1−α/2,

while the hypothesis H0 : ψ = 0 against H1 : ψ ̸= 0 can be tested

|RInt| ≥ Z1−α/2

3.3 Integrated likelihood in meta-analysis

This section focuses on the application of integrated likelihood in meta-analysis where

the measure of effect is on a continuous scale. A discussion on the binary outcomes can

be found in the supporting information of Bellio & Guolo (2016). Please note that the

following discussion is entirely based on the same paper.

Data from a meta-analysis are typically presented in pairs, denoted as (yi, s
2
i ) for all

i = 1, . . . , K. Assuming a RE model, the first element of the i− th pair is an estimate

of βi and s
2
i of the uncertainty associated with the study i. Given that the measures of

effects are assumed to be independent, it follows that yi ∼ N (β, σ2
i + τ 2).

The estimate s2i is used to approximate σ2
i and is calculated with fi degrees of freedom,

which can vary based on the effect measure used. For example, when comparing the

averages of two groups of size ni1 and ni2, the degrees of freedom will be ni1 + ni2 − 2,

whereas when measuring the difference between pre- and post-treatment in a single

group, the degrees of freedom will be n − 1 (where n is the sample size of the single

group). By applying a variable change formula, it is possible to derive the distribution

of s2i from the known distribution of the quantity

s2i fi
σ2
i

∼ χfi .

Given any absolutely continuous random variable X with density X ∼ fX(x) and given

a strictly increasing monotone transform of X of the type Y = g(X), the probability

density function fY (y) is

fY (y) = fX{g−1(y)} · d
dy
g−1(y).
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For fixed fi and σi and since (fi, σi) ∈ [0,+∞)× (0,+∞), function h(x) = xfi
σi

is strictly

increasing monotone. Let Z =
s2i fi
σi

∼ χ2
fi
, s2i = g(Z) = Zσi

fi
and d

dy
g−1(y) = fi/σi. Then

fS2
i
(s2i ) =

(
s2i fi
σi

)(fi/2)−1e

(

−
s2i fi
σi

)

/2

2fi/2Γ(fi/2)
· fi
σi

(3.5)

where Γ is the gamma function.

Hence, assuming the RE model and given that yi and s2i are independent, the joint

probability density function for the i-th study is

f(Yi,S2
i )
(yi, s

2
i ) =

1
√

2π(σ2
i + τ 2)

e
−

(x−βi)
2

2(σ2
i
+τ2) ·

(
s2i fi
σi

)(fi/2)−1e
−

(

s2i fi
σi

)

/2

2fi/2Γ(fi/2)
· fi
σi
.

Since the studies are considered independent, the joint probability function of the whole

sample is

f(Y1,S2
1),...,(yK ,S

2
K
){(y1, s21), . . . , (yK , s2K)} =

K
∏

i

fYi,S2
i
(yi, s

2
i ) =

=
K
∏

i

1
√

2π(σ2
i + τ 2)

e
−

(x−βi)
2

2(σ2
i
+τ2) ·

(
s2i fi
σi

)(fi/2)−1e
−(

s2i fi
σi

)/2

2fi/2Γ(fi/2)
· fi
σi
,

which, is formally equal to the likelihood function

L(β, τ, σ1, . . . , σK |(y1, s21), . . . , (yK , s2K)),

henceforth denoted as L(β, τ, σ1, . . . , σK) for convenience. The log-likelihood function

is obtained as

ℓ(β, τ, σ1, . . . , σK) = logL(β, τ, σ1, . . . , σK)

and it is proportional to

l(β, τ, σ1, . . . , σK) =
K
∑

i=1

{

−1

2
log(σ2

i + τ 2)− 1

2

(xi − βi)
2

(σ2
i + τ 2)

− fi
2
log σ2

i −
fis

2
i

2
log 2σ2

i

}

.

(3.6)

Note that the likelihood (3.6) differs from (1.20) in that it considers the joint probability

function of (yi, s
2
i ), whereas in (1.20) the σ2

i were assumed to be known and equal to s2i .
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The number of parameter is different. In fact, in (1.20) the estimand is (β, τ 2)T while

in (3.6) it is (β, τ, σ1, . . . , σK)
T . Furthermore, it is clear that the number of parameters

increases with the number of studies. For convenience, let θ = (β, τ, σ1, . . . , σK)
T .

The object of interest for inferential purpose is β and the components of variance

(τ 2, σ2
1, . . . , σ

2
K)

T are considered nuisance parameters. Therefore, the parameter θ is

partitioned into θ = (β,λ)T with λ = (τ 2, σ2
1, . . . , σ

2
K)

T . It follows that the integrated

maximum log-likelihood in the form of (3.1) is

ℓInt(β) = log

∫ ∞

0

∫ ∞

0

· · ·
∫ ∞

0

L(β, τ, σ2
1, . . . , σ

2
K)π(τ, σ

2
1, . . . , σ

2
K |β)dσ2

1 . . . dσ
2
Kτ (3.7)

The intergral was calculated over λ in Λ = [0,∞) × (0,∞)K . The inference can be

based on the integrated log-likelihood ratio test as in (3.4).

As explained above, it is necessary to re-parametrized the model using the zero-expectation

parametrization solving (3.3).For the model considered so far, the score vector for λ is

ℓ′τ (β,λ) = τ

n
∑

i=1

{

− 1

(σ2
i + τ 2)

+
(yi − β)2

(σ2
i + τ 2)2

}

,

ℓ′σi(β,λ) = σi

{

− 1

(σ2
i + τ 2)

+
(yi − β)2

(σ2
i + τ 2)2

− fi
σ2
i

+
fis

2
i

σ4
i

}

, i = 1, . . . , K.

The evaluation of the expected value of the above expressions at the parameter value

(β0,λ0)
T , setting β0 = β̂ and λ0 = φ, where φ = (ζ, δ1, . . . , δn)

T , is

E{ℓτ (β, λ);β0, λ0}
∣

∣

(β0,λ0)=(β̂,φ)
= τ

K
∑

i=1

{

(δ2i − σ2
i ) + (ζ2 − τ2) + (β̂ − β)2

(σ2
i + τ2)2

}

(3.8)

and

E{ℓσi(β, λ);β0, λ0}
∣

∣

(β0,λ0)=(β̂,φ)
= σi

{

(δ2i − σ2
i ) + (ζ2 − τ2) + (β̂ − β)2

(σ2
i + τ2)2

+
fi (δ

2
i − σ2

i )

σ4
i

}

.

(3.9)

Equating (3.8) and (3.9) to zero and solving for (ζ, δ1, . . . , δn)
T leads to

τ 2 = ζ2 + (β̂ − β)2,

δi = σi, i = 1, . . . , n.



Chapter 3 - Integrated likelihood inference in meta-analysis 103

The chosen weight function for ζ and σ1, . . . , σK is π(ζ) ∝ 1 and π (σi) ∝ 1/σbi , for fixed

b and specifically b = 1, given that different bs do not change the results Bellio & Guolo

(2016).

Under the assumption that the study participating in the meta-analysis are independent

and using a weight function with separated components for φ imply that

ℓInt(β) = log

∫ ∞

0

{

K
∏

i=1

gi(β, ζ)

}

π(ζ)dζ, (3.10)

where gi(β, ζ) =
∫∞

0
L (β, ζ, σi) π (σi) dσi and L (β, ζ, σi) is the likelihood term for study

i. Each of the K integrals gi(β, ζ) and the main integral in (3.10) are one-dimensional

integrals that can be approximated via standard numerical methods.

3.4 Integrated likelihood in meta-regression

Where the interest is in explaining some of the heterogeneity of the treatment effect

by one or more covariates, integrated likelihood can be used to make inference on a

meta-regression model. Let xi denote the vector of d covariates available at the aggre-

gated meta-analysis level for each study, with x1i = 1 and β a d-dimensional vector of

parameter to be estimated, the meta-regression model can be written as

Yi ∼ N(xi
Tβ, σ2

i + τ 2). (3.11)

The log likelihood function is similar to 3.7 with the parameter vector θ = (βT , τ, σ1, . . . , σK)
T

including the covariates xi in the mean of Yi. Note that the parameter of interest here is

the vector β representing the effect of the covariates on the effect measure of the meta-

analysis. Therefore, in order to obtain confidence intervals for the single parameter or

tests for the single coefficient, it is recommended to use an integrated profile likelihood.

The zero-score-expectation re-parametrization can be obtained with the same approach

previously described, however it is not possible to obtain an expression of τ 2 in terms

of ζ2. In fact ζ2 is related to τ 2 as follows,

τ 2 = ζ2 +

∑K
i=1(σ

2
i + τ 2)−2(xi

T β̂ − xi
Tβ)2

∑K
i=1(σ

2
i + τ 2)−2

.

when, in case of σ2
i = σ2, ∀i = 1, . . . , K,

τ 2 = ζ2 +
n
∑

i=1

(xi
T β̂ − xi

Tβ)2.
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Although the case in which the within-study variances are equal is a borderline and un-

realistic case, this approximation of zero-score expectation parameterization is generally

used to have a closed form for τ 2.

3.5 Details of the implementation of the algorithm

The R to implement the integrated likelihood in meta-analysis is in the Appendix. In

this section, we will focus on some computational details useful for efficiency gains. First,

the code used the log-likelihood function (3.10), since solving one-dimensional integrals

is easier than the multidimensional counterpart. All integrals were calculated using the

R function integrate, which implements an adaptive Gauss-Kronrod quadrature based

on the C QUAPACK library Piessens et al. (2012). The computation of the integrated

likelihood was not possible in all the cases, especially when some of the studies under

investigation had a particularly high sample size. Function gi(β, ζ) in (3.10)contains

the likelihood function, which grows with increasing sample size and it is approximately

proportional to exp (ni), where ni is the sample size of the i-th study. The operation

outside the calculation of gi(β, ζ) is the product over all sample elements of the the

meta-analysis. This product was often too large and therefore the R software returned

the value ’Inf’. According to the IEC 60559 (also known as IEEE 754) standards, the

largest number that can be processed by the R software with a standard precision of 53

bits is actually 1.79769 × 10308. To simplify the calculation, the 3.10 was rewritten as

follows

ℓInt(β) = log

∫ ∞

0

{

K
∏

i=1

gi(β, ζ)

}

π(ζ)dζ

= log

∫ ∞

0

{

K
∏

i=1

∫ ∞

0

L (β, ζ, σi) π (σi) dσi

}

π(ζ)dζ

= log

∫ ∞

0

{

K
∏

i=1

∫ ∞

0

L∗ (β, ζ, σi) exp (ni)π (σi) dσi

}

π(ζ)dζ

=
K
∑

i=1

ni + log

∫ ∞

0

{

K
∏

i=1

∫ ∞

0

L∗ (β, ζ, σi) π (σi) dσi

}

π(ζ)dζ,

where L∗ (β, ζ, σi) = L (β, ζ, σi) / exp (ni). In this way, the invariance of the likelihood

function with respect to a multiplicative constant was exploited, and the individual
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contributions of each trial were of similar magnitude. Moreover, the ’exponential sum

logarithm’ trick was used to calculate the product where possible, i.e.,

K
∏

i

gi(β, ζ) = exp

[

K
∑

i

log{gi(β, ζ)}
]

.

3.6 REML vs integrated likelihood

To illustrate the performance of the integrated maximum likelihood method, a com-

parison with the data set chosen as an example in Chapter 2 was proposed. The results

are compared with the REML method, as this was used by the authors in the original

publication Jones et al. (2021). The aim is to assess the validity of the conclusions when

uncertainty regarding the precision of the estimate of each study true effect is taken

into account. The comparison is proposed only for pairwise meta-analyses and not for

meta-regression models because it is not possible to obtain a closed form for τ 2 as a

function of ζ2 (see Section 3.4).

The results of the comparisons are presented in Table 3.1 and Table 3.2. Overall, the

integrated likelihood leads to more conservative p-values and wider confidence intervals

than the REML. The reason for this is the additional uncertainty introduced considering

the uncertainty on the estimation of σ2
i . It should be noted that most of the studies

included in the meta-analyses have a sample size smaller than 20 participants, so the bias

of s2i may not be negligible. However, it is worth noting that the conclusion regarding

H0 remained unchanged in each analysis and so, the main conclusions of the authors in

the paper are valid. It is worth noting that in the analysis of the ’Relative changes in

lower body muscle strength’ and ’Relative changes in muscle size’ the p-values obtained

with the integrated likelihood method are smaller than the one obtained with the REML

and so, the confidence intervals are smaller.

A plot depicting the integrated likelihood function for the analysis ’Relative changes in

upper body muscle strength’ can be seen in Figure 3.1. It is evident that the integrated

likelihood takes the form of a convex function. Therefore, it is plausible that we identify

an absolute maximum. The same conclusion can be drawn for the plot of each analysis

and for these reason, we avoid to report all of them. They are available running the

code. Furthermore, from Figure 3.1 it can be noticed that the integrated likelihood has

a symmetric shape and so the confidence intervals.
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Integrated Likelihood REML

Analysis β̄ rInt p β̂ Z p
Rel. upper -0.28 -1.40 0.17 -0.29 0.08 0.08
Abs. upper 0.47 2.09 0.04 0.48 0.02 0.02
Rel. lower -0.21 -3.71 0.02 ×10−2 -0.21 -3.62 0.03 ×10−2

Abs.lower 0.34 3.87 0.01 ×10−2 0.33 4.75 < 0.01× 10−2

Rel. size 0.10 1.28 0.10 0.10 1.41 0.16
Abs. size 0.45 3.28 0.01 ×10−1 0.45 3.97 < 0.01 ×10−2

Table 3.1: Comparisons of the p-value obtained using the integrated likelihood and
REML methods. Abbreviations: Rel. upper: relative changes in upper body muscle
strength; Abs. upper: absolute changes in upper body muscle strength; Rel. lower:
relative changes in lower body muscle strength; Abs. lower: absolute changes in lower
body muscle strength; Rel. muscle: relative changes in muscle size; Abs. muscle:
absolute changes in muscle size.

Integrated Likelihood REML

Analysis β̄ (1− α) CI β̂ (1− α) CI
Rel. upper -0.28 (−0.69, 0.16) -0.29 (−0.62, 0.04)
Abs. upper 0.47 (0.04, 1.02) 0.48 (0.09, 0.88)
Rel. lower -0.21 (−0.30,−0.11) -0.21 (−0.33,−0.10)
Abs.lower 0.34 (0.19, 0.48) 0.33 (0.20, 0.47)
Rel. size 0.10 (−0.06, 0.23) 0.10 (−0.04, 0.23)
Abs. size 0.45 (0.20, 0.68) 0.45 (0.23, 0.67)

Table 3.2: Comparisons of the confidence intervals obtained using the integrated
likelihood and REML methods. Abbreviations: Rel. upper: relative changes in upper
body muscle strength; Abs. upper: absolute changes in upper body muscle strength;
Rel. lower: relative changes in lower body muscle strength; Abs. lower: absolute
changes in lower body muscle strength; Rel. muscle: relative changes in muscle size;
Abs. muscle: absolute changes in muscle size.
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Figure 3.1: Integrated likelihood function for meta-analysis regarding relative
changes in the upper body muscle strength. The red line indicates the quantile
1−α/2 = 0.975 of a N (0, 1) distribution. Its intersection with the curve indicates the
extremes of a confidence interval of magnitude 1− α = 0.95.





Chapter 4

Conclusion

4.1 Discussion of the findings

In this work, we analyzed the dataset created by Jones and collegues (Jones et al.,

2021) to examine sex differences in hypertrophic and strength adaptations in response to

a resistance training program in older adults. We replicated the analysis proposed in the

original paper and then applied more advanced methods aimed at relaxing some of the

assumptions underlying the models most commonly used in pairwise meta-analysis. In

particular, we focused on methods for small sample sizes and presented some alternatives

in Chapter 1 when the number of studies included in the meta-analysis is small, while in

Chapter 3 we proposed integrated likelihood as a strategy for analyzing datasets where

the number of studies is reasonable but the number of participants in each study is

small. As shown in Chapter 2, the dataset under study exhibits both the problems.

Indeed, the analysis of ’relative and absolute changes in upper body strength’ involved

7 studies and 160 subjects, whereas the analysis of ’relative and absolute changes in

lower body strength’ and ’relative and absolute changes in muscle size’ involved 34 and

30 studies and 1196 and 1064 subjects, respectively.

4.1.1 Muscle strength

Females exhibited greater relative increases in lower body strength compared with

males, with a standardized mean difference of β̂ = −0.21 (95%CI : −0.33,−0.10).

However, no sex differences were observed for upper body strength (β̂ = −0.29 (95%CI :

−0.62, 0.04)). Absolute changes in muscle strength were greater in men, with a stan-

dardized mean difference of β̂ = 0.3312 (95%CI : 0.19, 0.47) and β̂ = 0.48 (95%CI :

0.09, 0.88), respectively. These results were obtained using the DerSimonian & Laird

109
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(1986) method. However, none of the other methods tested in Chapter 2 changed the

conclusion, although the test based on the Skovgaard statistic and the Hartung-Knapp-

Sidik-Jonkman method leads to considerably conservative p-values, especially for upper

body muscle strength. The estimates based on integrated likelihood (Table 3.2) do

not change the inferential conclusion. However, it can be seen that the results of the

analysis on the ’relative and absolute changes in upper body strength’ are subject to

considerable higher uncertainty. In general, baseline strength is greater in adult males

than females, likely due to greater muscle size in males (Bishop et al., 1987) rather than

a sex difference in the ability of the nervous system to voluntarily activate the muscles

(Molenaar et al., 2013). It is therefore likely that the greater absolute increase in males

is a function of their larger body size. However, normalizing for initial strength, it ap-

pears that the two sexes make the same progress in the upper body, whereas women

progress more rapidly in the lower body. It should be noted, however, that the num-

ber of studies included for the upper body is very small and the conclusions should be

treated with appropriate caution, especially given the width of the integrated likelihood

confidence interval. The problem is also recognize by the authors of the original paper

(Jones et al., 2021). However, the non significant difference in upper body strength

testing may be related to the accuracy of strength assessment in the original studies.

Indeed, the meta-analysis includes only studies using dynamic resistance training, and

the most prevalent assessment is the one (or multiple) repetition maximum (i.e., the

maximum amount of weight the person can lift for a given number of repetitions). Typ-

ically, the minimum load increment that can be used in these tests is 1.25 kg, unless the

laboratory is equipped with appropriate 250g and 500g or possibly smaller plates. Since

males have higher baseline strength than females, the test can be more accurate and the

increment in load represent a smaller percentage of the maximal force of the individual.

Note also that the results are at odds with those of an earlier, similar meta-analysis

conducted by Roberts and colleagues in young people (Roberts et al., 2020). In this

study, women actually appeared to be favored in the upper body, while there were no

differences in the lower body and authors attributed the differences to the fact that

women were less trained in the upper body than men. In our analysis, it is possible

that the difference is due to the more rapid decline in lower limb muscle mass in older

men than in women (Cheng et al., 2014), which could potentially impair the ability

to adapt to a resistance training protocol. For the analysis of the upper body, it was

considered inappropriate to perform a meta-regression because of the limited number

of included studies. In the analysis of ’relative changes in lower body muscle strength’,

the estimated value of τ 2 was found to be τ̂ 2 < 10−4, although the 95% confidence
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interval was (< 10−4, 0.11) according to the method of Viechtbauer (2007). Analysis

of ’absolute changes in lower body muscle strength’ yielded an estimated value for τ 2

of τ̂ 2 = 0.03 with a 95% confidence interval of (< 10−4, 0.49). The uncertainty in de-

termining the presence of heterogeneity and the intent to replicate the analyses of the

original work necessitated meta-regression. Effect size was found to vary with weekly

volume performed. Specifically, when analyzing relative changes in lower body muscle

strength, the effect size decreases by −0.07 × 10−2 for each additional repetition per

week. This result remains consistent after excluding influential studies and remains

significant regardless of correction for the small sample applied. Interestingly, it is note-

worthy that the intercept of the model is not significantly different from zero, regardless

of the correction used. It seems apparent that there are no sex differences in proto-

cols with a low weekly volume, while adjustments to protocols with a high number of

repetitions seem to favor female individuals. The same effect is seen in the analysis of

relative changes in lower body muscle strength, where the effect size for each repetition

decreases by −0.09 × 10−2 (95%CI : −0.14 × 10−2,−0.04 × 10−2); however, in this

case, the intercept is significantly different from zero, 0.64 (95%CI : 0.45, 0.83). The

results remain fairly consistent regardless of the correction applied. The conclusion of

this section differs in part from that proposed in the original Jones et al. (2021) pa-

per, as it appears that the sex differences in force adaptation compared to baseline are

related to the type of protocol proposed and are only evident in high volume training

protocols. It is also worth noting that the slope of the regression line has only a small

magnitude, since the number of weekly repetitions has a wide variation, ranging from

60 to 1071, and it should also be noted that all protocols involving the lower body have

less than 350 repetitions. Finally, it is apparent from looking at the figures in Chapter

2 that all of the studies with a high number of repetitions have low weight. A possible

explanation for this phenomenon could be related to the fact that males start with a

higher level of strength not only because of their body size, but also because they are

more likely to perform tasks that require the use of strength in their daily lives. Thus,

because they are more accustomed to expressing high levels of force, they must expose

themselves to heavier loads in order to improve, and these can only be utilized if the

number of repetitions is lower. Women, on the other hand, starting from a lower level

of training, improve even with lower loads and therefore with protocols that provide

higher repetitions. Of course, this is pure speculation, as there is no evidence to confirm

or disprove this theory.
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4.1.2 Muscle size

The analysis of the ’relative changes in muscle size’ yielded an estimate of β = 0.10

with a 95% confidence interval of (−0.04, 0.23), whereas the analysis of the ’absolute

changes in muscle size’ yielded an estimate of β = 0.45 (95%CI : 0.23, 0.67). These

results indicate that there is no significant difference in relative terms, but in absolute

terms males are favored. The findings are supported by the fact that the extent of

hypertrophic adaptations appears to be primarily related to the presence of androgen

receptors rather than circulating levels of systemic hormones such as testosterone (Mor-

ton et al., 2018). However, the presence of these receptors is not altered by exercise, and

there are no studies examining whether their expression differs in men and women. Fur-

thermore, hypertrophic adaptations are associated with protein synthesis and signaling

systems that do not differ between the sexes (Dreyer et al., 2010). These considera-

tions could offer an explanation of why relative hypertrophic adaptations are the same

between the sexes. However, because males have a larger body size, the differences ob-

served in absolute adaptations are easily explained. It should be noted, however, that

the cited studies were conducted in a population of young adults and that there is no

evidence to confirm these results in elderly.

Both proposed models have a substantial amount of heterogeneity, with τ 2 in the

relative differences model estimated to be τ̂ 2 = 0.01 (95%CI :< 10−4, 0.1730) and

τ̂ 2 = 19.87 (95%CI :< 10−4, 0.49). This corresponds to 10.43% and 62.12% of the

variance attributed to heterogeneity, respectively. For this reason, we perfomed a meta-

regression. Regarding the ’relative changes in muscle size’, the regression model in-

cludes duration and weekly volume. Notably, the intercept is not significantly dif-

ferent from zero and the effect favors women for each additional weekly repetition

(β̂1 = −0.07 × 10−2, p = 0.05 × 10−1), while it seems to favor men for each additional

week of study duration (β̂1 = 0.02, p = 0.02). The heterogeneity of the meta-regression

model is estimated as τ̂ 2 = 0(95%CI :< ×10−4, 0.17). Thus, although the point esti-

mate decreases substantially, the uncertainty behind the variance estimate remains the

same. The results remain significant under all proposed correction methods, except for

the coefficient β2 when using the ”Hartung-Knapp-Sidik-Jonkman” method. This is not

surprising, considering that the number of study in this model is substantial, while the

real issue is the number of participants in each study. The effect of weekly volume can

be explained by the same rationale used for the effect on muscle strength. If we assume

that women are less inclined (i.e., ”trained”) to perform strength exercises, we can as-

sume that they already benefit from shorter training periods. From this perspective, the
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effect tends to balance out in studies with longer duration, which explains the positive

coefficient β2.

Regarding absolute changes in muscle size, the regression model is more complex. In fact,

it includes the training type, study duration, weekly volume, and the interaction between

training type and weekly volume. Specifically, the expected value of the effect size for

’absolute changes in muscle size’ is −0.31− 0.06× 10−2 ·metareg weekly repetitions +

0.04 · duration, when the study used a ’full body body’ exercise protocol, while it is

1.03− 0.05× 10−1 ·metareg weekly repetitions + 0.04 · duration for protocols involving

only the ’lower body’. Thus, the effect of number of repetitions appears to be much more

pronounced for training protocols that focus on the ’lower body’. However, it should be

noted that none of these protocols exceed 350 repetitions per week, so the result should

be interpreted with caution. In addition, the intercepts are particularly different, and

this could be a result of the hierarchy used to choose the effect measures. It should also

be noted that the coefficient for the fixed effect of metareg weekly repetitions is not

significantly different from zero for any of the methods used. However, it is retained in

the model because it was chosen to keep the interaction with the variable training.

The interpretation of this model is not different from that of the previous model for

’relative changes in muscle size’, once we acknowledge that males have bigger body size.

4.2 Limitations

This work is not without limitations. Several methods have been proposed to correct

for a small number of studies in a meta-analysis and the integrated likelihood for small

sample sizes within individual studies. To the best of our knowledge, there is currently

no method that addresses both problems simultaneously. Unfortunately, the analyses

on ’upper body muscle strength’ were conducted with a sample of 7 studies and a total

of 160 participants, which means an average of 22.86 participants per study. However,

several studies have a sample size of less than 15 participants. In this context, it would

be optimal to propose a correction that takes into account the ’double low sample size’

problem.

In addition, as mentioned in Chapter 2, some included studies have multiple effect

measures. The authors used hierarchy to reduce dimensionality. Originally, there were

two sources of multiple effect measures in the same study: the fact that more than one

outcome was measured to represent the same construct, and the presence of multiple

intervention groups. And so, it would have been more informative to have access to all

effect sizes in order to use a hierarchical multilevel model. In the present analysis, it
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would have been possible to account for multiple groups within a single study by using

a three-level model rather than assuming independent effect measures.

Finally, muscle strength and muscle size are expected to be highly correlated, especially

in older adults. For this reason, it would have been interesting to use a multivariate

meta-analysis model. However, this was not possible because not all studies reported

on all three effect measures and, consequently, the sample size included in each analysis

varied.
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#’ This function performs multiple meta -analyses using different methods and

#’ returns various results , including estimator estimates , confidence intervals ,

#’ p-values , and more.

#’

#’ @param y_i A numeric vector of effect sizes for each study.

#’ @param si2 A numeric vector of sampling variances for each study.

#’ @param X An optional matrix or dataframe of moderators .

#’ Defaults to NULL. Interaction must be included as a new

#’ column. Intercept is included by default.

#’ @param alpha The desired level of confidence/significance for confidence

#’ intervals and test. Defaults to 0.05.

#’ @param B The number of permutations for the permutation test.

#’ Defaults to 2000.

#’

#’ @return A list containing various results:

#’ - a dataframe for the estimate of \beta and its standard error;

#’ - a dataframe for the estimate of \tau ^2 and its standard error;

#’ - a dataframe for the confidence intervals of \beta;

#’ - a dataframe for the confidence intervals of \tau ^2;

#’ - a dataframe for thesignificance tests on \beta;

#’

#’ @examples

#’ # Example 1: Perform meta -analyses without moderators

#’ y_i <- c(0.5 , 0.8, 1.2)

#’ si2 <- c(0.1 , 0.2, 0.3)

#’ results <- meta_many(y_i, si2

#’

#’ # Example 2: Perform meta -analyses with moderators

#’ # Generate example data

#’ set.seed (123)

#’ y_i <- rnorm (10, 0.5, 0.2)

#’ si2 <- runif (10, 0.1, 0.3)

#’ X <- data.frame( Moderator1 = rnorm (10) , Moderator2 = rnorm (10))

#’

#’ Perform meta -analyses

#’ results <- meta_many(y_i, si2 , X)

meta_many <- function(y_i, si2 , X = NULL ,

alpha = 0.05, B=2000){
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# ############################################################################

# Estimation

# ############################################################################

# Argument list

argument_list <- list(yi = y_i, vi = si2)

# Moderators

if (!is.null(X)) {

argument_list$mod <- X

}

# Calls metafor rma

methods <- c("DL", "PM", "ML", "REML", "SJ")

fitted_obj <-list()

argument_list_tmp <- argument_list

for (i in 1: length(methods )){

argument_list_tmp$method <- methods[i]

fitted_obj[[i]] <- do.call(rma , argument_list_tmp)

}

names(fitted_obj) <- methods

#Add method = GENQ

argument_list_tmp$method <- "GENQ"

argument_list_tmp$weights <- argument_list_tmp$vi

fitted_obj$GENQ <- do.call(rma , argument_list_tmp)

#Dataframe for metalik and metatest

# ncol X

if(!is.null(X)){

if(!is.null(ncol(X))){

mod_num <- ncol(X)

} else {

mod_num <- 1

}

}

if (!is.null(X)) {

tmp_df <- data.frame(do.call(cbind , argument_list))

colnames(tmp_df) <- c("yi", "vi", paste("v", 1:mod_num , sep="_"))

f <- paste("yi ~ ",

paste(grep("v_", x = colnames(tmp_df), value = TRUE),

collapse = " + "))

} else {

tmp_df <- data.frame(do.call(cbind , argument_list))

f <- "yi ~ 1"

}

#Add metalik

fitted_obj$metaLik_fit <- metaLik(as.formula(f),
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sigma2 = vi ,

data = tmp_df)

#Add metatest

fitted_obj$metatest_fit <- metatest(as.formula(f),

variance = vi ,

npermut = B,

data = tmp_df)

# ############################################################################

#Results

# ############################################################################

#Results

res_list <-list()

# ############################################################################

# Estimators Beta and Tau ^2

# ############################################################################

res_list$Betas <- as.data.frame(cbind(fitted_obj$DL$beta ,

fitted_obj$DL$se ,

fitted_obj$ML$beta ,

fitted_obj$ML$se ,

fitted_obj$REML$beta ,

fitted_obj$REML$se ,

fitted_obj$PM$beta ,

fitted_obj$PM$se))

colnames(res_list$Betas) <- c("DL_Estimate", "DL_se",

"ML_Estimate", "ML_se",

"REML_Estimate", "REML_se",

"PM_Estimate", "PM_se")

res_list$Tau2s <- as.data.frame(cbind(fitted_obj$DL$tau2 ,

fitted_obj$DL$se.tau2 ,

fitted_obj$ML$tau2 ,

fitted_obj$ML$se.tau2 ,

fitted_obj$REML$tau2 ,

fitted_obj$REML$se.tau2 ,

fitted_obj$PM$tau2 ,

fitted_obj$PM$se.tau2))

colnames(res_list$Tau2s) <- c("DL_Estimate", "DL_se",

"ML_Estimate", "ML_se",

"REML_Estimate", "REML_se",

"PM_Estimate", "PM_se")

# ############################################################################

#CI - Beta

# ############################################################################

#Skovgaard CI

if (!is.null(X)) {

s_confint <- list()
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for(p in 1:( mod_num + 1)){

prof_tmp <- metaLik :::. profLik(fitted_obj$metaLik_fit , param = p)

s_confint [[p]] <- predict(prof_tmp$smooth.rs.inv , x=c(-1.96, 1.96))$y

}

s_confint <- do.call(rbind , s_confint)

s_confint <- as.data.frame(s_confint)

} else {

prof <- metaLik :::. profLik(fitted_obj$metaLik_fit)

s_confint <- predict(prof$smooth.rs.inv , x=c(-1.96, 1.96))$y

s_confint <- as.data.frame(matrix(s_confint , ncol = 2))

}

colnames(s_confint) <- c("Upper", "Lower")

#Lower bound before

res_list$Beta_CIs <- as.data.frame(cbind(

fitted_obj$DL$beta - qnorm(1-alpha/2) * fitted_obj$DL$se , #Wald DL

fitted_obj$DL$beta + qnorm(1-alpha/2) * fitted_obj$DL$se ,

fitted_obj$ML$beta - qnorm(1-alpha/2) * fitted_obj$ML$se , #Wald ML

fitted_obj$ML$beta + qnorm(1-alpha/2) * fitted_obj$ML$se ,

fitted_obj$REML$beta - qnorm(1-alpha/2) * fitted_obj$REML$se , #Wald REML

fitted_obj$REML$beta + qnorm(1-alpha/2) * fitted_obj$REML$se ,

confint(fitted_obj$ML , random = TRUE , fixed = TRUE , type = "PL",

level = alpha)$fixed[, 2], #ML prof lik

confint(fitted_obj$ML , random = TRUE , fixed = TRUE , type = "PL",

level = alpha)$fixed[, 3],

confint(fitted_obj$REML , random = TRUE , fixed = TRUE , type = "PL",

level = alpha)$fixed[, 2], #REML prof lik

confint(fitted_obj$REML , random = TRUE , fixed = TRUE , type = "PL",

level = alpha)$fixed[, 3],

confint(fitted_obj$SJ , random = TRUE , fixed = TRUE , type = "PL",

level = alpha)$fixed[, 2], #Hartung -Knapp -Sidik -Jonkman

confint(fitted_obj$SJ , random = TRUE , fixed = TRUE , type = "PL",

level = alpha)$fixed[, 3],

s_confint$Lower , s_confint$Upper ))

colnames(res_list$Beta_CIs) <- c("DL_Wald_LL", "DL_Wald_UL",

"ML_Wald_LL", "ML_Wald_UL",

"REML_Wald_LL", "REML_Wald_UL",

"ML_prof_Wilks_LL", "ML_prof_Wilks_UL",

"REML_prof_Wilks_LL", "REML_prof_Wilks_UL",

"Hartung -Knapp -Sidik -Jonkman_LL",

"Hartung -Knapp -Sidik -Jonkman_UL",

"prof_Wilks_Skovgaard_LL",

"prof_Wilks_Skovgaard_UL")

# ############################################################################

#CI - Tau ^2

# ############################################################################

#Lower bound before

res_list$Tau2_CIs <- as.data.frame(cbind(

fitted_obj$ML$tau2 - qnorm(1-alpha/2) * fitted_obj$ML$se.tau2 , #Wald ML

fitted_obj$ML$tau2 + qnorm(1-alpha/2) * fitted_obj$ML$se.tau2 ,
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confint(fitted_obj$ML , random = TRUE , fixed = TRUE , type = "PL",

level = alpha)$random[1, 2], #prof lik ML

confint(fitted_obj$ML , random = TRUE , fixed = TRUE , type = "PL",

level = alpha)$random[1, 3],

confint(fitted_obj$REML , random = TRUE , fixed = TRUE , type = "PL",

level = alpha)$random[1, 2], #prof lik REML

confint(fitted_obj$REML , random = TRUE , fixed = TRUE , type = "PL",

level = alpha)$random[1, 3],

confint(fitted_obj$GENQ , random = TRUE , fixed = TRUE , type = "GENQ",

level = alpha)$random[1, 2], ## Generalized Q method ( Viechtbauer )

confint(fitted_obj$GENQ , random = TRUE , fixed = TRUE , type = "GENQ",

level = alpha)$random[1, 3]))

colnames(res_list$Tau2_CIs) <- c("ML_Wald_LL", "ML_Wald_UL",

"ML_prof_Wilks_LL", "ML_prof_Wilks_UL",

"REML_prof_Wilks_LL", "REML_prof_Wilks_UL",

"GENQ_LL", "GENQ_UL")

# ############################################################################

#Pvalue -Fixed effects

# ############################################################################

res_list$Beta_pvals <- as.data.frame(cbind(

#DL

fitted_obj$REML$pval ,

#Hartung -Knapp -Sidik -Jonkman

fitted_obj$SJ$pval ,

#Wald (ML)

fitted_obj$ML$pval ,

#Wald (REML)

fitted_obj$REML$pval ,

#Signed profile loglik (ML)

if(!is.null(X)){

sapply (1:( mod_num+1), function(p)

test.metaLik(fitted_obj$metaLik_fit , param = p, print = FALSE)$pvalue.r)

} else {

test.metaLik(fitted_obj$metaLik_fit , param = 1, print = FALSE)$pvalue.r

},

#Skovgaard

if(!is.null(X)){

sapply (1:( mod_num+1), function(p)

test.metaLik(fitted_obj$metaLik_fit ,

param = p, print = FALSE)$pvalue.rskov)

} else {

test.metaLik(fitted_obj$metaLik_fit ,

param = 1, print = FALSE)$pvalue.rskov

},

#Bartlett ’s correction

fitted_obj$metatest_fit$pBartlett ,

# Permutation test

fitted_obj$metatest_fit$ppermtest ))

colnames(res_list$Beta_pvals) <- c("DL", "Hartung -Knapp -Sidik -Jonkman",

"ML_Wald", "REML_Wald", "ML_prof_Wilks",

"Skovgaard", "Bartlett", "Permutations")
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# ############################################################################

#Return

# ############################################################################

return(res_list)

}
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Appendix 2

’

Title: Meta -analysis Jones et al. 2021

Description: Reproduction of the analyis of Jones et al. 2021 (*) and

integration with advance methods in meta -analysis.

Author: Enrico Roma

* Jones , M. D., Wewege , M. A., Hackett , D. A., Keogh ,

J. W., & Hagstrom , A. D. (2021). Sex differences in adaptations

in muscle strength and size following resistance training in

older adults: A systematic review and meta -analysis.

Sports Medicine , 51, 503 -517.

’

# Workspace

rm(list=ls())

setwd("C:\\ Users \\ romae \\ Desktop \\ Analisi_tesi_Statistica")

image_path <-

"C:\\ Users \\ romae \\ Desktop \\ Analisi_tesi_Statistica \\ Grafici_tesi"

# Libraries

# install.packages(c(" metafor", "metaLik", "metatest", "esc",

# "dplyr", "ggplot2", "readxl",

# "wrapr", "tidyverse "))

library(esc)

library(metafor)

library(metaLik)

library(metatest)

library(readxl)

library(dplyr)

library(xtable)

library(tidyverse)

# Hand written function

source("meta_many.R")

#Overall parameter setting

Alpha <- 0.05 #Sign. level
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# Data

df <- read_xlsx("Data_190620. xlsx",

sheet="Data_older",

skip = 0,

col_names=TRUE)

df <- as.data.frame(df)

round_df <- function(df , digits) {

nums <- vapply(df , is.numeric , FUN.VALUE = logical (1))

df[,nums] <- round(df[,nums], digits = digits)

(df)

}

df <- round_df(df , digits = 2)

# ##############################################################################

## Analysis 1a: Relative change upper body muscle strength

# ##############################################################################

# Filter

df %>%

filter(Age == "Older", Upper_strength == 1) -> df_upper

View(df_upper)

# Studies included

df_upper %>%

summarise(studies_included = length(unique(Study )))

# Participant in each group

df_upper %>%

summarise(Upper_males = sum(Male_upper_strength_post_number),

Upper_females = sum(Female_upper_strength_post_number ))

# Random effect meta -analysis

(rel_upper_rma <- rma(data = df_upper ,

m1i = Male_upper_strength_relative_change_mean ,

sd1i = Male_upper_strength_relative_change_sd ,

n1i = Male_upper_strength_post_number ,

m2i = Female_upper_strength_relative_change_mean ,

sd2i = Female_upper_strength_relative_change_sd ,

n2i = Female_upper_strength_post_number ,

weighted = TRUE ,

method = "REML",

measure = "SMD",

slab = paste(Study , Reference , sep = " ")))

# Decrease margins so the full space is used

pdf(paste(image_path , "Rel_Upper_Chp2\\rel_upper_rma.pdf", sep="\\"),

width = 12, height = 8)

par(mar = c(4,4,1,2))

# forest plot
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forest(rel_upper_rma ,

addfit = FALSE ,

addcred = FALSE ,

showweights = TRUE ,

xlim = c(-14, 6),

ylim = c(-1, 9.5),

at = c(-2.5, 0, 2.5),

rows = 6.5:0.5 ,

ilab = round(cbind(

df_upper$Male_upper_strength_relative_change_mean ,

df_upper$Male_upper_strength_relative_change_sd ,

df_upper$Male_upper_strength_post_number ,

df_upper$Female_upper_strength_relative_change_mean ,

df_upper$Female_upper_strength_relative_change_sd ,

df_upper$Female_upper_strength_post_number),

digits = 2),

ilab.xpos = c(-10, -9, -8, -6, -5, -4), cex = 0.8,

mlab = "",

psize = 1,

xlab = "Favours females Favours males")

addpoly(rel_upper_rma , row = -0.5, cex = 0.8, mlab = "")

text(6, -0.8, paste("p =", formatC(rel_upper_rma$pval , digits = 4)),

pos = 2, cex = 0.8)

rel_upper_fsn <- fsn(yi = rel_upper_rma$yi ,

vi = rel_upper_rma$vi ,

type = "Rosenthal",

alpha = 0.05)

text(-14, -1, pos = 4, cex = 0.8,

paste("Fail -safe N =", formatC(rel_upper_fsn$fsnum )))

op <- par(cex = 0.8, font = 2)

text(c(-10, -9, -8, -6, -5, -4), 7.25,

c("Mean", "SD", "Sample", "Mean", "SD", "Sample"))

text(c(-9, -5), 7.75,

c("Male", "Female"))

text(-14, 7.75, "Study", pos = 4)

text(6, 7.75, "Hedges ’ g [95% CI]", pos = 2)

text(0, 7.75,

"Relative change in upper body muscle strength")

text(-14, -0.5, pos = 4, cex = 1,

bquote(paste("Random -effects model (Q = ",

.( formatC(rel_upper_rma$QE , digits=2,

format="f")),

", df = ", .(rel_upper_rma$k - rel_upper_rma$p),

", p = " ,.(formatC(rel_upper_rma$QEp , digits=2,

format="f")),

"; ", I^2, " = " ,.(formatC(rel_upper_rma$I2 ,digits=1,

format="f")),

"%)")))

dev.off()
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# Assumption checks

rel_upper_inf <- influence(rel_upper_rma)

# Normality of (external) studentized residuals

pdf(paste(image_path , "Rel_Upper_Chp2\\rel_upper_Normality.pdf", sep="\\"),

width = 12, height = 8)

qqnorm(rel_upper_inf$inf$rstudent , cex = 1.5, pch = 21, bg="grey")

qqline(rel_upper_inf$inf$rstudent)

dev.off()

shapiro.test(rel_upper_inf$inf$rstudent)

# "Size" of (external) studentized residuals , lines = 1.96

pdf(paste(image_path , "Rel_Upper_Chp2\\rel_upper_extres.pdf", sep="\\"),

width = 12, height = 8)

plot(rel_upper_inf , plotinf = 1, cex = 1.5)

dev.off()

# L1o standardized predicted average (dffits),

# lines = 3 * sqrt(rel_upper_inf$p/(rel_upper_inf$k-rel_upper_inf$p

3 * sqrt(rel_upper_inf$p/(rel_upper_inf$k-rel_upper_inf$p))

pdf(paste(image_path , "Rel_Upper_Chp2\\rel_upper_dffits.pdf", sep="\\"),

width = 12, height = 8)

plot(rel_upper_inf , plotinf = 2, cex = 1.5)

dev.off()

# Cook distances , lines = qchisq(p = 0.5, df = (rel_upper_inf$p +1))

qchisq(p = 0.5, df = (rel_upper_inf$p +1))

pdf(paste(image_path , "Rel_Upper_Chp2\\rel_upper_Cook.pdf", sep="\\"),

width = 12, height = 8)

plot(rel_upper_inf , plotinf = 3, cex = 1.5)

dev.off()

# Covariance ratio

pdf(paste(image_path , "Rel_Upper_Chp2\\rel_upper_Covr.pdf", sep="\\"),

width = 12, height = 8)

plot(rel_upper_inf , plotinf = 4, cex = 1.5)

abline(h = 1, lty = "dashed")

dev.off()

# Tau2 l1o estimation , line = tau estimated from the model with all the studies

pdf(paste(image_path , "Rel_Upper_Chp2\\rel_upper_Tau2L1o.pdf", sep="\\"),

width = 12, height = 8)
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plot(rel_upper_inf , plotinf = 5, cex = 1.5)

dev.off()

# Dfbetas

pdf(paste(image_path , "Rel_Upper_Chp2\\rel_upper_dfbetas.pdf", sep="\\"),

width = 12, height = 8)

plot(rel_upper_inf , plotdfbs = 1, plotinf=FALSE , cex = 1.5)

abline(h = 1, lty = "dashed")

dev.off()

# Alternative methods

# Effect sizes calculations

escalc(measure = "SMD",

data = df_upper ,

m1i = Male_upper_strength_relative_change_mean ,

sd1i = Male_upper_strength_relative_change_sd ,

n1i = Male_upper_strength_post_number ,

m2i = Female_upper_strength_relative_change_mean ,

sd2i = Female_upper_strength_relative_change_sd ,

n2i = Female_upper_strength_post_number , append = TRUE) -> df_upper

# Meta many

set.seed (23091994)

rel_upper_meta_many <- meta_many(y_i = df_upper$yi ,

si2 = df_upper$vi ,

X = NULL , alpha = Alpha , B = 2000)

# Betas

rel_upper_meta_many$Betas %>%

pivot_longer(everything (), names_to = c("Estimator", ’.value ’),

names_pattern = ’(.*)_(\\w+)’) %>% xtable(digits = 4)

# Betas CI

rel_upper_meta_many$Beta_CIs %>%

pivot_longer(

everything (),

cols_vary = "slowest",

names_to = c("Estimator", ".value"),

names_pattern = ’(.*)_(\\w+)’) %>%

mutate(Width = UL - LL) %>% xtable(digits = 4)

# Betas p-val

rel_upper_meta_many$Beta_pvals %>%

pivot_longer(everything (),

names_to = "Method",

values_to = "p") %>% xtable(digits = 4)

# Tau2s
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rel_upper_meta_many$Tau2s %>%

pivot_longer(everything (), names_to = c("Estimator", ’.value ’),

names_pattern = ’(.*)_(\\w+)’) %>% xtable(digits = 4)

# Tau2s CI

rel_upper_meta_many$Tau2_CIs %>%

pivot_longer(

everything (),

cols_vary = "slowest",

names_to = c("Estimator", ".value"),

names_pattern = ’(.*)_(\\w+)’) %>%

mutate(Width = UL - LL) %>% xtable(digits = 4)

# Publication bias

# Contour enhanced funnel plot

pdf(paste(image_path , "Rel_Upper_Chp2\\rel_upper_cefunnel.pdf", sep="\\"),

width = 12, height = 8)

par(mar=c(5,4,1,2))

funnel(rel_upper_rma ,

level=c(90, 95, 99),

shade=c("white", "gray", "darkgray"),

refline = 0,

addtau2 = TRUE ,

xlab = "Hedges ’ g",

cex = 1.5,

legend = TRUE)

dev.off()

# Egger ’s regression test for asymmetry

# se

(Egger_rel_upper_rma <- regtest(rel_upper_rma))

#variance

(Egger_rel_upper_rma_va <- regtest(rel_upper_rma , predictor="vi"))

# Funnel plot with superimposed Egger ’s regression line

pdf(paste(image_path , "Rel_Upper_Chp2\\rel_upper_cefunnelreg.pdf", sep="\\"),

width = 12, height = 8)

par(mar=c(5,4,1,2))

funnel(rel_upper_rma ,

level=c(90, 95, 99),

shade=c("white", "gray", "darkgray"),

refline = 0,

addtau2 = TRUE ,

xlab = "Hedges ’ g",

cex = 1.5,

legend = FALSE)

se <- seq(0,0.6, length =100)
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# se

lines(coef(Egger_rel_upper_rma$fit )[1] +

coef(Egger_rel_upper_rma$fit )[2]*se , se)

# Sampling variance

lines(coef(Egger_rel_upper_rma_va$fit )[1] +

coef(Egger_rel_upper_rma_va$fit )[2]*se^2, se , lwd=2, lty="dotted")

legend("topright", inset =.02, lty=c("solid","dotted"),

lwd=2, cex=0.9, bg="white",

legend=c("Standard Errors as Predictor",

"Sampling Variances as Predictor"))

dev.off()

# Trim and fill (and contour enhanced Funel plot )

(rel_upper_trim_fill <- trimfill(rel_upper_rma))

pdf(paste(image_path , "Rel_Upper_Chp2\\rel_upper_TrimFill.pdf", sep="\\"),

width = 12, height = 8)

funnel(rel_upper_trim_fill ,

level=c(90, 95, 99),

shade=c("white", "gray", "darkgray"),

refline = 0,

addtau2 = TRUE ,

xlab = "Hedges ’ g",

cex = 1.5,

legend = TRUE)

dev.off()

# ##############################################################################

## Analysis 1b: Absolute change upper body muscle strength

# ##############################################################################

# Random effect meta -analysis

(abs_upper_rma <- rma(data = df_upper ,

m1i = Male_upper_strength_absolute_change_mean ,

sd1i = Male_upper_strength_absolute_change_sd ,

n1i = Male_upper_strength_post_number ,

m2i = Female_upper_strength_absolute_change_mean ,

sd2i = Female_upper_strength_absolute_change_sd ,

n2i = Female_upper_strength_post_number ,

weighted = TRUE ,

method = "REML",

measure = "SMD",

slab = paste(Study , Reference , sep = " ")))

# Decrease margins so the full space is used

pdf(paste(image_path , "Abs_Upper_Chp2\\abs_upper_rma.pdf", sep="\\"),

width = 12, height = 8)

par(mar = c(4,4,1,2))

# forest plot
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forest(abs_upper_rma ,

addfit = FALSE ,

addcred = FALSE ,

showweights = TRUE ,

xlim = c(-14, 6),

ylim = c(-1, 9.5),

at = c(-3, 0, 3),

rows = 6.5:0.5 ,

ilab = round(cbind(df_upper$Male_upper_strength_absolute_change_mean ,

df_upper$Male_upper_strength_absolute_change_sd ,

df_upper$Male_upper_strength_post_number ,

df_upper$Female_upper_strength_absolute_change_mean ,

df_upper$Female_upper_strength_absolute_change_sd ,

df_upper$Female_upper_strength_post_number),

digits = 2),

ilab.xpos = c(-10, -9, -8, -6, -5, -4), cex = 0.8,

mlab = "",

psize = 1,

xlab = "Favours females Favours males")

addpoly(abs_upper_rma , row = -0.5, cex = 0.8, mlab = "")

text(6, -0.8, paste("p =", formatC(abs_upper_rma$pval , digits = 4)),

pos = 2, cex = 0.8)

abs_upper_fsn <- fsn(yi = abs_upper_rma$yi , vi = abs_upper_rma$vi ,

type = "Rosenthal", alpha = 0.05)

text(-14, -1, pos = 4, cex = 0.8, paste("Fail -safe N =",

formatC(abs_upper_fsn$fsnum )))

op <- par(cex = 0.8, font = 2)

text(c(-10, -9, -8, -6, -5, -4), 7.25,

c("Mean", "SD", "Sample", "Mean", "SD", "Sample"))

text(c(-9, -5), 7.75, c("Male", "Female"))

text(-14, 7.75, "Study", pos = 4)

text(6, 7.75, "Hedges ’ g [95% CI]", pos = 2)

text(0, 7.75,

"Absolute change in upper body muscle strength")

text(-14, -0.5, pos = 4, cex = 1,

bquote(paste("Random -effects model (Q = ",

.( formatC(abs_upper_rma$QE , digits=2, format="f")),

", df = ",

.(abs_upper_rma$k - abs_upper_rma$p),

", p = ",

.( formatC(abs_upper_rma$QEp , digits=2, format="f")),

"; ", I^2, " = ",

.( formatC(abs_upper_rma$I2 , digits=1, format="f")),

"%)")))

dev.off()

# Assumption checks

abs_upper_inf <- influence(abs_upper_rma)

# Normality of (external) studentized residuals

pdf(paste(image_path , "abs_Upper_Chp2\\abs_upper_Normality.pdf", sep="\\"),

width = 12, height = 8)
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qqnorm(abs_upper_inf$inf$rstudent , cex = 1.5, pch = 21, bg="grey")

qqline(abs_upper_inf$inf$rstudent)

dev.off()

shapiro.test(abs_upper_inf$inf$rstudent)

# "Size" of (external) studentized residuals , lines = 1.96

pdf(paste(image_path , "abs_Upper_Chp2\\abs_upper_extres.pdf", sep="\\"),

width = 12, height = 8)

plot(abs_upper_inf , plotinf = 1, cex = 1.5)

dev.off()

# L1o standardized predicted average (dffits),

# lines = 3 * sqrt(abs_upper_inf$p/(abs_upper_inf$k-abs_upper_inf$p

3 * sqrt(abs_upper_inf$p/(abs_upper_inf$k-abs_upper_inf$p))

pdf(paste(image_path , "abs_Upper_Chp2\\abs_upper_dffits.pdf", sep="\\"),

width = 12, height = 8)

plot(abs_upper_inf , plotinf = 2, cex = 1.5)

dev.off()

# Cook distances , lines = qchisq(p = 0.5, df = (abs_upper_inf$p +1))

qchisq(p = 0.5, df = (abs_upper_inf$p +1))

pdf(paste(image_path , "abs_Upper_Chp2\\abs_upper_Cook.pdf", sep="\\"),

width = 12, height = 8)

plot(abs_upper_inf , plotinf = 3, cex = 1.5)

dev.off()

# Covariance ratio

pdf(paste(image_path , "abs_Upper_Chp2\\abs_upper_Covr.pdf", sep="\\"),

width = 12, height = 8)

plot(abs_upper_inf , plotinf = 4, cex = 1.5)

abline(h = 1, lty = "dashed")

dev.off()

# Tau2 l1o estimation , line = tau estimated from the model with all the studies

pdf(paste(image_path , "abs_Upper_Chp2\\abs_upper_Tau2L1o.pdf", sep="\\"),

width = 12, height = 8)

plot(abs_upper_inf , plotinf = 5, cex = 1.5)

dev.off()

# Dfbetas
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pdf(paste(image_path , "abs_Upper_Chp2\\abs_upper_dfbetas.pdf", sep="\\"),

width = 12, height = 8)

plot(abs_upper_inf , plotdfbs = 1, plotinf=FALSE , cex = 1.5)

abline(h = 1, lty = "dashed")

dev.off()

# Significance removing "Lexell et al."

df_upper %>%

subset(Study != "Lexell et al.") %>%

rma(data = .,

m1i = Male_upper_strength_absolute_change_mean ,

sd1i = Male_upper_strength_absolute_change_sd ,

n1i = Male_upper_strength_post_number ,

m2i = Female_upper_strength_absolute_change_mean ,

sd2i = Female_upper_strength_absolute_change_sd ,

n2i = Female_upper_strength_post_number ,

weighted = TRUE ,

method = "REML",

measure = "SMD",

slab = paste(Study , Reference , sep = " "))

# Alternative methods

# Effect sizes calculations

escalc(measure = "SMD",

data = df_upper ,

m1i = Male_upper_strength_absolute_change_mean ,

sd1i = Male_upper_strength_absolute_change_sd ,

n1i = Male_upper_strength_post_number ,

m2i = Female_upper_strength_absolute_change_mean ,

sd2i = Female_upper_strength_absolute_change_sd ,

n2i = Female_upper_strength_post_number , append = TRUE) -> df_upper

# Meta many

set.seed (23091994)

abs_upper_meta_many <- meta_many(y_i = df_upper$yi ,

si2 = df_upper$vi ,

X = NULL , alpha = Alpha , B = 2000)

# Betas

abs_upper_meta_many$Betas %>%

pivot_longer(everything (), names_to = c("Estimator", ’.value ’),

names_pattern = ’(.*)_(\\w+)’) %>% xtable(digits = 4)

# Betas CI

abs_upper_meta_many$Beta_CIs %>%

pivot_longer(

everything (),

cols_vary = "slowest",

names_to = c("Estimator", ".value"),

names_pattern = ’(.*)_(\\w+)’) %>%

mutate(Width = UL - LL) %>% xtable(digits = 4)
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# Betas p-val

abs_upper_meta_many$Beta_pvals %>%

pivot_longer(everything (),

names_to = "Method",

values_to = "p") %>% xtable(digits = 4)

# Tau2s

abs_upper_meta_many$Tau2s %>%

pivot_longer(everything (), names_to = c("Estimator", ’.value ’),

names_pattern = ’(.*)_(\\w+)’) %>% xtable(digits = 4)

# Tau2s CI

abs_upper_meta_many$Tau2_CIs %>%

pivot_longer(

everything (),

cols_vary = "slowest",

names_to = c("Estimator", ".value"),

names_pattern = ’(.*)_(\\w+)’) %>%

mutate(Width = UL - LL) %>% xtable(digits = 4)

# Publication bias

# Contour enhanced funnel plot

pdf(paste(image_path , "abs_Upper_Chp2\\abs_upper_cefunnel.pdf", sep="\\"),

width = 12, height = 8)

par(mar=c(5,4,1,2))

funnel(abs_upper_rma ,

level=c(90, 95, 99),

shade=c("white", "gray", "darkgray"),

refline = 0,

addtau2 = TRUE ,

xlab = "Hedges ’ g",

cex = 1.5,

legend = TRUE)

dev.off()

# Egger ’s regression test for asymmetry

# se

(Egger_abs_upper_rma <- regtest(abs_upper_rma))

#variance

(Egger_abs_upper_rma_va <- regtest(abs_upper_rma , predictor="vi"))

# Funnel plot with superimposed Egger ’s regression line

pdf(paste(image_path , "abs_Upper_Chp2\\abs_upper_cefunnelreg.pdf", sep="\\"),

width = 12, height = 8)

par(mar=c(5,4,1,2))

funnel(abs_upper_rma ,

level=c(90, 95, 99),

shade=c("white", "gray", "darkgray"),
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refline = 0,

addtau2 = TRUE ,

xlab = "Hedges ’ g",

cex = 1.5,

legend = FALSE)

se <- seq(0,0.6, length =100)

# se

lines(coef(Egger_abs_upper_rma$fit )[1] +

coef(Egger_abs_upper_rma$fit )[2]*se , se)

# Sampling variance

lines(coef(Egger_abs_upper_rma_va$fit )[1] +

coef(Egger_abs_upper_rma_va$fit )[2]*se^2, se , lwd=2, lty="dotted")

legend("topright", inset =.02, lty=c("solid","dotted"),

lwd=2, cex=0.9, bg="white",

legend=c("Standard Errors as Predictor",

"Sampling Variances as Predictor"))

dev.off()

# Trim and fill (and contour enhanced Funel plot )

(abs_upper_trim_fill <- trimfill(abs_upper_rma))

pdf(paste(image_path , "abs_Upper_Chp2\\abs_upper_TrimFill.pdf", sep="\\"),

width = 12, height = 8)

funnel(abs_upper_trim_fill ,

level=c(90, 95, 99),

shade=c("white", "gray", "darkgray"),

refline = 0,

addtau2 = TRUE ,

xlab = "Hedges ’ g",

cex = 1.5,

legend = TRUE)

dev.off()

# ##############################################################################

## Analysis 2a: Relative change lower body muscle strength

# ##############################################################################

# Filter

df %>%

filter(Age == "Older", Lower_strength == 1) -> df_lower

# Studies included

df_lower %>%

summarise(studies_included = length(unique(Study )))

# Participant in each group

df_lower %>%

summarise(lower_males = sum(Male_lower_strength_post_number),
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lower_females = sum(Female_lower_strength_post_number ))

# Random effect meta -analysis

(rel_lower_rma <- rma(data = df_lower ,

m1i = Male_lower_strength_relative_change_mean ,

sd1i = Male_lower_strength_relative_change_sd ,

n1i = Male_lower_strength_post_number ,

m2i = Female_lower_strength_relative_change_mean ,

sd2i = Female_lower_strength_relative_change_sd ,

n2i = Female_lower_strength_post_number ,

weighted = TRUE ,

method = "REML",

measure = "SMD",

slab = paste(Study , Reference , sep = " ")))

# Decrease margins so the full space is used

pdf(paste(image_path , "Rel_Lower_Chp2\\rel_lower_rma.pdf", sep="\\"),

width = 12, height = 8)

par(mar = c(4,4,1,2))

# forest plot

forest(rel_lower_rma ,

addfit = FALSE ,

showweights = TRUE ,

xlim=c(-15, 6.5),

ylim = c(-2, 37.5) ,

at = c(-3, 0, 3),

ilab = round(cbind(df_lower$Male_lower_strength_relative_change_mean ,

df_lower$Male_lower_strength_relative_change_sd ,

df_lower$Male_lower_strength_post_number ,

df_lower$Female_lower_strength_relative_change_mean ,

df_lower$Female_lower_strength_relative_change_sd ,

df_lower$Female_lower_strength_post_number),

digits = 2),

ilab.xpos=c(-10, -9, -8, -6, -5, -4), cex = 0.8,

mlab = "",

rows = 34:0,

psize = 1,

xlab = "Favours females Favours males")

addpoly(rel_lower_rma , row = -1.5, cex = 0.8, mlab = "")

text (6.5, -2.5, paste("p =", formatC(rel_lower_rma$pval , digits = 1)),

pos = 2, cex = 0.8)

rel_lower_fsn <- fsn(yi = rel_lower_rma$yi , vi = rel_lower_rma$vi ,

type = "Rosenthal", alpha = 0.05)

text(-15, -2.5, pos = 4, cex = 0.8, paste("Fail -safe N =",

formatC(rel_lower_fsn$fsnum )))

op <- par(cex = 0.8, font = 2)

text(c(-10, -9, -8, -6, -5, -4), 35,

c("Mean", "SD", "Sample", "Mean", "SD", "Sample"))

text(c(-9, -5), 36, c("Male", "Female"))

text(-15, 36, "Study", pos = 4)
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text (6.5, 36, "Hedges ’ g [95% CI]", pos = 2)

text(0, 36,

"Relative change in lower body muscle strength")

text(-15, -1.5, pos = 4, cex = 1,

bquote(paste("Random -effects model (Q = ",

.( formatC(rel_lower_rma$QE , digits=2, format="f")),

", df = ",

.(rel_lower_rma$k - rel_lower_rma$p),

", p = ",

.( formatC(rel_lower_rma$QEp , digits=2, format="f")),

"; ", I^2, " = ",

.( formatC(rel_lower_rma$I2 , digits=1, format="f")),

"%)")))

dev.off()

# Assumption checks

rel_lower_inf <- influence(rel_lower_rma)

# Normality of (external) studentized residuals

pdf(paste(image_path , "Rel_Lower_Chp2\\rel_lower_Normality.pdf", sep="\\"),

width = 12, height = 8)

qqnorm(rel_lower_inf$inf$rstudent , cex = 1.5, pch = 21, bg="grey")

qqline(rel_lower_inf$inf$rstudent)

dev.off()

shapiro.test(rel_lower_inf$inf$rstudent)

# "Size" of (external) studentized residuals , lines = 1.96

pdf(paste(image_path , "Rel_Lower_Chp2\\rel_lower_extres.pdf", sep="\\"),

width = 12, height = 8)

plot(rel_lower_inf , plotinf = 1, cex = 1.5)

dev.off()

# L1o standardized predicted average (dffits),

# lines = 3 * sqrt(rel_lower_inf$p/(rel_lower_inf$k-rel_lower_inf$p

3 * sqrt(rel_lower_inf$p/(rel_lower_inf$k-rel_lower_inf$p))

pdf(paste(image_path , "Rel_Lower_Chp2\\rel_lower_dffits.pdf", sep="\\"),

width = 12, height = 8)

plot(rel_lower_inf , plotinf = 2, cex = 1.5)

dev.off()

# Cook distances , lines = qchisq(p = 0.5, df = (rel_lower_inf$p +1))

qchisq(p = 0.5, df = (rel_lower_inf$p +1))

pdf(paste(image_path , "Rel_Lower_Chp2\\rel_lower_Cook.pdf", sep="\\"),

width = 12, height = 8)
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plot(rel_lower_inf , plotinf = 3, cex = 1.5)

dev.off()

# Covariance ratio

pdf(paste(image_path , "Rel_Lower_Chp2\\rel_lower_Covr.pdf", sep="\\"),

width = 12, height = 8)

plot(rel_lower_inf , plotinf = 4, cex = 1.5)

abline(h = 1, lty = "dashed")

dev.off()

# Tau2 l1o estimation , line = tau estimated from the model with all the studies

pdf(paste(image_path , "Rel_Lower_Chp2\\rel_lower_Tau2L1o.pdf", sep="\\"),

width = 12, height = 8)

plot(rel_lower_inf , plotinf = 5, cex = 1.5)

dev.off()

# Dfbetas

pdf(paste(image_path , "Rel_Lower_Chp2\\rel_lower_dfbetas.pdf", sep="\\"),

width = 12, height = 8)

plot(rel_lower_inf , plotdfbs = 1, plotinf=FALSE , cex = 1.5)

abline(h = 1, lty = "dashed")

dev.off()

# Check removing "Sood et al." & "Walts et al."

df_lower %>%

subset(Study != "Sood et al." & Study != "Walts et al.") %>%

rma(data = .,

m1i = Male_lower_strength_relative_change_mean ,

sd1i = Male_lower_strength_relative_change_sd ,

n1i = Male_lower_strength_post_number ,

m2i = Female_lower_strength_relative_change_mean ,

sd2i = Female_lower_strength_relative_change_sd ,

n2i = Female_lower_strength_post_number ,

weighted = TRUE ,

method = "REML",

measure = "SMD",

slab = paste(Study , Reference , sep = " "))

# Alternative methods

# Effect sizes calculations

escalc(measure = "SMD",

data = df_lower ,

m1i = Male_lower_strength_relative_change_mean ,

sd1i = Male_lower_strength_relative_change_sd ,

n1i = Male_lower_strength_post_number ,
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m2i = Female_lower_strength_relative_change_mean ,

sd2i = Female_lower_strength_relative_change_sd ,

n2i = Female_lower_strength_post_number , append = TRUE) -> df_lower

# Meta many

set.seed (23091994)

rel_lower_meta_many <- meta_many(y_i = df_lower$yi ,

si2 = df_lower$vi ,

X = NULL , alpha = Alpha , B = 2000)

# Betas

rel_lower_meta_many$Betas %>%

pivot_longer(everything (), names_to = c("Estimator", ’.value ’),

names_pattern = ’(.*)_(\\w+)’) %>% xtable(digits = 4)

# Betas CI

rel_lower_meta_many$Beta_CIs %>%

pivot_longer(

everything (),

cols_vary = "slowest",

names_to = c("Estimator", ".value"),

names_pattern = ’(.*)_(\\w+)’) %>%

slice(-length(Estimator )) %>%

mutate(Width = UL - LL) %>% xtable(digits = 4)

# Betas p-val

rel_lower_meta_many$Beta_pvals %>%

pivot_longer(everything (),

names_to = "Method",

values_to = "p") %>% xtable(digits = 4)

# Tau2s

rel_lower_meta_many$Tau2s %>%

pivot_longer(everything (), names_to = c("Estimator", ’.value ’),

names_pattern = ’(.*)_(\\w+)’) %>% xtable(digits = 4)

# Tau2s CI

rel_lower_meta_many$Tau2_CIs %>%

pivot_longer(

everything (),

cols_vary = "slowest",

names_to = c("Estimator", ".value"),

names_pattern = ’(.*)_(\\w+)’) %>%

mutate(Width = UL - LL) %>% xtable(digits = 4)

# Publication bias

# Contour enhanced funnel plot

pdf(paste(image_path , "Rel_Lower_Chp2\\rel_lower_cefunnel.pdf", sep="\\"),

width = 12, height = 8)

par(mar=c(5,4,1,2))

funnel(rel_lower_rma ,

level=c(90, 95, 99),
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shade=c("white", "gray", "darkgray"),

refline = 0,

addtau2 = TRUE ,

xlab = "Hedges ’ g",

cex = 1.5,

legend = TRUE)

dev.off()

# Egger ’s regression test for asymmetry

# se

(Egger_rel_lower_rma <- regtest(rel_lower_rma))

#variance

(Egger_rel_lower_rma_va <- regtest(rel_lower_rma , predictor="vi"))

# Funnel plot with superimposed Egger ’s regression line

pdf(paste(image_path , "Rel_Lower_Chp2\\rel_lower_cefunnelreg.pdf", sep="\\"),

width = 12, height = 8)

par(mar=c(5,4,1,2))

funnel(rel_lower_rma ,

level=c(90, 95, 99),

shade=c("white", "gray", "darkgray"),

refline = 0,

addtau2 = TRUE ,

xlab = "Hedges ’ g",

cex = 1.5,

legend = FALSE)

se <- seq(0,0.6, length =100)

# se

lines(coef(Egger_rel_lower_rma$fit )[1] +

coef(Egger_rel_lower_rma$fit )[2]*se , se)

# Sampling variance

lines(coef(Egger_rel_lower_rma_va$fit )[1] +

coef(Egger_rel_lower_rma_va$fit )[2]*se^2, se , lwd=2, lty="dotted")

legend("topright", inset =.02, lty=c("solid","dotted"),

lwd=2, cex=0.9, bg="white",

legend=c("Standard Errors as Predictor",

"Sampling Variances as Predictor"))

dev.off()

# Trim and fill (and contour enhanced Funel plot )

(rel_lower_trim_fill <- trimfill(rel_lower_rma))

pdf(paste(image_path , "Rel_Lower_Chp2\\rel_lower_TrimFill.pdf", sep="\\"),

width = 12, height = 8)

funnel(rel_lower_trim_fill ,
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level=c(90, 95, 99),

shade=c("white", "gray", "darkgray"),

refline = 0,

addtau2 = TRUE ,

xlab = "Hedges ’ g",

cex = 1.5,

legend = TRUE)

dev.off()

# Meta - regression models

# training type

df_lower %>% group_by(training) %>% summarise(n())

df_lower %>%

ggplot(aes(x = training , y = yi)) +

geom_boxplot(alpha = 0.80, outlier.shape = NA) +

geom_point(aes(size = (1/vi)/sum(1/vi), fill = training),

shape = 21, position = position_jitterdodge ()) +

xlab("Training type") +

ylab("SMD") +

labs(fill = "Training type", size = "CE weights")

ggsave(paste(image_path , "Rel_Lower_Metareg_Chp2\\rel_lower_exp_training.pdf",

sep="\\"), dpi = 600)

# Study duration

df_lower %>%

ggplot(aes(x = duration , y = yi , col=training )) +

geom_point(aes(size = (1/vi)/sum(1/vi))) +

labs(col = "Training type", size = "CE weights")

ggsave(paste(image_path , "Rel_Lower_Metareg_Chp2\\rel_lower_exp_duration.pdf",

sep="\\"), dpi = 600)

# Weekly Volume

df_lower %>%

ggplot(aes(x = metareg_weekly_repetitions , y = yi , col=training )) +

geom_point(aes(size = (1/vi)/sum(1/vi))) +

labs(col = "Training type", size = "CE weights")

ggsave(paste(image_path , "Rel_Lower_Metareg_Chp2\\rel_lower_exp_volume.pdf",

sep="\\"), dpi = 600)

# Intensity

df_lower %>%

ggplot(aes(x = metareg_intensity , y = yi , col=training )) +

geom_point(aes(size = (1/vi)/sum(1/vi))) +

labs(col = "Training type", size = "CE weights")

ggsave(paste(image_path , "Rel_Lower_Metareg_Chp2\\rel_lower_exp_intensity.pdf",

sep="\\"), dpi = 600)
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# Frequency

df_lower %>%

ggplot(aes(x = metareg_frequency , y = yi , col=training )) +

geom_point(aes(size = (1/vi)/sum(1/vi))) +

labs(col = "Training type", size = "CE weights")

ggsave(paste(image_path , "Rel_Lower_Metareg_Chp2\\rel_lower_exp_frequency.pdf",

sep="\\"), dpi = 600)

# N_exercise

df_lower %>%

ggplot(aes(x = metareg_exercises , y = yi , col=training )) +

geom_point(aes(size = (1/vi)/sum(1/vi))) +

labs(col = "Training type", size = "CE weights")

ggsave(paste(image_path , "Rel_Lower_Metareg_Chp2\\rel_lower_exp_exercise.pdf",

sep="\\"), dpi = 600)

# Sets (per exercise)

df_lower %>%

ggplot(aes(x = metareg_sets , y = yi , col=training )) +

geom_point(aes(size = (1/vi)/sum(1/vi))) +

labs(col = "Training type", size = "CE weights")

ggsave(paste(image_path , "Rel_Lower_Metareg_Chp2\\rel_lower_exp_sets.pdf",

sep="\\"), dpi = 600)

# Metaregression Model

(rel_lower_metareg_1 <- rma(data = df_lower ,

mods = ~ training * metareg_weekly_repetitions +

duration + metareg_intensity + metareg_frequency ,

m1i = Male_lower_strength_relative_change_mean ,

sd1i = Male_lower_strength_relative_change_sd ,

n1i = Male_lower_strength_post_number ,

m2i = Female_lower_strength_relative_change_mean ,

sd2i = Female_lower_strength_relative_change_sd ,

n2i = Female_lower_strength_post_number ,

weighted = TRUE ,

method = "REML",

measure = "SMD"))

(rel_lower_metareg_2 <- update(rel_lower_metareg_1,

~ . - training:metareg_weekly_repetitions ))

(rel_lower_metareg_3 <- update(rel_lower_metareg_2, ~ . - training ))

(rel_lower_metareg_4 <- update(rel_lower_metareg_3, ~ . - metareg_intensity ))

(rel_lower_metareg_5 <- update(rel_lower_metareg_4, ~ . - metareg_frequency ))

(rel_lower_metareg_6 <- update(rel_lower_metareg_5, ~ . - duration ))

# Plot

pdf(paste(image_path , "Rel_Lower_Metareg_Chp2\\rel_lower_metareg.pdf",

sep="\\"),

width = 12, height = 8)
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regplot(rel_lower_metareg_6, xlab="Weekly repetitions")

dev.off()

# Metareg Assumption Check

rel_lower_metareg_inf <- influence(rel_lower_metareg_4)

# Normality of (external) studentized residuals

pdf(paste(image_path ,

"Rel_Lower_Metareg_Chp2\\rel_lower_metareg_Normality.pdf",

sep="\\"),

width = 12, height = 8)

qqnorm(rel_lower_metareg_inf$inf$rstudent , cex = 1.5, pch = 21, bg="grey")

qqline(rel_lower_metareg_inf$inf$rstudent)

dev.off()

shapiro.test(rel_lower_inf$inf$rstudent)

# "Size" of (external) studentized residuals , lines = 1.96

pdf(paste(image_path , "Rel_Lower_Metareg_Chp2\\rel_lower_metareg_extres.pdf",

sep="\\"),

width = 12, height = 8)

plot(rel_lower_metareg_inf , plotinf = 1, cex = 1.5)

dev.off()

# L1o standardized predicted average (dffits),

# lines = 3 * sqrt(rel_lower_metareg_inf$p/

# (rel_lower_metareg_inf$k-rel_lower_metareg_inf$p

3 * sqrt(rel_lower_metareg_inf$p/

(rel_lower_metareg_inf$k-rel_lower_metareg_inf$p))

pdf(paste(image_path , "Rel_Lower_Metareg_Chp2\\rel_lower_metareg_dffits.pdf",

sep="\\"),

width = 12, height = 8)

plot(rel_lower_metareg_inf , plotinf = 2, cex = 1.5)

dev.off()

# Cook distances , lines = qchisq(p = 0.5, df = (rel_lower_metareg_inf$p +1))

qchisq(p = 0.5, df = (rel_lower_metareg_inf$p +1))

pdf(paste(image_path , "Rel_Lower_Metareg_Chp2\\rel_lower_metareg_Cook.pdf",

sep="\\"),

width = 12, height = 8)

plot(rel_lower_metareg_inf , plotinf = 3, cex = 1.5)

dev.off()

# Covariance ratio
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pdf(paste(image_path , "Rel_Lower_Metareg_Chp2\\rel_lower_metareg_Covr.pdf",

sep="\\"),

width = 12, height = 8)

plot(rel_lower_metareg_inf , plotinf = 4, cex = 1.5)

abline(h = 1, lty = "dashed")

dev.off()

# Tau2 l1o estimation , line = tau estimated from the model with all the studies

pdf(paste(image_path , "Rel_Lower_Metareg_Chp2\\rel_lower_metareg_Tau2L1o.pdf",

sep="\\"),

width = 12, height = 8)

plot(rel_lower_metareg_inf , plotinf = 5, cex = 1.5)

dev.off()

# Dfbetas

pdf(paste(image_path , "Rel_Lower_Metareg_Chp2\\rel_lower_metareg_dfbetas.pdf",

sep="\\"),

width = 12, height = 8)

plot(rel_lower_metareg_inf , plotdfbs = 1:2, plotinf=FALSE , cex = 1.5)

dev.off()

# Identification of the outliers

df_lower$Study[c(12, 23, 35)]

# Check removing "Sood et al." & "Walts et al."

df_lower %>%

subset(!(Study %in% df_lower$Study[c(12, 23, 35)])) %>%

rma(data = .,

mods = ~ metareg_weekly_repetitions ,

m1i = Male_lower_strength_relative_change_mean ,

sd1i = Male_lower_strength_relative_change_sd ,

n1i = Male_lower_strength_post_number ,

m2i = Female_lower_strength_relative_change_mean ,

sd2i = Female_lower_strength_relative_change_sd ,

n2i = Female_lower_strength_post_number ,

weighted = TRUE ,

method = "REML",

measure = "SMD",

slab = paste(Study , Reference , sep = " "))

# Meta many metareg

Cov_matrix <- model.matrix(yi ~ metareg_weekly_repetitions ,

data = df_lower)

Cov_matrix <- Cov_matrix[, -1] #removing intercept for meta_many

set.seed (23091994)

# Attensione intercetta
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rel_lower_metareg_meta_many <- meta_many(y_i = df_lower$yi ,

si2 = df_lower$vi ,

X = Cov_matrix ,

alpha = Alpha , B = 2000)

# Betas

rel_lower_metareg_meta_many$Betas %>%

mutate(Var_names = row.names (.)) %>%

select(c(ncol(.),

1:( ncol (.) -1))) %>%

pivot_longer(

-Var_names ,

cols_vary = "slowest",

names_to = c("Estimator", ".value"),

names_pattern = ’(.*)_(\\w+)’) %>%

arrange(Var_names) %>%

xtable(digits = 4)

# Betas CI

rel_lower_metareg_meta_many$Beta_CIs %>%

mutate(Var_names = row.names (.)) %>%

select(c(ncol(.),

1:( ncol (.) -1))) %>%

pivot_longer(

-Var_names ,

cols_vary = "slowest",

names_to = c("Estimator", ".value"),

names_pattern = ’(.*)_(\\w+)’)%>%

mutate(Width = UL - LL) %>%

arrange(Var_names) %>%

xtable(digits = 4)

# Betas p-val

rel_lower_metareg_meta_many$Beta_pvals %>%

mutate(Var_names = row.names(rel_lower_metareg_meta_many$Beta_CIs)) %>%

select(c(ncol(.),

1:( ncol (.) -1))) %>%

pivot_longer(-Var_names ,

names_to = "Method",

values_to = "p") %>%

pivot_wider(names_from = Var_names , values_from = p) %>%

xtable(digits = 4)

# Tau2s

rel_lower_metareg_meta_many$Tau2s %>%

pivot_longer(everything (), names_to = c("Estimator", ’.value ’),

names_pattern = ’(.*)_(\\w+)’) %>% xtable(digits = 4)

# Tau2s CI

rel_lower_metareg_meta_many$Tau2_CIs %>%

pivot_longer(

everything (),

cols_vary = "slowest",

names_to = c("Estimator", ".value"),
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names_pattern = ’(.*)_(\\w+)’) %>%

mutate(Width = UL - LL) %>% xtable(digits = 4)

# ##############################################################################

## Analysis 2b: Absolute change lower body muscle strength

# ##############################################################################

# Random effect meta -analysis

(abs_lower_rma <- rma(data = df_lower ,

m1i = Male_lower_strength_absolute_change_mean ,

sd1i = Male_lower_strength_absolute_change_sd ,

n1i = Male_lower_strength_post_number ,

m2i = Female_lower_strength_absolute_change_mean ,

sd2i = Female_lower_strength_absolute_change_sd ,

n2i = Female_lower_strength_post_number ,

weighted = TRUE ,

method = "REML",

measure = "SMD",

slab = paste(Study , Reference , sep = " ")))

## forest plot

# Decrease margins so the full space is used

pdf(paste(image_path , "Abs_Lower_Chp2\\abs_lower_rma.pdf", sep="\\"),

width = 12, height = 8)

par(mar = c(4,4,1,2))

forest(abs_lower_rma ,

addfit = FALSE ,

showweights = TRUE ,

xlim=c(-15, 7),

ylim = c(-2, 37.5) ,

at = c(-3, 0, 3),

ilab = round(cbind(df_lower$Male_lower_strength_absolute_change_mean ,

df_lower$Male_lower_strength_absolute_change_sd ,

df_lower$Male_lower_strength_post_number ,

df_lower$Female_lower_strength_absolute_change_mean ,

df_lower$Female_lower_strength_absolute_change_sd ,

df_lower$Female_lower_strength_post_number),

digits = 2),

ilab.xpos=c(-10, -9, -8, -6, -5, -4), cex = 0.8,

mlab = "",

rows = 34:0,

psize = 1,

xlab = "Favours females Favours males")

addpoly(abs_lower_rma , row = -1.5, cex = 0.8, mlab = "")

text(7, -2.5, paste("p = 0.000002"), pos = 2, cex = 0.8)

abs_lower_fsn <- fsn(yi = abs_lower_rma$yi , vi = abs_lower_rma$vi ,

type = "Rosenthal", alpha = 0.05)

text(-15, -2.5, pos = 4, cex = 0.8, paste("Fail -safe N =",

formatC(abs_lower_fsn$fsnum )))
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op <- par(cex = 0.8, font = 2)

text(c(-10, -9, -8, -6, -5, -4), 35,

c("Mean", "SD", "Sample", "Mean", "SD", "Sample"))

text(c(-9, -5), 36, c("Male", "Female"))

text(-15, 36, "Study", pos = 4)

text(7, 36, "Hedges ’ g [95% CI]", pos = 2)

text(0, 36,

"Absolute change in lower body muscle strength")

text(-15, -1.5, pos = 4, cex = 1,

bquote(paste("Random -effects model (Q = ",

.( formatC(abs_lower_rma$QE , digits=2, format="f")),

", df = ",

.(abs_lower_rma$k - abs_lower_rma$p),

", p = ",

.( formatC(abs_lower_rma$QEp , digits=2, format="f")),

"; ", I^2, " = ",

.( formatC(abs_lower_rma$I2 , digits=1, format="f")),

"%)")))

dev.off()

# Assumption checks

abs_lower_inf <- influence(abs_lower_rma)

# Normality of (external) studentized residuals

pdf(paste(image_path , "Abs_Lower_Chp2\\abs_lower_Normality.pdf", sep="\\"),

width = 12, height = 8)

qqnorm(abs_lower_inf$inf$rstudent , cex = 1.5, pch = 21, bg="grey")

qqline(abs_lower_inf$inf$rstudent)

dev.off()

shapiro.test(abs_lower_inf$inf$rstudent)

# "Size" of (external) studentized residuals , lines = 1.96

pdf(paste(image_path , "Abs_Lower_Chp2\\abs_lower_extres.pdf", sep="\\"),

width = 12, height = 8)

plot(abs_lower_inf , plotinf = 1, cex = 1.5)

dev.off()

# L1o standardized predicted average (dffits),

# lines = 3 * sqrt(abs_lower_inf$p/(abs_lower_inf$k-abs_lower_inf$p

3 * sqrt(abs_lower_inf$p/(abs_lower_inf$k-abs_lower_inf$p))

pdf(paste(image_path , "Abs_Lower_Chp2\\abs_lower_dffits.pdf", sep="\\"),

width = 12, height = 8)

plot(abs_lower_inf , plotinf = 2, cex = 1.5)

dev.off()

# Cook distances , lines = qchisq(p = 0.5, df = (abs_lower_inf$p +1))

qchisq(p = 0.5, df = (abs_lower_inf$p +1))
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pdf(paste(image_path , "Abs_Lower_Chp2\\abs_lower_Cook.pdf", sep="\\"),

width = 12, height = 8)

plot(abs_lower_inf , plotinf = 3, cex = 1.5)

dev.off()

# Covariance ratio

pdf(paste(image_path , "Abs_Lower_Chp2\\abs_lower_Covr.pdf", sep="\\"),

width = 12, height = 8)

plot(abs_lower_inf , plotinf = 4, cex = 1.5)

abline(h = 1, lty = "dashed")

dev.off()

# Tau2 l1o estimation , line = tau estimated from the model with all the studies

pdf(paste(image_path , "Abs_Lower_Chp2\\abs_lower_Tau2L1o.pdf", sep="\\"),

width = 12, height = 8)

plot(abs_lower_inf , plotinf = 5, cex = 1.5)

dev.off()

# Dfbetas

pdf(paste(image_path , "Abs_Lower_Chp2\\abs_lower_dfbetas.pdf", sep="\\"),

width = 12, height = 8)

plot(abs_lower_inf , plotdfbs = 1, plotinf=FALSE , cex = 1.5)

abline(h = 1, lty = "dashed")

dev.off()

# Significance removing "Holviala et al."

df_lower %>%

subset(Study != "Holviala et al.") %>%

rma(data = .,

m1i = Male_lower_strength_absolute_change_mean ,

sd1i = Male_lower_strength_absolute_change_sd ,

n1i = Male_lower_strength_post_number ,

m2i = Female_lower_strength_absolute_change_mean ,

sd2i = Female_lower_strength_absolute_change_sd ,

n2i = Female_lower_strength_post_number ,

weighted = TRUE ,

method = "REML",

measure = "SMD",

slab = paste(Study , Reference , sep = " "))

# Alternative methods

# Effect sizes calculations

escalc(measure = "SMD",

data = df_lower ,
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m1i = Male_lower_strength_absolute_change_mean ,

sd1i = Male_lower_strength_absolute_change_sd ,

n1i = Male_lower_strength_post_number ,

m2i = Female_lower_strength_absolute_change_mean ,

sd2i = Female_lower_strength_absolute_change_sd ,

n2i = Female_lower_strength_post_number , append = TRUE) -> df_lower

# Meta many

set.seed (23091994)

abs_lower_meta_many <- meta_many(y_i = df_lower$yi ,

si2 = df_lower$vi ,

X = NULL , alpha = Alpha , B = 2000)

# Betas

abs_lower_meta_many$Betas %>%

pivot_longer(everything (), names_to = c("Estimator", ’.value ’),

names_pattern = ’(.*)_(\\w+)’) %>% xtable(digits = 4)

# Betas CI

abs_lower_meta_many$Beta_CIs %>%

pivot_longer(

everything (),

cols_vary = "slowest",

names_to = c("Estimator", ".value"),

names_pattern = ’(.*)_(\\w+)’) %>%

slice(-length(Estimator )) %>%

mutate(Width = UL - LL) %>% xtable(digits = 4)

# Betas p-val

abs_lower_meta_many$Beta_pvals %>%

pivot_longer(everything (),

names_to = "Method",

values_to = "p") %>% xtable(digits = 4)

# Tau2s

abs_lower_meta_many$Tau2s %>%

pivot_longer(everything (), names_to = c("Estimator", ’.value ’),

names_pattern = ’(.*)_(\\w+)’) %>% xtable(digits = 4)

# Tau2s CI

abs_lower_meta_many$Tau2_CIs %>%

pivot_longer(

everything (),

cols_vary = "slowest",

names_to = c("Estimator", ".value"),

names_pattern = ’(.*)_(\\w+)’) %>%

mutate(Width = UL - LL) %>% xtable(digits = 4)

# Publication bias

# Contour enhanced funnel plot

pdf(paste(image_path , "Abs_Lower_Chp2\\abs_lower_cefunnel.pdf", sep="\\"),

width = 12, height = 8)
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par(mar=c(5,4,1,2))

funnel(abs_lower_rma ,

level=c(90, 95, 99),

shade=c("white", "gray", "darkgray"),

refline = 0,

addtau2 = TRUE ,

xlab = "Hedges ’ g",

cex = 1.5,

legend = TRUE)

dev.off()

# Egger ’s regression test for asymmetry

# se

(Egger_abs_lower_rma <- regtest(abs_lower_rma))

#variance

(Egger_abs_lower_rma_va <- regtest(abs_lower_rma , predictor="vi"))

# Funnel plot with superimposed Egger ’s regression line

pdf(paste(image_path , "Abs_Lower_Chp2\\abs_lower_cefunnelreg.pdf", sep="\\"),

width = 12, height = 8)

par(mar=c(5,4,1,2))

funnel(abs_lower_rma ,

level=c(90, 95, 99),

shade=c("white", "gray", "darkgray"),

refline = 0,

addtau2 = TRUE ,

xlab = "Hedges ’ g",

cex = 1.5,

legend = FALSE)

se <- seq(0,0.6, length =100)

# se

lines(coef(Egger_abs_lower_rma$fit )[1] +

coef(Egger_abs_lower_rma$fit )[2]*se , se)

# Sampling variance

lines(coef(Egger_abs_lower_rma_va$fit )[1] +

coef(Egger_abs_lower_rma_va$fit )[2]*se^2, se , lwd=2, lty="dotted")

legend("topright", inset =.02, lty=c("solid","dotted"),

lwd=2, cex=0.9, bg="white",

legend=c("Standard Errors as Predictor",

"Sampling Variances as Predictor"))

dev.off()

# Trim and fill (and contour enhanced Funel plot )

(abs_lower_trim_fill <- trimfill(abs_lower_rma))

pdf(paste(image_path , "Abs_Lower_Chp2\\abs_lower_TrimFill.pdf", sep="\\"),
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width = 12, height = 8)

funnel(abs_lower_trim_fill ,

level=c(90, 95, 99),

shade=c("white", "gray", "darkgray"),

refline = 0,

addtau2 = TRUE ,

xlab = "Hedges ’ g",

cex = 1.5,

legend = TRUE)

dev.off()

# Meta - regression models

# training type

df_lower %>% group_by(training) %>% summarise(n())

df_lower %>%

ggplot(aes(x = training , y = yi)) +

geom_boxplot(alpha = 0.80, outlier.shape = NA) +

geom_point(aes(size = (1/vi)/sum(1/vi), fill = training),

shape = 21, position = position_jitterdodge ()) +

xlab("Training type") +

ylab("SMD") +

labs(fill = "Training type", size = "CE weights")

ggsave(paste(image_path , "Abs_Lower_Metareg_Chp2\\abs_lower_exp_training.pdf",

sep="\\"), dpi = 600)

# Study duration

df_lower %>%

ggplot(aes(x = duration , y = yi , col=training )) +

geom_point(aes(size = (1/vi)/sum(1/vi))) +

labs(col = "Training type", size = "CE weights")

ggsave(paste(image_path , "Abs_Lower_Metareg_Chp2\\abs_lower_exp_duration.pdf",

sep="\\"), dpi = 600)

# Weekly Volume

df_lower %>%

ggplot(aes(x = metareg_weekly_repetitions , y = yi , col=training )) +

geom_point(aes(size = (1/vi)/sum(1/vi))) +

labs(col = "Training type", size = "CE weights")

ggsave(paste(image_path , "Abs_Lower_Metareg_Chp2\\abs_lower_exp_volume.pdf",

sep="\\"), dpi = 600)

# Intensity

df_lower %>%

ggplot(aes(x = metareg_intensity , y = yi , col=training )) +

geom_point(aes(size = (1/vi)/sum(1/vi))) +

labs(col = "Training type", size = "CE weights")
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ggsave(paste(image_path , "Abs_Lower_Metareg_Chp2\\abs_lower_exp_intensity.pdf",

sep="\\"), dpi = 600)

# Frequency

df_lower %>%

ggplot(aes(x = metareg_frequency , y = yi , col=training )) +

geom_point(aes(size = (1/vi)/sum(1/vi))) +

labs(col = "Training type", size = "CE weights")

ggsave(paste(image_path , "Abs_Lower_Metareg_Chp2\\abs_lower_exp_frequency.pdf",

sep="\\"), dpi = 600)

# N_exercise

df_lower %>%

ggplot(aes(x = metareg_exercises , y = yi , col=training )) +

geom_point(aes(size = (1/vi)/sum(1/vi))) +

labs(col = "Training type", size = "CE weights")

ggsave(paste(image_path , "Abs_Lower_Metareg_Chp2\\abs_lower_exp_exercise.pdf",

sep="\\"), dpi = 600)

# Sets (per exercise)

df_lower %>%

ggplot(aes(x = metareg_sets , y = yi , col=training )) +

geom_point(aes(size = (1/vi)/sum(1/vi))) +

labs(col = "Training type", size = "CE weights")

ggsave(paste(image_path , "Abs_Lower_Metareg_Chp2\\abs_lower_exp_sets.pdf",

sep="\\"), dpi = 600)

# Metaregression Model

(abs_lower_metareg_1 <- rma(data = df_lower ,

mods = ~ training * metareg_weekly_repetitions +

duration + metareg_intensity + metareg_frequency ,

m1i = Male_lower_strength_absolute_change_mean ,

sd1i = Male_lower_strength_absolute_change_sd ,

n1i = Male_lower_strength_post_number ,

m2i = Female_lower_strength_absolute_change_mean ,

sd2i = Female_lower_strength_absolute_change_sd ,

n2i = Female_lower_strength_post_number ,

weighted = TRUE ,

method = "REML",

measure = "SMD"))

(abs_lower_metareg_2 <- update(abs_lower_metareg_1,

~ . - training:metareg_weekly_repetitions ))

(abs_lower_metareg_3 <- update(abs_lower_metareg_2, ~ . - duration ))

(abs_lower_metareg_4 <- update(abs_lower_metareg_3, ~ . - training ))

(abs_lower_metareg_5 <- update(abs_lower_metareg_4, ~ . - metareg_frequency ))

(abs_lower_metareg_6 <- update(abs_lower_metareg_5, ~ . - metareg_intensity ))

# Plot

pdf(paste(image_path , "Abs_Lower_Metareg_Chp2\\abs_lower_metareg.pdf",

sep="\\"),
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width = 12, height = 8)

regplot(abs_lower_metareg_6, xlab="Weekly repetitions")

dev.off()

# Metareg Assumption Check

abs_lower_metareg_inf <- influence(abs_lower_metareg_6)

# Normality of (external) studentized residuals

pdf(paste(image_path , "Abs_Lower_Metareg_Chp2\\abs_lower_metareg_Normality.pdf",

sep="\\"),

width = 12, height = 8)

qqnorm(abs_lower_metareg_inf$inf$rstudent , cex = 1.5, pch = 21, bg="grey")

qqline(abs_lower_metareg_inf$inf$rstudent)

dev.off()

shapiro.test(abs_lower_inf$inf$rstudent)

# "Size" of (external) studentized residuals , lines = 1.96

pdf(paste(image_path , "Abs_Lower_Metareg_Chp2\\abs_lower_metareg_extres.pdf",

sep="\\"),

width = 12, height = 8)

plot(abs_lower_metareg_inf , plotinf = 1, cex = 1.5)

dev.off()

# L1o standardized predicted average (dffits),

# lines = 3 * sqrt(abs_lower_metareg_inf$p/

# (abs_lower_metareg_inf$k-abs_lower_metareg_inf$p

3 * sqrt(abs_lower_metareg_inf$p/

(abs_lower_metareg_inf$k-abs_lower_metareg_inf$p))

pdf(paste(image_path , "Abs_Lower_Metareg_Chp2\\abs_lower_metareg_dffits.pdf",

sep="\\"),

width = 12, height = 8)

plot(abs_lower_metareg_inf , plotinf = 2, cex = 1.5)

dev.off()

# Cook distances , lines = qchisq(p = 0.5, df = (abs_lower_metareg_inf$p +1))

qchisq(p = 0.5, df = (abs_lower_metareg_inf$p +1))

pdf(paste(image_path , "Abs_Lower_Metareg_Chp2\\abs_lower_metareg_Cook.pdf",

sep="\\"),

width = 12, height = 8)

plot(abs_lower_metareg_inf , plotinf = 3, cex = 1.5)

dev.off()
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# Covariance ratio

pdf(paste(image_path , "Abs_Lower_Metareg_Chp2\\abs_lower_metareg_Covr.pdf",

sep="\\"),

width = 12, height = 8)

plot(abs_lower_metareg_inf , plotinf = 4, cex = 1.5)

abline(h = 1, lty = "dashed")

dev.off()

# Tau2 l1o estimation , line = tau estimated from the model with all the studies

pdf(paste(image_path , "Abs_Lower_Metareg_Chp2\\abs_lower_metareg_Tau2L1o.pdf",

sep="\\"),

width = 12, height = 8)

plot(abs_lower_metareg_inf , plotinf = 5, cex = 1.5)

dev.off()

# Dfbetas

pdf(paste(image_path , "Abs_Lower_Metareg_Chp2\\abs_lower_metareg_dfbetas.pdf",

sep="\\"),

width = 12, height = 8)

plot(abs_lower_metareg_inf , plotdfbs = 1:2, plotinf=FALSE , cex = 1.5)

dev.off()

# Identification of the outliers

df_lower$Study[c(12, 23, 35)]

# Check removing "Sood et al." & "Walts et al."

df_lower %>%

subset(!(Study %in% df_lower$Study[c(23)])) %>%

rma(data = .,

mods = ~ metareg_weekly_repetitions ,

m1i = Male_lower_strength_relative_change_mean ,

sd1i = Male_lower_strength_relative_change_sd ,

n1i = Male_lower_strength_post_number ,

m2i = Female_lower_strength_relative_change_mean ,

sd2i = Female_lower_strength_relative_change_sd ,

n2i = Female_lower_strength_post_number ,

weighted = TRUE ,

method = "REML",

measure = "SMD",

slab = paste(Study , Reference , sep = " "))

# Meta many metareg

Cov_matrix <- model.matrix(yi ~ metareg_weekly_repetitions ,

data = df_lower)

Cov_matrix <- Cov_matrix[, -1] #removing intercept for meta_many

set.seed (23091994)
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# Attensione intercetta

abs_lower_metareg_meta_many <- meta_many(y_i = df_lower$yi ,

si2 = df_lower$vi ,

X = Cov_matrix ,

alpha = Alpha , B = 2000)

# Betas

abs_lower_metareg_meta_many$Betas %>%

mutate(Var_names = row.names (.)) %>%

select(c(ncol(.),

1:( ncol (.) -1))) %>%

pivot_longer(

-Var_names ,

cols_vary = "slowest",

names_to = c("Estimator", ".value"),

names_pattern = ’(.*)_(\\w+)’) %>%

arrange(Var_names) %>%

xtable(digits = 5)

# Betas CI

abs_lower_metareg_meta_many$Beta_CIs %>%

mutate(Var_names = row.names (.)) %>%

select(c(ncol(.),

1:( ncol (.) -1))) %>%

pivot_longer(

-Var_names ,

cols_vary = "slowest",

names_to = c("Estimator", ".value"),

names_pattern = ’(.*)_(\\w+)’) %>%

mutate(Width = UL - LL) %>%

arrange(Var_names) %>%

xtable(digits = 6)

# Betas p-val

abs_lower_metareg_meta_many$Beta_pvals %>%

mutate(Var_names = row.names(abs_lower_metareg_meta_many$Beta_CIs)) %>%

select(c(ncol(.),

1:( ncol (.) -1))) %>%

pivot_longer(-Var_names ,

names_to = "Method",

values_to = "p") %>%

pivot_wider(names_from = Var_names , values_from = p) %>%

xtable(digits = 10)

# Tau2s

abs_lower_metareg_meta_many$Tau2s %>%

pivot_longer(everything (), names_to = c("Estimator", ’.value ’),

names_pattern = ’(.*)_(\\w+)’) %>% xtable(digits = 7)

# Tau2s CI

abs_lower_metareg_meta_many$Tau2_CIs %>%

pivot_longer(

everything (),

cols_vary = "slowest",
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names_to = c("Estimator", ".value"),

names_pattern = ’(.*)_(\\w+)’) %>%

mutate(Width = UL - LL) %>% xtable(digits = 4)

# ##############################################################################

## Analysis 3a: Relative change muscle size

# ##############################################################################

# Filter

df %>%

filter(Age == "Older", Muscle_size == 1) -> df_muscle

# Studies included

df_muscle %>%

summarise(studies_included = length(unique(Study )))

# Participant in each group

df_muscle %>%

summarise(muscle_males = sum(Male_muscle_post_number),

muscle_females = sum(Female_muscle_post_number ))

# Random effect meta -analysis

(rel_muscle_rma <- rma(data = df_muscle ,

m1i = Male_muscle_relative_change_mean ,

sd1i = Male_muscle_relative_change_sd ,

n1i = Male_muscle_post_number ,

m2i = Female_muscle_relative_change_mean ,

sd2i = Female_muscle_relative_change_sd ,

n2i = Female_muscle_post_number ,

weighted = TRUE ,

method = "REML",

measure = "SMD",

slab = paste(Study , Reference , sep = " ")))

# Decrease margins so the full space is used

pdf(paste(image_path , "Rel_Muscle_Chp2\\rel_muscle_rma.pdf", sep="\\"),

width = 12, height = 8)

par(mar = c(4,4,1,2))

# forest plot

forest(rel_muscle_rma ,

addfit = FALSE ,

showweights = TRUE ,

xlim=c(-14, 6),

ylim = c(-2, 32.5) ,

at = c(-3, 0, 3),

ilab = cbind(df_muscle$Male_muscle_relative_change_mean ,

df_muscle$Male_muscle_relative_change_sd ,

df_muscle$Male_muscle_post_number ,

df_muscle$Female_muscle_relative_change_mean ,

df_muscle$Female_muscle_relative_change_sd ,

df_muscle$Female_muscle_post_number),

ilab.xpos=c(-10, -9, -8, -6, -5, -4), cex = 0.8,

mlab = "",
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rows = c(29:0) ,

psize = 1,

xlab = "Favours females Favours males")

addpoly(rel_muscle_rma , row = -1.5, cex = 0.8, mlab = "")

text(6, -2.5, paste("p =", formatC(rel_muscle_rma$pval , digits = 4)),

pos = 2, cex = 0.8)

rel_muscle_fsn <- fsn(yi = rel_muscle_rma$yi , vi = rel_muscle_rma$vi ,

type = "Rosenthal", alpha = 0.05)

text(-14, -2.5, pos = 4, cex = 0.8,

paste("Fail -safe N =", formatC(rel_muscle_fsn$fsnum )))

op <- par(cex = 0.8, font = 2)

text(c(-10, -9, -8, -6, -5, -4), 30,

c("Mean", "SD", "Sample", "Mean", "SD", "Sample"))

text(c(-9, -5), 31, c("Male", "Female"))

text(-14, 31, "Study", pos = 4)

text(6, 31, "Hedges ’ g [95% CI]", pos = 2)

text(0, 31,

"Relative change in muscle size")

text(-14, -1.5, pos = 4, cex = 1,

bquote(paste("Random -effects model (Q = ",

.( formatC(rel_muscle_rma$QE , digits=2, format="f")),

", df = ",

.(rel_muscle_rma$k - rel_muscle_rma$p),

", p = ",

.( formatC(rel_muscle_rma$QEp , digits=2, format="f")),

"; ", I^2, " = ",

.( formatC(rel_muscle_rma$I2 , digits=1, format="f")),

"%)")))

dev.off()

# Assumption checks

rel_muscle_inf <- influence(rel_muscle_rma)

# Normality of (external) studentized residuals

pdf(paste(image_path , "Rel_Muscle_Chp2\\rel_muscle_Normality.pdf", sep="\\"),

width = 12, height = 8)

qqnorm(rel_muscle_inf$inf$rstudent , cex = 1.5, pch = 21, bg="grey")

qqline(rel_muscle_inf$inf$rstudent)

dev.off()

shapiro.test(rel_muscle_inf$inf$rstudent)

# "Size" of (external) studentized residuals , lines = 1.96

pdf(paste(image_path , "Rel_Muscle_Chp2\\rel_muscle_extres.pdf", sep="\\"),

width = 12, height = 8)

plot(rel_muscle_inf , plotinf = 1, cex = 1.5)

dev.off()



Appendix 2 155

# L1o standardized predicted average (dffits),

# lines = 3 * sqrt(rel_muscle_inf$p/(rel_muscle_inf$k-rel_muscle_inf$p

3 * sqrt(rel_muscle_inf$p/(rel_muscle_inf$k-rel_muscle_inf$p))

pdf(paste(image_path , "Rel_Muscle_Chp2\\rel_muscle_dffits.pdf", sep="\\"),

width = 12, height = 8)

plot(rel_muscle_inf , plotinf = 2, cex = 1.5)

dev.off()

# Cook distances , lines = qchisq(p = 0.5, df = (rel_muscle_inf$p +1))

qchisq(p = 0.5, df = (rel_muscle_inf$p +1))

pdf(paste(image_path , "Rel_Muscle_Chp2\\rel_muscle_Cook.pdf", sep="\\"),

width = 12, height = 8)

plot(rel_muscle_inf , plotinf = 3, cex = 1.5)

dev.off()

# Covariance ratio

pdf(paste(image_path , "Rel_Muscle_Chp2\\rel_muscle_Covr.pdf", sep="\\"),

width = 12, height = 8)

plot(rel_muscle_inf , plotinf = 4, cex = 1.5)

abline(h = 1, lty = "dashed")

dev.off()

# Tau2 l1o estimation , line = tau estimated from the model with all the studies

pdf(paste(image_path , "Rel_Muscle_Chp2\\rel_muscle_Tau2L1o.pdf", sep="\\"),

width = 12, height = 8)

plot(rel_muscle_inf , plotinf = 5, cex = 1.5)

dev.off()

rel_muscle_inf$inf$slab

# Dfbetas

pdf(paste(image_path , "Rel_Muscle_Chp2\\rel_muscle_dfbetas.pdf", sep="\\"),

width = 12, height = 8)

plot(rel_muscle_inf , plotdfbs = 1, plotinf=FALSE , cex = 1.5)

abline(h = 1, lty = "dashed")

dev.off()

# Alternative methods

# Effect sizes calculations

escalc(measure = "SMD",

data = df_muscle ,
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m1i = Male_muscle_relative_change_mean ,

sd1i = Male_muscle_relative_change_sd ,

n1i = Male_muscle_post_number ,

m2i = Female_muscle_relative_change_mean ,

sd2i = Female_muscle_relative_change_sd ,

n2i = Female_muscle_post_number , append = TRUE) -> df_muscle

# Meta many

set.seed (23091994)

rel_muscle_meta_many <- meta_many(y_i = df_muscle$yi ,

si2 = df_muscle$vi ,

X = NULL , alpha = Alpha , B = 2000)

# Betas

rel_muscle_meta_many$Betas %>%

pivot_longer(everything (), names_to = c("Estimator", ’.value ’),

names_pattern = ’(.*)_(\\w+)’) %>% xtable(digits = 4)

# Betas CI

rel_muscle_meta_many$Beta_CIs %>%

pivot_longer(

everything (),

cols_vary = "slowest",

names_to = c("Estimator", ".value"),

names_pattern = ’(.*)_(\\w+)’) %>%

mutate(Width = UL - LL) %>% xtable(digits = 4)

# Betas p-val

rel_muscle_meta_many$Beta_pvals %>%

pivot_longer(everything (),

names_to = "Method",

values_to = "p") %>% xtable(digits = 4)

# Tau2s

rel_muscle_meta_many$Tau2s %>%

pivot_longer(everything (), names_to = c("Estimator", ’.value ’),

names_pattern = ’(.*)_(\\w+)’) %>% xtable(digits = 4)

# Tau2s CI

rel_muscle_meta_many$Tau2_CIs %>%

pivot_longer(

everything (),

cols_vary = "slowest",

names_to = c("Estimator", ".value"),

names_pattern = ’(.*)_(\\w+)’) %>%

mutate(Width = UL - LL) %>% xtable(digits = 4)

# Publication bias

# Contour enhanced funnel plot

pdf(paste(image_path , "Rel_Muscle_Chp2\\rel_muscle_cefunnel.pdf", sep="\\"),

width = 12, height = 8)

par(mar=c(5,4,1,2))
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funnel(rel_muscle_rma ,

level=c(90, 95, 99),

shade=c("white", "gray", "darkgray"),

refline = 0,

addtau2 = TRUE ,

xlab = "Hedges ’ g",

cex = 1.5,

legend = TRUE)

dev.off()

# Egger ’s regression test for asymmetry

# se

(Egger_rel_muscle_rma <- regtest(rel_muscle_rma))

#variance

(Egger_rel_muscle_rma_va <- regtest(rel_muscle_rma , predictor="vi"))

# Funnel plot with superimposed Egger ’s regression line

pdf(paste(image_path , "Rel_Muscle_Chp2\\rel_muscle_cefunnelreg.pdf", sep="\\"),

width = 12, height = 8)

par(mar=c(5,4,1,2))

funnel(rel_muscle_rma ,

level=c(90, 95, 99),

shade=c("white", "gray", "darkgray"),

refline = 0,

addtau2 = TRUE ,

xlab = "Hedges ’ g",

cex = 1.5,

legend = FALSE)

se <- seq(0,0.6, length =100)

# se

lines(coef(Egger_rel_muscle_rma$fit )[1] +

coef(Egger_rel_muscle_rma$fit )[2]*se , se)

# Sampling variance

lines(coef(Egger_rel_muscle_rma_va$fit )[1] +

coef(Egger_rel_muscle_rma_va$fit )[2]*se^2, se , lwd=2, lty="dotted")

legend("topright", inset =.02, lty=c("solid","dotted"),

lwd=2, cex=0.9, bg="white",

legend=c("Standard Errors as Predictor",

"Sampling Variances as Predictor"))

dev.off()

# Trim and fill (and contour enhanced Funel plot )

(rel_muscle_trim_fill <- trimfill(rel_muscle_rma))

pdf(paste(image_path , "Rel_Muscle_Chp2\\rel_muscle_TrimFill.pdf", sep="\\"),

width = 12, height = 8)
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funnel(rel_muscle_trim_fill ,

level=c(90, 95, 99),

shade=c("white", "gray", "darkgray"),

refline = 0,

addtau2 = TRUE ,

xlab = "Hedges ’ g",

cex = 1.5,

legend = TRUE)

dev.off()

# Meta - regression models

# training type

df_muscle %>% group_by(training) %>% summarise(n())

df_muscle %>%

ggplot(aes(x = training , y = yi)) +

geom_boxplot(alpha = 0.80, outlier.shape = NA) +

geom_point(aes(size = (1/vi)/sum(1/vi), fill = training),

shape = 21, position = position_jitterdodge ()) +

xlab("Training type") +

ylab("SMD") +

labs(fill = "Training type", size = "CE weights")

ggsave(paste(image_path ,

"Rel_Muscle_Metareg_Chp2\\rel_muscle_exp_training.pdf",

sep="\\"), dpi = 600)

# Study duration

df_muscle %>%

ggplot(aes(x = duration , y = yi , col=training )) +

geom_point(aes(size = (1/vi)/sum(1/vi))) +

labs(col = "Training type", size = "CE weights")

ggsave(paste(image_path ,

"Rel_Muscle_Metareg_Chp2\\rel_muscle_exp_duration.pdf",

sep="\\"), dpi = 600)

# Weekly Volume

df_muscle %>%

ggplot(aes(x = metareg_weekly_repetitions , y = yi , col=training )) +

geom_point(aes(size = (1/vi)/sum(1/vi))) +

labs(col = "Training type", size = "CE weights")

ggsave(paste(image_path ,

"Rel_Muscle_Metareg_Chp2\\rel_muscle_exp_volume.pdf",

sep="\\"), dpi = 600)

# Intensity

df_muscle %>%

ggplot(aes(x = metareg_intensity , y = yi , col=training )) +
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geom_point(aes(size = (1/vi)/sum(1/vi))) +

labs(col = "Training type", size = "CE weights")

ggsave(paste(image_path ,

"Rel_Muscle_Metareg_Chp2\\rel_muscle_exp_intensity.pdf",

sep="\\"), dpi = 600)

# Frequency

df_muscle %>%

ggplot(aes(x = metareg_frequency , y = yi , col=training )) +

geom_point(aes(size = (1/vi)/sum(1/vi))) +

labs(col = "Training type", size = "CE weights")

ggsave(paste(image_path ,

"Rel_Muscle_Metareg_Chp2\\rel_muscle_exp_frequency.pdf",

sep="\\"), dpi = 600)

# N_exercise

df_muscle %>%

ggplot(aes(x = metareg_exercises , y = yi , col=training )) +

geom_point(aes(size = (1/vi)/sum(1/vi))) +

labs(col = "Training type", size = "CE weights")

ggsave(paste(image_path ,

"Rel_Muscle_Metareg_Chp2\\rel_muscle_exp_exercise.pdf",

sep="\\"), dpi = 600)

# Sets (per exercise)

df_muscle %>%

ggplot(aes(x = metareg_sets , y = yi , col=training )) +

geom_point(aes(size = (1/vi)/sum(1/vi))) +

labs(col = "Training type", size = "CE weights")

ggsave(paste(image_path , "Rel_Muscle_Metareg_Chp2\\rel_muscle_exp_sets.pdf",

sep="\\"), dpi = 600)

# Metaregression Model

(rel_muscle_metareg_1 <- rma(data = df_muscle ,

mods = ~ training * metareg_weekly_repetitions +

duration + metareg_frequency + metareg_intensity ,

m1i = Male_muscle_relative_change_mean ,

sd1i = Male_muscle_relative_change_sd ,

n1i = Male_muscle_post_number ,

m2i = Female_muscle_relative_change_mean ,

sd2i = Female_muscle_relative_change_sd ,

n2i = Female_muscle_post_number ,

weighted = TRUE ,

method = "REML",

measure = "SMD"))

(rel_muscle_metareg_2 <- update(rel_muscle_metareg_1, ~ . - metareg_intensity ))

(rel_muscle_metareg_3 <- update(rel_muscle_metareg_2, ~ . - metareg_frequency ))

(rel_muscle_metareg_4 <- update(rel_muscle_metareg_3,

~ . - training:metareg_weekly_repetitions ))

(rel_muscle_metareg_5 <- update(rel_muscle_metareg_4, ~ . - training ))
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# Plot duration

pdf(paste(image_path ,

"Rel_Muscle_Metareg_Chp2\\rel_muscle_metareg_duration.pdf",

sep="\\"),

width = 12, height = 8)

regplot(rel_muscle_metareg_5, mod = "duration", xlab="Weekly repetitions")

dev.off()

# Plot duration

pdf(paste(image_path , "Rel_Muscle_Metareg_Chp2\\rel_muscle_metareg_reps.pdf",

sep="\\"),

width = 12, height = 8)

regplot(rel_muscle_metareg_5, mod= "metareg_weekly_repetitions",

xlab="Weekly repetitions")

dev.off()

# Metareg Assumption Check

rel_muscle_metareg_inf <- influence(rel_muscle_metareg_4)

# Normality of (external) studentized residuals

pdf(paste(image_path ,

"Rel_Muscle_Metareg_Chp2\\rel_muscle_metareg_Normality.pdf",

sep="\\"),

width = 12, height = 8)

qqnorm(rel_muscle_metareg_inf$inf$rstudent , cex = 1.5, pch = 21, bg="grey")

qqline(rel_muscle_metareg_inf$inf$rstudent)

dev.off()

shapiro.test(rel_muscle_metareg_inf$inf$rstudent)

# "Size" of (external) studentized residuals , lines = 1.96

pdf(paste(image_path ,

"Rel_Muscle_Metareg_Chp2\\rel_muscle_metareg_extres.pdf",

sep="\\"),

width = 12, height = 8)

plot(rel_muscle_metareg_inf , plotinf = 1, cex = 1.5)

dev.off()

# L1o standardized predicted average (dffits),

# lines = 3 * sqrt(rel_muscle_metareg_inf$p/

# (rel_muscle_metareg_inf$k-rel_muscle_metareg_inf$p

3 * sqrt(rel_muscle_metareg_inf$p/

(rel_muscle_metareg_inf$k-rel_muscle_metareg_inf$p))

pdf(paste(image_path ,
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"Rel_Muscle_Metareg_Chp2\\rel_muscle_metareg_dffits.pdf",

sep="\\"),

width = 12, height = 8)

plot(rel_muscle_metareg_inf , plotinf = 2, cex = 1.5)

dev.off()

# Cook distances , lines = qchisq(p = 0.5, df = (rel_muscle_metareg_inf$p +1))

qchisq(p = 0.5, df = (rel_muscle_metareg_inf$p +1))

pdf(paste(image_path ,

"Rel_Muscle_Metareg_Chp2\\rel_muscle_metareg_Cook.pdf",

sep="\\"),

width = 12, height = 8)

plot(rel_muscle_metareg_inf , plotinf = 3, cex = 1.5)

dev.off()

# Covariance ratio

pdf(paste(image_path ,

"Rel_Muscle_Metareg_Chp2\\rel_muscle_metareg_Covr.pdf",

sep="\\"),

width = 12, height = 8)

plot(rel_muscle_metareg_inf , plotinf = 4, cex = 1.5)

abline(h = 1, lty = "dashed")

dev.off()

# Tau2 l1o estimation , line = tau estimated from the model with all the studies

pdf(paste(image_path ,

"Rel_Muscle_Metareg_Chp2\\rel_muscle_metareg_Tau2L1o.pdf",

sep="\\"),

width = 12, height = 8)

plot(rel_muscle_metareg_inf , plotinf = 5, cex = 1.5)

dev.off()

# Dfbetas

pdf(paste(image_path ,

"Rel_Muscle_Metareg_Chp2\\rel_muscle_metareg_dfbetas.pdf",

sep="\\"),

width = 12, height = 8)

plot(rel_muscle_metareg_inf , plotdfbs = 1:3, plotinf=FALSE , cex = 1.5)

dev.off()

# Identification of the outliers

df_muscle$Study[c(22, 23, 24)]
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# Check removing "Sood et al." & "Walts et al."

df_muscle %>%

subset(!(Study %in% df_muscle$Study[c(22, 23, 24)])) %>%

rma(data = .,

mods = ~ metareg_weekly_repetitions + duration ,

m1i = Male_muscle_relative_change_mean ,

sd1i = Male_muscle_relative_change_sd ,

n1i = Male_muscle_post_number ,

m2i = Female_muscle_relative_change_mean ,

sd2i = Female_muscle_relative_change_sd ,

n2i = Female_muscle_post_number ,

weighted = TRUE ,

method = "REML",

measure = "SMD",

slab = paste(Study , Reference , sep = " "))

df_muscle %>%

subset(!(Study %in% df_muscle$Study[c(22, 23, 24)])) %>%

rma(data = .,

mods = ~ metareg_weekly_repetitions ,

m1i = Male_muscle_relative_change_mean ,

sd1i = Male_muscle_relative_change_sd ,

n1i = Male_muscle_post_number ,

m2i = Female_muscle_relative_change_mean ,

sd2i = Female_muscle_relative_change_sd ,

n2i = Female_muscle_post_number ,

weighted = TRUE ,

method = "REML",

measure = "SMD",

slab = paste(Study , Reference , sep = " "))

# Meta many metareg

Cov_matrix <- model.matrix(yi ~ metareg_weekly_repetitions + duration ,

data = df_muscle)

Cov_matrix <- Cov_matrix[, -1] #removing intercept for meta_many

set.seed (23091994)

# Attensione intercetta

rel_muscle_metareg_meta_many <- meta_many(y_i = df_muscle$yi ,

si2 = df_muscle$vi ,

X = Cov_matrix ,

alpha = Alpha , B = 2000)

# Betas

rel_muscle_metareg_meta_many$Betas %>%

mutate(Var_names = row.names (.)) %>%

select(c(ncol(.),

1:( ncol (.) -1))) %>%

pivot_longer(

-Var_names ,

cols_vary = "slowest",

names_to = c("Estimator", ".value"),
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names_pattern = ’(.*)_(\\w+)’) %>%

arrange(match(Var_names , c("intrcpt",

"duration",

"metareg_weekly_repetitions"))) %>%

xtable(digits = 4)

# Betas CI

rel_muscle_metareg_meta_many$Beta_CIs %>%

mutate(Var_names = row.names (.)) %>%

select(c(ncol(.),

1:( ncol (.) -1))) %>%

pivot_longer(

-Var_names ,

cols_vary = "slowest",

names_to = c("Estimator", ".value"),

names_pattern = ’(.*)_(\\w+)’) %>%

mutate(Width = UL - LL) %>%

arrange(match(Var_names , c("intrcpt",

"duration",

"metareg_weekly_repetitions")))% >%

xtable(digits = 3)

# Betas p-val

rel_muscle_metareg_meta_many$Beta_pvals %>%

mutate(Var_names = row.names(rel_muscle_metareg_meta_many$Beta_CIs)) %>%

select(c(ncol(.),

1:( ncol (.) -1))) %>%

pivot_longer(-Var_names ,

names_to = "Method",

values_to = "p") %>%

pivot_wider(names_from = Var_names , values_from = p) %>%

xtable(digits = 4)

# Tau2s

rel_muscle_metareg_meta_many$Tau2s %>%

pivot_longer(everything (), names_to = c("Estimator", ’.value ’),

names_pattern = ’(.*)_(\\w+)’) %>% xtable(digits = 32)

# Tau2s CI

rel_muscle_metareg_meta_many$Tau2_CIs %>%

pivot_longer(

everything (),

cols_vary = "slowest",

names_to = c("Estimator", ".value"),

names_pattern = ’(.*)_(\\w+)’) %>%

mutate(Width = UL - LL) %>% xtable(digits = 4)

# ##############################################################################

## Analysis 3b: Absolute change muscle size

# ##############################################################################

# Filter

df_muscle %>%

filter(!is.na(Male_muscle_absolute_change_mean)) -> df_muscle_abs
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# Studies included

df_muscle_abs %>%

summarise(studies_included = length(unique(Study )))

# Participant in each group

df_muscle_abs %>%

summarise(muscle_males = sum(Male_muscle_post_number),

muscle_females = sum(Female_muscle_post_number ))

# Random effect meta -analysis

(abs_muscle_rma <- rma(data = df_muscle_abs ,

m1i = Male_muscle_absolute_change_mean ,

sd1i = Male_muscle_absolute_change_sd ,

n1i = Male_muscle_post_number ,

m2i = Female_muscle_absolute_change_mean ,

sd2i = Female_muscle_absolute_change_sd ,

n2i = Female_muscle_post_number ,

weighted = TRUE ,

method = "REML",

measure = "SMD",

slab = paste(Study , Reference , sep = " ")))

## forest plot

# Decrease margins so the full space is used

pdf(paste(image_path , "Abs_Muscle_Chp2\\abs_muscle_rma.pdf", sep="\\"),

width = 12, height = 8)

par(mar = c(4,4,1,2))

forest(abs_muscle_rma ,

addfit = FALSE ,

showweights = TRUE ,

xlim=c(-14, 6.5),

ylim = c(-2, 30.5) ,

at = c(-3, 0, 3),

ilab = cbind(df_muscle_abs$Male_muscle_absolute_change_mean ,

df_muscle_abs$Male_muscle_absolute_change_sd ,

df_muscle_abs$Male_muscle_post_number ,

df_muscle_abs$Female_muscle_absolute_change_mean ,

df_muscle_abs$Female_muscle_absolute_change_sd ,

df_muscle_abs$Female_muscle_post_number),

ilab.xpos=c(-10, -9, -8, -6, -5, -4), cex = 0.8,

mlab = "",

rows = c(27:0) ,

psize = 1,

xlab = "Favours females Favours males")

addpoly(abs_muscle_rma , row = -1.5, cex = 0.8, mlab = "")

text (6.5, -2.5, paste("p = 0.00007"), pos = 2, cex = 0.8)

abs_muscle_fsn <- fsn(yi = abs_muscle_rma$yi ,

vi = abs_muscle_rma$vi ,
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type = "Rosenthal", alpha = 0.05)

text(-14, -2.5, pos = 4, cex = 0.8,

paste("Fail -safe N =", formatC(abs_muscle_fsn$fsnum )))

op <- par(cex = 0.8, font = 2)

text(c(-10, -9, -8, -6, -5, -4), 28,

c("Mean", "SD", "Sample", "Mean", "SD", "Sample"))

text(c(-9, -5), 29, c("Male", "Female"))

text(-14, 29, "Study", pos = 4)

text (6.5, 29, "Hedges ’ g [95% CI]", pos = 2)

text(0, 29, "Absolute change in muscle size")

text(-14, -1.5, pos = 4, cex = 1,

bquote(paste("Random -effects model (Q = ",

.( formatC(abs_muscle_rma$QE , digits=2, format="f")),

", df = ",

.(abs_muscle_rma$k - abs_muscle_rma$p),

", p = ",

.( formatC(abs_muscle_rma$QEp , digits=2, format="f")),

"; ", I^2, " = ",

.( formatC(abs_muscle_rma$I2 , digits=1, format="f")),

"%)")))

dev.off()

# Assumption checks

abs_muscle_inf <- influence(abs_muscle_rma)

# Normality of (external) studentized residuals

pdf(paste(image_path , "Abs_Muscle_Chp2\\abs_muscle_Normality.pdf", sep="\\"),

width = 12, height = 8)

qqnorm(abs_muscle_inf$inf$rstudent , cex = 1.5, pch = 21, bg="grey")

qqline(abs_muscle_inf$inf$rstudent)

dev.off()

shapiro.test(abs_muscle_inf$inf$rstudent)

# "Size" of (external) studentized residuals , lines = 1.96

pdf(paste(image_path , "Abs_Muscle_Chp2\\abs_muscle_extres.pdf", sep="\\"),

width = 12, height = 8)

plot(abs_muscle_inf , plotinf = 1, cex = 1.5)

dev.off()

# L1o standardized predicted average (dffits),

# lines = 3 * sqrt(abs_muscle_inf$p/(abs_muscle_inf$k-abs_muscle_inf$p

3 * sqrt(abs_muscle_inf$p/(abs_muscle_inf$k-abs_muscle_inf$p))

pdf(paste(image_path , "Abs_Muscle_Chp2\\abs_muscle_dffits.pdf", sep="\\"),

width = 12, height = 8)

plot(abs_muscle_inf , plotinf = 2, cex = 1.5)
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dev.off()

# Cook distances , lines = qchisq(p = 0.5, df = (abs_muscle_inf$p +1))

qchisq(p = 0.5, df = (abs_muscle_inf$p +1))

pdf(paste(image_path , "Abs_Muscle_Chp2\\abs_muscle_Cook.pdf", sep="\\"),

width = 12, height = 8)

plot(abs_muscle_inf , plotinf = 3, cex = 1.5)

dev.off()

# Covariance ratio

pdf(paste(image_path , "Abs_Muscle_Chp2\\abs_muscle_Covr.pdf", sep="\\"),

width = 12, height = 8)

plot(abs_muscle_inf , plotinf = 4, cex = 1.5)

abline(h = 1, lty = "dashed")

dev.off()

# Tau2 l1o estimation , line = tau estimated from the model with all the studies

pdf(paste(image_path , "Abs_Muscle_Chp2\\abs_muscle_Tau2L1o.pdf", sep="\\"),

width = 12, height = 8)

plot(abs_muscle_inf , plotinf = 5, cex = 1.5)

dev.off()

# Dfbetas

pdf(paste(image_path , "Abs_Muscle_Chp2\\abs_muscle_dfbetas.pdf", sep="\\"),

width = 12, height = 8)

plot(abs_muscle_inf , plotdfbs = 1, plotinf=FALSE , cex = 1.5)

abline(h = 1, lty = "dashed")

dev.off()

# Significance removing "Holviala et al."

df_muscle_abs %>%

subset(Study != "Holviala et al.") %>%

rma(data = .,

m1i = Male_muscle_absolute_change_mean ,

sd1i = Male_muscle_absolute_change_sd ,

n1i = Male_muscle_post_number ,

m2i = Female_muscle_absolute_change_mean ,

sd2i = Female_muscle_absolute_change_sd ,

n2i = Female_muscle_post_number ,

weighted = TRUE ,

method = "REML",

measure = "SMD",

slab = paste(Study , Reference , sep = " "))

# Alternative methods
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# Effect sizes calculations

escalc(measure = "SMD",

data = df_muscle_abs ,

m1i = Male_muscle_absolute_change_mean ,

sd1i = Male_muscle_absolute_change_sd ,

n1i = Male_muscle_post_number ,

m2i = Female_muscle_absolute_change_mean ,

sd2i = Female_muscle_absolute_change_sd ,

n2i = Female_muscle_post_number , append = TRUE) -> df_muscle_abs

# Meta many

set.seed (23091994)

abs_muscle_meta_many <- meta_many(y_i = df_muscle_abs$yi ,

si2 = df_muscle_abs$vi ,

X = NULL , alpha = Alpha , B = 2000)

# Betas

abs_muscle_meta_many$Betas %>%

pivot_longer(everything (), names_to = c("Estimator", ’.value ’),

names_pattern = ’(.*)_(\\w+)’) %>% xtable(digits = 4)

# Betas CI

abs_muscle_meta_many$Beta_CIs %>%

pivot_longer(

everything (),

cols_vary = "slowest",

names_to = c("Estimator", ".value"),

names_pattern = ’(.*)_(\\w+)’) %>%

mutate(Width = UL - LL) %>% xtable(digits = 4)

# Betas p-val

abs_muscle_meta_many$Beta_pvals %>%

pivot_longer(everything (),

names_to = "Method",

values_to = "p") %>% xtable(digits = 8)

# Tau2s

abs_muscle_meta_many$Tau2s %>%

pivot_longer(everything (), names_to = c("Estimator", ’.value ’),

names_pattern = ’(.*)_(\\w+)’) %>% xtable(digits = 4)

# Tau2s CI

abs_muscle_meta_many$Tau2_CIs %>%

pivot_longer(

everything (),

cols_vary = "slowest",

names_to = c("Estimator", ".value"),

names_pattern = ’(.*)_(\\w+)’) %>%

mutate(Width = UL - LL) %>% xtable(digits = 4)

# Publication bias

# Contour enhanced funnel plot
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pdf(paste(image_path , "Abs_Muscle_Chp2\\abs_muscle_cefunnel.pdf", sep="\\"),

width = 12, height = 8)

par(mar=c(5,4,1,2))

funnel(abs_muscle_rma ,

level=c(90, 95, 99),

shade=c("white", "gray", "darkgray"),

refline = 0,

addtau2 = TRUE ,

xlab = "Hedges ’ g",

cex = 1.5,

legend = TRUE)

dev.off()

# Egger ’s regression test for asymmetry

# se

(Egger_abs_muscle_rma <- regtest(abs_muscle_rma))

#variance

(Egger_abs_muscle_rma_va <- regtest(abs_muscle_rma , predictor="vi"))

# Funnel plot with superimposed Egger ’s regression line

pdf(paste(image_path , "Abs_Muscle_Chp2\\abs_muscle_cefunnelreg.pdf", sep="\\"),

width = 12, height = 8)

par(mar=c(5,4,1,2))

funnel(abs_muscle_rma ,

level=c(90, 95, 99),

shade=c("white", "gray", "darkgray"),

refline = 0,

addtau2 = TRUE ,

xlab = "Hedges ’ g",

cex = 1.5,

legend = FALSE)

se <- seq(0,0.6, length =100)

# se

lines(coef(Egger_abs_muscle_rma$fit )[1] +

coef(Egger_abs_muscle_rma$fit )[2]*se , se)

# Sampling variance

lines(coef(Egger_abs_muscle_rma_va$fit )[1] +

coef(Egger_abs_muscle_rma_va$fit )[2]*se^2, se , lwd=2, lty="dotted")

legend("topright", inset =.02, lty=c("solid","dotted"),

lwd=2, cex=0.9, bg="white",

legend=c("Standard Errors as Predictor",

"Sampling Variances as Predictor"))

dev.off()

# Trim and fill (and contour enhanced Funel plot )
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(abs_muscle_trim_fill <- trimfill(abs_muscle_rma))

pdf(paste(image_path , "Abs_Muscle_Chp2\\abs_muscle_TrimFill.pdf", sep="\\"),

width = 12, height = 8)

funnel(abs_muscle_trim_fill ,

level=c(90, 95, 99),

shade=c("white", "gray", "darkgray"),

refline = 0,

addtau2 = TRUE ,

xlab = "Hedges ’ g",

cex = 1.5,

legend = TRUE)

dev.off()

# Meta - regression models

# training type

df_muscle_abs %>% group_by(training) %>% summarise(n())

df_muscle_abs %>%

ggplot(aes(x = training , y = yi)) +

geom_boxplot(alpha = 0.80, outlier.shape = NA) +

geom_point(aes(size = (1/vi)/sum(1/vi), fill = training),

shape = 21, position = position_jitterdodge ()) +

xlab("Training type") +

ylab("SMD") +

labs(fill = "Training type", size = "CE weights")

ggsave(paste(image_path ,

"Abs_Muscle_Metareg_Chp2\\abs_muscle_exp_training.pdf",

sep="\\"), dpi = 600)

# Study duration

df_muscle_abs %>%

ggplot(aes(x = duration , y = yi , col=training )) +

geom_point(aes(size = (1/vi)/sum(1/vi))) +

labs(col = "Training type", size = "CE weights")

ggsave(paste(image_path ,

"Abs_Muscle_Metareg_Chp2\\abs_muscle_exp_duration.pdf",

sep="\\"), dpi = 600)

# Weekly Volume

df_muscle_abs %>%

ggplot(aes(x = metareg_weekly_repetitions , y = yi , col=training )) +

geom_point(aes(size = (1/vi)/sum(1/vi))) +

labs(col = "Training type", size = "CE weights")

ggsave(paste(image_path ,

"Abs_Muscle_Metareg_Chp2\\abs_muscle_exp_volume.pdf",
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sep="\\"), dpi = 600)

# Intensity

df_muscle_abs %>%

ggplot(aes(x = metareg_intensity , y = yi , col=training )) +

geom_point(aes(size = (1/vi)/sum(1/vi))) +

labs(col = "Training type", size = "CE weights")

ggsave(paste(image_path ,

"Abs_Muscle_Metareg_Chp2\\abs_muscle_exp_intensity.pdf",

sep="\\"), dpi = 600)

# Frequency

df_muscle_abs %>%

ggplot(aes(x = metareg_frequency , y = yi , col=training )) +

geom_point(aes(size = (1/vi)/sum(1/vi))) +

labs(col = "Training type", size = "CE weights")

ggsave(paste(image_path ,

"Abs_Muscle_Metareg_Chp2\\abs_muscle_exp_frequency.pdf",

sep="\\"), dpi = 600)

# N_exercise

df_muscle_abs %>%

ggplot(aes(x = metareg_exercises , y = yi , col=training )) +

geom_point(aes(size = (1/vi)/sum(1/vi))) +

labs(col = "Training type", size = "CE weights")

ggsave(paste(image_path ,

"Abs_Muscle_Metareg_Chp2\\abs_muscle_exp_exercise.pdf",

sep="\\"), dpi = 600)

# Sets (per exercise)

df_muscle_abs %>%

ggplot(aes(x = metareg_sets , y = yi , col=training )) +

geom_point(aes(size = (1/vi)/sum(1/vi))) +

labs(col = "Training type", size = "CE weights")

ggsave(paste(image_path , "Abs_Muscle_Metareg_Chp2\\abs_muscle_exp_sets.pdf",

sep="\\"), dpi = 600)

# Metaregression Model

(abs_muscle_metareg_1 <- rma(data = df_muscle_abs ,

mods = ~ training * metareg_weekly_repetitions +

duration + metareg_frequency + metareg_intensity ,

m1i = Male_muscle_absolute_change_mean ,

sd1i = Male_muscle_absolute_change_sd ,

n1i = Male_muscle_post_number ,

m2i = Female_muscle_absolute_change_mean ,

sd2i = Female_muscle_absolute_change_sd ,

n2i = Female_muscle_post_number ,

weighted = TRUE ,

method = "REML",

measure = "SMD"))
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(abs_muscle_metareg_2 <- update(abs_muscle_metareg_1, ~ . - metareg_intensity ))

(abs_muscle_metareg_3 <- update(abs_muscle_metareg_2, ~ . - metareg_frequency ))

# Presentation of the results

cbind(abs_muscle_metareg_3$beta ,

abs_muscle_metareg_3$se ,

abs_muscle_metareg_3$zval ,

abs_muscle_metareg_3$pval ,

abs_muscle_metareg_3$ci.lb ,

abs_muscle_metareg_3$ci.ub) %>%

t() %>%

xtable(digits = 4)

# Plot

#pdf(paste(image_path , "Abs_Muscle_Metareg_Chp2 \\ abs_muscle_metareg.pdf",

# sep ="\\") ,

# width = 12, height = 8)

#regplot(abs_muscle_metareg_4, xlab =" Weekly repetitions ")

#dev.off ()

# Metareg Assumption Check

abs_muscle_metareg_inf <- influence(abs_muscle_metareg_3)

# Normality of (external) studentized residuals

pdf(paste(image_path ,

"Abs_Muscle_Metareg_Chp2\\abs_muscle_metareg_Normality.pdf",

sep="\\"),

width = 12, height = 8)

qqnorm(abs_muscle_metareg_inf$inf$rstudent , cex = 1.5, pch = 21, bg="grey")

qqline(abs_muscle_metareg_inf$inf$rstudent)

dev.off()

shapiro.test(abs_muscle_metareg_inf$inf$rstudent)

# "Size" of (external) studentized residuals , lines = 1.96

pdf(paste(image_path ,

"Abs_Muscle_Metareg_Chp2\\abs_muscle_metareg_extres.pdf",

sep="\\"),

width = 12, height = 8)

plot(abs_muscle_metareg_inf , plotinf = 1, cex = 1.5)

dev.off()

# L1o standardized predicted average (dffits), lines = 3 * sqrt(abs_muscle_metareg_inf$p/(abs_muscl

3 * sqrt(abs_muscle_metareg_inf$p/

(abs_muscle_metareg_inf$k-abs_muscle_metareg_inf$p))

pdf(paste(image_path ,

"Abs_Muscle_Metareg_Chp2\\abs_muscle_metareg_dffits.pdf",
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sep="\\"),

width = 12, height = 8)

plot(abs_muscle_metareg_inf , plotinf = 2, cex = 1.5)

dev.off()

# Cook distances , lines = qchisq(p = 0.5, df = (abs_muscle_metareg_inf$p +1))

qchisq(p = 0.5, df = (abs_muscle_metareg_inf$p +1))

pdf(paste(image_path ,

"Abs_Muscle_Metareg_Chp2\\abs_muscle_metareg_Cook.pdf",

sep="\\"),

width = 12, height = 8)

plot(abs_muscle_metareg_inf , plotinf = 3, cex = 1.5)

dev.off()

# Covariance ratio

pdf(paste(image_path ,

"Abs_Muscle_Metareg_Chp2\\abs_muscle_metareg_Covr.pdf",

sep="\\"),

width = 12, height = 8)

plot(abs_muscle_metareg_inf , plotinf = 4, cex = 1.5)

abline(h = 1, lty = "dashed")

dev.off()

# Tau2 l1o estimation , line = tau estimated from the model with all the studies

pdf(paste(image_path ,

"Abs_Muscle_Metareg_Chp2\\abs_muscle_metareg_Tau2L1o.pdf",

sep="\\"),

width = 12, height = 8)

plot(abs_muscle_metareg_inf , plotinf = 5, cex = 1.5)

dev.off()

# Dfbetas

pdf(paste(image_path ,

"Abs_Muscle_Metareg_Chp2\\abs_muscle_metareg_dfbetas.pdf",

sep="\\"),

width = 12, height = 8)

plot(abs_muscle_metareg_inf , plotdfbs = 1:5, plotinf=FALSE , cex = 1.5)

dev.off()

# Identification of the outliers

df_muscle_abs$Study[c(9, 20, 22)]

# Check removing the influential studies
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(df_muscle_abs %>%

subset(!(Study %in% df_muscle_abs$Study[c(9, 20, 22)])) %>%

rma(data = .,

mods = ~ training * metareg_weekly_repetitions +

duration ,

m1i = Male_muscle_absolute_change_mean ,

sd1i = Male_muscle_absolute_change_sd ,

n1i = Male_muscle_post_number ,

m2i = Female_muscle_absolute_change_mean ,

sd2i = Female_muscle_absolute_change_sd ,

n2i = Female_muscle_post_number ,

weighted = TRUE ,

method = "REML",

measure = "SMD",

slab = paste(Study , Reference , sep = " ")) -> abs_muscle_metareg_3_noinf)

cbind(abs_muscle_metareg_3_noinf$beta ,

abs_muscle_metareg_3_noinf$se ,

abs_muscle_metareg_3_noinf$zval ,

abs_muscle_metareg_3_noinf$pval ,

abs_muscle_metareg_3_noinf$ci.lb ,

abs_muscle_metareg_3_noinf$ci.ub) %>%

xtable(digits = 4)

# Meta many metareg

Cov_matrix <- model.matrix(yi ~ training * metareg_weekly_repetitions +

duration ,

data = df_muscle_abs)

Cov_matrix <- Cov_matrix[, -c(1, ncol(Cov_matrix ))] #removing intercept

set.seed (23091994)

# Attensione intercetta

abs_muscle_metareg_meta_many <- meta_many(y_i = df_muscle_abs$yi ,

si2 = df_muscle_abs$vi ,

X = Cov_matrix ,

alpha = Alpha , B = 2000)

# Betas

abs_muscle_metareg_meta_many$Betas %>%

mutate(Var_names = row.names (.)) %>%

select(c(ncol(.),

1:( ncol (.) -1))) %>%

pivot_longer(

-Var_names ,

cols_vary = "slowest",

names_to = c("Estimator", ".value"),

names_pattern = ’(.*)_(\\w+)’) %>%

arrange(match(Var_names , c("intrcpt",

"duration",

"trainingLower",

"trainingUpper",

"metareg_weekly_repetitions",

"trainingLower:metareg_weekly_repetitions"))) %>%

xtable(digits = 4)
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# Betas CI

abs_muscle_metareg_meta_many$Beta_CIs %>%

mutate(Var_names = row.names (.)) %>%

select(c(ncol(.),

1:( ncol (.) -1))) %>%

pivot_longer(

-Var_names ,

cols_vary = "slowest",

names_to = c("Estimator", ".value"),

names_pattern = ’(.*)_(\\w+)’) %>%

mutate(Width = UL - LL) %>%

arrange(match(Var_names , c("intrcpt",

"duration",

"trainingLower",

"trainingUpper",

"metareg_weekly_repetitions",

"trainingLower:metareg_weekly_repetitions"))) %>%

xtable(digits = 4)

# Betas p-val

abs_muscle_metareg_meta_many$Beta_pvals %>%

mutate(Var_names = row.names(abs_muscle_metareg_meta_many$Beta_CIs)) %>%

select(c(ncol(.),

1:( ncol (.) -1))) %>%

pivot_longer(-Var_names ,

names_to = "Method",

values_to = "p") %>%

pivot_wider(names_from = Var_names , values_from = p) %>%

select("Method", "intrcpt", "trainingLower", "trainingUpper",

"metareg_weekly_repetitions", "duration",

"trainingLower:metareg_weekly_repetitions") %>%

xtable(digits = 4)

# Tau2s

abs_muscle_metareg_meta_many$Tau2s %>%

pivot_longer(everything (), names_to = c("Estimator", ’.value ’),

names_pattern = ’(.*)_(\\w+)’) %>% xtable(digits = 4)

# Tau2s CI

abs_muscle_metareg_meta_many$Tau2_CIs %>%

pivot_longer(

everything (),

cols_vary = "slowest",

names_to = c("Estimator", ".value"),

names_pattern = ’(.*)_(\\w+)’) %>%

mutate(Width = UL - LL) %>% xtable(digits = 4)
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# ###############################################################################

# List of function and documentation

# ###############################################################################

#’ L_beta_zeta_sigma_i_BG_mod

#’ This function calculates the log - likelihood value following equation 1 in

#’ Bellio , Guolo , 2016.

#’ Arguments:

#’ @param beta: Numeric value representing the parameter beta.

#’ @param zeta: Numeric value representing the parameter zeta.

#’ @param sigma_i: Numeric value representing the parameter sigma_i.

#’ @param y_i: Numeric value representing the observed data y_i.

#’ @param s2_i: Numeric value representing the precision measure s2_i.

#’ @param n1_i: Numeric value representing the sample size of group 1.

#’ @param n2_i: Numeric value representing the sample size of group 2.

#’ @param hat_beta: Numeric value representing the maximum likelihood

#’ estimated of beta.

#’ Returns:

#’ The likelihood value L.

# Function

L_beta_zeta_sigma_i_BG_mod <- function(beta , zeta , sigma_i, y_i, s2_i,

n1_i, n2_i, hat_beta){

# calculation fi_1

f_i = n1_i + n2_i -2

# Reparametrizing

tau2 = zeta^2 + (hat_beta - beta )^2

# Likelihood calculation

l = -0.5 * log(sigma_i^2 + tau2) - 0.5 * (y_i - beta )^2 /

(sigma_i^2 + tau2) -

0.5 * f_i *log (sigma_i^2) - 0.5 * f_i * s2_i / (sigma_i^2)

L = exp(l) / exp(n1_i + n2_i)
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return(L)

}

#’ g_i_beta_zeta_mod

#’ This function calculates the element g_i(\beta , \zeta) of the equation 6 in

#’ Bellio , Guolo , 2016.

#’ Arguments:

#’ @param beta: Numeric value representing the parameter beta.

#’ @param zeta: Numeric value representing the parameter zeta.

#’ @param y_i: Numeric value representing the observed data y_i.

#’ @param s2_i: Numeric value representing the precision measure s2_i.

#’ @param n1_i: Numeric value representing the sample size of group 1.

#’ @param n2_i: Numeric value representing the sample size of group 2.

#’ @param hat_beta: Numeric value representing the maximum likelihood

#’ estimated of beta.

#’ Returns:

#’ A numeric value representing the result of the calculation .

#’ - int_values: A numeric vector of the integrated values.

# Function

g_i_beta_zeta_mod <- function(beta , zeta , y_i, s2_i, n1_i, n2_i, hat_beta){

#F objective for integration

f_obv <- function(beta , zeta , sigma_i, y_i, s2_i,

n1_i, n2_i, hat_beta){

L_beta_zeta_sigma_i_BG_mod(beta , zeta ,

sigma_i, y_i, s2_i, n1_i, n2_i,

hat_beta) * 1/sigma_i

}

#integrate

res <- integrate(f = f_obv ,

lower = 0, upper = Inf ,

beta = beta , zeta = zeta ,

y_i = y_i, s2_i = s2_i,

n1_i = n1_i, n2_i = n2_i,

hat_beta = hat_beta)$value

#Return

return(res)

}

#’ l_int_beta_mod

#’ This function calculate the log likelihood of the equation 6 in

#’ Bellio , Guolo , 2016.

#’ Arguments:

#’ @param beta: Numeric value representing the parameter beta.

#’ @param y_i: Numeric value representing the observed data y_i.

#’ @param s2_i: Numeric value representing the precision measure s2_i.
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#’ @param n1_i: Numeric value representing the sample size of group 1.

#’ @param n2_i: Numeric value representing the sample size of group 2.

#’ @param hat_beta: Numeric value representing the maximum likelihood

#’ estimated of beta.

#’ Returns:

#’ A numeric value representing the result of the integration calculation .

# Function

l_int_beta_mod <- function(beta , y, s2 , n1 , n2 , hat_beta){

f_obv <-function(beta , zeta , y, s2 , n1 , n2 , hat_beta){

# matrix

l = length(y)

mat_tmp = cbind(rep(beta , l),

rep(zeta , l),

y, s2 , n1 , n2 ,

rep(hat_beta , l))

#g calculation

res <- apply(mat_tmp , 1, function(t)

g_i_beta_zeta_mod(beta = t[1], zeta = t[2],

y_i = t[3], s2_i = t[4],

n1_i = t[5], n2_i = t[6],

hat_beta = t[7]))

#prod

#p_g <- prod(res) * 1 #\pi(\ zeta) = 1

p_g <- exp(sum(log(res ))) #exp log sum trick #as.bigz ()

#Return

return(p_g)

}

res <-integrate(f = Vectorize(f_obv , vectorize.args = "zeta"),

lower = 0,

upper = Inf ,

beta = beta ,

y = y, s2 = s2 ,

n1 = n1 , n2= n2 ,

hat_beta = hat_beta)$value

#log lik calculation

res <- log(res) + sum(n1 + n2)

#Return

return(res)

}

#’ r_int_beta

#’

#’ This function calculate the integrated log likelihood ratio statistics
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#’ proposed in of the equation 3 in Bellio , Guolo , 2016. It provides confidence

#’ intervals , the p-value and a integrated log likelihood plot with a red line

#’ corresponding to qnorm (1- alpha/2).

#’

#’ @param beta_zero The hypothesized value of Beta for which the

#’ statistical test is performed.

#’ @param y A numeric vector of observed effect sizes.

#’ @param s2 A numeric vector of observed pecisions .

#’ @param n1 A numeric vector of observed sample sizes in groups 1.

#’ @param n2 A numeric vector of observed sample sizes in groups 2.

#’ @param hat_beta A numeric value representing the ML estimated value of Beta.

#’ @param k_opt A numeric value representing the multiplier for the range

#’ optimization . Defaults to 1.5.

#’ @param alpha The desired level of confidence for the confidence

#’ interval. Defaults to 0.05.

#’ @param plot A logical value indicating whether to plot the integrated

#’ likelihood curve. Defaults to TRUE.

#’ @param print A logical value indicating whether to print the results.

#’ Defaults to TRUE.

#’

#’ @return A list containing the following results:

#’ - r_Int: The estimated r_{Int }(\ beta) statistis

#’ - p: The p-value of the hypothesis test.

#’ - CI_ll: The lower limit of the confidence interval.

#’ - CI_ul: The upper limit of the confidence interval.

#’@print - all the values returned plus beta_bar ,

#’ which is the integrated ML estimate

#Function

r_int_beta_mod <- function(beta_zero , y, s2 ,

n1 , n2 , hat_beta , k_opt = 1.5, alpha = 0.05,

plot=TRUE , print =TRUE){

#range

if(hat_beta > 0){

range_opt <- c(hat_beta - k_opt * hat_beta , hat_beta + k_opt * hat_beta)

} else{

range_opt <- c(hat_beta + k_opt * hat_beta , hat_beta - k_opt * hat_beta)

}

# Optimization

res <- optimize(f = l_int_beta_mod ,

maximum = TRUE ,

interval = range_opt ,

y = y, s2 = s2 ,

n1 = n1 , n2 = n2 ,

hat_beta = hat_beta)

#Param

beta_bar <- res$maximum

llik_int_bbar <- res$objective

llik_int_b0 <- l_int_beta_mod(beta = beta_zero , y = y, s2 = s2 ,

n1 = n1 , n2 = n2 ,

hat_beta = hat_beta)
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#Stat

stat <- sign(beta_bar - beta_zero) * sqrt(2 * (llik_int_bbar - llik_int_b0))

pval <- 2*(1-pnorm(abs(stat )))

# Confidence Interval

zero_to_solve <- function(beta , beta_bar , y, s2 , n1 , n2 , hat_beta , alpha ){

llik_1 <- l_int_beta_mod(beta , y = y, s2 = s2 ,

n1 = n1 , n2 = n2 ,

hat_beta = hat_beta)

llik_2 <- l_int_beta_mod(beta_bar , y = y, s2 = s2 ,

n1 = n1 , n2 = n2 ,

hat_beta = hat_beta)

val <-abs(llik_1 - llik_2 + qnorm(1-alpha/2))

return(val)

}

ll_ci <- optimize(zero_to_solve ,

lower = beta_bar - 5*k_opt ,

upper = beta_bar ,

beta_bar = beta_bar , y = y, s2 =s2 ,

n1 = n1 , n2 =n2 ,

hat_beta = hat_beta , alpha=alpha)

ul_ci <- optimize(zero_to_solve ,

lower = beta_bar ,

upper = beta_bar + 5*k_opt ,

beta_bar = beta_bar , y = y, s2 =s2 ,

n1 = n1 , n2 =n2 ,

hat_beta = hat_beta , alpha=alpha)

#Plot

if(plot){

x <- seq(beta_bar - k_opt , beta_bar + k_opt , by =0.1)

y <- sapply(x, function(t) l_int_beta_mod(t, y = y, s2 = s2 ,

n1 = n1 , n2 = n2 ,

hat_beta = hat_beta))

par(mar = c(5, 5, 4, 6))

plot(x, y, type="l",

xlab = expression(beta),

ylab = expression(paste("l(", beta , ")")),

cex.lab = 1.5)

abline(h = llik_int_bbar - qnorm(1-alpha/2), col="red")

par(mar = c(5, 4, 4, 2))

}

if(print ){

cat("beta_bar = ", beta_bar ,
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", Z = ", stat ,

", p = ", pval ,

", CI:(", ll_ci$minimum ,",",ul_ci$minimum ,")\n")

}

#Return

return(list(r_Int = stat , p = pval ,

CI_ll = ll_ci$minimum , CI_ul = ul_ci$minimum ))

}

#Remove the comment sign at line 256 and 327 to run it.

’

################################################################################

# Example

################################################################################

#Setup

if(require(metafor )==F) install.packages (" metafor ")

if(require(metaLik )==F) install.packages (" metaLik ")

library(metafor)

library(metaLik)

#Data

col_names <- c(" Study",

"n_cocoa", "mean_delta_DBP_cocoa", "sd_delta_DBP_cocoa",

"n_control", "mean_delta_DBP_control", "sd_delta_DBP_control ")

df_cocoa <- matrix(c(1,13,-1.6,1.4,13,0.2,1.6,

2,11,0.9,2.3,10,-0.1,1.9,

3,15,-4.1,4.1,15,-0.6,2.1,

4,20,-6.2,4.2,20,-0.3,3.1,

5,28,-5.0,2.0,13,-1.0,2.0),

ncol = 7,

byrow = TRUE)

colnames(df_cocoa) <- col_names

df_cocoa <- as.data.frame(df_cocoa)

#Effect size calculation (Mean difference)

escalc(data = df_cocoa ,

m1i = mean_delta_DBP_cocoa ,

sd1i = sd_delta_DBP_cocoa ,

n1i = n_cocoa ,

m2i = mean_delta_DBP_control ,

sd2i = sd_delta_DBP_control ,

n2i = n_control ,

measure = "MD",

append = TRUE) -> df_cocoa

#Random effect model (DL)

(fit_rma_cocoa <- rma(data = df_cocoa ,
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yi = yi ,

vi = vi ,

weighted = TRUE ,

method = "REML "))

#Lik based inference

(fit_metalik_cocoa <- metaLik(yi ~ 1, sigma2 = vi , data = df_cocoa ))

#Forest plot

forest(fit_rma_cocoa)

#Integrated likelihood

#Calculation of maximum likelihood estimate for \beta

hat_beta <- rma(data = df_cocoa ,

yi = yi ,

vi = vi ,

weighted = TRUE ,

method = "ML")$beta [1,1]

#Integrated likelihood results

r_int_beta_mod(beta_zero = 0,

y=df_cocoa$yi ,

s2 = df_cocoa$vi ,

n1 = df_cocoa$n_cocoa ,

n2 = df_cocoa$n_control ,

hat_beta = hat_beta ,

k_opt = 3.5,

alpha = 0.05,

plot = TRUE , print = TRUE)

’
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Appendix 4

’

Title: Integrated likelihood analysis

Author: Enrico Roma

Description: This script performs an integrated likelihood analysis on the

the dataset Data_19062020. xlsx. The results are compared to the

restricted maximum likelihood random -effects meta -analysis ,

proposed by the authors in the original paper.

’

# Workspace

rm(list=ls())

setwd("C:\\ Users \\ romae \\ Desktop \\ Analisi_tesi_Statistica")

image_path <- "C:\\ Users \\ romae \\ Desktop \\ Analisi_tesi_Statistica \\ Grafici_tesi"

# Libraries

# install.packages(c(" metafor", "metaLik", "metatest", "esc",

# "dplyr", "ggplot2", "readxl",

# "wrapr", "tidyverse "))

library(esc)

library(metafor)

library(metaLik)

library(metatest)

library(readxl)

library(dplyr)

library(xtable)

library(tidyverse)

# Hand written function

source("Integrated_likelihood_Cocoa_modified.R")

#Overall parameter setting

Alpha <- 0.05 #Sign. level

# Data

df <- read_xlsx("Data_190620. xlsx",

sheet="Data_older",

skip = 0,

col_names=TRUE)
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df <- as.data.frame(df)

round_df <- function(df , digits) {

nums <- vapply(df , is.numeric , FUN.VALUE = logical (1))

df[,nums] <- round(df[,nums], digits = digits)

(df)

}

df <- round_df(df , digits = 2)

# ##############################################################################

## Analysis 1a: Relative change upper body muscle strength

# ##############################################################################

# Filter

df %>%

filter(Age == "Older", Upper_strength == 1) -> df_upper

# Studies included

df_upper %>%

summarise(studies_included = length(unique(Study )))

# Participant in each group

df_upper %>%

summarise(Upper_males = sum(Male_upper_strength_post_number),

Upper_females = sum(Female_upper_strength_post_number ))

# Random effect meta -analysis

escalc(data = df_upper ,

measure = "SMD",

m1i = Male_upper_strength_relative_change_mean ,

sd1i = Male_upper_strength_relative_change_sd ,

n1i = Male_upper_strength_post_number ,

m2i = Female_upper_strength_relative_change_mean ,

sd2i = Female_upper_strength_relative_change_sd ,

n2i = Female_upper_strength_post_number ,

append = TRUE) -> df_upper

(rel_upper_rma <- rma(data = df_upper ,

yi = yi ,

vi = vi ,

weighted = TRUE ,

method = "REML"))

# Integrated likelihood

# Calculation of maximum likelihood estimate for \beta

hat_beta_rel_upper <- rma(data = df_upper ,

yi = yi ,

vi = vi ,

weighted = TRUE ,

method = "ML")$beta [1,1]
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# Integrated likelihood results

pdf(paste(image_path ,

"Integrated_Likelihood_Chp3\\rel_upper_IntLik.pdf", sep="\\"),

width = 10, height = 8)

r_int_beta_mod(beta_zero = 0,

y=df_upper$yi ,

s2 = df_upper$vi ,

n1 = df_upper$Male_upper_strength_post_number ,

n2 = df_upper$Female_upper_strength_post_number ,

hat_beta = hat_beta_rel_upper ,

k_opt = 3.5,

alpha = Alpha ,

plot = TRUE , print = TRUE) -> rel_upper_intlik_res

dev.off()

rel_upper_intlik_res

# ##############################################################################

## Analysis 1b: Absolute change upper body muscle strength

# ##############################################################################

# Random effect meta -analysis

escalc(data = df_upper ,

measure = "SMD",

m1i = Male_upper_strength_absolute_change_mean ,

sd1i = Male_upper_strength_absolute_change_sd ,

n1i = Male_upper_strength_post_number ,

m2i = Female_upper_strength_absolute_change_mean ,

sd2i = Female_upper_strength_absolute_change_sd ,

n2i = Female_upper_strength_post_number ,

append = TRUE) -> df_upper

(abs_upper_rma <- rma(data = df_upper ,

yi = yi ,

vi = vi ,

weighted = TRUE ,

method = "REML"))

# Integrated likelihood

# Calculation of maximum likelihood estimate for \beta

hat_beta_abs_upper <- abs_upper_rma$beta [1,1]

# Integrated likelihood results

pdf(paste(image_path ,

"Integrated_Likelihood_Chp3\\abs_upper_IntLik.pdf", sep="\\"),

width = 10, height = 8)

r_int_beta_mod(beta_zero = 0,

y=df_upper$yi ,

s2 = df_upper$vi ,

n1 = df_upper$Male_upper_strength_post_number ,

n2 = df_upper$Female_upper_strength_post_number ,

hat_beta = hat_beta_abs_upper ,
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k_opt = 3.5,

alpha = Alpha ,

plot = TRUE , print = TRUE) -> abs_upper_intlik_res

dev.off()

abs_upper_intlik_res

# ##############################################################################

## Analysis 2a: Relative change lower body muscle strength

# ##############################################################################

# Filter

df %>%

filter(Age == "Older", Lower_strength == 1) -> df_lower

#df_lower %>%

# slice(c(1:31 , 33, 35: nrow(df_lower ))) -> df_lower

# Studies included

df_lower %>%

summarise(studies_included = length(unique(Study )))

# Participant in each group

df_lower %>%

summarise(Lower_males = sum(Male_lower_strength_post_number),

Lower_females = sum(Female_lower_strength_post_number ))

# Random effect meta -analysis

escalc(data = df_lower ,

measure = "SMD",

m1i = Male_lower_strength_relative_change_mean ,

sd1i = Male_lower_strength_relative_change_sd ,

n1i = Male_lower_strength_post_number ,

m2i = Female_lower_strength_relative_change_mean ,

sd2i = Female_lower_strength_relative_change_sd ,

n2i = Female_lower_strength_post_number ,

append = TRUE) -> df_lower

(rel_lower_rma <- rma(data = df_lower ,

yi = yi ,

vi = vi ,

weighted = TRUE ,

method = "REML"))

# Integrated likelihood

# Calculation of maximum likelihood estimate for \beta

hat_beta_rel_lower <- rel_lower_rma$beta [1,1]

# Integrated likelihood results

pdf(paste(image_path ,

"Integrated_Likelihood_Chp3\\rel_lower_IntLik.pdf", sep="\\"),
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width = 10, height = 8)

r_int_beta_mod(beta_zero = 0,

y=df_lower$yi ,

s2 = df_lower$vi ,

n1 = df_lower$Male_lower_strength_post_number ,

n2 = df_lower$Female_lower_strength_post_number ,

hat_beta = hat_beta_rel_lower ,

k_opt = 3.5,

alpha = Alpha ,

plot = TRUE , print = TRUE) -> rel_lower_intlik_res

dev.off()

rel_lower_intlik_res

# ##############################################################################

## Analysis 2b: Absolute change lower body muscle strength

# ##############################################################################

# Random effect meta -analysis

escalc(data = df_lower ,

measure = "SMD",

m1i = Male_lower_strength_absolute_change_mean ,

sd1i = Male_lower_strength_absolute_change_sd ,

n1i = Male_lower_strength_post_number ,

m2i = Female_lower_strength_absolute_change_mean ,

sd2i = Female_lower_strength_absolute_change_sd ,

n2i = Female_lower_strength_post_number ,

append = TRUE) -> df_lower

(abs_lower_rma <- rma(data = df_lower ,

yi = yi ,

vi = vi ,

weighted = TRUE ,

method = "REML"))

# Integrated likelihood

# Calculation of maximum likelihood estimate for \beta

hat_beta_abs_lower <- abs_lower_rma$beta [1,1]

# Integrated likelihood results

pdf(paste(image_path ,

"Integrated_Likelihood_Chp3\\abs_lower_IntLik.pdf", sep="\\"),

width = 10, height = 8)

r_int_beta_mod(beta_zero = 0,

y=df_lower$yi ,

s2 = df_lower$vi ,

n1 = df_lower$Male_lower_strength_post_number ,

n2 = df_lower$Female_lower_strength_post_number ,

hat_beta = hat_beta_abs_lower ,

k_opt = 3.5,
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alpha = Alpha ,

plot = TRUE , print = TRUE) -> abs_lower_intlik_res

dev.off()

abs_lower_intlik_res

# ##############################################################################

## Analysis 3a: Relative change lower body muscle size

# ##############################################################################

# Filter

df %>%

filter(Age == "Older", Muscle_size == 1) -> df_muscle

# Studies included

df_muscle %>%

summarise(studies_included = length(unique(Study )))

# Participant in each group

df_muscle %>%

summarise(muscle_males = sum(Male_muscle_post_number),

muscle_females = sum(Female_muscle_post_number ))

# Random effect meta -analysis

escalc(data = df_muscle ,

measure = "SMD",

m1i = Male_muscle_relative_change_mean ,

sd1i = Male_muscle_relative_change_sd ,

n1i = Male_muscle_post_number ,

m2i = Female_muscle_relative_change_mean ,

sd2i = Female_muscle_relative_change_sd ,

n2i = Female_muscle_post_number ,

append = TRUE) -> df_muscle

(rel_muscle_rma <- rma(data = df_muscle ,

yi = yi ,

vi = vi ,

weighted = TRUE ,

method = "REML"))

# Integrated likelihood

# Calculation of maximum likelihood estimate for \beta

hat_beta_rel_muscle <- rel_muscle_rma$beta [1,1]

# Integrated likelihood results

pdf(paste(image_path ,

"Integrated_Likelihood_Chp3\\rel_muscle_IntLik.pdf", sep="\\"),

width = 10, height = 8)

r_int_beta_mod(beta_zero = 0,

y=df_muscle$yi ,
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s2 = df_muscle$vi ,

n1 = df_muscle$Male_muscle_post_number ,

n2 = df_muscle$Female_muscle_post_number ,

hat_beta = hat_beta_rel_muscle ,

k_opt = 3.5,

alpha = Alpha ,

plot = TRUE , print = TRUE) -> rel_muscle_intlik_res

dev.off()

rel_muscle_intlik_res

# ##############################################################################

## Analysis 3b: Absolute change muscle body muscle size

# ##############################################################################

# Filter

df_muscle %>%

filter(!is.na(Male_muscle_absolute_change_mean)) -> df_muscle_abs

# Studies included

df_muscle_abs %>%

summarise(studies_included = length(unique(Study )))

# Participant in each group

df_muscle_abs %>%

summarise(muscle_males = sum(Male_muscle_post_number),

muscle_females = sum(Female_muscle_post_number ))

# Random effect meta -analysis

escalc(data = df_muscle_abs ,

measure = "SMD",

m1i = Male_muscle_absolute_change_mean ,

sd1i = Male_muscle_absolute_change_sd ,

n1i = Male_muscle_post_number ,

m2i = Female_muscle_absolute_change_mean ,

sd2i = Female_muscle_absolute_change_sd ,

n2i = Female_muscle_post_number ,

append = TRUE) -> df_muscle_abs

(abs_muscle_rma <- rma(data = df_muscle_abs ,

yi = yi ,

vi = vi ,

weighted = TRUE ,

method = "REML"))

# Integrated likelihood

# Calculation of maximum likelihood estimate for \beta

hat_beta_abs_muscle <- abs_muscle_rma$beta [1,1]

# Integrated likelihood results

pdf(paste(image_path ,
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"Integrated_Likelihood_Chp3\\abs_muscle_IntLik.pdf", sep="\\"),

width = 10, height = 8)

r_int_beta_mod(beta_zero = 0,

y=df_muscle_abs$yi ,

s2 = df_muscle_abs$vi ,

n1 = df_muscle_abs$Male_muscle_post_number ,

n2 = df_muscle_abs$Female_muscle_post_number ,

hat_beta = hat_beta_abs_muscle ,

k_opt = 3.5,

alpha = Alpha ,

plot = TRUE , print = TRUE) -> abs_muscle_intlik_res

abs_muscle_intlik_res

dev.off()
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