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Abstract

Structure from Motion (SfM), the task of recovering 3D scene structure and cam-
era poses from 2D images or video frames, is a prominent topic in 3D Computer
Vision. SfM has applications in various areas such as 3D modeling, augmented
reality, robotics, and autonomous systems. Recent research has made signifi-
cant improvements in the accuracy and the challenges associated with SfM. This
thesis reviews and compares state-of-the-art approaches with a special focus on
”Pixel-Perfect Structure-from-Motion with Featuremetric Refinement” paper. In
our experiment, several videos from the city of Padova were captured using a
bike-mounted camera and processed through the SfM algorithm. The generated
3D reconstructions are refined and re-evaluated after applying the aforementioned
method. Next, an algorithm is developed to register the generated local point clouds
with a global, georeferenced point cloud of the whole city acquired by an airplane
equipped with a high-resolution LiDAR. Qualitative and quantitative experiments
demonstrate promising results in generating accurate 3D reconstruction and consis-
tent alignments between the reconstructed local point clouds and the global point
cloud.
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Chapter 1

Introduction

Structure from Motion is the task of calculating the 3D structure of a scene and the
pose of cameras from a set of 2D images or video frames. It is a fundamental tool in
many 3D Computer Vision applications such as 3D modeling, augmented reality,
Robotics and Autonomous Systems. Several algorithms have been presented in
this area. However, in general, most of them follow the same procedure. The
incremental Structure from Motion algorithm, [9], consists of the following major
steps. For every new image: - Feature detection and matching, i.e. identifying
distinctive features and finding the correspondings in the previous images - Camera
pose estimation using epipolar geometry - 3D point extraction by triangulation -
and finally Bundle adjustment, i.e. optimizing the camera poses and 3D point
positions by minimizing the reprojection error. (See Chapter 3)

Since the algorithm is incremental and iterative, without re-observing previously
seen landmarks the errors increase for each new input image. Moreover, the recon-
struction process may fail and it is no longer possible to record new images, with
results that converge to a completely wrong 3D scene. Therefore, the accuracy and
robustness of each step of the algorithm are crucial.

Some of the key challenges in feature matching, which is also a core task in
many computer vision tasks, include occlusions, repetitive patterns, low-texture
regions, and changes in lighting conditions. Noise and outliers, like moving ob-
jects, also can negatively impact the accuracy of the reconstructed 3D scene and
camera poses. Moreover, SfM algorithms are computationally intensive, making
them challenging to deploy in real-time or online applications where speed is cru-
cial.
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Recent papers have shown great improvement in all these challenges. In this thesis,
some of the best approaches are reviewed and compared. Among these papers,
”Pixel-Perfect Structure-from-Motion with Featuremetric Refinement”, [6], has
shown a prominent performance. Their method can be added as an extra refinement
step to the SfM pipeline. In summary, this paper generates a feature map per image
using Convolutional Neural Networks. Then, the position of the existing keypoints
are adjusted by defining a flow from one point to another through a gradient descent
update and a loss function based on the differences in their feature map values.
Furthermore, in bundle adjustment’s reprojection error, this paper considers the
difference between the feature vectors instead of the typical euclidean distance
between the original 2D data points and the reprojected 3D points (See chapter 3).

In this thesis, we acquired several datasets from a hand-held camera moving in
an urban environment. Our camera is fixed on the head of a vehicle, and sev-
eral videos are captured from the streets of the city center of padova. The frames
of these videos are passed through Structure from Motion pipeline, and then, the
results are refined by [6] paper mentioned above, obtaining very promising 3D re-
constructions. Next, we will develop an algorithm that localizes the reconstructed
point clouds inside a global map of the city. What if the task of localization be-
comes perfectly offline without any usage of GPS or other online technologies? A
large-scale dataset of more than 3 million 3D points has already been acquired via
an airplane equipped with a LiDAR over the city of Padova, covering an area of
1600m by 1000m. After some proper preprocessing, our reconstructed point clouds
are registered within the big city point cloud, i.e. the position of our captured point
cloud is found in the city. A detailed description of the proposed algorithm can be
found in chapter 5.

This thesis is structured as follows:

• In Chapter 2 , the mathematical and geometrical background required for our
work are presented, including camera geometry, epipolar geometry

• In Chapter 3, the algorithm of Structure from Motion is described in detail,
and then, a selection of papers with the best contributions to this field are
reviewed; With particular attention to ”Pixel-Perfect Structure-from-Motion
with Featuremetric Refinement”, [6]

• In Chapter 4, we will use SfM in a real world scenario. We will develop an
algorithm for the task of localization using the generated point clouds

• In Chapter 5, our dataset, metrics, experiment results, and their discussion
are provided
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• Lastly, in Chapter 6, the prons and cons of our method are discussed, and a
few ideas for future improvements are suggested
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Chapter 2

Background

2.1 Pinhole Camera

A pinhole camera consists of a small hole and a plane behind. The light from
the real-world object passes through the hole and forms an inverted and laterally
inverted image on the plane which is at a distance F from the hole. For the sake
of simplicity, it is assumed that there is a virtual screen in front of the hole at the
same distance F. The same image from the real screen is excepted which is upright
if the image falls on this virtual screen. The distance between the camera’s center
and the image plane is known as the focal length. The intersection of the optical
axis of the lens and the image plane is the principal point. These parameters, which
characterize the internal geometry of the camera, are known as intrinsic parameters.

Let f be the focal length, i.e. the distance between the image plane and the hole.
And, principal point (cx,cy) are the coordinates of the optical center in the image
plane. The 2D coordinates of a 3D point on the image plane can be calculated by
similar triangles’ equation:
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xp =
XP f
ZP

, yp =
YP f
ZP

(2.1)

Extrinsic parameters describe how the camera is positioned and oriented in relation
to the real world frame. The translation t and rotation R matrices, and scaling of
the camera are some of these parameters.

a 3D point is projected onto the image plane, by transforming the point from world
coordinate (Xw,Yw,Zw) system to the camera coordinate system using the extrinsic
parameters (Rotation R and Translation t matrices). After having the coordinates
of the 3D point from the center of the camera, i.e. (Xp,Yp,Zp), using the intrinsic
parameters of the camera, the point is projected onto the image plane. This trans-
formation from world frame to the image plane is encapsulated in the projection
matrix.

[︃
xp

yp

]︃
=

[︄
XP f
ZP

YP f
ZP

]︄
⏞ ⏟⏟ ⏞

similar triangle equation

⇒

⎡⎣ XP f
YP f
ZP

⎤⎦=

⎡⎣ f 0 0 0
0 f 0 0
0 0 1 0

⎤⎦
⎡⎢⎢⎣

XP

YP

ZP

1

⎤⎥⎥⎦ (2.2)

Let’s consider Principal Point (uc,vc) in pixels, and (w,h) are the pixel width and
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height in meters, respectively:

αu =
f
w

(2.3)

αv =
f
h

(2.4)

[︃
u
v

]︃
=

[︄
uc +

XPαu
Zp

vc +
YPαv

ZP

]︄
⇒

⎡⎣ XPαu +ZPuc

YPαv +ZPvc

ZP

⎤⎦=

⎡⎣ αu 0 uc 0
0 αv uv 0
0 0 1 0

⎤⎦
⎡⎢⎢⎣

XP

YP

ZP

1

⎤⎥⎥⎦
(2.5)

Let K be a 3×3 matrix that contains the intrinsic parameters:

K =

⎡⎣ αu 0 uc

0 αv vc

0 0 1

⎤⎦ (2.6)

Finally, the point P in real world coordinates system is transformed to the image
plane, u, by:

u = K[R|t]P (2.7)

As can be seen from the equations, the depth (Z) of the real world points have
vanished during the projection. In the next sections, we will see how to recover the
depth.

2.2 Camera Distortion and Calibration

Distortion refers to the deviation between the ideal pinhole camera model and
the actual camera used to capture images. The pinhole camera model assumes that
light rays pass through a single point, or the pinhole, before forming an image on
a flat image plane. However, real-world cameras have imperfect lenses, that don’t
let rays reflect straightly and cause distortions to the image.

There are two kinds of camera distortions:

1. Radial distortion is caused by the curvature of the camera lens. This type of
distortion causes straight lines to appear curved in the image, especially near
the edges of the image.
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2. Tangential distortion occurs when the lens is not aligned perfectly parallel to
the image plane. This causes the image to appear skewed, with some parts
appearing closer or farther from the camera than they should.

Homography: Let there be two images from the same planar scene, e.g. a rect-
angular identity card, but from different viewpoints. The second view can be ob-
tained from the first view by multiplying the first image by a 3x3 matrix called
Homography matrix.

Camera calibration is the process of estimating the intrinsic parameters like
focal length, principal point, and distortion coefficients, as well as the extrinsic
parameters like camera position and orientation for each image. The accuracy
of this step has a significant impact on 3D reconstruction. As it is mentioned in
previous sections, the depth of a pixel has a direct relation with focal length. The
depth can be in meters, while focal length is usually around millimeters. Therefore,
a small error in focal length can cause high misplacement of a 3D point’s position.
A checkerboard is used to take pictures of for calibration since it is a planar object
and it has distinctive features, i.e. checkerboard corners, that are easy to detect.
A set of pictures are taken from different points of view. By using homography,
an initial guess for intrinsic parameters is calculated. Then, the final calibration
parameters are refined by optimizing the reporjection equations for checkerboard
corners.
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Figure 2.1: Stereo Cameras

2.3 Stereo Cameras

Epipolar geometry refers to the geometry of two images of a 3D scene taken by
two cameras. The two cameras are presumed to have a defined relative pose, which
is the position and orientation of one camera in relation to the other, and a known
internal calibration (i.e., focal length, principle point).

Epipolar lines: Epipolar line is the intersection of the image planes with a plane
that passes through the two camera centers and a 3D point in the scene. Any point
in one image must lie on the epipolar line for its equivalent point in the other image.
In figure 2.1, l and l’ are the epipolar lines.

Epipoles: The epipole is the location where the picture planes of the two cameras
are intersected by the baseline, which connects the centers of the two cameras. To
put it another way, each camera perceives the epipole of the other camera as a
projection of the other camera’s center.

Essential Matrix: Let p̃l and p̃r be the vectors from the center of cameras to the
points p and p’ from figure 2.1, meaning that the intrinsic parameters are known.
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Recalling translation (t) and rotation (R) matrices, (t ×Rp̃r) is the cross product
vector which is orthogonal to the epipolar plane. Hence,

p̃l · (t ×Rp̃r) = 0 (2.8)

Essential matrix is a 3x3 matrix that relates two cameras’ poses of two viewpoints.
It encodes, the relative position and orientation of the two cameras in relation to
one another:

E = R[t]× (2.9)

Where [t]× is

[t]× =

⎡⎣ 0 −t3 t2
t3 0 −t1
−t2 t1 0

⎤⎦ (2.10)

By replacing the essential matrix in equation 2.8:

p̃⊤l ×E × p̃r = 0 (2.11)

Having the linear equation above for a set of corresponding points between two
images, the essential matrix can be calculated. The most commonly used algorithm
to find the essential matrix is known as ”Eight-point algorithm”.

In 3D vision problems, once the essential matrix has been calculated, the relative
position and orientation of the two cameras, i.e. the rotation matrix R and transla-
tion vector t, are extracted.

Fundamental Matrix: A 3x3 matrix that contains not only relative camera poses
but also camera intrinsic parameters. By having Essential matrix, K and K’ as
intrinsic camera matrices, the fundamental matrix is defined as follows:

F = K−T ×E ×K′−1 (2.12)

The same as essential matrix, for points p and p’ on image planes:

p×F × p′ = 0 (2.13)

To calculate the fundamental matrix, the linear equation above can be expanded as
follows:

p =
[︁
x y 1

]︁
, F =

⎡⎣ f11 f12 f13
f21 f22 f23
f31 f32 f33

⎤⎦ , p′ =
[︁
x′ y′ 1

]︁
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Figure 2.2: Rectilinear Rig

x′x f11 + x′y f12 + x′ f13 + y′x f21 + y′y f22 + y′ f23 + x f31 + y f32 + f33 = 0

By rewriting the equation above for multiple correspondences, the homogeneous
linear system can be solved using SVD method.

2.4 Two View Geometry

Two-view geometry is the task of finding the relation between two images cap-
tured from the same scene by two cameras with different viewpoints, and detecting
the 3D position of points in the scene. We start by detecting the depth of a pixel
with basic geometry calculus, and then, generalize it to all possible camera settings.

Rectilinear Rig Starting with two cameras with the same intrinsic parameters on
the same baseline, i.e. the planes of two cameras are aligned in one line as shown
in figure 2.2, By using similar triangles equations, the depth of a keypoint can be
calculated:

x′c = f
X
Z

, xc = f
X +B

Z
(2.14)
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d = xc − x′c =
f B
Z

(2.15)

Z =
f B
d

(2.16)

Let d, from the equation above, called the disparity which is the difference in the
coordinates of the pixels in both images pointing to the same 3D point. Therefore,
the only challenge is to find the disparity of each pixel.

For other camera settings , e.g. non-parallel image planes and epipolar lines,
different camera parameters, the fundamental matrix is the key option that can be
used to find the depth of points. A 3D point can be defined as the intersection
of the rays that start from the centers of cameras and cross the corresponding 2D
keypoints in each image plane. In practice, first, the fundamental and the essential
matrices are calculated by finding the accurate feature matches between the two
images. Then, after having the relative pose of cameras, for all pixels, the corre-
sponding pixel from the other image is found along the epipolar lines. The epipolar
lines help to limit the search space for the matching process from all pixels over the
images to only the pixels on epipolar line and its surroundings. By having camera
poses and all matches, 3D points could be obtained by triangulation.
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Chapter 3

Structure from Motion

3.1 Structure from Motion Algorithm

Structure from Motion is the task of calculating the 3D structure of a scene and the
pose of cameras from images captured in multiple views or video frames. In this
thesis, Incremental Structure from Motion, [12], will be explained as it is the base
algorithm for most papers in these criteria.

The algorithm can be viewed as a pipeline that contains the following separate
steps:

1. Feature detection and matching: The first step in SFM is feature detec-
tion and matching, where the algorithm identifies common features or points
in the 2D images or video frames. These features can be edges, corners,
blobs, or other distinctive patterns that can be detected consistently across
the images. The algorithm, then, matches these features between different
input frames. This step is one of the most challenging parts in SfM. Occlu-
sion, illumination changes, perspective transformation, and moving objects

Figure 3.1: An overview of Structure from Motion Revisited, [12] pipeline
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are some of them. However, since this is a core task in many Computer
Vision tasks, there has been tons of research in feature detection and match-
ing, including deep based approaches. SIFT ([7]), SuperPoint ([2]), D2-Net
([3]), R2D2 ([8]) are often used among SfM related papers which will be
described briefly in the next chapter.

2. Geometric Verification: Raw matches are not enough for the scene recon-
struction. Matches in similar repeated patterns, multiple the same objects in
one image, etc, are some issues that may cause wrong poses and 3D points.
So, outliers must be removed from the list of matches. By using the existing
matches and epipolar geometry, camera matrices(i.e. H, F, and E matrices)
are calculated. Then, the rest of the matches are verified by checking the ge-
ometric consistency of the reconstructed 3D points and camera poses. If they
do not result in the same poses, they are filtered out. Having more matches
is good. But, not all of them can be used.

3. Reconstruction Initialization: If the pipeline is considered as an iterative
or sequential process, a starting point is essential. Choosing a good initial
pair of images is so important. At the end of each iteration, the camera pa-
rameters and 3D structure are optimized. Without a good initial estimate,
the optimization process usually doesn’t converge and is stuck in local min-
ima. A good initial pair usually is chosen from the images with the highest
number of matches.

4. Image Registration and Triangulation: After initialization, the algorithm
calculates the camera pose for the new image by methods in section 2.3
and uses triangulation to estimate the 3D position of the matched features
in every new image. Triangulation is the process of finding the intersection
point of two or more vectors that originate from the center of the camera
and pass through the 2D features. The intersection point represents the 3D
position of the feature in the scene.

5. Bundle Adjustment: As the previous processes involve some errors. There
are inconsistencies and misalignments between the estimated camera param-
eters and the triangulated 3D points, and since the algorithm is incremental,
the errors are accumulated for every new image. Bundle adjustment refines
those parameters by minimizing the non-linear reprojection equations. For
each generated 3D point, its 3D coordinates are transformed into the corre-
sponding 2D image coordinates using the estimated camera projection ma-
trix. Then, the difference between the observed 2D projection and the re-
projected 2D coordinates is considered as the error. Levenberg-Marquardt
algorithm is usually used to minimize the error. The optimization problem
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can be high-dimensional, and it may take a long time to converge to a good
solution. Nonetheless, bundle adjustment can significantly improve the ac-
curacy of the reconstructed 3D scene and camera poses.

3.2 Related Works

Structure of Motion is a core task for many other projects. The accuracy and speed
of the algorithm is crucial. For instance, even a minor rotation error of 1 degree
in the camera can lead to significant misalignment of point coordinates in meters,
particularly in open scenes. Also, during our experiment, it is observed that the
pipeline fails in the initialization step for a considerable number of attempts be-
cause of the lack of correct matches. Therefore, over the past few decades, there
have been lots of efforts to improve each part of these algorithms. Here is a review
of the recent best papers in this area:

3.2.1 Researches in Feature Matching

The first step in SfM pipeline is feature matching which is one of the core tasks in
many Computer Vision applications as they are used to identify the corresponding
matches among the input images. Some of the challenges are deformation in dif-
ferent viewpoints, occlusion, illumination changes, moving objects, etc. Here is a
summary of improvements specifically related to SfM algorithm:

Multi-View Optimization of Local Feature Geometry ( [4]) refines the exist-
ing keypoints. It tracks each keypoint in all input images and creates a tentative
matches graph with keypoints as nodes and matches as edges. Each keypoint is
known by its surrounding pixels information. So, a h*w patch is selected around
the feature and a ”d” dimensional descriptor is calculated by a neural network with
Siamese architecture. Then, for each pixel, a dot product similarity is calculated
with every pixel in the other patch (h*w*h*w dimension). After normalization, the
pixel that has the most similarity value with keypoint is supposed to be selected,
and the translation vector (Tu−>v) moves the keypoint to the selected pixel. In the
next stage, since each keypoint could be seen in multiple images, a single incorrect
match or displacement can cause a cascade of errors in the results. Therefore, for
each track of matches, a non-linear equation for minimizing the dot similarity be-
tween the patch and all patches for the same keypoint in other images is optimized.
The idea of this paper is also used in [6] which will be described in detail in the
next chapter.
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Figure 3.2: Paper: Multi-View Optimization of Local Feature Geometry, [4]

Deep Two-View Structure-from-Motion Revisited ( [17]) uses optical flow to
predict dense matches between two frames. They use DICLFlow, explained in [18]
to generate dense matching points between two consecutive frames. Before cal-
culating the essential matrix, noisy matches like moving objects are filtered out.
They assumed that optical flow is more accurate in rich textured areas. So, they
used SIFT method to detect less textured areas in order to mask out the optical flow
there. Then, the essential matrix is calculated using the classic five-point algorithm
with RANSAC, and the dense depth map is computed by performing triangulation.
Before this process, the matching is performed for the second time by constraining
the search space to epipolar lines computed from the relative camera poses. They
filtered out noisy matches twice which means dense matches by optical flow are
too noisy. Higher number of matches is good for obtaining more points in sparse
reconstruction. However, they tend to be noisy. They also, introduced a Scale-
Invariant Depth Module to deal with the up-to-scale relative pose and mismatch
between the scale of the camera poses and the depth map. Up to scale problem
means that while the relative positions of the reconstructed points are correct, their
absolute positions in the real world are not known unless there is additional in-
formation, such as the size of an object in the scene or the distance between two
known points. In order to deal with this problem, in each pair of images, this paper
generates a number of matching candidates with different real world depths with
the same interval per keypoint. And then, a plane-sweep powered network min-
imizes the loss function which is the position displacement of the features in the
flow. This paper is able to find more and better matching points and therefore more
accurate poses and depth maps, especially for textureless and occluded areas.

There is much more research in the feature matching step. [8], [3], and [2] are
supervised deep learning based feature extractors that not only have outperformed
handcrafted methods in terms of accuracy but also, could solve many challenges in
this area like point of view challenges and multi-scale problems. Supervised learn-
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Figure 3.3: Paper: Deep Two-View Structure-from-Motion Revisited, [17]

ing means that the model has been trained based on the keypoints already defined
in the training dataset manually. Their problem is that they have less performance
for the kinds of features other than in the training dataset. Therefore, for every
application, a special dataset must be prepared and the model must be trained, i.e.
the lack of robustness from subject to another. Some of these papers have provided
modules to train the model on your own customized features dataset.
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3.2.2 Researches in Bundle Adjustment

Bundle Adjustment algorithms optimize the camera parameters and the position
of 3D points by minimizing the geometric errors between the projected 3D points
and the corresponding 2D image observations. For every new input image, the
errors are accumulated, and so, it increases exponentially in the subsequent itera-
tions. There are some disadvantages in this technique. Bundle Adjustment requires
solving a large system of non-linear equations, which can be computationally ex-
pensive, especially for large datasets. This can be a significant drawback when it
comes to real-time usage. In the experiment chapter, it will be shown that this is
the most time-consuming part in Structure from Motion pipeline. Moreover, these
non-linear equations have considerably a high number of local minima due to the
noises in matches, and they are sensitive to the initial values. If the initial values
are not accurate, the optimization may fail to converge. Here are some of the best
papers focused on these issues.

BA-Net: Dense Bundle Adjustment Network ( [13]) implemented feature-
metric bundle adjustment that minimizes feature-metric errors instead of geometric
erros between feature pyramids of images obtained by CNNs. As [5] says, there
are two types of BAs:

1. Typical geometric BA with re-projection error(pixel coordinates): Only a
few pixels, i.e. keypoints, are taken into account which comes with keypoints
detection and matching challenges

2. Photometric BA algorithm(all aligned pixel, pixel intensities as error): It has
good accuracy, especially at less textured scenes. However, the disadvan-
tages would be sensitivity to camera exposure, illumination changes, and
outliers such as moving objects. Also, considering all pixels would increase
the computation dramatically.

BA-Net creates a pyramid of features for each image and aligns them. The feature
pyramid is generated by multi-scale hierarchy of CNN(DRM-54, [20]). Then, the
BA equation to minimize would be:

e f
i, j(X) = Fi(π(Ti,d j ·q j))−F1(q j) (3.1)

where F = {Fi|i = 1...Ni} are the feature pyramids of images I = {Ii|i = 1...Ni}.
d j ∈ D = {d j| j = 1...N j} is the depth of a pixel q j at the image I1, and d j.q j

upgrades the pixel q j to its 3D coordinate. The function π projects the points to
image space. Thus, the optimization parameter is X = [T1,T2...TNi ,d1,d2...dN j ].
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For the generation of dense reconstruction, the depth of all pixels in all images
are required. However, if all pixels are considered as independant variables, the
computation of their values is super expensive. This paper, also, uses [14] and [19]
approaches to deal with this issue. A set of arbitrary basis depth maps is created.
Then, the final depth map is generated as a linear combination of these basis depth
maps (”B”):

D = ReLU(wT ∗B) (3.2)

”w” will be optimized in our BA-Layer. Generally, this idea of this solution can be
generalized into problems with a high number of values to calculate.

3.2.3 Other Papers

There are many papers that tackle Structure from Motion problems under Visual
SLAM (visual simultaneous localization and mapping) and odometry subjects.

Deep Patch Visual Odometry [16], utilizes a pair of residual networks to ex-
tract a collection of patches from incoming sequential video frames. One network
extracts matching features while the other extracts context features for each patch.
They proposed a module called ”update operator” to update both poses and patches.
The input to this module is the patch graph containing information of the patch
trajectories, and the output is the updated graph. These inputs are passed through
recurrent neural networks with adding residuals before they are passed to the differ-
entiable bundle adjustment layer. The idea of using a sparse patch representation
and training the networks with an existing patch dataset related to a specific use
case improves efficiency. Their method is capable of running at 2x-5x real-time
frame rates. It is because their main goal is to refine camera poses not the position
of all points.

DROID-SLAM [15] uses neural networks to estimate dense flow fields which
are subsequently used to optimize depth and camera pose. For each new video
frame, DROID-SLAM produces a differentiable Dense Bundle Adjustment and
Gauss-Newton solver to update camera poses and dense per-pixel depth to maxi-
mize their compatibility with the current estimate of optical flow.

20



Figure 3.4: Paper: Pixel-Perfect Structure-from-Motion with Featuremetric Re-
finement, [6]

3.2.4 Pixel-Perfect Structure-from-Motion with Featuremetric Refine-
ment

Among all reviewed papers, [6] has the best performance. The paper proposes two
stages to improve the accuracy of structure-from-motion for 3D reconstruction. In
the first stage, the initial keypoint locations in the 2D images are adjusted prior
to any geometric estimation by optimizing a direct cost over dense feature maps
obtained by Convolutional Neural Network. In the second stage, the bundle ad-
justment equations refine the 3D points and camera poses using a featuremetric
error based on dense features map. The paper produced accurate reconstructions
and scaled well to large scenes with thousands of images. Also, their contribution
could be used as an extra refinement step in the SfM pipeline. So, it can be used
along with other papers’ contributions.

They use the initial idea of [4] that separates the tracks for each keypoint, and
adjusts their locations by optimizing the geometric cost over the input images in
which the keypoint is seen. [4] improved SfM, but has limited accuracy and scal-
ability. To solve that, This paper proposes a feature map for each image using
convolution neural networks. The feature map condenses the dense information
from surrounding pixels into a vector for each pixel. The reason behind this step
is the fact that refining the position of the keypoint is a local operation, not based
solely on the pixel value, and the dense information only needs to be locally accu-
rate and invariant but not globally discriminative. For the first stage, i.e. keypoint
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adjustment refinement, the locations of 2D keypoints belonging to the same track j
is refined by optimizing its featuremetric consistency along tentative matches.

The error between image intensities at two sparse observations is r = Ii[pu]−I j[pv].
Ii refers to the images i-th, and pu refers to u-th pixel’s intensity. The flow between
two points in an image can be inferred from the local image derivatives through a
gradient descent update:

Tv→u[pv] ∝ −
∂ I j

∂ p
[pv]

⊤.r (3.3)

This can be used to optimize the photometric error. However, as it is said above,
the feature map values are used instead of direct pixel intensities. Therefore, the
simplified loss function used to adjust the locations of 2D keypoints belonging to
the same track j:

E = ∑
(u,v)∈M j

∥Fu[pu]−Fv[pv]∥ (3.4)

In comparison to [4], optimizing by the cost of feature maps instead of the patch
neighboring pixels has better efficiency.

In the second stage, i.e. bundle adjustment refinement, the typical approach uses
the euclidean distance between the point and its reprojected 3D from another view.
However, this paper considers the difference between the feature vectors of the
point and the feature vector of the point where the 3D point is reprojected. For
each track j, the error between its observations and a reference appearance f j is as
follows:

E = ∑
j

∑
(i,u)∈τ j

∥Fi[∏(RiPj + ti,Ci)]− f j∥γ (3.5)

Also, instead of acquiring the cost equation for each pair of views, one image is
considered as a reference, and the cost equations are written between the reference
image and the rest of the views. it reduces the number of residuals from O(N2) to
O(N). This is not good for sequential video frames. Because newer frames will be
too far from the reference image. However, it is achievable if the new input is a
batch of new images, and the refinement is applied to each batch separately.

As it is mentioned earlier, this paper can be integrated with other approaches. In
their experiment, [8], [2], [3], and [2] are used as base feature detectors, and then
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applied refinement. In ETH3D dataset, [11], it is reported that accuracy is im-
proved with an average of 10 to 15 percent for each base feature detector. And, the
runtime is decreased significantly in comparison to [4].
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Chapter 4

Featuremetric Refined
Structure-From-Motion and
Point Cloud Registration for
Localization

We will explore the application of Structure from Motion in a real-world scenario
within the field of 3D computer vision. Our goal is to localize a robot in a large
city environment using point cloud registration. Localization refers to the task of
determining the position and orientation of a robot within its environment. And,
point cloud registration is defined as finding the transformation, i.e. translation and
orientation, that aligns the points in one point cloud with those in another.

Outdoor localization, today, relies heavily on GPS technology, accompanied by
ground based augmentation systems to improve accuracy. However, in this thesis,
we are going to explore a method that makes it offline, meaning eliminating the
need for GPS or similar devices.

4.1 Point Cloud Generation

4.1.1 Image Acquisition

A GoPro9 camera is mounted on the head of a vehicle, and various videos are
taken from the streets. The videos were recorded at a frame rate of 60 fps. The
resolution of each image is 1920*1080 pixels, and the distance covered in each
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video ranges from 80 to 120 meters. We used the predefined linear settings of
the camera, meaning that the camera undistorts the videos automatically. We also,
tested with distorted settings and manual calibration using checkerboard method
(See chapter 5). However, using undistorted videos showed better results. The
software we use for SfM, will also guess the calibration parameters and refine it
during the reconstruction. Next, the frames are extracted from each video. The rate
of the sampling is chosen at 3fps. And, each dataset comprises an average of 60
frames.

4.1.2 Reconstruction

COLMAP is an open source software, implemented by [9] and [10], that provides
3D reconstruction based on 2D images. There are 2 types of reconstruction:

• Sparse Reconstruction estimates the positions of a selected set of of key-
points detected on the input images

• Dense Reconstruction provides 3D positions of all pixels in the input images
by generating depth maps. This can be achieved through techniques like
stereo matching or depth estimation algorithms, like PatchMatch algorithm
[1]. Dense reconstruction provides a richer representation of the scene but is
more computationally demanding and requires higher memory storage.

Both spare and dense reconstructions are implemented in COLMAP. The choice
between sparse and dense reconstruction depends on the specific application re-
quirements and the trade-off between accuracy and computational resources. For
our method, we need dense point clouds. Figure 4.1 shows examples of both re-
constructions. Each step of SfM pipline can be executed separately. So, other
algorithm can be replaced by its defaults. And, extra steps, like refinements, can
be added to the pipeline.

4.1.3 Refinement

Pixel-Perfect paper [6] is decided to be used for our reconstruction refinement.
First, in order to verify that this paper can actually refine the reconstruction, a test
dataset is created from a cereal box on a table, and dense 3D point cloud is obtained
by COLMAP and then, is refined by pixel perfect. In figure 4.3, it can be clearly
seen that their approach is improving the reconstruction. Recalling stereo cameras,
since the camera poses become more accurate, the epipolar lines are better aligned.
So, there would be more matches and more accurate disparities. In our datasets,
which contain points of street, and buildings, the refinement results in more 3D
points of streets, figure 4.2. We will see later, that more coverage of the streets
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(a) Example 1: Sparse Point cloud (b) Example 1: Dense Point cloud

(c) Example 2: Sparse Point cloud (d) Example 2: Dense Point cloud

Figure 4.1: Comparing sparse and dense reconstructions, generated by COLMAP
[9] and [10]
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(a) Before Refinement (b) After Refinement

Figure 4.2: Sparse reconstruction refinement using Pixel-Perfect paper, [6]

is crucial for our method of localization. In our pipeline, first, the initial sparse
point cloud and camera poses are generated by COLMAP. Then, they are refined
by pixel-perfect algorithm. And after that, the dense construction is executed for
each dataset.

4.1.4 Aerial Point Cloud

An extensive collection of 3D points is obtained by a LIDAR sensor from the city
of Padova using an airplane. The covered region spans 1600m by 1000m, and the
average nearest neighbor distance of points is 0.63m. The dataset contains a total
of 3,583,803 points, figure 4.4.

4.2 Point Cloud Registration

The objective is to align the ground point cloud with the aerial point cloud. Ini-
tially, we attempted to register the point cloud using traditional global and local
algorithms like FPFH feature matching, RANSAC, and ICP. However, due to the
significant differences in the nature of the datasets, the results were too poor. The
aerial point cloud primarily consists of street points and buildings’ roof, as it is cap-
tured from above. While the ground point cloud contains street points and building
walls. Therefore, we had to find the common features and simplify the problem.
The new pipeline could be described as follows:

1. It was observed that viewing both point clouds from the top point of view,
aligned with the z-axis, provides valuable information. The first step is to
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Figure 4.3: Comparing the point clouds generated from a cereal box before(right
images) and after refinement(left images)
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Figure 4.4: The aerial point cloud from the city of Padova

align the point clouds with the z-axis. The aerial point cloud is already
aligned. The ground point cloud is segmented into planes, and the plane with
the highest point count is identified as the street plane since it is the common
plane among all streets and directions and so more points must fall on the
ground plane. After that, the rotation matrix between the normal vector of
the street plane and the (x=0, y=0, z=1) vector is computed, and then, the
ground point cloud is rotated using the rotation matrix. This step determines
the rotation around x and y axes, roughly.

2. From the top point of view, It is seen that the most discriminative feature
among the datasets is the angles of streets and crossroads. So, the data of
vertical walls in ground dataset and roofs in aerial dataset has no use. There-
fore, both point clouds are sliced along the z-axis with a certain threshold
and the half related to the streets is remained. In figure 4.5, the similarity of
both sliced ground and aerial point clouds are visible.

3. Since the generated point clouds has the up-to-scale problem, it is needed to
normalize the coordinate values across all datasets. This step does not scale
the ground point clouds to the actual size in aerial point cloud. However, it
ensures that the average minimum distance between the points is the same
among all of the generated point clouds. Each point cloud is scaled by the
factor of 1 divided by the current average of the minimum distance to the
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(a) Ground Point Cloud (b) Aerial Point Cloud

Figure 4.5: Point clouds sliced from the top viewpoint

nearest point.

4. A 2D binary map is generated for each point cloud considering only x and
y coordinates of all 3D points. The dimensions of the map are determined
by calculating the difference between the maximum and minimum x and y
coordinates of all points and dividing it by a predefined resolution value.
Each cell in the map is assigned a value of 1 if at least one point’s x and
y coordinates fall within that cell, indicating the presence of points in that
area. Conversely, if there are no points corresponding to the respective x and
y coordinates, the cell is marked as 0. In the binary grid map for Ground
Point Cloud, considering that each point cloud is generated from a sequence
of video frames, the camera pose of the middle frame is regarded as the
ground truth center position for the entire dataset. To evaluate the registration
method’s robustness and generalization, 3 aerial point clouds are considered
for each ground dataset. These aerial point clouds share the same center as
the aforementioned ground point cloud, but they differ in distance from the
center. They are categorized as ”easy,” ”medium,” and ”hard” with distances
of 100, 150, and 200 meters from each direction, respectively. The binary
grid map is generated for these aerial point clouds using the same logic as
the binary grid map created for the ground point clouds.

5. To localize the ground grid map within the aerial grid maps, various meth-
ods were explored, including 2D feature matching, crossroad detection based
on point counting, and training convolutional neural networks, etc. Among
these approaches, template matching has the best results. The template
matching process involves comparing a small template image, which rep-
resents the desired pattern (in this case, the ground grid map), with different
regions of the target image (the aerial grid map), and identifying the region
that has the highest similarity with the template. This is achieved by mov-
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ing a window across the target image and comparing the template with each
window. We extended the algorithm to compare also different scales and
rotations of the template image. The template is rotated up to 360 degrees
with an interval of 10 degrees and scaled from 10% to 200% of its initial
size, increasing 10 percent per each attempt.

4.3 Final algorithm

The whole pipeline can be summarized as follows:

1. Take the video of the streets and extract the frames

2. Run sparse SfM algorithm

3. Refine the sparse point cloud and camera poses using Pixel Perfect algorithm

4. Generate a dense point cloud from the refined data

5. Align the point cloud along the z-axis.

6. Scale and Slice the ground point cloud, and keep the points with z coordinate
less than a threshold, in our case, the threshold is 20% of the minimum z-
coordinate

7. Generate the binary grid map

8. Slice Aerial point cloud along the z-axis with a certain threshold, in our case,
the threshold is 20% of the minimum of z coordinate of all points

9. Generate Binary grid map for Aerial point cloud

10. Run Template Matching algorithm to localize the ground grid map inside the
aerial grind map

4.4 Other Approaches

Correspondence-based registration is a method used in global point cloud regis-
trations. If common 3D features could be detected, localizing ground point clouds
within aerial point clouds would be easier. As it is mentioned before, the only com-
mon 3D points between those two point clouds are streets which are not distinctive
features. Instead, crossroads are considered more unique. Therefore, we attempted
to detect crossroads in both point clouds and register them, directly.
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Figure 4.6: Left image: before erosion, Right image: after erosion

Crossroads detection based on handcrafted methods: The areas of crossroads
are assumed to have more 3D points than the areas of only streets. Because cross-
roads represent the meeting point of two or more streets. Hence, one approach for
crossroads detection is selecting points with a higher density of neighboring points.
However, finding appropriate thresholds for density and the radius to select neigh-
boring points were too challenging due to variations in street width, difficulty in
distinguishing between flat grounds (e.g., yards and gardens) and streets, and dif-
fering 3D point densities in ground point clouds. We tried to simplify the problem
using methods such as uniform point distribution and erosion techniques to remove
border points while retaining the points related to the center of streets, potentially
indicating crossroads. However, none of these methods provided enough accurate
and robust results. Figure 4.6 shows the result of preprocessing methods and fig-
ure 4.7 shows the best results of crossroads detection using the aforementioned
handcrafted methods.

Another idea involved segmenting the initial ground point cloud, which still con-
tains points from buildings and walls, into planes representing the street and mul-
tiple building walls. The intersection of at least two building planes and the street
plane could potentially be identified as crossroads. However, this approach lacked
accuracy and robustness, particularly in open areas with limited walls. Figure 4.8
shows the ground point clouds segmented into planes of the street and walls
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Figure 4.7: Left image: the actual point cloud, Right image: the same point cloud
from the same viewpoint with only detected crossroads points using handcrafted
methods

Figure 4.8: Ground point clouds segmented into planes of the street and buildings’
walls
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(a) Random non-crossroads binary grid
map (b) Random crossroads binary grid map

Figure 4.9: Samples of the CNN inputs

Deep Learning based approach: We also explored a Deep Learning approach,
utilizing the binary grid maps introduced earlier, as inputs for a Convolutional Neu-
ral Network to classify each 3D point as either crossroads or non-crossroads. Fig-
ure 4.9 shows a pair of examples of the binary grid maps representing a top-down
view of a crossroad and a non-crossroad. The model was trained by a small dataset
containing 10 inputs of binary grid maps per each class. Then, we applied the
trained model to all points in a small window of the aerial point cloud and filtered
out points classified as non-crossroads. Figure 4.10 illustrates the points identi-
fied as crossroads which includes points of the 4 main crossroads out of 5. The
results demonstrated excellent performance. However, to ensure robustness, a sig-
nificantly larger dataset considering the big 1600m*1000m aerial point cloud with
approximately 3 million points would be necessary for training.
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Figure 4.10: Detected crossroads by CNNs: The red points are classified as cross-
roads
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Chapter 5

Experiment

5.1 Dataset

Aerial Point Cloud: An extensive collection of 3D points is obtained from the
city of Padova using an airplane. The covered region spans 1600m by 1000m, and
the average nearest neighbor distance of points is 0.63m. The dataset contains a
total of 3,583,803 points, figure 4.4.

Ground Point Clouds: 10 dense point clouds are created using the Structure
from Motion algorithm. They are further refined by Pixel-Perfect algorithm. Each
dataset comprises an average of 60 frames extracted from a 30-second undistorted
video. The video was recorded at a frame rate of 60 fps. The resolution of each
image is 1920*1080 pixels, and the distance covered in each dataset ranges from
80 to 120 meters.

5.2 Metrics

In our matching problem, there are four key parameters for evaluation:

• the 2D coordinates (x, y) of the detected pose of the center,

• the scale

• the rotation

of the ground binary grid map within the source binary grid map.
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Figure 5.1: Average Success Rate for template matching

The results of the global registration are binary in nature, meaning that whether
the template point cloud is successfully found in the source or not. Hence, the first
metric used is the Average Success Rate.

Average Success Rate: For each ground binary map and its corresponding aerial
binary map, if the difference between the four key parameters and their ground
truth values is less than a certain threshold, it is considered a successful match.
In our experiment, the euclidean distance between the center of the ground binary
map and the ground truth, i.e. which is the center of each aerial binary grid map,
should not be more than 25 meters. An acceptable scale factor is between 80%
to 130% of the ground truth. And, the rotation angle should not be more than 10
degrees, otherwise, in most cases, the wrong street is detected.

5.3 Results

There are 10 ground datasets, and for each dataset, there are three aerial datasets
categorized as easy, medium, and hard. Figure 5.1 shows the average success rate,
in percentage, for all ground datasets based on the difficulty level of their corre-
sponding aerial datasets.
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Here are the final results of template matching. For each ground dataset, 3 images
are provided illustrating the result matches in easy, medium, and hard aerial point
clouds. The yellow pixels refer to the aerial point cloud(source) and green pixels
are related to the ground point cloud(template). The axes of the graph are scaled in
meters multiplied by a resolution value. This resolution is either 3.3 or 6.6 and is
because of variations in the density of points and for a more accurate representation
of the grid maps.

For each ground dataset that has at least one successful result, a table of detailed
errors of transformation in meters, i.e. distance between the center of source and
template images, scale in percentage, and angle in degrees is provided.
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(a) Easy: Success (b) Medium: Failed

(c) Hard: Failed

Figure 5.2: Dataset 1

Errors: Transformation Scale Rotation
Easy 0.50m +3.5% +2°

Medium - - -
Hard - - -

Table 5.1: Detailed errors of Dataset 1
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(a) Easy: Success (b) Medium: Success

(c) Hard: Success

Figure 5.3: Dataset 2

Errors: Transformation Scale Rotation
Easy 3.16m -8.7% -3°

Medium 6.66 +7.14% -3°
Hard 26.6 +16.6% -3°

Table 5.2: Detailed errors of Dataset 2
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(a) Easy: Success (b) Medium: Success

(c) Hard: Failed

Figure 5.4: Dataset 3

Errors: Transformation Scale Rotation
Easy 1.6m -4.4% 1°

Medium 4.83m +13.3% 1°
Hard - - -

Table 5.3: Detailed errors of Dataset 3
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(a) Easy: Failed (b) Medium: Success

(c) Hard: Failed

Figure 5.5: Dataset 4

Errors: Transformation Scale Rotation
Easy - - -

Medium 5.62m -9.11% -3°
Hard - - -

Table 5.4: Detailed errors of Dataset 3
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(a) Easy: Success (b) Medium: Success

(c) Hard: Success

Figure 5.6: Dataset 5

Errors: Transformation Scale Rotation
Easy ¡1m -9.1% -3°

Medium 5.44m +27.2% +7°
Hard 8.63m +81.2% -3°

Table 5.5: Detailed errors of Dataset 5

43



(a) Easy: Success (b) Medium: Success

(c) Hard: Success

Figure 5.7: Dataset 6

Errors: Transformation Scale Rotation
Easy 1.4m +6.1% +3°

Medium 3.6m +3.3% +3°
Hard 3.5m +3.3% +3°

Table 5.6: Detailed errors of Dataset 6
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(a) Easy: Success (b) Medium: Failed

(c) Hard: Failed

Figure 5.8: Dataset 7

Errors: Transformation Scale Rotation
Easy 34m -5.9% +4°

Medium - - -
Hard - - -

Table 5.7: Detailed errors of Dataset 7
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(a) Easy: Success (b) Medium: Failed

(c) Hard: Failed

Figure 5.9: Dataset 8

Errors: Transformation Scale Rotation
Easy 17.2m -5.2% +1°

Medium - - -
Hard - - -

Table 5.8: Detailed errors of Dataset 8
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(a) Easy: Success (b) Medium: Failed

(c) Hard: Failed

Figure 5.10: Dataset 9

Errors: Transformation Scale Rotation
Easy ¡1m -1.33% -3°

Medium - - -
Hard - - -

Table 5.9: Detailed errors of Dataset 9
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(a) Easy: Failed (b) Medium: Failed

(c) Hard: Failed

Figure 5.11: Dataset 10
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As expected, localizing in wider windows of the Aerial Point Cloud becomes more
challenging. Also, in open spaces where 3D points represent flat surfaces and
do not precisely shape the street geometry, identifying their pattern in the aerial
point cloud is difficult, like in dataset 10. Moreover, localizing streets with simple
geometry is unlikely. For instance, if the generated point cloud only represents
a straight alley, its binary grid map would be a simple rectangle. Considering
the template matching algorithm, a rectangle as the template binary map could be
matched with any streets, especially in small scales. We expect that the algorithm
would be able to localize more accurately after passing a crossroads or when the
street’s direction changes.

Next, by mapping the resulting 2D coordinates to the aerial point cloud’s reference
frame, and applying the scaling and rotation factors, the ground point cloud is
located inside the aerial point cloud. Then, since the successful results are close
enough to the ground truth, we used Iterative Closest Point (ICP), which a common
local point cloud registration algorithm for final refinement. Figure 5.12 shows a
few of the best results:
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(a) Dataset 3: Before ICP (b) Dataset 3: After ICP

(c) Dataset 6: Before ICP (d) Dataset 6: After ICP

(e) Dataset 9: Before ICP (f) Dataset 9: After ICP

Figure 5.12: Moving the template matching results to the aerial point cloud refer-
ence frame
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(a) Distorted frame
(b) Corrected image using calibration
parameters

Figure 5.13: Samples of distorted and corrected video frames

5.4 Reconstruction Details

Calibration and its impact: One of our case studies was if giving wider but
distorted images with manual calibration parameters to the SfM pipeline could en-
hance the accuracy and increase the number of generated point clouds of a wider
field of view. We used the camera with 2.7k resolution, 60fps, and wide and dis-
torted settings. The camera was calibrated using the checkerboard method. Figure
5.13 demonstrates an example of undistortion of video frame, and Figure 5.14 il-
lustrates the resulting sparse point clouds. The generated point cloud has a notable
error in the street angles, meaning that, from the top point of view, the streets
should have been perpendicular to each other. However, the result displays an an-
gle that is less than 90 degrees. Also, the points associated with the ground truth
plane are excessively spread out from the generated plane. Furthermore, the execu-
tion time experienced an exponential increase. For instance, it took approximately
10 minutes to construct a sparse point cloud from the undistorted frames shown in
Figure 5.14 , whereas the same procedure for the distorted frames required more
than 2 hours.

Boosting Reconstruction pipeline: The process of Structure from Motion is
computationally heavy and not suitable for real-time usage, particularly when it
comes to dense reconstruction. Table 5.10 presents the execution time of the sparse
reconstruction for each step of the SfM algorithm running on our datasets.

As can be seen, bundle adjustment is the bottleneck. During our experiments,
we noticed that providing an initial estimation of camera poses can greatly reduce
the number of iterations required for bundle adjustment. Hence, we explored the
use of existing visual Simultaneous Localization and Mapping (vSLAM) methods
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(a) From distorted frame (b) From undistorted frame

Figure 5.14: Point clouds generated from distorted and undistorted video frames
from top point of view
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Inputs: Max num of features Feature Extraction Feature Matching Bundle Adjustment total
300 frames(1080p) 30000 0.85mins 1.01mins 21.5mins 23.36mins

300 frames 5000 0.15mins 0.23mins 6.74mins 7.12mins
300 frames(Known poses) 30000 0.73mins 1.05mins 1.65mins 3.43mins

Table 5.10: The execution time of the sparse reconstruction for each step of the
SfM algorithm using Nvidia RTX3090 graphics

to approximate the initial camera poses. The best solution we found that using
COLMAP sparse reconstruction with low configuration parameters, such as lower
image resolution and limiting the maximum number of keypoints and matches, just
to obtain camera poses. Then, COLMAP’s sparse reconstruction is re-executed
with the initial camera poses and high-quality configuration. This trick reduced the
execution time significantly such that a dataset of 300 frames was reconstructed in
10 minutes.
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Chapter 6

Conclusion

We developed a pipeline for the localization of a moving vehicle using images or
videos captured by a camera. Our process involved capturing videos of the streets
in the city of Padova, extracting video frames, and applying the Structure from
Motion algorithm to generate point cloud of streets, called ground point cloud. We
used [6] to refine our reconstruction. Furthermore, a few handcrafted methods are
applied to the ground point clouds as preprocessing, like aligning on the z-axis,
filtering, and slicing. On the other hand, we already had an extensive point cloud
captured by an airplane from the whole city as an aerial (source) point cloud. In
order to simplify our problem, for each point cloud, a binary grid map is created,
where each pixel is set to 1 if at least one 3D point’s x and y coordinates fall within
that pixel coordinates. By having 2D images of binary maps for both point clouds,
a template matching algorithm is utilized to localize the ground binary map in the
aerial grid map. We extended the template matching algorithm in order to return
not only the coordinates but also the scale and rotation of the template image.
Next, we scaled and transformed our initial ground point cloud with these results
into the aerial point cloud, and then, the Iterative Closest Point (ICP) algorithm
is employed for local point cloud registration, getting even more accurate results.
As it is discussed before, it is unlikely to register directly the ground point cloud
in the aerial point cloud since the only common 3D points between these two are
streets and ground points, and these points are not so discriminative. However, our
method showed a reasonable performance in local point cloud registration.

As it is observed in the template matching results, the bigger the window of the
aerial point cloud is, the harder it is to localize. Therefore, we may think of an-
other approach for global registration. In our experiments, it is noticed that by
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looking at both point clouds from the top viewpoint, crossroads are differentiable.
So, if we could detect them as keypoints and provide a proper descriptor for each
crossroad, it is possible to register by correspondence the ground point cloud in
wider windows of the aerial point cloud. Our deep learning approach showed it is
possible to filter the crossroads by using the binary grid maps as the input to our
model. However, we had to prepare a huge and comprehensive dataset of cross-
roads which needed longer time for this thesis.

To conclude, nowadays, with the advancements in cameras and powerful comput-
ers, the computation of accurate and real-time 3D data is becoming increasingly
feasible. This will lead to a rapid expansion of 3D applications like autonomous
driving and augmented reality. Structure from Motion has proven to be a powerful
tool for generating accurate and detailed 3D structures. Therefore, improving the
accuracy and performance of this algorithm plays an important role in the future.
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