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Abstract

In recent years, network-based approaches have become increasingly popular in the field of molecular
biology and network medicine. One of the main challenges in this field is to identify the role of viruses
in the development of cancer. In this thesis, we apply multilayer complex network theory to protein-
protein interaction networks of different viruses, including the SARS-CoV-2 virus, to classify them
as oncogenic or non-oncogenic. Specifically, we use tools from graph theory and machine learning to
analyze the topology and structure of these networks, and to identify the key proteins and pathways
involved in virus-induced carcinogenesis. We aim to create two classes, one for oncogenic and one for
non-oncogenic viruses, and then verify in which of the two the SARS-CoV-2 virus falls. The results of
this study may provide new insights into the mechanisms underlying virus-induced cancer and could
lead to the development of novel therapeutic strategies.
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Chapter 1

Research question

As a consequence of the global Covid-19 pandemic, the importance of understanding the intricate
relationship between viruses and cancer has gained unprecedented significance. The increasing signifi-
cance that this dimension will have on the people’s life, it has become increasingly crucial to anticipate
and prepare for the potential long-term consequences, with the objective to be able to face them on
time. A special role is given to the relation between viral infections and cancer, one of the most
lethal illnesses worldwide. Exploring the interplay between viruses and cancer not only sheds light on
the mechanisms of disease, but also offers valuable insights into forecasting the potential impact of
infections on future patients with cancer.

The research surrounding virus-cancer interactions takes on added urgency against the backdrop of
the pandemic. Viruses, such as the SARS-CoV-2 virus responsible for COVID-19, can have profound
effects on human health beyond the acute phase of infection. Emerging evidence suggests that certain
viral infections, including COVID-19, may have implications for cancer development and progression in
the long term[1–5]. Understanding the molecular and cellular mechanisms by which viruses influence
the oncogenic process is therefore essential for forecasting the potential rise in cancer cases in the
aftermath of the pandemic.

1.1 Tumor insurgence and the role of viral infections

Cancer is a complex and multifaceted disease that involves the uncontrolled growth and spread of
abnormal cells in the body. Normally, cells in the body divide and grow in a regulated manner,
replacing damaged or dying cells and maintaining healthy tissues and organs. However, cancer cells
break free from this normal growth control mechanism and start to divide and grow uncontrollably,
forming a mass of cells called a tumor. These cells can invade nearby tissues and organs, and even
spread to other parts of the body through the bloodstream or lymphatic system, a process known as
metastasis.

Cancer can arise from different types of cells in the body, and there are more than 100 different types
of cancer, each with its own set of characteristics, behavior, and treatment options. Some of the most
common types of cancer include lung, breast, prostate, colon, and skin cancer.

Within a tumor, the cells are surrounded by a variety of immune cells, fibroblasts, molecules and
bold vessels. These components create the system called tumor microenvironment. The tumor and
the surrounding microenvironment are closely related and interact constantly. Tumors can influence
the microenvironment by releasing extracellular signals, promoting tumor angiogenesis and inducing
peripheral immune tolerance, while the immune cells in the microenvironment can affect the growth
and evolution of cancerous cells. The role of the surrounding immune cells is also very complex: they
could be of different types, T cells, B cells, macrofages, and, depending on the kind of tumor and
other condistions, they can be either pro-tumorigenic or anti-tumorigenic.
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Figura 1.1: A graphical schematic representation of the tumor micro-environment and some of its key com-
ponents. The figure is taken from The tumor microenvironment. (2020, May 17). Keren Lab. https:

//www.weizmann.ac.il/mcb/Keren/research-activities/tumor-microenvironment

The complexity of the tumor microenvironment and its interaction between its components, compli-
cates even further the understanding of cancer and differentiate a lot the causes, the symptoms and
the possible cures between different cases.

The exact causes of cancer are not fully understood, but it is generally believed to be a result of
a combination of genetic and environmental factors. Certain genetic mutations or alterations in the
DNA of cells can increase the risk of cancer development, while environmental factors such as exposure
to carcinogens, radiation, or viral infections can also contribute to the onset of cancer.

Cancer cells exhibit several characteristics that differentiate them from normal cells:

• They are capable of growing without the need for signals that promote growth, while normal
cells require signals to grow and divide.

• They often ignore signals that normally control cell division and programmed cell death (apop-
tosis).

• They can invade nearby tissues and metastasize to distant organs in the body. Normal cells do
not typically move throughout the body and stop growing when they contact other cells.

• They are able to promote the growth of new blood vessels towards the tumor (angiogenesis),
which helps to supply the tumor with nutrients and oxygen and remove waste products.

• They can evade the immune system’s normal function of detecting and destroying abnormal or
damaged cells.

• They may even manipulate the immune system to help the tumor cells grow and survive.

• They accumulate genetic changes, such as duplications or deletions of chromosomes, at a higher
rate than normal cells. Some cancer cells even have double the usual number of chromosomes.

• They often rely on different nutrients and energy sources compared to normal cells, allowing
them to grow and divide more quickly.

As the scientific research about cancer developed, an increasing number of infections have been linked
to the development of specific human cancers. It has been outlined that slightly more than 20% of the
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Figura 1.2: The following is a compilation of tumor-associated viruses, with information on the incidence of
each tumor type sourced from [6].

global cancer incidence arises as the consequence of previous infections, often caused by the presence
of a virus[6]. In these cases, continued expression of specific viral genes seems to be a prerequisite for
maintaining the malignant phenotype of the arising cancers.

Viruses have generally a very small genome in which most genes encode proteins involved in virus
replication, while only a very small portion of the genes may be related to tumor cell transformation.
Although different viruses encode different virus products, they can target some of the same mechani-
sms, such as inhibiting tumor suppressor gene expression, abnormally activating oncogenes to interfere
with cell growth and differentiation-related signals, thereby affecting cell growth cycle regulation and
inducing malignant cell transformation[7].

Such viruses, that can cause cancer in humans and animals, are called oncogenic viruses. These viruses
are able to insert their genetic material into the host cell’s DNA, which can lead to the activation
of oncogenes or the inactivation of tumor suppressor genes. Oncogenes are particular sections of the
DNA which encodes information for the production of proteins which have a very important role for
the promotion of the tumor (in this case they will be promoted), or for the suppression of it (and in
this case they will be inhibit). Some examples of such genes are:

• HER2/neu (also known as ErbB2): is involved in the regulation of cell growth and differentiation,
and its overexpression is seen in several types of cancer, including breast, ovarian, and gastric
cancer.

• BCL-2: is involved in the regulation of apoptosis, or programmed cell death, and its overexpres-
sion can lead to the survival of cancer cells that would normally die.

• MYC: regulates cell proliferation and is often overexpressed in various types of cancer, including
breast, lung, and colon cancer.

• RAS: family of oncogenes that regulates cell signaling pathways that control cell growth and
division, and mutations in RAS genes are found in many types of cancer, including pancreatic,
lung, and colorectal cancer.

• TP53 (also known as p53): This tumor suppressor gene helps to prevent the formation of cancer
by regulating cell growth and apoptosis. Mutations in TP53 are found in a wide range of cancers,
including lung, breast, and colorectal cancer[8, 9].
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• pRB: is a proto-oncogenic tumor suppressor protein that is dysfunctional in several major can-
cers. One function of pRb is to prevent excessive cell growth by inhibiting cell cycle progression
until a cell is ready to divide[10, 11].

The cellular tumor antigen refers to the TP53 and retinoblastoma protein (pRB), which are central to
the two main tumor suppressor pathways. These pathways regulate cell cycle progression, stimulate
DNA damage response, and induce apoptosis in response to irreversible cell damage. While nearly all
oncogenic viruses encode oncoproteins that disrupt the TP53 and pRB pathways, the mechanisms they
use are distinct. Viral oncoproteins inhibit p53 and pRB by inducing their degradation, inactivation,
repression, or dissociation from functional partners.

In this work this problem is tackled by exploiting methods form complex network theory. Firstly
the virsu-host cell interaction are modelled as a PPI network, in which the nodes are human genes
influenced by the action of the virus, and the links are the structural, functional, physical connections
between them. After doing this it’s possible to apply over such systems the tools from network theory,
with the goal to find out specific feature that can allow to identify oncogenic viruses, with the final
objective to state if Sars-Cov2 could belong to this category or not.

Finally it’s important to mention also oncolytic viruses, a type of virus that can selectively infect
and kill cancer cells while sparing healthy cells. They work by infecting cancer cells and replicating
within them, causing the cells to burst and die. This releases new virus particles that can infect
neighboring cancer cells, leading to the destruction of the tumor. In addition to directly killing cancer
cells, oncolytic viruses can also stimulate an immune response against the tumor. When cancer cells
are destroyed by the virus, they release molecules that can activate immune cells such as T cells and
natural killer cells to recognize and attack remaining cancer cells. This immune response can help to
eliminate any remaining cancer cells and prevent the tumor from returning.

1.1.1 Sars-Cov2

SARS-CoV-2 is a novel coronavirus, responsible for the COVID-19 pandemic. It is a single-stranded
RNA virus that belongs to the family Coronaviridae, which also includes the viruses SARS and MERS
[12, 13]. The SARS-CoV-2 virus is spherical in shape and has a diameter of approximately 120 nm.
The outer surface of the virus is covered in spike proteins, which give it a ”crown” or ”corona”
appearance under the microscope. These spike proteins are responsible for binding to and entering
host cells, which they do by binding to the ACE2 receptor on the surface of human cells.

Once the virus enters the host cell, it releases its RNA genome, which is then translated into viral
proteins by the host cell’s machinery. These proteins include replicase proteins, which are responsible
for replicating the viral RNA, and structural proteins, which are used to build new virus particles.

The symptoms of COVID-19 can range from mild to severe, and can include fever, cough, shortness
of breath, fatigue, muscle or body aches, and loss of taste or smell. In severe cases, the virus can
lead to pneumonia, acute respiratory distress syndrome, and death. Due to the fact that the outbreak
and the virus itself are pretty recent, it’s likely that many other symptoms and consequences on the
organism after the infection, are still to be discovered.

A novel approach comprehending the use of multilayer networks involving virus-host, host-host, gene-
symptoms, diseases-illness, diseases-symptoms and gene-drugs connections[14] proposes a method to
investigate the relations between the biological characteristics of the virus and the infection con-
sequences on the host, and was able to both confirm already observed features and predict some
others.

The global impact of the virus and its widespread infection among the population have sparked a
surge in research efforts. The need to comprehensively understand the virus’s effects on the human
body, particularly its long-term implications, has become paramount. This has resulted in an ongoing
stream of studies dedicated to investigating various aspects of the virus and its impact on health.
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Such research is crucial for developing effective strategies to mitigate the long-term consequences and
address the challenges posed by this global pandemic.
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Chapter 2

Network Medicine

In recent years, the study of complex networks has undergone significant advancements, which have
expanded its influence to various fields. One of the major breakthroughs has been the application
of complex network theory to medical science, giving birth to network medicine, an interdisciplinary
field that combines the principles of network science, systems biology, and medicine to study complex
diseases and their underlying mechanisms[15–17]. This approach focuses on understanding how the
components of biological systems, such as genes, proteins, and metabolites, interact with each other
in a network fashion to maintain health or contribute to disease. By modeling and analyzing these
networks, network medicine aims to identify key molecular players and pathways that can be targeted
for therapeutic intervention[16, 18, 19].

Network medicine has already shown promising results in the study of a variety of diseases, including
cancer, neurological disorders, and infectious diseases. For example, it has been used to identify novel
drug targets and biomarkers, and to predict drug responses and disease outcomes[14, 20]. Moreover,
network medicine approaches have the potential to transform clinical practice by enabling personalized
medicine, where treatments are tailored to individual patients based on their unique molecular profiles
and network characteristics.

Overall, network medicine represents a powerful framework for understanding complex biological
systems and developing new strategies for disease prevention, diagnosis, and treatment.

To further leverage the potential of complex network theory, the concept of multilayer networks or
multiplex systems has been introduced. Multilayer networks are composed of several replicas of the
same nodes, each connected in a unique way, with each replica connected to some of its other replicas.
This approach enables the consideration of various aspects of a system simultaneously and being able
to study them in a global and integrated way. A new set of mathematical tools has been developed
to study such complex systems, as detailed in the paper [21].

2.1 Network Medicine and PPI networks

A complex network is essentially composed by two entities: nodes, which can correspond to physical
cosntituents of the system under consideration, and edges, which represent the connections presented
between the nodes. Both nodes and edges can widely vary in nature and type, but in evry case it’s
possible to build from a physicl system a mathematical model that can be studied in datail tanks to
a set of computational anf theoretical tools (such aspects will be further explained and deepened in
chapter 2.4).

A complex network consists of nodes and edges, representing the constituents and connections of a
system, respectively. In this work, we focus on protein-protein interaction (PPI) networks, which
describe biological systems or processes. Proteins are represented as nodes, connected by edges that
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Figura 2.3: Example of graphical representation of a PPI interaction network involving the 16 most frequently
mutated human cancer genes from the STRING web page https://string-db.org/cgi/input?sessionId=

bnKXMWMsf0q5&input_page_active_form=examples. The legend depicts the different nature of the links bet-
ween the proteins and some information about the nodes.

represent various types of interactions. These interactions can range from physical interactions obser-
ved in experiments to correlations in gene expression or even co-citations in scientific articles. Such
heterogeneity is discussed in detail in Chapter 2.4.

Fig. 2.3 illustrates a PPI network depicting interactions between the 16 most frequently mutated
human cancer genes in STRING. The edges in this network can be categorized as known interactions
(curated databases or experimental evidence), predicted interactions based on gene relationships,
or inferred using text mining or structural similarity. It is important to note that the edges in PPI
networks capture multiple aspects of the original systems rather than a homogeneous physical quantity.

Complex network theory provides computational and theoretical tools to analyze PPI networks and
extract valuable information. These tools, described in detail in Chapter 2.4, enable the assessment of
node importance, network resilience to attacks or failures, identification of network components, and
detection of meaningful communities or clusters of proteins.

By analyzing these network properties, we can gain insights into the underlying biological system. For
example, identifying important nodes in the network can help identify potential therapeutic targets,
while understanding network resilience can provide insights into disease susceptibility. Additionally,
the identification of protein communities can reveal functional modules or pathways within the system.

Overall, complex network analysis of PPI networks offers a powerful approach to studying biological
systems and addressing specific biological questions.
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PPI networks have limitations in capturing the full complexity of biological systems, as they often
overlook the interplay of multiple aspects. However, the emergence of multilayer networks in network
medicine has addressed this limitation by integrating diverse biological dimensions into a comprehen-
sive framework. This approach has gained significant momentum in recent years, yielding valuable
insights and significant advancements in understanding complex biological contexts. By considering
multiple layers of information simultaneously, multilayer networks offer a more holistic perspective,
enabling researchers to unravel intricate relationships and uncover novel findings with far-reaching
implications in the field of network medicine [14, 22, 23].

2.2 PPI networks for virus-host interaction study

PPI networks reveals to be a good tool also to study the interaction between two organism which
interacts at a cellular level, and in particular virus-human interactions [24–28]. Viruses interact with
human cells at the protein level through a variety of mechanisms. When a virus infects a host cell,
it aims to hijack the cellular machinery and utilize it for its own replication and propagation. The
interactions between viral proteins and human proteins play a crucial role in this process. One common
interaction is the binding of viral surface proteins to specific receptors on the surface of human cells.
This initial attachment allows the virus to gain entry into the host cell. Once inside the cell, viral
proteins interact with various cellular proteins to manipulate the host cell’s processes and create
an environment conducive to viral replication. Viral proteins may interact with host cell proteins
involved in gene expression, protein synthesis, immune response, and cellular signaling pathways.
These interactions can modulate host cell functions to favor viral replication and evade the immune
system.

The interaction between viruses and human cells can be effectively analyzed within the framework of
protein-protein interactions (PPIs). Various models can be employed to describe these interactions.
For instance, viruses can modify existing protein connections or disrupt them altogether. They may
also establish new connections between regions that were not previously linked. In this study, the
focus is on investigating the impact of viral infections on the human cells by subsetting the entire
human PPI down to the specific region likely to be influenced by the virus, as outlined in detail in
Chapter 3.2.3.

2.3 Why Multilayer Networks?

Multilayer networks can be used in network medicine to provide a more comprehensive and realistic
representation of complex biological systems [14, 22, 23, 29]. Traditional network models often consider
interactions between entities as a single layer, disregarding the potential heterogeneity and multiple
dimensions of these interactions. However, in many biological systems, interactions occur across
different layers or modalities, such as genetic, protein-protein, and metabolic interactions, or even
considering at the same time different states in which the same system can be, and so being able to
explore the relation between these.

By incorporating multilayer network analysis in network medicine, researchers can capture the intricate
interplay between different layers of biological information and gain a deeper understanding of disease
mechanisms. Multilayer networks allow for the integration of diverse data types, such as genomics,
proteomics, and clinical data, into a unified framework. This integration enables the exploration
of complex relationships and dependencies between various biological components, offering a more
holistic view of disease processes.

The use of multilayer networks in network medicine provides several advantages. First, it allows for
the identification of key nodes or molecules that play critical roles across multiple layers, highlighting
their significance in disease progression or therapeutic targets. Second, it enables the investigation of
cross-layer interactions and their impact on disease outcomes. By considering the interconnectedness
between different layers, researchers can uncover hidden associations and uncover novel biomarkers or
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pathways that may not be apparent in individual network layers. Third, multilayer networks facilitate
the development of personalized medicine approaches by capturing patient-specific molecular profiles
and incorporating them into a multilayer framework for tailored treatment strategies.

Network medicine offers a compelling approach for cancer research, recognizing the complexity and
heterogeneity of this disease. Cancer exhibits diverse manifestations and employs various strategies
to affect the body. In this context, network medicine emerges as an ideal framework to gain insights
into the intricate systems underlying cancer. By employing specialized tools and methodologies, net-
work medicine allows researchers to explore the complex interactions among genes, proteins, and other
molecular components involved in cancer. This integrative approach facilitates a comprehensive under-
standing of the disease, enabling the identification of crucial players, pathways, and interactions that
drive cancer progression. Thus, network medicine holds great promise for advancing our knowledge of
cancer and paving the way for improved strategies in its prevention, diagnosis, and treatment.

2.4 Enrichment Analysis

By leveraging the capabilities of network medicine, valuable insights can be extracted from the studied
systems. In this work, the analysis is focused on protein-protein interaction (PPI) networks, where
key features often involve specific lists of proteins. To gain biological insights related to the underlying
research question, functional enrichment analysis plays a crucial role, and becomes one of the most
important tool to connect the mathematical framework to the biology of the system.

Functional enrichment analysis is a widely used bioinformatics approach that aims to understand
the biological meaning behind a set of genes or proteins by identifying overrepresented functional
categories or pathways. It helps researchers gain insights into the underlying biological processes,
molecular functions, or cellular components associated with a particular gene or protein set.

The analysis typically involves the following steps:

1. Data Preparation: The gene set of interest is identified and collected. This could involve selecting
genes based on statistical criteria or prior knowledge.

2. Background Selection: A background set, often representing all genes or proteins in a reference
genome, is defined to establish a baseline for comparison.

3. Statistical Analysis: Various statistical methods, such as hypergeometric test, Fisher’s exact test,
or chi-square test, are applied to assess the significance of functional enrichment. These tests
evaluate whether the observed number of genes in a particular functional category is significantly
higher than what would be expected by chance, given the background set.

4. Functional Database: A curated database, such as Gene Ontology (GO), KEGG, Reactome,
or other pathway databases, is used to provide functional annotations for genes or proteins.
These databases categorize genes based on their biological functions, molecular processes, or
involvement in specific pathways.

5. Multiple Testing Correction: Since functional enrichment analysis involves testing multiple func-
tional categories simultaneously, multiple testing correction methods, such as Bonferroni correc-
tion or false discovery rate (FDR) adjustment, are applied to control for the inflation of false
positives.

6. Result Interpretation: Enrichment analysis results are typically presented as a list of enri-
ched functional categories or pathways, along with statistical measures such as p-values or
FDR-adjusted p-values. Researchers interpret these results to gain insights into the biologi-
cal processes, molecular functions, or pathways that may be associated with the gene set of
interest.
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There are many possible choices of functional database to use in the functional enrichment analysis,
each of them characterizing a different aspect of the system under study, and depending on the context
and the biological question to be answered, during the following work, many of these will be used.

The principal online tool that is utilized is ToppGene 1, a comprehensive web-based platform that
provides a range of bioinformatics tools and resources for gene function prediction, gene prioritization,
and functional enrichment analysis.

1https://toppgene.cchmc.org/
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Chapter 3

Methods from Complex Network Theo-
ry

Complex network theory is a subfield of physics that has recently experienced significant progress. Its
primary objective is to develop mathematical frameworks that encode information about the inter-
connections between various parts of a system. These frameworks are then used to extract valuable
information from the system. The complexity of these mathematical frameworks can be increased
through the use of multi-layer network formalisms. Such formalisms allow for the consideration of a
system in different contexts but at the meantime it’s able to preserve the distinction between them.

To classify the risk associated with the SARS-CoV-2 virus, it is necessary to identify relevant features
and compare them to distinguish between oncogenic and non-oncogenic viruses. Complex networks
and multi-layer complex networks are tools used for this purpose. The following paragraph provides
a brief introduction to these topics and presents tools for feature extraction, categorized into three
main groups: microscale, mesoscale, and macroscale methods.

3.1 Complex networks, monoplex

Complex networks, also known as complex graphs, are systems composed of nodes, or vertices, that
are interconnected by links, or edges. The most basic forms of complex networks are simple graphs,
which consist of at most one edge between a pair of nodes and no self-edges, meaning connections from
a vertex to itself. Another critical aspect that distinguishes networks, particularly based on the nature
of the edges, is the differentiation between directed and undirected networks. In directed networks,
the edges have directionality, meaning they point from one vertex to another. In contrast, undirected
networks lack directionality, and a link only represents the presence of a connection between two nodes.

To increase the complexity of the mathematical representation of complex networks, specific weights
can be added to each edge, representing the strength of that particular link. Such networks are called
weighted networks.

3.1.1 Adjacency Matrix

The adjacency matrix is the most well-known and significant mathematical representation of a complex
network. It is a matrix A with dimensions nxn, where n represents the number of nodes in the network.
Each entry in the matrix, A(i, j), indicates if there is a connection between node i and node j and
also encodes the strength of such a link (Fig.3.4).

Symmetric adjacency matrices are used to represent undirected networks. If a link between nodes
i and j is present, the link between node j and i will also exist, with the same weight. Hence, the
spectral theorem holds in such cases, and we can be certain of finding positive and real eigenvalues.
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Figura 3.4: On the left a simple 15 nodes undirected unweighted network. On the right its representation as an
adjacency matrix.

In the simplest formulation, where the network only indicates if a link between two nodes is present or
not without giving information about their relative strengths, the adjacency matrix is built as follows:

Ai,j =

{

1 if there is a link between node i and node j,

0 otherwise.
(3.1)

In contrast, adjacency matrices of directed networks are not necessarily symmetric. Therefore, when
computing characteristic quantities like eigenvalues and eigenvectors, greater care is required [30].

3.1.2 Microscale Methods

Microscale methods are tools used to analyze the structure of a network by examining individual nodes
and links to obtain information about the network’s overall structure or specific components within
it.

Degree and Degree Distribution

The degree of a node refers to the number of edges connected to it. In directed networks, in-degree is
the number of links arriving at a node, while out-degree is the number of links leaving it. For undirected
networks with N nodes, the degree of a node can be determined using the adjacency matrix:

ki =

N
∑

j=1

Aij (3.2)

Connectance or density can be calculated from the degree by determining the fraction of actual edges
in the network compared to the total number of possible edges. The total number of possible edges is
equal to

(

N
2

)

for a network with N nodes and M edges. The equation for connectance is:

ρ =
M
(

N
2

) (3.3)

The degree distribution P (k) is the fraction of nodes in a network with a given degree k. If there
are N nodes in total and nk nodes have a degree of k, then P (k) = nk

n
. Understanding the degree

distribution of complex networks is a crucial aspect of network science. Two main branches of thought
have emerged: one suggests that degree distributions follow a power law, implying that complex
networks exhibit scale-free properties. This conclusion may be reached because in continuously growing
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Figura 3.5: Illustrative examples of centrality measures on a simple network consisting of 10 nodes. Each
centrality measure is visually represented by the color of the nodes, ranging from white for the least important
nodes to black for the most central ones. From left to right, the centrality measures depicted are: Degree
centrality, Eigenvector centrality, PageRank centrality, and Betweenness centrality.

networks, new nodes are likely to connect to nodes that are already well connected. To check for this
property, one can look at the log-log plot of the histogram of the degree distribution to determine
whether it follows a straight line. In many cases, the degree distribution takes on an exponential-like
shape in both the small and large k regimes, leading to debate about whether this effect is solely due
to finite-size effects in real-world networks or if it has a deeper meaning. [31, 32]

Measuring Node Importance: Centrality

When analyzing a network, a crucial question that arises is which nodes are the most significant in the
system. However, the concept of importance can be ambiguous, and there are various ways to interpret
it. Therefore, multiple methods have been developed to measure node importance, or centrality. A
graphical representation of some examples of centrality assignment for a very simple network can be
found in Fig.3.5.

Degree Centrality

The simplest method to measure node importance is degree centrality, which looks at how many
connections a node has. Each node is assigned a measure proportional to its degree, which is the
number of nodes it is connected to. Although it is a basic measure, it can be illuminating, as nodes
with many connections are likely to play significant roles in the network.

Eigenvector centrality

Eigenvector centrality is a measure of the importance of a node in a network based on the idea that the
importance of a node increases if it is connected to another node that is itself important. In contrast
to degree centrality, which only looks at the number of connections a node has, eigenvector centrality
takes into account the characteristics of the nodes that are connected to it.

To calculate eigenvector centrality, we use an iterative process. We start by assigning an initial score
of 1 to each node. We then update the vector of scores to a new vector by summing the scores of the
neighbors of each node. This can be written mathematically as:

x′i =
∑

j = 1NAijxj (3.4)

In vector form, this can be written as x′ = Ax. After t iterations, we have:

x(t) = Atx(0) (3.5)
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It is possible to write any initial score vector x(0) as a linear combination of the eigenvectors of A,
i.e., x(0) =

∑

i civi. Using this, we can rewrite the previous expression as:

x(t) = At
∑

i

civi (3.6)

This iterative process allows us to calculate the eigenvector centrality of each node in the network,
taking into account the importance of the nodes it is connected to.

Random walks and PageRank centrality

PageRank is a measure of centrality originally developed to rank web pages[33]. The centrality value
of each node is proportional to the probability that a random walker, subject to teleportation, will
occupy that node while traversing the network. The probability of transitioning from one vertex to
another is proportional to the strength of the edge connecting them.

To calculate the probability of transitioning from node i to node j, we use the formula: Ti,j =
Ai,j

di
,

where A is the adjacency matrix and di is the out-degree of node i. This ensures that the sum of
probabilities from node i to all other possible nodes is equal to 1.

By defining the matrix D as the diagonal matrix with the values of the out-degree di, we can define
the transition matrix as:

T = D−1A (3.7)

To find the occupation probability, we define the vector p(t) as the vector whose ith entry corresponds
to the probability for the walker to be at node i at time t. The evolution of this vector is given by:

p(t+ 1) = p(t)T (3.8)

The occupation probability corresponds to the steady state of this process, given by:

p∗(t) = p∗(t)T (3.9)

This is equivalent to finding the leading eigenvector of the transition matrix T, which corresponds to
the eigenvalue 1. Therefore, p∗ is equal to the leading eigenvector of T.

Ultimately, the vector p∗ will give the asymptotic probabilities of the random walker to be in the
different nodes of the network given the transition probabilities defined with T .

Percolation

Percolation in the context of complex networks refers to the phenomenon where the connectivity
or information flow in a network undergoes a sudden and significant change as nodes or edges are
gradually removed.

The key idea in percolation is to study the emergence of a connected component that spans the entire
network, known as the largest connected component (LCC). The LCC represents the largest cluster
of connected nodes that allows for efficient flow or transmission of information, influence, or other
phenomena across the network.

In the context of complex networks, percolation can help understand various phenomena such as
the spread of diseases, the robustness of infrastructure networks, or the efficiency of information
flow in social networks. By analyzing percolation properties, researchers can gain insights into the
critical thresholds or conditions at which the network undergoes a significant change in connectivity
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or function. Such quantity correspond to a certain fraction of nodes (or edges) removed from the
network in which a transition form a ordered to disordered phase occurs in the system. In order to
spot it, the best way it so look for the maximum of the second largest component size depending on
the fraction of nodes (or edges) removed.

3.1.3 Mesoscale methods

Mesoscale methods in network theory refer to approaches and techniques that analyze the intermediate
level of organization in complex networks, which lies between the microscopic level of individual nodes
and edges, and the macroscopic level of the entire network. These methods aim to uncover patterns,
structures, and properties that emerge at the mesoscale, providing insights into the collective behavior
and functional modules within complex networks.

Components

When analyzing a network, it’s very important so see how an information can spread though the
system. For this reason it’s useful to study the components, which are defined as groups of nodes
in the network in which every pair of origin and target are connected by at least one path, and it’s
not possible to add any other vertex of the network while preserving such a property. For networks
with finite size we define the Largest connected component (LCC) as the cluster with the maximal
subset of nodes. If there exist a path from every vertex in the networks to every other, the network is
connected; otherwise we talk about disconnected network.

Bayesian Communities Detection (DCSBM)

Communities detection is a fundamental task in complex network theory, which aims at identifying
groups of nodes with high density of connections within the group and low density of connections
between groups. In other words, communities are groups of nodes that are more densely connected
to each other than to the rest of the network. The detection of communities is useful for many
applications, such as understanding the structure and function of networks, identifying functional
modules in biological systems, detecting groups of users with similar interests in social networks,
and so on. There are various methods for community detection, which can be broadly classified into
two categories: divisive methods that iteratively split the network into smaller sub-networks, such
as the Girvan-Newman algorithm [34], and agglomerative methods that iteratively merge nodes or
sub-networks into larger communities, such as the famous Louvain algorithm [35]. These methods
can be based on different criteria, such as optimizing modularity, maximizing likelihood, minimizing
conductance or cut, or using spectral or probabilistic methods. The choice of the method and criteria
depends on the specific characteristics of the network and the application at hand.

In this section we will analyse specifically the Stochastic Block Model (SBM) and it variant in which
a correction on the degree distribution of nodes in each group is applied, the Degree Corrected SBM
(DCSBM). A more complete discussion of the argument can be found in [36]. The SBM assumes that
the system can be thought as a realization of an underlying model encoding some mechanism that
generate what can be observed. The aim is to find a set of parameters of the generative model that
maximize the posterior probability P (Θ,b|Ai,j) given by the product of a prior distribution of the
parameters P (Θ,b) to be decided in advance, and the likelihood of the data, which corresponds to
the structure of the system encoded by the adjacency matrix Ai,j given a certain set of parameters
P (Ai,j |Θ,b).

P (Θ,b|Ai,j) =
P (Ai,j |Θ,b)P (Θ,b)

P (Ai,j)
(3.10)

The parameters of the systems are b, a vector of length equal to the number of nodes in the network
n, which describe the partition of nodes in B groups, where B ∈ [0, n− 1], and Θ, a list of additional
model parameters that control how the node partition affects the structure of the network.
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The SBM then specifies a probability distribution for the edges in the network based on the commu-
nities to which the nodes belong. Specifically, it assumes that the probability of an edge between two
nodes depends only on the communities to which they belong. The probability of an edge between
nodes in the same community is typically higher than the probability of an edge between nodes in
different communities.

Although quite general, the traditional SBM model assumes that the edges are placed randomly
inside each group, and because of this the nodes that belong to the same group tend to have very
similar degrees. As it turns out, this is often a poor model for many networks, which possess highly
heterogeneous degree distributions. A better model for such networks is called the degree-corrected
stochastic block model [37], and it is defined just like the traditional model, with the addition of the
degree sequence k of the graph as an additional set of parameters.

The SBM is a powerful method for analyzing the structure of complex networks with communities.
It can be used to detect communities in networks, to compare the community structure of different
networks, and to generate synthetic networks with known community structure for testing algorithms
and models.

3.2 Multilayer networks

Complex systems often operate in multiple contexts, and the agents of the system interact differently in
each context. Multilayer networks theory provides a mathematical framework for representing multiple
representations of the same system. In a multilayer network, the same set of nodes represents different
contexts in which the elements corresponding to the nodes can operate. For instance, in network
medicine, a system may be composed of proteins, genes, and metabolites that interact in different
contexts, such as metabolic processes, responses to particular external stimuli, and gene regulation.
Each of these contexts describes a different layer of the same multilayer network representation of a
cell.

In order to address the requirements of this study, a dedicated computational toolset was developed.
The toolset, named MuxVizPy, was created by modifying the existing R library MuxViz [38] and
introducing new functionalities to overcome computational challenges and incorporate additional tools.
This adaptation allowed for the efficient analysis and visualization of multilayer networks, tailored to
the specific needs of the research.

Multilayer networks are represented by a set of nodes and a set of edges, but with some extra pecu-
liarities compared to the monoplex case. When discussing nodes, we can consider the entity encoding
a certain element of the system, which is called the physical node, and is represented in each layer
of the network. Alternatively, we can think of a specific replica of such a node in a particular layer,
which is called a state node.

One major difference between multilayer networks and monoplex networks is the presence of edges
that can be of different types, which can be divided into two main categories. The first category is
intralayer interactions, which refer to interactions between nodes in the same layer. These interactions
can be further classified as self-interactions (S), where the edge is from a node to itself, or endogenous
interactions (N), which are links between distinct nodes in the same layer. The second category
is interlayer interactions, which include exogenous interactions (X), which are links between nodes
belonging to different layers, and intertwining interactions (I), which are links from a node to its
replica in other layers.

We can classify different types of multilayer structures based on the presence of edges of certain
categories (a graphical representation is shown in Fig.3.6):

1. Multiplex interconnected: This type of multilayer structure consists of networks that have edges
of types (S, N, I). In this case, the interlayer connections consist only of edges between replica
nodes.
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Figura 3.6: Basic classification of multilayer network models based on their interlayer links. Figure from [39]
under Creative Commons AttributionShareAlike 4.0 International License.

2. Interdependent networks: In this type of multilayer structure, we have edges of types (S, N, X),
and replica nodes are not connected to each other.

3. General multilayers: This type of multilayer structure can have connections of all types, including
edges of types (S, N, X, I).

On the other hand, when the interconnection between layers is not well specified, it’s possible to use
the edge-colored representation, in which transitions between replicas of a same node are uniform and
constant.

3.2.1 Representation of Multilayer Networks

Due to the higher dimensionality structure of multilayer networks, new tools had to be developed
to efficiently represent them. This section introduces the tensorial representation[21], which is a
formalism that enables the production of rigorous theoretical results, and the supra-adjacency matrix,
which is a flattened representation of the multi-adjacency tensor. The supra-adjacency matrix is often
used when dealing with the computational part because it enables the use of all the mathematical
tools developed for 2-dimensional matrices.

The tensorial representation of a multilayer network allows to specify whether a node i in a given layer
α is connected to another node j in layer β. To facilitate mathematical operations such as outer and
inner products, the tensor is built using the covariant and contravariant formalism. We define a tensor
M

j1,j1,...,jm
j1,j1,...,jn

of rank mn, m-covariant, and n-contravariant. With this notation, we can define the two
main operations. The outer product of two tensors X and Y is a new tensor Z with a number of
covariant (contravariant) indices equal to the sum of the number of covariant (contravariant) indices
of X and Y . Therefore, the outer product of two tensors is always a tensor of higher order than the
original ones. For example, Xk

ijY
mn
l = Zkmn

ijl .

It is also possible to define an inner product, which corresponds to a contraction because the rank of the
resulting tensor is reduced by two units. For instance, this is the case in the product Xk

ijY
mn
l = Zmn

ij ,
where the index k is covariant for X and contravariant for Y . This operation corresponds to summing
over the components of X and Y identified by the index k.

Using these mathematical tools, it is possible to define a multilinear object in the space R
NxLxLxN ,

which corresponds to the multi-adjacency tensor:

M iα
jβ =

N
∑

a,b=1

L
∑

α,β=1

wab(pq)ei(a)ej(b)eα(p)e
β(q) =

N
∑

a,b=1

L
∑

α,β=1

wab(pq)E
iα
jβ(ab; pq) (3.11)

where ei(a) and ej(b) are the covariant and contravariant canonical rank-1 tensors, and wab(pq) encodes
the intensity of the interactions between node a in layer p and node b in layer q.
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It’s important to mention that we focus on multilayer networks with interlayer connectivity since it is
not possible to define a meaningful multilayer adjacency tensor for edge-colored multigraphs.

Although working with tensors may be difficult and cumbersome from an operational perspective, it
provides a very compact and useful way to write complex equations and can guide our intuition for
generalizing network descriptors for multilayer analysis. Matricization or flattening is a widely adopted
approach that maps a high-order tensor into a lower-order object while preserving the information
content. In the case of a multilayer adjacency tensor, flattening results in a rank-2 object known
as a supra-adjacency matrix. Although working with a supra-adjacency matrix has computational
advantages, it also has notational disadvantages. The supra-adjacency matrix is a block matrix with
intralayer connectivity encoded in diagonal blocks and interlayer connectivity encoded in off-diagonal
ones. However, this arrangement of blocks is not unique, and other arrangements are also valid. This
non-uniqueness makes the supra-adjacency matrix less suitable for theoretical calculations but still a
viable alternative to higher-order tensors.

3.2.2 Microscale methods

The topological tool presented in the section before to investigate the features that the single nodes
plays in the network are here further developed and adapted to the multilayer network framework.

Multi-Degree

Muilti-degree centrality is the simplest indicator of a node importance at a local level, it is obtained
by summing up all the links connected to node i across all layers.

ki =
L
∑

α,β=1

N
∑

j=1

M iα
jβ (3.12)

If the interconnection between layers are not well defined, it’s more suitable to sum up all the degree
contribution of each layer separately:

ki =

L
∑

α=1

kαi =

L
∑

α=1

N
∑

j=1

Ai,j(α) (3.13)

where Ai
j is the adjacency matrix of the layer α.

Multi-Eigenvector Centrality

The ratio behind the definition of the eigenvector centrality in the multilayer scenario is the same
of the monoplex case. When the intralayer connections are known (i.e. we are not considering the
edge-colored case), the natural extension of the leading eigenvector problem that allows to compute
the eigenvector centrality in the single layer scenario, consists in setting up the leading eigentensor
problem for the multi-adjacency tensor:

∑

i,α

M
i,α
j,βΘiα = λ1Θjβ (3.14)

with λ1 the leading eigenvalue of M and Θ the leading eigentensor. The final goal of a multilayer-
centrality measure is to have a score for each physical node in the network, and, given the fact that
Θ encodes information about all the replica nodes, it’s necessary to define a procedure to summarize
all the information about each replica node of a physical node in a single value. They possible choices
are multiple, but usually the most common one is to sum up all the contributions:
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θi =
∑

α

Θiα (3.15)

where θ is the final vector containing the values of the multi-eigenvector centrality for each physical
node.

Computationally speaking, as reported in the previous sections, it’s more convenient to work with the
supra-adjacency matrix rather than the multi-adjacency tensor. In this framework the problem stated
before resolves in finding the leading eigenvector of the supra adjacency matrix. It’s then necessary to
keep in memory which position in the diagonal of the supra-adjacency matrix represent which replica
node, and them merge the entries corresponding to the same physical node with the chosen criteria,
as example by summing them up.

When dealing with very big networks (in this work the number of replica nodes of a multilayer
network are of the order of 10k), the computational power needed for both storing in memory the
supra-adjacency matrix but also for solving the leading eigenvector problem, becomes very high. To
solve the problem two solutions were adopted and implemented in MuxVizPy. For the lack of memory,
rather than dense matrices storing the values of each entry, spares matrices were adopted, supposing
that the number of actual connections between nodes if far smaller than the total number of possible
links (

(

N
2

)

). For the leading eigenvector problem, an iterative approximation procedure was adopted.
We start from a vector with arbitrary entries x0, which is multiplied at each time-step with the matrix
in consideration producing a new vector xnew. If the euclidean distance between x0 and xnew is smaller
than a given threshold, the algorithm stops, otherwise we set x0 = xnew and iterate the process. The
algorithm stops either when it reaches convergence or when a maximum number of steps are done.
Such an approximation is acceptable when considering the ultimate goal to be reached, especially
when it reaches convergence with a small value of the tolerance parameter (10−8 in the actual library
implementation), which rather than obtaining exact values for each entry, consists in obtaining an
order of importance of the nodes, and to be able to differentiate different order of magnitude of the
”importance” values.

Multi-Random Walks, Transition Matrix and Multi-Page Rank versatility

Like in the single layer scenario, the multi-pagerank centrality measure whats to find a score for each
node corresponding to the occupation probability of that node by a random walker in the network.
Setting up the random walker dynamic in the network corresponds in finding the multi-transition
tensor T iα

jβ , which gives for each node in each layer the transition probability in any other node in an
other layer. Usually such a quantity is computed as proportional to the weight of the corresponding
edge, and the probabilities of a transition from a given node to all the other nodes in the network,
should be normalized and sum up to 1. With the multi-transition tensor it’s possible to obtain the
occupation probabilities for each replica node by solving the leading eigentensor:

T iα
jβΠiα = λ1Πjβ (3.16)

The probabilities Πiα defines the random walk occupation centrality, which can be further compressed
by aggregating values corresponding to replicas of the same node obtaining a vector of scores for each
physical node.

On the other handmulti-pagerank centrality can be obtained by solving the same eigentensor problems,
but rather than considering the multi-transition tensor T iα

jβ , we suppose that the random walker is
subjected to teleportation: at any time the random walker can walk to a random neighbor with a rate
r, and be teleport to any other node with rate 1 − r. The new transition tensor which is created in
this way is thus:

Riα
jβ = rT iα

jβ +
1− r

NL
uiαjβ (3.17)
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Figura 3.7: The figure illustrates a 50-step random walk on a multiplex interconnected network. On the right,
the plot shows the replica node where the random walker is located at each timestep. The replica node index is
calculated as physicalnode idx∗layer idx. On the left, the representation of the multilayer network is displayed,
with the numbers near the nodes indicating the timestep when the random walker traverses them.

with N the number of physical nodes, L the number of layers and uiαjβ the rank-4 tensor with all the
entries equal to 1.

Similar to the case of the supra-adjacency matrix, also the multi-transition tensor can be ”flattened”
in a standard matrix of dimension NLxNL, which is called supra-transition matrix. In this way
the leading eigentensor problem can be mapped in a standard leading eigenvector problem. The
computational issues are the same of the case of the eigenvector centrality, and the solutions adopted
in MuxVizPy are also the same for the random walk occupation centrality. For the multi-pagerank
centrality summing up a constant matrix to the supra-transition matrix ( which is reasonable to
suppose as sparse), doesn’t allow anymore to use the sparse matrix tool. The solution becomes then
to not compute directly Riα

jβ, but adding its contribution at each iteration of the leading eigenvector
approximation algorithm described in the previous section. In this way it’s also possible to compute
the multi-pagerank centrality in a very accurate and efficient way.

It’s worth highlighting that the result of both themulti-pagerank centrality and random walk occupation
centrality are higly dependent on the values of the interaction strengths of the interlayer links. In this
work, only multiplex interconnected are considered, so all the replicas of the same physical nodes
are connected with each other. It’s important to tune properly the strengths of this interactions, as
example they can be related to the difference of the degree distribution of the layers. If all the links
of the multiplex have the same weight, and in one of such layer the mean degree of the nodes is much
larger than the number of layers in the multiplex, the probability of a transition between different
layers is much smaller than the one of remaining in the same layer. This could bias the final result,
by leading to bad performances.

To mitigate these challenges, a decision was made to treat the multilayer network as an edge-colored
graph during the application of the page-rank algorithm. Instead of explicitly defining interlayer links,
a uniform probability of transition between layers was considered for a random walker. This approach
helps to circumvent biases that may arise from poorly tuned interlayer link strengths and leads to
more robust and reliable results.

Percolation

In the context of percolation, there are two types to consider in the single-layer case: node percolation
and edge percolation. However, in the multilayer case, the options expand. In terms of edges, one can
remove individual edges from the single layers or eliminate all edges between replica nodes correspon-
ding to the same physical nodes. Similarly, for nodes, one can progressively remove all connections
related to a replica node or remove all connections from all replica nodes corresponding to the same
physical node.
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Figura 3.8: Example of a physical node percolation result for a interconnected 7 layers multilayer network
produced with the PPI networks data. From the trends of both the first and second component it’s clearly
visible the transition between an ordered and a disordered state of the system, correlated to the dimension of
the largest components.

Each type of percolation can be carried out in different ways, depending on the order in which nodes
or edges are removed. This can be done randomly to simulate random failures in the system, or it can
follow a specific metric order to simulate an external attack on the system.

Once a procedure for network disintegration is established, it is important to calculate certain to-
pological features as the process unfolds to monitor the changes in the system. The most common
choice is to track the Largest Connected Component (LCC), but other measures such as the Largest
Interconnected Component (LIC) or the Viable Component (LVC) will be discussed in subsequent
paragraphs.

When considering the LCC, a critical point becomes a crucial related quantity. It represents the
fraction of nodes or edges that need to be removed in order to transition from an ordered state, where
the LCC size is greater than 0, to a state where the system loses connectivity and becomes completely
scattered. This critical point is also associated with the peak of the second largest component size.
An example of such a process can be observed in Fig.3.8.

3.2.3 Mesoscale methods

Components

The analysis of the components is the analyzed aspect in which there is the bigger difference between
the single layer and multilayer scenarios. In fact when looking at the ”fundamental” components of a
multiplex, the quantities to be take into consideration are 3:

• LCC(largest connected component): is the components containing the maximum subset of
nodes. It means that there isn’t any other node in the network which is connected by at least
one multilayer path with one of the nodes in the LCC.

• LIC(largest intersected component): it corresponds to the set of nodes that are connected in all
the layers independently.

• LVC(largest viable component): consists in the set of nodes which are connected by the same
path in all the layers independently. Such nodes are usually very important, because they are
crossed by paths which are present simultaneously in all the nodes, and for this reason it’s very
likely that are fundamental in the overall system behaviour.
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Figura 3.9: LCC, LIC and LVC graphical representation for a simple multiplex interconnected. In the LVC it
is highlighted with a thick red line the edge shared between all the layers.

DCSBM applied to edge-colored networks

When dealing with the multilayer networks framework, also an extension of the DCSBM algorithm
presented previously is available[40]. It works with a layered structure, which correspond to the edge-
colored multilayer netowrk case, in which the interlayer connections are not specified. In this case
the DCSBM takes into account both the node degrees (number of connections) and the community
assignments across all layers to generate a probabilistic model of the network. The algorithm considers
a degree correction factor for each node and layer, which accounts for the variation in node degrees
across layers. This correction factor allows for the modeling of nodes that may have different degrees
in different layers. By incorporating this degree correction, the algorithm can capture the inherent
heterogeneity in node connectivity across layers.

The DCSBM algorithm in layered structures involves estimating the model parameters, such as the
community assignments and the degree correction factors, using likelihood maximization or Bayesian
inference techniques. These parameters are optimized to best fit the observed network data across all
layers. The resulting model can then be used to analyze the network’s community structure, identify
influential nodes or communities, and understand the interplay between different layers in the network.

Overall, by extending the DCSBM to layered structures, we can gain insights into the complex interac-
tions and relationships within multi-layer networks, providing a more comprehensive understanding
of the system under study.
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Chapter 4

Dataset

In this work, the focus is on analyzing interactions between viruses and human proteins using complex
network analysis, specifically utilizing a multilayer network structure. Protein-protein interaction
networks, which are complex graphs connecting nodes representing proteins with various types of
relationships, play a crucial role in this framework.

Obtaining data on virus-host interactions from the literature involves multiple sources, each studying
different viruses and employing diverse methods to gather interaction data[41]. Assembling a compre-
hensive database that encompasses all the information from the literature is beyond the scope of this
work. Therefore, multiple approaches were proposed and their differences were thoroughly analyzed.

A particular focus will be given to data from the STRING database [42], a bioinformatics resource that
provides information on protein-protein interactions (PPIs). It serves as a comprehensive repository of
known and predicted protein interactions, consolidating data from various sources such as experimental
studies, computational predictions, and text mining. STRING assigns confidence scores to protein
interactions, indicating the reliability of the evidence supporting each interaction.

Starting from the STRING dataset, appropriate virus-host protein-protein interaction networks can
be constructed to form the dataset for this work. The choice of network construction method depends
on the initial assumptions made for the analysis, as different approaches can provide unique insights
into the problem at hand. By comparing and identifying common results among these approaches,
the aim is to strengthen the conclusions of this work, avoiding dataset-specific biases and enhancing
the generalizability of the findings.

Another important resource is viruses.STRING, a online database created from STRING data which
focuses on the description between the interactions between viruses and host[43]. Essentially it pro-
perly select the subset of the host PPI which interacts with the virus protein, building itself PPI
network which can be either downloaded as a file and even analyzed graphically.

4.1 PPI links experimental search

Protein-protein interaction databases can contain different types of links that represent different types
of interactions between the proteins. Here are some examples of the types of links that can be found
in STRING and viruses.STRING:

1. Physical interactions: These links represent direct physical interactions between two proteins,
such as binding, catalysis, or transport. There are many ways to investigate such links in
laboratory. As example it’s possible to put markers in different organisms (e.g. yields), merge
them together and see if such marked proteins interact, or by using particular techniques to
move a specific protein, and looking if the other one follows it. Another way it to see how an
organism responds to the removal or one of the two or both the considered proteins, exploiting
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Figura 4.10: Example of graphical representation of a PPI interaction network involving the links related to the
TP53 protein from the STRING web page https://string-db.org/cgi/input?sessionId=bMApwDqLCTiS

particular techniques such as CRISPR: if it survives when one of the two is removed, but dies
when both of them are eliminated, it means that probably they are strongly related for some
important biological process.

2. Functional interactions: These links represent indirect interactions between two proteins,
such as proteins that participate in the same biological pathway, share a functional domain, or
regulate each other’s activity.

3. Co-expression links: These links are based on gene expression data and represent proteins
that are co-expressed across multiple experiments, which may suggest that they are functionally
related.

4. Text mining links: These links are based on automatic text mining of scientific literature
and represent proteins that are mentioned together in the same article, which may suggest a
functional association.

5. Gene neighborhood links: These links represent proteins that are produced by genes close
to each other in the network, and may suggest a functional relationship even if there is no direct
evidence of interaction.

6. Gene fusion links: These links include proteins that are produced by genes that in a cer-
tain point of the evolution, merged together. Also in this case there is no evidence of actual
interactions, but the connection is considered to be likely and inferred.

7. Genes omology links: They represent connections between proteins that are produced by
genes which present a similar spatial conformation.

The protein-protein interaction (PPI) network of viruses in STRING database incorporates various
types of links from diverse sources and prediction methods, providing a comprehensive view of protein
interactions involved in viral infections.
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Each link is assigned a confidence score, determined through different approaches based on the method
used to identify the link.

To construct a reliable dataset for analysis, it is important to implement a meaningful slicing procedure
that retains only the links consistent with the initial assumptions for constructing a specific type of PPI
network. However, it should be acknowledged that due to the nature of link determination procedures,
this approach may not capture the complete biological context. In the following paragraph, we discuss
the implications of this incompleteness.

4.2 PPI network incompleteness and afterwards

As we delve into our research, it is crucial to keep in mind that the protein-protein interaction networks
we are dealing with are incomplete. When an edge exists in the dataset, it indicates a probable
connection between the genes, but the degree of confidence in its presence can vary. To address this,
we must select a threshold and only consider edges with a likelihood of being present above that value.
The higher the score, the higher the confidence in the existence of such links and a the lower is the
probability of false positives.

However, false negatives are more common, as detecting a link requires conducting an experiment to
verify it. With networks as large as the human proteome, which has a vast number of possible links, it
is impossible to verify all of them. Additionally, the number of links related to a specific protein can
reflect its popularity, as more experiments are likely to be conducted on important proteins, leading
to more interactions being discovered.

Taking all of these factors into account, and selecting interaction with high scores, we will assume
that our networks are complete enough to provide useful insights in our subsequent analyses.

4.3 From Databases to Networks

The methodology employed in this study to construct functional protein-protein interaction (PPI)
networks that accurately represent the interaction between human cells and viruses is inspired by
the approach proposed by the CoMuNeLab [44]. The required data consist of two types: firstly,
information describing the human PPI network, which includes a list of links between pairs of human
proteins selected based on specific criteria, enabling the construction of the human PPI network.

Additionally, data pertaining to how the virus interacts with human proteins are needed to appropria-
tely represent this interaction in network form. Specifically, the data should describe the interactions
between human and viral proteins, enabling the identification of human proteins directly targeted by
the virus.

Following this step, two approaches can be pursued. The first approach involves subsetting the entire
human PPI network by considering only the nodes and edges related to the human proteins directly
targeted by the viruses. However, with the available data, this approach often yields small and
disconnected networks.

To address this limitation and create more connected networks, an alternative approach involves
including other proteins that are likely to be influenced by the virus. The most straightforward choice
is to select the nearest neighbors of the directly targeted proteins and extract the corresponding subset
from the entire human PPI network. This approach, depicted in Fig.4.11, is preferred as it allows
for better utilization of network theory tools and will be utilized to construct the networks for the
subsequent analyses.

The resulting networks, constructed using this approach, provide insight into how viral infections
impact the human proteome. Different networks corresponding to different viruses can be considered
as descriptions of the same system (the human proteome) under the influence of distinct external
stimuli (viral infections).
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Figura 4.11: The figure illustrates by using a simple 50 nodes random network, how the method to build the
PPI networks associated to each virus works. Firstly the entire human PPI network is considered (a). Then
the nodes which are directly targeted by the virus are considered (b), and in order to enlarge the network, also
their nearest neighbours are picked (c). Finally only the subset of the entire original network involving the
nodes highlighted in the previous steps is extracted resulting in the final PPI network describing the virus-host
interaction.

4.4 BioSTRING

The first dataset used is the one proposed by the CoMuNeLab[44], called BioSTRING, a proteo-
men interaction database build by integrating the PPI databases obtained both form the databa-
se BioGRID[45] v3.5.18217,33 (publicly available at https://downloads.thebiogrid.org/BioGRID/
Release-Archive/BIOGRID-3.5.182/), while the second one is STRING[42] v11.016 functional inte-
ractions network (publicly available at https://stringdb.org/cgi/download.pl). To avoid nomen-
clature problems, the data from both dataset were filtered by using the NCBI gene database to map
all protein names and aliases to a common nomenclature of official symbols. Specifically, were used the
data made publicly available from NCBI at ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/GENE_INFO/
Mammalia/(Accessed March 28, 2020).

The nature of the links between different proteins obtained both by BioGRID and STRING can be
very different, they can be related to functional connections, co-occourence in some systems, physical
interactions, physical similarities, but all these aspects are taken together and a final aggregate network
describing the interaction between human proteins is built.

The majority of the data containing the interactions between the viruses proteins and the host-human
proteins are taken from STRING Viruses[43], an online database derived from STRING in which
it’s possible to obtain data of virus-host PPI networks for a great variety of both virus and host
species. From this source were obtained PPI interactions for 80 viruses which can infect the humans.
As regard the human-human proteins interactions, BioSTRING provides 737668 links which involve
19946 different proteins, that are used to buid the entire human PPI network.

By starting form this network, the procedure presented before allows to create 80 host-virus PPI
networks describing how the human proteome is influenced by the infection of the virus. An example
of such a network is reported in Fig.4.12.
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Figura 4.12: A graphical representation of the PPI nearest neighbor network associated with the Human
rhinovirus A serotype 89. The node size in the network corresponds to the betweenness centrality, while the
color of the nodes indicates the corresponding page rank centrality. Nodes with low page rank centrality are
depicted in blue, while nodes with high page rank centrality are depicted in yellow.

At the end for each virus are generated two files. The first one contains a list of nodes and their types,
which are categorized as viral genes (0), directly targeted human genes (1), higher-order human genes
(2), disease (3), symptom (4), drug (5), or biological process (6). The types of nodes from 3 to 6 are
integrated by exploiting other interaction resources, which will not be used and presented, so, for the
purpose of this work, only nodes of type 1 and 2 were considered.

The second file contain a list of the edges between pairs of nodes contained in the nodes file. These
edges can involve nodes of all six different types, but due to our focus on nodes of types 1 and 2, only
edges between these nodes were considered.

In order to be able to build PPI networks as representative of the real system as possible, these links
obtained from viruses.STRING, representing the interaction between the host and the virus, are all
characterized by high confidence level, which mean grater than 0.7.

4.4.1 Viruses in BioSTRING

The dataset includes information for each virus, such as the virus name, the number of proteins it
contains, the number of interactions with human proteins, the virus family, and a crucial attribute for
this study: a boolean value indicating whether the virus is categorized as oncogenic or not. Based on
this information, the viruses can be divided into two groups: oncogenic and non-oncogenic.

The oncogenic group consists of the following eight viruses: Epstein-Barr virus strain B95-8, Hepatitis
B virus genotype C subtype ayr isolate Human-Japan-Okamoto, Hepatitis C virus genotype 1a isolate
H, Human herpesvirus 8 type P isolate GK18, Human papillomavirus type 16, Human papillomavirus
type 18, Human papillomavirus type 5, and Human T-cell leukemia virus 1 isolate Caribbea HS-35
subtype A.

The non-oncogenic group comprises 72 viruses. However, when considering only the non-oncogenic
viruses, the SarsCov2 virus, which is the target of this analysis, is excluded. Therefore, the effective
number of non-oncogenic viruses is 71.
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4.4.2 Problems in BioSTRING

During the analysis of the BioSTRING database, some critical issues were identified. Firstly, the
database was found to be based on an outdated version of the protein-protein interaction (PPI) data
from STRING. This raises concerns about the accuracy and relevance of the interactions included in
the database.

Furthermore, upon examining the raw data, it became apparent that the majority of the considered
links, those with a confidence level greater than 0.7, were attributed to text-mining-based interactions.
This poses several drawbacks for further analysis. The number of edges associated with a particular
protein is likely to be influenced by the number of publications on that protein, which may not neces-
sarily correspond to a higher number of actual connections. This aspect is not a feature of interest for
the current work. Additionally, it was observed that experimentally determined interactions typically
have medium confidence scores ranging from 0.45 to 0.7, rather than high confidence levels (> 0.7).
Therefore, by solely selecting high confidence links, it is possible to retain interactions that are deemed
highly probable but assign minimal importance to experimentally derived links.

To address these concerns, a decision was made to construct a new dataset following a similar approach
to BioSTRING. However, in this new dataset, these considerations will be taken into account both
during the construction of the human protein-protein interaction network and for the identification of
interactions between viruses and human proteins. By doing so, a more accurate and reliable dataset
can be generated, facilitating the subsequent analysis.

4.5 ”Co-expression” and ”Experimental” Databases

To address the issues mentioned earlier, a new dataset was created based on the STRING database.

Initially, a dataset containing all interactions involving Homo sapiens was downloaded. This dataset
includes interactions among human proteins as well as interactions with proteins from other organisms,
such as viruses.

The next step involved constructing the human protein-protein interaction (PPI) network. To do
this, a set of predefined criteria was used to filter the interactions from the dataset. The aim was
to avoid biases introduced by literature-based sources. Specifically, only links supported by gene co-
expression were chosen, indicating a statistically significant correlation between the expression of the
two proteins. The confidence level threshold for these links was set to 0.4, ensuring a medium level of
confidence.

To expand the dataset while still excluding literature-based sources, additional links discovered th-
rough other experimental procedures were considered. Two additional sources from the STRING
database, namely ”experiments” and ”co-occurrence,” were incorporated. ”Experiments” encompas-
sed various detection methods, such as Yeast Two-Hybrid, Co-immunoprecipitation, Affinity Chro-
matography, and Mass Spectrometry, representing links investigated through laboratory experiments.
”Co-occurrence” referred to the observation that two proteins tend to interact or coexist in the sa-
me cellular context more frequently than expected by chance, suggesting a functional or regulatory
relationship.

Table 4.1 presents some topological features of each of these human PPI networks. As expected,
each of the three filtered networks contained less than 10% of the total number of interactions in
the original database, reflecting the exclusion of low-confidence links. The co-expression network was
approximately three times smaller than the experimental network and more than six times smaller
than the high-confidence network, with a similar trend observed for the number of nodes.

Protein nomenclature poses another aspect to consider. The existence of multiple naming systems
for proteins introduces confusion and inconsistency when referring to the same protein across diffe-
rent studies or databases. Various nomenclature systems are in use, including UniProtKB Accession
Numbers, NCBI, Human Genome Organization (HUGO), BioGRID nomenclature, STRING nomen-
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Complete Co-expression High confidence Experimental
(c.s.> 0.4) (c.s.> 0.7) (c.s.> 0.4)

Nr. edges 11353056 112776 719552 319892
% edges 100% 0.9% 6.3% 2.8%
Nr. nodes 19576 4499 15131 12984

Tabella 4.1: The table provides essential characteristics of different Human Protein-Protein Interaction (PPI)
networks derived from applying various cutoffs to the list of links between human proteins in the STRING
database. The networks are classified as follows: ”Complete” (no cutoff), ”Co-expression” (links related to
co-expression with confidence score > 0.4), ”High-confidence” (links with confidence score > 0.7), and ”Experi-
mental” (links from experimental studies with confidence score > 0.4). The % edges row return the percentage
of the number of edges in a PPI network compared to the ”Complete” case.

clature, and Gene Ensembl, among others. Tools are available to convert protein names from one
nomenclature system to another. However, being able to completely map the all protein names from
one nomenclature to another is a very challenging task, far exceeding the purpose of this work.

In the case of the databases extracted from STRING, an attempt was made to convert the protein
names from the STRING nomenclature to the NCBI nomenclature. However, the results were not
satisfactory, causing a sensible reduction in the dataset dimension. As a result, the decision was made
to preserve the STRING nomenclature for all network analyses and perform the conversion only for
the discussion section, using the most commonly used names in literature. This approach allowed
for accurate referencing and facilitated more comprehensive research when correspondence between
naming systems was challenging to establish.

After constructing the human protein-protein interaction (PPI) network, the next step is to extract
the virus-host interactions from the original dataset. These interactions refer to edges where either
the source or target protein belongs to a virus. Using this procedure, a total of 103 viruses were
identified, which is higher than the number present in the BioSTRING dataset. This increase can be
attributed to the fact that the STRING database has been updated with additional information since
the creation of BioSTRING.

Similar to the previous step, it is necessary to filter the interactions based on a reasonable confidence
level. In this case, both high-confidence links related to text mining and medium-confidence links
obtained from experimental detection methodologies are considered. By including these additional
links, the number of human proteins directly targeted by each virus increases compared to the proteins
used in the BioSTRING dataset. This broader inclusion of interactions provides a more comprehensive
view of the virus-host relationships in the dataset.
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Chapter 5

Bias Detection on Single Layer Networks

5.1 Analysis of Individual Virus-Host Interaction PPI Networks

Before applying the methods of multilayer networks, it is important to analyze each individual virus-
host interaction PPI network. This analysis aims to identify the main features, potential differences
among viruses, biases that may impact further analysis, and relevant biological details that can guide
subsequent investigations.

To verify these observations, it is necessary to create null models. These synthetic PPI networks
mimic the characteristics of the dataset but are constructed by randomly selecting nodes according
to specific criteria, as outlined in the following section. By comparing the real PPI networks with
the null models, we can gain insights into the significance and uniqueness of the observed network
properties.

5.1.1 Synthetic Networks

The procedure described in Chapter 3.2.3 for constructing the virus-host PPI network allows us to
create nearest neighbors PPI networks based on an input list of nodes, representing the proteins
directly targeted by virus proteins.

The choice of the protein list depends on the specific research question at hand. The goal is to extract
a certain number of samples from a given protein list, either using a uniform distribution or assigning
a probability to each entry. This procedure relies on three main components: the number of samples,
the sample list, and the probability distribution.

In this work, the number of samples was determined using one of the following approaches:

• Fix: The first approach involves selecting a fixed number of samples, which is suitable when
studying the characteristics of a specific virus. Since we cannot control the number of proteins in
the virus or the number of nearest neighbors in the human proteome, this fixed number approach
ensures consistency across viruses.

• Distr: The second approach involves drawing the number of samples from a distribution that
matches the empirical distribution observed in the data. As shown in Fig.5.13, the empirical
distribution aligns well with an power law distribution, which parameters were find with a fit.
Therefore, the number of samples is randomly chosen as an integer extracted from an exponential
distribution, which parameters are obtained from a fit of the empirical distribution.

The sample lists used in the following analysis are:

• Human: all the proteins in the human PPI.

• Onco: all the proteins of the human PPI that are targeted at least by one oncogenic virus.
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Figura 5.13: The red histogram represents the empirical distribution of the number of human proteins directly
targeted by the viruses in the dataset. The blue line represented the power law function fitted on the empirical
distribution from which the values to use in the ”Distr” nr. of samples determination procedure, are exctracted.

• Nonco: all the proteins of the human PPI that are targeted at least by one non-oncogenic virus.

• Sars: all the proteins of the human PPI that are targeted by the Sars-Cov2 virus.

The choice of the protein list from which samples are extracted in this work includes the following
options:

1. Unif : the proteins to use in the synthetic virus are extracted form the sample list with a uniform
distribution.

2. Targeted: this method aims to create viruses that resemble the original ones more closely. For
this reason, it may be appropriate to assign a higher probability to extracting proteins that
appear in multiple viruses. To achieve this, a normalized histogram of protein appearances in
different viruses can be generated, and each sample can be assigned a probability based on its
frequency of occurrence. This method can be used only when the sample set is associated to
a empirical distribution associated to the occourcence in different viruses, such as Onco and
Nonco.

3. Enrich: This approach involves performing a functional enrichment analysis, typically using
KEGG, on the virus of interest. For each detected pathway, the overlap value and the proteins
belonging to the pathway are extracted. From each list of proteins, a number of samples are
randomly selected using a binomial distribution with the number of elements equal to the num-
ber of proteins in the pathway and a probability equal to the overlap value. This selection is
performed uniformly across the proteins in the pathway. The aim of this approach is to create
viruses that target proteins with similar functional features compared to the original virus. This
method has to be used starts from a sample set associated to a specific virus, but at the end the
list of samples actual used to build the synthetic virus is different.

For further analysis, the results obtained from the synthetic viruses generated using different methods
are compared to identify any significant features that are not mere chance occurrences. Each approach
used to create a set is described through the abbreviation:

SamplesSet - SampelsExctracitionMethod - Nr.ofSamplesExctractionMethod

5.1.2 Number of Nodes Involved

In the initial analysis, we examine the number of proteins involved in constructing the PPI networks.
These proteins can be categorized as follows: virus proteins, human proteins directly targeted by the
virus, and human proteins that are nearest neighbors to the directly targeted proteins.

For further analysis, the most relevant quantity among these categories is the number of human
proteins directly targeted by the virus, as it determines the size of the virus-related PPI network.
Such quantities are graphically represented in Fig.5.14. Statistical analysis reveals that oncogenic
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Figura 5.14: The stem plots display two sets of data: the number of human proteins directly targeted by viruses
(top) and the number of nearest neighbors of these proteins in the Human PPI network (bottom). Each virus
in the dataset is represented, with oncogenic viruses shown in red, non-oncogenic viruses in blue, and the Sars-
Cov2 virus highlighted in green.

viruses have a larger number of directly targeted human proteins (50±44) compared to non-oncogenic
viruses (12± 21). Interestingly, the Sars-Cov2 virus exhibits the highest number of directly targeted
human proteins. To determine if this value is solely due to the extensive research conducted on this
specific virus or if it genuinely interacts with a large number of human proteins, it is necessary to
compare it with synthetic viruses generated using a specific procedure.

The network sizes of 100 synthetic viruses, created using various procedures, are extracted and com-
pared. The procedures include: Human-Unif-Fix(Sars), AllViruses-Targeted-Fix(Sars), Sars-Enrich-
Fix(Sars), Sars-Unif-Distr, Sars-Enrich-Distr, Nonco-Targeted-Distr, Onco-Targeted-Distr, Human-
Unif-Distr, and AllViruses-Targeted-Distr. The results are presented in Fig.5.15, alongside the net-
work size values of the viruses in the dataset, by also dividing them in the oncogenic and non-oncogenic
groups. In order to better compare the different distributions, are also computed the p-values associa-
ted to the application of the Wilcoxon-Ranksum test which verifies the hypothesis of two distributions
having the same median.

Upon analyzing the results, several observations can be made:

• The distribution Sars-Enrich-Fix is the only one that is compatible with the size of the Sars-
Cov2 PPI network. This is reasonable because the targeted proteins are extracted based on
the pathways associated with the Sars-Cov2. Furthermore, since the proteins to target in the
synthetic viruses are chosen uniformly from the list of proteins associated with each pathway, it
can be concluded that the Sars-Cov2 does not exclusively target the most important and highly
connected proteins within each pathway.

• The values in the Sars-Unif-Distr distribution are statistically smaller than the size of the Sars-
Cov2 network. This indicates that the virus targets a set of nodes with a higher degree than the
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Figura 5.15: On the left, istribution of the networks size for different sets of PPI networks. They involve viruses
PPI from the dataset (All Viruses, Onco, Nonco) but also synthetic viruses build with different methods. The
red dashed lines represent the Sars-Cov2 PPI network size. On the right, heatmap indicating the p-values
obtained by comparing pairs of distributions using the Wilcoxon-Ranksum test.

average value.

• The values in the AllViruses-Targeted-Fix(Sars) distribution are statistically higher than the
size of the Sars-Cov2 network. This suggests that although other viruses interact with a smaller
number of human proteins, these proteins are more connected in the human interactome.

• Comparing Sars-Unif-Distr, Human-Unif-Distr, and AllViruses-Targeted-Distr, it can be ob-
served that Human-Unif-Distr and Sars-Unif-Distr are compatible with each other, while the
values in AllViruses-Targeted-Distr are statistically higher. This supports the statement that
most of the proteins targeted by the Sars-Cov2 are not as highly connected as the human proteins
targeted by other viruses.

• The distributions Nonco-Unif-Distr, Nonco-Targeted-Distr, Onco-Unif-Distr, Onco-Targeted-
Distr, AllViruses-Unif-Distr, and AllViruses-Targeted-Distr appear to be compatible with each
other. This suggests that proteins targeted a greater number of times are not necessarily more
highly connected in the human interactome compared to others. The Sars-Enrich-Distr distri-
bution can also be grouped with these distributions, possibly because the Enrich method is more
likely to extract pathways that are more relevant in the Sars-Cov2 enrichment analysis. One
possible explanation is that these pathways are particularly important for the cell and therefore
composed of highly connected proteins.

The initial analysis indicates that Sars-Cov2 exhibits structural properties that distinguish it signifi-
cantly from other viruses, both oncogenic and non-oncogenic. This divergence may pose challenges
when comparing Sars-Cov2 with viruses from the two classes after the classification procedure.

One potential solution is to reduce the dimensionality of the associated PPI network for Sars-Cov2.
This can be achieved by increasing the confidence level threshold for retaining specific interactions or
by conducting bootstrap analyses. In the case of bootstrap analysis, elements belonging to the most
relevant pathways could be extracted more frequently or in a uniform manner. These approaches aim
to mitigate the structural differences and facilitate meaningful comparisons between Sars-Cov2 and
viruses from other classes.
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Chapter 6

Topological Features Analysis on Mul-
tilayer Networks

The approach employed in this study involves constructing multilayer networks by stacking multiple
protein-protein interaction (PPI) networks corresponding to different viruses. A total of four layers we-
re chosen to allow for various combinations of oncogenic and non-oncogenic viruses while maintaining
manageable system sizes and preserving layer-specific information.

Each node in the network represents a specific protein in the human PPI and is shared across all
layers. Based on this, the multilayer network can be constructed using two primary approaches. The
first approach is an interconnected multiplex, where each replica of a physical node is connected to all
other replicas. If a protein is not present in the nearest neighbor network of proteins directly targeted
by a virus in a specific layer, the corresponding replica node in that layer will have inter-layer edges
only and no intra-layer links.

The second approach involves an edge-colored network, where interlayer interactions are not explicitly
defined. This approach is particularly important for conducting versatility analysis using the multilayer
PageRank algorithm, where each node has a probability of uniformly transitioning to nodes in networks
not directly connected to it. It is also relevant for the layered DCSBM algorithm used to analyze
modules and modularity of the system.

The multilayer framework serves multiple goals. Firstly, it enables the interpretation of different
layers as different influences on the same human interactome caused by external stimuli, specifically
viral infections in this study. Secondly, by combining multiple systems (virus-host PPI networks)
with a shared feature, it becomes possible to identify common properties among individual systems
and determine the underlying common feature. Lastly, this framework allows for generating a large
number of combinations of four-virus sets, enabling the generation of distributions for each quantity
extracted from the multiplexes, which can be statistically analyzed.

The central idea driving this approach is to initially identify quantities that can differentiate between
oncogenic and non-oncogenic viruses and then examine how the inclusion of SarsCov2 in either class
affects the results.

The Wilcoxon-Ranksum test will be utilized for comparing distributions, specifically by computing
p-values that describe the similarity between pairs of distributions. A threshold of significance at a
p-value of 5E − 2 will be employed to determine the rejection of the null hypothesis, which assumes
that the two distributions have the same median.

The chosen combinations for analysis are as follows:
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Figura 6.16: A visual depiction of a multilayer network extracted from a sample in the N combination set. The
size of the nodes corresponds to their page-rank centrality within the network.

• Networks composed solely of viruses of one type: oncogenic (O) and non-oncogenic (N). By
comparing these two sets, the aim is to identify features that maximize a specific metric between
the generated distributions. These features could then be utilized for classification purposes.

• Given the focus on examining the characteristics of individual viruses, it is important to isolate
the contribution of each layer in the multilayer network. To achieve this, combinations are
constructed starting with viruses of the same category and progressively adding viruses from
the other category. These combinations include: 3 non-oncogenic and 1 oncogenic (N1O), 2
non-oncogenic and 2 oncogenic (N2O), and 1 non-oncogenic and 3 oncogenic (N3O).

• Structures are also constructed to specifically study the Sars-Cov2 virus. Sets comprising 3
viruses of the same type along with Sars-Cov2 are created (N1S, O1S). Additionally, other
combinations are generated to investigate whether the inclusion of Sars-Cov2 in the network
yields a contribution comparable to that of inserting a generic oncogenic virus (N1O1S, N2O1S).

In Tab.6.2 are reported the number of possible combinations for each of the combination sets, alongside
to the abbreviation that will be used in the analysis sections.

To compute the required feature distributions for the subsequent analysis, a set of 2000 samples is
extracted from all combinations except for O and O1S. For these two combinations, all available
samples (70 for O and 56 for O1S) are included.

6.1 Components Analysis

The initial stage of the multilayer analysis involves examining the largest components of the multiplex
network, specifically the largest connected component (LCC), largest intersected component (LIC),
and largest viable component (LVC). These quantities were calculated using the functions provided
by the MuxVizPy package.

The size of these components is the primary focus of this analysis.

6.1.1 LCC

The analysis of the Largest Connected Components (LCCs) confirms that oncogenic PPI networks tend
to be larger than non-oncogenic networks. This trend is evident when comparing the distributions of
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Set Composition # of possible combinations Acronym

4 oncogenic 70 O
4 non-oncogenic 1028790 N
3 non-oncogenic + 1 oncogenic 477120 N1O
2 non-oncogenic + 2 oncogenic 71568 N2O
1 non-oncogenic + 3 oncogenic 4032 N3O
3 oncogenic + SarsCov2 56 O1S
3 non-oncogenic + SarsCov2 59640 N1S
2 non-oncogenic + 1 oncogenic + SarsCov2 20448 N1O1S
1 non-oncogenic + 2 oncogenic + SarsCov2 2016 N2O1S

Tabella 6.2: Description of how the different combination sets are build and the number of possible different
samples that is possible to extract from each of them.

oncogenic (O) and non-oncogenic (N) networks in Fig.6.17(left). As more oncogenic layers are added
to the multilayer networks, the distributions shift from N to O.

Furthermore, it is evident that all the distributions are highly distinct from each other, as reinforced
by observing the heatmap in Fig.6.17. The heatmap clearly shows that only the distributions of
N2O1S and N1O1S seem to exhibit compatibility with each other, while the remaining combinations
demonstrate significant differences.

The imbalance in network size associated with Sars-Cov2 is also apparent in the three highest di-
stributions (N1S, N2O1S and N1O1S) and the bottom one (O1S) in Fig.6.17, which have values
significantly greater than those of O.

In conclusion, it can be observed that oncogenic viruses generally generate larger PPI networks com-
pared to non-oncogenic viruses, and this effect appears to be even more pronounced for the Sars-Cov2
PPI network.

There are two possible explanations for this observation. First, it is possible that oncogenic viruses
have a greater level of interaction with the human PPI network, resulting in larger virus-host PPI
networks. Alternatively, this size disparity could be attributed to some form of bias. To address this
hypothesis, the subsequent parts of the study will consider this factor and not solely rely on network
size for the oncogenic/non-oncogenic classification. By doing so, other potential causes related to
various aspects of the network can be explored.

Regarding the composition of the LCC, this analysis is not particularly informative. Since most
virus-host PPI networks consist of only one component, and the multilayer framework likely creates
connections even between the few disconnected components in each layer, the final result is a union
of all the nodes from the four layers.

6.1.2 LIC and LVC

The analysis of the Largest Intersected Components (LICs) allows us to investigate common features
among viruses within the same multilayer network, particularly by identifying a shared core of nodes
involved in the PPIs of viruses in the same category. Additionally, the LIC can be compared with the
corresponding Largest Viable Component (LVC), which is a subset of the LIC and represents the set
of nodes that are simultaneously connected by the same path in all layers. The comparisons between
LIC and LVC sizes for different combination sets are shown in Fig.6.18, alongside the heatmaps
reporting the p-values associated to the compatibility Wilcoxon-Ranksum tests between the different
distributions. In the graphical representation, the size of LIC and LVC are treated as a single quantity.
This is because there is no visible distinction between the two when examining the graphs. Similarly,
the statistical descriptive measures such as median and standard deviation also show no noticeable
difference between LIC and LVC sizes.
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Figura 6.17: On the left the normalized distribution plots depict the LCC size for samples belonging to different
combination sets. The median and standard deviation values are provided for each distribution, offering insights
into the central tendency and variability of the respective variables. On the left the heatmap displays the p-
values obtained from the Wilcoxon-Ranksum test applied to all possible pairs of distributions.

Interestingly, the size distributions of oncogenic viruses (O) are consistently larger than those of non-
oncogenic viruses (N) in both the LIC and LVC cases. This suggests that there might be a specific set
of nodes within the PPI network that predominantly interact with oncogenic viruses, leading to their
larger size. On the other hand, non-oncogenic viruses seem to have a more diffuse and less concentrated
influence on a broader range of proteins, resulting in smaller and less distinct size distributions.

Consequently, it is highly informative to examine the specific proteins that constitute both the Largest
Intersected Components (LICs) and Largest Viable Components (LVCs). By intersecting all the LICs
and LVCs within a particular combination set, we can identify the common core of nodes shared
among the viruses in that set. This analysis is particularly interesting for both the oncogenic (O) and
non-oncogenic (N) cases. When applying the intersection procedure to O, we find that the intersection
for both the LIC and LVC yields the same set of nodes:

RNF4, DAXX, PARP1, TP53, MDM2, CREBBP, ABL1, HMGA1, HIST2H2BE,
PIN1, FBXW7, PML, TRIM25, MAP3K1, MDM4, UBE2I, NKX2-1, SMAD3, TP73,

PPM1D, HNRNPL, KIAA1429, SMAD2, CTBP1, CBX4, ACTBL2, RANBP9,
SUMO2, SKI, PIAS1

On the other hand, for the non-oncogenic viruses (N), no common core is observed when intersecting
all the LICs and LVCs. This lack of common core could be attributed to the larger number of non-
oncogenic viruses compared to oncogenic ones, reducing the likelihood of a shared set of connected
nodes. Additionally, it is worth noting that the PPI networks associated with non-oncogenic viruses
are statistically smaller than those of oncogenic viruses (Fig.5.14).

However, it is still informative to investigate which proteins appear more frequently in the LIC and
LVC node sets for N . The results are presented in Tab.6.3, highlighting the difference in occurrences
between the LIC and LVC for the most frequent proteins. Notably, the proteins HSP90AA1 and
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Figura 6.18: Figure (a) shows boxplots and figure (b) the normalized distribution plots of the LIC and LVC
size distributions for samples from different combination sets. The median and standard deviation values are
provided for each distribution in (b). It can be observed that there is no significant difference in the distribution
of LIC and LVC sizes, both graphically and statistically, as indicated by the lack of noticeable differences in
descriptive quantities. This observation is further supported by the heatmaps in (c) and (d), which display
the p-values obtained from the Wilcoxon-Ranksum test applied to all possible pairs of distributions in the two
cases.

CDK9 exhibit the greatest percentage difference in their frequencies. These proteins are involved in
fundamental cellular processes, suggesting that in the layers where they are not directly connected,
the global connectivity tends to establish alternative paths to connect them to the largest component.

Upon examining the heatmaps in Fig.6.18, an interesting observation can be made regarding the
compatibility between certain distribution pairs. Notably, the following pairs exhibit compatibility: O
and O1S, N1O and N1S, N2O and N1O1S, N3O and N2O1S. This indicates that when substituting
a layer associated with an oncogenic virus with the one associated with Sars-Cov2, the resulting
distributions of LIC and LVC size remain compatible with the original distributions. This suggests
a strong affinity between Sars-Cov2 and oncogenic viruses. Additionally, compatibility is observed
between N3O and N1O1S, as well as between N2O and N1S, indicating that the inclusion of the
Sars-Cov2 layer seems to increase the ”degree of oncogenicity” even more compared to the introduction
of an oncogenic layer.

6.2 Percolation Analysis

Another approach to analyze the properties of the systems is to examine their robustness to percolation
processes. Percolation, specifically nodes percolation, involves progressively removing nodes from the
networks. As described in the previous chapter, the order in which nodes are removed, along with their
corresponding links, in the multilayer networks is determined by their descending order of pagerank
versatility when considering the system as an edge-colored network.

In this analysis, the focus is on the critical point, which refers to the fraction of removed nodes at
which a peak in the dimension of the second largest component is observed. This critical point provides
insights into the network’s resistance to targeted attacks, which, from a biological perspective, could
correspond to the action of certain drugs.

The set of combinations used for this analysis is the same as mentioned in the Components section.
The critical points generate different distributions, as shown in Fig. 6.19. By examining the image, it
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Protein Abs Freq LVC Abs Freq LIC Abs Freq Diff % Freq Diff

TP53 796 799 3 0.37
RELA 733 734 1 0.13
MYC 643 649 6 0.92
TNF 643 646 3 0.46
NTRK1 601 612 11 1.79
TRIM25 570 570 0 0
UBC 502 502 0 0
COPS5 463 464 1 0.21
HSP90AA1 406 443 37 8.35
CTNNB1 422 422 0 0
NFKB1 409 409 0 0
RPS27A 400 400 0 0
AKT1 395 395 0 0
KIAA1429 365 365 0 0
CUL1 356 362 6 1.65
APP 354 356 2 0.56
KRAS 338 339 1 0.29
UBA52 329 329 0 0
ESR1 327 328 1 0.30
JUN 317 317 0 0
CDK9 300 313 13 4.15

Tabella 6.3: The table presents the occurrence counts in the LICs and LVCs of 2000 samples from the N

combination set, of the 20 proteins which appears more frequently in the LICs of the considered samples. It
aims to highlight proteins that exhibit a substantial percentage difference in occurrence between LICs and LVCs.

is apparent that when transitioning from N to O by adding oncogenic layers, the distribution changes
from being widely spread, particularly with a thick and long tail for low values of the critical point
(ranging from 0.55 to 0.65), to progressively reducing the dimension of this tail. The distribution be-
comes more concentrated around higher critical point values, ultimately resulting in the O distribution
characterized by a significantly smaller variance.

Based on the observations, it can be concluded that multilayer networks composed of oncogenic viruses
exhibit greater statistical resistance to such attacks compared to systems belonging toN . Furthermore,
the responses of these oncogenic networks are characterized by less fluctuation in intensity compared
to the non-oncogenic case.

However, the introduction of the Sars-Cov2 virus exhibits a different trend. In particular, when
analyzing N1S, there is a shift in the peak towards higher values of the critical point, accompanied
by a thick tail towards low values. When oncogenic viruses are added, as in N1O1S and N2O1S, a
double-peak behavior becomes apparent.

Overall, the impact of introducing the Sars-Cov2 virus appears to be distinct from solely introducing
oncogenic viruses in multilayer networks with non-oncogenic layers. This discrepancy may be attri-
buted to structural differences between the Sars-Cov2 virus and both oncogenic and non-oncogenic
viruses, which could be an interesting area for further investigation.

By examining the compatibility values obtained from the Wilcoxon Ranksum test, as depicted in the
heatmaps of Fig.6.19, it is evident that the O1S distribution is compatible with N2O1S, N2O, N3O,
and O, all of which involve a high number of layers associated with oncogenic viruses.

Of particular interest is the compatibility between N1S and O distributions, which may be attributed
to both distributions exhibiting peaks around high values of the critical point. However, this similarity
decreases as more oncogenic viruses are introduced into the samples, as observed in the case of N1O1S
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Figura 6.19: Figure (a) shows boxplots and figure (b) the normalized distribution plots of the critical point di-
stributions for samples from different combination sets. The median and standard deviation values are provided
for each distribution in (b). The heatmaps in (c) and (d) display the p-values obtained from the Wilcoxon-
Ranksum test applied to all possible pairs of distributions.

and N2O1S, where a double-peak behavior reminiscent of the N distribution reemerges, however in
this last the effect is less evident.

6.3 Modules and Modularity

The mesoscale structure of the multilayer networks is further explored by comparing the results of
the degree corrected stochastic block model. The 2 analyzed quantities are: the number of non-empty
modules and the modularity of the systems.

The results are presented in Fig.6.20, alongside to the heatmaps with the p-values associated to the
Wilcoxon-Ranksum tests used to compare the different distributions.

The addition of oncogenic viruses produces a statistical significant increase of the number of non-
empty modules, and this effect is further amplified when the Sars-Cov2 virus is included. Conversely,
the modularity values tend to decrease when oncogenic viruses are added to non-oncogenic combi-
nations. However, before drawing conclusions based on these quantities, it is important to examine
their correlation with network size. Previous sections have shown that oncogenic layers generally have
larger PPI networks compared to non-oncogenic ones.

To investigate this correlation, scatterplots were created, plotting the size of the largest connected
component (LCC), which is related to network size, against the number of non-empty modules and
the modularity. In Fig.6.21, it can be observed that there is a moderate positive correlation between
network size and the number of non-empty modules (linear correlation coefficient = 0.65). Thus, the
number of non-empty modules may not provide substantial information, in fact high values of such
a quantity are will be sign of larger networks rather than informations about specific pattern in the
distribution of communities.

In contrast, the relationship between modularity and LCC size does not demonstrate a strong linear
pattern, as evidenced by the low linear regression coefficient (-0.18). Moreover, the observed trend
appears to be opposite to that of the number of modules. These findings suggest that modularity, as
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Figura 6.20: The two normalized distribution plots on the right depict the number of non-empty modules and
modularity for samples belonging to different combination sets. The median and standard deviation values
are provided for each distribution, offering insights into the central tendency and variability of the respective
variables. On the left side are reported the heatmaps with the p-values associated to the Wilcoxon-Ranksum
compatibility tests for each possible pair of distributions for number on non-zero modules (top) and modularity
(bottom).

a feature of the multilayer networks, is not heavily influenced by network size and may serve as an
informative characteristic for distinguishing between oncogenic and non-oncogenic viruses.

Upon examining the figures, it is apparent that the distribution associated with oncogenic viruses
(O) is statistically smaller than that of non-oncogenic viruses (N). This discrepancy may indicate
that oncogenic viruses exhibit a more dispersed network structure, potentially due to their broader
targeting of the human PPI network, as opposed to the more focused approach of non-oncogenic
viruses.

To further analyze the differences between the distribution of modularity and the number of non-empty
modules for different combination sets, the distances between the distributions are computed using the
Wilcoxon rank-sum test. This non-parametric statistical test is suitable for comparing distributions
of independent samples when the assumptions of normality or equal variances required by parametric
tests, such as the t-test, are not met. Th null hypothesis consists in supposing that the medians of
the two distributions under analysis coincide. The matrices reporting the p-values associated to such
tests are reported in Fig.6.20.

Upon examining the modularity distributions, an intriguing pattern emerges. Interestingly, certain
pairs of distributions exhibit compatibility: N1S and N , N1O1S and N1O, N2O1S and N2O, O1S
and N3O. When a non-oncogenic virus layer is substituted with the PPI network associated with
Sars-Cov2, the resulting distributions become compatible with each other. This analysis suggests that
Sars-Cov2 shares some similarities with non-oncogenic viruses.

In contrast, the number of non-zero modules distributions display substantial differences, which is
further confirmed by the heatmap of p-values. Notably, the distributions O and N2O1S are compati-
ble, as well as N3O and N1O1S. Considering the correlation with network size, it can be concluded
that the shift towards higher values in the number of modules resulting from the introduction of the
Sars-Cov2 layer is comparable to the effect of introducing two oncogenic virus layers. This supports
the hypothesis that the number of non-zero modules may not be as informative as modularity in this
context.
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Figura 6.21: The scatterplot illustrates the relationship between the LCC size of sets of multilayer network
samples from different combination sizes and two quantities: the number of non-empty modules (right) and
modularity (left). Each plot includes a regression line (in black), and the linear correlation coefficient is provided
in the legend. This analysis aims to explore any potential correlation between the LCC size (indicative of network
size) and the two variables of interest.

6.4 Features Separation

After obtaining information about the topological features that characterize multilayer networks be-
longing to different combination classes, the next step is to explore the possibility of performing
classification based on a specific set of extracted topological features from a multilayer network. The-
se features include LCC (Largest Connected Component), LIC (Largest Independent Component),
LVC (Largest Vertex Component), number of non-empty modules, modularity, and the critical point
from the node percolation. The dataset consists of 6-dimensional samples.

To visualize and perform the classification task, the multidimensional space where each sample resides
is projected onto a 2D plane using UMAP, a dimensionality reduction technique that aims to preserve
the global structure of high-dimensional data in a lower-dimensional space. Figure 6.22 shows the
result of UMAP dimensionality reduction using all the aforementioned features as input. To perform
the classification, a Support Vector Machine (SVM) with Gaussian Kernels is utilized to separate the
2-dimensional UMAP space into two regions associated with the O and N samples. The SVM is
trained only with samples belonging to these two combination sets, labeled as 0 and 1, respectively.

The top-left block of the figure displays the N and O sample points used for classification, along with
the SVM model generated for this task. The other blocks represent the UMAP representation of
the remaining combination sets described earlier. In the top-left corner of each block, the fraction of
samples classified as belonging to the O class is reported.

Observing the images related to N1O, N2O, and N3O, it can be noticed that the portion of points
classified as belonging to the O class increases as the number of oncogenic layers in the network
increases.

On the other hand, when examining samples that include Sars-Cov-2 layers, namely N1S and O1S, it
is evident that 100% of their samples are classified as O. However, it is also apparent that the region
where these points are located is relatively isolated from the other points. This could be attributed
to the fact that some of the input features, particularly the dimension of the Largest Connected
Component, exhibit a distinct behavior that highly depends on the network’s dimension.

To mitigate this effect, we excluded such features from the samples. Additionally, considering that
the dimension of LIC and LVC are usually the same in the networks we are analyzing, only the LIC
dimension is retained. Figure 6.23 presents the results of the same classification procedure but without
considering these two input features.
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Figura 6.22: The two-dimensional UMAP representation displays the 6-dimensional vector of features (LCC
size, LIC size, LVC size, percolation critical point, number of non-empty modules, and modularity) derived
from samples belonging to different combination sets. The parameter space is divided into two regions based
on the classification performed by the Gaussian kernel SVM between samples belonging to class O (oncogenic)
and class N (non-oncogenic). Each image corresponding to a combination set also includes the percentage of
samples classified as belonging to the O class, displayed in the top right corner.

The outcome of this classification algorithm clearly demonstrates that the reduced parameter space
exhibits distinct separable regions and also that similar results can be reached even with a simpler linear
classification approach. Furthermore, by adding more oncogenic layers from the N set, the percentage
of samples classified as belonging to the oncogenic region increases, indicating good classification
performance.

It is important to note that all samples, including those from N1S and O1S, occupy regions in space
that are also populated by points from other combination sets, in contrast to the previous. Conse-
quently, it’s possible to consider to extend the conclusions drawn from the classification procedure to
samples containing the Sars-Cov-2 PPI layer. Specifically, it is evident that the distribution of points
from O and O1S sets is very similar, as is the case for N1O and N1S sets. On the other hand,
supposing that the Sars-Cov2 can show similar features to the ones associated to the non-oncogenic
viruses, it should be observed a similarity between the classification of the N and N1S samples. In
the first case the number of samples classified as O are only 6.2%, while in the other case the value
raises until 37.9%, results that is hard to explain as a noise effect.

This suggests that the classification algorithm treats Sars-Cov-2 in a comparable manner to the viruses
in the oncogenic set.
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Figura 6.23: The two-dimensional UMAP representation displays the 4-dimensional vector of features (LIC size,
percolation critical point, number of non-empty modules, and modularity) derived from samples belonging to
different combination sets. The parameter space is divided into two regions based on the classification performed
by the Gaussian kernel SVM between samples belonging to class O (oncogenic) and class N (non-oncogenic).
Each image corresponding to a combination set also includes the percentage of samples classified as belonging
to the O class, displayed in the top right corner.
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Chapter 7

Classification with Machine Learning

After analyzing some features of the PPI networks to identify significant differences between oncogenic
and non-oncogenic viruses, the next step is to directly address the classification task.

It can be very hard to identify unique characteristics related to the oncogenic nature of a particular
virus PPI by inspecting general network features. Tumor development is a complex process, and
targeting the human proteome can vary depending on the type of cancer, which is not considered
in this work. Moreover, viruses with similar effects on the human body, such as respiratory viruses,
intestinal viruses, skin viruses, and hepatitis, can have similar PPIs[43].

To propose a classification method, it is necessary to leverage the prior knowledge we have about the
data. This entails using supervised algorithms with interpretable structures to train and analyze them
for key features useful in classification[28]. The following sections present the methods and results for
two such methods: random forest and perceptron, a neural network without hidden layers.

For both methods, an input and a classification task need to be chosen. Considering the multilayer
framework used in this work and the combination sets used for analysis, a possible classification task
could be detecting whether one of the layers in the network corresponds to a PPI network of an
oncogenic virus. This reduces the problem to binary classification, where the two possible outcomes
answer the question, ”Does the network contain an oncogenic layer?” The chosen combination sets
are, therefore, N and N1O.

We maintain the 4-layer multilayer framework to generate an appropriate number of samples for
training the models while adequately concealing the contribution of individual layers during multilayer
analysis. This prevents the algorithm from simply identifying the 8 layers we labeled as oncogenic,
and instead focuses on finding features that genuinely encode the oncogenic property, which can be
generalized to unknown virus PPIs.

After setting up the dataset properly to maximize this characteristic, the model can be trained,
enabling the prediction of labels for new samples. At this point, combinations involving the Sars-Cov2
PPI network are considered, and predictions are made to determine its belonging to the oncogenic
class or the non-oncogenic class.

Regarding the input of the model, multiple choices are possible, but in this work, two methods are
presented.

Firstly, a global representation of the multilayer is aimed for. PageRank versatility is computed for all
nodes in an edge-colored multilayer network. An empty vector is created, with each entry mapped to
a specific protein in the human proteome. The centrality values obtained earlier are associated with
their corresponding protein in the empty vector, while proteins not present in the multilayer network
have a value of 0.
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The advantage of this method is that it encodes much information about the topology, nature, and
dynamics of the networks. However, a disadvantage is that the final input vectors can still be influenced
by the bias of network size. Larger networks will have fewer zero entries, and since network size is
proportional to the number of oncogenic virus layers in the network. A method to mitigate this effect
is proposed later in the work.

The other method involves extracting functional enrichment analysis from an important set of proteins
in the multilayer network.

7.1 Perceptron

The Perceptron method is employed, which is a simple neural network architecture connecting input
and output through trainable weights. These weights are updated iteratively to minimize the loss
function between the network output and the true label of each sample. Since the task at hand is
binary classification, the complexity of the Perceptron model is sufficient to achieve good results.
The key advantage of using this model is the ease of interpreting the final results. By analyzing the
weight distribution after training, it becomes possible to identify the input features that were most
influential in the classification task, thereby extracting a list of proteins likely to play a crucial role in
distinguishing between oncogenic and non-oncogenic viruses.

To set up the training, validation, and test sets, a dataset of 5600 samples is used, with 2800 samples
from N and 2800 from N1O. To ensure the neural network’s ability to generalize beyond the specific
8 oncogenic viruses in the dataset, an algorithm is implemented. This algorithm extracts samples
from the N1O set that include a specific oncogenic virus, creating a filtered dataset comprising the
remaining 7 oncogenic viruses. This filtered dataset is used to generate the training and validation
sets, while the N1O samples containing a layer corresponding to the target oncogenic viruses are
reserved as the test set. Consequently, the model does not receive input samples from this specific
virus during training but it is known a priori that the corresponding samples contain oncogenic virus
layers. The training and validation sets are split, with 90% of the dataset used for training and 10%
for validation.

Following model training, various test datasets are used to evaluate the final performance, each focusing
on a different aspect. These test datasets include:

• OncoTest: Consists of samples composed of the layer generated by the virus excluded from the
training procedure, aiming to assess the model’s generalization of the oncogenic feature. The
number of items in this test dataset corresponds to the number of samples in N1O containing
the specific oncogenic virus.

• SarsTest: Comprises samples containing a layer corresponding to the Sars-Cov2 virus, extracted
from the N1S combination set. This test dataset includes 100 items.

• SyntTest: Contains samples comprising three layers corresponding to non-oncogenic viruses
and one synthetic PPI network created by randomly targeting 330 proteins among those directly
targeted by the viruses in the dataset.

These test datasets provide insights into different aspects of the model’s performance and allow for a
comprehensive evaluation.

7.1.1 Model Definition and Training

The model is a neural network architecture with one input layer consisting of nin = 19945 neurons and
an output layer with nout = 2 neurons. The connection between these two layers is of the feed-forward
type, resulting in a total of (nin + 1) · nout = 39892 trainable parameters.

However, the dataset constructed in this way still faces the issue of sample size. We know that larger
multilayers, indicated by samples with a greater number of non-zero entries, are likely associated with
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Figura 7.24: Representation of the trend of a Perceptron model’s loss (on the right), and accuracy (on the left),
computed on the trianing and validation dataset

the presence of layers corresponding to oncogenic viruses. Consequently, the model might learn to
separate large networks from smaller networks, which is not the intended purpose of this work.

To address this problem, a sample processing step is proposed. Only the largest 2000 non-zero entries of
each sample are retained, while the remaining entries are set to 0. The final vector is then normalized,
ensuring values range from 0 to 1. For samples with a number of non-zero entries smaller than 2000,
2000 − n random entries are assigned random values. This ensures that the sum of the original n
non-zero entries corresponds to 85% of the sum of all entries, while the sum of the random 2000− n

entries corresponds to the remaining 15%.

The number 2000 was chosen empirically to retain as much information as possible while preserving
key features. Additionally, it ensures that only a small fraction of the input samples have a number
of non-zero entries smaller than this threshold (in this case, 8.4

The loss function selected to evaluate and update the model is CategoricalCrossEntropy. Since the
model is a classifier between two classes, we want separate weights for each class to aid interpretability.
No a priori correction to the class weights was applied to compute the loss, as the number of training
samples for each class is comparable. The metric used to evaluate the model is accuracy, which
measures the fraction of correctly predicted sample labels.

The Adam optimizer with a learning rate of 5× 10−4 was chosen.

Regarding the datasets used for training, validation, and testing of the model, several trials were
conducted to assess the model’s ability to generalize the concept of oncogenic viruses. In each trial,
the sample from N1O corresponding to a specific oncogenic virus were excluded from the training
procedure and used as a test-set

Each trial involved training the model for 600 epochs, determined empirically as an appropriate number
at which the training and validation accuracy reaches a plateau. An example of the training trend
can be seen in Figure 7.24. Table 7.4 reports the final training and validation accuracy values, as well
as the mean label values calculated from the dataset composed of the N1O samples associated with
the test oncogenic virus and the N1S samples. For the first case, all the labels should correspond to
1.

Upon analyzing the table, we observe varying levels of generalization across different trials. The
”OncoTest pred” column is particularly informative, as values close to 1 indicate that the model can
identify the presence of an oncogenic virus layer in a multilayer network, even if that specific virus
was not included in the training. Notably, the best performances were achieved for the removal of
”Epstein-Barr virus” and ”Human herpesvirus 8 type P” cases. This suggests that training the model
with other viruses is sufficient to generalize the problem in these instances.
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Trial Name Excluded Onco Virus Train Acc Val Acc OncoTest pred SarsTest pred SyntTest pred

EB Epstein-Barr 0.923 0.931 0.962 0.911 0.589
HBC Hepatitis B gen. C, ayr 0.916 0.9204 0.670 0.972 0.617
HC1 Hepatitis C gen. 1a 0.931 0.920 0.886 0.900 0.400
HV8P Hum. herpesvirus 8 type P 0.923 0.898 0.969 0.933 0.657
PV16 Hum. papillomavirus type 16 0.918 0.911 0.736 0.960 0.620
PV18 Hum. papillomavirus type 18 0.917 0.916 0.833 0.970 0.740
PV5 Hum. papillomavirus type 5 0.932 0.932 0.402 0.953 0.640
TL1 Hum. T-cell leukemia 1 0.915 0.920 0.860 0.978 0.667

Tabella 7.4: The table presents the performance results of individual Perceptron models trained using datasets
in which samples containing specific oncogenic viruses were excluded. Each trained model was subsequently
tested on different sample sets: OncoTest consists of samples containing the excluded oncogenic virus PPI
layer, SarsTest contains samples with the SARS-CoV-2 PPI network, and SyntTest comprises synthetic layers
composed of the nearest neighbors of 330 proteins randomly selected from the proteins targeted by other viruses.

Figura 7.25: Caption

Another crucial finding is that, in each trial, samples belonging to N1S are consistently predicted as
having label 1, indicating the presence of an oncogenic virus layer.

Considering the impact of network dimension, we evaluated the model on a separate test set consisting
of multilplexes with three layers corresponding to non-oncogenic viruses from the dataset. The fourth
layer was a synthetic PPI network with 330 directly targeted proteins (matching Sars-Cov-2). These
proteins were extracted from the dataset’s virus targets.

The results, presented in the ”SyntTest pred” column of Table 7.4, show values much closer to 0.5,
which corresponds to random predictions, compared to those related to Sars-Cov-2. This suggests
that the model’s predictions for the synthetic network exhibit less bias and approach randomness.
Hence, the unique characteristics of Sars-Cov-2 seem to have influenced the model’s performance.

7.1.2 Weights

Given the model’s simplicity, we can perform an analysis to interpret the obtained results. Specifically,
the model has two sets of weights connecting specific input neurons to the two possible outputs. Since
each input neuron is associated with a normalized page-rank versatility value, we can expect that if a
protein’s high relevance is linked to a specific output neuron, the corresponding weight will be large.
Conversely, if the protein’s importance is associated with the other output label, the associated weight
is expected to be strongly negative.

We aim to identify proteins that are highly relevant in the classification process. To achieve this, one
possible strategy is to calculate the difference between the weights associated with label 0 and label 1
for each input feature. The input features with the highest absolute differences were considered to be
associated with proteins that are highly relevant for classification. In each trial, we selected the top
50 proteins based on this criterion.
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TL1 PV5 PV18 PV16 HV8P HC1 HBC EB None

6 elements 15.1 29.9 18.0 12.0 11.9 11.9 12.6 11.9 24.8
5 elements 19.6 31.9 22.2 17.1 17.0 16.9 17.5 16.9 19.9
4 elements 24.5 34.3 26.8 22.6 22.6 22.4 22.9 22.4 15.4

Tabella 7.5: Caption

In order to obtain a robust set of proteins of interest, the idea is to intersect the results from different
trials. By taking all the trials the resulting list of 7 proteins is the following:

CBX3,HIST1H2BG,HIST2H3A,MECP2,NCK2,NPSR1,TRIM29

To assess the generalization capabilities of the previously discussed models, it is important to consider
appropriate subsets of the entire set of trials. A logical approach would be to exclude the trial with
the lowest generalization capability, namely the PV 5 trial.

To investigate this assumption, the mean values of the number of intersections were computed for all
possible combinations of 4, 5, and 6 trials, starting from different initial sets. This involved considering
all trials and all possible combinations of 7 out of the 8 available trials, with one combination excluding
one trial at a time. The results, presented in Table 7.5, confirmed the initial hypothesis. Excluding
the PV 5 trial resulted in a significantly higher number of intersections compared to the other cases,
indicating more similar results among the remaining trials.

The list of the intersection of the remaining 7 trials is composed by the following 29 proteins:

CBX3, CTBP1, DYRK1B, FBXO3, GATA4, HIPK2, HIST1H2BG, HIST2H3A, LZTS2, MECP2,
MYB, MYBL1, NCK2, NKX2-1, NKX2-5, NLK, NPPA, NPSR1, PPM1D, RASSF5, RGMA, SENP1,
SENP2, SKI, SP100, TP53INP1, TRIM29, ZBTB4

An alternative approach is to select the top 50 proteins with the highest weights for each of the two
possible labels. This allows us to identify proteins that are more likely to be associated with either
class.

Considering the weights associated with the presence of an oncogenic virus layer, the intersection of
the results for the 8 trials yields the following proteins:

CBX3, DYRK1B, HDAC8, HIPK2, HIST1H2BG, HIST2H3A, MECP2, NCK2, NKX2-1, NLK, NP-
SR1, TAF6L, TRIM29

While by exluding the PV 5 trials the intersection is:

CBX3, CHMP4B, CTBP1, DYRK1B, FBXO3, GATA4, HDAC8, HIPK2, HIST1H2BG, HIST2H3A,
LZTS2, MECP2, MYB, MYBL1, NCK2, NKX2-1, NKX2-5, NLK, NPPA, NPSR1, PPM1D, RASSF5,
RGMA, SENP1, SENP2, SKI, SP100, TAF6L, TP53INP1, TRIM29, ZBTB4

On the other hand, by considering the weights associated to the presence of only non-oncogenic virus
layers, the result for the intersection of the results for the 8 trials and the one associated to the
exclusion of the PV 5 one, correspond:

ATP6AP2, BST1, CCNC, DEFA5, E2F3, EEF1A2, GOPC, HES1, HSPG2, IDE, IWS1, LYPD3,
PDK1, RRM1, SNX17, TCF12, TNPO1, UBA2

7.2 Random Forest

The second model used for the classification task is the random forest. A Random Forest is an ensemble
learning method that combines multiple decision trees to make predictions. The second model used
for the classification task is the random forest. Random Forest is an ensemble learning method that
combines multiple decision trees to make predictions.
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Trial Name Excluded Onco Virus Train Acc Val Acc OncoTest pred SarsTest pred SyntTest pred

EB Epstein-Barr 1.000 0.949 0.974 0.720 0.820
HBC Hepatitis B gen. C, ayr 1.000 0.947 0.838 0.920 0.780
HC1 Hepatitis C gen. 1a 1.000 0.939 0.906 0.660 0.490
HV8P Hum. herpesvirus 8 type P 1.000 0.945 0.978 0.740 0.660
PV16 Hum. papillomavirus type 16 1.000 0.959 0.873 0.800 0.580
PV18 Hum. papillomavirus type 18 1.000 0.964 0.890 0.850 0.700
PV5 Hum. papillomavirus type 5 1.000 0.956 0.442 0.920 0.830
TL1 Hum. T-cell leukemia 1 1.000 0.963 0.890 0.740 0.830

Tabella 7.6: The table presents the performance results of individual Random Forest models trained using
datasets in which samples containing specific oncogenic viruses were excluded. Each trained model was subse-
quently tested on different sample sets: OncoTest consists of samples containing the excluded oncogenic virus
PPI layer, SarsTest contains samples with the SARS-CoV-2 PPI network, and SyntTest comprises synthetic
layers composed of the nearest neighbors of 330 proteins randomly selected from the proteins targeted by other
viruses.

In a Random Forest, each decision tree is built independently using a random subset of the training
data and a random subset of the input features. This randomness introduces diversity among the
trees, reducing the risk of overfitting and improving the overall accuracy and robustness of the model.

During prediction, each tree in the Random Forest independently makes a prediction, and the final
prediction is determined by combining the individual predictions through voting or averaging. This
ensemble approach helps to improve the model’s generalization and reduce the impact of individual
trees’ biases.

Random Forests also provide measures of feature importance, indicating the relative contribution of
each input feature in making accurate predictions, which aids in interpretability.

The dataset processing and generation of different trials for testing the model are the same as in the
perceptron case. The parameters for the random forest are selected through optimization based on
the accuracy on the validation set. The final set of parameters is:

n estimators 100
max depth None

min samples split 2
min samples leaf 1
max features sqrt
criterion entropy

In Tab.7.6 are reported the same quantities presented in Tab.7.4 for the different trials, in order to be
able to compare the two methods.

The results for the OncoTest pred column are slightly better compared to the perceptron method,
suggesting a potentially stronger generalization capability. However, the values in the SarsTest pred
column are smaller, indicating a lower confidence in identifying Sars-Cov-2 as an oncogenic virus.
Additionally, the SyntTest pred values are closer to 1, implying a higher likelihood of classifying
random viruses as oncogenic. This trend is opposite to that of the perceptron, where random viruses
were less likely to be classified as oncogenic, while Sars-Cov-2 showed the opposite pattern.

7.2.1 Scores

The random forest framework provides a feature importance score for each entry in the model. This
score is calculated using the entropy criterion during the training process, following these steps:

1. Multiple decision trees are trained using the random forest algorithm, with each tree built on a
different subset of the training data.

2. For each tree, the information gain or decrease in entropy is computed at each split point.
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3. The average information gain across all trees is calculated for each feature.

4. The feature importance scores are normalized to ensure they sum up to 1 or 100%.

5. Features are sorted based on their importance scores in descending order.

6. The importance of each feature is determined by its ranking, with higher scores indicating greater
importance in predicting the target variable.

In each trial, the scores for each entry are computed, and the 50 proteins with the highest scores
are considered the most representative in the classification task. The following proteins are listed as
belonging to the top 50 most important ones in all the 8 trials.

CBX3, CTBP1, HIST1H2BG, HIST1H3A, NTRK1, SUMO2

Like in the perceptron case, it’s possible to enlarge such a set by excluding from the intersection the
results from the PV 5 trial, which is the one that provides the worst generalization capabilities. The
results corresponds to the following list of 16 proteins.

CBX3, CBX4, CTBP1, DYRK1B, HIPK2, HIST1H2BG, HIST1H3A, HIST2H2BE, MECP2, MYB,
NKX2-1, NLK, NTRK1, SENP1, SP100, SUMO2

7.3 ”Experimental” and ”Co-Expression” Networks

The classification task using the perceptron was performed by using the ”Experimental” and ”Co-
expression” protein-protein interaction (PPI) datasets derived from STRING. In the ”Experimental”
case, a cutoff of 700 non-zero entries was applied out of a total of 12,984 proteins in the human PPI
network. For the ”Co-expression” dataset, a cutoff of 500 non-zero entries was applied out of 4,499
proteins.

The procedure for constructing the different trials, excluding samples containing oncogenic viruses
and reserving them for testing the model, followed the same methodology as described earlier for the
BioSTRING dataset.

In the case of the ”Experimental” dataset, each model was trained for 500 epochs, while for the ”Co-
expression” dataset, training was performed for 300 epochs, as these limits were found to result in
plateaued accuracies.

Table 7.7 shows the results from the model training for the ”Experimental” case, while Table 7.8
presents the results for the ”Co-expression” case.

Trial Name Excluded Onco Virus Train Acc Val Acc OncoTest pred

EB Epstein-Barr 0.999 0.996 0.789
HBC Hepatitis B gen. C, ayr 0.996 0.996 0.817
HC1 Hepatitis C gen. 1a 0.995 0.998 0.678
HV8P Hum. herpesvirus 8 type P 0.995 0.996 0.324
PV16 Hum. papillomavirus type 16 0.997 0.996 0.938
PV18 Hum. papillomavirus type 18 0.996 0.992 0.887
PV5 Hum. papillomavirus type 5 0.997 0.996 0.696
TL1 Hum. T-cell leukemia 1 0.998 0.992 0.958

Tabella 7.7: The table presents the performance results of individual perceptron models considering the ”Expe-
rimental” dataset, trained using datasets in which samples containing specific oncogenic viruses were excluded.
Each trained model was subsequently tested on samples containing the excluded oncogenic virus PPI layer
(OncoTest).

The generalization capabilities of the models, tested through predictions on the OncoTest samples,
were found to be weaker for both the ”Experimental” and ”Co-expression” datasets compared to the
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Trial Name Excluded Onco Virus Train Acc Val Acc OncoTest pred

EB Epstein-Barr 0.978 0.984 0.054
HBC Hepatitis B gen. C, ayr 0.957 0.939 0.887
HC1 Hepatitis C gen. 1a 0.959 0.950 0.142
HV8P Hum. herpesvirus 8 type P 0.951 0.925 0.019
PV16 Hum. papillomavirus type 16 0.959 0.955 0.876
PV18 Hum. papillomavirus type 18 0.962 0.959 0.557
PV5 Hum. papillomavirus type 5 0.968 0.984 0.120
TL1 Hum. T-cell leukemia 1 0.953 0.955 0.570

Tabella 7.8: The table presents the performance results of individual perceptron models considering the ”Co-
expression” dataset, trained using datasets in which samples containing specific oncogenic viruses were excluded.
Each trained model was subsequently tested on samples containing the excluded oncogenic virus PPI layer
(OncoTest).

BioSTRING case. However, while the performance for the ”Experimental” dataset remained relatively
good, the performance for the ”Co-expression” dataset was consistently poor across the majority of
the trials.

In both cases, the top 50 proteins with the highest absolute difference between weights associated with
labels 0 and 1 ,were identified. For the ”Experimental” dataset, the intersection of these protein lists
was obtained by excluding the trials HC1, HV 8P , and PV 5, which exhibited the poorest classification
performance on the OncoTest set. The resulting protein list includes:

SERPIND1, GNB3, GNB4, GRAP, KCNJ3, GNB2, MAPK7, MEOX1, PRDX6, CS, RNF2, UBR4,
GGT5, MAPK4, SEPT9, LDB3, CSNK1A1

For the ”Co-expression” case, the intersection was determined by considering only the trials HBC and
PV 16, which demonstrated the best predictions on the test set. The resulting protein list includes:

GNPNAT1, SPRTN, March3, SUPT6H, PPP2R1A, ATP13A2, CYLC1, PHF7, ATP13A4, ATP13A5,
CORO2A, CORO6, MTMR8, DEFB123, DDX51, HM13, TENM1, CORO2B
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Chapter 8

Discussion

The network theory-based approach utilized in the analysis yielded a set of findings that can be further
interpreted in a biological context, aiming to explore potential connections between these results and
existing knowledge regarding the relationship between viruses, tumors, and oncogenic mechanisms in
general.

Subsequently, the focus will shift towards the main objective of the study, which is to provide insights
into the tumor-related characteristics of SARS-CoV-2 based on the obtained results.

8.1 Perceptron highly relevant features

Once we have obtained the list of proteins that are highly relevant in the perceptron classification
task, we can further analyze them and propose a biological interpretation.

Firstly, it is important to highlight that proteins with a high absolute difference between their corre-
sponding weights should exhibit high centrality values in both the N1O and N cases. This indicates
that these proteins are highly relevant within the PPI networks in general.

To explore the biological significance of these proteins, we consider the intersection of all the trials
except for the PV 5 trial mentioned earlier. A graphical representation of this intersection, obtained
from the STRING web page, is presented in Fig.8.26.

A functional enrichment analysis is performed over this set of genes with the following results:

Name pValue Bonferroni Overlap

structural constituent of chromatin 3.634E-7 3.452E-5 4/106

protein dimerization activity 4.041E-5 3.839E-3 6/1251

protein tyrosine kinase activity 8.427E-5 8.006E-3 3/148

protein heterodimerization activity 9.936E-5 9.440E-3 4/438

protein serine/threonine kinase activity 1.242E-4 1.180E-2 4/464

Tabella 8.9: The table presents the most over-represented Gene Ontology Molecular Function terms related to
the list of proteins highly relevant for the classification task performed with the perceptron algorithm. For each
of these is reported the associated p-value, a the Bonferroni adjusted p-value, and the overlap, i.e. the ratio
between the number of proteins in the list which are present in the term and the total number of proteins in
the term.

8.1.1 Chromatin structure

Both the protein list and the result of the GO molecular function enrichment analysis highlight the
relevance of histones and factors involved in chromatin structure.
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Figura 8.26: Representation of the PPI network based on the list of proteins highly relevant for the classifi-
cation task performed with the perceptron. The structure is generated from the STRING web page, and it
wasn’t applied any cutoff to the links between the proteins https://string-db.org/cgi/network?taskId=

bZiJXAv9zPEv&sessionId=bnKXMWMsf0q5

Name pValue Bonferroni Overlap

REACTOME TRANSCRIPTIONAL REGU-
LATION OF GRANULOPOIESIS

7.459E-10 3.677E-7 6/90

PID CMYB PATHWAY 4.265E-8 2.103E-5 5/84

REACTOME DNA METHYLATION 1.007E-6 4.964E-4 4/65

REACTOME SIRT1 NEGATIVELY REGULA-
TES RRNA EXPRESSION

1.208E-6 5.958E-4 4/68

REACTOME SIGNALING BY WNT 1.771E-6 8.731E-4 6/331

Tabella 8.10: The table presents the most over-represented Pathways terms related to the list of proteins highly
relevant for the classification task performed with the perceptron algorithm. For each of these is reported the
associated p-value, a the Bonferroni adjusted p-value, and the overlap, i.e. the ratio between the number of
proteins in the list which are present in the term and the total number of proteins in the term.

Histones are a group of proteins that play a fundamental role in packaging and spatially organizing
DNA within the nucleus of eukaryotic cells. They interact with DNA molecules, creating links between
different positions on the DNA string. Histones are crucial for regulating gene expression, as they
compact and condense DNA, enabling it to fit within the limited space of the nucleus. They are
involved in essential processes such as DNA replication, repair, and chromosome segregation during
cell division. Histones provide structural stability to chromosomes and help maintain the integrity of
the genome.

Alterations in chromatin structure have been found to contribute to the development and progression
of cancer[46]. Various mechanisms can disrupt normal chromatin organization in cancer cells, including
changes in DNA methylation patterns, histone modifications, chromatin remodeling, and higher-order
chromatin folding [47][48].

One key aspect is the epigenetic regulation of gene expression through modifications of chromatin
structure. Epigenetic modifications, including DNA methylation and histone modifications, can lead to
the silencing or activation of specific genes involved in cancer-related processes such as cell proliferation,
differentiation, and metastasis.

In addition to the functional role of these specific proteins in tumor development, the difference in the

64



Figura 8.27: Classification of the viruses in the dataset based on their genetic material (DNA vs RNA) and the
oncogenic feature. In the top right of each box is reported the total number of viruses with that specific set of
features

nature of viruses may also contribute to the observed association. Viruses can be categorized as DNA
viruses or RNA viruses. DNA viruses replicate their genetic material using host cellular machinery
and DNA polymerases, primarily in the nucleus of the host cell. In contrast, RNA viruses replicate
their genetic material using an RNA-dependent RNA polymerase (RdRp) and typically replicate in
the cytoplasm of the host cell without accessing the nucleus.

Therefore, it is more likely that DNA viruses interact with histones, which are predominantly located
in the nucleus of the cell. On the other hand, RNA viruses generally replicate in the cytoplasm,
where histones are less abundant. However, it’s important to note that certain RNA viruses, such
as retroviruses, which convert their RNA genome into DNA intermediates, can interact with histones
during the integration of viral DNA into the host cell’s genome.

To further investigate this relationship, it is worth examining the distribution of viruses in the dataset
between DNA and RNA viruses, including both oncogenic and non-oncogenic types. This analysis can
reveal any imbalances or patterns. A schematic representation of the results is presented in Fig.8.27.

The number of DNA viruses is higher than RNA viruses in the oncogenic case, while in the non-
oncogenic case, the trend is reversed. This discrepancy raises doubts about the classification task.
The classifier may focus more on distinguishing between DNA and RNA viruses rather than between
oncogenic and non-oncogenic viruses due to the imbalance in these classes.

Examining the performance of the perceptron and random forest classifiers (Tab.7.4, Tab.7.6), it is
observed that the trial associated with the removal and testing of the Human papillomavirus type 5
(a DNA virus) leads to the worst generalization performance.

This observation contradicts the hypothesis that the classification is based solely on virus type, as
the performance should have significantly decreased when excluding and testing on an RNA virus.
Furthermore, the training samples are even more imbalanced toward the DNA virus type, and the
testing is performed with a virus of the opposite type.

Moreover, the performance across different trials, except for the PV 5 case, shows minimal variance,
and there is no clear distinction between cases where DNA or RNA viruses are excluded. This supports
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the hypothesis that proteins involved in chromatin structure may play a crucial role in distinguishing
between the oncogenic and non-oncogenic cases.

Based on these considerations, it can be concluded that the classification model may not heavily rely
on the type of RNA or DNA viruses. This provides support for the hypothesis that the model can
identify oncogenic-related features beyond viral types.

8.1.2 SUMO related proteins

In the analysis of Reactome pathways, it is evident that there are several pathways related to SU-
MOylation. SUMO (Small Ubiquitin-like Modifier) is a group of proteins that play a crucial role in
post-translational modifications and the regulation of various cellular processes in biology. Within
the SUMOylation pathway, SUMO molecules covalently attach to target proteins, resulting in modi-
fications to their function, localization, stability, and interactions with other molecules. Notably, the
proteins list includes key enzymes involved in this process, such as SENP1 and SENP2. Numerous
studies have explored the potential association between cancer development and the upregulation of
SUMOylation mechanisms, which may provide an explanation for the significant relevance of these
proteins in the analysis conducted in this study. [49, 50]

8.1.3 WNT signaling pathway and P53 inhibition

Another protein of significant interest is HIPK2, a protein kinase that plays a crucial role in various
cellular processes, including cell proliferation, apoptosis, DNA damage response, and development.
HIPK2 functions as a transcriptional co-regulator and regulates protein stability.

HIPK2 is particularly important in the regulation of p53, a tumor suppressor protein. It phosphory-
lates p53, leading to its activation and stabilization, which promotes cell cycle arrest and apoptosis in
response to DNA damage. This interaction between HIPK2 and p53 helps maintain genomic stability
and prevents the formation of cancer cells.

HIPK2’s high relevance is further supported by its connections to many other proteins in the analyzed
list, indicating its role as a hub for highly relevant proteins in the classification task.

The absence of p53 (or TP53) in the protein list is noteworthy. p53 is a well-known protein in
cancer research as its dysregulation can disrupt essential cellular processes and contribute to tumor
development. Its absence from the list may be because it acts as a hub in the human protein-protein
interaction network and is highly relevant in both normal and oncogenic samples, providing limited
discriminatory information for the classification task. However, proteins associated with p53 and its
related biological processes, such as HIPK2 and TP53INP1 (a protein that positively regulates
TP53 and TP73 and stimulates their capacity to induce apoptosis and regulate cell cycle), reinforce
the notion that the most relevant features for classification are indeed related to mechanisms involved
in tumor development.

8.2 Random Forest high relevant features

Moreover, a similar analysis can be applied to the results of the feature importance analysis on the
Random Forest model. In the following, we will consider the list of the proteins derived from the
intersection of the top 50 proteins for the 7 trials excluding the PV 5 one. Figure 8.28 presents the
graphical representation of the considered list of proteins, while Table 8.11 shows the results of the
enrichment analysis considering the Reactome pathways.

It is noteworthy that most of these pathways are either the same or related to the ones associated
with the perceptron list in Table 8.10.

For instance, the pathway related to the sumoylation process stands out as the most overrepresented
one. The WNT signaling pathway also holds significant importance, with the inclusion of HIPK2 in
this set.
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Name pValue Bonferroni Overlap

REACTOME SUMOYLATION 2.194E-8 6.692E-6 6/169

REACTOME TRANSCRIPTIONAL REGULATION OF
GRANULOPOIESIS

2.866E-6 8.741E-4 4/90

REACTOME RNA POLYMERASE I PROMOTER ESCA-
PE

2.996E-6 9.137E-4 4/91

REACTOME SIRT1 NEGATIVELY REGULATES RRNA
EXPRESSION

1.208E-6 5.958E-4 4/68

REACTOME POSITIVE EPIGENETIC REGULATION
OF RRNA EXPRESSION

5.510E-6 1.681E-3 4/106

REACTOME SIGNALING BY WNT 2.668E-5 8.138E-3 5/331

Tabella 8.11: The table presents the most over-represented Pathways terms related to the list of proteins highly
relevant for the classification task performed with the Random Forest algorithm. For each of these is reported
the associated p-value, a the Bonferroni adjusted p-value, and the overlap, i.e. the ratio between the number
of proteins in the list which are present in the term and the total number of proteins in the term.

Figura 8.28: Representation of the PPI network based on the list of proteins highly relevant for the classification
task performed with the Random Forest algorithm. The structure is generated from the STRING web page, and
it wasn’t applied any cutoff to the links between the proteins https://string-db.org/cgi/network?taskId=
bZiJXAv9zPEv&sessionId=bnKXMWMsf0q5

Of particular significance is the presence of three histones, namelyHIST1H2BG,HIST1H3A,HIST2H2BE,
which is one more than in the perceptron case. This further reinforces the notion of the critical ro-
le that chromatin structure manipulation can play in the oncogenic processes associated with virus
infection.

8.3 LIC intersection of oncogenic multilayer networks

The investigation of the protein list, as described in Chapter 5.1.2, derived from the intersection of all
the LICs extracted from the samples belonging to the O combination set, provides interesting insights.
A graphical representation of the protein interactions, generated using STRING, is presented in Figure
8.29.

As expected, most of the proteins exhibit connections with each other, reflecting their involvement in
the PPI networks of various oncogenic viruses. The isolated proteins are likely connected to the largest
component through links obtained from the BIOGRID database, as explained in Chapter 3.2.3.
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Figura 8.29: Representation of the PPI network based on the list of proteins that form a component in all the
PPI networks associated to oncogenic viruses. The structure is generated from the STRING web page, and it
wasn’t applied any cutoff to the links between the proteins https://string-db.org/cgi/network?taskId=

bZiJXAv9zPEv&sessionId=bnKXMWMsf0q5

Notably, the TP53 protein assumes a central role as a hub, which aligns with expectations.

Additionally, the presence of proteins such as histone HIST2HBG, SKI (involved in chromatin
structure), and important proteins related to sumoylation, such as SUMO2 and CBX4, is worth
highlighting.

To gain further insights into the nature of this protein set, a functional enrichment analysis was
conducted. This analysis involved examining the GO molecular (Tab.8.12) functions and biological
pathways (Tab.8.13) associated with these proteins.

Name pValue Bonferroni Overlap

DNA-binding transcription factor binding 1.165E-15 3.087E-13 15/595

SUMO transferase activity 8.266E-14 2.190E-11 7/37

transcription coregulator activity 1.430E-11 3.789E-9 12/569

chromatin binding 6.050E-8 1.603E-5 10/726

p53 binding 1.001E-7 2.654E-5 5/77

Tabella 8.12: The table presents the most over-represented Gene Ontology Molecular Function terms related
to the list of proteins that form a component in all the PPI networks associated to oncogenic viruses. For each
of these is reported the associated p-value, a the Bonferroni adjusted p-value, and the overlap, i.e. the ratio
between the number of proteins in the list which are present in the term and the total number of proteins in
the term.

Both tables highlight the presence of relevant terms that align with the aspects analyzed in the
classification tasks using both the perceptron and random forest algorithms.

The pathways associated with cancer and the regulation of TP53 are evident. However, the most
significant importance is attributed to pathways related to sumoylation, which further supports the
findings discussed in the previous section. Additionally, terms associated with the WNT signaling
pathway and chromatin structure are present, reinforcing the conclusions drawn earlier.
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Name pValue Bonferroni Overlap

REACTOME SUMOYLATION 5.705E-14 5.317E-11 11/187

PID P53 REGULATION PATHWAY 2.665E-13 2.483E-10 8/59

KEGG PATHWAYS IN CANCER 1.287E-8 1.199E-5 9/325

REACTOME REGULATION OF TP53 ACTIVITY 2.559E-8 2.385E-5 7/156

KEGG WNT SIGNALING PATHWAY 1.390E-5 5.422E-4 5/151

Tabella 8.13: The table presents the most over-represented Pathways terms related to the list of proteins that
form a component in all the PPI networks associated to oncogenic viruses. For each of these is reported the
associated p-value, a the Bonferroni adjusted p-value, and the overlap, i.e. the ratio between the number of
proteins in the list which are present in the term and the total number of proteins in the term.

8.4 ”Experimental” and ”Co-expression” dataset perceptron classi-

fications

It’s worth mentioning also some biological insights of the list of most relevant proteins coming form
the perceptron classification task using the ”Experimental” and ”Co-expression” datasets.

In the ”Experimental” case, the list of most relevant proteins includes MAPK4 and MAPK7, which
are involved in crucial cellular processes such as proliferation, differentiation, and cell survival, all
of which are relevant in the context of tumor cells. The enrichment analysis reveals overrepresented
pathways related to G proteins, which are molecular switches involved in transmitting signals from
external stimuli to the interior of a cell. While it is reasonable to assume that viruses interact with
the cell’s outer regions, these pathways do not seem to be directly linked to the differences between
oncogenic and non-oncogenic viruses.

On the other hand, the ”Co-expression” analysis shows a scattered network of proteins, with many
nodes remaining unconnected to others. The functional enrichment analysis does not yield meaningful
results, describing generic cellular processes or those not easily associated with cancer development.

Based on these results, it can be concluded that in order to obtain an informative classification
outcome, a larger network is preferable, even if it may contain biases in the experimental data. Such a
network provides a richer description of the biological system, from which important information can
be extracted using appropriate methods. In contrast, smaller networks may have fewer biases but are
more likely to produce false negatives, limiting the model’s ability to provide a satisfactory description
of the underlying system.

8.5 Sars-Cov2 classification

After establishing the classification models and generating predictions for multiplexes that include
Sars-Cov2 layers, it becomes possible to determine the confidence level at which Sars-Cov2 can be
classified in the same class as the 8 known oncogenic viruses.

In fact the objective of the algorithms is to classify samples from the N class (non-oncogenic) and
samples from the N1O class (containing an oncogenic virus layer). Since the distinction between these
samples lies in the presence or absence of an oncogenic virus layer, the question can be reformulated
as determining whether any of the layers in the multilayer network sample are associated with an
oncogenic virus (label 1) or if all layers belong to the non-oncogenic class (label 0).

In order to do so it’s possible to exploit the Bayes theorem. In the following we will refer to samples
containing an oncogenic virus layer as 1, to the ones which doesn’t contain it as 0. The probability of
a given sample to have true label 1 given the fact that it was predicted as belonging to 1 is:

P (1T |1P ) =
P (1P |1T ) · P (1T )

P (1P )
=

P (1P |1T ) · P (1T )

P (1P |1T ) · P (1T ) + P (1P |0T ) · P (0T )
(8.18)
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Perceptron Random Forest

Trial Sens(1P ) Spec(1P ) Sens(1P ) Spec(1P )

EB 0.932 0.933 0.932 0.965
HBC 0.925 0.916 0.925 0.974
HC1 0.916 0.923 0.939 0.947
HV8P 0.907 0.893 0.903 0.952
PV16 0.922 0.899 0.953 0.945
PV18 0.919 0.907 0.956 0.968
PV5 0.972 0.900 0.952 0.949
TL1 0.928 0.918 0.936 0.972

Tabella 8.14: Values of sensitivity and specificity from the validation confusion matrix from the model belonging
to all the trials performed both with the perceptron and Random forest classification algorithms.

1T refers to the samples actually belonging to N1O, 1P to the samples which are predicted to belong
to this class, and 0T the samples actually belonging to N .

P (1P |1T ) corresponds to the sensitivity, i.e. the probability that a sample from N1O is predicted as
label 1. This information can be extracted from the confusion matrices of the validation set of each
model as the fraction of samples with label 1, classified as 1.

P (1T ) represents the prior probability associated with label 1, which signifies the prediction of a
sample belonging to the N or N1O combination set. It is possible to set the prior probability P (1T )
as the fraction of oncogenic viruses divided by the total number of viruses in the dataset, yielding a
value of 0.1 (i.e., 8 oncogenic viruses out of 80 total viruses). Consequently, P (0T ) is calculated as
1− P (1T ), resulting in 0.9 (i.e., 72 non-oncogenic viruses out of 80 total viruses).

Following the training of each trial of the model, the performance of predictions was evaluated on a
test set comprising multiplexes with the Sars-Cov2 PPI as one of the layers. This test set consisted
of 100 samples, and each sample was assigned a prediction of either class 1 or class 0.

The Bayesian formula presented before should be updated in order to take into account multiple
predictions, and this is done in the following way:

P (1T |P1, P2, ..., Pn) =

∏n
i=1

Sens(Pi) · Prior
∏n

i=1
Sens(Pi) · Prior +

∏n
i=1

(1− Spec(Pi)) · (1− Prior)
(8.19)

P1, P − 2, ..., Pn are multiples prediction results, each of which can assume values 1P or 0P . On the
other hand we have the values of sensitivity and specificity associated for each possible prediction
result. In particular Sens(1P ) = P (1P |1T ), Sens(0P ) = 1 − Sens(1P ) and Spec(1P ) = P (0P |0T ),
Spec(0P ) = 1 − Spec(1P ). All these values can be easily extracted from the confusion matrices, and
the values are reported in Tab.8.14.

In this way it’s possible to compute the confidence at which Sars-Cov2 is predicted to be in the
oncogenic viruses class.

By utilizing models from all the trials, employing both the perceptron and random forest frameworks,
and evaluating 100 samples from the N1S combination set, the results consistently indicate a high
level of confidence in predicting Sars-Cov2 as an oncogenic virus. In fact, the predicted probabilities
for Sars-Cov2 belonging to the oncogenic class are consistently close to 1, further reinforcing the notion
of its classification as an oncogenic virus.

70



Chapter 9

Conclusion

This study presents a method for analyzing PPI networks in relation to virus infections and proposes a
classification approach to distinguish between oncogenic and non-oncogenic viruses. The utilization of
complex network theory and multilayer networks offers promising opportunities for extracting valuable
information, although further exploration is needed.

The analysis of single-layer networks reveals the presence of biases in the distribution of certain
features among different PPI networks. However, the implications of these biases were not thoroughly
investigated in this study and warrant further consideration.

By leveraging the multilayer framework and examining topological features, meaningful quantities for
distinguishing between oncogenic and non-oncogenic viruses can be identified. However, the classifi-
cation of Sars-Cov2 based on different quantities yields varying conclusions, sometimes associating it
with oncogenic viruses and sometimes with non-oncogenic viruses.

When combining the topological analysis findings with SVM classification, the results appear to be
robust. However, additional benchmarks and checks are necessary to validate their consistency, par-
ticularly regarding the classification of Sars-Cov2. A comprehensive evaluation is required before
drawing definitive conclusions.

Moreover, the machine learning models developed in this study used datasets primarily from STRING
and, to a lesser extent, BIOGRID. Exploring alternative data sources and methodologies to construct
more accurate and less biased PPI networks for both human and virus-host interactions could be a
valuable avenue for future research.

While the study examined certain factors that could introduce biases in classification, such as network
size and the distinction between RNA and DNA viruses, further investigation is warranted to explore
other potential influences and enhance confidence in the classification procedure. This would neces-
sitate interdisciplinary collaboration across virology, immunology, biology, and related fields to gain
deeper insights into the mechanisms by which oncogenic viruses contribute to cancer development.

Overall, this study proposes a promising method for classifying oncogenic and non-oncogenic viruses,
with the potential for future developments to increase its robustness and provide valuable biological
insights for cancer research.

Regarding the class prediction of SARS-CoV-2, the overall results suggest a strong likelihood of shared
characteristics between this virus and other oncogenic viruses. This aligns with existing research in-
dicating a potential link between long COVID-19 symptoms and an increased risk of tumor develop-
ment [1, 51]. However, given the complexity of the subject, drawing a final conclusion requires further
comprehensive analysis, and every result presented in this work should undergo rigorous checks and
evaluations.
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