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Abstract

In this thesis I tested different machine learning methods (Random forest, XGBoost) to
predict the formation of binary compact objects solely based on initial condition of stellar
binaries (masses, metallicity and orbital parameters) and on the parameters of binary
evolution (i.e., common envelope efficiency). I trained the machine learning methods on
simulations performed with rapid binary population synthesis code (BPS) code SEVN. I
found that the tested methods can predict the formation of merging (within the Hubble
time) and non-merging binary compact objects. The performance of predicting merging
compact objects is found to be 50%, which is equivalent to random chance. This suggests
that the methods cannot accurately predict the formation of merging compact objects.
However, the methods show good performance in distinguishing between systems that
produce bound and non-bound systems.
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Chapter 1

Introduction

1.1 Gravitational waves & GW detectors

The concept of gravitational waves traces its origins back to the revolutionary theory of
general relativity proposed by Albert Einstein in 1915. In 1918, Einstein made a remarkable
prediction: the existence of gravitational waves as a consequence of his theory. These
waves, he proposed, are ripples in the fabric of spacetime itself, propagating through the
universe at the speed of light.

Einstein’s prediction of gravitational waves was a profound revelation that not only
challenged our understanding of gravity but also presented a new perspective on the nature
of the cosmos. It indicated that gravity, far from being merely a force acting at a distance,
is an intrinsic property of the spacetime continuum. Gravitational waves became an essen-
tial aspect of Einstein’s general theory of relativity, expanding our understanding of the
gravitational interaction and its influence on the behavior of massive objects in the universe.

The significance of gravitational waves lies in their potential to unveil the secrets of
the most violent and energetic events in the cosmos. These include the collision of massive
black holes, the coalescence of neutron stars, and the explosive cataclysms of supernovae.
By detecting and studying gravitational waves, scientists can gain unique insights into the
dynamics, properties, and evolution of these celestial phenomena.
Moreover, the detection of gravitational waves provides a powerful tool to test the validity
of general relativity itself. By comparing the observed properties of gravitational waves
with the predictions of the theory, researchers can verify its accuracy in extreme gravita-
tional environments. This opens the door to exploring alternative theories of gravity and
deepening our understanding of the fundamental forces that shape the universe.

When massive objects, such as binary systems composed of black holes or neutron stars,
are in motion, their accelerated masses generate changes in the curvature of spacetime. This
disturbance propagates outward as gravitational waves, carrying energy and information
about their sources.

Gravitational waves can be understood as ripples in the fabric of spacetime itself. Just as
a stone thrown into a pond creates waves that spread across the surface, the motion of
massive objects disrupts the smoothness of spacetime, creating undulations that radiate
away from the source.
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2 CHAPTER 1. INTRODUCTION

The emission of gravitational waves occurs when the motion of massive objects involves
changes in their quadrupole moment. Binary systems, in particular, are excellent sources
of gravitational waves. As black holes or neutron stars orbit each other, they undergo
strong gravitational interactions, causing them to spiral inward over time.

Crucially, gravitational waves carry energy away from their sources. As they propagate
through spacetime, they transport energy across vast cosmic distances. This energy loss
affects the orbital dynamics of binary systems, causing them to gradually lose energy and
spiral closer together.

Furthermore, gravitational waves provide valuable information about their sources. The
precise characteristics of the emitted waves encode details about the masses, velocities, and
orbital parameters of the objects involved in the binary system. By studying the properties
of gravitational waves, scientists can gain insights into the nature of these massive objects,
their dynamics, and the environments in which they reside.

The first detection of gravitational waves was made by the Laser Interferometer
Gravitational-Wave Observatory (LIGO) in 2015. LIGO observed the merger of two
black holes, an event that occurred 1.3 billion light-years away, from [1]. This monumental
achievement not only validated Albert Einstein’s prediction of gravitational waves but also
demonstrated the remarkable precision of LIGO’s instruments in measuring tiny ripples in
spacetime.

”Over the last five years, LIGO and Virgo [3] witnessed a rapidly growing number of
GW events: the second gravitational wave transient catalogue (GWTC-2, [[2]]) consists of
50 binary compact object mergers from the first (O1), the second (O2) and the first part of
the third observing run (O3a) of the LIGO–Virgo collaboration (LVC).” as mentioned in [8]

Another significant milestone in gravitational wave astronomy was the detection of a
binary neutron star merger in 2017. This event, called GW170817, was not only observed
through gravitational waves but also through a wide range of electromagnetic signals across
the spectrum, including gamma rays, X-rays, and radio waves. This multi-messenger
observation marked a major breakthrough, as it confirmed that gravitational waves and
light travel at the same speed and provided valuable insights into the production of heavy
elements, such as gold and platinum, in such collisions.

The scientific achievements resulting from gravitational wave observations have been
numerous. These observations have allowed scientists to test the predictions of Einstein’s
general theory of relativity in extreme gravitational environments and have provided
evidence for the existence of black holes and neutron stars. Gravitational waves have
also served as a new tool for studying the properties of matter under extreme conditions,
probing the nature of dense nuclear matter and the behavior of spacetime itself.

Furthermore, gravitational wave astronomy has fostered international collaborations and
the development of advanced technologies. The global network of gravitational wave detec-
tors, including LIGO, Virgo, and KAGRA, working together has significantly improved the
sensitivity and detection capabilities, enabling more frequent observations and expanding
the reach of gravitational wave science.
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The impact of gravitational wave observations cannot be overstated. These ground-
breaking discoveries have confirmed the existence of gravitational waves, provided unique
insights into astrophysical processes, and opened up new avenues for studying the universe.
From the first direct detection in 2015 to subsequent observations of binary black hole
mergers and neutron star collisions, gravitational wave astronomy continues to push the
boundaries of our knowledge, revolutionizing our understanding of the cosmos and inspiring
new scientific endeavors.

1.2 Sources of GW: compact objects

Gravitational waves are produced by a variety of astrophysical events and phenomena,
each characterized by their own unique properties and significance. The study of gravita-
tional waves allows us to probe the dynamics and behavior of these systems, shedding light
on the violent and energetic nature of the universe. Few of the possible sources of GW
studied and observed are as follow:

Binary system

Binary systems composed of massive objects, such as black holes or neutron stars, are
important sources of gravitational waves. These systems consist of two massive objects
orbiting each other due to their mutual gravitational attraction.

The motion and orbital dynamics of the binary system create disturbances in the fabric
of spacetime, causing it to ripple and propagate as gravitational waves. According to
Einstein’s general theory of relativity, the accelerated masses in the binary system generate
changes in the curvature of spacetime, analogous to ripples spreading on the surface of a
pond when a stone is thrown into it.

As the binary objects orbit each other, they continuously emit gravitational waves. These
waves carry away energy from the system, causing the binary objects to gradually lose
orbital energy. As a result, the separation between the objects decreases over time, and
their orbits decay. This energy loss process ultimately leads to the merger of the binary
system.

The emission of gravitational waves is a consequence of the binary objects converting their
orbital energy into gravitational wave energy. These waves carry away the energy in the form
of ripples in spacetime, propagating outward in all directions from the source. The emission
of gravitational waves is a fundamental process that acts as a feedback mechanism in the
binary system, regulating its dynamics and causing the objects to inspiral toward each other.

As the binary objects approach each other and their orbital velocities increase, the emission
of gravitational waves becomes more intense. The emitted waves carry information about
the masses, spins, and orbital parameters of the objects. By analyzing the properties of the
gravitational wave signals detected on Earth, scientists can infer valuable information about
the binary system, such as the masses and spins of the objects, their orbital characteristics,
and the nature of the merger process.
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1.3 Binaries of stellar blackhole

The evolution of binary stars does not differ much from the single stellar evolution
unless either of the stars comes in the way of the other, that is if the binary orbit is large
enough. Unlike in the case where the stars are close enough when they interact with each
other, consequence of which is an evolution and appearance of stars along with the a change
in the orbit itself. One can think that if two massive stars are members of a binary system,
they will become a binary blackhole (BBH) system. In case the binaries are ‘detached’,
essentially far from each other then the mass of each of the blackhole (BH) are same as
that of the progenitor star as if they were both single stars. But if the binaries are tight,
that is close enough to each other, then they can evolve in one of several possible ways.
The binary population synthesis (BPS) codes is used to investigate the effects of binary
evolution process on the formation of the BBH in isolated binaries. BPS codes are semi
analytical codes with the prescription for supernovae explosions and formalism for binary
evolution process. Few of the most important binary evolution process are:

Mass transfer

If the two stars exchange matter with each other, then it is termed as mass transfer. It
is driven by stellar winds or Roche lobe filling. When massive star losses mass by stellar
wind, its companion might capture some of this mass depending on amount of mass lost

• Relative velocity of the stellar wind with respect to companion star. The mean mass
accretion rate by the stellar wind is given by

ṁ2 = 1√
1 − e2

(
Gm2
v2

m

)2 αw

2a2
1(

1 +
(

vorb
vw

)2
) 3

2
|ṁ1| (1.1)

Where the ”ṁ2” is the rate of mass gained by the accretion star, ”G” is the grav-
itational constant, ”e” is the eccentricity of the binary orbit,”v2

m” velocity of the
stellar wind, ”m2” is the mass of the accretion star, ”αw” is the efficiency constant
taken approximately as 1.5, ”a” is semimajor axis of the binary, ”vorb” is the orbital
velocity given by ”vorb =

√
(G(m1 + m2))/a” and ”ṁ1” donor star mass loss rate.

• Mass transfer by Roche lobe is a more efficient method than wind accretion. Roche
lobe of a star in a binary system, which can be described as a teardrop-shaped equipo-
tential surface enveloping the star. The Roche lobes of both binary members are
interconnected at a single point known as the Lagrangian L1 point. To approximate
the Roche lobe, a commonly utilized formula is employed:

RL,1 = a
0.49q2/3

0.6q2/3 + ln(1 + q1/3)
(1.2)

Where the parameter ”a” represents the semi-major axis of the binary system, while
”q” denotes the mass ratio between the two stars, given by q = m1/m2 (where m1 and
m2 refer to the masses of the two stars in the binary). This equation characterizes
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the Roche lobe of a star with mass m1, while the corresponding Roche lobe of a
star with mass m2(RL,2) can be obtained by interchanging the subscripts. When a
star’s radius exceeds the size of its Roche lobe, it is said to be overflowing the lobe,
whereas if its radius is smaller, it is considered to be underfilling the lobe. In cases
where a star overflows its Roche lobe, a portion of its mass is transferred towards the
companion star, which may then accrete some or all of the incoming mass.
Mass transfer in a binary system has a significant impact not only on the masses of
the two stars but also on the final mass of the compact remnants and the orbital
characteristics of the binary. In cases where mass transfer is non-conservative, which
is considered to be the more realistic scenario, it results in a loss of angular momen-
tum, consequently affecting the semi-major axis of the binary. Recent studies ??
have revealed that the assumption of highly non-conservative mass transfer (with
a mass accretion efficiency fMT ≤ 0.5 ) is in conflict with the data from the Laser
Interferometer Gravitational-Wave Observatory (LVC), particularly when assuming
that all observed BBH systems originate from isolated binary evolution.
An essential aspect to consider regarding Roche lobe overflow is determining whether
it is stable or unstable and the timescale involved. To explore this further, we
can make an assumption that the stellar radius and mass are linked through the
relationship R ∝ mζ . Hence the variation in donor’s radius during Roche lobe is

dR1
dt

= ∂R1
∂t

+ ζ
R1
m1

dm1
dt

(1.3)

Where the term ”∂R1
∂t ” is the contributing term for presence of nuclear burning, while

the term involving ”ζ” quantifies the adiabatic or thermal reaction of the donor star
to the loss of mass. It is important to note that ”dm1

dt ” represents the rate of mass
loss from the donor and is always negative. In a similar manner, we can estimate the
alteration in the size of the donor’s Roche lobe RL,1 as follows:

dRL,1
dt

= ∂RL,1
∂t

+ ζL
RL,1
m1

dm1
dt

(1.4)

where ∂RL,1
∂t depends on the tides and GW radiation, while ζL is the response of the

Roche lobe to mass loss, as in Roche lobe might expand or shrink. If the ζL > ζ then
the Roche lobe shrinks faster the radius of the star also making the mass transfer
unstable, else it remains stable until the radius changes dramatically by nuclear
burning, Mass transfer might be unstable on a dynamical timescale, in this case ζ
describes (if ζ represents an adiabatic response of the donor and ζ < ζL) or might
be stable on a thermal timescale (one in which ζ represents the thermal response
of the donor and ζ < ζL). In the event of dynamically unstable mass transfer or
if both stars exceed their respective Roche lobes, it is anticipated that the binary
system will undergo either a merger, especially when the donor lacks a significant
density gradient between its core and envelope, or enter a common envelope (CE)
phase, particularly when the donor exhibits a distinct separation between its core
and envelope.

Common envelope

When a binary system enters the CE phase, the envelopes of both stars cease to
co-rotate with their cores. Consequently, the stellar cores (or the compact object and the
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core of the companion star in the case of an already single degenerate binary) become
embedded within a shared non-corotating envelope, initiating a spiraling motion inward
due to gas drag exerted by the envelope. As the cores experience energy loss during this
process, a portion of the lost orbital energy is likely converted into heating the envelope,
causing it to become less tightly bound. If this mechanism leads to the ejection of the
envelope, the binary survives, but it becomes composed of two exposed stellar cores (or a
compact object and a naked stellar core). Moreover, the orbital separation between the two
cores (or between the compact object and the stellar core) becomes significantly smaller
than the initial separation prior to the CE phase due to the inward spiral. This outcome
holds significant implications for the fate of a BBH system. In fact, if a BBH survives the
CE phase, its semi-major axis (a) becomes notably shorter (a ≲ 100R⊙) compared to the
sum of the maximum radii of the progenitor stars. Consequently, the BBH may have the
potential to merge within a Hubble time through the emission of gravitational waves.
On the other hand, if the envelope is not ejected, the two cores (or the compact object and
the core) continue spiraling inward until they eventually merge. This premature merger
during the CE phase prevents the binary from evolving into a BBH. The schematic diagram
in ?? provides an overview of these potential outcomes.

Figure 1.1: Schematic representation of the evolution of a BBH through CE. The companion
of the BH is initially in the main sequence. Figure referred from [10]. Also mentioned WR
is a Wolf-Rayet star(ie, almost completely stripped by the hydrogen envelope)

The most commonly adopted formalism to describe the common envelope is the α formalism.
This formalism is based on the notion that the energy required to unbind the envelope
originates solely from the loss of orbital energy of the two cores during the inward spiral.
The fraction of the orbital energy contributed by the two cores that goes into unbinding
the envelope can be expressed using the following formalism:

δE = α(Eb,f − Eb,i) = α
Gmc1mc2

2 ( 1
αf

− 1
αi

) (1.5)

where Eb,i(Eb,f ) represents the orbital binding energy of the 2 cores either before (or after)
the CE phase, mc1 and mc2 are masses of the two cores, α represents the fraction of orbital
energy which is transferred to the envelope and is a dimensionless parameter. As on the
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??, if the primary(mc1) is already a compact then it implies that the mc2 gives the mass
of the secondary compact object.
Binding energy of the envelope is:

Eenv = G

λ

[
menv,1m1

R1
+ menv,2m2

R2

]
(1.6)

here m1 and m2 are the are the masses of the primary and the secondary member of
the binary, menv,1 and menv,1, represent the masses . R1 and R2 represent the radii of
the primary and secondary in the envelope of binary and λ is parameter representing
the concentration of the envelope, lower the value of λ higher is the concentration of the
envelope.

By equating δE (orbital energy change) to Eenv (binding energy of the envelope), we
can determine the value of the final semi-major axis (af ) at which the envelope is ejected.
Consequently, a larger (smaller) α initial semi-major axis (a) leads to a correspondingly
larger (smaller) final orbital separation. If the resulting af is less than the sum of the radii
of the two cores (or less than the sum of the Roche lobe radii of the cores), the binary
system will undergo a merger during the common envelope phase. Conversely, if af is
greater than or equal to the sum of the core radii (or the sum of the Roche lobe radii), the
binary system will survive.

1. The thermal energy of the envelope, encompassing the combined contributions of
radiation energy and the kinetic energy of gas particles

2. Recombination energy, which arises as the expanding envelope cools down, leading
to plasma recombination and the release of binding energy through the formation of
atoms and even molecules

3. Tidal heating/cooling resulting from stellar spin down/up

4. Nuclear fusion energy

5. Enthalpy of the envelope

6. Accretion energy, which may drive the occurrence of outflows and jets.

When the two cores undergo a rapid dynamical spiral-in process, typically occurring
within a timescale of around 100 days, only a small fraction of the envelope (approximately
25% in most simulations) appears to be ejected. As the two cores approach each other
closely and the gas mass between them becomes minimal, the spiral-in process slows down,
and the system evolves on a much longer Kelvin-Helmholtz timescale of the envelope,
spanning ≈ 103−5 years.

Simulating the system for the entire Kelvin-Helmholtz timescale is currently infeasible
for three-dimensional simulations due to computational limitations . Fragos et al. (2019, )
address this challenge by employing a simplified approach, conducting one-dimensional
simulations of the entire common envelope evolution using the hydrodynamic stellar evo-
lution code MESA [270, 271, 272]. They model a binary system consisting of a neutron
star (NS) and a red supergiant star with a mass of 12 M, simulating the thermal timescale
of the envelope. In their model, the ejection of the envelope is primarily driven by the
thermal energy of the envelope and the orbital energy, while recombination contributes to
less than 10% of the total energy required for envelope ejection. The resulting system is
a NS-naked helium star system with a relatively close orbital separation of a few stellar
radii, making it a promising progenitor for a merging binary neutron star (BNS) system.
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Their simulated system aligns with the formalism when the parameter a is set to 5, despite
this value seemingly exceeding physical limits. This choice stems from the recognition that
orbital energy is just one of the contributing energy sources involved in the process of
envelope ejection.

1.4 Integrating theory with SEVN to explore the parameter
phase and taking assistance of ML

By integrating theory with the SEVN (Stellar Evolution with N-body dynamics)
approach, we aim to explore the parameter phase and leverage the assistance of machine
learning (ML) techniques. This integration allows us to combine theoretical knowledge and
computational simulations to gain a deeper understanding of the underlying mechanisms
and relationships within the system. Through the application of ML algorithms, we can
analyze the complex data generated by SEVN and extract meaningful insights, enabling
us to make more accurate predictions and uncover novel patterns within the parameter
space. This interdisciplinary approach provides a powerful framework for advancing our
understanding of astrophysical phenomena and enhancing our ability to explore and
interpret the intricate dynamics of celestial objects.



Chapter 2

Machine learning

Machine learning is the development of algorithms and models to enable a computer to
learn about data and make predictions without explicitly programming it. ML enables the
computer to recognize patterns in the data, fit equations to variables, categorize data and do
more operations on the data it learns from. Machine learning has been used in a wide range
of applications in physics from particle physics experiments such as LHC to astrophysics
experiments in galaxy classification, gravitational wave detection, cosmological parameter
estimation, from quantum error correction, and quantum control in quantum physics to
solving complex equations, simulating physical systems, and optimizing computational
models in computational physics. In traditional programming, explicit instructions are
written to perform specific tasks, whereas in ML the focus is on developing models that can
generalize from examples, by analyzing from the data set the ML can extract meaningful
insights and recognize complex patterns and make informed predictions.

Here, we delve into the fundamental concepts of machine learning, with a particular
focus on supervised learning, such as the random forest algorithm.

2.0.1 Types of ML algorithms

There are several ways of classifying machine learning algorithms, based on various
criteria, a few of these ways are as follows:

• Supervised vs Unsupervised learning vs Reinforcement learning:
Supervised Learning: Algorithms learn from labeled training data, where inputs are
mapped to known outputs.
Unsupervised Learning: Algorithms learn from unlabeled data, finding patterns,
structures, or relationships in the data.
Reinforcement Learning: Algorithms learn by interacting with an environment,
receiving feedback in the form of rewards or penalties.

• Classification vs. Regression:
Classification: Algorithms predict categorical or discrete class labels.
Regression: Algorithms predict continuous numerical values.

• Decision Tree-based vs. Neural Network-based:
Decision Tree-based: Algorithms build a tree-like model, making sequential decisions
based on feature values.
Neural Network-based: Algorithms consist of interconnected artificial neurons orga-
nized in layers, capable of learning complex patterns and relationships.

9
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• Linear vs. Non-linear:
Linear: Algorithms assume a linear relationship between inputs and outputs.
Non-linear: Algorithms capture complex, non-linear relationships between inputs
and outputs.

• Batch Learning vs. Online Learning:
Batch Learning: Algorithms learn from a fixed dataset and require retraining on
updated data to incorporate new information.
Online Learning: Algorithms learn incrementally from streaming data, updating the
model in real-time as new instances arrive.

It is interesting to note that these classifications are not mutually exclusive, and many
machine learning algorithms can fall into multiple categories depending on their charac-
teristics and usage. One might say that random forest falls into the supervised learning,
decision tree based and classification algorithm categories.

2.0.2 Supervised and unsupervised learning

Supervised learning

Supervised learning is a machine learning approach where an algorithm learns from
labeled data to make predictions or classifications. In supervised learning, a dataset is
provided that consists of input variables (also called features or independent variables) and
their corresponding output variables (also known as labels or dependent variables). The
goal is to train a model that can generalize from the provided examples and accurately
predict or classify unseen data.

The process of supervised learning involves two main steps: training and inference.
During the training phase, the model is exposed to the labeled dataset, and it learns the
underlying patterns and relationships between the input and output variables. This is
typically achieved by minimizing a predefined loss function that measures the discrepancy
between the model’s predictions and the true labels.

The training data is divided into two subsets: a training set used to train the model
and a validation set used to assess the model’s performance during training and fine-tune
its parameters. The model iteratively adjusts its internal parameters based on the feedback
received from the loss function until it reaches an optimal state or convergence.

Once the model is trained, it can be used for inference on new, unseen data. The model
takes the input variables as input and produces predictions or classifications as output.
The performance of the model can be evaluated using various metrics, such as accuracy,
precision, recall, or mean squared error, depending on the nature of the problem.

Supervised learning encompasses a wide range of algorithms, including linear regression,
logistic regression, support vector machines (SVMs), decision trees, random forests, and
neural networks. Each algorithm has its own assumptions, strengths, and limitations,
making them suitable for different types of problems and datasets. In this thesis the zero
age main sequence mass of the stars, the initial semimajor access of the binary star system,
the initial eccentricity of the orbit, alpha and metallicity are used as the input parameters.
Two output labels are also deduced which indicate if the binary star ends in a bound binary
blackhole (BBH) and another label for merger BBH. In a more general way supervised
learning used cases in astrophysics are:

• Galaxy Classification: Astrophysicists often study large datasets of galaxy images.
Supervised learning algorithms can be trained on labeled images, where the morpho-
logical types of galaxies are known, to develop models that automatically classify
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galaxies into different types (e.g., spiral, elliptical, irregular) based on their visual
features.

• Exoplanet Detection: Exoplanets are planets orbiting stars outside our solar system.
In exoplanet research, supervised learning can be used to analyze light curves obtained
from telescopes and identify the characteristic patterns that indicate the presence of
exoplanets. Labeled light curves with confirmed exoplanet detections can be used to
train models for automated detection and classification of exoplanets.

• Supernova Classification: Supernovae are powerful stellar explosions and different
types of supernovae exhibit distinct light curves and spectra. Supervised learning
algorithms can be trained on labeled supernova data to classify and categorize
supernovae based on their observed properties, helping to understand the underlying
physical processes and improve their detection and classification efficiency.

Unsupervised learning

Unsupervised machine learning is a branch of machine learning where algorithms learn
from unlabeled data without any explicit guidance or predefined labels. Unlike supervised
learning, there is no ground truth or correct output to compare against during training.
Instead, the algorithms aim to discover patterns, structures, or relationships within the
data on their own.

In unsupervised learning, the algorithms explore the inherent characteristics of the data
and group similar instances or identify underlying patterns without any prior knowledge.
The main objectives of unsupervised learning include clustering, dimensionality reduction,
and anomaly detection.

Clustering algorithms group similar data points together based on their intrinsic
similarities or distances. The goal is to partition the data into meaningful clusters,
enabling insights into the natural grouping of the data points. Examples of clustering
algorithms include K-means, hierarchical clustering, and DBSCAN. A few used cases
for unsupervised Learning in astrophysics, such as in Galaxy clustering - to analyze
galaxy surveys and identify groups or clusters of galaxies with similar properties, Anomaly
Detection in Astronomical Data - to identify rare or unusual events in astronomical data and
Dimensionality Reduction in Spectroscopic Data - for preserving the relevant information
after reducing the dimentionality of the data.

2.0.3 Random forest

Random forest is an ensemble learning algorithm that combines multiple decision trees
to make predictions. It is a type of online learning method, where new data can be
incrementally added to the model without retraining the entire forest. This makes random
forest suitable for scenarios where data is continuously streaming or when updates need to
be made to the model as new observations become available.
Ensemble learning is a powerful machine learning technique that combines multiple individ-
ual models (learners) to make predictions or decisions. Instead of relying on a single model,
ensemble learning leverages the collective knowledge and diversity of multiple models to
enhance prediction accuracy and generalization.Ensemble learning techniques come in
various forms, including bagging, boosting, and stacking. Random forest, is an example
of an ensemble learning method that utilizes bagging. Other ensemble methods, such as
AdaBoost, Gradient Boosting, or XGBoost, operate based on the concept of boosting.
Decision trees are hierarchical models that represent a sequence of binary decisions and
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outcomes. They are widely used in machine learning for both classification and regression
tasks. The fundamental principles of decision trees include the recursive splitting of data
based on features and thresholds.

The working of a decision tree can be broken down into the following

• Tree Structure: A decision tree consists of nodes and edges. The topmost node is called
the root node, and it represents the entire dataset. Each internal node corresponds
to a decision based on a specific feature and threshold.The edges emanating from an
internal node represent the possible outcomes of the decision, leading to subsequent
nodes or leaves. Leaves (also known as terminal nodes) represent the final prediction
or outcome.

• Recursive Splitting: The process of building a decision tree involves recursively
splitting the data based on features and thresholds to create decision rules. At each
internal node, a feature and threshold are selected to partition the data into subsets.
The goal is to find the feature and threshold that maximize the separation or purity of
the subsets based on the target variable (in the case of classification) or the predicted
value (in the case of regression).

• Splitting Criteria: The selection of the best feature and threshold is typically based
on a splitting criterion, such as Gini impurity or entropy (for classification) or mean
squared error (for regression). The splitting criterion measures the impurity or
homogeneity of the subsets created by the split. The feature and threshold that
result in the greatest reduction in impurity or error are chosen as the optimal split.

• Building the Tree: The process of building the decision tree continues recursively
until a stopping criterion is met. This can be based on a maximum depth limit, a
minimum number of samples required to split, or other predefined conditions. Each
internal node represents a decision based on a feature and threshold, leading to
subsequent nodes or leaves. The tree grows by iteratively adding nodes and splits
until the stopping criterion is reached.

• Prediction: Once the decision tree is constructed, predictions can be made by
traversing the tree from the root node down to a leaf node. At each internal node, the
feature value of the input data is compared to the threshold. Based on the outcome,
the traversal continues down the corresponding edge. When a leaf node is reached,
the prediction is made based on the majority class (in classification) or the mean
value (in regression) of the training examples in that leaf node.

Bagging, short for bootstrap aggregating, is a technique used in machine learning to
improve the performance and robustness of models, particularly in the context of ensemble
learning. Bagging is a fundamental component of random forest, where multiple decision
trees are trained on different subsets of the data. The concept of feature randomness is an
important aspect of random forest, contributing to its effectiveness in capturing diverse
patterns and reducing the correlation between individual decision trees. In random forest,
a random subset of features is considered at each node during the construction of each
decision tree. The number of features in the subset is typically determined based on a
user-defined parameter or a default value. The process of selecting the best feature and
threshold for splitting is repeated recursively until a stopping criterion is met. Once all the
decision trees in the random forest are constructed, their predictions are combined through
majority voting (for classification) or averaging (for regression). The training process of
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a random forest involves creating individual decision trees through bootstrapping and
feature randomization. It has a few steps described above like bootstrapping, building
Individual decision trees, feature randomization, aggregating predictions. This combination
of techniques allows random forest to overcome over fitting, capture a wide range of
patterns, and improve the predictive performance and generalization capabilities of the
ensemble model.

The hyper parameters often considered for random forest include:

• Number of Trees (n estimators): The number of trees in the random forest, denoted
by n estimators, is a crucial hyperparameter.Increasing the number of trees typically
improves the performance of the random forest, but it also increases computational
complexity.

• Maximum Depth of Trees (max depth):The max depth hyperparameter controls the
maximum depth of each decision tree in the random forest. A deeper tree can capture
more complex relationships in the data, but it may also lead to overfitting if not
properly regulated.

• Minimum Samples Required for Splitting (min samples split): The min samples split
hyperparameter determines the minimum number of samples required to split an
internal node during tree construction. It ensures that a node is split only if it has a
sufficient number of samples, preventing the creation of nodes with too few instances

The output class is predicted by the random forest by classification a new input,
majority voting and confidence of the final decision. In particular in the classification of
a new input, it is passed through each decision tree in the random forest. Each decision
tree evaluates the input based on its learned rules and assigns it a class label. In majority
voting, after all decision trees have made their predictions, the class labels and associated
votes are counted. The confidence or probability is often estimated based on the proportion
of decision trees in the random forest that predicted a particular class. The higher the
proportion of trees predicting a specific class, the greater the confidence or probability
associated with that class.

Random forest used for thesis

The thesis work provides a detailed account of the data, training, and validation process
for two types of black hole mergers: bound BBH (Binary Black Hole) and merger BBH.

First, it introduces the concept of confusion matrices, which are used to evaluate the
performance of the models. A confusion matrix provides a summary of the predicted and
actual classifications of the data, indicating true positives, true negatives, false positives,
and false negatives.

The importance of feature selection is emphasized in the thesis work, as it helps simplify
the model and improve computational efficiency. Feature importance can be presented in
various formats such as ranking the features based on their importance scores or visualizing
them using graphical representations like bar plots or heatmaps. This allows for a clear
identification of the most influential features in the dataset.

The analysis of feature importance offers several benefits in the context of the thesis
work. It aids in understanding the relationships between features and the target variable,
providing valuable insights for domain experts and guiding further investigations. It also
helps in feature selection by excluding less important features, simplifying the model
and improving efficiency. Furthermore, feature importance can detect potential biases or
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spurious relationships in the data by assessing the impact of each feature on the model’s
predictions, identifying variables that may have a disproportionate influence or contribute
to overfitting.

However, it is crucial to note that feature importance is specific to the model and dataset
used in the thesis work. Different models may assign different levels of importance to
features, and the results may vary depending on the evaluation metric employed. Therefore,
it is essential to interpret and utilize feature importance within the context of the specific
model and problem domain.

The thesis work then proceeds to discuss the challenges encountered during the training
process with the SEVN data. One major challenge identified is the highly unbalanced
nature of the data, where there is an insufficient number of data points representing one
type of output. This imbalance can lead to overfitting and hinder the model’s ability to
recognize and classify certain types of events accurately.

To mitigate this challenge, the thesis work explores several techniques. One approach
involves training the machine learning (ML) model with more features, such as incorporating
the sum of Zams (Zero Age Main Sequence) mass of the stars, the pericenter and apocenter
quantities derived from the semimajor axis and eccentricity, and the square of the semimajor
axis.

Another technique involves training the merger BBH model using the data filtered
specifically for bound BBH events. Since merger BBH events are a subset of bound BBH
events, this approach aims to assess the performance of the ML model when trained with
already filtered data.

Additionally, the thesis work examines the use of an already trained bounded BBH
model to classify the data. This involves training an ML model for bound BBH data using
the entire dataset, predicting the bound BBH values again using this model, and replacing
the original values with the new predictions. The resulting dataset, consisting of predicted
bound BBH and merger BBH data, is then used to retrain another ML model to detect
merger BBH events.

The performance of each technique is evaluated using metrics such as confusion matrices
and feature importance. The results show that none of the methods significantly improve
over the initial method, indicating the complexity of the problem and the need for further
investigation in the thesis work.

Finally, the thesis work explores the application of random grid search to optimize
the performance of the ML algorithm, particularly the hyperparameters of a random
forest. Random grid search involves identifying the current hyperparameters in use,
specifying the range of values for each hyperparameter, and testing multiple combinations
of hyperparameter values to find the best configuration. This technique can help improve
the overall performance of the model.

In summary, the thesis work provides a detailed overview of the data, training, and
validation
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SEVN

3.1 SEVN

3.1.1 Binary population synthesis code

Binary population synthesis codes represent the most efficient method for simulating
the trajectory of binary star evolutionary (BSE), encompassing their journey from the
zero-age main sequence (ZAMS) to their ultimate destiny. A notable example is the
renowned BSE code ([6]Hurley et al., 2000, 2002), serving as the foundational progenitor
for numerous binary population synthesis codes. This code can simulate the evolution
of a staggering number of O(106) binary stars within a matter of hours using a single
CPU core. By comparison, contemporary stellar evolution codes necessitate approximately
O(102 − 103) CPU hours to model the evolutionary path of an individual binary star. The
swift computational speed of binary population synthesis codes is not only crucial for
exploring the parameter space of massive binary star evolution but also for facilitating
seamless integration with dynamical codes, thereby enabling the study of the dynamic
formation of BCOs (Binary Compact Objects) within densely populated stellar clusters.
A multitude of binary population synthesis codes have been developed, contributing
significantly to the investigation of Binary Compact Object (BCO) formation. These codes
encompass are namely BINARY C, BPASS, COSMIC, MOBSE, etc and SEVN [9]
Although each of these codes operates independently, a majority of them rely on a
shared model of stellar evolution, which utilizes the accurate and computationally efficient
fitting formulas developed by Hurley [6] et al. (2000). These fitting formulas enable the
representation of key stellar evolution properties, such as photospheric radius, core mass,
core radius, and luminosity, as functions of stellar age, mass (M), and metallicity (Z),
representing the mass fraction of elements heavier than helium.
While binary population synthesis codes employing these fitting formulas may differ in their
approaches to modeling stellar winds, compact-remnant formation, and binary evolution,
they all rely on the same underlying stellar evolution model. Consequently, the outcomes
obtained from these codes may vary, reflecting their divergent treatments of specific aspects,
but ultimately relying on the common framework of stellar evolution.

3.1.2 SEVN

SEVN (Stellar EVolution for N-body) represents an efficient binary population synthesis
code that facilitates swift calculations of stellar evolution. It achieves this by employing
interpolation techniques on pre-computed collections of stellar tracks. Binary evolution
is incorporated through the utilization of analytic and semi-analytic prescriptions. This

15
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Figure 3.1: In SEVN, single stars (characterised by their properties like mass, radius,..)
and binary stars(characterised by the properties like semi-major axis, eccentricity, ZAMS,
...). All these systems along with their properties are represented as C++ classes in the
code
approach offers significant advantages as it enhances the code’s generality and flexibility.
The implementation of SEVN enables seamless modification or updating of the adopted
stellar evolution models by simply loading a new set of look-up tables. Moreover, SEVN
provides the capability to dynamically select the desired stellar tables during run time,
without necessitating any internal code modifications or recompilation procedures.

SEVN is a C++ code developed following the object-oriented programming paradigm,
designed to operate independently without relying on external dependencies. It leverages
the advantages of CPU parallelization by utilizing OpenMP. Figure 3.1 provides a visual
representation of the fundamental components of sevn and their inter-relationships.

Binary evolution

SEVN includes the binary evolution processes such as: wind mass transfer, Roche-lobe
overflow (RLO), common envelope (CE), stellar tides, circularisation at the RLO onset,
collision at periastron, orbit decay by GW emission, and stellar mergers. Binary-evolution
prescriptions in SEVN rely on the BSE formalism (Hurley [6] et al. 2002); therefore, for
binary evolution SEVN makes use of the BSE stellar types as mentioned in Table 3.1.
Table 3.1: SEVN stellar evolutionary phases (Column 0), identifiers (Column 1) and
remnant types (Column 2). Column 3 shows the correspondence to Hurley stellar types:

SEVN Phase Phase ID SEVN Remanent subphase Remanent ID BSE Stellar-type equivalent

Pre-main sequence (PMS) 0 - 0 not available
Main sequence 1 - 0 1 if f†

conv ¡ 0.8, else 0
Terminal-age main sequence (TAMS) 2 - 0 2 if f†

conv ¡ 0.33, else 3
Shell H burning(SHB) 2 - 0

Core He burning (CHeB) 2 - 0 7 if WR‡ else 4
Terminal-age core He burning(TCHeB) 5 - 0 7 if W R‡ else 4 if f

†
conv ¡ 0.33, else 5

Shell He burning (SHeB) 6 - 0 8 if W R‡ else 4 if f
†
conv ¡ 0.33, else 5

He white dwarf(HeWD) 1 10
CO white dwarf(COWD) 2 11

ONe white dwarf(ONeWD) 3 12
Remnant 7 neutron star formed via electron capture (ECNS) 4 13

neutron star formed via core collapse (CCNS) 5 13
blackhole (BH) 6 14

no compact remnant(Empty) -1 15

1. Wind mass transfer
In SEVN, the stellar tracks stored in the tables are assumed to incorporate wind
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mass loss, ensuring that this aspect is consistently considered in the single stellar
evolution. Additionally, we account for the potential scenario where mass and angular
momentum lost from a star (referred to as the donor) can be accreted by its stellar
companion (known as the accretor).The stellar tracks stored in the tables are assumed
to incorporate wind mass loss, ensuring that this aspect is consistently considered in
the single stellar evolution. Additionally in the paper[8], they have accounted for the
potential scenario where mass and angular momentum lost from a star (referred to
as the donor) can be accreted by its stellar companion (known as the accretor).

ȧ

a
= Ṁd

Ma + Md
− (2 − e2

Ma

1 + e2

Ma + Md
) Ṁa

1 − e2 (3.1)

and
ė

e
= −Ṁa[(Ma + Md)−1 + 0.5M−1

a ] (3.2)

The mass loss through stellar winds leads to an expansion of the orbit. However, the
mass accretion onto the companion star counteracts this effect by restoring some
of the lost angular momentum to the system (Equation (3.1)). Furthermore, the
accretion of wind mass reduces the eccentricity of the orbit, resulting in circularization
(Equation (3.2)). It is important to note that these variations in eccentricity, even
during the periods of intense mass loss, are insignificant compared to those induced
by stellar tides.

2. Roche-lobe overflow
Within the SEVN code, a Roche lobe overflow (RLO) initiates when the radius of
either star reaches or exceeds the value of RL. The RLO process continues until this
criterion is no longer met or until mass transfer results in a merger or a common
envelope (CE) event. At each time-step, SEVN actively verifies the fulfillment of this
condition.

RL = 0.49q2/3

0.6q2/3 + ln(1 + q1/3)
(3.3)

3. Stability criterion
The process of Roche lobe overflow (RLO) brings about alterations in the mass ratio,
masses, and semi-major axis of the binary system. Consequently, the size of the
Roche lobe (RL) undergoes contraction or expansion (described by Equation (3.3)).
If the RL contracts at a faster rate than the donor star’s radius (or if the RL expands
slower than the donor’s radius) due to the star’s adiabatic response to mass loss, the
mass transfer becomes dynamically unstable. This instability occurs on a timescale
comparable to the system’s dynamical timescale and can lead to either a stellar
merger or the formation of a common envelope (CE) configuration. From the paper
[8] ”population synthesis codes usually implement a simplified formalism in which
the mass transfer stability is evaluated by comparing, q = Md/Ma (Md = Mass of
donor star;l Ma = Mass of the accretion star) with some critical value qc. If the
mass ratio is larger than qc,the mass transfer is considered unstable on a dynamical
time scale.The critical mass ratio is usually assumed to be large (¡ 2) for stars with
radiative envelopes (e.g., MS stars, stars in the Hertzsprung-gap phase, and pure-He
stars),while it is smaller for stars with deep convective envelopes (but see Ge et al.
2020b [4],a[5], for a significantly different result).”
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4. Stable Mass transfer
In the updated version of sevn, they have incorporated a slightly modified formalism
to describe stable mass transfer, taking into account differences compared to the
approaches of Hurley [6] et al. (2002) and Spera et al. (2019). The main distinctions
are outlined below. The rate at which mass is lost depends on the degree to which
the donor star exceeds the size of its Roche lobe (as described by Hurley [7] et al.,
2002):

Ṁd = −F (Md)
(

ln Rd

RL

)3
M⊙ yr−1 (3.4)

and the normalization factor is

F (Md) = 3 × 10−6 (min[Md, Mmax,SMT])2 ×


max

[
Menv,d

Md
, 0.01

]
, for HG phase donors

103Md

(
max[Rd, 10−4]

)−1
, for WD donors

1, all other cases
(3.5)

where all the quantities are in solar units.

5. Orbital variations In the case of a non-conservative mass transfer (MT ̸= 1), there
is a loss of angular momentum from the system. We parameterize this angular
momentum loss as follows:

∆J = −|∆Mloss|γRLOa2
√

1 − e2 2π

P
(3.6)

where P is the orbital period and ∆M is the actual mass lost from the system in a given
evolution step, i.e. the difference between the mass lost by the donor and that accreted on
the companion[8]. Therefore, the spin angular momentum lost by the donor is added to
the orbital angular momentum:

∆Jorb,d = −∆Jspin,d = −∆MdR2
LΩspin,d (3.7)

where ∆Md is the mass lost by the donor in an evolutionary step and Ωspin,d is the donor
angular velocity.In contrast, the accretion of mass onto the companion star results in the
removal of orbital angular momentum and an increase in the spin of the accretor.

∆Jorb,a = −∆Jspin,a = −∆Ma

√
GMaRacc (3.8)

Finally, the change in the semi-major axis resulting from the Roche lobe overflow (RLO) is
estimated as follows:

∆a = (Jorb + ∆Jorb,lost + ∆Jorb,a)2(Ma + Jorb + Md)
G(1 − e2)M2

d M2
a

(3.9)

where the masses are considered after the mass exchange in the current time-step. Similarly,
the variations in stellar spins are updated based on Equations (3.7) and (3.8). The are
other process considered is Unstable mass transfer, for the present model of SEVN.
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Common envelope

The common envelope (CE) phase is a distinctive stage in the evolution of a binary
system, characterized by the binary being enveloped within the expanded envelope of one
or both of its components. During this phase, the loss of synchronization between the
binary orbit and the envelope leads to drag forces that cause the orbit to shrink, while
the envelope gains energy and expands. This formulation relies on comparing the energy
required to disperse the stellar envelope(s) with the orbital energy before and after the
common envelope (CE) event. The calculation of these two energy terms is contingent upon
two parameters: λCEandαCE The initial parameter, λCE , serves as a structural parameter
that determines the binding energy of the stellar envelope (as described by Hurley[7] et al.,
2002). Consequently, the binding energy of the common envelope can be expressed as:

Ebind,i = −G

(
M1Menv1
λCE1R1

+ M2Menv2
λCE2R2

)
(3.10)

The parameter αCE denotes the fraction of orbital energy that is converted into kinetic
energy of the envelope throughout the common envelope evolution. Thus, the energy
required to unbind the envelope can be expressed as:

∆Eorb = αCE
GMc,1Mc,2

2 (a−1
f − a−1

i ) (3.11)

where Mc,1 and Mc,1 are the core masses of two stars and af andai are the final and initial
semi-major axis after and before the CE phase. For stars that lack a well-defined envelope
(such as main-sequence stars, pure-He stars without a CO core, naked-CO stars, and
compact remnants), we assume Ebind = 0 and Mc = M . To determine the post-common
envelope separation, we enforce Ebind,i = ∆Eorb. If neither star fills its Roche lobe in the
post-common envelope configuration, we assume that the common envelope is ejected.
Otherwise, the two stars merge.

The labels ”star 1” and ”star 2” are used solely to differentiate between the two merging
objects and do not necessarily refer to the primary and secondary stars. It is important
to note that a type Ia supernova (SNIa) does not result in the formation of a compact
remnant.

Gravitational waves

SEVN describes the impact of GW emission on the orbital elements by including the
same formalism as BSE [8]:

ȧ = −64G3M1M2(M1 + M2)
5c5a4(1 − e2)7/2

(
1 + 73

24e2 + 37
96e4

)
(3.12)

ė = −304G3M1M2(M1 + M2)
15c5a4(1 − e2)5/2

(
1 + 121

304e2
)

(3.13)

The aforementioned equations, originally presented by Peters [11] (1964a), incorporate the
effects of gravitational waves (GWs) on orbital decay and circularization. Unlike in the
BSE code, where Equations 39 and 40 are active only for semi-major axes less than 10 AU,
in sevn these equations are activated whenever the GW merger timescale, tmerge, is shorter
than the Hubble time. The GW merger timescale is evaluated using a highly accurate
approximation of the solution to the systems of Equations 39 and 40, ensuring errors of
less than 0.4%.
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Figure 3.2: Shows the data frame containing the final and initial values of the binary
system
3.2 Data, training and validation

The data from several SEVN simulation runs are put together to be used to train the
random forest algorithm. The different runs of SEVN have different values of α (fraction
of binding energy used to expel the common envelope) value from (1.0,10.0,100.0) and
different metallicities like (0.002,.0002,0.00002). Hence in total it gives us number of
different combinations of input parameters for the runs.
These different runs of SEVN each give out a set of comma separated value files (.csv)
which are individually processed, around 20 files. All of these files in total will be around
180 files. These files are together put into a single data frame, so as to make it easier to
manipulate. In the parameter list we take only the zero age main sequence of the two stars
(Zams 0,Zams 1), initiail semi major axis of the star system (Semimajor initial), initial
eccentricity of the orbit(Eccentricity initial),metallicity*(Z) and αCE , other parameters
are dropped from the input data.
Next we create two more columns to hold to filter the data and determine if a binary star
system eneded up to be a bound BBH or a merger BBH. If the system has a both the
stars ending with a phase value of 6, that is the stars ended up as remnants at the end
of the simulation and remnant type of 7, which is the one for blackhole, only such data
rows are considered. In rows which satisfy these conditions, we check on if the GWTime is
valid or not NA, then we identify it as bound BBH system and make the column 1. We
further take the ones which satisfy these conditions and check if the sum of simulation
time (’BWorldTime’) and GWtime is less than 14 Billion years, a sample of this prepared
data frame is given in figure 3.2, then these data rows will be classified as merger BBH as.

3.2.1 Training the model

Hence the data to be used for training the model (Zams 0,Zams 1), initiail semi major
axis of the star system (Semimajor initial), initial eccentricity of the orbit(Eccentricity initial),metallicity
and α,as the input parameters for training the model(in our case random forest). The
’boundedBBH’ and ’mergerBBH’ as the output parameters for the model. The package we
use sklearn.ensemble to import RandomForestClassifier and train the random forest model.
We use the package train test split from sklearn.model selection, for splitting the data from
previous section to training data and testing data. Lets call this the method 1, in which
we take 6 featuers as input and train for bound and merger BBH Training the model takes
around 10 minutes with 6 million data points, with an average of 120,000 bound merger
BBH systems and 2600 merger BBH systems. The confusion matrix on training the data
with bound BBH is as follows, it shows a little bit of overfitting having occured! Same is
the case with the merger BBH data as well. This is probably because of the distribution of
data points, the data we have used to train the model is highy unbalanced, the overfitting
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Figure 3.3: Code giving the peak into picking data for input and output labels for training
the model, as well as splitting the data into training and testing

(a) Confusion matrix on test data (b) Confusion matrix on training
data

Figure 3.4: Gives the confusion matrix for bound BBH, for training and test data
can be avoided by a number of techniques such as synthetically increasing the number of
merger and bound BBH positive cases.

Confusion matrix

The confusion matrix is a fundamental tool in evaluating the performance of a classifi-
cation model. It provides a tabular representation of the predicted and actual class labels
for a given dataset. The matrix is typically square and organized into four quadrants: true
positives (TP), true negatives (TN), false positives (FP), and false negatives (FN).

The TP quadrant represents the cases where the model correctly predicted a positive
class, and the actual class is indeed positive. TN represents the cases where the model
correctly predicted a negative class, and the actual class is indeed negative. FP corresponds
to the cases where the model incorrectly predicted a positive class when the actual class is
negative. FN represents the cases where the model incorrectly predicted a negative class
when the actual class is positive.

The confusion matrix provides valuable information to assess the performance of a
classification model. From the matrix, several performance metrics can be derived, such as
accuracy, precision, recall, and F1 score. These metrics help in understanding the model’s
ability to correctly classify instances and identify any potential biases or weaknesses.

Analyzing the confusion matrix allows for a deeper understanding of the model’s
strengths and limitations. It can reveal patterns of mis-classifications, highlighting specific
classes that are prone to errors or instances where the model excels. By examining the
distribution of predictions across the matrix, insights can be gained into the model’s overall
effectiveness and potential areas for improvement.

The confusion matrix enables the evaluation of different classification algorithms or
parameter settings. It facilitates the comparison of models based on their performance in
differentiating between classes and provides a basis for selecting the most suitable approach
for a specific task.
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(a) Test data (b) Training data

Figure 3.5: Gives the confusion matrix for merger BBH
The confusion matrix for merger BBH data also shows some degree of over fitting

having occurred.

Feature importance

Feature importance can be presented in different formats, including ranking the features
based on their importance scores or visualizing them using bar plots, heatmaps, or other
graphical representations. This allows for a clear identification of the most influential
features in the dataset.

The analysis of feature importance provides several benefits. It helps in feature
selection, where less important features can be excluded to simplify the model and improve
computational efficiency. It also aids in understanding the underlying relationships between
features and the target variable, providing valuable insights for domain experts and guiding
further investigations.

Furthermore, feature importance can assist in identifying potential biases or spurious
relationships in the data. By assessing the impact of each feature on the model’s predictions,
it is possible to detect variables that may have a disproportionate influence or contribute
to overfitting.

However, it is essential to note that feature importance is specific to the model and
dataset used. Different models may assign different levels of importance to features, and
the results may vary depending on the evaluation metric employed. Therefore, it is crucial
to interpret and utilize feature importance within the context of the specific model and
problem domain.

The feature importanace for merger BBH and bound BBh are as in the figure 3.6 and
3.7. In both clearly the Zams mass of both stars looks like the most important feature,
next is semi major axis and then eccentricity.

3.2.2 Challenges encountered while training with SEVN data

When training with the SEVN data for both bound BBH and merger BBH, the fact
that the data was highly unbalanced was the one which resulted in over fitting and also as
there are not enough number of data points representing one kind of output, the ML might
not get trained sufficient enough to recognize this. As an example in our data set, out of
the 6178148 data points used in bound BBH only 128149 of them resulted in actual bound
BBH, that is 2.07% of data represneted the features which gave bound BBH. Similarly
in case of merger BBH, out of 2645211 only 49716 number of points resulted in merger
BBh, which is 1.88% . In both cases it is clear that the cases for detecting the BBH are
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Figure 3.6: Here is the feature importance for the merger BBH, giving us a vague idea
that Zams mass is very important, next is semi major axis and eccentricity

Figure 3.7: Here is the feature importance for the Bound BBH
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Figure 3.8: Train/ test splitting of the data for training with all the features plus extra
ones described above
not enough and we need to find ways of mitigating this, we have used several techniques or
tricks to achieve this. The following are some of them we have employeed and tested, using
confusion matrix and feature importance as two parameters to check the performance, also
noting the computation time:

Training with more features(method 2)

Here we increase the number of features we train the ML on, namely we add, referring
to the code 3.8

• Sum of Zams: taking another feature which is the sum of Zams0 and Zams1 of the
stars. Using the command

• Pericenter : considering the equation

Rp = a(1 − e)

where Rp is the pericenter, a is semimajor axis and e = eccentricity. Taking this
quantity Rp as a feature

• Apocenter: considering the equation

Ra = a(1 + e)

where Ra is the apocenter, a is semimajor axis and e = eccentricity. Taking this
quantity Ra as a feature

• Square of the semimajor axis: just squaring the semimajor axis and taking it as a
feature

Results for method 2: The feauture importance and confusion matrix do not show any
significant improvement over method 1, keeping the computation time as well the same
636 second for method 1 and 639 seconds for method 2.

Training merger BBH based on bound BBH data (method 3)

Here we use the data from the whole data frame as in mthod one with an additional
level of filtering for only the bound BBH and using this filter data to train the merger
BBH. We know that the merger BBh events are a subset of bound BBH events, so we want
to check the performance of the ML to detect merger BBH but when the training data
contains already filtered data.3.10.

Results for method 3: The feauture importance and confusion matrix do not show
any significant improvement over method 1, while the computation time improved a lot
636 second for method 1 and 26.542 seconds for method 3, as the number of data points
for training has significantly reduced.
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(a) Confusion matrix for test data (b) Confusion matrix for training data set

(c) Metrics for checking the performance of method 2 training

Figure 3.9: Metrics for checking the performance of method 2 training

Figure 3.10: Train/ test splitting of the data for training by using filter for bound BBH
ones described above
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(a) Confusion matrix for bound BBH (b) Confusion matrix for merger BBH

(c) Metrics for checking the performance of method 3 training

Figure 3.11: Metrics for checking the performance of method 3 training
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Using already trained Bounded BBH model to classify data (method 4)

Here we use the data from the whole data frame to train a ML model for bound BBH
data, then we use this model to predict the bound BBH values again and replace the
original bound BBH values with the new prediction. Next we use this new data frame of
merger BBH and predicted bound BBH, to retrain yet another ML to check for merger
BBH3.12

(a) Training with all of the data for bound BBH (b) Predicting bound BBH

(c) 2nd level training ML for merger BBH

Figure 3.12: Commands for training, predicting for bound BBH and retraining for merger
BBH

Results for method 4: The feauture importance and confusion matrix do not show
any significant improvement over method 1, keeping the computation time as well the same
636 second for method 1 and 639 seconds for method 2.

Random grid search

Another method to optimize the performance of a ML algorithm is to find the best
hyper parameters for ML used, in this case the hyper parameters of a random forest.
As a first step, the hyper parameters currently in use for the random forest need to be
noted down, as in the figure below3.13. A well known technique to search for the best
hyper parameters is known as random grid search Next the selection of values each hyper
parameter takes can be noted, based on the previously got list of values, for example in
case of max depth which had a value of ’None; or was kept empty before can take values
like ′max depth′ : [10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, None]. In this way we can give
various ranges or set of values for each hyper parameter. A complete list of all values
given to all the hyper parameters is given in the figure3.14. this selection of values will
give us a total of 100 combinations to be tested for the grid search As the next step, the
RandomizedSearchCV is command used from the klearn.model selectio package. The
RandomizedSearchCV will execute, the random forest ML with cross validation level of 3,
so in total 300 iterations it will go through as in figure 3.15. This command might run for
a significant amount of time, in my case it took around 12 hours to finish, finally it will
give us a list of the best hyper parameters to use for the random forest, as in the figure
below 3.16
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Figure 3.13: This is an exhaustive list of hyper parameters and their values currently in
use in the random forest.

Figure 3.14: This is selection of hyper parameters and their values which are in use in the
random forest, for the random grid search.
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Figure 3.15: Actual code for the random search cv.

Figure 3.16: Final result for the random search cv giving the best hyper paramters we can
use.
XGBoost : method 5

XGBoost (Extreme Gradient Boosting) is a powerful and widely-used machine learning
algorithm known for its exceptional performance in various predictive modeling tasks.
It belongs to the family of ensemble learning methods, which combine the predictions
of multiple models to achieve better overall accuracy. XGBoost leverages the concept
of gradient boosting and introduces several innovations to enhance its effectiveness and
efficiency. By employing a combination of decision trees and a gradient-based optimization
framework, XGBoost can effectively handle complex feature interactions, handle missing
data, and handle a large number of features. Its ability to capture non-linear relationships,
handle high-dimensional data, and provide feature importance rankings makes it a popular
choice in competitions and real-world applications. With its impressive track record and
widespread adoption, XGBoost continues to be a valuable tool for data scientists and
machine learning practitioners seeking state-of-the-art predictive modeling capabilities.

Here we take the same parameters as we did for method 1 where we take zams 0, zams 1
of the two stars, initial eccentricity, initial semimajor axis, α and metallicity as the input
parameters and then bound BBH or merger BBH column as output. Each time we train
with bound BBH, we drop that column and then train, splitting the data into 70% for
training and 30% for testing. Same is the case with merger BBh.

Results for method 5: The computation time for training with XGBoost for bound
BBH is approximately 38 seconds and the same for merger BBH is 39 seconds, this shows
a significant reduction in the computation time, by around 20 times compared to method 1
of random forest. But the confusion matrix for all cases shows that the performance for
XGBoost is much better than random forest but with reduced computation time, in case
of both bound BBh and merger BBH. So it is a better choice for using the SEVN data
with.Both the figures 3.19 and 3.17 show similar results and confusion matrix infomation.
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(a) Training with all of the data for merger BBH, with
XGBoost, confusion matrix

(b) XGBoost testing merger BBH

Figure 3.17: Metrics for checking the performance of XGBoost training with merger BBH
XGboost with two level ML : method 6

We again repeat what we did in method 4, in that we train the model first for bound
BBH but this time using XGboost and then we use this trained model to predict Bound
BBH column again and then we train the data based on this new data frame for merger
BBH. Here again there is drastic reduction in computational time while training for both
bound and merger BBH.

Using SMOTE : method 6

Oversampling the minority class by duplicating examples or synthesizing new ones is
a common solution. Synthetic Minority Oversampling TEchnique (SMOTE) is a widely
used method that generates synthetic examples by connecting random instances of the
minority class and creating new samples along that line. This approach improves class
balance and helps classifiers build larger decision regions for the minority class. However,
it may result in ambiguous examples if there is a strong overlap between the majority and
minority classes. Combining SMOTE with undersampling of the majority class has shown
better performance compared to undersampling alone.

Here we can apply SMOTE technique so as to oversample bound BBH or merger BBH
cases, so as to make these classes more and thus increase the probability of the ML picking
up on key featuers of these two classes.

A sample of how the original data is with unbalanced data classes is given in the fig-
ure. These graphs show some sample data which is highly imbalanced, they are simulated
data as given in the website. These are generated using random Rand function, lets assume
that the x-axis is a dummy parameter X which is independent and y-axis is a dependent
parameter Y, in the following figures.

After applying SMOTE, in two different methods, 1st method the number of cases for
the lesser represented class is made same as that for the majority class 3.21. For the 2nd
method, the number of cases for majority class to minority class is 2:1, as shown in the
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(a) Training with all of the data for bound BBH, with
XGBoost, confusion matrix

(b) XGBoost testing bound BBH

(c) XGboost bound BBH data feature importance

Figure 3.18: Metrics for checking the performance of XGBoost training with bound BBH
figure below . This SMOTE technique can be applied to our data set and retrain the ML
on the new synthetic data and this results might improve our ML. This work can be noted
as the future improvements to this present body of work.
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(a) Training with all of the data for bound BBH and
using this to create column of predicted BBH, with
XGBoost

(b) XGBoost testing merger BBH but second level, ie,
after retraining model based on prediction made by
the first level XGBoost algo was training

Figure 3.19: Metrics for checking the performance of XGBoost training first level of training
with bound BBH and then second level of training with prediction of bound BBH values
from first level

Figure 3.20: Here is the sample unbalanced data set,
taken from the website https://machinelearningmastery.com/
smote-oversampling-for-imbalanced-classification/. With x-axis = X, y-
axis = Y, dummy parameters

https://machinelearningmastery.com/smote-oversampling-for-imbalanced-classification/
https://machinelearningmastery.com/smote-oversampling-for-imbalanced-classification/
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Figure 3.21: Number of cases for lower represented class is same as for majority classes.With
x-axis = X, y-axis = Y, dummy parameters

Figure 3.22: Number of classes of majority to minority class is 2:1 ratio.With x-axis = X,
y-axis = Y, dummy parameters
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M. C. Tringali, L. Trozzo, M. Tse, M. Turconi, D. Tuyenbayev, D. Ugolini, C. S.
Unnikrishnan, A. L. Urban, S. A. Usman, H. Vahlbruch, G. Vajente, G. Valdes,
N. van Bakel, M. van Beuzekom, J. F. J. van den Brand, C. van den Broeck, D. C.
Vander-Hyde, L. van der Schaaf, J. V. van Heijningen, A. A. van Veggel, M. Vardaro,
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R. Maggiore, E. Majorana, C. Makarem, I. Maksimovic, S. Maliakal, A. Malik, N. Man,
V. Mandic, V. Mangano, J. Mango, G. Mansell, M. Manske, M. Mantovani, M. Mapelli,
F. Marchesoni, M. Marchio, F. Marion, Z. Mark, S. Márka, Z. Márka, C. Markakis,
A. Markosyan, A. Markowitz, E. Maros, A. Marquina, S. Marsat, F. Martelli, I. Mar-
tin, R. Martin, M. Martinez, V. Martinez, K. Martinovic, D. Martynov, E. Marx,
H. Masalehdan, K. Mason, E. Massera, A. Masserot, T. Massinger, M. Masso-Reid,
S. Mastrogiovanni, A. Matas, M. Mateu-Lucena, F. Matichard, M. Matiushechk-
ina, N. Mavalvala, J. McCann, R. McCarthy, D. McClelland, P. McClincy, S. Mc-
Cormick, L. McCuller, G. McGhee, S. McGuire, C. McIsaac, J. McIver, D. McManus,
T. McRae, S. McWilliams, D. Meacher, M. Mehmet, A. Mehta, A. Melatos, D. Melchor,
G. Mendell, A. Menendez-Vazquez, C. Menoni, R. Mercer, L. Mereni, K. Merfeld,
E. Merilh, J. Merritt, M. Merzougui, S. Meshkov, C. Messenger, C. Messick, P. Meyers,
F. Meylahn, A. Mhaske, A. Miani, H. Miao, I. Michaloliakos, C. Michel, Y. Michimura,
H. Middleton, L. Milano, A. Miller, M. Millhouse, J. Mills, E. Milotti, M. Milovich-



40 BIBLIOGRAPHY

Goff, O. Minazzoli, Y. Minenkov, N. Mio, L. Mir, A. Mishkin, C. Mishra, T. Mishra,
T. Mistry, S. Mitra, V. Mitrofanov, G. Mitselmakher, R. Mittleman, O. Miyakawa,
A. Miyamoto, Y. Miyazaki, K. Miyo, S. Miyoki, G. Mo, K. Mogushi, S. Mohapatra,
S. Mohite, I. Molina, M. Molina-Ruiz, M. Mondin, M. Montani, C. Moore, D. Moraru,
F. Morawski, A. More, C. Moreno, G. Moreno, Y. Mori, S. Morisaki, Y. Moriwaki,
B. Mours, C. Mow-Lowry, S. Mozzon, F. Muciaccia, A. Mukherjee, D. Mukherjee,
S. Mukherjee, S. Mukherjee, N. Mukund, A. Mullavey, J. Munch, E. Muñiz, P. Murray,
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