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Abstract

Abnormal dopamine brain function is a hallmark of psychotic disorders like
schizophrenia, and the main pharmacological target for psychotic treatment.
However, the functional organization and regulation of the dopamine system
are not completely known, due to its complex topology and interplay with other
neuroreceptor systems. The primary objective of this research is to comprehend
the normal state of dopamine lateralization in the human brain and identify
whether dopamine lateralization is altered in schizophrenia. This study con-
sidered a dataset of 136 patients with psychosis matched to 143 healthy con-
trols acquired with the [18𝐹]𝐹𝐷𝑂𝑃𝐴 PET imaging, a biomarker for measuring
dopamine synthesis capacity in vivo in humans. For each subject, neuroimag-
ing metrics from 41 regions of interest (ROIs) were derived using the Desikan-
Killiany atlas for each brain hemisphere. For each ROI and each subject, a later-
alization index (lx) was computed to compare the dopamine function between
the left and right hemispheres. The same metrics were fed into the Random
Forest, XGBoost, SVM, KNN, Naïve Bayes, and Logistic Regression classifier
models to distinguish patients and controls by exploiting the difference with
the best-performing model in brain dopamine lateralization. In normal indi-
viduals, brain dopamine is mainly lateralized in the Inferior Parietal (p=0.039)
and Transverse Temporal (p=0.004) with a significant effect of age and gender.
Moreover, when comparing lateralization between controls and patients, left-
biased lateralization in Putamen decreases 50%, right-biased lateralization in
Accumbens decreases 60%, and right-biased lateralization in Pallidum changes
direction and shows a significant increase around 300% in Ki levels. In terms
of patient classification, the best performing model was XGBoost with the met-
rics of 79% accuracy, 79% precision, 79% recall, and 78% f1-score on the test set.
Finally, the post hoc model agnostic explainability method SHAP reported the
Accumbens, Fusiform, Posterior Cingulate, Thalamus, and Pallidum as the top
5 most salient features which have a significant effect on the decision. In conclu-
sion, healthy controls present a clear lateralization of dopamine function that
can change its direction and magnitude in the case of schizophrenia. Further
studies should focus to investigate the biological rationale behind these differ-
ences and their implication for the stratification of patients with psychosis.
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1
Introduction

This research provides extensive data analysis and modeling to understand
the links between the topology of brain dopamine function and schizophrenia
with psychotic symptoms, by investigating differences in lateralization between
healthy controls and patients using [18𝐹]𝐹𝐷𝑂𝑃𝐴 PET imaging.

Dopamine is a neurotransmitter that is highly involved in the regulation
of motivation, cognitive functions, and control of movement in humans. This
molecule is mostly produced by the brain’s substantia nigra, the ventral tegmen-
tal area (VTA), and the hypothalamus and is correlated with mechanisms of ad-
diction, reinforcement, and reward (Arias-Carrión and Pöppel 2007). Neurolog-
ical and behavioral problems caused by dopamine system dysfunction are re-
lated to anomalies in brain dopamine levels in certain regions and lateralization
(Olguı́n et al. 2016). Any form of reward triggers an increase in dopamine trans-
mission, as do numerous medications with strong addictive properties (Wise
and Robble 2020). Furthermore, due to its close association with neurological
and psychiatric disorders, dopamine is a prominent topic in neuroscience re-
search and a key molecular target in pharmacological research.

Psychosis refers to a broad range of psychiatric disorders that causes a per-
son to lose touch with reality such as visual and auditory hallucinations, disor-
ganized thoughts, and unexpected behaviors. Moreover, Schizophrenia, a neu-
rodegenerative disorder with unclear etiology, is mostly characterized by psy-
chotic symptoms. Based on the fact that dopamine-releasing medications can
cause Psychosis, Schizophrenia was once thought to be a ”dopamine illness”
(Insel 2010). To understand dopaminergic impairment and associated pathol-
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ogy, it is necessary to understand the dopamine function of the healthy pop-
ulation’s brain organization and condition in terms of lateralization, as well as
the change in dopamine function in the Schizophrenia patients cohort with psy-
chosis symptoms.

In this chapter, we provide explanatory information including dopamine
hormone, neurodegenerative disorders, Schizophrenia, psychotic symptoms, data
analysis, and explainable artificial intelligence. Subsequent sections introduce
methodologies in detail, and finally, outcomes of the research are provided in
results, and conclusions are discussed in detail in the last section.

1.1 PSYCHOSIS SYMPTOMS AND SCHIZOPHRENIA

Schizophrenia is a neurodegenerative disorder that presents with psychotic
symptoms such as hallucinations and delusions, inattentiveness, and overall
difficulties with cognitive capabilities (Picchioni and Murray 2007). Global es-
timates of the prevalence of Schizophrenia in non-institutionalized individu-
als range from 33% to 75% (Moreno-Küstner, Martin, and Pastor 2018). Ad-
ditionally, systematic analyses show that Schizophrenia has a high prevalence
(7.2/1000 people) but a low incidence (15.2/100,000 people), possibly because it
oftenmanifests in early adulthood anddevelops into a chronic illness. Schizophre-
nia was ranked among the top 15 global reasons for disability in 2016 (Saha et
al. 2005; Hay et al. 2017). Also, early adulthood or late youth are the common
times when Schizophrenia initially manifests its symptoms (Lichtenstein et al.
2009). Considering the gender differences, men were diagnosed on average ear-
lier than women (34.4 ± 12.6 years) (I. E. Sommer et al. 2020). Moreover, up to
80% of Schizophrenia cases are thought to be heritable (Hilker et al. 2018). After
a century of research and a concentration on brain chemistry in the second half
of the 20th century, the etiology of Schizophrenia has not been identified. In
comparison to the general population, Schizophrenic patients often have a 22-
fold higher lifetime risk of dying by suicide, a 15-year shorter life expectancy,
and lower reproductive rates (Hjorthøj et al. 2017). One of the accepted theo-
ries elucidating the causes of this disease is an alteration of the dopaminergic
pathways and system (Soares and Innis 1999; Hietala, Syvälahti, Vilkman, et al.
1999).
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CHAPTER 1. INTRODUCTION

1.2 DOPAMINE AND [18𝐹]𝐹𝐷𝑂𝑃𝐴 PET IMAGING

Dopamine is essential for the regulation and control of movement, motiva-
tion, and cognition. It is also linked tomotivation, reinforcement, and addiction.
Dopamine deficiencies in the brain have been linked to a variety of neurologi-
cal and psychiatric disorders, including Schizophrenia. The various cluster of
symptoms of the condition has been hypothesized to be caused by both an in-
crease and a decrease in dopamine function (Elkashef et al. 2000).

PET imaging is a technique used to track the spatial variability and kinetics
of bioactive compounds labeled with positron-emitting isotopes in the human
organism (Fowler and Wolf 1989). PET allows for the precise measurement of
dopamine system components in the living human brain. It is based on radio-
tracers that recognize dopamine receptors, dopamine transporters, dopamine
precursors, or compounds that have specificity for the excreting dopamine. PET
dopamine measurements were employed to study the healthy brain as well as
its role in psychiatric and neurodegenerative disorders (Volkow et al. 1996).

These findings support the development of the short [18𝐹]𝐹𝐷𝑂𝑃𝐴 scan as
a pathophysiologically relevant biomarker to direct therapy choice for patients
with psychosis. It was demonstrated by Veronese et al. that [18𝐹]𝐹𝐷𝑂𝑃𝐴 PET
imagingprotocol provides reliable and reproduciblemeasures of dopamine syn-
thesis (Veronese et al. 2021). Additionally, itwas shown that in PETSchizophrenic
patients’ dopaminergic lateralization is abnormal when compared to that of
healthy individuals with a PET study (Farde et al. 1990). Furthermore, there
were several other research in the literature which focus on the lateralization of
specific structures with [18𝐹]𝐹𝐷𝑂𝑃𝐴. It was applied to research primary brain
tumor molecular imaging (Calabria et al. 2012), Parkinson’s disease (Morrish,
Sawle, and Brooks 1996; Morrish, Sawle, and Brooks 1996), and various tumors
(Hoegerle et al. 2001) and malignancies (Ismail and Hussain 2010).

1.3 BRAINASYMMETRYANDLATERALIZATION IN SCHIZOPHRE-
NIA

The brain of a healthy individual has significant asymmetry in both its func-
tional metabolism and physical architecture. Molecular and functional imag-
ing techniques reveal evidence of lateralization of human cerebral structure and
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function of the healthy brain (Toga and Thompson 2003; Renterı́a 2012).
A wide variety of brain regions exhibit structural hemispheric asymmetries,

which are anatomical disparities between the two sides of the brain (such as
variances in the volume or size of a particular area)(Ocklenburg and Güntürkün
2012). This is true in physiological conditions aswell as in disease as Schizophre-
nia. For example, a study revealed that compared to the control group, themean
gray- and white-matter volumes were considerably lower in the Schizophrenia
group (Takao et al. 2010). Another structural asymmetry study shows that in
comparison to the control participants, the left Sylvian fissure lengthwas consid-
erably shorter in the Schizophrenia group ( p=0.0001), whereas the right Sylvian
fissure length remained constant (Falkai et al. 1992). Additionally, compared to
both healthy controls and psychiatric patients, the prevalence ofmixed- and left-
handednesswas considerably higher in patientswith Schizophrenia. (I. Sommer
et al. 2001). Prior research showed that peoplewith Schizophrenia had less later-
ality than controls without Schizophrenia regarding less left graymatter volume
(DeRamus et al. 2020). Furthermore, a study reported that when compared to
patients with first-episode affective Psychosis or healthy control subjects, pa-
tients with first-episode Schizophrenia displayed significant alterations in gray
matter volume over time in the left superior temporal lobe (Ortelli et al. 2018).
Another study discovered that patients’ left Anterior Superior Temporal Gyrus
was considerably smaller and that the volume of this area was inversely linked
with the intensity of hallucinations (Barta et al. 1990). Concerning cortical thick-
ness, it has been reported that the frontal and temporal regions of the brain ex-
hibit the most extreme thinning over the course of Schizophrenia, although this
excessive thinning affects many other parts of the brain (Van Haren et al. 2011).

A growing body of research also showed that Schizophrenia has reduced
asymmetry of the brain that is not only structural (Friston 2002; Koch et al. 2008;
Ribolsi et al. 2009; Baker et al. 2014; Zhang et al. 2015) but also functional due to
abnormal asymmetry of functional connections in comparison to healthy sub-
jects (Jalili et al. 2010).

There is no evidence of lateralization of dopamine function in Schizophrenia.
However, a few studies investigated the dopamine system in Parkinson’s disease
(PD), a brain disorder that is as Schizophrenia and is characterized by dopamine
function alterations. Specifically, the attentional functions may be impacted by
the asymmetrical degradation of the dopaminergic system (Ortelli et al. 2018).
Another study found that the course of PD is affected by hemispheric asym-
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metric dopaminergic degenerative changes. Greater motor severity is related to
dominant right hemispheric nigrostriatal dopaminergic loss, but the onset and
course of cognitive symptoms are affected bymore pronounced left hemispheric
denervation (Fiorenzato et al. 2021).

1.4 EXPLORATORY DATA ANALYSIS AND STATISTICS

A thorough understanding of the structure of analyzed data enables the for-
mulation of detailed scientific theories and research questions. Practices for ex-
ploratory data analysis can reveal the data structure and basic relationships be-
tween parameters in the data. Furthermore, data visualization is a critical com-
ponent of data exploration analysis. It enables us to connect facts and draw
conclusions based on the results of previous steps in the analysis (Cangür, Sun-
gur, andAnkarali 2018). On the other hand, taking the non-normally distributed
structure of the data belonging to our research, wehad to reference non-parametric
methods such as Quades’ Non-Parametric ANCOVA (Quade 1967). Thereafter,
we extended the analysis results with detailed plots with Python visualization
libraries and Brain Painter by MIT (R. V. Marinescu et al. 2019).

1.5 EXPLAINABLE ARTIFICIAL INTELLIGENCE (XAI)

In the field of health care, artificial intelligence (AI) has expanded to a num-
ber of applications, includingpatient data anddiagnosis, clinical decision-making,
management of health services, and predictive medicine. While performing at a
level comparable to humans, AI models still have a limited range of applications
since they are regarded as a mystery. Their poor utilization in practice, particu-
larly in healthcare, continues to be caused mostly by this lack of trust. In order
to encourage the use of AI systems in healthcare, explainable artificial intelli-
gence (XAI) has been developed as a technique that can boost user confidence
in a model’s prediction by outlining how it was made (Loh et al. 2022).

Given the information above, it is crucial to use a suitable explainability
method to better comprehend the captured pattern by examining which ele-
ments are themost important decision-makers. LIME (Local InterpretableModel-
agnostic Explanations) is one of the suitable ways to determine which ROIs have
the most significant impact on the classification choice produced by the classi-
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fier, taking into account the requirements of age, gender, and instance-based
unique lateralization values. By building an interpretable model locally around
the prediction, LIME presents a revolutionary explanation technique that ex-
plains the predictions of any classifier in an understandable and accurate man-
ner (Ribeiro, Singh, and Guestrin 2016). Moreover, using the game’s theoret-
ically ideal Shapley values, Lundberg and Lee developed SHAP (Shapley Ad-
ditive Explanations), a technique to explain specific predictions (Lundberg and
Lee 2017).

Even though LIME is amodel-agnostic interpretabilitymethod, the XGBoost
(Extreme Gradient Boosting) (T. Chen and Guestrin 2016b) was referenced. XG-
Boost, contrary to numerous other algorithms, is an ensemble learning algo-
rithm (Mohammed andKora 2023), whichmeans it combines the results ofmany
models, known as base learners, to make a prediction. To employ the XGBoost
model for our research, we considered lateralization indices as features and di-
agnosis labels, healthy controls, and patients, as output, the model provides
insights into underlying patterns of how Schizophrenia patients’ lateralization
changes.

1.6 PROBLEM STATEMENT AND RESEARCH OBJECTIVES

Taking into account the aforementioned information, we were interested in
revealing the difference between healthy controls (N=143) and patients’ (N=136)
dopamine function lateralization using the [18𝐹]𝐹𝐷𝑂𝑃𝐴 imaging method thor-
ough data analysis of locations in the Desikan-Killiany(DK) atlas and verifying
the results with an XAI-guided XBoost model classifier. Due to the interplay be-
tween psychosis symptoms and dopamine, we aim to provide comprehensive
data analysis and reveal the different states of brain lateralization organization
between healthy controls and Schizophrenia patients, paving the way for a ro-
bust diagnosis and cutting-edge therapeutic approaches.

Moreover, we extend the exploratory data analysis with new machine learn-
ing (ML)-based decision-support framework to identify brain topological fea-
tures associated with Schizophrenia. Through the use of machine learning, sys-
tems may learn from data and their past performance. The learning process
begins with the available data and develops on its own over time. Furthermore,
the explainable artificial intelligence (XAI) techniques are providing users with
global and local explainability algorithms to unpack black-boxmachine learning

6



CHAPTER 1. INTRODUCTION

models and extract the most salient features that have a significant effect on the
decision. To identify novel disorder-related brain patterns, recent developments
in machine learning may now evaluate discrepancies in the local morphological
characteristics of different brain subregions (Bose et al. 2008; Greenstein et al.
2012; Libero et al. 2015; Orru et al. 2012).

Previousworks inmolecular neuroimaging showed that aberrant pre-synaptic
dopamine density in individuals with Schizophrenic psychosis was mainly lat-
eralized to the left and that patients had a substantial left rise of striatal𝐷2 recep-
tors (Hietala, Syvälahti, Vuorio, et al. 1995). Given this evidence, it is conceivable
to hypothesize that differential lateralization of dopamine function is present in
psychosis compared to normal brain functioning.

Moreover, in previousworks onneuroimagingMLworks in psychosis, dopamine
(as measured by FDOPA PET) was employed to assess treatment response to
antipsychotic medication. In the work, the authors tested linear and non-linear
methods and selected as the best-predictingmodel a linear SVM (AUC=0.89) us-
ing as feature striatal dopamine synthesis capacity (Veronese et al. 2021). Even
though the prior research achieved relatively good accuracy, the sole models do
not provide justifications and explanations for their decisions to proceed with
the developments in stratification studies, lacking interpretability. Moreover,
highly predictive models, on the other hand, are typically complicated and hard
to interpret (Katuwal and R. Chen 2016).

However, the traditional statistical approaches and linearity assumptions of
datamight be a limitation to further discoveries on focal ROIs that trigger the ill-
ness, limitations that could be mitigated by more data-driven machine learning
(ML) approaches.

The overall objectives and novel contributions of this research can be listed
as follows:

• Identifying the dopamine brain synthesis lateralization in healthy controls
and investigating the presence of differences in Schizophrenia patients.

• Determining the focal ROIs that have been distributed significantly differ-
ently considering [18𝐹]𝐹𝐷𝑂𝑃𝐴 dopamine synthesis measures

• Developing and comparing the performance of different classifier models
that have been trained with [18𝐹]𝐹𝐷𝑂𝑃𝐴 PET imaging of all ROIs with
the aim of differentiating between healthy controls and Schizophrenia pa-
tients.

• Verifying and assessing the nominated ROIs constituting the difference
between healthy controls and patients with XAI methods and statistics.
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2
Materials and Methods

2.1 DATASET

[18𝐹]𝐹𝐷𝑂𝑃𝐴 from 142 Healthy Controls (HC) and 136 patients affected by
psychosis from previously published studies were included in the study. Patient
data included both responders (N=71) and non-responders (N=65) to standard
anti-psychotic treatment, as measured at follow-up after 6 weeks of treatment.
Age information of the healthy controls was aligned between 19 - 54, and the
mean age is 28.3 and the standard deviation was 7.7. On the other hand, the
age information belonging to patients’ data including both responders and non-
responders was between 18 - 65, and the mean age was 32 along with a stan-
dard deviation of 10.7. Data were collected in three different imaging centers
(Imanet, London; Invicro, London and South Korea) using a total of 5 different
scanners (Siemens Hi-Rez Biograph 6, Siemens Biograph 40 TruePoint, Siemens
TruePoint 6, ECATHR+ 962 and ECAT EXACT 3D). To remove the technological
effects of the scanner, imaging content was harmonized using Combat Harmo-
nization (Orlhac et al. 2022), using age and sex as covariates for which the vari-
ance has to be preserved. All data were collected with the same [18𝐹]𝐹𝐷𝑂𝑃𝐴
imaging protocol and all data were quantified with the same in-house devel-
oped Python pipeline (Nordio et al. 2023). In brief, the 𝐾𝑐𝑒𝑟𝑖 parameter (also
referred to as 𝐾𝑖[1/𝑚𝑖𝑛]) was estimated using Gjedde-Patlak graphical method
using the cerebellum as a low-binding region (reference region) and normalized
to MNI152 standard space (Linear n.d.).

Finally, for our analysis average values were extracted from regions of the
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Desikan-Killiany (DK) atlas (Desikan et al. 2006), composed of 82 bilateral re-
gions (41 for the left hemisphere and 41 for the right hemisphere) and one region
of the brainstem. Considering that data balance plays a significant role in both
statistical calculations and model training, we outlined the samples belonging
to cohorts of healthy controls and patients close in terms of sample numbers.
Lateralization indices have been calculated and then added to the main data
frame. All operations belonging to the data preparation and analysis were im-
plemented in the Jupyter Lab environment with Python 3.8, and IBM Statistics
SPSS.

2.1.1 DATA PREPROCESSING

The laterality index (LX) is one method for assessing hemispheric dominance
in a variety of regions and providing information on how laterality changeswith
factors such as age, gender, and different cohorts. To calculate lateralization in-
dices, we used the following formula:

𝐿𝑅𝑂𝐼𝑥 =
(𝐿𝑅𝑂𝐼 − 𝑅𝑅𝑂𝐼)
(𝐿𝑅𝑂𝐼 + 𝑅𝑅𝑂𝐼)

where 𝐿𝑅𝑂𝐼 and 𝑅𝑅𝑂𝐼 indicate the average 𝐾𝑖 values belong to the left hemi-
sphere and right hemisphere respectively. Before feeding 𝐾𝑖 values to the above
formula, we handled the negative 𝐾𝑖 values with a normalization approach that
references the idea that rounding up negative values to zero and leaving posi-
tive values as original. Moreover, we can interpret the lateralization bias easily
according to the positive or negative sign. If the resulting value for 𝐿𝑅𝑂𝐼𝑥 index is
positive (𝐿𝑅𝑂𝐼 > 𝑅𝑅𝑂𝐼), it means that the associated lateralization is leftwards.
If the resulting value for 𝐿𝑅𝑂𝐼𝑥 index is negative (𝑅𝑅𝑂𝐼 > 𝐿𝑅𝑂𝐼), it means that the
associated lateralization is rightwards.

Due to the normalization requirement of negative Ki values, we proposed
an approach that references rounding negative values to 0 and leaving positive
ones as their original. Following the normalization, we calculated lateralization
indices and then again normalized these values between -1 and 1. Furthermore,
it is customary to normalize the data prior to training machine learning mod-
els on it in order to potentially achieve better, quicker outcomes. Additionally,
normalization reduces the sensitivity of the training process to the scale of the
features, producing better coefficients following training and better results for
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statistical analysis.

2.2 ANALYSIS

The majority of the analysis was implemented on the Jupyter Lab environ-
ment by using Python 3.8 with the libraries of Matplotlib, Seaborn, Numpy,
Pandas, LIME, Scipy, and StatsModels, and IBM Statistics SPSS was used for
Quade’s test.

To study the Ki differences between the left and right hemispheres in each
ROI, first, we investigated the absolute difference in Ki levels between the left
and right. Alternatively, we applied the Wilcoxon Signed-Rank test which is
a non-parametric equivalent to the dependent t-test. The Wilcoxon test was
used on a cohort of healthy controls to reveal baseline lateralization and which
ROIs have significantly different Ki-level distributions between the left and right
hemispheres. At this point, we also calculated lateralization indices for all ROIs
and included them in the main dataset. Further, the outcoming ROIs from the
Wilcoxon test went under the Quades’ Non-Parametric ANCOVA test to search
for the gender factor by taking also the age factor into consideration. There-
after, to search for age and lateralization relationship simple linear regression
was applied to outcoming ROIs of the Wilcoxon test. Thus, we outlined how
lateralization changes with age and gender factors in detail as a result of simple
linear regression and Quades’ Non-Parametric ANCOVA.

Having had the knowledge of how brain dopamine is lateralized in healthy
controls cohort, we extended research to investigate the differences between pa-
tients and healthy controls in terms of brain dopamine lateralization. In this
regard, we compiled a dataset that consists of both cohorts to apply Quades’
Non-Parametric ANCOVA. During the second Non-Parametric ANCOVA age
and gender factors were set as covariates and cohort was set as the grouping
factor. Thus, we revealed the ROIs that are following significantly different lat-
eralization indices between healthy controls and patients. Moreover, the later-
alization value differences between the healthy controls and patients were visu-
alized via the tool BrainPainter (R. Marinescu et al. 2019).

Finally, diverse machine learning classifier models were built to differentiate
between healthy controls and patients with an explainable artificial intelligence
(XAI) approach to reveal ROIs that have a significant effect on the decisionmade
by the classifier.
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Figure 2.1: The Complete Analysis Map
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As illustrated in Figure 2.1, the blue lane includes the steps aiming to under-
standdopamine lateralization in healthy controls. The red lane compromises the
steps for revealing the differences in dopamine lateralization between healthy
controls and patients. Finally, the yellow lane contains artificial intelligence and
explainability research.

2.2.1 WILCOXON SIGNED-RANK TEST

The Wilcoxon signed-rank test non-parametric test is a statistical hypothesis
test that can be used to test the location of a population using a sample of data
or to make a comparison of the locations of groups using two matched samples
(Conover 1999). Since the Wilcoxon signed-rank test does not require data to be
normally distributed, it can be used when this assumption can not be held and
the dependent t-test is inappropriate. It is used to evaluate and compare two
groups of test results from the same individuals participating.

A summary of the Wilcoxon Test algorithm can be found as follows:

• Determine the differences in the measurement values.
• Sort the differences and allocate a rank to each one.
• Get the absolute value if the difference becomes negative. In the case of a

tie, compute the average rank.

• Calculate the sum of the ranked negative and positive differences.

• Determine the critical value using a Table of Critical Values for W and the
Wilcoxon (W) test statistic. The W-statistic is calculated by taking the ab-
solute value of the smaller of the two sums.

We focused on only the healthy controls cohort to reveal the baseline brain
dopamine lateralization andorganization between the left and right hemispheres.

2.2.2 ANOVA AND ANCOVA

To investigate lateralization index trend inmore detail alongwith the knowl-
edge of age and gender, we experimented with Quade’s Non-Parametric AN-
COVA. The Quade method is based on comparing the residuals obtained from
the linear regression of the ranked dependent variables and the ranked covariate
between cohorts (Quade 1967; Cangür, Sungur, and Ankarali 2018).

The quade method has been applied to outcoming ROIs that have been re-
ported as significant by theWilcoxon test and also to the outcoming ROIs where
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theWilcoxon test was applied to data with all cohorts. Thereafter, the number of
ROIs that have been showing significant differences by taking the age, gender,
and cohort information into consideration is reduced.

2.2.3 SIMPLE LINEAR REGRESSION

Simple linear regression analysis is a significant statistical technique for an-
alyzing medical data. It allows for the identification and characterization of re-
lationships between various factors. Scikit learn linear regression package (Pe-
dregosa et al. 2011). which uses Python was referenced. The regression analysis
has been used the evaluate how the lateralization changes with the age factor or
in close correlation with it.

2.2.4 XGBOOST CLASSIFIER MODEL

XGBoost, which stands for ’Extreme Gradient Boosting,’ is a supervised and
powerful machine learning algorithm. It is based on ensemble learning princi-
ples, employing multiple decision tree structures and boosting, which is a se-
quential process in which each subsequent model tries to correct the mistakes
of the previous model. It also has numerous benefits such as regularization to
avoid overfitting, handling sparse data, and being explainable by design.

The boosting techniquewhich is provided in Figure 2.2 provides weak learn-
ers with low prediction performance who perform moderately better than ran-
dom guesses with a particular weighted subset of the original data. Subsets
that were previously misclassified are given more weight. In the case of clas-
sification, classifiers are merged with voting mechanisms to align with our re-
search. Furthermore, gradient boosting generalizes by using differentiable func-
tion losses from weak classifier models as in the following formula:

𝐹𝑥𝑡+1 = 𝐹𝑥𝑡 + 𝜖𝑥𝑡
𝜕 𝑓
𝜕𝑥
(𝑥𝑡)

The learners are used at each boosting phase to minimize the loss function
based on the current model. As we iterate over the model, the loss function will
converge to a minimum value that it could be.
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Figure 2.2: Implementation of a boosting algorithm

2.2.5 RANDOM FOREST CLASSIFIER

Random forest is another supervisedmachine learning algorithm that can be
used for both regression and classification. An ensemble of decision trees, often
trained using the bagging approach, make up the ”forest” that it constructs. The
baggingmethod’smain premise is that combining learningmodels improves the
end outcome. Instead of depending on a single decision tree, the random forest
uses forecasts from all of the trees to anticipate the outcome based on which
predictions received the most votes.

As illustrated in Figure 2.3, bagging references the concept of merging ho-
mogenous weak learners’ models that learn concurrently and independently
from one another. However, in Boosting, models learn progressively and adap-
tively to enhance the complete model predictions. While the model XGBoost
references the concept of boosting, the Random Forest model references the con-
cept of bagging.

2.2.6 K-NEAREST NEIGHBOURS (KNN)

KNN is a non-parametric, supervised learning algorithm (Guo et al. 2003)
that can be used for both classification and regression. As illustrated in Figure
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Figure 2.3: Bagging vs Boosting

2.4, the k-nearest neighbors technique employs proximity to classify or antici-
pate how a single data point will be grouped. The number of nearest points
taken into account for classification is indicated by the parameter k in kNN. The
total amount of these points needed to calculate the outcome is indicated by the
value of k. It will be necessary to compute the distance between the point to be
predicted and the other data points in order to discover which data points are
nearest formulas such as Minkowski distance. Minkowski distance formula can
be found as follows: ∑𝑛

𝑖=1 |𝑥𝑖 − 𝑦𝑖 |(1−𝑝)

The following algorithm may be used to describe how the K-NN works:

• Decide on the neighbors’ K-numbers. Calculate the distance between K
neighbors in step two.

• Based on the determined Euclidean distance, select the K closest neigh-
bors.

• Count the number of data points in each category among these k neigh-
bors.

• Assign the fresh data points to the category where the neighbor count is
highest.

• Our model is complete.
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Figure 2.4: KNN Illustration

2.2.7 SUPPORT VECTOR MACHINE (SVM)

A support Vector Machine is a model used to solve problems with classifica-
tion and regression. It works well for many real-world issues and can solve both
linear and non-linear problems. The SVM concept is straightforward: A line or a
hyperplane that divides the data between classes is produced by the algorithm.

Figure 2.5: SVM Illustration

Moreover, SVMattempts to fit a hyperplane that optimally separates the data
points after mapping the data into higher-dimensional space using the appro-
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priate Kernel function if the data is not linearly separable as shown in Figure
2.5. An SVM algorithm works by first, mapping data to a high-dimensional fea-
ture space so that data points can be categorized, even when the data are not
otherwise linearly separable. Then a separator is estimated for the data. The
data should be transformed in such as way that a separator could be drawn as
a hyperplane. A summary of the main steps that define SVM can be listed as
follows:

• Mapping data to a high-dimensional feature space.

• Finding the best-fit separator so that the SVM algorithm outputs an opti-
mal hyperplane that categorizes new samples.

2.2.8 LOGISTIC REGRESSION CLASSIFIER

Finding the model that best captures the connection between the dependent
and independent variables is the goal of utilizing logistic regression which is
illustrated in Figure 2.6. The Sigmoid function is used in logistic regression to
convert predicted values to probabilities. Any real number may be transformed
into a value between 0 and 1 with this function. The Sigmoid function formula
is defined as follows:

𝜎(𝑧) = 1
1+𝑒−𝑧

Moreover, to measure the error rate in each iteration a cost function is used.
The cost function is the difference between our projected value and the actual
value. The Perceptron (Rosenblatt 1958) name is also used for this method. It
has been understood that the neurons can learn from and process training set
items one at a time thanks to the perceptron algorithm. Every input value and
its associated weights are first multiplied by the perceptron model before being
added to get the weighted total. To get the desired result, this weighted sum is
also applied to the activation function.

2.2.9 EVALUATION METRICS FOR THE MODELS

The model’s performance evaluation metrics can be listed as follows: Accu-
racy, Precision, Recall, F1-Score, Sensitivity, and Specificity. The term accuracy
refers to howmany times the trainedmodelwas right overall throughout testing.
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The Precision measure attempts to answer the issue of how many positive iden-
tifications were genuinely correct while the Recall measure attempts to answer
what proportion of genuine positives were accurately identified. Moreover, the
harmonic mean of accuracy and recall is used to get the F1-Score. Lastly, we
can define the sensitivity (true positive rate) as the likelihood of a positive test
result if the individual is actually positive and specificity as the likelihood of a
negative test result, assuming the subject is actually negative.

We can define the formulas in terms of true positive(TP), true negative(TN),
false positive(FP), false negative(FN) as follows:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝐹1 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 =

2 ∗ 𝑇𝑃
2 ∗ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝑆𝑝𝑒𝑐𝑖 𝑓 𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝐹𝑃 + 𝑇𝑁

Figure 2.6: Logistic Regression Classifier Illustration
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2.2.10 LIME

LIME (Local InterpretableModelAgnostic Explanations)(Ribeiro, Singh, and
Guestrin 2016) is an XAI method that helps to shed light on black box artificial
intelligencemodels in order to understandwhich properties are themost salient
features to make the current decision.

Additionally, it builds the explanations by supplying the black-box model
with minor variations of the original data point and observing how the model’s
predictions alter. It tries to learn an interpretable model from these different
variants that estimate the black-box classifier model in the proximity of the orig-
inal data point. Themodel g thatminimizes loss L,which gauges how closely the
explanation resembles the original model f’s forecast, is the explanation model
for example x.

𝑒𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑖𝑜𝑛(𝑥) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑔∈𝐺𝐿( 𝑓 , 𝑔,𝜋𝑥) + 𝜔(𝑔)
The basic steps describing how the LIME algorithm learns an explainable

linear model can be listed as follows:

• Selecting the example to be described

• Modifying the sample to produce several more samples surrounding the
initial one

• Using the black-box model to label the affected data.

• LIMEweights the samples based on how close they are to the chosen sam-
ple in order to learn the explainable model.

An explainable linear model with sparse features, like the one learned by
LIME, has this property by nature. It is possible to examine the model’s weights
and use them as a proxy for feature significance. As a result, the feature scores
that LIME delivers are really the weights of the linear model. Figure 2.7 illus-
trates the whole process of explainability which utilizes LIME.

2.2.11 SHAP

A game theoretic method known as SHAP (Shapley Additive Explanations)
(Lundberg and Lee 2017) is also used to explain the results of anymachine learn-
ing model. Every feature is given a relevance value by SHAP for a specific pre-
diction. Moreover, it can be described as a system for allocating compensation
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Figure 2.7: LIME implementation

to participants based on how much of the overall payoff they contributed. Play-
ers form a coalition and benefit financially from their collaboration. Ultimately,
the Shapley value is the average marginal contribution of a feature value overall
potential coalitions.

The many Shapley values required for the global model interpretations may
be computed quickly. The approaches for global interpretation include cluster-
ing, summary plots, interactions, feature dependency, and feature significance.

The explanatory model for additive feature attribution techniques is a linear
function of binary variables that can be defined as follows:

𝑓 (𝑧) = 𝑔(𝑧′) = 𝜙0 + 𝜎𝑀𝑖=1𝜙𝑖𝑧
′
𝑖

whereM is the total amount of input features, 𝑧′ ∈ {0, 1}𝑀 , f(x) is the existing
model, and g(x) is an ML model that was developed as a simpler explanation
model. In the face of multicollinearity, Shapley regression values are feature
importance for linear models.

Retraining the model using all feature subsets 𝑆 ⊂ 𝐹, where F is the set of
all features, is necessary for this strategy. The SHAP values show how much
features influence prediction. By computing each feature’s SHAP values, it is
possible to verify the impact of each feature on the result.

𝜙𝑖 =
∑

𝑆⊂𝐹\{𝑖}

|𝑆 |!(|𝐹 | − |𝑆 | − 1)!
|𝐹 |! [ 𝑓𝑆∪{𝑖}(𝑥𝑆∪{𝑖}) − 𝑓𝑆(𝑥𝑆)]

𝑆 is a subset of 𝐹 which is the set of all features. A model 𝑓𝑆∪{𝑖} is trained
with the feature present, and a model 𝑓𝑆 is trained with the feature hidden to
calculate this effect with input 𝑥𝑆.
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2.2.12 PARTIAL DEPENDENCE PLOT (PDP)

Global explainability approaches are particularly helpful when the modeler
wishes to comprehend the broad mechanisms in the data since they represent
the typical behavior of a machine learning model. A partial dependency plot
(Goldstein et al. 2015) can demonstrate if a goal and a feature have a linear,
monotonic, or more complicated relationship. As we indicated in the materi-
als and methods section, the fundamental justification for this is that a flat PDP
implies that a feature is not significant, but a feature with a more variable PDP
is more crucial. We computed PDP on the best-performing model and extracted
the ROIs which do not have a flat resulting partial dependence.

2.2.13 THE XGBOOST BUILT-IN EXPLAINABILITY PACKAGE

The XGBoost model is already explainable by design due to its decision-tree-
based structure. The built-in package (T. Chen and Guestrin 2016a) has 3 dif-
ferent kinds of measures for the importance study. By calculating the relative
contributions of each feature to each decision tree in the whole model, the type
of ’gain’ denotes the proportional contribution of the associated feature to the
model. Moreover, the proportional number of observations connected to this
feature refers to the importance type of ’coverage’. Lastly, the type of ’weight’
is a proportion that indicates how frequently a specific feature appears in the
model’s decision trees.
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3
Results

This chapter describes the level and organization of brain dopamine lateral-
ization in healthy controls by identifying the ROIs that have significantly differ-
ent distributions between the left and right hemispheres when age and gender
are taken into account. Thereafter, the differences between healthy controls and
patients are presented in terms of dopamine lateralization. Finally, the metrics
belonging to artificial intelligencemodels and explainability outcomes are listed.
In summary, at the end of this chapter, we’ll be able to answer to following ques-
tions:

• How is lateralization of the human brain organized in Healthy Controls?

• Which are the most salient ROIs that show significant differences between
the left and right hemispheres?

• How does the normal lateralization of the human brain change with age
and gender factors?

• Howdoes the lateralization change between healthy controls and patients?

3.1 BRAINDOPAMINELATERALIZATIONANDHEMISPHERIC
DIFFERENCES IN HEALTHY CONTROLS

First, to investigate how the Ki values change in the left and right hemi-
spheres, we visualized the Ki values belonging to each ROI. We can observe
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in Figure 3.1 that the Pallidum has the greatest mean difference (Δ = 0.001402).
We can also observe that the dopamine is rightwards lateralized in the Pallidum.
Moreover, the Accumbensarea (Δ=0.001401 ) is the second most lateralized ROI
after Pallidum and is also rightwards lateralized. Further, we found that the In-
sula is in third place concerning the magnitude of difference (Δ=0.000455) in Ki
values between right and left and it is leftwards lateralized in healthy controls.
In addition, the medial orbitofrontal has a standout difference between the two
hemispheres (Δ=0.000329 ) and it is leftwards lateralized. Considering the top
five ROIs that are significantly lateralized in healthy controls, the Caudate has
the fifth place and is rightwards lateralized (Δ=0.000283).

3.1.1 WILCOXON SIGNED-RANK TEST BETWEEN LEFT AND RIGHT KI
VALUES

Weused theWilcoxon signed-rank test, a non-parametric version of the paired
t-test, to identify ROIs with notable distributional differences. The left and right
Ki values belonging to the cohort of healthy controls were used in the test.

With the normalization method referring to rounding negative values to 0
and leaving positive values as original, we can observe in Figure 3.1 that the
most important ROI in terms of hemispheric differences has been reported to
be the Accumbensarea (p=3.85𝑒−25). In the second place, the Pallidum is show-
ing a significantly different distribution between the left and right hemispheres
(p=2.91𝑒−24). Moreover, in the third place, the Medial Orbito Frontal was nomi-
natedwith an importantly different distribution between the left and right hemi-
spheres (p=1.06𝑒−23). Additionally, considering the hemispheric differences in
dopamineKi values distribution, in the fourth andfifth places, the Insula (p=7.26𝑒−23)
and the Superior Temporal (p=3.68𝑒−15) were reported.
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Figure 3.1: Left and Right Differences in Healthy Controls
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Rank ROI Statistics
0 Accumbens 8.00
1 Pallidum 105.00
2 Medial Orbitofrontal 168.00
3 Insula 263.00
4 Superior Temporal 1245.00
5 Post Central 1247.00
6 Fusiform 1334.00
7 Rostral Middle Frontal 1527.00
8 Entorhinal 1698.00
9 Caudate 2083.00
10 Precentral 2065.00
11 Precuneus 2131.00
12 Isthmus Cingulate 2345.00
13 Pericalcarine 2770.00
14 Temporal Pole 2837.00
15 Lingual 2952.00
16 Caudal Middle Frontal 3001.00
17 Superior Parietal 3079.00
18 Inferior Parietal 3203.00
19 Frontal Pole 3269.00
20 Parahippocampal 3384.00
21 Rostral Anterior Cingulate 3477.00

Table 3.1: Healthy Controls Wilcoxon Test Results
The above table illustrates the results belonging to healthy controls data normalized ac-
cording to the approach of rounding negative values to 0 and leaving positive values as
original. All above-listed ROIs had p-values smaller than p=0.00125 (Bonferroni Cor-
rected). The statistics column indicates the sum of the ranks of the differences.

3.1.2 NON-PARAMETRIC ANCOVATEST (QUADES’METHOD ) - LAT-
ERALIZATION DIFFERENCES OF ROIS AMONG HEALTHY CON-
TROLS

The first experiment has been designed among only a healthy control group
while taking age as a covariate and gender as a factor considering the calculated
lateralization indices as dependent values.

In this section, first, we calculated the lateralization indices belonging to each
81 bilateral regions. Thereafter to understand in which regions the dopamine
lateralization is significantly different in men and females taking the age factor
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into consideration. There are two regions became prominent with p-values less
than 0.05 threshold as a result of this experiment. These regions are listed as
the Inferior Parietal (p = 0.039) and the Transverse Temporal (p = 0.004). There-
fore, we can observe that in these regionsmen and female individuals in healthy
cohorts have significantly different dopamine lateralization.

ROI t p-value
Inferior parietal -2.089 0.039
Transverse temporal -2.892 0.004

Table 3.2: Healthy Controls Quades’ Test Results
The normalization approach here references rounding negative values to 0 and leaving
positive ones as original. Following the calculation of lateralization indices, these indices
have been normalized between -1 and 1.

3.1.3 AGEANDGENDER FACTORS EFFECT TOLATERALISATIONCHANGES
IN HEALTHY CONTROLS

ROI Gender r p-value Lx
Thalamus Female 0.46 0.00024 ←
Postcentral Female 0.44 0.00041 ←
Cuneus Female -0.40 0.0015 →
Bankssts Female 0.37 0.004 ←
Caudalmiddlefrontal Male -0.30 0.0055 →
Precuneus Female -0.35 0.0062 →
Putamen Female -0.34 0.0079 →
Superiorparietal Female 0.30 0.021 ←
Parstriangularis Male -0.25 0.022 →
Medial orbitofrontal Male -0.24 0.027 →
Isthmus cingulate Male -0.24 0.027 →
Precentral Female 0.27 0.036 ←
Temporalpole Male 0.23 0.039 ←
Temporalpole Female 0.26 0.041 ←
Parstriangularis Female -0.26 0.045 →

Table 3.3: Lateralization bias change with age
Significant ROIs of the DK atlas resulting from regression analysis in Hcs. The ←
indicates that the healthy controls ROI is left-lateralized with age and the→ indicates
that the healthy controls ROI is right-lateralized with age.
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3.1. BRAIN DOPAMINE LATERALIZATION AND HEMISPHERIC DIFFERENCES IN
HEALTHY CONTROLS

According to Table 4.3 results of healthy controls linear regression, we de-
tected a significant effect of age on the lateralization of some ROIs. The Tha-
lamus which is illustrated in Figure 3.2 was reported as the most significant re-
gionwhich is left-lateralized depending on the aging factor in the female cohort.
Meaning that, as the age of female increase, dopamine is more lateralized to the
left hemisphere.

Another significant ROI that has been frequently involved in dopamine re-
search and produced significant results in terms of lateralization depending on
age is Putamen. As the age of the healthy female cohort increase, the dopamine
lateralization index value of Putamen increases (it tends to be more rightwards
lateralized). However, we have not observed a such significant change in the
healthy male cohort as can be also observed in Figure 3.3.

When we further investigate the ROIs that were affected by the age and gen-
der factors in terms of lateralization differences, in the second place Post Central
was prominent as visualized in Figure 3.4. The dopamine lateralization in Post
Central increases significantly in parallel with age in the female cohort. Even
though the male cohort shows adverse effects, it is not significantly associated
with age.

Moreover, in Cuneus there is a significant drop in lateralization index value
with the increasing age considering the female cohort (it tends to be more right-
wards lateralized). However, as visualized in Figure 3.5 the lateralization index
follows a more flat trend considering the aging factor in the male cohort.
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Figure 3.2: Thalamus Lateralization Depending on the Age and Gender Factors
The above figure illustrates how the Thalamus is lateralized depending on age and gen-
der factors. In the female cohort, as the individual age, dopamine is tended to be left-
lateralized (p=0.00024) even though in the male cohort no significant change depending
on age has not been observed (p=0.11).

Figure 3.3: Putamen Lateralization Depending on the Age and Gender Factors
The above figure illustrates how the Putamen is lateralized depending on age and gen-
der factors. In the female cohort, as the individual age, dopamine is tended to be right-
lateralized (p=0.0079) even though in the male cohort no significant change depending
on age has not been observed (p=0.079).
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3.1. BRAIN DOPAMINE LATERALIZATION AND HEMISPHERIC DIFFERENCES IN
HEALTHY CONTROLS

Figure 3.4: Post Central Lateralization Depending on the Age and Gender Fac-
tors
The above figure illustrates how the Post Central is lateralized depending on age and
gender factors. In the female cohort, as the individual age, dopamine is tended to be left-
lateralized (p=0.00041) even though in the male cohort no significant change depending
on age has not been observed (p=0.21).

Figure 3.5: Cuneus Lateralization Depending on the Age and Gender Factors
The above figure illustrates how the Thalamus is lateralized depending on age and gen-
der factors. In the female cohort, as the individual age, dopamine is tended to be right-
lateralized (p=0.0015) even though in the male cohort no significant change depending
on age has not been observed (p=0.83).
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3.2 DOPAMINELATERALIZATIONOF PATIENTS’ BRAINAND
DIFFERENCES WITH HEALTHY CONTROLS

We will discuss the differences in dopamine lateralization between cohorts
of healthy controls and patients in this chapter. The ROIs with the largest gaps
when compared to healthy controls can provide information about possible fu-
ture treatments and medications. At the end of this chapter, we will be able to
answer the following questions:

• Which ROIs lead to the difference between healthy controls and patients?

• Which are the ROIs a decision-makingmechanism takes into consideration
when differentiating between healthy control and a patient?

3.2.1 NON-PARAMETRIC ANCOVA TEST (QUADES’ METHOD) - LAT-
ERALIZATION DIFFERENCES OF ROIS BETWEEN HEALTHY CON-
TROLS AND PATIENTS

Non-parametric ANCOVA was used in this section, with cohorts acting as a
grouping factor, age and gender as covariates, and the dependent variable serv-
ing as the lateralization index. According to Table 4.4. Accumbens (p < 0.01) is
showing the most significant difference in dopamine lateralization when com-
paring healthy controls and patients. In the second place, we observe that Puta-
men (p < 0.01) is also playing a key role to differentiate between the two cohorts.
Moreover, we also found out that Supramarginal (p < 0.05), Caudal Anterior
Cingulate (p < 0.05), and Pallidum (p = 0.05) can be focal ROIs to investigate
differences between healthy controls and patients.

Moreover, we grouped the sameROIs and calculated themeanvalues. There-
after, to demonstrate the differences between healthy and patient cohorts in
terms of lateralization indices, we calculated the differences with absolute val-
ues. We can observe in Figure 3.6 that the top 5 ROIs which have the great-
est gaps are as follows: the Accumbens (Δ=0.108), the Putamen (Δ=0.095), the
Cuneus (Δ=0.069), the Frontal Pole (Δ=0.069), and the Caudal Anterior Cingu-
late (Δ=0.064). We can also observe that considering Accumbens, dopamine lat-
eralization in healthy controls and patients has the same direction (rightwards)
but it is more lateralized in healthy controls. Similarly, in Putamen both cohorts

31



3.2. DOPAMINE LATERALIZATION OF PATIENTS’ BRAIN AND DIFFERENCES WITH
HEALTHY CONTROLS

ROI t p-value
Accumbens -3.708 0.000
Putamen 3.768 0.000
Supramarginal -2.158 0.032
Caudal Anterior Cingulate 2.096 0.037
Pallidum -1.954 0.052

Table 3.4: Healthy Controls vs Patients Quades’ Test Results
The normalization approach here references rounding negative values to 0 and leaving
positive ones as original. Following the calculation of lateralization indices, these indices
have been normalized between -1 and 1.

follow the same lateralization direction (leftwards) but Putamen is more later-
alized in Healthy controls.

Further, to demonstrate all ROIs visually on the brain, we utilized the Brain
Painter (R. V. Marinescu et al. 2019) tool by MIT to visually outline the lateral-
ization value differences between healthy controls and patients referencing the
ROIs based on DK Atlas as illustrated in Figure 3.7. Lateralization index dif-
ferences belonging to each ROI have been calculated by rescaling the Ki values
between 0-5, then differencing the two cohorts of healthy controls and patients,
and finally rescaling the results again between 0-5.
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CHAPTER 3. RESULTS

Figure 3.6: Difference Distribution of Lateralization Indices
The above figure illustrates the results belonging to lateralization indices difference be-
tween healthy controls and patients data. Lateralization indices are normalized between
-1 and 1. Thereafter the ROIs are grouped and mean difference values are calculated.
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3.2. DOPAMINE LATERALIZATION OF PATIENTS’ BRAIN AND DIFFERENCES WITH
HEALTHY CONTROLS

Figure 3.7: Brain Painter
The cortical top, cortical bottom, cortical outer left hemisphere, cortical inner left hemi-
sphere, and subcortical outer right angles have been visualized. See the appendices for
the DK atlas ROI labels. 34



CHAPTER 3. RESULTS

3.2.2 CLASSIFIER MODELS PERFORMANCE

The next stage is to use a classifier to evaluate the findings of our statistical
analysis in order to use artificial intelligence to discover underlying patterns in a
data-driven way. We tested various models to determine which one performed
the best, and we used the post hoc model agnostic explainability method LIME
to identify themost important regions that influenced themodel’s choice. More-
over, to determine which regions have the greatest influence on the classifier’s
conclusion, the models were given lateralization indices data from both patients
and healthy controls without age or gender information.

The optimization parameters that have been used for hyper-parameter opti-
mization details can be found in the following Table 4.5.

ROI Parameters
XGBoost Classifier learning rate = 0.1

colsample bytree=0.9
colsample bylevel= 0.9
colsample bynode=0.9
max depth = 16
n estimators = 1000

Random Forest Classifier max depth=2
random state=0

KNN n neighbours = 5

SVM c=1
kernel=’rbf’
degree=3

Table 3.5: Models Hyper-Parameter Setting and Organization

After the training phase, the models have been tested with a test set that was
reserved initially as 25% of the whole dataset and unseen during the training.
As a result, even though the XGboost and Random Forest Classifiers ended up
with the same accuracy of 76% XGBoost Classifier had greater precision of 79%
and specificity of 79%.
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HEALTHY CONTROLS

ROI Accuracy Precision Recall F1-Score Sensitivity Specificity
XGBoost
Classifier

0.79 0.79 0.79 0.78 0.79 0.78

Random
Forest
Classifier

0.71 0.82 0.71 0.69 0.71 0.71

Logistic
Regres-
sion

0.57 0.77 0.57 0.71 0.57 0.57

Naive
Bayes

0.79 0.85 0.79 0.78 0.78 0.78

SVM 0.50 0.25 0.50 0.33 0.50 0.50
KNN 0.71 0.71 0.71 0.71 0.71 0.71

Table 3.6: Trained Model Metrics Results
The training data is 75%, and the test set is 25% of the whole dataset. The training data
has been shuffled before feeding into the model.

Further, we investigated the confusionmatrix and Receiver Operator Charac-
teristic ROC curve regarding the best-performing model of the XGBoost Classi-
fier. We can observe that themodel is good at diagnosing actual patients regard-
ing the 41.18% rate of True Positive and struggling to distinguish actual healthy
controls regarding the 17.65 % rate of False Positive.

Figure 3.8: Confusion Matrix - XGBoost Model
The above figure illustrates the results belonging to the XGBoost Classifier model. The
healthy cohort is encoded as 0, and the patient cohort is encoded as 1. The True Positive
rate is 41.18%, the False Negative rate is 5.88%, the False Positive rate is %17.65, and
the True Negative rate is reported as 35.29%. The horizontal values are actual values,
and the vertical values are predicted values.
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3.2.3 GLOBAL EXPLAINABILITY - PARTIAL DEPENDENCE PLOTS(PDP)

Having concluded that the Putamen is highly lateralized in healthy controls
with statistical analysis results, in this section PDP is also verifying that when
the lateralization of dopamine in the Putamen increases, the probability of being
diagnosed with Schizophrenia decreases. Moreover, when the Pallidum lateral-
ization index exceeds the 0 threshold and increases, the probability of being di-
agnosed with Schizophrenia increases. The Accumbens is also following a sim-
ilar pattern to Pallidum however it has a lower threshold (t=-0.2). Additionally,
we can observe that when the lateralization index belonging to Posterior Cin-
gulate is lower than the threshold (t=-0.2), the probability of being diagnosed is
high. Another significant change can be observed when the lateralization index
of Fusiform exceeds the threshold value of 0. When the Fusiform lateralization
index value exceeds 0, in other words when the lateralization is more left-wards,
the probability of being diagnosedwith Schizophrenia decreases and the person
becomes healthier. Figure 3.9 lists the ROIs with stood-out variance in predicted
probabilities and other ROIs fitted to flatter dependence plots.

3.2.4 XGBOOST BUILT-IN EXPLAINABILITY

According to the built-in analysis as illustrated in Figure 3.10, using the im-
portance type of ’gain’, the Insula (w = 0.163) is the brain region with the high-
est differential dopamine lateralization between controls and patients, and the
most relevant feature for the classification. Moreover, the Cuneus (w=0.161),
Hippocampus (w=0.155), Precuneus(w=0.141), and Parahippocampal (w=0.041)
were reported in the list of the top 5 most significant regions with the impor-
tance type of ’gain’ with XGBoost Classifier built-in importance function. On
the other hand, with the importance type of ’weight’, the leading ROI is the Pre-
cuneus (w= 8.0) and Insula (w=0.8). The Hippocampus (w=3.0), Parahippocam-
pal (w=1.0), and Cuneus (w=1.0) were reported in the top 5 significant regions
additionally. Finally, the important type of ’cover’ has outlined the Hippocam-
pus(w=2.7), the Precuneus (w=2.3), the Insula (w=2.2), the Cuneus (w=2.1), and
the Parahippocampal (w=2.00) in the top 5 ROIs that affects the decision made
by the XGBoost classifier model.
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HEALTHY CONTROLS

Figure 3.9: Partial Dependence Plot - XGBoost Model
Partial Dependence Plot of Prediction Probability of Being Diagnosed with Schizophre-
nia. Healthy controls are as encoded 0 and patients are encoded as 1. The x-axis shows
the lateralization indices data specific to that region and the y-axis shows the prediction
probability of being diagnosed with psychosis.

Figure 3.10: Partial Dependence Plot - XGBoost Model
The above figure illustrates the results belonging to the XGBoost Classifier model. The
classes have been encoded as follows: 0 is healthy control and 1 is patient.
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3.2.5 LOCAL EXPLAINABILITY - LIME

We applied the LIME method which is explained in detail in the section of
analysis due to its model-agnostic offer in terms of applicability. To investi-
gate in detail which ROIs are nominated by the XGBoost Classifier during the
classification task of differentiating between healthy controls and patients with
psychotic symptoms, we will report further precise sample-based explanations.

Looking at the explanations produced by the LIME, we can conclude for
a specific patient that the Accumbens, Putamen, and Pallidum increased the
chance of being diagnosedwith Schizophrenia. On the other hand, ROIs such as
Posterior Cingulate, Inferior Temporal, and Frontal Pole decreased the chance of
being diagnosed with Schizophrenia. This may provide a great opportunity for
researchers to focus on specific areas which increased the chance of diagnosis as
visualized in Figure 3.11.

Figure 3.11: Precise Explanations - LIME
The above figure illustrates the resulting post hoc local explanations belonging to a pa-
tient. The class ’0’ represents patients and the class ’1’ represents patients. The right-
hand-side table lists the thresholds belonging to the most salient features. The middle
graph represents features and their individual contributions to the voting scheme for the
decision to be made by the model.

3.2.6 SHAPLEY ADDITIVE EXPLANATIONS - SHAP

Instead of producing sample-based local explanations as in the case of LIME,
to further investigate the general behavior of the model regarding the task of
differentiating between healthy controls and patients, we produced the feature
significance weights with the SHAP method. According to the results, the Ac-
cumbens (w=1.11) is the most significant region that can be used to differen-
tiate between healthy controls and patients. The Fusiform (w=0.89), Posterior
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HEALTHY CONTROLS

Cingulate (w=0.85), Thalamus Proper(w=0.64), Pallidum (w=0.5), Pericalcarine
(w=0.42), Frontal Pole(w=0.41), Putamen (w=0.4), and Caudate (w=0.25) have
been reported as significant in the top 10 ROIs.

Figure 3.12: SHAP Explanations
The above figure illustrates the resulting post hoc explanations explaining the overall
behavior of the model. The top 10 most significant ROIs have been outlined.

Thus, when the classifiermodel tries tomake a classification between healthy
controls and patients, it puts more emphasis on the sorted list of ROIs as illus-
trated in Figure 3.12. Therefore, a clinician may refer to that kind of decision-
support tool to see which ROIs on the brainmay be a strong indicator of possible
findings which may be helpful in decision-making.
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4
Discussion and Conclusions

In this research study, our comprehensive data analysis showed that human
brain dopamine is lateralized in a specific organization on healthy controls and
there is a visible difference in lateralization between healthy controls and pa-
tients by investigating healthy controls data from 142 Healthy Controls (HC,
age: 28.3±7.7 yrs [𝜇 ± 𝜎, range: 19-54]) and Schizophrenia patients with psy-
chotic symptomswith the addition of 136 patients’ data (age: 32.0±10.7 yrs [𝜇±𝜎,
range: 18-65]) through [18𝐹]𝐹𝐷𝑂𝑃𝐴 imagingmethod. Regarding the dopamine
lateralization of healthy controls, we observed the greatest mean absolute differ-
ence in the following top 5 ROIs: Pallidum ( Δ=0.0001402, 𝑅𝐾𝑖 > 𝐿𝐾𝑖 ), Accum-
bensarea (Δ=0.001401, 𝑅𝐾𝑖 > 𝐿𝐾𝑖), Insula ( Δ=0.000455, 𝐿𝐾𝑖 > 𝑅𝐾𝑖), Medial Or-
bital Frontal (Δ=0.000329, 𝐿𝐾𝑖 > 𝑅𝐾𝑖), and the Caudate (Δ=0.000283, 𝑅𝐾𝑖 > 𝐿𝐾𝑖).
Additionally, we applied theWilcoxon signed-rank test between left and right Ki
values to understand which ROIs have significantly different distributions. As a
result of theWilcoxon test, Accumbens (p=0.0), Pallidum (p=0.0), Medial Orbital
Frontal (p=0.0), Insula (p=0.0), and Superior Temporal (p=0.0) were nominated
to have significantly different distributions in both hemispheres.

However, to observe if lateralization change is highly associatedwith age and
gender factors, we applied simple linear regression to the lateralization indices
belonging to the most salient ROIs, to investigate further age and gender effects.
We observed that in the female cohort, ROIs such as the Thalamus(p=0.00024),
Postcentral (p=0.00041), Cuneus (p=0.0015), Putamen (p=0.0079), and in themale
cohort, ROIs such asCaudalMiddle Frontal (p=0.0055), Parstriangularis (p=0.022),
Isthmus of Cingulate(p=0.027), Temporal Pole (0.041) lateralization change is
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highly dependent on aging. For instance, regarding Thalamus, in the female
cohort, along with the increasing age, dopamine tended to be left-lateralized
(p=0.00024) even though in the male cohort shows no significant change depen-
dent on age has not been observed (p=0.11). Considering another ROI, Puta-
men, in the female cohort, as the individual aged, dopamine tended to be right-
lateralized (p=0.0079) even though in themale cohort showsno significant change
dependent on age has not been observed (p=0.079).

Therefore, we concluded that someROIs’ dominant hemisphere in dopamine
lateralization and magnitude of Ki level change with increasing age in healthy
controls. Moreover, the healthy state of lateralization is not only highly depen-
dent on aging but also dependent on gender according to linear regression re-
sults. Further to investigate the gender factor by taking the age factor into con-
sideration, we applied Quades’ Test (Non-Parametric - ANCOVA). Applying the
Quades’ Test, gender as a grouping factor, and age as a covariate, the Inferior
Parietal (p=0.039) andTransverse Temporal (p=0.004) have been reported to have
significantly different lateralization organization in healthy controls.

Having concluded the results above, dopamine lateralization in the brain
undergoes significant alterations with aging that have an impact on cognitive
functions. Additionally, it has been reported by several clinical evidence that
the dopamine system in the brain shows notable decreases with healthy aging,
and these declines have been associated with impaired cognition (Y. Wang et al.
1998; Bäckman et al. 2000; Mozley et al. 2001; Erixon-Lindroth et al. 2005). Indi-
vidual variations in dopamine have a significant impact on executive functions,
particularly cognitive agility, even among healthy young individuals (Cools et
al. 2008; Stelzel et al. 2010; Samanez-Larkin et al. 2013). Hence, dopamine rep-
resents a key target for research into the neurochemical foundations of diversity
in brain lateralization in the population andmay be a key factor in aging-related
alterations.

Regarding the Inferior Parietal Lobule (IPL)’s significantly different lateral-
ization between different genders according to our research, there has been no
specific evidence in the literature however, some clinical research verified that
the right IPL was noted as a crucial area for visuospatial attention in systematic
evaluations and it was generally agreed that language function lateralizes to the
(dominant) left hemisphere, in opposition to visuospatial attention (Friederici
2017). Basic attention to linguistic and social cognition, which define human re-
lationships, are all underpinned by the inferior parietal lobe (IPL), a crucial neu-
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rological substrate (Numssen, Bzdok, and Hartwigsen 2021). Moreover consid-
ering the association with Schizophrenia, the frontal-limbic-temporal-parietal
neural network implicated in the Schizophrenia illness process appears to in-
clude the inferior parietal as an essential but largely unappreciated component.
Compared to the prefrontal cortex, hippocampus, or cingulate, the parietal cor-
tex, and the IPL in particular, have gotten comparatively little study, despite the
fact that it is generally accepted that they play a significant role in Schizophrenia
network dysfunction (Torrey 2007).

Considering Transverse Temporal which is the second ROI that is signifi-
cantly distributed in men and women (p=0.004), there have been several re-
search in the literature. The regionwhich is known as Brodmann area 42 (Ardila,
Bernal, and Rosselli 2016) is made up of the auditory cortex and transverse tem-
poral gyri. The auditory cortex, often referred to as the posterior transverse
temporal area (Elston and Garey 2013), is a region of the cerebral cortex that
is situated superiorly within the temporal lobe. It is a functional area that has
been discovered to have a crucial role in hearing. The sensory perception of
hearing sounds with no external trigger is known as an auditory hallucination.
Despite not being unique to schizophrenia, this symptom is notably linked to
it and other psychotic diseases. More than 70% of people with Schizophrenia
experience auditory hallucinations, making it one of the most prevalent symp-
toms. Additionally, according to a study, auditory hallucinations are lateralized
to left temporal lobe-generated speech perceptions (Hugdahl et al. 2008).

Further, our research revealed lateralization in some ROIs is more prominent
among others considering the difference between the left and right hemispheres
in terms of Ki levels. Regarding this Medial Orbital Frontal was nominated
to sustain higher Ki levels of dopamine in the left hemisphere than the right
hemisphere. Moreover, human neuroimaging studies have validated the orbital
frontal cortex’s function as a hub for sensory integration, control of the visceral
response, and involvement in learning, forecasting, and decision-making for
emotional and rewarding behaviors (Kringelbach 2005). Since then, more re-
search has supported the medial orbitofrontal cortex’s function in seeing and
understanding the reward potential of inputs without immediate behavioral
repercussions. Additionally, research results also showed that it could work as
a general outcomemonitoring system, separate from tangible reward (Schnider,
Treyer, and Buck 2005).

Prior research studies report that the Thalamus is an area of particular con-
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cern in Schizophrenia (A. F. Oke and Adams 1987; Rao et al. 2010; Jiang, Patton,
and Zakharenko 2021; Perez-Rando et al. 2022; Harms et al. 2007; Pergola et al.
2015; Pergola et al. 2015). It is intricately related to the cortex and essential for
coordinating signaling to and within cortical regions (Hwang et al. 2017; Wag-
ner et al. 2015). Moreover, one previous research reported that patients with
Schizophrenia have higher levels of dopamine in their Thalamus (A. F. Oke
and Adams 1987). Additionally, concerning lateralization research, previously
it is reported that in the human thalamus, norepinephrine is distributed in a
distinctly lateralized manner and Norepinephrine is abundant in the left hemi-
sphere of the brain’s pulvinar area, but it is more abundant in the right hemi-
sphere of the brain’s somatosensory input region (A. Oke et al. 1978). However,
there hasn’t been any specific research done on how Thalamus lateralization
changes in healthy controls as we age.

Referring to our analysis results proving the lateralizationdifference in healthy
controls and patients following ROIs showed significant dopamine lateraliza-
tion: theAccumbens(d=0.108265), the Putamen(d=0.095546), theCuneus (d=0.069798),
the Frontal Pole(d=0.069316), and the Caudal Anterior Cingulate(d=0.064009).
Considering Accumbens, dopamine lateralization in healthy controls and pa-
tients have the same direction (rightwards) but it is more lateralized in healthy
controls. Similarly, in Putamen both cohorts follow the same lateralization di-
rection (leftwards) but Putamen is more lateralized in Healthy controls. There-
fore, we conclude that both the magnitude of Ki and the direction of lateraliza-
tion bias differ between healthy controls and patients. Further with Quades’
Non-Parametric ANCOVA by taking age and gender as covariates, our research
outlined the following regions: Accumbens(p=0.000), Putamen(p=0.000), Supra
Marginal(p=0.032), Caudal Anterior Cingulate(0.037), Pallidum(p=0.052). The
putamen was one of the most significant ROIs considering the differentiation
between healthy controls and patients in terms of dopamine lateralization. Re-
garding this, it has been reported that dopamine is a key neurotransmitter in
the brain that is abundant in the putamen, a subcortical node located within the
striatum. Additionally, the putamen is closely linked to dopamine-related psy-
chiatric and neurodegenerative conditions that show up as motor dysfunction,
impulsive behavior, and cognitive deficiencies(Luo et al. 2019). In Schizophre-
nia, dopamine is crucial for complex thinking and acting (Schultz 2007). The
extra dopamine in the striatum (which includes the putamen) is thought to con-
tribute to symptoms like delusions in Schizophrenia, based on the dopamine
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hypothesis (Toda and Abi-Dargham 2007).
The majority of the studies examined the physical changes to the putamen,

and itwas shown that in healthy controls the volume of putamen decreasedwith
aging (Dyck et al. 2002) and that there was a substantial difference between men
and women (McDonald et al. 1991; Abedelahi et al. 2013). For instance, it was
discovered that only among males was an age-related drop in its volume (Raz,
Torres, and Acker 1995). When dopaminergic neurons in the nigrostriatal path-
way are highly expressed, the dopamine-rich putamen may enlarge and result
in Schizophrenia spectrum disorders (Hokama et al. 1995). Another research
that experimented with whole basal ganglia reported that Schizophrenic pa-
tients displayed larger volumes when compared to healthy individuals: 14.2%
for the whole basal ganglia, 27.4% for the globus pallidus, 15.9% for the puta-
men, and 9.5% for the caudate (Mamah et al. 2007). Concerning dopamine lat-
eralization in the Putamen, it is only shown in one research that left-lateralized
dopaminergic regulation of activity in the brain and functional networks causes
lateralization of human speech (Fuertinger et al. 2018). The caudate, on the other
hand, appears to have a contribution to motor planning and motor learning, de-
spite the fact that there is strong evidence that the putamen is primarily involved
in motor execution(Albin, Young, and Penney 1989). It has been suggested that
motor lateralization in humans may be connected to the asymmetric nigrostri-
atal dopamine system which includes mainly the caudate and putamen. (de la
Fuente-Fernández et al. 2000).

Thus, we can draw the conclusion that dopamine is lateralizedmore saliently
on the ROIs responsible for motivation and reward-oriented tasks.

Similar to putamen research compromising other ROIs regarding the differ-
ence between healthy controls and people with neurodegenerative illnesses, de-
pending on age and gender, also primarily focused on morphological changes.
For instance, results of a comprehensive study revealed that in the case of Schizophre-
nia, there are aberrant decreases in the variability of cortical thickness in the
right and left cuneus ( Δ = 0.68, p = 0.002), right postcentral gyrus (Δ = 0.62, p =
0.004), and right pars triangularis (Δ = 0.61, p = 0.004) (Raz, Gunning, et al. 1997).
Another study that used fractional anisotropy to examine thewhitematter tracts
in both the precentral and postcentral gyrus during the typical aging process of
the brain found that the fractional anisotropy values of the two regions varied
statistically throughout genders, different ages, and in each hemisphere. Fur-
thermore, both the precentral gyrus and postcentral gyrus fractional anisotropy
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values drop over time, which is a clear sign of aging (Zhou et al. 2020).
However, it is crucial to expand these physiological investigations for more

inclusive research including the neurochemicals that govern brain activity. Con-
sidering our resulting significant ROIs that have been nominated to differenti-
ate between a patient and healthy control, brain dopamine was found to be a
strong contender to be a physiologically active molecule that controls the activ-
ity of some extrapyramidal areas, particularly the Substantia Nigra, Striatum,
and Pallidum (Hornykiewicz 1966). Additionally, an increasing amount of re-
search has shown that the Ventral Pallidum plays important roles in the reward
of food, social attachment, drugs of abuse, financial success, and other pleasures.
The Ventral Pallidum is a basal ganglia component and is positioned as the link
between the midbrain circuits for motivation and reinforcement and the corti-
cal, amygdala, and striatal circuits for cognition and action. It serves as a crucial
point of convergence for the brain circuits responsible for motivation, hedonics,
and reward learning (Prasad and McNally 2019). On the other hand, the ven-
tral pallidum is also a stage of transition for various cognitive, emotional, and
motor functions as well as a convergence site for limbic reward signals. The Pal-
lidumwas also nominated as a focal point for improving reward andmotivation
(K. S. Smith et al. 2009). Considering lateralization of dopamine, although there
have been conflicting results in humans, it did appear that the left globus pal-
lidus has more dopamine than the right (Glick, Ross, and Hough 1982; Rossor,
Garrett, and Iversen 1980).

Moreover, the precise information that dopaminergic projections that inner-
vate the nucleus accumbens encode has been the subject of a significant body
of research. The dominant theories are based on the reward prediction error
(RPE) hypothesis, which postulates that dopamine modifies links between re-
wards and predictive signals by recording perceived faults between predictions
and results (Kutlu et al. 2021). Moreover, the nucleus accumbens is a component
of the neuronal network that regulates reward-seeking in response to reward-
predictive cues. So, for this circuit to operate normally, dopamine release in the
accumbens is necessary (Nicola et al. 2005). Dopamine release and neuronal re-
activity in the nucleus accumbens, which are essential for addictive behavior,
are thought to be influenced by dopaminergic neuron terminals of the insula
originating in the ventral tegmental area (VTA) and substantia nigra (Kalivas
and Volkow 2005). Anxiety, mood, pain, cognition, danger perception, and con-
scious impulses are all regulated by the insular cortex (Hardy 1985; Suhara et
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CHAPTER 4. DISCUSSION AND CONCLUSIONS

al. 1992;Craig 2002;Paulus and Stein 2006). Another research proves that the in-
sula is a viable brain region to point out for addiction, according to resounding
evidence (Ibrahim et al. 2019).

Additionally, many cognitive and neurocognitive investigations have been
conducted on the cingulate gyrus. It has been linked to Alzheimer’s disease,
anxiety disorders, addiction, depression, bipolar disorder, and Schizophrenia,
among other things. Regarding research focusing on structural abnormalities in
adolescents, within the right cingulate cortex, scientists discovered a significant
group effect in the caudal anterior cingulate (F=2.9, p=.057): with lower cortical
thickness in the high-risk psychosis group compared to healthy controls. An-
other research experimentedwith 22 patientswith Schizophrenia and 22 normal
volunteers also reported that a lower volume of the caudal anterior cingulate
gyrus was also associated with more serious evidence of Schizophrenia (Choi
et al. 2005). Furthermore, the anterior cingulate has been shown to be important
for several elements of instrumental behavior, such as learning and effort-based
decision-making in the context of dopamine activity (Aly-Mahmoud et al. 2017).

Lastly, there were a few studies that previously included supra marginal in
their research. However, a PET research using a 𝐷1 receptor tracer to inves-
tigate the hereditary and nongenetic contributions to 𝐷1 receptor binding in
Schizophrenia found a significant age effect that leads to deterioration with age
in the supramarginal gyrus (p=0.021)(Hirvonen et al. 2006). Another research
examined the association between dopamine 𝐷2 receptors in the brain and re-
gional brain glucose metabolism and reported that regional metabolic measure-
ments fell markedly with age in various frontal brain areas, including the ante-
rior cingulate and the right supramarginal gyrus.

Finally, another novelty that this research introduces was showing how ex-
plainable artificial intelligence can point out the ROIs that are used to differen-
tiate between healthy controls and patients. The post hoc explainability method
SHAP was able to provide the most significant ROIs that were aligned with the
statistical test results. Thus, it is important to make use of artificial intelligence
models that are able to capture patterns in the data that are multi-variate and
non-linear. We can even conclude that the model XGBoost and SHAP explain-
ability were able to provide ROIs significantly alignedwith the literature. SHAP
outlined the accumbens, posterior cingulate, thalamus, pallidum, putamen, and
caudate in the top 10most significant ROIs used to diagnose patients. The afore-
mentioned ROIs have been also reported by Quade’s Test of Non-parametric
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ANCOVAwhen the grouping factor is cohort(patient vs healthy control). More-
over, the global explainability method PDP enables us to investigate the indi-
vidual effects of ROIs on dependent factors, the probability of being diagnosed
with Schizophrenia. For instance, PDP reported that when the lateralization in-
dex value increases in Pallidumand exceeds threshold 0, the probability of being
diagnosed with Schizophrenia increases. In other words, when the dopamine
lateralization bias transitioned from right to left, the probability of being diag-
nosed with Schizophrenia increases. Regarding this, we can conclude that each
ROI has a specific threshold for the lateralization index to sustain a healthy state
of mind.

4.1 LIMITATIONS AND FUTURE WORK

The small number of individuals both in healthy and patient cohorts, and
the non-normal distribution of Ki values were the main limitations of this re-
search to apply well-known methodologies in the literature. Less number of
samples is disadvantageous for both artificial intelligence models to generalize
and capture the underlying pattern behind data, and the production of precise
measurements by the statistical methods. In future work, the patient cohort can
be investigated in detail by taking the responder and non-responder groups into
consideration. Additionally, taking the non-normal distribution of the data ad-
vanced normalization techniques and statistical approaches may be applied. Fi-
nally, more advanced deep learning or artificial intelligence models can be cus-
tomized to work with PET imaging data.
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