
Università degli Studi di Padova

Dipartimento di Matematica "Tullio Levi-Civita"

Corso di Laurea Magistrale in Matematica

Analysis of Stochastic Frank-Wolfe methods
for Product Domains

Relatore:
Prof. Francesco Rinaldi

Correlatore:
Damiano Zeffiro

Candidato:
Alessandro Da Villa
Matricola 2023832

21 Luglio 2023

Everything that happens
is from now on

J. Vernon

Contents

Introduction 1

Notation and preliminaries 3

1 Stochastic Frank-Wolfe methods 5
1.1 The Frank-Wolfe algorithm . 5

1.1.1 Frank-Wolfe for convex optimization 5
1.1.2 Frank-Wolfe variants . 7

1.2 Stochastic variants of Frank-Wolfe algorithm 8
1.3 Convergence analysis of ASFW and PSFW 9

1.3.1 Some notions from empirical processes theory 10
1.3.2 Convergence analysis . 10

2 Frank-Wolfe with SSC on product domains 17
2.1 Frank-Wolfe with SSC . 17

2.1.1 Short Step Chain (SSC) to avoid bad steps 17
2.1.2 SSC for Frank-Wolfe variants 20

2.2 Block-Coordinate Frank-Wolfe method with SSC 20
2.2.1 Randomized Block-Coordinate approach applied to the classi-

cal Frank-Wolfe . 21
2.2.2 BCFW with SSC . 22

2.3 Convergence analysis . 23

3 Stochastic BCFW with SSC on product domains 27
3.1 Stochastic variants of BCFW with SSC 27
3.2 Convergence analysis . 28

Conclusions 35

Bibliography 38

i

Introduction

Frank-Wolfe algorithm (usually abbreviated as FW) was first introduced in 1956 [6]
for the purpose of providing a first order projection-free algorithm for constrained
convex optimization. At each iteration, the method aims to minimize a linear ap-
proximation of the original objective function, moving towards a so-called descent
direction.
Since the original algorithm has been shown to converge with a sublinear rate of
O(1/k) (which is worse than the linear rate of the projected gradient method), vari-
ants like the Away-Step and the Pairwise one have been introduced starting from
[17]; [9] and [2] proved that these new approaches converge linearly when the feasible
set P is a polytope.
Thanks to its immediacy from both a conceptual and an implemental point of view,
the Frank-Wolfe algorithm and its variants have been applied to a wide range of prob-
lems in the field of Operations Research. Among them, we are interested in using
Frank-Wolfe techniques to solve problems of regularized empirical risk minimization
(ERM) like the following

min
x∈P

F (x) :=
1

n

n∑
i=1

fi(x)

which can be easily reformulated as a stochastic optimization problem.
In many situations related to machine learning or statistics, the number of observa-
tions in ERM happens to be very large; consequently, the computation of the full
gradient in every FW iteration becomes an extremely expensive task. In order to
overcome this issue, stochastic variants of FW have been considered and an O(1/k)
rate of convergence in expectation has been proved in [11]. The main idea behind
this techinques is to replace the full gradient with a cheaper stochastic one.
Over the past few years, big data has also led to the need of optimization algorithms
which have low computational cost per iteration and are able to exploit conveniently
the model structure. One of the most common situations we can find in real-world
applications is the presence of a feasible set P which is block separable, that is

P = P1 × P2 × · · · × Pl

with Pj ⊂ Rpj for j ∈ {1, . . . , l} and
l∑

j=1
pj = p.

Product domains of this kind can be found in many different contexts like, e.g.,
traffic assignement [12], structural SVMs [10], semi-relaxed optimal transport [7] or
dictionary learning [4].
Starting from [10], many different block-coordinate variants of the classic FWmethod
have been introduced, with the aim of decomposing the original problem in low-
dimensional independent subproblems exploiting the block separable structure of
the feasible set. However, the presence of short steps (iterations where, in order to

1

2 Introduction

guarantee feasibility, we don’t obtain fair progresses) tends to slow down the algo-
rithm and doesn’t allow us to smoothly extend the standard convergence analysis
for FW to the block-coordinate case. Recently, [3] made use of the Short Step Chain
(SSC) procedure described in [15] to provide a brand new block-coordinate bad step
free algorithmic framework which guarantees a local linear convergence rate under a
particular angle condition (first introduced in [15]) and a Kurdyka-Łojasiewicz (KL)
property (previously seen in [1]).

In this thesis we will describe and conduct the convergence analysis of some
stochastic variants of the Frank-Wolfe method in the presence of a product domain.
The work is organized as follows. In Chapter 1, after a quick overview of the clas-
sic FW, Away-Step FW and Pairwise FW methods, we will describe in detail two
stochastic variants: the Away-Step Stochastic FW method (ASFW) and the Pairwise
Stochastic FW method (PSFW). As done in [8], we will see that these two variants
converge linearly in expectation (and also almost surely) developing a novel proof
technique based on some concepts of empirical processes and concentration inequal-
ities.
In Chapter 2 we will describe the Short Step Chain procedure first introduced in
[15]; we will then move to the special case of product domains, formulating a Block-
Coordinate Frank-Wolfe method with SSC which is proven to converge linearly under
some angle condition and some KL property (as seen in [3]).
In Chapter 3 we present two stochastic variants of the BCFW method with SSC
which can be used to solve the ERM problem on a product domain.
Taking inspiration from the techniques seen in [8] we will be able to prove that such
algorithms converge linearly in expectation (and also almost surely) under some mild
assumptions.

Notation and preliminaries

Herein, vectors are denoted with bold lower-case letters a,b, c, For a block
vector x ∈ Rp = Rp1×· · ·×Rpl , we denote by xj ∈ Rpj the component related to the
j-th block in such a way that x = (x1, . . . ,xl). For any iterative algorithm producing
outputs in Rp, we denote with x(i) the output of the i-th iteration of the method.
For any vector x ∈ Rp r 0, x̂ = x

||x|| and x̂ = 0 otherwise.
For any C closed and convex subset of Rp we indicate with π(C,x) the projection of
x over C. We also denote with TC(x) the tangent cone to C in x. In order to shorten
the notation, we will write πx(g) instead of ||π(TC(x),g)|| for any vector g ∈ Rp.
In the convergence analysis we will carry out, it will be useful to have some type of
angle condition, which ensures that the slope of the descent selection detected by
some projection-free method A is optimal, up to some constant τ > 0.
First, for any x ∈ C and g ∈ Rp define the directional slope lower bound as

DSBA(C,x,g) = inf
d∈A(x,g)

〈g,d〉
πx(g)||d||

(0.0.1)

In the case when x is stationary, we set DSBA(C,x,g) = 1.
Then, given K ⊂ C, define the slope lower bound as

SBA(C,K) = inf
g∈Rn

x∈K

DSBA(C,x,g) = inf
g:πx(g)6=0

x∈K

DSBA(C,x,g) (0.0.2)

We say that the angle condition holds for the method A if

SBA(C) := SBA(C, C) = τ > 0 (0.0.3)

This condition is satisfied with explicit bounds in many interesting frameworks.
It will be useful also to recall the so-called local Kurdyka-Łojasiewicz (KL) prop-

erty.

Assumption. Given a stationary point x∗ ∈ C, there exist η, δ > 0 such that for
every x ∈ Bδ(x∗) with f(x∗) < f(x) < f(x∗) + η we have

πx(−∇f(x)) ≥
√

2σ[f(x)− f(x∗)]
1
2 (0.0.4)

Such condition holds for σ-strongly convex functions, but also in many non-
convex settings: for example, the condition is satisfied when f is (non-convex)
quadratic, i.e. f(x) = xTQx + bTx + c, and P is a polytope.

3

4 Notation and preliminaries

Chapter 1

Stochastic Frank-Wolfe methods

1.1 The Frank-Wolfe algorithm

We will start our discussion with a a brief overview of the classic Frank-Wolfe (FW)
algorithm and its main variants, trying to examine its strengths and its weaknesses.
The ideas and the techniques behind this method take inspiration from convex opti-
mization, where our aim is to minimize a convex objective function on a convex set.
Afterwards, FW algorithm has been applied to a wide range of non-convex problems.

1.1.1 Frank-Wolfe for convex optimization

Dealing with constrained optimization on convex sets, Frank-Wolfe method is surely
one of the most famous and widely used techniques.
In many situations it is preferred over other methods (like Projected Gradient) be-
cause of its nice properties, especially for machine learning applications. Suppose we
want to solve the following problem:

min
x∈P

F (x) (1.1.1)

with F : Rp → R convex function with Lipschitz continuous gradient having constant
L > 0, and P ∈ Rp convex and compact set. Frank-Wolfe (often abbreviated in FW)
method is based on the minimization of the linear approximation of the objective
function, making use of the necessary condition for local minima of the problem
(1.1.1). The main features of FW method are displayed in Algorithm 1.

Algorithm 1 Frank-Wolfe Method

1: Initialization x(0) ∈ P.
2: for k = 0, 1, . . . do
3: Set p(k) = arg min

x∈P
〈∇F (x(k)),x〉

4: Set d(k) = p(k) − x(k)

5: if 〈∇F (x(k)),d(k)〉 = 0 then STOP
6: else Set x(k+1) = x(k) + α(k)d(k) with α(k) suitably chosen stepsize
7: end if
8: end for

5

6 CHAPTER 1. STOCHASTIC FRANK-WOLFE METHODS

In most cases, when we work with real-world situations we don’t aim for an exact
minimizer, but we rather settle for a nice stopping condition, which ensures that we
are sufficiently near to a stationary point.
As concerns the computation of the stepsize described in Step 4, we have plenty of
options to choose from; some common rules are given below.

• Constant stepsize: fix α ∈ (0, 1] for any iteration.

• Exact line-search: α(k) is the valued obtained by the exact minimization of F
along the direction d(k), i.e.

α(k) ∈ arg min
α

F (x(k) + αd(k)).

• Armijo rule: Given parameters δ and γ, with δ ∈ (0, 1) and γ ∈ (0, 1
2), and a

starting stepsize ∆(k), we try steps

α = δm∆(k)

for m = 1, 2, . . . until condition

f(x(k) + αd(k)) ≤ F (x(k)) + γα〈∇F (x(k)),d(k)〉

is satisfied; at that point, set α(k) = α.

• Diminishing stepsize: choose α(k) = 2
k+1 .

Looking at Step 3, we see how each iteration involves just an optimization of
a linear function (the linearization of the objective F) over the feasible set; this is
one of the strengths of this method, and it explains its wide applicability. Projected
gradient methods, for example, require the optimization of a quadratic function over
P which is clearly an harder task.
Notice also that each iterate is built as a convex combination of the previous iterate
and a feasible search corner p(k); this characteristic brings to two other big advan-
tages.
First, since F is convex, minimizing the linearization of F over P we immediately
obtain a lower bound on F (x∗), the value the optimal solution of our problem.
Secondly, going through the method we can write each iterate as a convex combina-
tion of the starting point x(0) and all the search corners p(k) previously found. This
means that the iterates of Frank-Wolfe method are sparse, another useful property
especially when we work in high dimensions.

[6] and [5] proved that the classical Frank-Wolfe method shows a slow convergence
rate, as we can see from the theorem below.

Theorem 1.1.1. Let F be a convex function with Lipschitz continuous gradient
having constant L > 0. Call x∗ = min

x∈P
F (x) and D the diameter of the set P.

The Frank-Wolfe method with diminishing stepsize α(k) = 2
k+1 satisfies the following

inequality:

F (x(k+1))− F (x∗) ≤ 2LD2

k + 1
(1.1.2)

for all k ≥ 1.

1.1. THE FRANK-WOLFE ALGORITHM 7

This sublinear convergence rate represents a huge drawback for the Frank-Wolfe
method and it is due to the linear minimization oracle (LMO). The phenomenom is
even more evident when the feasible set is a polytope: as soon as the iterates become
closer to an optimum on the boundary, search directions become more orthogonal to
the optimal direction and we observe a zig-zagging effect which prevents us to find
x∗ in a fast way. In order to overcome this obstacle, some variants of the method
have been proposed. We will focus on two of them: Away-Step Frank-Wolfe (AFW)
and Pairwise Frank-Wolfe (PFW).

1.1.2 Frank-Wolfe variants

One popular way to avoid the above mentioned zig-zagging problem is to keep track
of the vertices previously involved in the algorithm (usually called "active" vertices),
and move away from the ones producing the worst results.
We call U (k) the set of active vertices at iteration k.

At each iteration k the algorithm computes

p(k) ∈ arg min
s∈P

〈∇F (x(k)), s〉

u(k) ∈ arg max
v∈U(k)

〈∇F (x(k)),v〉

We define the classic Frank-Wolfe direction as

dFW = p(k) − x(k)

and the so-called away direction as

dAS = x(k) − u(k)

Given x(k) ∈ P and the active set U (k), the directions chosen by the Away-Step
Frank-Wolfe method (called AFW directions) at iteration k with respect to the active
set U (k) are

dAFW ∈ arg min{〈∇F (x(k)),d〉 | d ∈ {dFW ,dAS}}.

In this variant, we include directions pointing away from extreme points.

In the Pairwise Frank-Wolfe method, the chosen PFW directions are

dPFW = dFW + dAS

or, equivalently
dPFW = p(k) − u(k)

This second variant combines classic FW and away-step FW, summing their respec-
tive search directions.

When we work in some specific settings (for example on polytopes) and we use
one of these variants, we immediately find the following (see [15] for the full proof).

Lemma 1.1.2. When the feasible set P is a polytope, AFW and PWF both satisfy
the angle condition (0.0.3).

8 CHAPTER 1. STOCHASTIC FRANK-WOLFE METHODS

1.2 Stochastic variants of Frank-Wolfe algorithm

The term "empirical risk minimization" (ERM) embraces a large class of constrained
optimization problems. In this chapter we will focus on the following minimization
problem

min
x∈P

F (x) :=
1

n

n∑
i=1

fi(x) (1.2.1)

In our analysis, P will always be a polytope which can be described as all the possible
convex combinations of a finite set of vertices V . Alternatively, a polytope can also
be written as P = {x ∈ Rp : Cx ≤ d} for some C ∈ Rm×p,d ∈ Rm. For every
i = 1, . . . , n, the function fi : Rp → R is σi-strongly convex with Li Lipschitz
continuous gradient.
Proximal gradient method represent a popular approach for these kind of problems,
but the fact that it relies on some kind of projection operation makes this method
expensive in many situations.
For this reason, projection-free methods like Frank Wolfe have been largely used in
the last years: when the feasible set is a polytope, this approach is substantially
faster.
Many applications in statistics and data science need a large number of observations
fi: as a result, computing the exact gradient at each iteration can be computationally
heavy. In this context, it can be useful to rely on some cheaper "stochastic" gradient.
Problem (1.2.1) can indeed be reformulated from a stochastic point of view: first,
we can define a random variable ξ taking values in {1, . . . , n} following a discrete
uniform distribution. If we define f(i,x) = fi(x) for every i = 1, . . . , n and x ∈ P,
the previous problem can be rewritten as follows:

min
x∈P

1

n

n∑
i=1

fi(x) = Ef(ξ,x) (1.2.2)

It will be useful also to define ∇f(ξ,x) = ∇fξ(x).

In Algorithm 2 a possible implementation of the Stochastic Away-Step Frank
Wolfe method is displayed.
At each iteration k we sample m(k) random variables taking values uniformly in
{1, . . . , n}, which corresponds to restrict our computations to just m(k) observations
fξ1 , . . . , fξm(k)

. Then, starting from Step 4, we focus on the ancillary problem

min
x∈P

F (k)(x)

where F (k)(x) = 1
m(k)

m(k)∑
i=1

fξi(x) and we solve it using the Away-Step Frank Wolfe

method.

It is immediate to see that F (k) is strongly convex with constant σ(k) = 1
m(k)

m(k)∑
i=1

σξi

and Lipschitz continuous with constant L(k) = 1
m(k)

m(k)∑
i=1

Lξi .

We also define our stochastic gradient as g(k) = 1
m(k)

m(k)∑
i=1
∇xf(ξi,x

(k)).

Once a descent direction and a suitable stepsize are chosen, in Step 13 we build

1.3. CONVERGENCE ANALYSIS OF ASFW AND PSFW 9

the current solution and in Step 14 we update the active set U (k+1) via a specific
procedure called Vertex Representation Update (VRU).

Algorithm 2 Away-Step Stochastic Frank-Wolfe algorithm

Initialization x(0) ∈ V , fi, Li and k = 0.
1: Set µ(0)

x(0) = 1, µ(0)
v = 0 for any v ∈ V \ {x(0)} and U (0) = {x(0)}.

2: for k = 0, 1, . . . do
3: Sample ξ1, . . . , ξm(k)

i.i.d.∼ ξ

4: Set g(k) = 1
m(k)

m(k)∑
i=1
∇xf(ξi,x

(k)) and L(k) = 1
m(k)

m(k)∑
i=1

Lξi .

5: Compute p(k) ∈ arg min
x∈P

〈g(k),x〉.

6: Compute u(k) ∈ arg max
v∈U(k)

〈g(k),v〉.

7: if 〈g(k),p(k) + u(k) − 2x(k)〉 ≤ 0 then
8: Set d(k) = p(k) − x(k) and γ(k)

max = 1.
9: else

10: Set d(k) = x(k) − u(k) and γ(k)
max =

µ
(k)

u(k)

1−µ(k)
u(k)

.

11: end if
12: Set γ(k) = min{− 〈g

(k),d(k)〉
L(k)||d(k)||2 , γ

(k)
max} or determine it by line-search.

13: Set x(k+1) = x(k) + γ(k)d(k).
14: Update U (k+1) and µ(k+1) by procedure VRU.
15: end for

In the Pairwise Stochastic Frank-Wolfe algorithm, the procedure remains the
same except for the choice of the descent direction: lines from 7 to 11 are replaced
by d(k) = p(k) − u(k) and γ(k)

max = µ
(k)

u(k) . In the following section we will prove that
these methods converge linearly in expectation and, consequently, converge linearly
almost surely.

1.3 Convergence analysis of ASFW and PSFW

We now present a brand new procedure, first introduced by Goldfarb, Iyengar and
Zhou in [8], to prove that the Away-Step Stochastic Frank-Wolfe algorithm (ASFW)
and the Pairwise Stochastic Frank-Wolfe algorithm (PSFW) converge linearly in
expectation.
The first thing we need is the lemma below, which will be used in the proof of the
final theorem. A proof of this lemma is contained in [2].

Lemma 1.3.1. For any x ∈ P \ {x(k)
∗ } that can be represented as x =

∑
v∈U(k)

µvv

for some U (k) ⊂ V where
∑

v∈U(k)

µv = 1 and µv > 0 for every v ∈ U (k), it holds that

max
u∈U,p∈V

〈∇F (k)(x),u− p〉 ≥ ΩP
|U |
〈∇F (k)(x),x− x

(k)
∗ 〉

||x− x
(k)
∗ ||

where |U (k)| denotes the cardinality of U (k), V is the set of extreme point of P and

ΩP =
ζ

φ

10 CHAPTER 1. STOCHASTIC FRANK-WOLFE METHODS

for

ζ = min
v∈V,i∈{1,...,m}:ai>Civ

(di −Civ)

φ = max
i∈{1,...,m}\I(V)

||Ci||

Before moving on, we need some notions which come from the empirical processes
literature.

1.3.1 Some notions from empirical processes theory

We will start from the bracketing number, a quantity that measures the complexity
of a function class.

Definition. Given two functions l and u, the bracket [l, u] is the set of all functions
f such that l ≤ f ≤ u. A bracket [l, u] is called an ε-bracket in L1 if E|u− l| < ε.

Definition. Let F be a class of functions. The bracketing number N[](ε,F , L1) is
the minimum number of ε-brackets needed to cover F .

We can now state a lemma which provides an upper bound for the bracketing
number of a function class indexed by a finite dimensional bounded set.

Lemma 1.3.2. Let F = {fθ | θ ∈ Θ} be a family of measurable functions indexed
by a bounded subset Θ ⊂ Rp. Suppose that there exists a measurable function g such
that

|fθ1(ξ)− fθ2(ξ)| ≤ g(ξ)||θ1 − θ2|| (1.3.1)

for every θ1, θ2 ∈ Θ. If ||g(ξ)||1 <∞, then the bracketing number satisfies

N[](ε||g||1,F , L1) ≤ (

√
pDΘ

ε
)p (1.3.2)

for every 0 ≤ ε ≤ DΘ, where DΘ = sup{||θ1 − θ2|| | θ1, θ2 ∈ Θ}.

A proof of Lemma 1.3.2 can be found in [8].

1.3.2 Convergence analysis

Starting from the upper bound for N[] found in Lemma 1.3.2, we can now provide a
concentration bound for the variable sup

x∈P
|F (k)(x) − F (x)| which involves both the

objective function of the main problem and its "reduced" version of the ancillary
one.

Lemma 1.3.3. For any δ > 0 and 0 < ε < min{D, δ
2LF
} it holds

P{sup
x∈P
|F (k)(x)− F (x)| ≥ δ} ≤ 2KP(

D

ε
)p exp{−m

(k)(δ − 2LF ε)
2

2(uF − lF)2
}

where LF = min{L1, . . . , Ln},KP = (
√
p)p, uF = max{sup

x∈P
fi(x) | i = 1, . . . , n} and

lF = min{ inf
x∈P

fi(x) | i = 1, . . . , n}.

1.3. CONVERGENCE ANALYSIS OF ASFW AND PSFW 11

We can immediately state a corollary which provides useful upper bounds for the
expected values of sup

x∈P
|F (k) − F (x)| and |F (k)(x

(k)
∗)− F (x∗)|.

Corollary 1.3.4. When m(k) ≥ 3,

E sup
x∈P
|F (k)(x)− F (x)| ≤ C1

√
logm(k)

m(k)

and

E|F (k)(x
(k)
∗)− F (x∗)| ≤ C1

√
logm(k)

m(k)

where

C1 = 4(|uF |+ |lF |)KPDp exp{−p(log
uF − lF
2
√

2LF
)}+ (uF − lF)

√
p+ 1.

Lastly, we will also need the following technical lemma.

Lemma 1.3.5. Let ci ≥ 0 and bi ∈ {0, 1} for i = 1, . . . , n. Assume that
n∑
j=1

bj =

m < n. Then for 0 < a < 1 we have

n∑
k=1

a
∑n

j=k bjck ≤
m∑
k=1

am−k+1ck +
n∑

k=m+1

ck. (1.3.3)

All the previous proofs are contained in [8].

We are now ready to state the theorem about the linear convergence in expecta-
tion of the ASFW and PSFW method. We also report here the full proof, because it
will be the starting point for the convergence analysis of the algorithms of Chapter
3.

Theorem 1.3.6. Let {x(k)}k≥1 be the sequence generated by Algorithm (2) for solv-
ing problem (1.2.1). Let N be the number of vertices used to represent x(k) and
F ∗ be the optimal value of the problem. Let ρ = min{1

2 ,
Ω2
PσF

16N2LFD2 } with σF =

min{σ1, . . . , σn}, LF = max{L1, . . . , Ln}. Set m(i) = d 1
(1−ρ)2i+2 e. Then for every

k ≥ 1

E{F (x(k+1))− F ∗)} ≤ C2(1− β)(k−1)/2

with C2 deterministic constant and 0 < β < ρ ≤ 1
2 .

Proof. In order to shorten notations, define F (k)
∗ = F (k)(x

(k)
∗). The stochastic gra-

dient is g(k) = ∇F (k)(x). For the descent direction d(k) chosen by the algorithm at
iteration k, it holds

〈g(k),d(k)〉 ≤ 1

2
(〈g(k),p(k) − x(k)〉+ 〈g(k),x(k) − u(k)〉) =

1

2
〈g(k),p(k) − u(k)〉 ≤ 0.

12 CHAPTER 1. STOCHASTIC FRANK-WOLFE METHODS

Hence, we can lower bound 〈g(k),d(k)〉2 by

〈g(k),d(k)〉2 ≥ 1

4
〈g(k),u(k) − p(k)〉2

≥ 1

4
max

p∈V,u∈U(k)
〈g(k),u− p〉2 (by definition of p(k) and u(k))

=
1

4
max

p∈V,u∈U(k)
〈∇F (k)(x(k)),u− p〉2 (by definition of g(k))

≥ 1

4

Ω2
P

|U (k)|2
〈∇F (k)(x(k)),x(k) − x

(k)
∗ 〉2

||x(k) − x
(k)
∗ ||2

(by Lemma 1.3.1)

≥
Ω2
P

4N2

(F (k)(x(k))− F (k)
∗)2

||x(k) − x
(k)
∗ ||2

(since F (k) is convex)

≥
Ω2
Pσ

(k)

8N2
(F (k)(x(k))− F (k)

∗) (since F (k) is strongly convex)

≥
Ω2
PσF

8N2
(F (k)(x(k))− F (k)

∗) (by definition of σF)

We can also upper bound 〈g(k),d(k)〉 in a similar way:

〈g(k),d(k)〉 ≤ 1

2
〈g(k),p(k) − u(k)〉

≤ 1

2
〈g(k),x

(k)
∗ − x(k)〉 (by definition of p(k) and u(k))

=
1

2
〈∇F (k)(x(k)),x

(k)
∗ − x(k)〉 (by definition of g(k))

≤ 1

2
(F

(k)
∗ − F (k)(x(k))) (since F (k) is convex)

Let’s now focus on the stepsize γ(k) chosen by the algorithm at iteration k. Four
different scenarios are possible:

• A(k) γ
(k)
max ≥ 1 and γ(k) ≤ 1.

• B(k) γ
(k)
max ≥ 1 and γ(k) ≥ 1.

• C(k) γ
(k)
max < 1 and γ(k) < γ

(k)
max.

• D(k) γ
(k)
max < 1 and γ(k) = γ

(k)
max.

From the standard descent lemma, we have

F (k)(x(k+1)) = F (k)(x(k) + γ(k)d(k))

≤ F (k)(x(k)) + γ(k)〈∇F (k)(x(k)),d(k)〉+
L(k)(γ(k))2

2
||d(k)||2

= F (k)(x(k)) + γ(k)〈g(k),d(k)〉+
L(k)(γ(k))2

2
||d(k)||2.

(1.3.4)

Suppose that at iteration k first scenario A(k) occurs. Let δA(k) denote the indi-

1.3. CONVERGENCE ANALYSIS OF ASFW AND PSFW 13

cator function for such case. Then

δA(k){F (k)(x(k+1))− F (k)
∗ }

≤ δA(k){F (k)(x(k))− F (k)
∗ + γ(k)〈g(k),d(k)〉+

L(k)(γ(k))2

2
||d(k)||2}

= δA(k){F (k)(x(k))− F (k)
∗ −

〈g(k),d(k)〉2

2L(k)||d(k)||2
}

≤ δA(k){(1−
Ω2
PσF

16N2L(k)D2
)(F (k)(x(k))− F (k)

∗)}

≤ δA(k){(1−
Ω2
PσF

16N2LFD2
)(F (k)(x(k))− F (k)

∗)}.

Let’s move now to case B(k). Since γ(k) > 1, we have

− 〈g
(k),d(k)〉

L(k)||d(k)||2
> 1

hence
− 〈g(k),d(k)〉 > L(k)||d(k)||2 (1.3.5)

and also

γ(k)〈g(k),d(k)〉+
L(k)(γ(k))2

2
||d(k)||2 ≤ 〈g(k),d(k)〉+

L(k)

2
||d(k)||2. (1.3.6)

Using δB(k) to denote the indicator function in this second case, we get

δB(k){F (k)(x(k+1))− F (k)
∗ }

≤ δB(k){F (k)(x(k))− F (k)
∗ + γ(k)〈∇F (k)(x(k)),d(k)〉+

L(k)(γ(k))2

2
||d(k)||2}

= δB(k){F (k)(x(k))− F (k)
∗ + γ(k)〈g(k),d(k)〉+

L(k)(γ(k))2

2
||d(k)||2}

≤ δB(k){F (k)(x(k))− F (k)
∗ + 〈g(k),d(k)〉+

L(k)

2
||d(k)||2}

≤ δB(k){F (k)(x(k))− F (k)
∗ +

1

2
〈g(k),d(k)〉}

≤ δB(k){
1

2
(F (k)(x(k))− F (k)

∗)}

As regards case C(k), computation are similar to the ones we performed for case A(k);
therefore we get

δC(k){F (k)(x(k+1))− F (k)
∗ } ≤ δC(k){F (k)(x(k))− F (k)

∗ −
〈g(k),d(k)〉2

2L(k)||d(k)||2
}

≤ δC(k){(1−
Ω2
PσF

16N2LFD2
)(F (k)(x(k))− F (k)

∗)}

In case D(k), also called "drop step", we have

γ(k) = γ(k)
max ≤ −

〈g(k),d(k)〉
L(k)||d(k)||2

14 CHAPTER 1. STOCHASTIC FRANK-WOLFE METHODS

hence

δD(k){F (k)(x(k+1))− F (k)
∗ }

≤ δD(k){F (k)(x(k))− F (k)
∗ + γ(k)〈∇F (k)(x(k)),d(k)〉+

L(k)(γ(k))2

2
||d(k)||2}

= δD(k){F (k)(x(k))− F (k)
∗ + γ(k)〈g(k),d(k)〉+

L(k)(γ(k))2

2
||d(k)||2}

≤ δD(k){F (k)(x(k))− F (k)
∗ +

γ(k)

2
〈g(k),d(k)〉}

≤ δD(k){F (k)(x(k))− F (k)
∗ }.

Define ρ := min{1
2 ,

ΩPσF
16N2LFD2 }. We can immediately notice that ρ is a determin-

istic constant between 0 and 1. Hence

F (k)(x(k+1))− F (k)
∗ ≤ (1− ρ){1−δD(k)}(F (k)(x(k))− F (k)

∗)

= (1− ρ){1−δD(k)}(F (k−1)(x(k))− F (k−1)
∗) +

+ (1− ρ){1−δD(k)}(F (k)(x(k))− F (k)
∗ − F (k−1)(x(k)) + F

(k−1)
∗)

= (1− ρ){1−δD(k)}(F (k−1)(x(k))− F (k−1)
∗) +

+ (1− ρ){1−δD(k)}{F (k)(x(k))− F (x(k)) + F (x(k))− F (k−1)(x(k)) +

+ F ∗ − F (k)
∗ + F

(k−1)
∗ − F ∗}

≤ (1− ρ){1−δD(k)}(F (k−1)(x(k))− F (k−1)
∗) +

+ (1− ρ){1−δD(k)}{|F (k)(x(k))− F (x(k))|+ |F (k−1)(x(k))− F (x(k))| +

+ |F (k)
∗ − F ∗|+ |F (k−1)

∗ − F ∗|}

≤ (1− ρ)
∑k

i=1{1−δD(i)}(F (0)(x(1))− F (0)
∗) +

+

k∑
i=1

(1− ρ)
∑k

j=i{1−δD(j)}{|F (i)(x(i))− F (x(i))| +

+ |F (i−1)(x(i))− F (x(i))|+ |F (i)
∗ − F ∗|+ |F (i−1)

∗ − F ∗|}

At iteration k, the drop steps can be at most k+1
2 : it means that there are at most

k+1
2 δD(i) ’s which are equal to 1. Therefore, using Lemma 1.3.5 we have

k∑
i=1

(1− ρ)
∑k

j=i{1−δD(j)}{|F (i)(x(i))− F (x(i))|+ |F (i−1)(x(i))− F (x(i))| +

+ |F (i)
∗ − F ∗|+ |F (i−1)

∗ − F ∗|}

≤
k∑

i=k/2

{|F (i)(x(i))− F (x(i))|+ |F (i−1)(x(i))− F (x(i))|+ |F (i)
∗ − F ∗|+ |F (i−1)

∗ − F ∗|}

+

k/2−1∑
i=1

(1− ρ)k/2−i{|F (i)(x(i))− F (x(i))|+ |F (i−1)(x(i))− F (x(i))|+ |F (i)
∗ − F ∗|

+ |F (i−1)
∗ − F ∗|}.

1.3. CONVERGENCE ANALYSIS OF ASFW AND PSFW 15

Recalling that uF = max{sup
x∈P

fi(x) | i = 1, . . . , n} and lF = min{ inf
x∈P

fi(x) | i =

1, . . . , n} we finally get

F (k)(x(k+1))− F (k)
∗ ≤(1− ρ)

k−1
2 (uF − lF)

+

k∑
i=k/2

{|F (i)(x(i))− F (x(i))|+ |F (i−1)(x(i))− F (x(i))|+ |F (i)
∗ − F ∗|

+ |F (i−1)
∗ − F ∗|}+

k/2−1∑
i=1

(1− ρ)k/2−i{|F (i)(x(i))− F (x(i))|

+ |F (i−1)(x(i))− F (x(i))|+ |F (i)
∗ − F ∗|+ |F (i−1)

∗ − F ∗|}.

Adding and subtracting, we also have

F (k)(x(k+1))− F (k)
∗ = F (x(k+1))− F ∗ + (F (k)(x(k+1))− F (x(k+1))) + (F ∗ − F (k)

∗).

Therefore

F (x(k+1))− F ∗ ≤(1− ρ)
k−1
2 (uF − lF)

+
k+1∑
i=k/2

{|F (i)(x(i))− F (x(i))|+ |F (i−1)(x(i))− F (x(i))|+ |F (i)
∗ − F ∗|

+ |F (i−1)
∗ − F ∗|}+

k/2−1∑
i=1

(1− ρ)k/2−i{|F (i)(x(i))− F (x(i))|

+ |F (i−1)(x(i))− F (x(i))|+ |F (i)
∗ − F ∗|+ |F (i−1)

∗ − F ∗|}.

We can notice that for any deterministic x ∈ P, we have E{F (k)(x)} = F (x).
Using Corollary 1.3.4, we have that for every iteration k it holds

E|F (k)(x(k))− F (x(k))| ≤ E sup
x∈P
|F (k)(x)− F (x)| ≤ C1

√
logm(k)

m(k)

and

E|F (k)
∗ − F ∗| ≤ C1

√
logm(k)

m(k)
.

16 CHAPTER 1. STOCHASTIC FRANK-WOLFE METHODS

Putting together what we found so far, and using m(i) = d 1
(1−ρ)2i+2 e, we have

E{F (x(k+1))− F ∗} ≤ (1− ρ)
k−1
2 (uF − lF) + 2C1{

k+1∑
i=k/2

(

√
logm(i)

m(i)
+

√
logm(i−1)

m(i−1)
)

+

k/2−1∑
i=1

(1− ρ)k/2−i(

√
logm(i)

m(i)
+

√
logm(i−1)

m(i−1)
)}

≤ (1− ρ)
k−1
2 (uF − lF)

+4C1{
k+1∑
i=k/2

√
logm(i−1)

m(i−1)
+

k/2−1∑
i=1

(1− ρ)k/2−i(

√
logm(i−1)

m(i−1)
}

≤ (1− ρ)
k−1
2 (uF − lF)

+4C1

√
2 log

1

1− ρ
{
k+1∑
i=k/2

(1− ρ)i
√
i+

k/2−1∑
i=1

(1− ρ)k/2
√
i}

(1.3.7)

where we used the fact that log x
x decreases for x > e.

From inequality (1.3.7) we immediately get that

E{F (x(k+1))− F ∗} ≤ C2(1− β)
k−1
2

for some constant C2 and 0 < β < ρ < 1.

Obs. The proof of Theorem 1.3.6 contains stochastic arguments only in its last part.
One could try to replicate such passages to prove the convergence of other similar
stochastic algorithms, which is what we will do in Chapter 3.

From Theorem 1.3.6 we can also conclude that the ASFW method converges
almost everywhere. The proof of such corollary can be found in [8].

Corollary 1.3.7. Let {x(k)}k≥1 be the sequence generated by Algorithm 2 for solving
problem (1.2.1). Then

F (x(k))− F ∗

(1− ω)
k−1
2

→ 0

almost surely as k → ∞ for some 0 < ω < β. Therefore F (x(k)) converges
linearly to F ∗ almost surely.

Obs. With the same line of reasoning, we can prove that the Pairwise Stochastic
Frank Wolfe (PSFW) algorithm converges linearly in expectation and almost surely.
Full proofs can be found in [8].

Chapter 2

Frank-Wolfe with SSC on product
domains

In Chapter 1 we have already seen that the general Frank-Wolfe algorithm for mini-
mizing a convex function over a polytope converges at an O(1/k) rate ([6], [5]). This
poor performances come from the presence of "short steps" in the algorithm: with
this term we indicate iterations where, in order to guarantee feasibility, we are forced
to take tiny steps which don’t produce fair progresses.
Moreover, if we are in presence of a product domain and we put ourselves in a block-
coordinate framework, the difficulties which derive from handling these bad iterations
don’t allow to easily extend the results of the standard convergence analysis for FW,
AFW and PFW (as seen in [14]).
The Short Step Chain (SSC) method (introduced in [15]) aims to remove all the bad
steps in the algorithm guaranteeing a sufficient advancement at each iteration; as
we will see in the next pages, this procedure can be combined with any first order
projection-free algorithm. Thanks to this supplementary tool, we will be able to
provide a block-coordinate FW variant (as the one in [3]) which allows us to get rid
of the bad steps and, at the same time, offers more flexibility in the block selection
strategies and in the choice of the descent directions.
With these adjustments it will be possible to carry out the convergence analysis
also in the block-coordinate case; a local linear convergence rate will be given for
three different block selection strategies and for any FW-like direction under some
hypotesis (the angle condition (0.0.3) and the KL property).

2.1 Frank-Wolfe with SSC

Before moving to product domains and to the related block-coordinate FW variants,
we will discuss how the SSC method can be introduced in the classic FW algorithm
in order to avoid the short steps phenomena and improve the convergence rate.

2.1.1 Short Step Chain (SSC) to avoid bad steps

In order to overcome the problems deriving from the bad steps (which can be very
numerous) we use the so called Short Step Chain (SSC), which can be applied in
general to any first order projection-free method.
The main idea behind this procedure is to get rid of these short steps by skipping
gradient updates until we reach some specific conditions which ensure to have a

17

18 CHAPTER 2. FRANK-WOLFE WITH SSC ON PRODUCT DOMAINS

sufficient advancement. The main features of the Short Step Chain can be found in
Algorithm 3.

Algorithm 3 Short Step Chain SSC(x̄, z)

Initialization y(0) = x̄ ∈ P, j = 0.
Phase I

1: Select d(j) ∈ A(y(j),w) and α(j)
max ∈ αmax(y(j),d(j))

2: if d(j) = 0 then
3: return y(j)

4: end if
Phase II

5: Compute β(j) auxiliary stepsize
6: Let α(j) = min(α

(j)
max, β(j))

7: y(j+1) = y(j) + α(j)d(j)

8: if α(j) = β(j) then
9: return y(j+1)

10: end if
11: j = j + 1, go to Step 1.

The inputs needed by the SSC algorithm are some point x̄ and a vector z. There-
fore we can easily incorporate the code for SSC in any first order method: x̄ will be
the iterate x(k), and z will be the usual antigradient −g = −∇F (x(k)).

Algorithm 4 First-order method with SSC

Initialization x(0) ∈ P, k = 0.
1: while x(k) is not stationary do
2: g = ∇F (x(k))
3: x(k+1) =SSC(x(k),−g)
4: end while

Let’s now analyze in detail what are the main features of the Short Step Chain
method described in Algorithm 3.
In Phase I a stationarity check is performed on the descent directions d(j).
In Phase II the stepsize α(j) is finally computed, taking the minimum between the
"usual" maximal stepsize α(j)

max and an ausiliary stepsize β(j) defined as follows:

β(j) =

{
0 if y(j) /∈ Ω(j)

βmax(Ω(j),y(j),d(j)) if y(j) ∈ Ω(j)
(2.1.1)

Notice that the point y(i+1) generated after phase II is always feasible, because
the stepsize α(j) is by definition always smaller than the maximal stepsize α(j)

max along
the chosen direction d(j). In particular, βmax(Ω(j),y(j),d(j)) represents the maximal
feasible stepsize moving in the direction d(j) starting from y(j) with respect to the
trust region

Ω(j) = B̄||g||/2L(x̄− g

2L
) ∩ B̄〈−g,d̂(j)〉/L(x̄) (2.1.2)

The choice of this peculiar trust region Ωj guarantees a nice sufficient decrease con-
dition for the objective function F , as proved in the lemma below (first introduced
in [15]).

2.1. FRANK-WOLFE WITH SSC 19

Lemma 2.1.1. If we apply SSC algorithm with inputs x̄ and −g, we get the following:

F (y(j)) ≤ F (x̄)− L

2
||x̄− y(j)||2 (2.1.3)

for all j = 1, . . . , T with T final iteration index in the SSC procedure.

Proof. Notice that the first ball B1 = B̄||g||/2L(x̄ − g
2L) involved in the definition of

the trust region Ω(j) does not depend on j; then, since y(0) = x̄ belongs to B1, we
have y(j) ∈ B1 for every index j = 1, . . . , T . Applying the standard descent lemma
and recalling the definition of B1, we get the following chain of inequalities:

F (z) ≤ F (x̄) + 〈g, z− x̄〉+
L

2
||x̄− z||2 ≤ F (x̄)− L

2
||x̄− z||2 ∀ z ∈ B1

which proves the statement once we choose z = yj .

In [15] it is also underlined that the monotone decreasing behavior of the true
objective function F during the SSC is guaranteed.

Lemma 2.1.2. Assume y(j) ∈ B̄〈−g,d̂j〉/L(x̄). Then we have

F (y(j) + β(j)d(j)) ≤ F (y(j)).

Proof. Consider any β ∈ [0, β(j)]. We have

d

dβ
F (y(j) + βd(j)) = ||d(j)||〈∇F (y(j) + βd(j)), d̂(j)〉

= ||d(j)||〈(∇F (y(j) + βd(j))− g) + g, d̂(j)〉
= ||d(j)||(〈∇F (y(j) + βd(j))− g), d̂(j)〉+ 〈g, d̂(j)〉)

Since F has Lipschitz continuous gradient, it holds

∇F (y(j) + βd(j))− g = ∇F (y(j) + βd(j))−∇F (x̄)

≤ L||x̄− y(j) − βd(j)||

and since y(j) + βd(j) ∈ B̄〈−g,d̂(j)〉/L(x̄), we get

d

dβ
f(y(j) + βd(j)) ≤ ||d(j)||(L||x̄− y(j) − βd(j)||+ 〈g,d(j)〉) ≤ 0.

In particular, when we incorporate the SSC procedure inside any first-order
method like in Algorithm 4, we obtain the following

Proposition. Consider the sequence x(k) generated by Algorithm 4. Assume that

• The angle condition (0.0.3) holds

• The SSC procedure terminates in a finite number of steps

Then
F (x(k))− F (x(k+1)) ≥ L

2
||x(k) − x(k+1)||2 (2.1.4)

Proof. It is immediate from Lemma 2.1.1.

20 CHAPTER 2. FRANK-WOLFE WITH SSC ON PRODUCT DOMAINS

2.1.2 SSC for Frank-Wolfe variants

We would now like to understand what happens when the descent directions gener-
ated from the first order method A inside the SSC are picked according to one of
the Frank-Wolfe variants (Away-Step or Pairwise) seen in 1.1.2.
First, we report from [15] a general criterion that ensures the termination of the SSC
when applied to any first-order projection free method.

Lemma 2.1.3. Assume that the method A applied to any linear function Lg = 〈g,x〉
on the feasible set P and with every stepsize maximal always terminates in at most
T iterations with an optimal solution. Then the SSC applied to the method A on the
feasible set P always terminates in at most T iterations.

Proof. Since the method A applied to Lg terminates in at most T iterations, it
means that it generates a sequence {yj}j , for an index j = 1, . . . , T ′ with T ′ ≤ T
and y(T ′) ∈ arg min

x∈P
Lg(x).

Assume now by contradiction that the SSC employs at least T + 1 iterations, gener-
ating the sequence {y(j)}j=1,...,T+1. If this is the case, the method must always do
maximal steps for j = 1, . . . , T , because it terminates only when α(j) = β(j) (Step 8
of Algorithm 3), and when this happens it means that α(j) < α

(j)
max.

But in this case the assumption of the lemma tells us thatA finds yT ′ ∈ arg min
x∈C

Lg(x)

for some T ′ ≤ T . At this point we find a contradiction, because the method isn’t
able to find a feasible descent direction in Phase I and it terminates returning y(T ′)

after just T ′ ≤ T iterations.

We can use Lemma 2.1.3 to bound the number of iterations of the SSC when
combined with the Away-Step and the Pairwise Frank-Wolfe variants.

Proposition. If P is a polytope described by its set of vertices V , the SSC always
terminates in at most:

• |V | iterations for the AFW

• |V | − 1 iterations for the PFW

The proof is contained in [15].

2.2 Block-Coordinate Frank-Wolfe method with SSC

From now on, our work will mainly focus on minimizing some objective function in a
so-called product domain. These kind of problems arise in many different contexts;
we will see how Frank-Wolfe method with SSC can be a good choice for solving
them, once we implement some smart strategies to exploit the peculiar structure of
the feasible set. More precisely, we would like to study the problem

min
x∈P

F (x) (2.2.1)

where F has Lipschitz continuous gradient with constant L and P = P1×P2×· · ·×Pl
where Pi ⊂ Rni are closed and convex for i = 1, . . . , l.
In the case of F convex, one of the standard approaches used to solve such problem is
represented by the Block-Coordinate Gradient Descent (BCGD) method. The main

2.2. BLOCK-COORDINATE FRANK-WOLFE METHOD WITH SSC 21

idea behind this technique is to pick (according to some rule) some block of variables
at each iteration and build a simple model for the objective function which involves
only the chosen variables. At this point, the method performs a projection on the
feasible set related to the chosen block.
These kind of strategies are easy to understand and to implement; the main problem
lies in the projection, which can be very costly even when we work on structured
sets.
For this reason, in the last years projection-free algorithms have become more popular
in these kind of settings; among them, we focus on Frank-Wolfe variants that are
able to effectively exploit the structure of the problem.

2.2.1 Randomized Block-Coordinate approach applied to the clas-
sical Frank-Wolfe

We have already described the main advantages in using the Frank-Wolfe method.
However, dealing with product domains, this approach shows a meaningful draw-
back: each iteration requires a full pass through the data to determine the arg min
of the linearized objective function, which corresponds to p calls to the minimization
oracle. This issue can be very challenging when we work with high dimensional data.
For this reason a randomized block-coordinate variant of the method has been pro-
posed in 2013 by Lacost-Julien et al. [10], focusing on the case of structured support
vector machines; we display it in Algorithm 5.
It is suited for product domains, with the intent of exploiting the structure of the
problem.

Algorithm 5 Randomized Block-Coordinate FW on Product Domain

Initialization x(0) ∈ P = P1 × P2 × · · · × Pl and k = 0.
1: for k = 0, 1, . . . do
2: Pick i at random in {1, . . . , l}
3: Set p(k)

i = arg min
s∈Pi

〈(∇iF (x(k))), s〉

4: Set d(k)
i = p

(k)
i − x

(k)
i

5: if 〈∇iF (x(k)),d
(k)
i = 0〉 then STOP

6: else For all indices j 6= i, set x(k+1)
j = x

(k)
j

7: For index i, set x(k+1)
i = x

(k)
i +α(k)d

(k)
i with α(k) suitably chosen stepsize

8: end if
9: end for

In Step 2, we randomly pick one index between 1 and l, which corresponds to the
choice of one block of variables. Then, in Step 5 and 6, we update the variables related
to the chosen block using the classic FW procedure, while all the other variables are
left unchanged.
Many changes have been proposed in [14] in order to improve performances of such
algorithm. In particular, the authors focused on adaptive block sampling strategies
and using FW variants (like Pairwise or Away-Step).
Moreover, some parallel and distributed block coordinate FW algorithms have been
studied in [16].
However, even with these adjustments, a significative issue remains: it’s not possible

22 CHAPTER 2. FRANK-WOLFE WITH SSC ON PRODUCT DOMAINS

to directly extend the standard convergence analysis for the batch FW (and its
variants) to the block-coordinate case. As seen in [14], the primary cause is to be
sought in the presence of the short steps previously mentioned and, as a result, novel
proof techniques are required to fill the gap between FW and BCFW.
Notice also that all these procedures are designed for convex programming problems
and focus only on random sampling variants in the block selection process.
In the following section we will propose a new, general framework which can be
applied also to the non-convex case and explores different block selection strategies.

2.2.2 BCFW with SSC

We will now present a new approach to our problem, motivated by a twofold purpose:
fix the bad steps issue and guarantee sufficient flexibility in the choice of FW-like
directions and also block selection strategies.
In order to avoid bad steps in the FW procedure, we proceed as follows. At each
iteration, after having picked at least one block according to a certain rule, we make
use of the SSC algorithm seen in 2.1.1: this allows us to skip gradient computations
until proper conditions are satisfied.

As regards the block selection strategy, we can take inspiration from the Block-
Coordinate gradient descent (BCGD) method and focus on three different options:

• Parallel or Jacobi-like selection: at iteration k, chooseM(k) = {1, . . . , l}.
In this case, SSC is performed separately on all blocks. This clearly represents a
cheaper alternative with respect to the use of SSC on the whole set of variables,
especially if used on multicore architectures which allow to solve those problems
in parallel.

• Gauss-Southwell (GS) selection: chooseM(k) = {i(k)} with

i(k) ∈ arg max
i∈{1,...,l}

〈−g(k)
i , SSC(x

(k)
i ,−∇iF (x(k)))− x

(k)
i 〉

In this case, we perform SSC on all blocks and then we select a block which
maximally violates optimality conditions.
Using this strategy we expect better progress in terms of the objective function,
but also a heavier computational burden.

• Random sampling: choose M(k) = {i(k)} with i(k) chosen uniformly at ran-
dom in {1, . . . , l}.
In this case, at each iteration we randomly generate an index with uniform
probability distribution.

Obviously, as first order projection-free method A inside SSC we can choose the
one which appears to be most convenient for our case.

Taking into account what we have seen so far, we can formulate a more general
block-coordinate procedure, summarized in Algorithm 6.

Each iteration of the algorithm presents two main operations. In Step 2, we pick
a subset of blocks according to one of the rules we described so far. Then, in Step
3 and Step 4, we apply the SSC method in order to update the variables related to
the chosen blocks, while all the other variables remain unchanged.

2.3. CONVERGENCE ANALYSIS 23

Algorithm 6 Block-coordinate method with SSC

Initialization x(0) ∈ P, k = 0.
1: if x(k) is stationary then STOP
2: end if
3: ChooseM(k) ∈ {1, . . . , l}
4: For all i /∈M(k) set x(k+1)

i = x
(k)
i

5: For all i ∈M(k) set x(k+1)
i = SSC(x

(k)
i ,−∇iF (x(k)))

6: Set k = k + 1 and go to Step 1

Obs. Is it important to underline once more that these method do not require a
convex function F . As a matter of fact, his new algorithmic framework applies also
to non-convex programming.

Inside SSC we can apply, in principle, any first order projection-free method A
in order to obtain descent directions of any kind.
From now on, we suppose to choose FW-like directions (like AFW or PFW direc-
tions): in this case, the algorithm takes the name of Block-Coordinate Frank-Wolfe
with Short Step Chain (BCFW with SSC).
In the next section we will analyze its convergence properties under some mild as-
sumptions on the objective function F and on the chosen first order method A.

2.3 Convergence analysis

In this section we report the main convergence result for the Block-Coordinate
method with SSC described in Algorithm 6.
In our examination we will consider the three different block selection strategies de-
scribed in 2.2.2.
Full proof of the following theorem can be found in [3].

Theorem 2.3.1. Let x∗ ∈ P be a stationary point and consider the sequence x(k)

generated by Algorithm 6. Assume that:

• the local KL condition (0.0.4) holds at x∗;

• the angle condition (0.0.3) holds in every block for the same τ > 0;

• the SSC procedure always terminates in a finite number of steps;

• F (x∗) is a minimum in the connected component of {x ∈ P : F (x) ≤ F (x(0))}
containing x(0).

Then, there exists δ̃ > 0 such that, if x(0) ∈ Bδ̃(x∗):

• If at iteration k we follow the parallel block selection strategy, we have

F (x(k))− F (x∗) ≤ (qP)k[F (x(0))− F (x∗)] (2.3.1)

and x(k) → x̃∗ with

||x(k) − x̃∗|| ≤
√

2− 2qP√
L(1−√qP)

(qP)
k
2 [F (x(0))− F (x̃∗)] (2.3.2)

24 CHAPTER 2. FRANK-WOLFE WITH SSC ON PRODUCT DOMAINS

with

qP = 1− στ2

4L(1 + τ)2
. (2.3.3)

• If at iteration k we follow the GS block selection strategy, we have

F (x(k))− F (x∗) ≤ (qGS)k[F (x(0))− F (x∗)] (2.3.4)

and x(k) → x̃∗ with

||x(k) − x̃∗|| ≤
√

2− 2qGS√
L(1−√qGS)

(qGS)
k
2 [F (x(0))− F (x̃∗)] (2.3.5)

with

qGS = 1− στ2

4lL(1 + τ)2
. (2.3.6)

• If at iteration k we follow the random block selection strategy we have, under
the additional condition that

min {F (x) : ||x− x∗|| = δ} > F (x∗) (2.3.7)

holds for some δ > 0, that

E{F (x(k))− F (x∗)} ≤ (qR)k[F (x(0))− F (x∗)] (2.3.8)

and x(k) → x̃∗ almost surely with

E||x(k) − x̃∗|| ≤
√

2− 2qR√
L(1−√qR)

(qR)
k
2 [F (x(0))− F (x̃∗)] (2.3.9)

with qR = qGS.

Obs. Lemma 1.1.2 ensures that Pairwise FW and Away-Step FW both satisfy the
angle condition (0.0.3).
Furthermore, in Lemma 2.1.2 we proved that SSC applied to AFW and PFW always
terminates in a finite number of steps.
This ensures that, if the local KL property is satisfied by the objective function F
at x∗, our Block-Coordinate Frank-Wolfe method with SSC described in Algorithm
6 converges linearly in the sense of the theorem. σ-strongly convex functions, for
example, satisfy this condition for any point x. In this case, our algorithm converges
globally with the rates given in Theorem 2.3.1.

Obs. Notice that the parallel strategy and the Gauss-Southwell one give the same
convergence rate.
The random block selection strategy gives in turn the same rate, but in expectation;
also, a further assumption on x∗ is needed.
Even if the convergence rate is the same for the three approaches, the constants in-
volved are different: the constant for the GS and the random block selection strategy
involves also the number of blocks l. Consequently, the larger the number of blocks,

2.3. CONVERGENCE ANALYSIS 25

the worse the rate.
Such constant is larger than the one found for the parallel case, because for l > 1 we
have

µτ2

4lL(1 + τ)2
<

µτ2

4L(1 + τ)2

and hence

qGS = 1− µτ2

4lL(1 + τ)2
> 1− µτ2

4L(1 + τ)2
= qP .

26 CHAPTER 2. FRANK-WOLFE WITH SSC ON PRODUCT DOMAINS

Chapter 3

Analysis of Stochastic
Block-Coordinate Frank-Wolfe
method with SSC for product
domains

In this last chapter we will describe and study the convergence of the stochastic
variants of two kinds of Block-Coordinate Frank-Wolfe algorithms with SSC seen in
2.2.2.
We will prove that such algorithms converge linearly in expectation and almost every-
where using the technique introduced by Golfarb, Iyengar and Zhou in [8], previously
seen in Chapter 1.

3.1 Stochastic variants of BCFW with SSC

We are interested in solving an ERM-type problem on a feasible set which takes the
form of a product domain. In particular, we consider the following minimization
problem

min
x∈P

F (x) =
1

n

n∑
i=1

fi(x) (3.1.1)

where P ⊂ Rp is not only a polytope, but also block separable: it means that

P = P1 × P2 × · · · × Pl

with Pj ⊂ Rpj polytope for j ∈ {1, . . . , l} and
l∑

j=1
pj = p.

We also suppose that for every i = 1, . . . , n, fi : Rp → R is strongly convex with
constant σi and has Lipschitz continuous gradient with constant Li.
We combine what we already saw in the first two chapters to find a stochastic version
of the Block-Coordinate Frank-Wolfe algorithm with SSC. A possible implementation
is shown in Algorithm 7.
The basic structure is similar to Algorithm 2: first, at each iteration we sample
m(k) variables ξi, and then we build the function F (k) which has to be minimized at
iteration k in order to find x(k+1).
Since we work on a product domain, at each iteration we can pick a suitable set of

27

28 CHAPTER 3. STOCHASTIC BCFW WITH SSC ON PRODUCT DOMAINS

blocks and perform SSC only on them, leaving the other variables unchanged.
We already know that inside SSC we can use any first order projection-free method;
however, we restrict our analysis to AFW and PFW directions. With this choice, we
are sure that SSC terminates in a finite number of steps (see [15] for the full proof).

Algorithm 7 Stochastic BCFW algorithm with SSC

Initialization x(0) ∈ V , fi, Li and k = 0.
1: for k = 0, 1, . . . do
2: Sample ξ1, . . . , ξm(k)

i.i.d.∼ ξ

3: Set F (k)(x) = 1
m(k)

m(k)∑
i=1

f(ξi,x) and L(k) = 1
m(k)

m(k)∑
i=1

Lξi

4: ChooseM(k) ⊂ {1, . . . , l}
5: For all indexes j /∈M(k), set x(k+1)

j = x
(k)
j

6: For all indexes j ∈M(k), set x(k+1)
j = SSC(x

(k)
j , (−∇jF (k)(x(k)))

7: end for

In particular, if we decide to pick our blocks according to the Jacobi rule (which
meansM(k) = {1, . . . , l}), the procedure becomes the one described in Algorithm 8.
We will refer to this variant as Stochastic BCFW with SSC and parallel selection,
or Stochastic parallel BCFW with SSC.

Algorithm 8 Stochastic BCFW algorithm with SSC and parallel selection

Initialization x(0) ∈ V , fi, Li and k = 0.
1: for k = 0, 1, . . . do
2: Sample ξ1, . . . , ξm(k)

i.i.d.∼ ξ

3: Set F (k)(x) = 1
m(k)

m(k)∑
i=1

f(ξi,x) and L(k) = 1
m(k)

m(k)∑
i=1

Lξi

4: for j = 1, . . . , l do
5: Set x(k+1)

j = SSC(x
(k)
j ,−∇jF (k)(x(k)))

6: end for
7: end for

If we pick our blocks according to the Gauss-Southwell rule, the procedure be-
comes the one described in Algorithm 9. We will refer to this variant as Stochastic
BCFW with SSC and GS selection, or Stochastic GS BCFW with SSC.

3.2 Convergence analysis

In this section we will prove that the Stochastic parallel BCFW algorithm with SSC
and the Stochastic GS BCFW with SSC converge linearly in expectation.

Define F (k) = 1
m(k)

m(k)∑
i=1

f(ξi,x) = 1
m(k)

m(k)∑
i=1

fξi(x), L(k) = 1
m(k)

m(k)∑
i=1

Lξi and σ(k) =

1
m(k)

m(k)∑
i=1

σξi . Recall also that g(k) = ∇xF
(k) = 1

m(k)

m(k)∑
i=1
∇fξi(x).

First of all, we need some lemmas from [3] which are useful to prove the linear
convergence of BCFW with SSC. We can immediately extend their statements and

3.2. CONVERGENCE ANALYSIS 29

Algorithm 9 Stochastic BCFW algorithm with SSC and GS selection

Initialization x(0) ∈ V , fi, Li and k = 0.
1: for k = 0, 1, . . . do
2: Sample ξ1, . . . , ξm(k)

i.i.d.∼ ξ

3: Set F (k)(x(k)) = 1
m(k)

m(k)∑
i=1

f(ξi,x
(k)) and L(k) = 1

m(k)

m(k)∑
i=1

Lξi

4: Set j(k) ∈ arg max
j∈{1,...,l}

〈−g(k)
j , SSC(x

(k)
j ,−∇jF (x(k)))− x

(k)
j 〉

5: For all indexes j 6= j(k), set x(k+1)
j = x

(k)
j

6: For j = j(k), set x(k+1)
j = SSC(x

(k)
j ,−∇jF (k)(x(k)))

7: end for

their proofs to the stochastic case: it is sufficient to replace F with F (k) and g with
g(k) in the statements, all the procedures remain the same.

Lemma 3.2.1. Let {x(k)} be a sequence generated by Algorithm 7. For a fixed
j ∈ {1, . . . , l}, let {w(k)} = {x(k)

j } and let w(k+1) = SSC(w(k),−g(k)). Then there
exists w̃(k) ∈ {y(t)}Tt=0 such that

||w(k+1) −w(k)|| ≥ τ

L
||π(TPj (w̃

(k)),−g(k))|| (3.2.1)

and

||w̃(k) −w(k)|| ≤ ||w(k+1) −w(k)||
〈−g(k), w̃(k) −w(k)〉 ≤ 〈−g(k),w(k+1) −w(k)〉.

(3.2.2)

We also have
L(k)||y −w(k)||2 ≤ 〈−g(k),y −w(k)〉 (3.2.3)

for y ∈ {w(k+1), w̃(k)}.

From now on, we denote by SSC(w(k),−g(k)) a point w̃(k) with the properties
stated in Lemma 3.2.1.

Lemma 3.2.2. Let {x(k)} be a sequence generated by Algorithm 7, and assume
that the angle condition holds for the method Aj with constant τ (same for each
block index j ∈ {1, . . . , l}). Let x̄(k) = [SSC(x

(k)
j ,−∇jF (k)(x(k)))]lj=1 and x̃(k+1) =

[SSC(x
(k)
j ,−∇jF (k)(x(k)))]lj=1.

If the KL property holds at x̄(k), we then have, abbreviating g(k) = ∇F (k)(x(k)) and
defining F (k)

∗ = min
x∈P

F (k)(x):

||x̃(k+1) − x(k)||2 ≥ τ2

2(1 + τ2)(L(k))2
||π(TP(x̄(k)),−∇F (k)(x̄(k)))||2

≥ τ2σ(k)

(L(k))2(1 + τ2)
[F (k)(x̄(k))− F (k)

∗]

(3.2.4)

and
1

2
〈−g(k), x̃(k+1) − x(k)〉 ≥ 1

3
[F (k)(x(k))− F (k)(x̃(k))] (3.2.5)

30 CHAPTER 3. STOCHASTIC BCFW WITH SSC ON PRODUCT DOMAINS

Lemma 3.2.3. Let {x(k)} be a sequence generated by Algorithm 7, and assume that
the angle condition holds for the method Aj with constant τ (same for each block
index j ∈ {1, . . . , l}). Let x̄(k) = [SSC(x

(k)
j ,−∇jF (k)(x(k)))]lj=1 .

If the KL property holds at x̄(k), for parallel updates (like in Algorithm 8)

F (k)(x(k))− F (k)(x(k+1)) ≥ τ2σ(k)

2L(k)(1 + τ2)
(F (k)(x̄(k))− F (k)

∗) (3.2.6)

and for GS updates (like in Algorithm 9)

F (k)(x(k))− F (k)(x(k+1)) ≥ τ2σ(k)

2L(k)(1 + τ2)

1

l
(F (k)(x̄(k))− F (k)

∗). (3.2.7)

Lemma 3.2.4. Let {x(k)} be a sequence generated by Algorithm 7, and assume that
the angle condition holds for the method Aj with constant τ (same for each block
index j ∈ {1, . . . , l}). Let x̄(k) = [SSC(x

(k)
i ,−∇jF (k)(x(k)))]lj=1. Then for parallel

updates (like in Algorithm 8)

F (k)(x(k))− F (k)(x(k+1)) ≥ 1

3
[F (k)(x(k))− F (k)(x̄(k))] (3.2.8)

and for GS updates (like in Algorithm 9)

F (k)(x(k))− F (k)(x(k+1)) ≥ 1

3l
[F (k)(x(k))− F (k)(x̄(k))]. (3.2.9)

All the previous lemmas allow us to find an upper bound for F (k)(x(k+1))−F (k)
∗ ,

from which we are going to start proving the linear convergence in expectation of
our method.

Lemma 3.2.5. Let {x(k)} be a sequence generated by Algorithm 7, and assume that
the angle condition holds for the method Aj with constant τ (same for each block
index j ∈ {1, . . . , l}). If the KL property holds at x(k), then:

• for parallel updates (like in Algorithm 8)

F (k)(x(k+1))− F (k)
∗ ≤ q(k)

P (F (k)(x(k))− F (k)
∗) (3.2.10)

with q(k)
P = 1− σ(k)τ2

4L(k)(1+τ)2
.

• for GS updates (like in Algorithm 9)

F (k)(x(k+1))− F (k)
∗ ≤ q(k)

GS(F (k)(x(k))− F (k)
∗) (3.2.11)

with q(k)
GS = 1− σ(k)τ2

4lL(k)(1+τ)2
.

Obs. Since σi ≤ Li, then it must be also σ(k) ≤ L(k) for each iteration k. Also, since
τ ∈ (0, 1] we have

0 <
σ(k)τ2

2L(k)(1 + τ)2
≤ σ(k)τ2

2L(k)(1 + τ2)
≤ τ

3L(k)
≤ 1

3

3.2. CONVERGENCE ANALYSIS 31

similarly to what is done in [3] in the proof of Lemma 3.2.5. Then

q
(k)
P = 1− σ(k)τ2

4L(k)(1 + τ)2
≥ 1− 1

6
=

5

6
(3.2.12)

In particular, we get that 0 < q
(k)
P < 1 for each iteration k.

In a similar way, we can prove that

q
(k)
GS ≥ 1− 1

6l
=

6l − 1

6l
(3.2.13)

which tells us that also 0 < q
(k)
GS < 1 for each iteration k.

We are now ready to prove the linear convergence of the stochastic variants of
the Block-coordinate Frank-Wolfe with SSC described in Algorithm 8 and 9. We will
start from the parallel case: the other one will be similar.

Theorem 3.2.6. Let {x(k)} be the sequence generated by Algorithm 8 for solving
problem (3.1.1). Suppose that for every i = 1, . . . , n, the functions fi are strongly
convex with constant σi and have Lipschitz continuous gradient with constant Li. Let
F ∗ be the optimal value of the problem. Set q̄P = max

k
q

(k)
P and m(i) = d1/(q̄P)4i+4e.

Assume also that:

• angle condition holds for the method Aj with constant τ (same for each block
index j ∈ {1, . . . , l});

• the SSC procedure always terminates in a finite number of steps.

Then for every k ≥ 1

E{F (x(k+1))− F ∗} ≤ C̄(q̄P)k (3.2.14)

with C̄ deterministic constant and q̄P = max
i=1,...,k

q
(i)
P .

Proof. First of all, recall that since every fi is strongly convex with constant σi,
then for every k ≥ 1 the stochastic function F (k) is strongly convex with constant

σ(k) = 1
m(k)

m(k)∑
i=1

σξi . We already noticed that KL property holds globally for strongly

convex functions; consequently, all lemmas from 3.2.2 to 3.2.5 can be applied. In
particular, inequality (3.2.10) of lemma 3.2.5 holds for each iteration, which means
that for every k ≥ 1 we have

F (k)(x(k+1))− F (k)
∗ ≤ q(k)

P (F (k)(x(k))− F (k)
∗).

Adding and subtracting appropriately, we get the following chain of inequalities for

32 CHAPTER 3. STOCHASTIC BCFW WITH SSC ON PRODUCT DOMAINS

every k ≥ 1:

F (k)(x(k+1))− F (k)
∗ ≤ q(k)

P [F (k)(x(k))− F (k)
∗]

= q
(k)
P [F (k−1)(x(k))− F (k−1)

∗ + F (k)(x(k))− F (k)
∗ − F (k−1)(x(k)) + F

(k−1)
∗]

= q
(k)
P [F (k−1)(x(k))− F (k−1)

∗] + q
(k)
P [F (k)(x(k))− F (k)

∗ − F (k−1)(x(k)) + F
(k−1)
∗]

= q
(k)
P [F (k−1)(x(k))− F (k−1)

∗] + q
(k)
P [F (k)(x(k))− F (x(k)) + F (x(k))− F (k−1)(x(k))

+ F ∗ − F (k)
∗ + F

(k−1)
∗ − F ∗]

≤ q(k)
P [F (k−1)(x(k))− F (k−1)

∗] + q
(k)
P {|F

(k)(x(k))− F (x(k))|+ |F (k−1)(x(k))− F (x(k))|

+ |F (k)
∗ − F ∗|+ |F (k−1)

∗ − F ∗|}

≤
k∏
i=1

q
(i)
P [F (0)(x(1))− F (0)

∗] +
k∑
i=1

k∏
j=i

q
(j)
P {|F

(i)(x(i))− F (x(i))|+ |F (i−1)(x(i))− F (x(i))|

+ |F (i)
∗ − F ∗|+ |F (i−1)

∗ − F ∗|}

≤
k∏
i=1

q
(i)
P (uF − lF) +

k∑
i=1

k∏
j=i

q
(j)
P {|F

(i)(x(i))− F (x(i))|+ |F (i−1)(x(i))− F (x(i))|+

+ |F (i)
∗ − F ∗|+ |F (i−1)

∗ − F ∗|}

We also have that

F (k)(x(k+1))− F (k)
∗ = F (x(k+1))− F ∗ + (F (k)(x(k+1))− F (x(k+1))) + (F ∗ − F (k)

∗)

So we get

F (x(k+1))− F ∗ = F (k)(x(k+1))− F (k)
∗ − (F (k)(x(k+1))− F (x(k+1)))− (F ∗ − F (k)

∗)

≤ F (k)(x(k+1))− F (k)
∗ + |F (k)(x(k+1))− F (x(k+1))|+ |F ∗ − F (k)

∗ |

≤
k∏
i=1

q
(i)
P (uF − lF) +

k+1∑
i=1

k∏
j=i

q
(j)
P {|F

(i)(x(i))− F (x(i))|

+ |F (i−1)(x(i))− F (x(i))|+ |F (i)
∗ − F ∗|+ |F (i−1)

∗ − F ∗|}
(3.2.15)

with the convention that a nullary product like
k∏

j=k+1

q
(j)
P is equal to 1.

As in Chapter 1, we can notice that for any iteration k and any deterministic
x ∈ P, we have E{F (k)(x)} = F (x). In addition, by Corollary 1.3.4, we have the
following bounds for every iteration k:

E|F (k)(x(k))− F (x(k))| ≤ E sup
x∈P
|F (k)(x)− F (x)| ≤ C1

√
logm(k)

m(k)

and

E|F (k)
∗ − F ∗| ≤ C1

√
logm(k)

m(k)

Combining all bounds, we have

3.2. CONVERGENCE ANALYSIS 33

E{F (x(k+1))− F ∗} =
k∏
i=1

q
(i)
P (uF − lF) +

k+1∑
i=1

k∏
j=i

q
(j)
P {E|F

(i)(x(i))− F (x(i))|+

+ E|F (i−1)(x(i))− F (x(i))|+ E|F (i)
∗ − F ∗|+ E|F (i−1)

∗ − F ∗|}

≤
k∏
i=1

q
(i)
P (uF − lF) +

k+1∑
i=1

k∏
j=i

q
(j)
P {2C1

√
logm(i)

m(i)
+ 2C1

√
logm(i−1)

m(i−1)
}

≤
k∏
i=1

q
(i)
P (uF − lF) + 4C1

k+1∑
i=1

k∏
j=i

q
(j)
P

√
logm(i−1)

m(i−1)

where in the last inequality we use the fact that log x
x is decreasing for x > e.

If we define q̄P = max
i=1,...,k

q
(i)
P and we use m(i) = d1/(q̄P)4i+4e we get

E{F (x(k+1))− F ∗} ≤ (q̄P)k(uF − lF) + 4C1

k+1∑
i=1

k∏
j=i

q̄P

√
logm(i−1)

m(i−1)

= (q̄P)k(uF − lF) + 4C1

k+1∑
i=1

(q̄P)k−i+12

√
log

(
1

q̄P

) √
i (q̄P)2i

= (q̄P)k(uF − lF) + 8C1

k+1∑
i=1

(q̄P)k+1

√
log

(
1

q̄P

)
(q̄P)i

√
i

= (q̄P)k

[
(uF − lF) + 8C1q̄P

√
log

(
1

q̄P

) k+1∑
i=1

(q̄P)i
√
i

]
≤ C̄(q̄P)k

for

C̄ = (uF − lF) + 8C1q̄P

√
log

(
1

q̄P

) k+1∑
i=1

(q̄P)i
√
i

≤ (uF − lF) + 8C1q̄P

√
log

(
1

q̄P

) k+1∑
i=1

(q̄P)ii

≤ (uF − lF) + 8C1q̄P

√
log

(
1

q̄P

)
q̄P

(1− q̄P)2

where in the last inequality we use the fact that
+∞∑
k=1

qii = q
(1−q)2 for any |q| < 1.

Since 0 < q̄P < 1 and C̄ is a finite constant independent from k, we get our result.

Obs. If we adopt AFW or PFW directions, we are sure that SSC terminates in a
finite number of steps. This means that Theorem 3.2.6 gives us linear convergence
in expectation for the Stochastic BCFW with parallel selection.

As we previously saw in Chapter 1, from the linear convergence in expectation
we are also able to prove that Algorithm 8 converges linearly almost everywhere.
The procedure is almost the same as the one for the ASFW and PSFW algorithms:
full proof can be found in [8].

34 CHAPTER 3. STOCHASTIC BCFW WITH SSC ON PRODUCT DOMAINS

Corollary 3.2.7. Let {x(k)} be the sequence generated by Algorithm 8 for solving
problem (3.1.1). Then

F (x(k))− F (∗)

ωk
→ 0

almost surely as k → +∞ for some q̄P < ω < 1. Therefore F (x(k)) linearly converges
to F ∗ almost surely.

As regards the variant with Gauss-Southwell block selection described in Algo-
rithm 9, the results are similar.

Theorem 3.2.8. Let {x(k)} be the sequence generated by Algorithm 9 for solving
problem (3.1.1). Suppose that for every i = 1, . . . , n, the functions fi are strongly con-
vex with constant σi and have Lipschitz continuous gradient with constant Li. Let F ∗

be the optimal value of the problem. Set q̄GS = max
k

q
(k)
GS and m(i) = d1/(q̄GS)4i+4e.

Assume also that:

• angle condition holds for the method Aj with constant τ (same for each block
index j ∈ {1, . . . , l});

• the SSC procedure always terminates in a finite number of steps.

Then for every k ≥ 1
E{F (x(k+1))− F ∗} ≤ C̃(q̄GS)k (3.2.16)

with C̃ deterministic constant and q̄GS = max
i=1,...,k

q
(i)
GS.

Corollary 3.2.9. Let {x(k)} be the sequence generated by Algorithm 9 for solving
problem (3.1.1). Then

F (x(k))− F (∗)

ωk
→ 0

almost surely as k → +∞ for some q̄GS < ω < 1. Therefore F (x(k)) linearly
converges to F ∗ almost surely.

Conclusions

In this thesis, we proposed two new stochastic Frank-Wolfe variants for product
domains, starting from the parallel and GS Block-coordinate Frank-Wolfe algorithm
with Short Step Chain proposed by Bomze, Rinaldi and Zeffiro.
We proved that these stochastic variants converge linearly in expectation and almost
surely under some assumptions (strong convexity, Lipschitz continuous gradient and
a tailored angle condition).
For the proof, we took inspiration by the techniques used by Goldfarb, Iyengar and
Zhou for the convergence analysis of the Stochastic Away-Step FW and the Pairwise
Away-Step FW algorithm. For this purpose we made use of some basic concepts of
empirical processes and concentration inequalities, which could be useful to analyze
the convergence of other stochastic algorithms.
Future work could include extending these algorithms to problems with non-strongly
convex functions and introduce stochastic variance reduced gradients (SVRG) in the
procedure.
Besides, it remains to study the convergence of the stochastic variant of the Block-
Coordinate Frank-Wolfe algorithm with SSC and with random block selection.

35

36 Conclusions

Bibliography

[1] Hédy Attouch et al. “Proximal alternating minimization and projection meth-
ods for nonconvex problems: An approach based on the Kurdyka-Łojasiewicz
inequality”. In: Mathematics of operations research 35.2 (2010), pp. 438–457.

[2] Amir Beck and Shimrit Shtern. “Linearly convergent away-step conditional
gradient for non-strongly convex functions”. In: Mathematical Programming
164 (2017), pp. 1–27.

[3] Immanuel Bomze, Francesco Rinaldi, and Damiano Zeffiro. “Projection free
methods on product domains”. In: arXiv preprint arXiv:2302.04839 (2023).

[4] Nicolas Boumal. An introduction to optimization on smooth manifolds. Cam-
bridge University Press, 2023.

[5] Michael D Canon and Clifton D Cullum. “A tight upper bound on the rate
of convergence of Frank-Wolfe algorithm”. In: SIAM Journal on Control 6.4
(1968), pp. 509–516.

[6] Marguerite Frank and Philip Wolfe. “An algorithm for quadratic program-
ming”. In: Naval research logistics quarterly 3.1-2 (1956), pp. 95–110.

[7] Takumi Fukunaga and Hiroyuki Kasai. “Fast block-coordinate Frank-Wolfe al-
gorithm for semi-relaxed optimal transport”. In: arXiv preprint arXiv:2103.05857
(2021).

[8] Donald Goldfarb, Garud Iyengar, and Chaoxu Zhou. “Linear convergence of
stochastic frank wolfe variants”. In: Artificial Intelligence and Statistics. PMLR.
2017, pp. 1066–1074.

[9] Jacques Guélat and Patrice Marcotte. “Some comments onWolfe’s ‘away step’”.
In: Mathematical Programming 35.1 (1986), pp. 110–119.

[10] Simon Lacoste-Julien et al. “Block-coordinate Frank-Wolfe optimization for
structural SVMs”. In: International Conference on Machine Learning. PMLR.
2013, pp. 53–61.

[11] Jean Lafond, Hoi-ToWai, and Eric Moulines. “Convergence analysis of a stochas-
tic projection-free algorithm”. In: arXiv preprint arXiv:1510.01171 77 (2015).

[12] Larry J LeBlanc, Edward K Morlok, and William P Pierskalla. “An efficient
approach to solving the road network equilibrium traffic assignment problem”.
In: Transportation research 9.5 (1975), pp. 309–318.

[13] Julie Nutini, Issam Laradji, and Mark Schmidt. “Let’s Make Block Coordinate
Descent Converge Faster: Faster Greedy Rules, Message-Passing, Active-Set
Complexity, and Superlinear Convergence”. In: arXiv preprint arXiv:1712.08859
(2017).

37

38 BIBLIOGRAPHY

[14] Anton Osokin et al. “Minding the gaps for block Frank-Wolfe optimization of
structured SVMs”. In: international conference on machine learning. PMLR.
2016, pp. 593–602.

[15] Francesco Rinaldi and Damiano Zeffiro. “Avoiding bad steps in Frank-Wolfe
variants”. In: Computational Optimization and Applications 84.1 (2023), pp. 225–
264.

[16] Yu-Xiang Wang et al. “Parallel and distributed block-coordinate frank-wolfe
algorithms”. In: International Conference on Machine Learning. PMLR. 2016,
pp. 1548–1557.

[17] G Zoutendijk and J Abadie. “Integer and nonlinear programming”. In: North-
Holland, Amsterdam. INDEX: VOLUMES 1 (1970), pp. 1–410.

	Introduction
	Notation and preliminaries
	Stochastic Frank-Wolfe methods
	The Frank-Wolfe algorithm
	Frank-Wolfe for convex optimization
	Frank-Wolfe variants

	Stochastic variants of Frank-Wolfe algorithm
	Convergence analysis of ASFW and PSFW
	Some notions from empirical processes theory
	Convergence analysis

	Frank-Wolfe with SSC on product domains
	Frank-Wolfe with SSC
	Short Step Chain (SSC) to avoid bad steps
	SSC for Frank-Wolfe variants

	Block-Coordinate Frank-Wolfe method with SSC
	Randomized Block-Coordinate approach applied to the classical Frank-Wolfe
	BCFW with SSC

	Convergence analysis

	Stochastic BCFW with SSC on product domains
	Stochastic variants of BCFW with SSC
	Convergence analysis

	Conclusions
	Bibliography

