
Università degli Studi di Padova

DIPARTIMENTO DI MATEMATICA “TULLIO LEVI-CIVITA”

Corso di Laurea Magistrale in Matematica

Louvain-like methods for
community detection in multilayer hypergraphs

Relatore: Laureanda: Angelica Crepaldi
Prof. Francesco Rinaldi Matricola: 2028618

Correlatrice:
Dott.ssa Sara Venturini

Anno Accademico 2022/2023

21 Luglio 2023

Contents

Introduction 5

1 Background 7
1.1 Preliminaries . 7
1.2 Community detection problem . 8

2 Related work 11
2.1 Louvain method . 11
2.2 Community detection in multilayer graphs 13

2.2.1 Matrix factorization . 13
2.2.2 Pattern mining . 13

2.3 Community detection in hypergraphs . 14

3 Multilayer hypergraphs Louvain-like method 19

4 Numerical experiments 23

5 Conclusions 29

A Code of The Generalized Louvain method with AON affinity function 31

B Codes for computation of accuracy and NMI to evaluate partitions 39

Bibliography 43

3

4

Introduction

Community detection, i.e. grouping the nodes into sets of nodes in such a way that
each set of vertices is densely connected internally and less connected with the other
sets, is a relevant problem in graph theory and, in particular, in the study of complex
networks. The reason why many researchers focus on this topic is that members of a
community usually share common properties, therefore revealing the community struc-
ture in a network can provide a better understanding of the overall functioning of the
network. In many fields like e.g. sociology, biology, computer science and economics,
complex systems can be represented as graphs. In biology, for example, we can find
communities in protein-protein interaction networks, where each cluster is a group of
proteins that play the same role within the cell [4]. From a practical point of view,
identification of clusters of customers with similar interests in the network of purchase
relationships between customers and products of online retailers enables one to set up
efficient recommendation systems [14], that better guide customers through the list of
items of the retailer and enhance the business opportunities.

In literature, many algorithms for community detection are available, e.g. the most
famous one is the Louvain method [2], which was developed in order to extract com-
munities from large networks. Despite being a good algorithm, it is designed only for
single-layer graphs, but assuming to represent every system as a single-layer graph is
an oversimplification, therefore when we deal with real world applications, we have to
consider also multilayer networks. We talk about multilayer networks when we describe
multiple types of interactions among entities of the same type; going back to proteins’
example, a description of the full protein-protein interactome (i.e. the totality of pro-
tein–protein interactions happening in a cell) involves, for some organisms, up to seven
distinct modes of interaction among thousands of protein molecules [6]. Another ex-
ample, drawn from everyday life, is given by social networks: each layer represents a
different interaction between people (e.g. each layer is a different social network or, in
the same social network setting, each layer is an interaction such as likes, comments,
followers, etc).

Up to now, we have considered graphs with edges that connect pairs of nodes, but
much of the structure in complex networks involves higher-order interactions and rela-
tionships between more than two entities. Neuronal dynamics display mesoscopic be-
haviors that require interactions among multiple neurons to be predicted [9]; three or
more species routinely compete for food and territory in complex ecosystems [16]. As a
consequence, it is necessary to find a mathematical framework to describe group inter-
actions and hypergraphs are the natural candidates to provide such descriptions. What
we pointed out above justifies our choice of focusing on multilayer hypergraphs in this

5

work.
The aim of this thesis project is to develop an algorithm for community detection in

multi-layer hypergraphs, taking as starting point a Louvain-like method for community
detection in multi-layer networks [18] and hypergraph maximum likelihood Louvain [5].
They are both extensions of the well-known algorithm for single-layer graphs [2].
The work is organized as follows.

Chapter 1 contains basic notions about graphs, multi-layer graphs and hypergraphs;
in the second part of this chapter we explain the concept of community, together with
modularity measure.
Chapter 2 presents some of the most performing methods for community detection in
multi-layer networks and hypergraphs and contains a summary of Louvain method and
hypergraph maximum likelihood Louvain, mainly focusing on a particular affinity func-
tion.
Chapter 3 describes our Louvain-like method for multilayer hypergraphs, an extension
of classic Louvain that uses another modularity function and the average of modularity
values across the layers to evaluate partition.
In Chapter 4 we show some numerical experiments on synthetic multilayer hypergraphs,
generated via DCHSBM.
We finish our work with some conclusions considering the experiments done.
In Appendix we report our algorithm’s code together with the function it needs; then
we also write codes that evaluate accuracy and NMI.

6

Chapter 1

Background

1.1 Preliminaries
Graphs are often used to model and analyse complex systems of interacting entities.

First of all is useful to give some notions and definitions in order to better understand
what will come later. For more details see [1], [13] and [17].

A graph is a tuple G = (V, E), where V is the set of nodes and E ⊆ V ×V is the set
of edges that connect pairs of nodes. Definition of E would be slightly different in case
of directed graphs, but we don’t consider them and we focus on undirected graphs.
If there is an edge between a pair of nodes, those nodes are adjacent and we say that
this edge is incident to each of the two nodes. If we consider a system with multiple
types of interactions among entities of the same type, then we also consider layers
(each layer represents a type of interaction) and when there is more than one layer, we
call the system multi-layer network. Unfortunately networks, even multi-layer networks,
with only pairwise interactions are not enough to describe in a good way real-world
phenomena and dynamics, since many times interactions take place within groups of
nodes (and not only between two nodes); therefore we need to define hypergraphs, that
describe higher-order interactions. In particular, a hypergraph is a tuple G = (V, H),
where V is the set of nodes and H is the set of hyperedges that specify which nodes
participate in which way within an interaction.

Figure 1.1: Hypergraph with three hyperedges e1, e2, e3 that group respectively two,
three and three nodes [23].

7

The setting of our work is a combination of the last two notions, i.e. a multi-layer
hypergraph with k layers G1, . . . , Gk, where Gs = (V, Hs) is the hypergraph forming the
s-th layer. We assume that the set of nodes is the same for each layer, that’s why we
write V in the tuple instead of Vs.

In the algorithms, instead of directly working with the graph, we work with its
representation in matrix form. The adjacency matrix is a square matrix having as many
rows and columns as nodes in the graph; assume that the matrix is called A, then the
element Aij is defined as follows:

Aij =

1, if i and j are adjacent
0, otherwise

(1.1)

When dealing with hypergraphs, rather than considering tha adjacency matrix, we will
rather use the notion of incidence matrix, i.e. a matrix with as many rows as nodes
and as many columns as hyperedges; assume now that the matrix is called B, then the
element Bij is defined as follows:

Bij =

1, if node vi is incident with hyperedge ej

0, otherwise
(1.2)

e1 e2 e3
v1 1 1 0
v2 1 1 0
v3 0 1 1
v4 0 0 1
v5 0 0 1

Table 1.1: Incidence matrix of the hypergraph represented in 1.1.

1.2 Community detection problem
After the basic notions, we are ready to describe the problem we want to focus on: we

want to find communities (also called clusters) in graphs. There is no precise definition
of what a community is, but in general we consider communities as densely connected
groups of vertices, with only sparser connections between groups. The output of an
algorithm developed in order to find clusters is a set of communities C = {C1, . . . , Ck}
such that each community contains a non-empty subset of V . The set C can be different
according to the algorithm used: it is total if every node in V belongs to at least one
community, otherwise it is partial; C is node-overlapping if there is at least a node
that belongs to more than one cluster, otherwise it is node-disjoint. If our system is a
multilayer graph, there is also another notion: C is pillar if each node together with
its counterparts in the other layers belong all to the same community. In this work, our
attention is focused on total and pillar clusterings.

8

If we talk about community, we have to talk about partition too. A partition is a
division of a graph in clusters, such that each vertex belongs to just one cluster. It is
necessary to find a criterion to establish whether a partition is better than another one;
the idea is to use a quality function, whose job is to assign a number to each partition
of a graph.

Figure 1.2: Multilayer graph with three layers, five nodes on each layer and two pillar
communities. In this case C is also node-disjoint [17].

We can choose among many different quality functions, but the most popular one is
the modularity of Newman and Girvan [20], the higher is the modularity, the better is
the partition found. We have to keep in mind the fact that if a graph can be divided
into different communities, it is obviously different from a random graph. Due to the
absence of a rigorous definition of communities, we need to compare the graph we are
working on with a null model, a random graph that shares some structural properties
with the original graph; in order to do so, we will sum over all pairs of vertices vi and
vj that fall in the same group, the difference between the real number of edges between
nodes vi and vj and the expected number of edges between them. Modularity is defined
in the following way:

Q = 1
2m

∑
i,j

(
Aij −

kikj

2m

)
δ (Ci, Cj) , (1.3)

where A is the adjacency matrix, m is the total number of edges in the graph, ki is the
sum of all the edges incident to i and Ci is the community node i belongs to. δ has the
obvious meaning of Kronecker delta, i.e. its value is 1 if the two communities coincide,
0 otherwise. The result will be positive if the number of edges within a community is
bigger than the number expected according to the null model, negative otherwise. Its
value lies in the range [-1/2,1].
Expression 1.3 can be used only for a single-layer graph, this means that for multi-layer
graphs we need to modify it. Some researchers have thought about taking modularity av-
erage on the layers as quality function to evaluate the partition, while other reasearchers
have shown good performance in choosing as quality function a linear combination of
average and sampled variance of the modularity of the layers ([22]).

9

10

Chapter 2

Related work

In this chapter we present an overview of the most important community detection
algorithms studied in literature so far. We will focus on methods designed for multi-layer
networks and hypergraphs, that are the main characters of this work. To date, we are not
aware of any existing methods for multilayer hypergraphs. In principal, we can extend
single-layer algorithms to multi-layer networks: we can merge all the layers, reducing the
network to a single-layer graph; otherwise we can apply single-layer algorithms to each
layer and then combine communities in a proper way. Despite being intuitive ideas, the
result is not accurate, because inevitably these steps lead to information loss, so it is
better to think about methods that take into account the multilayer structure of these
networks. Nevertheless, our discussion will start from the well-known Louvain algorithm
for single-layer graphs and its extension to multilayer graphs, since it is one of the most
famous methods. Single-layer methods can be extended to hypergraphs too and this can
be done if we consider hypergraph’s corresponding clique expansion graph, obtained by
replacing hyperedges with cliques.

2.1 Louvain method
First of all we briefly introduce the Louvain method and its main steps (see [2] for the

whole description). The objective function that has to be optimized is the modularity
function 1.3 and the method consists of two phases that are repeated iteratively. At the
beginning, we assign a different community to each node of the network; after that, we
evaluate how much the modularity value would change if we removed a node vi from
its community and we placed it in the community of one of its neighbours vj. Once
we are done with all the possible moves, we choose to place node vi in the community
of the neighbour that gives the maximum gain in terms of modularity value. We don’t
move vi to another community if, in doing this, there is no positive gain. In the second
phase, each community found in the previous stage becomes a supernode and there is
an edge between two supernodes if at least one node of one of the two communities is
adjacent, in the original graph, to at least one node of the other community. This edge
is weighted and its weight is the sum of the weights of the edges between the nodes of
the two communities (we don’t consider edges within the same community). We then
start again with the first phase applied to this modified network, treating it as the

11

new weighted graph whose partition to find and keeping in mind that each node of the
new network contains nodes of the starting graph. This observation is crucial to get an
output from the algorithm that regards not only the reduced graph, but the starting
one, which is the one of our interest.
Look at 1 for a pseudocode of Louvain method.

Algorithm 1 Louvain algorithm
Input: G graph
Output: C label vector that assigns nodes to communities

repeat
PHASE 1
C ← initial partition, each node of G is a community
Q ← modularity value of the initial partition
NB ← neighbour nodes vector
repeat

for each node i do
remove node i from its community
∆Q1 ← modularity gain for removing node i from its community
for each neighbour j of node i do

insert node i into community of node j
∆Q2 ← modularity gain for inserting i into community of j
∆Q = ∆Q1 + ∆Q2 ← total modularity gain

end for
∆Q∗ ← maximum modularity gain, corresponding to node j∗

if ∆Q∗ > 0 then
move node i into community of node j∗

Q + ∆Q∗ ← modularity value of the new partition
end if

end for
until no more improvements are possible moving one node
PHASE 2
Apply Phase 1 to the reduced graph G, where each community becomes
a supernode

until no improved clustering found
return C ← final partition vector

As mentioned before, we can extend this method to multilayer networks. One of the
main downsides of modularity approach is that it doesn’t work for multilayer networks,
but only for single-layer graphs. Since there are many layers, the aim is to maximize
the modularity of all layers at the same time, treating the problem as a multiobjective

12

problem. Therefore there is a modularity value Qs associated to each layer s and expres-
sion is the same given in 1.3; the only difference is that in this case adjacency matrix,
number m and degree of nodes ki must refer, in turn, to the specific layer, so expression
is:

Q = 1
2ms

∑
i,j

A
(s)
ij −

k
(s)
i k

(s)
j

2ms

 δ (Ci, Cj) . (2.1)

The goal is to maximize all the entries of the modularity vector Q = {Q1, . . . , Qk}; it is
necessary to have a quality function F that evaluates the quality of the partition. The
idea behind this method is choosing F as the average of the modularity functions across
the layers. In [22] a different quality function is used: it is a linear combination of the
average and the sampled variance of the modularity of the layers. In the same paper
they also focus on the multiobjective structure of the problem, proposing a filter type
method that uses the concept of Pareto dominance to delete the least promising result
from the filter and keep only the best solutions.

2.2 Community detection in multilayer graphs
The most intuitive ideas to detect communities in multilayer graphs are extensions

of methods for single-layer graphs: either we merge all the layers, obtaining a collapsed
single-layer graph, from which we know how to extract communities, or we apply single-
layer network algorithms to each layer and then combine all the outputs using consensus
clustering [15]. In both cases we don’t preserve the original structure of the system,
resulting in low accuracy of results. A possible solution is developing algorithms tailored
for mutlilayer graphs that simultaneously take into account all the layers. This section
follows survey [12], where we find distinction between algorithms that can only support
two-layers and algorithms that perform well for systems with an arbitrary number of
layers. Knowing that we don’t want to restrict to two-layers case, we directly consider
methods developed for a generic number of layers.

2.2.1 Matrix factorization
The main contribution for this method can be found in [7] and in [21]. They share

the same idea of combining different information by extracting common factors from
multiple layers; then they apply general clustering methods. The first one approximates
Laplacian matrices, while the second one approximates adjacency matrices. Approx-
imation is made for each layer through a low-rank matrix factorization. Recall that
Laplacian matrix L has as many rows and columns as number of graph vertices and it
is defined as L = D−A, where D is the diagonal degree matrix and A is the adjacency
matrix.

2.2.2 Pattern mining
In [24] we can find a subgraph mining algorithm for finding quasi-cliques (i.e. a gen-

eralization of clique notion) that appear on multiple layers with a frequency above a

13

given threshold. The goal is finding cross-graph quasi-cliques (i.e. a set of vertices be-
longing to a quasi-clique that appears on all layers and must be the maximal set) in a
multi-layer graph that are frequent, coherent, and closed.

The above mentioned algorithms share some properties, but they are also very different.
For the sake of brevity, we call the first class of algorithms MF and the second one PM.
In a multilayer graph, it is important to find the importance of each layer based on its
characteristics; MF considers this aspect, while PM doesn’t. However, layer’s importance
can vary across communities, so it would be useful to distinguish the layer participation
in each community; in this case, roles are reversed and PM performs better.
Using MF, the user is free to choose any graph clustering algorithm, resulting in an
improvement of community detection quality; PM shows limits in this case.
We talk about locality assumption if an algorithm starts by finding communities from a
layer and then discover final communities by expanding the initial communities on the
other layers; neither MF nor PM does that. They are also both independent from layers’
order, which is good because user doesn’t have to worry about how to order them.
Last property concerns overlapping layers; using PM, it can happen that a node belongs
to a certain community on a layer and to another community on another layer.

2.3 Community detection in hypergraphs
There is short literature about community detection in hypergraphs. The easiest

approach to extract communities from hypergraphs is to project the hypergraph to a
weighted graph; the weight of an edge between two nodes is given by the number of
hyperedges involving that nodes in the original network. Another approach is replacing
hyperedges with cliques, still leading back to the graphs. After this step, common com-
munity detection methods for graph networks can be applied. It is straightforward to
see that this approach leads to oversimplification and information loss.

In [25], the proposed method consists of introducing a null vertex in order to aug-
ment a non-uniform hypergraph (i.e., a hypergraph where hyperedges have different
sizes) into a uniform multi-hypergraph, and then embeds the multi-hypergraph in a
low-dimensional vector space such that vertices within the same community are close to
each other.

Another common approach (see [10]) is to conduct higher-order singular value de-
composition (HOSVD) on the adjacency tensor and then perform clustering on the
output factor matrix. In addition to its slow rate of convergence, the problem of this
method is that it applies to uniform hypergraphs and requires degree homogeneity, that
is a restrictive feature. Unlike the method cited above (where, in some way, we force
uniformity and homogeneity, changing the original structure), in this case there is no
information loss during the algorithm, since we decompose adjacency tensor without
modifying it.

We can also talk about random walk process on a hypergraph. Assume that the
agents are located on the nodes and hop between nodes at discrete times. Hyperedges
are considered more or less important depending on their size. The link between ran-
dom walks and community detection is that a walker should stay for long times inside

14

good communities before escaping them. In this framework, Markov stability is used to
extract communities (see [3] for more details).

We now focus on a modularity method (described in detail in [5]) that uses the
concept of maximum likelihood together with Louvain algorithm. This latter method
has already been presented in the previous section; now we mainly focus on the first
one, which applies to hypergraphs. In this framework, a great importance is given to the
vector z of group assignment of nodes, the affinity function Ω and the degree parameter
θ. Affinity function’s role is to control the probability of placing a hyperedge at a
given node tuple. The goal of maximum likelihood is to solve the following optimization
problem:

ẑ, Ω̂, θ̂ = argmaxz,Ω,θP (A|z, Ω,θ) (2.2)

in order to learn estimates of ẑ, θ̂ and Ω̂, where A is a given dataset represented
by a collection of hyperedges. As frequently happens in such cases, it is preferable to
work with the log-likelihood, since the two functions share the same local optima. The
coordinate ascent approach to maximum likelihood alternates between two stages: in
the first one, we assume to know an estimate ẑ and we want to obtain new estimates
of Ω and θ; in the second stage, we do the opposite, we assume to know Ω̂ and θ̂ and
we want to find an estimate of z. This procedure has to be repeated until convergence.
If an estimate for z is given, then it is easy to solve the first stage and we obtain the
following estimates:

θ̂ = d ω̂ =
∑

y∈Y

∑
R∈R aRδ(zR, y)∑

y∈Y

∏
y∈y vol(y) , (2.3)

where volume term has the following expression: vol(l) = ∑n
i=n diδ(zi, l), l = 1, . . . , l̄;

di is the (weighted) number of hyperedges in which node vi appears and l̄ is the number
of groups.
In order to find ẑ, we have, first of all, to make an important assumption: Ω symmetric
with respect to permutations of node labels. The function to optimize to get the estimate
we are looking for can be rewritten, after some calculations, in the following form:

Q(z, Ω, d) =
∑
p∈P

[cutp(z) log Ω(p)− volp(z)Ω(p)], (2.4)

where cutp(z) and volp(z) are defined as below:

cutp(z) =
∑

R∈Rk

aRδ(p, ϕ(zR)) (2.5)

volp(z) =
∑

y∈[l̄]k
δ(p, ϕ(y))

∏
y∈y

vol(y) (2.6)

Note that in 2.4, which now becomes our new modularity function, we write d instead of
θ, since the maximum likelihood estimate for θ when z is known is θ̂ = d. In particular,
cutp(z) counts the number of hyperedges that are split by z into the partition p, while
volp(z) is a sum-product of volumes over all grouping vectors y that induce partition
p.

15

There are many affinity functions Ω that can be used, but one is preferable for its
easier implementation and update, i.e. the All-Or-Nothing (AON) affinity function, that
distinguishes only whether a given edge is contained entirely within a single cluster and
is defined as:

Ω(p) =

ωk1, if ∥p∥0 = 1
ωk0, otherwise

(2.7)

where k is the number of nodes in partition p; therefore Ω takes value ωk1 if partition
vector is characterized by just one community (i.e. the hyperedge is contained in a single
cluster), and takes value ωk0 otherwise. There are also many other affinity functions,
each one with a different meaning: the Group Number affinity depends on the number
of distinct groups represented in a hyperedge, the Relative Plurality affinity considers
the relative difference between the size of the largest group represented in a hyperedge
and the next largest group, the Pairwise affinity counts the number of pairs of nodes
within the hyperedge whose clusters differ.
Replacing in 2.4 the affinity function Ω with the AON affinity function, we get the
following AON modularity:

Q(z, Ω, d) = −
k̄∑

k=1
βk

cutk(z) + γk

l̄∑
l=1

vol(l)k

+ J(ω), (2.8)

where

cutk(z) = mk −
∑

R∈Rk

aRδ(zR) βk = log ωk1 − log ωk0 γk = β−1
k (ωk1 − ωk0) (2.9)

and mk is the (weighted) number of hyperedges of size k. The term J(ω) has the
following expression and does not depend on the cluster label vector z; once we know
hyperedges, their weights and node degrees, this term remains fixed:

J(ω) =
 k̄∑

k=1
βkmk

+
 k̄∑

k=1

∑
R∈Rk

(aR log ωk0 − bRπ(dR)ωko)
 .

Nevertheless, we don’t use βk and γk values as in 2.9, since we follow the idea of "strict
modularity" proposed in [11]; according to this article, values of the AON affinity func-
tion have to be chosen so that βk = 1 and γk = mk

vol(H)k , where vol(H) is the sum of all
node degrees in hypergraph H. This choice implies that AON affinity function values
are:

ωk0 = mk

vol(H)k(e− 1) ωk1 = eωk0

Anyway, the user is free to choose whether to specify those parameters’ values a priori
or not; generally, if the user specify β value, his aim is to focus on the hyperedges sizes
that are more interesting for the clustering problem he is facing. On the other hand,
specifying γ leads to modify the sizes of clusters favored by the objective.

Derivation of 2.8.
Expression of AON affinity function for a hyperedge R of size k can be written as

Ω(zR) = ωk0 + δ(zR)(ωk1 − ωk0) = ωk0 + δ(zR)γkβk,

16

and it holds

log Ω(zR) = log ωk0 + δ(zR)(log ωk1 − log ωk0) = log ωk0 + δ(zR)βk,

Now we call Rk the set of unordered k-tuples of nodes and Tk the set of ordered k-tuples.
Knowing that bR is the number of distinct ways to order the nodes of the hyperedge R,
we have the following chain of equalities:

∑
R∈Rk

bRπ(dR)δ(zR) =
∑

T ∈Tk

π(dT)δ(zT) =
l̄∑

l=1

∑
T ⊆l

π(dT) =
l̄∑

l=1
vol(l)k

where T ⊆ l means that all nodes from T ∈ Tk are in cluster l, while π(dT) is the
product of all the entries of the vector dT .
We can rewrite 2.4 keeping in mind that θR = dR and applying the expression of the
cut function:

Q(z, Ω,θ) =
∑

R∈R
[aR log Ω(zR)− bRπ(θR)Ω(zR)]

=
k̄∑

k=1

∑
R∈Rk

[aR (log ωk0 + δ(zR)βk)− bRπ(dR) (ωk0 + δ(zR)γkβk)]

=
k̄∑

k=1

∑
R∈Rk

[aR log ωk0 − bRπ(dR)ωk0] +
k̄∑

k=1
βk

 ∑
R∈Rk

(aRδ(zR)− γkbRπ(dR)δ(zR))

=
k̄∑

k=1

∑
R∈Rk

[aR log ωk0 − bRπ(dR)ωk0] +
k̄∑

k=1
βk

mk − cutk(z)− γk

l̄∑
l=1

vol(l)k

= J(ω)−

k̄∑
k=1

βk

cutk(z)− γk

l̄∑
l=1

vol(l)k

with J(ω) as above. □

Choosing AON affinity function is crucial for the second phase of Louvain algorithm,
that works exactly as in the original algorithm, i.e. it builds a reduced network with
supernodes that group together nodes belonging to the same community, and weighted
hyperedges that span supernodes (we will better explain this phase in the next Chap-
ter, when we talk about our method). In case of a generic affinity function, this phase
would be quite different, since we would move entire sets of nodes in the original hyper-
graph, rather than greedily moving individual nodes; as a consequence, it requires more
evaluations, causing the algorithm to slow down.

17

18

Chapter 3

Multilayer hypergraphs Louvain-like
method

In this chapter, we describe our method to detect communities in multilayer hyper-
graphs. It is a Louvain-like method, thus the general scheme of this algorithm is very
similar to Louvain method scheme for single-layer graphs, but it is an extension of it to
multilayer hypergraphs (we use formulas provided in [5]). The biggest difference with
respect to classic Louvain is the modularity function used, which, in our case, is the
AON modularity 2.8. We are also used to dealing with adjacency matrices when apply-
ing Louvain method, since they are the most immediate representations of graphs, but
working with hypergraphs it is recommended to use incidence matrices.

We make some assumptions before going into the details of the method. First of all,
we assume that each layer has the same set of nodes; in addition, our setting does not
allow the presence of interlayer edges/hyperedges (i.e. connections between nodes of dif-
ferent layers), but there are only intralayer connections. All the hypergraphs we use are
undirected and we are looking for pillar communities, i.e. each node, together with all
its counterparts across the layers, belong to the same community, as shown in Figure
1.2. We want a total clustering too, since every node has to belong to one community.
The input of the algorithm is a (possibly weighted) multilayer hypergraph, where the
hypergraph of each layer is represented by its incidence matrix. By itself this input is
not enough: we also need, for each layer, hyperedges list, their weights, node degrees
and the weighted number of hyperedges of each size. Each input is in form of cell arrays,
containing as many cells as layers.
As seen before about Louvain method, it is made of two phases, where the first one
begins by putting each node in a different community. For each layer, modularity value
is computed; then we compute also the average of these modularity values, since average
is the quality function we use to evaluate the quality of the partition. At this point, we
consider each node vi and its neighbourhood, which is the set of all possible neighbours
of vi, keeping into account all the layers. We recall that a node is a neighbour of another
node if they are adjacent or, in other words, they are part of the same hyperedge. For
each neighbour vj of vi we compute how much the modularity value would change if

19

we moved vi from its community to community of vj; variation of modularity value is
pretty fast to be computed, since we can use the following formulas to update cut and
volume term (the total variation is the sum of these two terms):

∆c =
∑
e∈Ei

βs̄i
ae[δ(ẑe)− δ(z̄e)] (3.1)

∆v =
k̄∑

k=1
βkγk

[
volk

i − (voli − d̄i)k + volk
Cj
− (volCj

+ d̄i)k
]

(3.2)

Now we specify what is the meaning of every term. With Ei we denote the set of hy-
peredges incident to node vi and s̄ is the hyperedge size vector; in our framework, this
subscript is not important, since all β entries are equal to 1; it becomes important,
instead, when β is defined as in 2.9. Then, z̄ is the current clustering, while ẑ is the
clustering obtained by moving node vi in the community of the neighbour vj (assume
that Cj is the community node vj belongs to). The δ function takes value 1 if hyperedge
e is fully contained in one community, value 0 if it is split. Lastly, ae has the obvious
meaning of weight of hyperedge e. We can now focus on the update of volume term: d̄i

is nothing but the weighted degree of node vi (if vi is one of the collapsed nodes of the
reduced hypergraph, its degree is given by the sum of degrees of nodes contained in the
corresponding cluster), voli is the volume of the current cluster of vi and volCj

is the
volume of the community Cj to which we hypothetically move vi. The reason of these
formulas is quite easy. We know that cut term counts the number of hyperdges that
are split by the current partition, considering their weights. We move vi, which causes
the partition to change, therefore it could happen that a hyperedge e, that was fully
contained in one community, gets split by doing this move; this is the reason why we
need the δ function. Then, we know that volume term deals with node degrees within a
community. Obviously, if we change a node’s cluster, the volume terms associated with
the new and the old partition change too: for example, from current cluster’s volume we
need to remove vi degree, since we are moving vi to another community; on the other
hand, we have to add that degree to the volume term related to the cluster in which we
want to put the node.
Obviously, new modularity value is given by the sum of the value computed at the begin-
ning and the variation given by the formulas above. After this, the algorithm computes
also the variation of quality function value corresponding to the change of community,
which is very easy to calculate, since quality function is the average, which is linear
with respect to modularity; therefore we take the average of the variation, which can
be either positive (this means that it is better to move node vi from its community)
or negative (this means that it is better that vi stays where it was). Keeping in mind
that we are solving a maximization problem, we are interested in increasing modularity
function value, so we choose to move vi to the community Cj that guarantees the highest
increase of quality function value, then we update the cluster label vector. Algorithm
goes on with this procedure for every node and then starts again from the first one until
no further improvements are possible using one move, this means that whenever we try
to move a node, we obtain a negative variation of modularity value.

20

Second phase begins by constructing the reduced network, i.e. for each layer we write
the incidence matrix of the reduced hypergraph whose supernodes are the communities.
In this network, hyperedges span multiple supernodes and there is a hyperedge between
two or more supernodes if there was at least a hyperedge incident to at least one node of
each supernode in the original hypergraph. To determine the weights of each hyperedge
in the reduced network we have to sum the weights of the corresponding hyperedges in
the original hypergraph. When we construct the reduced network, we have to be careful
about the way hyperedges collapse: a simple edge of dimension two can derive from other
edges of the same type, but also from hyperedges of higher dimensions that span nodes
belonging to two different communities. We have always to keep in mind the original
structure of the hypergraph, because this is necessary when we reapply phase one of the
method and compute modularity value of the reduced network from scratch. Instead of
storing hyperedges weights in the classic way, that is associating to each hyperedge its
weight, the idea used in our code is associating to each hyperedge a vector of the same
length as the maximum dimension of hyperedges with all the entries equal to zero, ex-
cept for the entry corresponding to the hyperedge’s dimension, that contains its weight.
When we construct the collapsed network, we sum the vectors related to the hyperedges
that collapse in just one hyperedge/edge, perfectly knowing what is the contribution of
each hyperdge’s size. Let us give an easy example to show how it works: assume to have
two hyperedges of size four, each one with weight two, a hyperedge of size three with
weight one and an edge with weight two; their associated vectors are respectively [0 0 0
2], [0 0 0 2], [0 0 1 0], [0 2 0 0]. Assume also that all these hyperdges collapse in an edge;
its vector will be the sum of the previous one, i.e. [0 2 1 4] and its weight is the sum
of the vector components, i.e. 7. Therefore the overall weight of the hyperedge of the
reduced network still remains the sum of the weights of the corresponding hyperedges in
the original hypergraph, but to apply again the method we need this distinction, since
in 2.8 we have a summation over hyperedges’ sizes.
We apply first phase of the method to this reduced network, after having saved new ma-
trices, hyperedges lists, weights, node degrees, and repeat the two phases until second
phase finds the same partition found in the first one; this means that no improvements
are possible for the algorithm, therefore it stops.
See Appendix A for the whole code.

21

22

Chapter 4

Numerical experiments

In this chapter, we show some numerical results obtained testing our code on syn-
thetic multilayer hypergraphs. In order to generate the hypergraphs, we have used a
degree-corrected hypergraph stochastic blockmodel (DCHSBM) proposed in [5], that is
an extension of the well known degree-corrected stochastic blockmodel (DCSBM) for
simple graphs. The stochastic blockmodel (SBM) is a random graph model that focuses
on partitioning the nodes into communities, while DCSBM takes into account also de-
gree heterogeneity within nodes. In the hypergraph setting, the difference is that we have
to consider an affinity function that controls the probability of placing a hyperedge at a
given node tuple. A code that generates hypergraph according to this model is available
at https://github.com/PhilChodrow/HypergraphModularity, implemented in Julia
language.
In our tests we use a slightly modified version of this generative model, because it takes
as inputs number of nodes, number of hyperedges, number of clusters, but it doesn’t
allow us to decide the size of each cluster, therefore each cluster contains, from time to
time, a different number of nodes. This is bad for our setting, because we work with pillar
communities, so we have to be sure that each cluster has a fixed size so that, reorder-
ing nodes, each node together with all its counterparts belong to the same community;
that’s why we have changed a bit the part concerning the creation of the clusters. Once
we have generated the hypergraphs, we have saved them as Matlab data in order to use
them in our code, which is implemented in Matlab and reported in Appendix A.

We started from an available Matlab code, proposed in [18] that already generalizes
Louvain method to multilayer graphs using average of modularity values across the lay-
ers. We kept its structure, but changed modularity computation and its update, search
of neighborhood of each node, construction of reduced network to adapt the algorithm
to our case, in particular to the fact that we work with incidence matrices and not
adjacency matrices.

Dealing with synthetic hypergraphs means that we have control on communities, be-
cause, together with incidence matrix and list of hyperdges, the generative model gives
also the ground truth, i.e. we know to which community each node belongs. When we
run our algorithm, we get as output its predicted partition and we compare it with the

23

https://github.com/PhilChodrow/HypergraphModularity

ground truth to evaluate its performance. One way to evaluate it is using the accuracy,
that is nothing but the percentage of nodes placed in the right community. To compute
accuracy we use the confusion matrix, a sort of matrix that has a row for each commu-
nity of the ground truth and a column for each community returned by the algorithm.
On the diagonal we obtain the number of nodes that are in the same community in
both the partitions, while off-diagonal there are those placed in the wrong community,
so we compute the number of nodes in the wrong community, subtract this number to
the total number of nodes and divide again for the total number of nodes in order to
find the percentage of nodes placed in the right community.
Another useful tool to evaluate the output partition of the method is the Normalized
Mutual Information (NMI), which is, as the name implies, the normalization of the
well known Mutual Information, widely used in the context of community detection to
evaluate algorithms performances. As for the accuracy, also NMI value varies between 0
and 1, where 1 means that ground truth partition and predicted partition are the same,
while 0 means there is no community structure, but just one community containing all
the nodes. If we denote with Y the ground truth partition and with X the partition
found by the algorithm, NMI has the following expression:

NMI(Y, X) = 2 ·MI(Y, X)
H(Y) + H(X) (4.1)

where H(Y) is the entropy of the partition Y and MI(Y, X) is the Mutual Information
between the two partitions, that can be calculated through the following expression:

MI(Y, X) = H(Y)− H(Y |X) (4.2)

where the second term is the conditional entropy of Y with respect to X.
For the whole computation of NMI, that uses again confusion matrix, see the code in
Appendix B.

As mentioned before, the code used to generate hypergraphs has some parameters
that the user can modify and choose according to the tests he wants to perform. One of
those parameters is represented by the vector pvals, which is the vector of the within-
cluster edge placement probabilities, that has as many components as different sizes of
hyperedges. Of course, the higher are these probabilities values, the higher will be the
accuracy, since it means there are many hyperedges within the same cluster, making it
densely connected internally.
First challenge has been choosing values of probabilities so that results we get are not
trivial. The main idea was to mimic in some way the experiments done in [22], choos-
ing same probabilities to see how it works in this case with those values. First of all
probabilities are defined in a different way in the two papers: in [22] they use pin and
pout, that are respectively the probabilities of observing an edge between two nodes if
they belong to the same cluster or to different clusters. The relation between these two
values is pin

pout
= r, with r varying between 2 and 3.5. On the other side, in [5] pin and

pout have more or less the same meaning, but they are not linked to each other by that
relation, actually pout = 1 − pin. By equating the two expressions of pout, we get, after
a few simple calculations, that pin = r

r+1 , therefore an option could be to replace each

24

probability of the generative hypergraphs model with this value, varying r parameter.
This turned out not to be a good idea, since the presence of hyperedges of higher order
makes it easier for the algorithm to find the right partition. Indeed, varying r value,
already on a single layer hypergraph, led to accuracy and NMI equal to 1, which means
that the algorithm detect communities too easily.
At the same time, in [5] they don’t consider same probability for each hyperedge size
and we follow their choice. Noted that high probabilities related to hyperedges of size
strictly bigger than 2 leads to too easy communities to be detected, we reduce these
values to pin = 1

n2 . It remains as before the probability related to edges. Therefore the
input vector pvals has the following form:

pvals =
[

r

r + 1 ,
1
n2 ,

1
n2

]
(4.3)

with r varying between 1 and 2 with step 0.2 (the case with r = 3.5 performs all too
well already on a single layer).

We tested the method on multilayer hypergraphs with two and three layers (all in-
formative layers), hyperedges of sizes two, three and four, and what we expect is that
the accuracy increases increasing the number of layers, since there is more information
deriving from the layers. To show how much the presence of two informative layers can
improve the performance with respect to just one informative layer, we compare accu-
racy and NMI obtained also testing the method on a single layer.
We have considered hypergraphs of 500 nodes and 5000 hyperedges with four clusters
of equal size, that is four clusters, each one of 125 nodes.

Figure 4.1: On the left: in blue average values of accuracy computed after 10 runs
related to 2-layers hypergraphs, generated through DCHSBM with parameter r ∈
{1.0, 1.2, 1.4, 1.6, 1.8, 2.0}. In magenta average values of accuracy computed after treat-
ing each hypergraph as a single-layer hypergraph.
On the right: average values of NMI referred to the same tests on the left.

25

In Figure 4.1 we want to focus on the huge difference between accuracy and NMI
values when we run the method on a multilayer hypergraph and on a single-layer hyper-
graph. For each value of r ∈ {1.0, 1.2, 1.4, 1.6, 1.8, 2.0} we have generated 20 hypergraphs
according to the DCHSBM, with probability vector as in 4.3. We have then considered
10 multilayer (two layers) hypergraphs and run the code 10 times, computing at the end
the average of accuracy and NMI values. After this, we have considered each hypergraph
as a single-layer hypergraph and we have run the code for each of them, taking again
average values of accuracy and NMI. It’s straightforward to understand that probabili-
ties’ values are really low in this example, so it is hard for the method to find the right
partition having just one layer. We notice, indeed, that the highest accuracy value for
r = 2.0 is still under 60%. The same happens to NMI values, which are even worse.
Things change radically when we have two layers. Recall that we are dealing with in-
formative layers, so having two layers means having more information. This results in
a far better performance in the multilayer case. Note that already for r = 1.4 average
accuracy value is almost 95%.

We now repeat the same numerical experiments done before in presence of three
informative layers. Following the comments made about the previous example, we expect
to find an even better accuracy in this case.

Figure 4.2: On the left: in light blue average values of accuracy computed after 10
runs related to 3-layers hypergraphs, generated through DCHSBM with parameter
r ∈ {1.0, 1.2, 1.4, 1.6, 1.8, 2.0}. In magenta average values of accuracy computed after
treating each hypergraph as a single-layer hypergraph.
On the right: average values of NMI referred to the same tests on the left.

Figure 4.2 confirms our expectation: even if within-cluster edge placement probabil-
ities are low, when we have three layers we reach an almost total accuracy. NMI average
values are near 1 too.

As said before, in our case parameter r = 3.5 leads to good results also for single-
layer hypergraphs, so let’s see what happens when r ∈ {3.0, 3.1, 3.2, 3.3, 3.4, 3.5}.

26

Figure 4.3: On the left: in burgundy average values of accuracy computed after 10
runs related to 2-layers hypergraphs, generated through DCHSBM with parameter
r ∈ {3.0, 3.1, 3.2, 3.3, 3.4, 3.5}. In light blue average values of accuracy computed af-
ter treating each hypergraph as a single-layer hypergraph.
On the right: average values of NMI referred to the same tests on the left.

In Figure 4.3 we can notice that in the worst case, corresponding to single-layer
hypergraph with r = 3.0, accuracy is anyway higher than 70%, which is not so bad
considering that within-cluster hyperedges probabilities are still low. NMI, instead, is
characterized by lower values, but this is perfectly in line with what happened in the
other examples. Really good is the performance on 2-layers hypergraphs: these values of
r are able to reach values of accuracy and NMI very close to those obtained in Figure
4.2 using lower values of r and three layers.
This shows that by increasing even slightly the probabilities related to the edges, while
leaving the others unchanged, there is a significant improvement in the perfomance of
the algorithm.

We want to give a further comparison. Not knowing exactly how to deal with hyper-
graphs, we can think about replacing hyperedges with cliques, turning a hypergraph in
a simple graph. At this point, we can apply one of the many algorithms now present in
literature to detect communities in these "approximated" (multilayer) graphs.
First of all, we recall how to make this replacement. In [1] we understand how to go from
the incidence matrix I of a graph to its adjacency matrix A. In case of simple graphs,
the adjacency matrix can be obtained from the following expression:

A = IIT −D, (4.4)

where D is the diagonal matrix whose diagonal entries are the nodes degrees. Although
the most suitable matrices for describing hypergraphs are incidence matrices, we can
also write a kind of adjacency matrix here using the same expression, with diagonal
entries of matrix D that now are the number of hyperedges a vertex belongs to. If the

27

hypergraph is weighted, we write another diagonal matrix W , having hyperedges weights
as diagonal entries, and expression 4.4 becomes:

A = IWIT −D. (4.5)

We considered 2-layers hypergraphs with 500 nodes, 5000 hyperedges and four clus-
ters of 125 nodes; we changed within-cluster edge placement probabilities, because
with probability equal to 1

n2 , Generalized Louvain had very low accuracy; in this case
pvals = [t, 0.2, 0.2] with t ∈ {0.35, 0.45, 0.55, 0.65, 0.75}. We applied our method to the
multilayer hypergraphs, then we replaced each hypergraph with its corresponding clique
expansion graph and applied Generalized Louvain to these multilayer graphs.

Figure 4.4: On the left: in yellow average values of accuracy computed after 10 runs
related to 2-layers hypergraphs, generated through DCHSBM, pvals = [t, 0.2, 0.2] with
t ∈ {0.35, 0.45, 0.55, 0.65, 0.75}. In green average values of accuracy computed applying
Generalized Louvain after replacing each hypergraph with its clique expansion graph.
On the right: average values of NMI referred to the same tests on the left.

In Figure 4.4 we note that accuracy and NMI values are higher applying our method
instead of Generalized Louvain. It is also a faster procedure: if we have multilayer hy-
pergraphs, we can directly apply our method, instead of using 4.4 to find adjacency
matrices and apply Generalized Louvain, which turns out to be less accurate. This is a
very important result, because it proves that using hypergraphs is more advantageous
than using the corresponding graphs with only pairwise interactions.

28

Chapter 5

Conclusions

In this thesis project we presented a method for community detection in multilayer
hypergraphs. Over the past few years many methods to extract communities from multi-
layer graphs have been developed, but literature is still lacking with regard to multilayer
hypergraphs. One of the most common approaches is to replace hypergraphs with their
clique expansion graphs in order to apply already existing methods; another technique is
projecting the hypergraph to a weighted graph. In both cases we lose hypergraph struc-
ture and with this project we want to show that we can develop ad hoc algorithms also
for these networks, without the need of approximating them to simple graphs, causing
a possible loss of information.

The proposed algorithm is based on the Generalized Louvain method, that extends
classic Louvain algorithm to multilayer graphs, using average of modularity across the
layers. In order to keep hypergraph structure, we used a different modularity function,
called All-Or-Nothing (AON) modularity, whose expression derives from application of
maximum likelihood inference.

We implemented our code in Matlab and then tested it on synthetic multilayer
hypergraphs, with two and three layers, generated using the degree-corrected hypergraph
stochastic blockmodel (DCHSBM). We tested the method on single-layer hypergraphs
too, to highlight how much accuracy and NMI values increase adding informative layers.
The last numerical experiment was a comparison between accuracy of our method and
accuracy of Generalized Louvain method tested on multilayer hypergraphs where each
hypergraph is replaced by the corresponding clique expansion graph. Results show that
our method performs better.

This work is just the beginning of the research in the field of community detection in
multilayer hypergraphs. It would be interesting to understand how the output changes
choosing different values of β and γ parameters or how to deal with the presence of noisy
layers. In this latter case, it would be better to use a liner combination of average and
sampled variance of modularity values across the layers and, for this aim, it is necessary
to find a formula to compute variation of the part related to the variance. Lastly, it
would be nice to exploit the multiobjective nature of the problem developing, also in
this case, a filter type method based on the concept of Pareto dominance.

29

30

Appendix A

Code of The Generalized Louvain
method with AON affinity function

Code A.1: Generalized Louvain with AON modularity and average as quality function
to evaluate partition

1 % Generalized Louvain with AON affinity function
2 % Communities index by size
3 % Inputs :
4 % M : incidence matrices
5 % e2n : hyperedges
6 % a : weight of hyperedges
7 % a_dim : weight of hyperedges stored according to their size
8 % theta : degree of nodes
9 % m : number of hyperedges of each size

10 % z : 1 = Recursive computation
11 % : 0 = Just one level computation
12 %
13 % Outputs :
14 % COMTY , structure with the following information
15 % for each level i :
16 % COMTY.COM{i} : vector of community partition
17 % COMTY.SIZE{i} : vector of community sizes
18 % COMTY.MOD{i} : vector of modularities of clustering on the layers
19 % COMTY. Average (i) : average of modularity on the layers
20 % COMTY.Niter(i) : number of iteration before convergence
21

22 function [COMTY , ending] = GL_AON (M,e2n ,a,a_dim ,theta ,m,z)
23

24 if nargin < 6
25 error(’not enough argument ’);
26 end
27

28 if nargin < 7
29 z = 1;
30 end
31

32 S = size(M{1});
33 N = S(1); % number of nodes

31

34 k = length (M);
35 hyp_sizes = cell(k ,1);
36 k_max = cell(k ,1);
37 for kk = 1:k
38 hyp_sizes {kk} = sum(M{kk},1);
39 k_max{kk} = max(hyp_sizes {kk});
40 end
41

42 % Trivial case
43 if N==1 || sum(cellfun (@isempty , hyp_sizes))==k
44 ending = 1;
45 COMTY = 0;
46 return ;
47 end
48

49 ending = 0;
50

51 Niter = 0; % number of iterations
52

53 COM = 1:S(1); % initial partition where each node is a community
54

55 Q = zeros(k ,1); % modularity
56 vol=zeros(k, length (COM)); % volume term of AON modularity
57 bet_k=cell(k ,1); %beta parameter
58 gam_k=cell(k ,1); %gamma parameter
59 a_R=cell(k ,1); % weights in cut term
60

61 for s=1:k
62 [Q_ ,vol_ ,bet_k_ ,gam_k_ ,a_R_] = compute_AONmodularity (N,M{s},e2n{s

},a{s},a_dim{s},theta{s},m{s},COM);% modularity of layer s
63 Q(s)=Q_;
64 vol(s ,:)=vol_;
65 bet_k{s}= bet_k_ ;
66 gam_k{s}= gam_k_ ;
67 a_R{s}= a_R_;
68 end
69 Average = sum(Q)/k; % average of modularity
70

71 NBc = cell(N ,1);
72 % Neighbourhood
73 for j=1:N
74 for s=1:k
75 edges_ind = find(M{s}(j ,:)); % hyperedges that contain node j
76 for ind = edges_ind
77 edge_vec = cell2mat (e2n{s}(ind)) ’;
78 NBc{j} = [NBc{j} edge_vec];
79 end
80 end
81 NBc{j} = NBc{j}(NBc{j}~=j); % remove j from its neighbourhood
82 NBc{j} = unique (NBc{j}); % neighbourhood of node j
83 end
84

85 gain = 1;
86 while (gain == 1) %no increase of average possible moving one node
87 gain = 0;

32

88 for i=1:N
89 Ci = COM(i); % community of node i
90 NB = NBc{i}; % neighbourhood of node i
91 G = zeros (1,N); %gain vector
92 best_increase = -inf;
93 Cnew = Ci;
94 for j=1: length (NB) % consider each neighbour j of node i
95 Cj = COM(NB(j)); % community of j
96 if (G(Cj) == 0) %if we haven ’t already considered the

community of node j
97 COM_new = COM; %new list of communities
98 COM_new (i) = Cj; %new list of communities with node i

in community of j
99 if (Ci==Cj)==1

100 Delta_Q = zeros(k ,1);
101 else
102 Delta_Q = zeros(k ,1);
103 for kk = 1:k
104 Delta_Q (kk) = change_AONmod (i,COM_new ,COM ,

theta{kk},bet_k{kk},gam_k{kk},M{kk},e2n{kk
},a{kk},a_dim{kk}, hyp_sizes {kk},k_max{kk});

% variation of modularity value moving node
i

105 end
106

107 G(Cj) = sum(Delta_Q)/k; % average gain
108 if G(Cj) > best_increase %if positive gain -

average increases
109 best_increase = G(Cj); %gain average
110 Q_t = Delta_Q ; %gain of modularity
111 Cnew_t = Cj; %new community of node i
112 end
113 end
114 end
115 end
116 if best_increase > 0 %if best increase is positive
117 Cnew = Cnew_t ; %new community of node i
118 Q = Q + Q_t; % modularity
119 Average = Average + best_increase ; % average
120 end
121 COM(i) = Cnew; % insert node i in the new community
122 if (Cnew ~= Ci) %no increase of average possible moving one

node
123 gain = 1;
124 end
125 end
126 Niter = Niter + 1;
127 end
128 Niter = Niter - 1;
129 [COM] = reindex_com (COM); % reindex the communities by size
130 % Output
131 COMTY.COM {1} = COM;
132 COMTY.MOD {1} = Q’;
133 COMTY. Average (1) = Average ;
134 COMTY.Niter (1) = Niter;

33

135

136 % Perform second phase of the method
137 if (z == 1)
138 % matrix of the reduced network
139 Mnew = M;
140 theta_ = theta;
141 a_ = a;
142 a_dim_ = a_dim;
143 e2n_ = e2n;
144 COMcur = COM; % current communities
145 COMfull = COM; % communities in the original graph
146 j = 2; % number of pass (step1+step2)
147 while 1
148 Mold = Mnew;
149 th_old = theta_ ;
150 a_old = a_;
151 a_dim_old = a_dim_ ;
152 e2n_old = e2n_;
153 S2 = size(Mold {1});
154 Nnode = S2 (1);
155 COMu = unique (COMcur);
156 ind_com = sparse (length (COMu),Nnode);
157 ind_com_full = sparse (length (COMu),N);
158 for ii = 1: length (COMu)
159 ind = find(COMfull ==ii);
160 ind_com_full (ii ,1: length (ind)) = ind;
161 end
162 Mnew = {};
163 theta_ = {};
164 a_ = {};
165 a_dim_ = {};
166 for s = 1:k
167 M5 = []; % matrix where we sum the rows of the nodes in the

same community
168 for ii = 1: length (COMu)
169 ind = find(COMcur ==ii);
170 ind_com (ii ,1: length (ind)) = ind;
171 if length (ind)==1
172 M5(ii ,:) = Mold{s}(ind ,:);
173 theta_ {s}(ii) = th_old {s}(ind);
174 else
175 M5(ii ,:) = sum(Mold{s}(ind ,:));
176 theta_ {s}(ii) = sum(th_old {s}(ind));
177 end
178 M5(M5 ~=0) =1; %M5 binary matrix
179 end
180 M3 = M5; % matrix with hyperedges between communities
181 M5s = sum(M5 ,1);
182 in = find(M5s > 1);
183 M3 = M5(:,in); % remove hyperedges within the same community ,

they are useless for the reduced network
184 a_old{s} = a_old{s}(in);
185 e2n_old {s} = e2n_old {s}(in);
186 a_dim_old {s} = a_dim_old {s}(in);
187 indices = {};

34

188 for ss = 1: size(M3 ,2)
189 indices {ss} = find(ismember (M3.’,M3(:,ss).’,’rows ’) ’); %

find repetitions of each column
190 end
191 Indices = cellfun (@str2num , unique (cellfun (@num2str ,indices ,’

uni ’ ,0),’stable ’),’uni ’ ,0);
192 a_dim_ {s} = {};
193 for t = 1: length (Indices)
194 a_dim_ {s}{t} = zeros(k_max{s},1);
195 for tt = 1: length (Indices {t})
196 a_dim_ {s}{t} = a_dim_ {s}{t} + a_dim_old {s}{ Indices {t}(

tt)};
197 end
198 end
199 M4 = [];
200 for jj = 1: length (Indices)
201 M4(:,jj) = M3(:, Indices {jj }(1)); %keep just one of the

repeated columns
202 a_{s}(jj) = sum(a_old{s}(Indices {jj}));
203 end
204 % update hyperedges list
205 e2n{s} = {};
206 for r = 1: size(M4 ,2)
207 e2n{s}{r} = find(M4(:,r));
208 end
209 Mnew{s} = M4; % matrix of the reduced hypergraph
210 end
211 [COMt ,e] = GL_AON (Mnew ,e2n ,a_ ,a_dim_ ,theta_ ,m ,0); %apply the first

phase on this reduced network
212 if (e ~= 1)
213 COMfull = sparse (1,N);
214 COMcur = COMt.COM {1};
215 for p=1: length (COMu)
216 ind1 = ind_com_full (p ,:);
217 COMfull (ind1(ind1 >0)) = COMcur (p);
218 end
219 [COMfull2] = reindex_com (COMfull); % reindex the communitites
220 % Output
221 COMTY.COM{j} = COMfull2 ;
222 COMTY.MOD{j} = COMt.MOD {1};
223 COMTY. Average (j) = COMt. Average (1);
224 COMTY.Niter(j) = COMt.Niter;
225 Ind = (COMfull2 == COMTY.COM{j -1});
226 if (sum(Ind) == length (Ind)) %no changes
227 return ;
228 end
229 else
230 return ;
231 end
232 j = j + 1;
233 end
234 end
235 end
236

237 % Re -index community partition by size

35

238 function [C] = reindex_com (COMold)
239

240 C = sparse (1, length (COMold));
241 COMolds =sort(COMold);
242 COMu= COMolds ([true;diff(COMolds (:)) >0]);
243 S = sparse (1, length (COMu));
244 for l=1: length (COMu)
245 S(l) = length (COMold (COMold == COMu(l)));
246 end
247 [Ss INDs] = sort(S,’descend ’);
248 for l=1: length (COMu)
249 C(COMold == COMu(INDs(l))) = l;
250 end
251 end

Code A.2: Function that computes AON modularity from scratch in line 62 of A.1
1 % Function that computes AON modularity of a given partition
2 % Inputs :
3 % n : number of nodes
4 % I : incidence matrix of hypergraph
5 % R : hyperedges list
6 % a : hyperedges weights
7 % a_dim : weight of hyperedges stored according to their size
8 % theta : node degrees
9 % m : number of hyperedges of each size

10 % z : label vector
11 %
12 % Outputs :
13 % Q : modularity
14 % vol : volume term
15 % bet_k : beta parameter
16 % gam_k : gamma parameter
17 % a_R : weights according to hyperedges size
18

19 function [Q,vol ,bet_k ,gam_k ,a_R] = compute_AONmodularity (n,I,R,a,a_dim
,theta ,m,z)

20

21 hyp_sizes = sum(I ,1); %sizes of hyperedges
22 k_min = min(hyp_sizes); %min size of hyperedges
23 k_max = max(hyp_sizes); %max size of hyperedges
24

25 l = unique (z); % clusters without repetitions
26 vol_H = sum(theta); %sum of all node degrees
27 bet_k = ones(length (m) ,1); %beta parameter
28 gam_k = zeros(length (m) ,1); %gamma parameter
29 cut = zeros(length (m) ,1); % number of hyperedges that contain nodes in

distinct cluster
30 vol = zeros(length (l) ,1); % volume term
31 a_R_cut = zeros(k_max ,1); %a_R weights in cut term
32

33 % Compute volume term
34 for h = 1: length (l)

36

35 ind = find(z==l(h));
36 vol(h) = sum(theta(ind));
37 end
38

39 % Compute all the other terms for AON modularity
40 vol_k = zeros(length (m) ,1);
41 a_R = zeros(k_max ,1);
42 for k = 1: length (m)
43 for r = 1: length (R)
44 R_r_vec = cell2mat (R(r));
45 if all(z(R_r_vec)==z(R_r_vec (1))) %if all the nodes spanned by

the hyperedge are in the same community
46 cut(k) = cut(k) + 0;
47 else
48 cut(k) = cut(k) + a_dim{r}(k);
49 end
50 end
51 gam_k(k) = m(k)/(vol_H)^k;
52 vol_k(k) = sum(vol .^k); % volume term
53 end
54

55 % Modularity
56 Q = -sum(bet_k .*(cut+gam_k .* vol_k));
57

58 end

Code A.3: Function that computes variation of AON modularity value when we move
node i from its community to another community in line 104 of A.1

1 % Function that computes variation of AON modularity value when we
move a node from its community to that of one of its neighbours

2 % Inputs :
3 % node : node to move
4 % z_new : new label vector
5 % z : old label vector
6 % theta : node degrees
7 % bet_k : beta parameter
8 % gam_k : gamma parameter
9 % I : incidence matrix

10 % R : hyperedges list
11 % a : weight of hyperedges
12 % a_dim : weight of hyperedges stored according to their size
13 % hyp_sizes : sizes of hyperdges
14 % k_max : max size of hyperedges
15 %
16 % Outputs :
17 % Delta_Q : change in modularity
18

19 function Delta_Q = change_AONmod (node ,z_new ,z,theta ,bet_k ,gam_k ,I,R,a,
a_dim ,hyp_sizes ,k_max)

20

21 % Evaluation of Delta_v

37

22 l = unique (z);
23 vol = zeros(length (l) ,1);
24 for h = 1: length (l)
25 ind = find(z==l(h));
26 vol(h) = sum(theta(ind));
27 end
28 vol_i = vol(l==z(node));
29 d_i = theta(node);
30 v_A = vol(l== z_new(node));
31 Delta_v = 0;
32 for k1 = 1: length (gam_k)
33 Delta_v = Delta_v + bet_k(k1)*gam_k(k1)*(vol_i^k1 -(vol_i -d_i)^k1

...
34 +v_A^k1 -(v_A+d_i)^k1);
35 end
36

37 % Evaluation of Delta_c
38 Delta_c = 0;
39 a_new = zeros(length (a) ,1);
40 a_old = zeros(length (a) ,1);
41 edges_inc_ind = find(I(node ,:)); %index of hyperedges incident to node

i
42 for ind4= edges_inc_ind
43 edge_vec = R{ind4 };
44 if all(z_new(edge_vec)== z_new(edge_vec (1)))
45 a_new(ind4) = sum(a_dim{ind4 });
46 else
47 a_new(ind4) = 0;
48 end
49 if all(z(edge_vec)==z(edge_vec (1)))
50 a_old(ind4) = sum(a_dim{ind4 });
51 else
52 a_old(ind4) = 0;
53 end
54 Delta_c = Delta_c + bet_k(hyp_sizes (ind4))*(a_new(ind4)-a_old(ind4

));
55 end
56 Delta_Q = Delta_v + Delta_c ; % change in modularity
57

58 end

38

Appendix B

Codes for computation of accuracy
and NMI to evaluate partitions

Code B.1: Function that counts the number of nodes in the wrong community to deter-
mine accuracy of the method

1 % Function counts number of nodes in the wrong community
2 % Inputs : E vector ground truth communities
3 % P vector predicted communities
4 % Output : n number of nodes in the wrong community
5

6 function [n] = wrong(E,P)
7

8 [T] = confusion_matrix (E,P); % confusion matrix
9

10 n=0; % counts nodes in wrong community
11 while ~ isempty (T)
12 M = max(max(T)); % maximum value of T
13 [x,y] = find(T==M); % indices of M in T
14 %use x(1) and y(1) because maybe more entries correspond to

maximum value
15 n = n + sum(T(x(1) ,:)) - T(x(1) ,y(1));
16 n = n + sum(T(:,y(1))) - T(x(1) ,y(1));
17 T(x(1) ,:) = [];
18 T(:,y(1)) = [];
19 end
20

21 end

Code B.2: Function that calculates the confusion matrix mentioned in Chapter 4
1 % Function calculates the confusion matrix
2 % Inputs : E vector expected communities
3 % P vector predicted communities
4 % Output : T confusion matrix
5

6 function [T] = confusion_matrix (E,P)

39

7

8 [E]= reindex_com (E); % reindex community in E
9 [P]= reindex_com (P); % reindex community in P

10

11 % columns ground truth communities - rows predicted communities
12 Es=sort(E);
13 Eu=Es([true;diff(Es (:)) >0]);
14 Ps=sort(P);
15 Pu=Ps([true;diff(Ps (:)) >0]);
16 T = zeros(length (Pu),length (Eu));
17

18 for i = Eu
19 Pi = P(E==i);
20 for j = Pu
21 T(j,i) = sum(Pi==j);
22 end
23 end
24

25 end

Code B.3: Function that computes NMI mentioned in Chapter 4 to evaluate output
partition of the method

1 % Normalized Mutual Information (NMI)
2 % Input: T confusion matrix
3 % Output : n Normalized Mutual Information
4

5 function [n]= NMI(T)
6

7 %H(C) entropy of C cluster labels
8 HC =0;
9 for i=1: size(T ,1)

10 HC = HC + sum(T(i ,:)) * log2(sum(T(i ,:))/sum(sum(T)));
11 end
12 %H(Y) entropy of class labels
13 HY =0;
14 for j=1: size(T ,2)
15 HY = HY + sum(T(:,j)) * log2(sum(T(:,j))/sum(sum(T)));
16 end
17 %I(Y;C) Mutual Information between Y and C
18 IYC =0;
19 for i=1: size(T ,1)
20 for j=1: size(T ,2)
21 if T(i,j)~= 0
22 IYC = IYC + T(i,j) * log2 ((T(i,j)*sum(sum(T)))/(sum(T(i ,:)

)*sum(T(:,j))));
23 end
24 end
25 end
26 %NMI
27 n = -(2* IYC)/(HC+HY);
28 end

40

Bibliography

[1] Federico Battiston, Giulia Cencetti, Iacopo Iacopini, Vito Latora, Maxime Lucas,
Alice Patania, Jean-Gabriel Young, and Giovanni Petri. Networks beyond pairwise
interactions: structure and dynamics. Physics Reports, 874:1–92, 2020.

[2] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefeb-
vre. Fast unfolding of communities in large networks. Journal of statistical me-
chanics: theory and experiment, 2008(10):P10008, 2008.

[3] Timoteo Carletti, Duccio Fanelli, and Renaud Lambiotte. Random walks and com-
munity detection in hypergraphs. Journal of Physics: Complexity, 2(1):015011,
2021.

[4] Jingchun Chen and Bo Yuan. Detecting functional modules in the yeast protein–
protein interaction network. Bioinformatics, 22(18):2283–2290, 2006.

[5] Philip S Chodrow, Nate Veldt, and Austin R Benson. Generative hypergraph clus-
tering: From blockmodels to modularity. Science Advances, 7(28):eabh1303, 2021.

[6] Manlio De Domenico, Vincenzo Nicosia, Alexandre Arenas, and Vito Latora. Struc-
tural reducibility of multilayer networks. Nature communications, 6(1):6864, 2015.

[7] Xiaowen Dong, Pascal Frossard, Pierre Vandergheynst, and Nikolai Nefedov. Clus-
tering with multi-layer graphs: A spectral perspective. IEEE Transactions on Signal
Processing, 60(11):5820–5831, 2012.

[8] Santo Fortunato. Community detection in graphs. Physics reports, 486(3-5):75–174,
2010.

[9] Elad Ganmor, Ronen Segev, and Elad Schneidman. Sparse low-order interaction
network underlies a highly correlated and learnable neural population code. Pro-
ceedings of the National Academy of sciences, 108(23):9679–9684, 2011.

[10] Debarghya Ghoshdastidar and Ambedkar Dukkipati. Spectral clustering using mul-
tilinear svd: Analysis, approximations and applications. In Proceedings of the AAAI
Conference on Artificial Intelligence, 2015.

[11] Bogumił Kamiński, Valérie Poulin, Paweł Prałat, Przemysław Szufel, and François
Théberge. Clustering via hypergraph modularity. PloS one, 14(11):e0224307, 2019.

41

[12] Jungeun Kim and Jae-Gil Lee. Community detection in multi-layer graphs: A
survey. ACM SIGMOD Record, 44(3):37–48, 2015.

[13] Mikko Kivelä, Alex Arenas, Marc Barthelemy, James P Gleeson, Yamir Moreno,
and Mason A Porter. Multilayer networks. Journal of complex networks, 2(3):203–
271, 2014.

[14] P Krishna Reddy, Masaru Kitsuregawa, P Sreekanth, and S Srinivasa Rao. A graph
based approach to extract a neighborhood customer community for collaborative
filtering. In Databases in Networked Information Systems: Second International
Workshop, DNIS 2002 Aizu, Japan, December 16–18, 2002 Proceedings 2, pages
188–200. Springer, 2002.

[15] Andrea Lancichinetti and Santo Fortunato. Consensus clustering in complex net-
works. Scientific reports, 2(1):336, 2012.

[16] Jonathan M Levine, Jordi Bascompte, Peter B Adler, and Stefano Allesina. Be-
yond pairwise mechanisms of species coexistence in complex communities. Nature,
546(7656):56–64, 2017.

[17] Matteo Magnani, Obaida Hanteer, Roberto Interdonato, Luca Rossi, and Andrea
Tagarelli. Community detection in multiplex networks. ACM Computing Surveys
(CSUR), 54(3):1–35, 2021.

[18] Peter J Mucha, Thomas Richardson, Kevin Macon, Mason A Porter, and Jukka-
Pekka Onnela. Community structure in time-dependent, multiscale, and multiplex
networks. science, 328(5980):876–878, 2010.

[19] Mark EJ Newman. Modularity and community structure in networks. Proceedings
of the national academy of sciences, 103(23):8577–8582, 2006.

[20] Mark EJ Newman and Michelle Girvan. Finding and evaluating community struc-
ture in networks. Physical review E, 69(2):026113, 2004.

[21] Wei Tang, Zhengdong Lu, and Inderjit S Dhillon. Clustering with multiple graphs.
In 2009 Ninth IEEE International Conference on Data Mining, pages 1016–1021.
IEEE, 2009.

[22] Sara Venturini, Andrea Cristofari, Francesco Rinaldi, and Francesco Tudisco. A
variance-aware multiobjective louvain-like method for community detection in mul-
tiplex networks. Journal of Complex Networks, 10(6):cnac048, 2022.

[23] Chaoqi Yang, Ruijie Wang, Shuochao Yao, and Tarek Abdelzaher. Hypergraph
learning with line expansion. arXiv preprint arXiv:2005.04843, 2020.

[24] Zhiping Zeng, Jianyong Wang, Lizhu Zhou, and George Karypis. Coherent closed
quasi-clique discovery from large dense graph databases. In Proceedings of the 12th
ACM SIGKDD international conference on Knowledge discovery and data mining,
pages 797–802, 2006.

42

[25] Yaoming Zhen and Junhui Wang. Community detection in general hypergraph
via graph embedding. Journal of the American Statistical Association, pages 1–10,
2022.

43

	Introduction
	Background
	Preliminaries
	Community detection problem

	Related work
	Louvain method
	Community detection in multilayer graphs
	Matrix factorization
	Pattern mining

	Community detection in hypergraphs

	Multilayer hypergraphs Louvain-like method
	Numerical experiments
	Conclusions
	Code of The Generalized Louvain method with AON affinity function
	Codes for computation of accuracy and NMI to evaluate partitions
	Bibliography

