
Università degli Studi di Padova
Dipartimento di ingegneria dell’informazione

Laurea magistrale in

Ingegneria Elettronica

PWM controller design with Zynq SoC

Relatore: Candidato:
Prof. Simone Buso Antonio Minighin

Anno Accademico : 2022/2023

Data: 13 Luglio 2023

ii

Contents

1 Introduction 6
1.1 Zynq Technology . 8

1.1.1 AXI Interface . 10
1.1.2 XADC . 12
1.1.3 DSP48E1 . 14

2 PWM control technique 16
2.1 Pulse Width Modulation . 16

2.1.1 Modulator Model . 18
2.1.2 Digital PWM . 21

2.2 Control System . 22
2.2.1 Controller Design . 24
2.2.2 Discretization . 27

2.3 Analog to Digital conversion . 30
2.3.1 Sampling . 31
2.3.2 Quantization . 32
2.3.3 Holding . 34

3 Prototype 35
3.1 DPWM Implementation . 35

3.1.1 Basic DPWM . 36
3.1.2 Up-Down Counter . 38
3.1.3 Trigger generation . 41

3.2 Controller implementation . 44
3.2.1 ADC configuration . 45
3.2.2 Software Controller . 49
3.2.3 Hardware Controller . 53

4 System Validation 58
4.1 Zynq board setup . 58

1

4.1.1 Step response characterization 61
4.2 Conclusions . 65

Bibliography 70

2

List of Figures

1.1 Zynq-7000 SoC block diagram showing the interconnections of the
main components. Reference manual image [17] 9

1.2 AXI functional blocks showing the connections and the channels of
the communication protocol. Reference guide image [2] 11

1.3 XADC with AXI interface wrapper diagram, showing the main reg-
isters, the signals and the buses. Product guide image [15] 12

1.4 DSP48E1 simplified structure showing the pipeline, the data width
and the possible configurations. Reference guide image [11]. 14

2.1 DPWM control technique principles 16
2.2 PWM of a sinusoidal signal . 17
2.3 Modulator model showing the superimposed distortion introduced by

the comparator and the switching stage. 19
2.4 Spectrum of a pulse width modulated sinewave 20
2.5 Digital PWM control system with discrete time controller 23
2.6 PID controller block diagram . 25
2.7 Bode plot of the PID designed with the asymptotic technique 26
2.8 Integrator block diagrams after discretization 30
2.9 Differentiator block diagrams after discretization 30
2.10 Analog to digital interface model . 31

3.1 Block diagram of the prototype, showing the main data flow and the
design procedure . 35

3.2 DPWM block diagram showing the main connections 36
3.3 Updown counter block diagram with range detection and status latch

logic . 39

3

3.4 DPWM working modes showing the sample acquisition, the signal
processing, and the update of the comparator. The sequence starts
with the acquisition trigger, the ADC data is converted and elab-
orated inside the interrupt handler, but the comparator register is
updated only at the next update event 42

3.5 Comparator block diagram with buffer register for synchronization . . 43
3.6 Trigger generator for the comparator update optimized for the up-

down counter . 43
3.7 Trigger generator for synchronized acquisition events 44
3.8 Software controller routine compared to hardware controller data flow 45
3.9 XADC conversion with polling mode AXI read transaction shows that

a full conversion takes 107 DCLK cycles 46
3.10 XADC interrupt handler showing that the EOC interrupt is served

and cleared approximately after 50 TCLK cycles, and the ADC value
read after other 50 clock cycles . 48

3.11 AXI-stream compared with AXI-Lite, showing that the data is streamed
12 TCLK after the EOC, against the ≈ 90 clock cycles required by the
PS to fetch the data, and the 125 required to execute the algorithm . 50

3.12 Pipeline DSP standard block with 25-bit pre-adder, 18x25 bits signed
multiplier and 48-bit final adder . 54

3.13 PI controller realized with the pipeline DSP 55
3.14 Differentiator realized with the pipeline DSP 55
3.15 DSP PI controller sequence, showing the pipeline execution when the

data is sampled and after ADC the conversion 56

4.1 Zynq board setup with anti-aliasing filter and single pole test circuit . 58
4.2 Bode plot of the single pole system emulated with the non inverting

OPAMP . 61
4.3 PI design such that fp = fo and fc = 1 kHz 62
4.4 Phase margin degradation ϕD of the loop gain due to the delay effect 63
4.5 Step response of the asymmetric modulation and synchronized acqui-

sition with the loop closed at a crossing frequency of 1 kHz and at
2.5 kHz . 63

4.6 Step response of the symmetric modulation with the loop closed at
a crossing frequency of 2.5 kHz, using a single acquisition per period
and a double acquisition per period technique 64

4.7 Summary of settings and experimental results 65

4

Listings

3.1 counter VHDL . 36
3.2 comparator VHDL . 36
3.3 trigger generator VHDL . 37
3.4 updown counter VHDL . 38
3.5 updown control logic VHDL . 39
3.6 reload control logic VHDL . 40
3.7 XADC definitions C . 45
3.8 XADC interrupt setup C . 46
3.9 GIC setup C . 46
3.10 XADC handler C . 47
3.11 AXI Snooper VHDL . 49
3.12 Software Controller C . 50
3.13 PID control algorithms C . 51
3.14 Anti-windup C . 53
3.15 DSP basic block . 53

5

Chapter 1

Introduction

Electronic systems are nowadays widely used in energy management, motor drives,
consumer and industrial applications to monitor, optimize and automate processes.
The key enabling technology, that allowed electronic systems to break into several
markets, are processors, memories and digital logic capable of performing complex
tasks, storing data and execute instructions. This has been made possible by the
advancement of semiconductor manufacturing technology and system architectures.
Some interesting features that came up with modern systems are:

- Integration: to combine many components into a single system which led to a
rapid increase in the number of functionalities

- Configurability: to reconfigure the behavior of a system which allows it to per-
form different functions

- Reliability: to ensure equal performance under different conditions

- Memory: to store and retrieve information and use them in multiple ways

As a result, electronic systems have become smaller, faster, flexible and smarter,
making them ideal to be used in several applications.

Each application requires a specific trade-off between performance, cost optimiza-
tion and power efficiency, which is achieved only with specific devices. Based on the
set of available resources and the processor speed, CPU can be grouped into MCU,
DSP and APU. Microcontrollers are built with specific blocks optimized to inter-
act with external systems, such as communication interfaces, timers, ADC, DAC
and input output ports to send and receive signals. DSP are optimized to work on
data streams to achieve high throughput on intensive and complex tasks. This can
be done by using high speed communication interfaces and processing system with
specialized architectures, like FPU and super-scalar pipeline with SIMD execution.
Finally, APU are built with cache memory, high speed communication interfaces,
DMA and even branch speculators to move data and execute complex programs or

6

full operating systems. Modern devices, called SoC, integrate CPU, GPU, memory
controllers, I/O controllers, and analog-mixed signal interfaces, to reach high per-
formances with low power consumption, thanks to the tightly coupled components.

The semiconductor industry allows the customization of ASIC with the desired
CPU and its peripheral components, or at least it allows choosing between differ-
ent pre-configured options called ASSP. These integrated circuits are ready to be
mounted on PCB and programmed to create complete electronic systems with few
external components. However, the design of a full custom ASIC is expensive be-
cause NRE costs increased with VLSI, making SoC available only for applications
with a significant volume size market. Already in the 80s, when the VLSI era began,
the problem of NRE costs was solved with PL devices, ready-made products with
interconnected configurable blocks used to implement different functions. With pro-
grammable devices, like GAL, CPLD and FPGA, NRE costs are absorbed by the
manufacturing company and subdivided through the production volume, making
them affordable also to niche markets. VLSI also required automatic tools the keep
design complexity under control, bring down NRE costs, and follow the built-to-
order model of production.

To deal with complexity, HDL were developed to describe the architectures at
higher levels of abstraction, which are then compiled and implemented with the
desired technology. At first, HDL were used just for circuit simulation to deal with
high speed circuit and signals with fast transient. Only lately, compilers capable of
synthesizing circuit structures were developed, while others were used to map and
optimize the circuit description into hardware. As a consequence, even if behavioral
simulation can describe every kind of digital circuit, there are standard and strict
rules to code a digital circuit such that it can be implemented. Modern compilers
can even understand C language and use HLS flow to produce an RTL design that
can be implemented on the FPGA. The HLS is a very efficient design flow that
well matches with the configurability of FPGA, and it can be used to accelerate
complex algorithms on hardware, for example machine learning algorithm or 3D
graphic algorithms. VHDL and Verilog languages are still used because the output
is well predictable, and they allow debugging and to modify the circuit to meet
timing and performance requirements.

Among all PL devices, FPGA devices emerged because they enable rapid design,
functional verification, customizable hardware, and dynamic reconfiguration. FPGA
are built with many CLB, usually embedding LUT and DFF, connected through a
switching matrix and I/O ports in a complex fabric of routing lines. Xilinx solution,
that will be produced up to 2035, is the Zynq All-Programmable SoC, an APU

7

tightly coupled with an FPGA and other programmable blocks, to enhance the
performance of reconfigurable devices with modern technology and architectures.
This device can reach good performances on a huge number of applications, but its
strength is the signal processing ability of both the processor and the programmable
blocks.

The goal of this project is to develop a digital PWM controller system for appli-
cations where fast signal processing is required. Control applications require real-
time and low latency system response both achievable only with highly specialized
devices. Modern MCU are typically well suited for control systems because they
integrate ad-hoc components that relieve the processor from repetitive tasks. MCU
resources like ADC, timers, comparator, communication interface and even DMA,
can be extremely optimized on performance and efficiency. However, in MCU and
generic CPU based devices, the control algorithm always run in the processor be-
cause it depends on the specific application. When dealing with real time tasks, the
algorithm can rapidly overload the CPU, especially in multitasking applications,
where processing requirements rapidly increase. Furthermore, low latency forces
the CPU to work fast for small-time intervals and rest for long periods. FPGA
allows offloading common task like processing from software to hardware and in-
crease system response by building ad-hoc data flow subsystem from the ADC to
the controller output. Zynq makes possible to implement both software and hard-
ware controller because it combines a PS tightly coupled with the PL and the ADC.
Software and hardware can also adapt to perfectly interact each other, because they
can be designed, tested and optimized concurrently in the same system.

PWM is the most common way to control switching devices because of its lower
complexity when compared of other type of modulations, like PFM or PDM, which
leads to relatively easy control algorithms. Power electronics systems are part of
numerous applications, ranging from motor control to renewable energy systems,
battery chargers, and industrial automation. Efficient power conversion is achieved
through the utilization of switching techniques, specific circuit topologies, and con-
trol algorithms. For example, motor control applications require controlling speed,
torque, and direction, with advanced algorithms, like vector control, or simpler one
like PID control.

1.1 Zynq Technology
Zynq-7000 is a SoC divided in two parts, the PS and the PL, made of an APU

coupled with an FPGA fabric and other programmable blocks. The PS is optimized
to work on data and interact with different sources by using cache memory and

8

Figure 1.1: Zynq-7000 SoC block diagram showing the interconnections of the main
components. Reference manual image [17]

several communication interfaces and controllers, in depth:

- Processor: A dual-core ARM-cortex A9 architecture with FPU and NEON en-
gine

- Memory: Two level cache memory for instructions (I-Cache) and data (D-Cache),
On-Chip-Memory OCM and SRAM

- Controller: A SCU for cache coherency, a GIC to dispatch and handling inter-
rupts and a DDR controller for external memory

- IO Ports: Some IO peripherals and memory interfaces that shares a MIO port
and 3 types of ports for PS and PL interaction, called General-Puropse GP
ports, High-Performance HP ports and Acceleration Coherency Port ACP

The ARM-cortex A9 has a dual-issue, partially out-of-order pipeline extended with
DSP instructions, FPU and NEON engine to perform SIMD operations. The two
cores of Zynq-7000 can work in synchronous or asynchronous mode to build complex
behaviors. The PL is based on the Artix-7 family FPGA fabric optimized for low
power and high throughput operations, mainly composed of:

9

- CLB: configurable logic with 6 input LUT, shift registers and cascade adders

- DSP48E1: 4 inputs DSP block with pipeline pre-adder, signed multiplier and a
final ALU with 48 bit accumulator

- BRAM: 36Kb dual port block RAM for read-while-write operations

- XADC: two 12 bit 1 Msample/s channel synchronous A/D converters with 2 fast
dedicated lines and 16 multiplexed auxiliary input

PS and PL communicate over the AXI protocol implemented by the GP port with 2
managers and 2 subordinates or the HP port with 4 subordinates. The GP manager
interfaces are divided into M_AXI_GP0 and M_AXI_GP1, which are memory mapped,
and accessible to the PS, respectively at the addresses 0004_0000 to 0007_FFFF and
0008_0000 to 000F_FFFF.

The PL is configured with a bitstream generated by the compiler from the HDL
design and optimized for the FPGA technology, while the PS can run bare metal
programs, RTOS, or Linux OS. Zynq systems are designed and programmed with
Vivado and Vitis, which are respectively an IP block deign based CAD tool to
configure the PL, and an IDE with the SDK to program the PS. The bitstream
configuration process is always managed by the PS, which should always be activated
first, and can reconfigure the PL on demand with the DFX, a reconfiguration process
that can keep some PL parts active while it changes others.

The debugging of the PL part can be done through an ILA, a Xilinx soft IP
that can be removed once the functional verification is completed. The ILA is
a powerful debugger that can also interact with the PS to block and restart the
software execution. However, it can degrade the system performance because it
requires routeing more signals to specific elements, usually BRAM and FTM, that
might be distant from the functional block.

1.1.1 AXI Interface
The AXI protocol allows transferring data between a manager and a subordinate

by using a handshake rule and some sets of signals. These signals are grouped in
address and data channels for read and write transactions. The address mechanism
allows multiple subordinates to be connected to an AXI interconnect architecture,
making them reachable from different managers. There are 3 variants of the AXI
protocol, AXI, AXI-Lite and AXI-Stream, which are used to achieve fast communi-
cation or complex architectures. The AXI and AXI-Lite protocols are both memory
mapped variants which differ only by some signals and the ability of performing
burst data transfer. On the other hand, the AXI-Stream protocol enables unidirec-
tional high speed data streams from a manager to a subordinate, by getting rid of

10

Figure 1.2: AXI functional blocks showing the connections and the channels of the
communication protocol. Reference guide image [2]

the addresses and using only one channel with a restricted set of signals.
An AXI transaction is made of several transfers, containing an address and one

or more data. The handshake is implemented in each channel by using the READY

and VALID signals to confirm the transfer of the ADDR or the DATA signals. The
VALID signal is controlled by the channel source and used to validate a transfer,
while the READY signal is controlled by the channel destination and used to confirm
a transfer. All signals are caught at the rising of the clock ACLK, therefore they must
stay asserted at least for one clock period. The handshake procedure follows some
simple rules:

1. A source must keep asserted VALID until the transfer ends
2. A source cannot wait for READY to be asserted before asserting VALID

3. A destination can wait for VALID to be asserted before asserting READY

4. A destination can deassert READY before VALID is asserted
5. A transfer ends when both VALID and READY are asserted

In the AXI-Stream protocol, the managers are always the source and the subor-
dinates are the destination, therefore, the handshake rules can be seen as a good
practice for an efficient chain of order. In fact, a mnemonic way to remember those
rules is by thinking of rules number 1 and 2 as:
"The manager should schedule the operations and stick with the plan"
While number 3 and 4 can be thought as: "The subordinate is generally lazy but
could be busy at any time"
These are general rules, but they can be used to build complex and efficient behavior
without deadlocks in the processing chain.

11

1.1.2 XADC

Figure 1.3: XADC with AXI interface wrapper diagram, showing the main registers,
the signals and the buses. Product guide image [15]

The XADC is embedded in the PL part, and it can be controlled through the
DRP both by the PS and the PL. The PS is directly connected to the DRP through
the JTAG, but this communication is slow and used only to monitor the system pa-
rameters, like the chip temperature and the supply voltages from embedded sensors.
To enable high speed communication with the PS, the XADC can be wrapped with
an AXI-Lite subordinate interface and connected to the AXI GP port. In this case,
the PS is the manager interface that can request data and or send commands ad lib.
Moreover, since the GP port is the only port with a master interface, this connection

12

is usually necessary. The same AXI wrapper can also implement an AXI-Stream
manager, which can be used to build a processing chain in the PL and to stream
data to the PS through the HP port. The two interfaces together can be used to
fetch and stream data asynchronously from two independent interfaces and route
them to different paths.

The Xilinx LogiCORE IP for the AXI XADC is a ready-made wrapper for reading
the results of the conversions or the status information of the XADC. This IP also
embeds an interrupt controller that can be configured by 3 registers, the GIER, the
IPISR and the IPIER, and attached to the GIC pin dedicated to the PL part. The
GIER enables the IP2INTC_irpt line, which is driven by the IPISR interrupt event,
if the corresponding bit of the IPIER is enabled. An interrupt event could be an
alarm or the end of a conversion, which sets the corresponding bit in the IPISR to
send an IRQ. When the IRQ is received, the IPISR must be cleared, otherwise the
IP2INTC_irpt line will remain asserted and the IRQ pendent.

The XADC is clocked by the DCLK, which is used to communicate over the 16 bits
DI and DO IO ports controlled by the DEN and the DWE signals. The ADCCLK
is the main clock of the A/D conversion, it is obtained by a 4× pre-scaling of the
DCLK and must be in the range from 4MHz to 26 MHz, therefore the DCLK must
be in the range of 16 MHz to 104 MHz. The A/D conversion process can be divided
in two phases, an acquisition phase and a conversion phase, which are done by two
separate circuits, a T/H amplifier and the digital converter. The conversion phase
takes always 22 ADCCLK periods to convert the signal, during which the BUSY
flag is asserted. The converter stops when the XADC deasserts the BUSY flag and
the converted channel can be read from the 5 bits of the CHANNEL signal. After
the conversion, the XADC takes other 16 DCLK cycles, equivalent to 4 ADCCLK
cycles, to store the data in the relative register, and only at this point the EOC flag
is asserted.

The XADC can be configured to work in continuous sampling mode or event
driven mode, and can handle two simultaneous conversion to keep phase relation.
In event driven mode, the sampling instant is determined by the signal CONVST
rising edge, after which the conversion starts at most one DCLK cycle after, and the
T/H amplifier is free to acquire the next sample. During the acquisition phase, the
T/H amplifier charges a capacitor that will hold a constant value for the conversion
phase. The T/H amplifier requires a minimum settling time to follow the input
variations, which limits the time between the EOC of the previous channel and the
start of the actual conversion. For a converter with NBIT , the correct settling time
ts allows the T/H amplifier output to follow the input value with an error that is

13

less than half LSB. The T/H amplifier can be approximated by a gain controlled
generator with an input capacitance of C = 3pF , therefore the output follows a first
order response and the IO error decreases exponentially with time

VO = (1− e−t/τ)VI

e−t/τ ≤ 1

2NBIT+1

ts ≥ τ ln 2NBIT+1

(1.1)

The time constant τ = RC is fixed by the source impedance of the circuit connected
to the channel. The source impedance has a minimum value that depends on the
selected channel, which is 100kΩ for the auxiliary multiplexed inputs and 100Ω for
the dedicated input.

1.1.3 DSP48E1

Figure 1.4: DSP48E1 simplified structure showing the pipeline, the data width and
the possible configurations. Reference guide image [11].

The DSP48E1 is an optimized processing block for high speed and high resolution
operations, that is built with a pipeline structure with a pre-adder, a multiplier and
a ALU. There are 4 optionally buffered inputs with different width, A of 30 bits,
B of 18 bits, C of 48 bits, and D of 25 bits, which are routed to different paths to
build complex architectures. A and D feed a 25 bit pre-adder, that can also be used
as a subtractor depending on the input mode selector. The pre-adder result has a
width of 25 bits, without an extra bit to prevent the overflow of the sum, therefore

14

both inputs must be saturated to 24 bits values. The pre-adder result is optionally
buffered and routed to the 25x18 two’s complement multiplier together with the 18
bits input B that can be optionally buffered twice for time delay matching. The
43 bits multiplier output is optionally buffered, signed extended to a 48 bit number
and routed together with the 48 bit input C to the ALU. The result is stored in a 48
bit register, directly routed to the output or through a comparator with a preloaded
matching value. The 30 bits of A can be concatenated with the 18 bits of B to
build a 48 bit data that is routed directly to the ALU, capable of performing SIMD
operations with the C input, like 2x24 bits or 4x12 bits sums. Another possibility is
to route back the 48 bit bits of the output to the ALU and use the output register
like an accumulator.

15

Chapter 2

PWM control technique

Figure 2.1: DPWM control technique principles

2.1 Pulse Width Modulation
The PWM is a technique to encode the signal information in the width of a series

of pulses with fixed frequency and amplitude. A comparator and a ramp generator
are the only two elements required to implement the PWM, making it simple and
popular among all the other binary modulation techniques. The modulating signal
m(t) is continuously compared with the ramp, and the output of the comparator c(t)
is driven LOW when the carrier exceeds the modulating signal. The ramp r(t) may
be a sawtooth or a triangular wave with fixed period TP , which allows to obtain a
rectangular wave with different symmetry properties and with a fixed repetition rate
FP . Using the saw ramp the output rectangular waveform turns to be asymmetric
and, depending on the counting sequence and how the comparator output is set at
the beginning of each period, two type of modulating options are possible: trailing-
edge and leading-edge modulation. Trailing-edge modulation is obtained driving the

16

comparator output HIGH when the modulation period begins, which can be done
by starting the counter from zero and counting upward. Similarly, the leading-edge
modulation starts each period with the comparator output LOW, which is done by
initializing the counter to its maximum value and let it count downward. By using
a triangular ramp, the output rectangular waveform becomes symmetric, and both
edges are modulated in one modulation period. In this case there is no more a
trailing-edge and a leading-edge, but there are still two possible counting starting
point that lead to a centered symmetric or lateral symmetric output waveform. Note
that in practice, there is no need to implement two mechanisms to make the counter
start from zero and count upward and then change direction or vice versa, because
it only depends on the reference point of view.

(a) Trailing-edge PWM with saw ramp

(b) lateral-edge symmetric PWM with triangular ramp

Figure 2.2: PWM of a sinusoidal signal

17

Carrier Ramp Modulator Input Comparator Output Trailing Edge Leading Edge

r(t) m(t) c(t)
c(nTP) = HIGH

r(t) → UP
c(nTP) = LOW
r(t) → DOWN

Table 2.1: PWM signal names and output properties

Due to its low complexity the PWM can be realized with analog, digital or mixed
signal electronics. A fully analog implementation requires a comparator with high
slew rate and high bandwidth fed by a precise continuous time ramp. Analog systems
can reach fast modulation periods, but they suffer from mismatches and offsets
or signal interference and noise. On the other hand, digital solutions use reliable
numeric comparators and counters to generate the ramps. Digital counter needs to
be clocked at high speed to reach the same performance of a simpler analog ramp
generator, but there is a breakeven point where the analog solution becomes more
greedy in terms of resources. In fact, VLSI benefits the digital counter making
it faster, while analog ramp generators require more and more power or complex
architectures to operate at high frequencies.

Hybrid solutions are also possible; usually, the generation of a modulating signal
is easier with digital electronics, which can be converted by a DAC and fed to the
analog comparator. This is the classic way to interface a digital controller keeping
the analog modulator, which is possible because the modulating signal is much
slower than the ramp. On the other hand, the conversion of a digital ramp to feed
the analog comparator requires high speed DACs, that are less competitive with
respect to an analog ramp generator, making this solution not useful.

2.1.1 Modulator Model
A model is used to describe and analyze the behavior of the modulator, understand

how to use it and how it interacts in the full system. To generalize the model, the
comparator output c(t) can be considered a signal that can assume only the values
HIGH = 1 and LOW = 0. Then, the comparator output drives a switch that
modulates the switching variable vs(t) performing a non-linear operation

vx(t) = vs(t)c(t) =

vs(t) when c(t) = 1

0 when c(t) = 0
(2.1)

The comparator on-off behavior can be modelled like in Fig. 2.3, as a normalization
stage after which is introduced a distortion e(t) due to the comparator behavior.
This distortion is essential for the modulation, and it is correlated to both the carrier
and the modulating signal in a non-linear manner, however there are some conditions

18

1
MAX

+ ×m d

e

c

vs

vx

Figure 2.3: Modulator model showing the superimposed distortion introduced by
the comparator and the switching stage.

when the two contributions can be separated, and the original signal restored with
a demodulation technique. By looking at the spectral decomposition in Fig. 2.4a,
the comparator output can be analyzed by separating it in two components: the
contribution c̄(t) due to the low frequency spectral components in the baseband,
and that due to the high frequency spectral components ĉ(t) around the modulating
frequency FP

c(t) = c̄(t) + ĉ(t) = d(t) + e(t) (2.2)

The modulation process is supposed to encode the modulating signal into the base-
band frequency, therefore c̄(t) = d(t), and the distortion into the high frequency
component ĉ(t) = e(t). This happens only under two conditions: high modulation
frequency (HMF) and input limited bandwidth (ILB). The HMF allows to shift the
error spectrum far from that of the modulating signal, such that it doesn’t alias into
the baseband frequencies. The ILB condition prevents the PWM to spread the har-
monics of the modulating signal, starting from the modulating frequency, towards
the baseband. Fig. 2.4 shows that the generated harmonics are located at a relative
distance kFM from FP , with FM a generic tone of the modulating signal. Without
considering other effects such as intermodulation harmonics, the error spectrum can
be considered extinguished when k = −4.

The simulated model also shows that the triangular ramp gives higher perfor-
mances with respect to the saw ramp with the same switching period, however, this
may be misleading because the saw requires half bandwidth compared to that of
the triangle. In practice, giving the same technology it is always possible to imple-
ment a saw ramp that goes two times faster than a triangular ramp, making both
techniques useful for different situations.

Looking at equation (2.1), it is clear that the spectrum of the modulated variable
will be the convolution Vx(f) = C(f) ∗ Vs(f). This complicates again the possi-
bility of separating the spectral components, however in many practical situations
there are conditions and properties that simplifies it. For example, when the switch-
ing variable is constant vs(t) ≡ Vs, the switch operates as a constant gain for the

19

(a) Sinewave spectrum with saw ramp modulation

(b) Sinewave spectrum with triangular ramp modulation

Figure 2.4: Spectrum of a pulse width modulated sinewave

comparator output.
vx(t) = Vsc(t) (2.3)

On the other hand, when the modulating signal is constant m(t) ≡ M , the compara-
tor output has a constant mean value, that is the ratio of the pulse width TW and
the modulation period. This ratio is called the duty-cycle D, and it is also related
to the modulating signal

D =
TW

TP

=
M

MAX

(2.4)

In general, if the switching variable is relatively slow vs(t) = v̄s(t) with small am-
plitude and limited bandwidth, its spectrum combined with the distorted spectrum
doesn’t alias in the baseband, and it is possible to separate the modulated variable

20

in the low spectral component v̄x(t) and the high spectral component v̂x(t)

v̄x(t) = v̄s(t)d(t)

v̂x(t) = v̄s(t)e(t)
(2.5)

All these properties can be used to linearize a model for the low frequency compo-
nents, under the hypothesis of HFM and ILB, and find a transfer function around
its operating point Q = (D, Vs). This can be done by considering all signals made
of a constant component and a small variation around it, and then truncating the
Taylor series expansion to the first order

d(t) = D + d̃(t)

v̄s(t) = Vs + ṽs(t)

v̄x(t) = Vx + ṽx(t)

f(d, v̄s) ≊ f(D, Vs) +
∂f

∂d

∣∣∣
Q
(d−D) +

∂f

∂vs

∣∣∣
Q
(v̄s − Vs)

(2.6)

As a result, the expression of the modulated variable becomes that of two input
system with an offset determined by the operating point.

v̄x(t) = d(t)v̄s(t) = DVs + Vsd̃(t) +Dṽs(t) (2.7)

Again, it should be noticed that, if one of the two variable is kept constant d̃(t) = 0

or ṽs(t) = 0, the other is simply gained, and this holds without approximations.

2.1.2 Digital PWM
The DPWM realization closely resembles its continuous-time analog counterpart,

with the key difference being the finite resolution of time and amplitudes. Typi-
cally, the modulating signal is generated using an MBIT counter that increments
or decrements at each clock cycle TCLK . The counter maximum value MAX falls
within the range of [0 : 2MBIT − 1], and the time resolution is dictated by the
clock period TCLK . As a result, the modulating frequency FP is constrained by the
counter number of bits.

FP =
FCLK

MAX + 1

TP ≤ 2MBITTCLK

(2.8)

21

These equations hold for the modulation with the sawtooth ramp, but the mod-
ulation period should be doubled when using the same counter resolution with a
triangular ramp.

The set of possible values for the modulating signal is also limited by MAX , leading
to the concept of the equivalent number of bits ENOB. This qualitative value is
defined as the base-2 logarithm of the number of possible values that the modulating
signal can assume. This definition combined with the modulating period constraint
(2.8), shows that there are no ways rather than increasing the clock frequency to
keep both fast modulation and high resolution

ENOB = log2(MAX + 1) = log2(
FCLK

FP

) (2.9)

Although the ENOB well defines the performance of the DPWM, there are other
dynamics aspects that impacts on the system behavior, like the dead-time of the
comparator update and the acquisition time instant. In most of the digital imple-
mentations, the modulating signal is updated once per modulation period, which
leads to an input-output delay effect. In a continuous-time PWM this effect doesn’t
occur because the comparator always compares the instantaneous value of the mod-
ulating signal. On the other hand, the DPWM compares the value fixed at the
beginning of the modulating period introducing a variable delay TD. When using
the saw ramp, this delay depends on the operating point TD = DTP , while using
the triangular ramp, this delay becomes constant and equal to TD = TP/2 because
the delay of the first edge is compensated by an anticipation of the second edge.

To mitigate the delay effect, the update frequency FU must be increased, mak-
ing the digital DPWM more similar to a continuous-time version. By updating the
counter more frequently, a variation of the modulating signal is followed with less
delay, and the DPWM becomes more reactive. This improvement isn’t free, be-
cause the processing of each new value and the transfer to the comparator should
be completed within each updating period. A fast processing system with fast com-
munication interfaces may sustain the update rate, however the only way to keep
up with high frequency update is to use ad-hoc DSP subsystems.

2.2 Control System
Control systems are designed to regulate the output of a process by operating in

open-loop mode or a closed-loop mode. Open-loop control system works without
feedback from the process, relying solely on the process model, therefore they are
used when the process is well predictable, stable and without environmental distur-
bances. Sometimes a control system works in open-loop mode because a process

22

state can’t be measured, or it sends feedback signals only while it is running. On
the other hand, closed-loop control systems operate by sensing the output and by
adjusting the process input until the desired set point is reached. The feedback
allows taking into consideration also environmental changes and disturbances that
are affecting the process, and possibly compensate them.

In closed-loop control systems, the process output y is measured and compared
to the desired set point u. The negative feedback control uses the difference of
these signals to feed the controller that modifies the process input until the error
e becomes zero. The controller is usually designed in the forward path such that
the closed-loop transfer function AF (s) can be forced to follow the desired feedback
behavior when the loop gain T (s) is high enough.

AF =
A

1 + Aβ
=

1

β

T

1 + T

AT = lim
T→∞

AF =
A

T
=

1

β

(2.10)

This ideal feedback behavior is called the theoretical gain AT (s), defined as the ratio
between the open-loop gain A(s) and the loop gain, that turns to be noise gain, the
inverse of the feedback gain β(s). On the other hand, when the loop gain drops to
zero, the closed-loop gain will follow the open-loop gain, behaving like no feedback
is applied.

+ C(z) PWM P (s)

ADC

u e m

vs

vx y

−

Figure 2.5: Digital PWM control system with discrete time controller

Fig. 2.5 shows the digital PWM control system which falls in the category of a
mixed-signal non-linear system. It is composed of a digital controller C(z), a PWM
that acts on the analog process P (s), and the digitalized output that feeds back
the controller. The purpose of a PWM control system is to control the average
value of the process output ȳ(t), by controlling the average value of the modulated
variable v̄x(t). In some particular application, it is also required to control the
process against the variation of the switched variable vs(t). An example could be a
DC/DC converter, where the output voltage should be kept stable even if the input

23

voltage drops. A more complex example is the PFC, that forces the output average
current to follow an input proportional to the voltage u = kvs. PWM systems are
always MIMO systems, but, except from specific applications, one of the two inputs
is always chosen as the control signal while the other is considered a disturbance.
In fact, it is always possible to build a controller that eliminates the disturbance,
while it can track the input reference.

2.2.1 Controller Design
The most straightforward method to design a controller, which can be imple-

mented by a digital system through an algorithm, is to emulate the behavior of a
continuous time controller and use a discretization process that matches the fre-
quency response. The two main transfer functions of the PWM are evaluated from
the PWM linearization, and they are called the control-to-output gain G(s) and the
open-loop susceptibility N(s). The choice of the names is due to the path of the
relative signals, the first is the signal that controls the process while the second is
usually considered a noisy signal injected in the process.

G(s) ≜
ỹ(s)

d̃(s)
|ṽs=0 = VsP (s)

N(s) ≜
ỹ(s)

ṽs(s)
|d̃=0 = DP (s)

(2.11)

In the PWM model, the comparator introduces a scale factor M−1
AX which normal-

izes the modulating signal to the auxiliary variable d(t). The physical dimension of
this quantity depends on the PWM implementation, but it is always related to the
ramp or the comparator input signals. In an analog modulator the ramp is usually
a voltage compared to another voltage signal, therefore MAX is measured in Volts.
In the DPWM, it is related to the resolution of the counter 2ENOB which is adimen-
sional, and the dimension is introduced by the gain V of the switching stage. The
contribution of these two coefficients, the comparator scale factor and the switching
gain, is combined in the total PWM scale factor α.

In a digital control system, also the ADC introduces a normalization scale factor
g, because it maps the value withing the FSR into a number of BBIT . Furthermore,
the conversion delay, the modulating update mechanism of the DPWM, and the fact
that its value is held for an entire sampling period, will affect the loop-gain with
a total delay effect e−sΓ which degrades the phase margin. In the ideal situation,
the ADC samples and converts the signal in an infinitesimal amount of time, just
before the updating of the modulating signal, which then holds the converted value
for a sampling period T . However, in real systems the data conversion takes a finite

24

amount of time, which then requires to be processed and finally transfered to the
modulator.

PWM Scale Factor ADC Scale Factor Discrete Delay FX Open-Loop Gain Loop Gain

α =
Vs

MAX

g =
2BBIT

FSR

e−sΓ A = CαP T = Aβ

Table 2.2: PWM controller loop gain parameters

After the loop is closed, two transfer functions can be identified: the closed-loop
gain AF (s) and the noise-loop gain NF (s)

ỹ =
A

1 + T
ũ+

N

1 + T
ṽs = AF ũ+NF ṽs (2.12)

Both transfer functions have a particular behavior when the loop gain is high, T >>

1 in the complex sense, and they also share the stability property. In fact, under the
hypothesis of high gain, the closed-loop transfer function will follow the theoretical
gain, while the noise-loop gain drops to zero

lim
T→∞

AF (s) =
1

β

lim
T→∞

NF (s) = 0

(2.13)

The stability property is determined by the loop gain, more precisely, if the denom-
inator 1 + T reaches zero in the complex plane then the output becomes unstable.
This happens because the loop introduces positive feedback in the system, by delay-
ing some harmonics in phase with the input without attenuating or boosting them.
In a negative feedback control system, this happens when the phase of the loop gain
is inverted ∠T (jω) = −180o while its module drops to the unity |T (jω)| = 1. The
objective of the controller is to keep the loop gain high when possible and to adjust
the phase around the crossing frequency to prevent positive feedback.

KI

s

KP

sKD

+
e m

Figure 2.6: PID controller block diagram

A well known controller that implements all these features is the PID controller

25

of Fig. 2.6, that has a pole in the origin which ensure zero asymptotic error for
stationary inputs, and two zeros to rise the phase margin before the loop gain
reaches the unity

CPID(s) = KP +
KI

s
+KDs =

s2KD + sKP +KI

s
(2.14)

Each coefficient is used for a specific purpose, the proportional term KP sets the
intensity of the response, while the integral term KI determines how to react if
the error is accumulated over time. The derivative term KD is used to increase
the response intensity when fast transients occur, but it should be used with care,
especially when noise is injected in the loop. With this in mind, the system response
can be set tuning the parameters and looking at the response in time. When a model
of the process is available, the PID can also be designed in the frequency domain
by placing the zeros in the correct position to rise the phase margin and adjust the
bandwidth.

Figure 2.7: Bode plot of the PID designed with the asymptotic technique

The design can be done by looking at the asymptotic behavior of the integrative
and the derivative action, that allows to set the PI and PD action independently. At
low frequencies, the PI action is dominant over the derivative action, therefore the
PID follows the term KI/s which drops below the unity when ω ≥ KI . When the

26

integrative action becomes comparable with the proportional action KP = KI/s,
the first zero appears at ωPI . If the derivative action is still zero sKD ≊ 0 when
the integrator contribution drops to zero KI/s ≊ 0, the PI response asymptotically
lies down to the proportional gain KP . Without a derivative action KD = 0, the PI
controller design is finished with only two parameters which are used to adjust the
gain and the phase.

ωPI =
KI

KP

lim
ω→∞

|CPI(jω)| = KP

∠CPI(jω) = −π

2
+ tan−1(

ω

ωPI

)

(2.15)

If a derivative action is required to boost the phase margin, this shouldn’t interfere
with the integrative action, therefore its contribution should start at higher frequen-
cies. The derivative action KDs rises above the unity for ω ≥ 1/KD, and when it
becomes comparable to the proportional action KP = KDs, the second zero appears
at the frequency ωPD

ωPD =
KP

KD

∠CPID(jω) ≊ −π

2
+ tan−1(

ω

ωPI

) + tan−1(
ω

ωPD

)

(2.16)

This design is based on several approximations, however it returns good results when
the derivative action starts one decade above the integrative action 1/KD ≥ 10KI

like in Fig. 2.7

2.2.2 Discretization
The discretization method is used to transform the continuous-time controller C(s)

in a discrete-time controller C(z) that can be implemented through an algorithm in
a digital system. There are methods aimed to conserve the time domain response
like the ZOH, and others that tries to conserve the frequency response. Time domain
conservation is used to translate the overall process with its interface, usually the
DAC and the ADC, in a discrete-time system and then build a controller in the
discrete domain. When the controller has been designed in the continuous-time
domain, frequency response conservation is used to guarantee that the discretization
doesn’t destabilize the control system. The purpose of frequency conservation is to
approximate the map z = esT , which is the relation between the Zeta transform of
a discrete-time signal y(nT) and the Laplace transform of the sampled signal yδ(t).
The sampled signal yδ(t) is modelled by the linear combination of a continuous time

27

signal and the periodic repetition of a Dirac impulse δ(t)

yδ(t) =
∞∑
−∞

y(t)δ(t− nT) (2.17)

To find a relation between the two domains, these methods try to approximate
the derivative operator s with a function of z. The naive method is called backward
Euler which can be seen as a way of approximating the derivative in the point t = nT

with the incremental ratio of the actual sample and the previous one

df(t)

dt
|t=nT =

f(nT)− f(nT − T)

T

s =
1− z−1

T

(2.18)

A more accurate method is called the Tustin method, which approximates the inte-
gral operator 1/s with the trapezoidal integration∫ nT

nT−T

f(τ)dτ = F (nT)− F (nT − T) = [f(nT) + f(nT − T)]
T

2

s =
2

T

1− z−1

1 + z−1

(2.19)

For these methods the frequency conservation is not always guaranteed, and it
needs to be checked by substituting z = ejωT and compare it to s = jω. Looking at
the way the Euler method approximates the map, it works well below the sampling
frequency f << F = 1/T , while the Tustin method gives good results also at higher
frequencies because the error term drops faster to zero

s =
1− e−jωT

T
≈ jω ⇐⇒ ω2T 2

2
≈ 0

s =
2

T

ejωT − 1

ejωT + 1
=

2

T
j tan(πfT) ≈ jω ⇐⇒ ω3T 3

3
≈ 0

(2.20)

Both methods introduce a frequency distortion called warping, however, the Tustin
methods allows to compensate this effect with a pre-warping operation to obtain
the right target frequency f̄

f =
arctan(πf̄T)

πT
(2.21)

The PID controller in the discrete domain is obtained by using the Euler method
EPID(z) or the Tustin method TPID(z). A straightforward way is to discretize both
the integrator KI/s and the differentiator KDs, and then rearrange the Zeta transfer

28

function to obtain a block diagram which can be implemented by an algorithm

EPID(z) = KP +
KIT

1− z−1
+KD

1− z−1

T

TPID(z) = KP +
KIT

2

1 + z−1

1− z−1
+KD

2

T

1− z−1

1 + z−1

(2.22)

All Zeta transfer functions can be written in the canonical form, by finding all
coefficients an and bm, and implement the autoregressive moving-average (ARMA)
structure.

N∑
n=0

any(kT − nT) =
M∑

m=0

bmx(kT −mT) (2.23)

The ARMA structure is a generic compact way of implementing every linear discrete
response, and it can be directly mapped to an algorithm. The full PID can be
grouped and computed with the ARMA algorithm, however, keeping the discretized
integrator and the differentiator separated allows to implement more sophisticated
control algorithms like the anti-windup integrator, useful to block the saturation
effect of non-linear systems.

The integrator and the differentiator can be visualized from the block diagrams
of Fig. 2.8 and Fig. 2.9. Both the Euler integrator EI(z) and the Tustin integrator
TI(z), use an accumulation mechanism, while the Tustin integrator also delays the
input to keep trace how it changes.

EI(z) =
KIT

1− z−1

yn = kixn + yn−1

(2.24)

TI(z) =
KIT

2

1 + z−1

1− z−1

yn = ki(xn + xn−1) + yn−1

(2.25)

Similarly, the differentiator discretized with the Tustin methods TD(z) keeps trace
of how its output changes, differently to that discretized with the Euler method
ED(z).

ED(z) = KD
1− z−1

T

yn = kd(xn − xn−1)

(2.26)

29

TD(z) = KD
2

T

1− z−1

1 + z−1

yn = kd(xn − xn−1)− yn−1

(2.27)

KIT +

z−1

x

(a) Integrator KI/s discretized with Euler method

KIT
2

z−1

+

z−1

x

(b) Integrator KI/s discretized with Tustin method

Figure 2.8: Integrator block diagrams after discretization

KD

T

z−1

+
x

−

(a) Differentiator sKD discretized with Euler method

2KD

T

z−1

+

z−1

x
−

−

(b) Differentiator sKD discretized with Tustin method

Figure 2.9: Differentiator block diagrams after discretization

2.3 Analog to Digital conversion
The digital to analog conversion, as well as the inverse operation, is one of the most

delicate part of the signal acquisition and discretization. It may be divided in three
main components: sampling, quantization and holding operation. The sampling
operation converts the continuous time signal y(t) in the discrete time signal y(nT).
The quantization translates each value of the input in a numeric value with a fixed

30

A unique relation can be found only if the original spectrum is band limited and
the sampling frequency is at least twice the signal bandwidth F ≥ 2BW . If so, the
sampled spectrum becomes the repetition of the original spectrum centered at kF

yδ(s) =

∫ +∞

−∞
y(t)

1

T

∞∑
k=−∞

ej2πkFte−stdt =
1

T

∞∑
k=−∞

y(s− j2πkF) (2.31)

This fact is better known as the Shannon-Nyquist theorem that describes how to
reconstruct a continuous time signal from a discrete time signal. In practice there
are other effects that may corrupt the correct sampling process, like the jitter of the
sampling instant or some noise with high spectral components. The consequence of
the jitter is a superimposed noise due to the uncertainty of the sampling instant,
which is greater for signals with a fast rate of change. On the other hand the high
spectral components of the noise injected into the sampling process can alias with
the signal spectrum. For these reasons, an anti-aliasing filter that limits the signal
frequency is always recommended before the sampling procedure.

2.3.2 Quantization
In digital systems the values are encoded with a finite number of bits introducing

an error over the true value of the discrete time signal y(nT). This amplitude
discretization is called quantization and the error is called quantization error. The
quantization error is correlated to the signal and the sampling instant, however it
can be modelled as a continuous value discrete time random variable eq(nT) with
uniform probability that can assume values in the range [−∆/2,+∆/2], where the
quantization interval ∆ is determined by the number of bits BIT and the full scale
range FSR of the quantizer

∆ =
FSR

2BIT − 1
(2.32)

Apparently, the only way to reduce the error effect is to increase the quantizer
number of bits, but there is another clever way of doing it, which is based on the
estimation of the true value from multiple closely related samples. This method can
be derived from a full characterization of the quantization error and by looking at
the spectral decomposition of a random signal.

First, all continuous value random variables are characterized by their probability
density function PDF (e), a function that integrated over an interval [a, b] gives the
probability that the variable takes a value of that interval. This function can be used
to evaluate the mean µ1 and the variance σ2 using the kth-moment definition µk. A
uniform distribution has a constant PDF, inversely proportional to the cardinality of
the interval of possible values, from this fact it is possible to find all the parameters

32

of the quantization error

PDF (e) =
1

∆
(2.33)

µk =

∫ +∞

−∞
ekPDF (e)de (2.34)

µ1 =

∫ +∞

−∞
ePDF (e)de =

1

∆

∫ ∆/2

−∆/2

ede = 0

σ2 = µ2 − µ2
1 =

∫ +∞

−∞
e2PDF (e)de =

1

∆

∫ ∆/2

−∆/2

e2de =
∆2

12

(2.35)

Second, the variance can also be derived from the autocorrelation function Ree(τ),
which is the measure of the similarity between a signal with a delayed copy of itself.
When the delay is zero τ = 0, the autocorrelation becomes the second moment µ2 =

Ree(0), and it represents how likely the signal changes around its mean. The precise
formulation depends on the signal type, continuous, discrete, finite or periodic, but
more important is the consequence of the Wiener-Khinchin theorem which states
that power spectral density PSD(f) is the Fourier transform of the autocorrelation
function

PSD(f) =

∫ ∞

−∞
Ree(τ)e

−j2πfτdτ

Ree(τ) =

∫ ∞

−∞
PSD(f)e

−j2πfτdf

(2.36)

Vice versa, the autocorrelation is a measure of the signal power, in particular, if
evaluated in zero, it becomes the average power Ree(0) = PE which for a discrete
time signal can also be evaluated by integrating the power spectral density up to
the sampling frequency

PE =

∫ +F/2

−F/2

PSD(f)df (2.37)

The samples of a true random signal are completely uncorrelated one with the
other, which means that the autocorrelation of a random signal must be zero except
when the delay is zero Ree(τ) = 0 ∀ τ ̸= 0.

Ree(τ) = µ2δ(τ) (2.38)

For this reason the PSD of a random signal is constant at all frequencies because it is
the Fourier transform of a Dirac delta function. It follows an important property of
the quantization error, in fact, since the integration of the PSD gives the variance σ2

which is fixed by the quantizer level ∆, then the PSD must be inversely proportional

33

to the sampling frequency F

PSD(f) =
∆2

12F
(2.39)

This means that it is possible to oversample the signal and use a digital filter to
keep the signal spectral components while reducing the PSD and the average error
power PE.

2.3.3 Holding
The holder is a block useful to model a digital to analog interface that returns a

continuous time signal yh(t) keeping constant the discrete time signal y(nT) for a
whole sampling period. The constant holding function, also called zero order hold,
is described by means of two Heaviside step functions h(t) forming a rectangular
impulse that lasts exactly one sampling period

yh(t) =
+∞∑
n=0

y(nT)
[
h(t− nT)− h(t− nT − T)

]
(2.40)

From this definition it is possible to find a transfer function with respect to the
continuous time sampled signal yδ(t) which is related to the Zeta transform of the
discrete time signal y(nT) through the map Yδ(s) = Y (z = esT)

Yh(s) =
+∞∑
n=0

y(nT)
[e−snT − e−s(n+1)T

s

]
=

1− e−sT

s

+∞∑
n=0

y(nT)e−snT =
1− e−sT

s
Yδ(s)

(2.41)

By looking at the frequency response of the ZOH transfer function, it is possible
to estimate the delay of the digital system response, which is constant and equal to
half of the sampling period T/2

ZOH(s) =
1− e−sT

s

ZOH(jω) =
ejω

T
2 − e−jω T

2

ejω
T
2 jω

=
2sin(ω T

2
)

ejω
T
2 ω

∠ZOH(f) = ∠e−jω T
2 = −fπT

|ZOH(f)| =
sin(πfT)

πf

(2.42)

34

Chapter 3

Prototype

Figure 3.1: Block diagram of the prototype, showing the main data flow and the
design procedure

3.1 DPWM Implementation
The FPGA based DPWM is designed to be fully programmable from software,

such that the PS can configure all parameters by writing to some configuration
registers. The physical parameters, like the number of bits of the counter, are
configurable only during the bitstream generation, while the variable parameters,
like the counter MAX value, are configurable from software during run-time. To
make them soft-configurable, the components in the FPGA are connected to the PS
through an AXI interface that maps the DPWM registers in the PS memory.

35

Figure 3.2: DPWM block diagram showing the main connections

The design is subdivided in functional blocks, a counter to generate both the
saw ramp and the triangular ramp, the main PWM comparator with a compare
register that stores the modulating value and a trigger generator to synchronize
the acquisition and the update events. All DPWM blocks are described in VHDL,
mainly to make them portable but also because the underneath structure can be
inferred from the code. These two features of the VHDL code, allows the DPWM
to be implemented on other technologies rather than Xilinx FPGA, while it can be
optimized, tested and debugged in all its components.

3.1.1 Basic DPWM
1 COUNTER_LOGIC : process(clk_i)
2 begin
3 if rising_edge(clk_i) then
4 if counter_r >= unsigned(max_i) then
5 counter_r <= to_unsigned (0, counter_r ’length);
6 else
7 counter_r <= counter_r + 1;
8 end if;
9 end if;

10 end process;

Listing 3.1: counter VHDL

1 COMPARATOR_LOGIC : process(counter_r , comp_i)
2 begin
3 if counter_r < unsigned(comp_i) then
4 pwm_o <= ’1’;
5 else
6 pwm_o <= ’0’;
7 end if;
8 end process;

Listing 3.2: comparator VHDL

The basic DPWM is made of two main blocks, the counter and the comparator,
both described at behavioral level to let the compiler infer the best structure. The

36

counter is a sequential circuit made with an MBIT register, that is updated at every
clock rising edge and forced to restart from zero when it reaches the max_i value.
The max_i value is programmable in the range [0 : 2MBIT − 1], allowing for an
accurate control over the modulation period. The counter can optionally include an
enabling logic and reset logic, but the basic version is just a free running counter
that starts as soon as max_i is set to a value different from zero. The comparator is
a combinational circuit that constantly compares the counter with the comp_i value
and asserts the pwm_o line when it matches or exceeds the comparator value. The
comparator can optionally be inverted to implement the leading edge modulator, but
the basic version is just a trailing edge modulation. The comp_i value can be set
in the range [0 : MAX], such that the PWM output has a duty cycle of zero when
comp_i = 0 and a duty-cycle of one when comp_i = max_i + 1. Values greater
than MAX are possible but inherently saturated by the comparator logic, resulting
always in a 100% duty-cycle. This effect allows the comparator to work safely up
to 2MBIT − 1, but greater values should be saturated to prevent the overflow, either
by the software or with a dedicated hardware.

1 MATCH_COMPARATOR : process(counter_i , instant_i)
2 begin
3 if counter_i = instant_i then
4 trigger_o <= ’1’;
5 else
6 trigger_o <= ’0’;
7 end if;
8 end process;

Listing 3.3: trigger generator VHDL

The counter is routed to the trigger generator to synchronize all components that
interact with the modulator. Differently from a generic enabling signal asserted for
long periods, the trigger signal is a pulse that lasts a single clock cycle or a small
fixed period. Since the counter assumes a specific value only for a single clock period
in each counting sequence, the trigger can be generated by a comparator activated
on the match between the counter and a specific value.

The DPWM is configured and controlled from the PS, using a 32-bit configuration
registers connected to the AXI GP port. Each register is accessible in one read/write
transaction, therefore, to minimize traffic in the AXI bus, the parameters should be
grouped in few registers when possible. Two configuration parameters are enough
for the basic DPWM, one is the counter max_i value and the other is the instant_i
value for the trigger generator. If the DPWM has a 16 bit counter, these two val-
ues can be stored in a single 32 bit register, such that they can be accessed in a

37

single read/write operation. Even if the configuration parameters don’t require to
be changed frequently and with strict timing constraints, groups can be made to
minimize FPGA usage and also to force a correct setup. For example, by group-
ing the max_i value and the instant_i value in one register, these are forced to
change together to prevent errors like max_i < instant_i. On the other hand, the
main control parameters, like comp_i, that needs to change frequently without er-
rors, should be stored in dedicated registers accessible from a dedicated bus. Since
the DPWM configuration is usually done once, and doesn’t change during normal
operations but only when the DPWM stops, the comp_i value is stored in dedi-
cated register accessible from a single AXI bus for both configuration and runtime
parameters to reduce FPGA usage.

3.1.2 Up-Down Counter
1 UPDOWN_COUNTER : process(clk_i)
2 begin
3 if rising_edge(clk_i) then
4 if (resetn_i = ’0’) or (reloadn_s = ’0’) then
5 counter_r <= to_unsigned (0, counter_r ’length);
6 else --if (enable_s = ’1’) then
7 case updown_s is
8 when ’0’ =>
9 counter_r <= counter_r - 1;

10 when others =>
11 counter_r <= counter_r + 1;
12 end case;
13 end if;
14 end if;
15 end process;

Listing 3.4: updown counter VHDL

An important feature of the DPWM is the possibility to switch between a saw ramp
or a triangular ramp to implement both symmetric and asymmetric modulation. To
generate a triangular ramp, the counter should be able to count downward and
upward, and change its direction whenever it reaches the max_i value or zero. This
feature must be software selectable from a configuration bit attached to the input
sawtri_i. The counting direction is managed by a control unit through the signal
updown_s, which is set to 1 when the counter must count upward and 0 when it must
count downward. The up-down counter also needs some sort of reset mechanism,
either controlled externally from the input reset_i or by its own control machine
through the reset signal reload_s. The reset mechanism is necessary for two reasons,
to reset the counter when it reaches the max_i value, and to keep the counter to

38

Figure 3.3: Updown counter block diagram with range detection and status latch
logic

zero and ready to start. This second feature can be implemented with an enable_s

signal, that also allows starting the counter, however it turns to be a redundant and
not useful operation which complicates the control mechanism.

1 OVERFLOW_LOGIC : process(counter_r , max_i)
2 begin
3 if counter_r >= unsigned(max_i) then
4 over_s <= ’1’;
5 else
6 over_s <= ’0’;
7 end if;
8 end process;
9

10 UNDERFLOW_LOGIC : process(counter_r)
11 begin
12 if counter_r <= to_unsigned (0, counter_r ’length) then
13 under_s <= ’1’;
14 else
15 under_s <= ’0’;
16 end if;
17 end process;
18

19 range_s <= under_s & over_s;
20

21 UPDOWN_LOGIC : process(range_s , sawtri_i , updown_r)
22 begin
23 case sawtri_i is
24 when ’0’ =>
25 updown_s <= ’1’;

39

26 when others =>
27 case range_s is
28 when "01" =>
29 updown_s <= ’0’;
30 when "10" =>
31 updown_s <= ’1’;
32 when others =>
33 updown_s <= updown_r;
34 end case;
35 end case;
36 end process;
37

38 UPDOWN_REG : process(clk_i)
39 begin
40 if rising_edge(clk_i) then
41 if (resetn_i = ’0’) or (reloadn_s = ’0’) then
42 updown_r <= ’1’;
43 else
44 updown_r <= updown_s;
45 end if;
46 end if;
47 end process;

Listing 3.5: updown control logic VHDL

To choose the direction, the control unit checks the status of the counter, if the
max_i value is reached, it rises the overflow flag over_s, and if the zero is reached
it rises the under_s flag. These two conditions are then concatenated with the &

operator, not to be confused with the bitwise and, into the range_s flag used by the
control logic. The up-down control logic only cares about the sawtri_i selector,
the range in which the counter is, and the previous status registered in the flip-flop
updown_r. If the sawtri_i bit is not active, the control logic always tells the counter
to count upward, otherwise it checks the counter range and, whenever it overflows or
underflows, it forces the counter to change its direction to return inside the allowed
range. When the direction is corrected then it is kept until another out-of-range
event occurs, therefore the up-down control logic works like a switch driven by the
conditions.

1 RELOAD_LOGIC : process(range_s , sawtri_i)
2 begin
3 case sawtri_i is
4 when ’0’ =>
5 case range_s is
6 when "01" =>
7 reloadn_s <= ’0’;

40

8 when "11" =>
9 reloadn_s <= ’0’;

10 when others =>
11 reloadn_s <= ’1’;
12 end case;
13 when others =>
14 case range_s is
15 when "11" =>
16 reloadn_s <= ’0’;
17 when others =>
18 reloadn_s <= ’1’;
19 end case;
20 end case;
21 end process;

Listing 3.6: reload control logic VHDL

The counter reload logic is an essential part of the up-down counter, mainly for
the saw mode, and it is also part of the control sequence to properly start the
counter. When the counter is working in saw mode, the active low reload signal
reloadn_s is activated if the counter overcomes the upper range limit range_s =

01. The range_s status signal can also describe the situation when max_i = 0,
corresponding to the case when range_s = 11, which forces the counter to reload.
This operation may seem trivial, but it helps to keep the counter steady, otherwise
it may oscillate between 0 and 1. When the selected mode is the triangular ramp,
the counter doesn’t reload, except when max_i=zero and the range collapses.

3.1.3 Trigger generation
The DPWM comparator value comp_i is usually controlled directly by the user

or indirectly by an automatic control system. In both cases its value can change in
any instant of the modulation period, which in most of the cases can’t be predicted.
To synchronize the comparator update event to the modulation period there must
be a buffer register that is updated at regular intervals.

The buffer register is realized with DFFs, and it may be optionally bypassed if
not required or for any other reason. The update event is controlled by the trigger
generator that enables the register to store the value at the next clock cycle. Since
the enabling mechanism of the DFF is synchronous, the update trigger should last
at least one clock period and possibly less than two to prevent the latch of a second
value.

The trigger generator for the comparator update depends on the type of ramp.
When using the saw ramp, the trigger is generated when the counter reaches the
max_i value, such that the register is effectively updated when the counter is reloaded

41

(a) Sawtooth ramp DPWM with the comparator update at the beginning of each modu-
lation period, and the sample acquisition in the middle point of the ON period

(b) Triangular ramp DPWM with the comparator update and the sample acquisition at
the maximum and minimum counter instant

Figure 3.4: DPWM working modes showing the sample acquisition, the signal pro-
cessing, and the update of the comparator. The sequence starts with the acquisition
trigger, the ADC data is converted and elaborated inside the interrupt handler, but
the comparator register is updated only at the next update event

to zero. On the other hand, when using the triangular ramp, the comparator can
be updated when it reaches zero, when it reaches the maximum value, or also in
both cases. This selection is realized with an enabling stage made of AND gates
controlled by the peak_i and valley_i, which let the triggers propagates if enabled.
The enabling stage is followed by a merging stage made of an OR gate that allows
a single line to drive the update events. Finally, a multiplexer is added to prevent
the double update in case both peak_i and valley_i are enabled when using a
saw ramp. This multiplexer isn’t strictly needed to work properly, because the user
could simply disable the update at the zero matching condition. Even if both triggers
occur, they will be merged in a single trigger that last two clock cycles, resulting in a
non-critical soft error. Moreover, that multiplexer will introduce a latency, limiting

42

Figure 3.5: Comparator block diagram with buffer register for synchronization

Figure 3.6: Trigger generator for the comparator update optimized for the up-down
counter

the maximum achievable speeds. Although not needed, the final multiplexer is left
in the design, to clarify the update instant in saw ramp mode, and to force a safer
configuration.

In DPWM control systems, the sampling instant should be synchronized with
the modulation period to fully exploit the modulation properties. Depending on
the modulation type and the expected feedback signal, there are some strategic
instants used to extract more information than a pure amplitude value. Moreover,
depending on the controller behavior, the sampling instant could be set as close as
possible to the comparator update event to minimize the delay introduced by the
control system. These instant are usually at the beginning or at the end of the
counting sequence, at the rising edge or at the falling edge of the PWM output or
at the midpoints of the on-off periods.

The triggers for the acquisition events are realized using multiple comparators
that compare the counter value with the instant value. The comparators are routed
to an enabling stage made of AND gates, which is used to individually enable the
triggers with a set of control signals. Finally, the enabled triggers are merged into
a single line with a cascade of OR gates.

Since comparators are abundant in the trigger generation, it would be better if
they are optimized for the target technology. N-bit matching comparators in LUT
based devices are realized by subdividing the two inputs into groups with the same

43

Figure 3.7: Trigger generator for synchronized acquisition events

number of bits, and then comparing them using a divide and conquer method. These
groups are made with bits that belong to the same position of both inputs, otherwise
a comparison would be meaningless. With 6 bit input LUTs, like those embedded
in the Artix-7 CLB slices, it is possible to realize a comparison between 2 groups of
3 bits. These partial comparisons are merged into cascaded stages of LUTs that are
used to trigger the output if all the previous results are true. For example, a 16-bit
comparator, realized with 6 input LUTs, requires a total of 7 LUTs, 6 of them used
as partial comparators, and the last one to merge their results.

A single Artix-7 CLB is made of 2 slices with 4 LUTs each, therefore compara-
tors ranging from 12 bits up 18 bits are well optimized for this technology. When
many comparators are required there are other solutions to restrict the number of
implemented comparators and save resources. For example, using a multiplexer
controlled by a selector to route the acquisition registers to a single comparator.
However, if comparators are already implemented in other blocks, and their outputs
can be reused either by the user or by the compiler, a second different solution turns
into a waste of resources instead of saving them.

3.2 Controller implementation
The control system includes the ADC and the controller, implemented either via

software or with the hardware DSP. The XADC can convert up to 2 simultaneous
signals which are always stored in the relative registers and streamed through the
AXI-Stream bus. At each conversion the XADC sends an IRQ to the PS to inform it
that a new data is ready. Meanwhile, a sequence of data is streamed to a dedicated

44

Figure 3.8: Software controller routine compared to hardware controller data flow

block, that checks the data packet IDs and saves those it needs. By doing so the
converted signals can be elaborated both in the PS or in the PL, enabling different
control architectures. The software controller runs periodically inside an interrupt
handler, and it allows building complex behaviors like different anti-windup schemes.
On the other hand, the one built with the hardware DSP blocks tends to be simpler,
but it allows for deterministic low latency control schemes.

3.2.1 ADC configuration
The XADC is wrapped with the Xilinx AXI IP connected to the M_AXI_GP1

port and controlled from the PS. This allows to partially reconfigure the XADC
from software after the bitstream generation, as well as query the XADC as needed,
to read the converted signals or the status registers. The XADC works in event
sampling mode and the conversion start input convst_in is controlled by the trigger
generator. The conversion starts the first clock cycle after the convst_in rising edge,
and it takes 22 ADC clock periods to convert the sampled signal. After other 4 ADC
clock periods, the data is stored in the register, and it can be read from the PS with
an AXI read transaction.

1 // XADC base address position and register offsets
2 #define AXI_XADC_BASE_ADDRESS 0x7FFF8000U
3 // XADC register offset
4 #define STATUS_OFFSET 0x04U
5 #define VAUX1_OFFSET 0x244U
6 #define VAUX9_OFFSET 0x264U
7 #define GIER_OFFSET 0x5CU
8 #define IPISR_OFFSET 0x60U
9 #define IPIER_OFFSET 0x68U

10 // Inline definition for read and write
11 #define XADC_mRead(BaseAddress , RegOffset) \
12 Xil_In32(BaseAddress+RegOffset)
13 #define XADC_mWrite(BaseAddress , RegOffset , Value) \
14 Xil_Out32(BaseAddress+RegOffset , Value)
15

45

16 int main() {
17 uint16_t adc = XADC_mRead(AXI_XADC_BASE_ADDRESS , VAUX9_OFFSET);
18 }

Listing 3.7: XADC definitions C

Figure 3.9: XADC conversion with polling mode AXI read transaction shows that
a full conversion takes 107 DCLK cycles

The AXI Read transaction is usually asynchronous to the ADC conversion, and
it is difficult to understand if the data in the relative register is the new one or the
old one. This can be solved by looking at the channel[4:0] lines or by using a flag
to indicate if the data has already been read. However, these methods require to
continuously poll the XADC or a status register not to miss the data, which most
of the time is not useful. A more efficient way is to ask the processor intervention
at the end of each conversion with an interrupt, such that the PS can execute an
AXI Read transaction to the XADC register as soon as the data is converted, and
fetch the data.

1 void setupInterruptXADC(void){
2 u32 reg = 0;
3 reg = (1 << GIER);
4 XADC_mWrite(AXI_XADC_BASE_ADDRESS , GIER_OFFSET , reg);
5

6 reg = (1 << EOC);
7 XADC_mWrite(AXI_XADC_BASE_ADDRESS , IPIER_OFFSET , reg);
8 }

Listing 3.8: XADC interrupt setup C

To implement the interrupt system, the IP2INTC_irpt signal is routed to the
PS IRQ_F2P pin and configured to interrupt the processor. The IP2INTC_irpt is
enabled by the GIER, and the end-of-conversion event that triggers the interrupt is
enabled in the IPIER. This configuration is done by the software, possibly with a
safe procedure, for example by checking if other events are enabled to disable them.

1 #define INTC_DEVICE_INT_ID 61

46

2 void setupGIC(void){
3 // Initialize the GIC
4 static XScuGic InterruptController;
5 static XScuGic_Config *GicConfig;
6 GicConfig = XScuGic_LookupConfig(XPAR_SCUGIC_0_DEVICE_ID);
7 XScuGic_CfgInitialize (& InterruptController , GicConfig , GicConfig

->CpuBaseAddress);
8

9 // Assign the main handler for the interrupt exception
10 Xil_ExceptionRegisterHandler(XIL_EXCEPTION_ID_IRQ_INT ,
11 (Xil_ExceptionHandler)XScuGic_InterruptHandler , &

InterruptController);
12 // Enable the exceptions
13 Xil_ExceptionEnable ();
14

15 // Connect a handler to the device ID
16 XScuGic_Connect (& InterruptController , INTC_DEVICE_INT_ID ,
17 (Xil_ExceptionHandler)DeviceDriverHandler , (void *)&

InterruptController);
18 // Enable the device ID interrupt
19 XScuGic_Enable (& InterruptController , INTC_DEVICE_INT_ID);
20 }

Listing 3.9: GIC setup C

The GIC in the PS should be configured to receive interrupts from the IRQ_F2P

pins, which are a total of 16, each with a unique ID. Since the GIC is a non-vectored
controller, a unique primary handler is associated to each CPU. Every time an
interrupt exception rises, this handler polls the GIC to get the ID of the device that
asked for the interruption. This is done by the Xil_ExceptionRegisterHandler

that makes the XScuGic_InterruptHandler the main handler. All other device
handlers are connected and enabled to the main one by using XScuGic_Connect,
XScuGic_Enable and the unique INTC_DEVICE_INT_ID.

1 void DeviceDriverHandler(void *CallBackRef){
2 u32 reg = XADC_mRead(AXI_XADC_BASE_ADDRESS , IPISR_OFFSET);
3 XADC_mWrite(AXI_XADC_BASE_ADDRESS , IPISR_OFFSET , reg);
4 adc = XADC_mRead(AXI_XADC_BASE_ADDRESS , VAUX_OFFSET) >> 4;
5 }

Listing 3.10: XADC handler C

By doing so, the interrupt system is configured and the XADC handler is going
to be executed at the end of each conversion. However, since the IP2INTC_irpt

is one for all the XADC events, the only way to know which event has triggered
the interrupt is to poll the XADC with a AXI read transaction to the IPISR. This

47

operation can be neglected in case there is only one interrupt event active, like if the
system works only with the EOC event, but even in this case, there is no way rather
than polling the status register to check which channel has triggered the EOC event.
Moreover, the bit in the IPISR must be cleared with an AXI write transaction that
toggles the bit, otherwise the interrupt remains active, and the processor jumps
into it as soon as it exits the handler. If the first instruction is used to clear the
IPISR, then other events of the same nature can re-trigger IP2INTC_irpt and are
guaranteed to be served when the processor exits the handler. On the other hand, if
the IPISR is cleared with the last instruction, the processor can complete the tasks
in the handler with a lower latency.

In all the cases, the processor enters the interrupt handler with a variable delay
that depends on the CPU active tasks. The interrupt delay from the EOC is ap-
proximately 50 TCLK periods long, and in the best case it takes other 50 clocks
cycles to complete the handler routine. The initial delay can be reduced only using
the FIQ line of the processor or other software solutions, while the access delay can
be reduced by reorganizing the code to execute the most important read and write
operations first, keeping the same amount of time to complete the routine.

Figure 3.10: XADC interrupt handler showing that the EOC interrupt is served and
cleared approximately after 50 TCLK cycles, and the ADC value read after other 50
clock cycles

The AXI-Stream XADC interface allows streaming data with lower latency from
the EOC event, but it requires a subsystem capable of manage and dispatch the
converted data. In fact, the XADC tries to stream data by asserting the VALID line
as soon as a channel is converted, but if the subordinate doesn’t assert the READY

line, the data is pushed into a FIFO until it is full and the XADC stops working.

48

Moreover, by embedding the channel number in the transmission ID, the XADC
stream interface uses only one transmission line for all the channels. Therefore, it’s
up to the subordinate to check the ID and route the data to the right path, or throw
it away to flush the FIFO.

1 id_c <= std_logic_vector(to_unsigned(SNOOP_ID , ID_WIDTH));
2

3 -- s_axis_tready <= ’1’; --Always ready is a BAD PRACTICE
4 s_axis_tready <= s_axis_tvalid; -- The subordinate waits the

manager to assert TVALID
5 DATA_EXTRACTION : process(s_axis_aclk)
6 begin
7 if rising_edge(s_axis_aclk) then
8 if (s_axis_tvalid = ’1’) and (s_axis_tid = id_c) then
9 data_r <= s_axis_tdata;

10 id_r <= s_axis_tid;
11 end if;
12 end if;
13 end process;
14

15 adc_o <= data_r when (enout_i = ’1’) else (others => ’0’);

Listing 3.11: AXI Snooper VHDL

To manage the XADC stream, a solution is the AXI snooper, a controller that
asserts the READY line, checks the transmission ID, stores the data in a register and
throws away those that are useless. The implemented AXI snooper will also allow to
enable the output or force it to zero, for example to open or close the feedback loop.
Differently from a "sniffer" that checks the transmission line externally without
interfering with the operations, the "snooper" is actively involved. This is a basic
requirement to work with the AXI-Stream protocol because the data stream is always
pulled by the subordinate, not pushed by the manager. To pull the data stream, the
READY line can be left asserted to pretend that the subordinate is always ready and
prevent the stall of the XADC. However, this method isn’t safe, even if compliant
with the AXI stream rules, because the AXI snooper can miss some data, typically
when the subordinate is effectively busy while the manager sends them. A better
approach is to use the lazy property of the AXI subordinate, which allows it to flag
the ready status only when the manager has already validated a data. The AXI
snooper could also be upgraded to accept multiple IDs and store the different data
in more than one register, or snoop the transmission, store the data and re-stream
it.

3.2.2 Software Controller

49

Figure 3.11: AXI-stream compared with AXI-Lite, showing that the data is streamed
12 TCLK after the EOC, against the ≈ 90 clock cycles required by the PS to fetch
the data, and the 125 required to execute the algorithm

1 static uint16_t adc = 0;
2 static uint16_t ref = 0x777;
3 static int16_t err = 0;
4

5 static int32_t out = 0; // controller output
6 static int32_t out_max = 0xFFFF; //
7

8 void DeviceDriverHandler(void *CallBackRef){
9 // Set adc = 0 to open the feedback loop

10 adc = XADC_mRead(AXI_XADC_BASE_ADDRESS , VAUX_OFFSET) >> 4;
11 err = (int16_t) (ref - adc);
12 out = controlAlgorithm(err);
13 // Limiter
14 if (out < 0) {out = 0;}
15 if (out > out_max) {out = out_max ;}
16 // Write the PWM comparator and clear the pending interrupt
17 AXIREG_mWriteReg(AXI_REG0_BASEADDR , AXI_CMP_REG , out);
18 XADC_mWrite(AXI_XADC_BASE_ADDRESS , IPISR_OFFSET , 0);
19 }

Listing 3.12: Software Controller C

To implement the software controller, the XADC should be configured to send
the IRQ to the processor at each EOC event, such that the piece of code inside the
handler is executed periodically. The handler first reads the data from the XADC
with an AXI transaction, and then computes the error from the set point. The

50

converted channels are always stored in a 16 bit register and left aligned, such that
the adc[15:4] bits are the effective bits while the 4 less significant bits are random
bits that can be discarded or used for dithering. Also, the set point ref is stored
in a 16-bit unsigned integer, but it must be limited by the comparator maximum
value ref < 2MBIT to prevent the overflow of the PWM comparator, and it should
be limited by the counter maximum value to prevent the saturation.

By doing so, the error turns to be the difference of two 16-bit unsigned integers,
which should be stored in a 17 bit signed integer. However, by using 16 bits the
compiler can infer the use of special DSP instructions to accelerate the control
algorithm that returns the value out for the PWM comparator. Since the output
of the control algorithm may be a negative number, or it may exceed the maximum
PWM comparator value, it should be limited to prevent the overflow. Finally, the
saturated value is sent to the PL with an AXI write transaction, the interrupt is
cleared, and the processor exit the handler returning to normal operation.

To disable the feedback control, the adc variable must be set to zero and the algo-
rithm bypassed, either by modifying the code or by using other run-time methods.
A naive method is to use a soft-switch with a bool open variable controlled in the
main program to switch between y=ref if(open == 1) or to execute the control
algorithm if(open == 0). This method requires to check the open condition inside
the interrupt handler, that shouldn’t be a problem for an APU with a branch specu-
lator, but there are more sophisticated ways, like dynamically changing the content
of the interrupt handler using function pointers.

1 static uint16_t kp = 56590; // 1.727 x 2^15
2 static uint16_t kiT = 16685; // 0.5092 x 2^15
3 static uint16_t kdF = 21989; // 0.6710 x 2^15
4 static int32_t xi = 0; // integrator input
5 static int32_t yi = 0; // integrator output
6 static int32_t xd = 0; // differentiator input
7 static int32_t yd = 0; // differentiator output
8 static int32_t xold = 0; // delayed input
9 static int32_t yold = 0; // delayed output

10

11 void pidEuler(void) {
12 // Integrator
13 xi = (kiT*err) >> 15;
14 yi = yi + xi; //yold = yi is embedded;
15 // Differentiator
16 xd = (kdF*err) >> 15;
17 yd = xd - xold;
18 // PID Output

51

19 out = yi + yd + ((kp*err) >> 15);
20

21 // Update
22 xold = xd;
23 }
24

25 void pidTustin(void) {
26 // Integrator
27 xi = (ki2*err) >> 15;
28 yi = yi_1 + xi + xi_1;
29 // Differentiator
30 xd = (kd2*err) >> 15;
31 yd = xd - xd_1 - yd_1;
32 // PID merged output
33 out = yi + yd + ((kp*err) >> 15);
34

35 // update variables
36 xi_1 = xi;
37 yi_1 = yi;
38 xd_1 = xd;
39 yd_1 = yd;
40 }

Listing 3.13: PID control algorithms C

The PID control algorithm is realized by using the ARMA structure for both
the integrator and the differentiator, and then add them to the proportional part.
The coefficients of the PID are rational numbers coded in Q-format and stored
in 16 bits variables, and the input error err is a 16-bit signed integer. When a
rational Qm.n number is multiplied by an integer, the decimal point is moved by
n positions to the left, and it might require an adjustment by a post-shift to the
right. The multiplication doesn’t implicitly require the post-shift but only more bits
to represent the result, however, if the result is accumulated, some extra bits are
needed to prevent the overflow.

This effect is clearly visible in the integrator part of the Euler PID, that adds
its previous value to the product. The result of the multiplication xi = kiT*err

is stored in a 32-bit signed integer variable, and then added to the accumulator
which is also stored in a 32-bit signed integer register. This means that a post-shift
operation is necessary before the accumulation, otherwise the overflow would be
straightforward. In the basic implementation, all the 15 lower bits are discarded, and
the upper bits are used for accumulation. This solution simplifies the sum between
all the partial results because it doesn’t require another point alignment. However,
only the integer part of all multiplication is kept while the decimal part is always

52

thrown away. A better solution would be to reduce the bit for the accumulation and
use them for the decimal part. This requires to adjust the point when merged in
the final sum with some shifts, but the algorithm gains some resolution.

A secondary problem of the integrator is how it behaves around the saturation
limits when closed in a feedback loop. Let’s suppose the system has just been
turned on, the process output is zero and also the set point is at zero. The ADC
reads zero as the first value, the error is zero and the controller sends a zero value
to the modulator. Ideally nothing happens, and the situation is perfectly stable,
however, the ADC may read 1 as the second value because of some noise, the error
becomes negative, and the controller accumulates a negative error. At this point
the negative error is permanently stored in the accumulator because the ADC can’t
read a value below zero, and cycle after cycle it accumulates the noise contribution.
When the set point rises to the desired value, the controller output doesn’t react
until the integrator enters again in the linear region of the modulator. A similar
problem happens whenever the controller output saturate the modulator during a
transient and the system doesn’t react linearly to the controller, or when something
is clamping or limiting the process output. This effect is called windup, and, to
solve it, it requires a mechanism that removes the accumulation effect when the
saturation condition is detected.

1 static acc_max = 0x0FFF;
2

3 void antiwindup(void) {
4 // Integrator
5 xi = (kiT*err) >> 15;
6 yi = yold + xi;
7 // Saturation detector
8 if ((yi <= acc_max) && (yi >= 0)) {
9 yold = yi; // store the integrator output

10 }
11 }

Listing 3.14: Anti-windup C

There are multiple anti-windup schemes, the simplest is to compute the integrator
response but disable the accumulator if the saturation is detected. This method
works well against the noise accumulation effect and doesn’t affect the controller
behavior inside the saturation limits.

3.2.3 Hardware Controller
1 architecture RTL of DSP_Pipeline is
2 signal a : signed(DATA_WIDTH - 1 downto 0);
3 signal b : signed(PARAMS_WIDTH - 1 downto 0);

53

Figure 3.12: Pipeline DSP standard block with 25-bit pre-adder, 18x25 bits signed
multiplier and 48-bit final adder

4 signal c : signed(DATA_WIDTH + COEF_WIDTH downto 0);
5 signal d : signed(DATA_WIDTH - 1 downto 0);
6 signal sub : signed(DATA_WIDTH downto 0);
7 signal mult , p : signed(DATA_WIDTH + COEF_WIDTH downto 0);
8 begin
9

10 PIPELINE : process(clk_in)
11 begin
12 if rising_edge(clk_in) then
13 if (start_in = ’1’) then
14 a <= signed(ref_in);
15 b <= signed(k_in);
16 c <= signed(feed_in);
17 d <= signed(adc_in);
18 sub <= a - d;
19 mult <= sub*b;
20 p <= mult + c;
21 end if;
22 end if;
23 end process;
24 y_out <= std_logic_vector(p);
25

26 end RTL;

Listing 3.15: DSP basic block

The software controller behavior can be emulated in the hardware to gain some
speed and reduce the latency. This can be done using some DSP blocks to build
a complex processing unit and routing the ADC converted data to it. DSP blocks
are correctly inferred if signed arithmetic is used for inputs and all the operations:
"When coding for inference and targeting the DSP block, it is recommended to use

54

signed arithmetic, and it is a requirement to have one extra bit of width for the
pre-adder result so that it can be packed into the DSP block". Therefore, the MSB
of both the data and coefficients always represent the sign bit, differently from what
was done in software. To use full range 16 bit unsigned values, DATA_WIDTH
and COEF_WIDTH should be set to 17 bits, and the extra bit fixed to zero, either
externally during the software configuration or bitstream generation.

The DSP pre-adder allows to compute the feedback error from the difference of
the reference ref_in and the ADC converted data adc_in. The error is stored in
the sub register with one bit more to prevent the overflow, and then multiplied by
the coefficient k_in. The product is stored in the mult register, and used together
with the feed_in input to feed the ALU. The pipeline should be used whenever
possible, because most of the arithmetic operations always requires buffer registers
both at the input and at the output. To produce the correct output, the pipeline
DSP takes from 2 to 4 clock cycles, depending on which input changes, but it can
be overclocked with respect to the main system clock. In fact, the DSP pipeline is
clocked at high speed, such that the four clock cycles to execute the pipeline are
negligible with respect to the sampling period 4TCLK << T .

Figure 3.13: PI controller realized with the pipeline DSP

Figure 3.14: Differentiator realized with the pipeline DSP

55

This configuration of the DSP can be used to implement both the integrator or the
differentiator, by using the feed_in input to feedback the output or feedforward the
input. The sample delay z−1 is realized with a register that holds a constant value
for an entire sampling period, that must be triggered in the right instant to sample
and hold the correct data. Since the registers inside the FPGA are made with D-
Type flip-flops, they must be triggered from the enable input en_in or synchronized
by a clock. The clock is usually shared among the components of a specific region
with a dedicated trace, therefore the best solutions are always those with few clock
sources that leads to a compact and reliable design. To get rid of multiple clocks,
the holder is triggered from the enable input, which is synchronous and must stay
on at least one clock period. The DSP pipeline takes one clock cycle to store the
feed_in input plus another to accumulate the result in the output register. When
the feed_in is used in feedback configuration, like for the integrator, if the sample
and hold register stays active for more than two clock cycles, it will accumulate more
than once. Also, when the DSP is used as differentiator, it might be dangerous to
keep the register enabled for more than one clock cycle, because it may latch a non-
stable data. The solution is to build a circuit that creates a pulse that last exactly
one clock cycle, like the trigger generator with match comparators, or using a DFF
with the input D and the inverted output Q̄ going through an AND port.

Figure 3.15: DSP PI controller sequence, showing the pipeline execution when the
data is sampled and after ADC the conversion

There are several possible implementations of the hardware PID controller but
some of them are better suited for the DSP block. The naive version of the PID
could be realized with one DSP for the integrator, the two for the differentiator and
one with the unconnected feed_in to work as a gain block. Then, these 3 outputs
are shifted to adjust the point position and routed to a 3 inputs adder. However, this
implementation uses just 2 of the 4 ALU in the DSP blocks, many shifters and one
additional adder. To take the best out of the DSP blocks, these could be chained,
such that all 48 bit ALU are used to compute the partial sums. By doing so, the

56

PID could be realized with just 4 DSP blocks and some intermediate shifters to
adjust the points before feeding the ALU. Moreover, to get rid of multiple shifters,
all coefficients can be described with the same Qm.n notation, such that the decimal
point of all products is already aligned, and they can be directly added together.
Finally, the output is shifted by n positions to the right and the result constrained
to an unsigned number limited by the DPWM comparator number of bits. 1

The PID in the FPGA is connected to AXI GP port, and configured by some
registers that store the coefficients and the post-shift value. A separate control
register allows starting the DSP blocks and closing the feedback by enabling the
AXI snooper output. Finally, the hardware controller input is connected to the PS,
while the output is connected to the DPWM through a switch useful to bypass the
hardware controller.

1If the same Qm.n notation is used for KP and KD coefficients, the proportional term can be
merged into the DSP differentiator with a single coefficient (KP + KD), therefore the final PID
requires just 3 DSP blocks

57

Chapter 4

System Validation

The DPWM can be used in many configurations, by choosing the number of bits,
the sampling and update frequency, or the modulation frequency. Also, the digital
controller may be designed in several ways, for example to reach high bandwidth or
a good time response. Testing all configurations would be unfeasible and most of
them will give similar results. Therefore, some specific tests should be used to verify
the limits of the device while others for the typical use case.

4.1 Zynq board setup

Figure 4.1: Zynq board setup with anti-aliasing filter and single pole test circuit

To verify the DPWM control system, a simple setup is made using some OPAMP
to emulate the process response, while the DPWM controller is implemented using

58

the PYNQ-Z2 board. This board has some analog inputs for the signal acquisition,
all with a basic anti-aliasing RC network, and digital outputs that switches between
0V and V = 3.3V . The anti-aliasing network attenuates the input voltage because
the ADC can handle only voltages from 0V to 1V , and the board is thought to work
between 0V and 3.3V . With the configuration of Fig. 4.1 the range is extended to
FSR = 3.3V , but it requires to be driven by a low impedance source. To clamp the
voltages at the analog input to a maximum value of VMAX = 3.3V , two Schottky
diodes are placed after a resistor RH = 220Ω and connected to the 0V and the
3.3V . This configuration of the analog input is always driven by an amplifier ca-
pable of pre-compensate the attenuation without introducing other loading effects.
The bandwidth of the anti-aliasing filter would have been B′

W = 94.522kHz but
considering the RH contribution it is reduced to BW = 93.482kHz. The bandwidth
is more or less 10 times smaller than the maximum sampling frequency 1 MSam-
ple/s, which is a standard choice for simple RC anti-aliasing networks. Considering
the current limiter resistor, a small attenuation is introduced a = 0.94, lowering the
overall gain before the analog input.

a =
RA +RB

RA +RB +RH

(4.1)

The clock frequency for the DPWM counter is FCLK = 100MHz because it is the
maximum clock the PS can provide to the PL without using special PLL. Moreover,
higher clock frequencies may lead to failures because the design is not optimized
for high speed and because the ILA is going to decrease the reachable performance.
At fixed clock frequency, the modulation frequency FP will depend only on the
maximum counter value MAX . Moreover, since the switching voltage is also fixed
VS = 3.3V , the maximum counter value will also determine the voltage resolution.

VRES =
VS

MAX + 1
(4.2)

The testable modulation frequencies are limited by the anti-aliasing filter, in fact,
it will degrade both the magnitude and phase from relatively low frequencies. The
roll off of the frequency response can be either neglected or taken into consideration
depending on its contribution, but for comparable results the ratio between the
modulation frequency and the anti-aliasing bandwidth FP/BW should be kept small.

|AAF (FP)| =
1√

1 + (FP/BW)2

∠AAF (FP) = − tan−1
(FP

BW

) (4.3)

59

Table [4.1] shows that the PYNQ-Z2 with 100 MHz clock allows testing modulation
frequencies up to 24 kHz. Above this limit the anti-aliasing filter will interfere with
the tests, making them more board dependent and less useful to characterize the
design.

MAX + 1 256 1024 4096 16384 65536

ENOB 8 10 12 14 16

VRES [mV] 12.89 3.223 0.8057 0.2014 0.05035

FP [kHz] 390 97 24 6.1 1.5

TP [µs] 2.56 10.24 40.96 163.84 655.36

|AAF | [dB] -12 -3 -0.3 -0.02 -0.001

∠AAF [Deg] -76.4 -45.9 -14.5 -3.69 -0.92

Table 4.1: Parameters of the PYNQ-Z2 DPWM at fixed clock frequency FCLK =
100MHz and fixed switching voltage V = 3.3V

The DPWM voltage resolution VRES, together with the voltage resolution of the
ADC VFSR, will act as two independent scale factors for the control system. Since
the FSR and the switching voltage VS are the same, the total scale factor will be
determined only by the choice of the relative bits.

α =
2BBIT

2ENOB
(4.4)

To normalize the total scale factor α = 1, the ADC converted data can always be
increased with an arbitrary number of bits. However, to get good results, these bits
should be random bits, such that the converted data dithers, instead of being always
rounded to the floor or the ceiling by adding all zeros or all ones. This is the default
mechanism of the XADC, that stores the converted data in a 16 bit register with
the true 12 bits left aligned and 4 less significant random bits.

A simple first order system with only one pole in ωo = τ−1
o can be used to test

various configuration of the DPWM control system. This can be realized with an
RC network and an OPAMP in non inverting configuration. The RC network fixes
the pole and the attenuation while the non-inverting amplifier is used to set gain.

60

Figure 4.2: Bode plot of the single pole system emulated with the non inverting
OPAMP

P (s) =
K

sτo + 1

ATT =
RL

RS +RL

GAIN = 1 +
RF

RG

τo = C(RL//RS)

(4.5)

A bandwidth around 1 kHz is good to test many configurations because it is
sufficiently smaller than the modulation frequency. The RC network is realized with
a total series resistor RS = R′

S + RO = 2.4kΩ and a load resistor RL = 3.3kΩ that
fixes the attenuation to ATT = 11/19. The capacitor of the RC network is chosen to
be C = 100nF , leading to a time constant of τo = 138, 95µs and a cut-off frequency
of fo = 1.145kHz. The gain of the non-inverting amplifier is chosen to compensate
the input attenuation GAIN = A−1

TT , this can always be done by using RF = RS and
RG = RL.

4.1.1 Step response characterization
Using a first order system with a single pole, a closed feedback system will always

be stable, therefore a simple PI controller is enough to characterize the delay effect.
One possible configuration is a PI controller designed with the zero that compensate
the pole of the process, such that it is possible to set the gain to reach the desired
bandwidth. This can be done by forcing KI = ωoKP such that the crossing frequency

61

Figure 4.3: PI design such that fp = fo and fc = 1 kHz

becomes fc = foKKP . With this configuration, a continuous time controller always
gives a theoretical phase margin of ϕM = 90o, however, due to the delay effect of the
DPWM the phase margin is degraded, as depicted in Fig. 4.4. The degradation of
the phase margin depends on the delay from the acquisition instant to the compare
instant, which is variable in most of the cases.

Using a sawtooth ramp and keeping a fixed modulating period TP = 40.96µs and
one sample per period T = TP , the control system is tested to reach gradually the
limit of the crossing frequency. The parameters in table [4.2] are used to close the
loop at different crossing frequency and verify the controller behavior.

fc [kHz] 1 2.5 4.5

KP 0.931 2.327 4.189

KI [rad/s] 6699 16748 30147

KIT 0.2744 0.6860 1.2348

Table 4.2: PI controller parameters to compensate the pole fp = fo as a function of
the crossing frequency fc, using a sawtooth ramp DPWM with T = TP = 40.96µs

When the acquisition instant is set to be close to the update instant, the delay
depends only on the modulating ramp or the operative point. Using a saw ramp
and the acquisition synchronized with the middle point of the on-time period, the
total delay can be greater than a full modulating period. With this technique a
bandwidth of 1 kHz still gives a monotonic step response like in Fig. 4.5, while a

62

Figure 4.4: Phase margin degradation ϕD of the loop gain due to the delay effect

2.5 kHz bandwidth will produce an overshoot due to the fast phase degradation.

Figure 4.5: Step response of the asymmetric modulation and synchronized acquisi-
tion with the loop closed at a crossing frequency of 1 kHz and at 2.5 kHz

The overshoot is due to the delay from the acquisition instant, performed at the
midpoint of the on period, to the compare instant after the update, which is more
than a full modulation period, more precisely TD = TP (1 +D/2) By removing the
synchronized acquisition option and trigger it as close as possible to the update
instant, the crossing frequency can be increased, but the system won’t track the
average value. A second option, that keeps tracking the average value, is to syn-
chronize the acquisition instant at the middle of the off-time, which, considering
the trailing edge modulation, is always closer to the update instant. This requires

63

to evaluate the new comparator value, together with the new acquisition instant,
before the end of counting sequence where the comparator is updated. For this so-
lution, the hardware controller becomes essential to push the acquisition limit close
to the update instant, otherwise, with a software controller, this limit would be
significantly far from the starting of the new modulation period.

To keep tracking the average value, it is possible to use the triangular waveform and
trigger the acquisition at the beginning of the modulation period, which corresponds
to a peak or a valley of the waveform. To get comparable results with the previous
experiment, the modulation frequency with the triangular waveform should always
be the same TP = 24 kHz, this is achieved by halving the counter maximum value,
however, this doubles the DPWM scale factor of the forward gain. The forward gain
can be compensated by dividing the ADC scale factor, that, even if it reduces the
total ADC resolution, it will be kept coherent with that of the DPWM 2ENOB =

2BBIT .

Figure 4.6: Step response of the symmetric modulation with the loop closed at a
crossing frequency of 2.5 kHz, using a single acquisition per period and a double
acquisition per period technique

A DPWM with a triangular ramp can be updated both at the peak or at the
valley of the waveform, therefore the update period is every half period TU = TP/2,
which is reduced by a factor of 2 with respect to the sawtooth ramp modulation,
where TU = TP . By using a single acquisition per period, either at the valley or at
the peak, the step response is slightly improved because the total delay, evaluated
from the acquisition instant to the comparing instant after the update, is always
less than a modulation period TD < TP . Finally, using the double acquisition at the
peak and at the valley, the delay is halved and the system turns to be more reactive.

64

4.2 Conclusions

Figure 4.7: Summary of settings and experimental results

The Zynq technology enables rapid prototyping and validation of modules, that
make it a valuable tool in the field of system design and development. The design
flow allows for continuous integration of functionalities and continuous optimiza-
tion of modules, resulting in a better understanding of system requirements and
less complex debugging. Even if the Zynq has a higher price compared to appli-
cation specific microcontroller, most of the modules turns to be portable across
programmable devices, saving NRE costs and time.

The DPWM modules implemented in the FPGA is clocked by the PS at a fre-
quency FCLK = 100MHz and can reach high modulation frequency FP = 390kHz

using a reduced resolution of 8 bit. To increase the resolution, keeping the same
modulation frequency, the DPWM should be clocked by the CMT, that can syn-
thesize a clock frequency up to MMCM_FOUTMAX = 800MHz. However, most
of the components inside the Artix-7 FPGA can’t handle this clock rate, but are
designed to work at lower frequencies that depend on the speed grade of the de-
vice, as described in the switching characteristic data sheet [12]. With a series of
optimizations, it would be possible to double the clock frequency, to get 1 extra bit
of resolution or double the modulation period keeping the same resolution. Even
thought these optimizations are possible, they are useless by themselves, because the
speed of a closed loop control system is always dictated by the slowest operation.

The ILA debugger allows to measure the time of each operation, and it shows
that the two most time expensive operations are the ADC conversion and the PS to

65

PL communication to complete the IRQ. The ADC takes a total conversion time of
TADC = 1µs when the ADC is clocked at the maximum speed 104MHz, while the
IRQ handler is completed in a variable amount of time, that mainly depends on the
4 AXI read and write transaction, two to read and clear the interrupt and two to
fetch and send back the data to the PL. From experimental results, when the AXI
Manager GP port is clocked at 100 MHz, the communication between PS and PL
takes around 25TCLK = 250ns to perform each read or write transaction, therefore
the IRQ handler can be computed in TPS = 1.25µs. Then, the minimum modulation
period should be sufficiently long to fit both the conversion and the IRQ handler,
starting from the acquisition instant such that TP ≥ TACQ+TADC +TPS. When the
acquisition instant coincides with the beginning of the modulation period TACQ =

0, the DPWM modulation frequency can reach its limits, but this configuration
introduces a long delay before the update instant of the comparator, degrading
the controller performances. Moreover, in many cases, it is required to sample the
feedback signal in other instant of the modulation period, like in the middle of the
ON period, which might be closer to the end of the modulation period.

By implementing the signal processing in the hardware with less than 10 cascaded
DSP blocks, the elaboration time can be reduced to one order of magnitude lower
than the ADC conversion time, making possible to reach higher modulation fre-
quency limits and sample the feedback system much closer to the update instant.
This improvement enables different techniques to make the DPWM control loop
more reactive, to fully exploit the duty cycle range and to reach higher modulation
frequencies.

66

67

Glossary

ADC Analog to Digital Converter.
ADCLK ADC Clock.
ALU Arithmetic Logic Unit.
APU Application Processor Unit.
ASIC Application Specific Integrated Circuit.
ASSP Application Standard Product.
AXI Advanced eXtensible Interface.

CAD Computer-Aided Design.
CAN Control Area Network.
CLB Configurable Logic Block.
CONVST Conversion Start.
CPU Central Processor Unit.

DAC Digital to Analog Converter.
DCLK DRP Clock.
DEN Data Enable.
DFF D-Type Flip-Flop.
DI Data Input.
DMA Direct Memory Access.
DO Data Output.
DPWM Digital PWM.
DRP Dynamic Reconfiguration Port.
DSP Digital Signal Processor.
DWE Data Write Enable.

EMIO Extended Multiplexed IO.
EOC End-Of-Conversion.

FPGA Field Programmable Gate Array.
FPU Floating Point Unit.

68

GIC Global Interrupt Controller.
GIER Global Interrupt Enable Register.
GP General-Purpose.
GPU Graphic Processing Unit.

HDL Hardware Description Language.
HP High-Performance.

IDE Integrated Development Environment.
ILA Integrated Logic Analyzer.
IP Intellectual-Property.
IPIER IP Interrupt Enable Register.
IPISR IP Interrupt Status Register.
IRQ Interrupt Request.

JTAG Joint Test Action Group.

LUT Look-Up Table.

MCU Micro Controller Unit.

NRE Non-Recurring Engineering.

PL Programmable Logic.
PS Processing System.
PWM Pulse Width Modulation.

RAM Random Access Memory.

SDK Software Development Kit.
SIMD Single Instruction Multiple Data.
SoC System-on-Chip.
SPI Serial Peripheral Interface.

VHDL VHSIC Hardware Description Language.
VLSI Very Large Scale Integration.

69

Bibliography

[1] Arm. AMBA AXI Protocol Specification. url: https://developer.arm.com/
documentation/ihi0022/latest.

[2] Arm. Learn the architecture - An introduction to AMBA AXI (V3.0). url:
https://developer.arm.com/documentation/102202/0300/?lang=en.

[3] Arm. Learn the Architecture - Introducing Neon (V1.0). url: https : / /

developer.arm.com/documentation/102474/0100/?lang=en.

[4] Arm. Learn the architecture - Introducing the Arm Architecture (V2.1). url:
https://developer.arm.com/documentation/102404/0201/?lang=en.

[5] Louise H. Crockett et al. The Zynq Book. Embedded Processing with the ARM
Cortex-A9 on the Xilinx Zynq-7000 All Programmable SoC. Ed. by Strathclyde
Academic Media. 2014.

[6] Louise H. Crockett et al. The Zynq Book Tutorials. for Zybo and ZedBoard.
Ed. by Strathclyde Academic Media. 2015.

[7] Adam Taylor. The MicroZed Chronicles. Adiuvo Engineering site. url: https:
//www.adiuvoengineering.com/microzed-chronicles-archive.

[8] Xilinx. 7 Series FPGAs and Zynq-7000 SoC XADC Dual 12-Bit 1 MSPS
Analog-to-Digital Converter User Guide (UG480). url: https : / / docs .

xilinx.com/r/en-US/ug480_7Series_XADC.

[9] Xilinx. 7 Series FPGAs Configurable Logic Block User Guide (UG474). url:
https://docs.xilinx.com/v/u/en-US/ug474_7Series_CLB.

[10] Xilinx. 7 Series FPGAs Data Sheet: Overview (DS180). url: https://docs.
xilinx.com/v/u/en-US/ds180_7Series_Overview.

[11] Xilinx. 7 Series FPGAs DSP48E1 User Guide (UG479). url: https://docs.
xilinx.com/v/u/en-US/ug479_7Series_DSP48E1.

[12] Xilinx. Artix-7 FPGAs Data Sheet: DC and AC Switching Characteristics
(DS181). url: https://docs.xilinx.com/v/u/en- US/ds181_Artix_
7_Data_Sheet.

70

https://developer.arm.com/documentation/ihi0022/latest
https://developer.arm.com/documentation/ihi0022/latest
https://developer.arm.com/documentation/102202/0300/?lang=en
https://developer.arm.com/documentation/102474/0100/?lang=en
https://developer.arm.com/documentation/102474/0100/?lang=en
https://developer.arm.com/documentation/102404/0201/?lang=en
https://www.adiuvoengineering.com/microzed-chronicles-archive
https://www.adiuvoengineering.com/microzed-chronicles-archive
https://docs.xilinx.com/r/en-US/ug480_7Series_XADC
https://docs.xilinx.com/r/en-US/ug480_7Series_XADC
https://docs.xilinx.com/v/u/en-US/ug474_7Series_CLB
https://docs.xilinx.com/v/u/en-US/ds180_7Series_Overview
https://docs.xilinx.com/v/u/en-US/ds180_7Series_Overview
https://docs.xilinx.com/v/u/en-US/ug479_7Series_DSP48E1
https://docs.xilinx.com/v/u/en-US/ug479_7Series_DSP48E1
https://docs.xilinx.com/v/u/en-US/ds181_Artix_7_Data_Sheet
https://docs.xilinx.com/v/u/en-US/ds181_Artix_7_Data_Sheet

[13] Xilinx. Vivado Design Suite User Guide: Synthesis (UG901). url: https:
//docs.xilinx.com/r/en-US/ug901-vivado-synthesis.

[14] Xilinx. Vivado Design Suite: AXI Reference Guide (UG1037). url: https:
//docs.xilinx.com/v/u/en-US/ug1037-vivado-axi-reference-guide.

[15] Xilinx. XADC Wizard v3.3 LogiCORE IP Product Guide (PG091). url: https:
//docs.xilinx.com/v/u/en-US/pg091-xadc-wiz.

[16] Xilinx. Zynq-7000 SoC Data Sheet: Overview (DS190). url: https://docs.
xilinx.com/v/u/en-US/ds190-Zynq-7000-Overview.

[17] Xilinx. Zynq-7000 SoC Technical Reference Manual (UG585). url: https:
//docs.xilinx.com/v/u/en-US/ug585-Zynq-7000-TRM.

[18] Xilinx. Zynq-7000 SoC: Embedded Design Tutorial (UG1165). A Hands-On
Guide to Effective System Design. url: https://docs.xilinx.com/v/u/
2019.2-English/ug1165-zynq-embedded-design-tutorial.

71

https://docs.xilinx.com/r/en-US/ug901-vivado-synthesis
https://docs.xilinx.com/r/en-US/ug901-vivado-synthesis
https://docs.xilinx.com/v/u/en-US/ug1037-vivado-axi-reference-guide
https://docs.xilinx.com/v/u/en-US/ug1037-vivado-axi-reference-guide
https://docs.xilinx.com/v/u/en-US/pg091-xadc-wiz
https://docs.xilinx.com/v/u/en-US/pg091-xadc-wiz
https://docs.xilinx.com/v/u/en-US/ds190-Zynq-7000-Overview
https://docs.xilinx.com/v/u/en-US/ds190-Zynq-7000-Overview
https://docs.xilinx.com/v/u/en-US/ug585-Zynq-7000-TRM
https://docs.xilinx.com/v/u/en-US/ug585-Zynq-7000-TRM
https://docs.xilinx.com/v/u/2019.2-English/ug1165-zynq-embedded-design-tutorial
https://docs.xilinx.com/v/u/2019.2-English/ug1165-zynq-embedded-design-tutorial

	Introduction
	Zynq Technology
	AXI Interface
	XADC
	DSP48E1

	PWM control technique
	Pulse Width Modulation
	Modulator Model
	Digital PWM

	Control System
	Controller Design
	Discretization

	Analog to Digital conversion
	Sampling
	Quantization
	Holding

	Prototype
	DPWM Implementation
	Basic DPWM
	Up-Down Counter
	Trigger generation

	Controller implementation
	ADC configuration
	Software Controller
	Hardware Controller

	System Validation
	Zynq board setup
	Step response characterization

	Conclusions

	Bibliography

