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1. INTRODUCTION 

Adaptive radiations are key phenomena that scientists investigate to understand 

how speciation occurs and to answer many of our evolutionary questions. They 

consist in the rapid diversification of an ancestral population into several 

ecologically different species, associated with adaptive morphological or 

physiological divergence (Schluter et al., 2000). 

1.1. East African cichlids radiation 

Among all the examples of this process, the cichlid radiations that occurred in the 

African Great Lakes are some of the most spectacular and the biggest among 

vertebrates. Thousands of species of these fishes, several not formally described 

yet, emerged in a variety of ecological and morphological forms, in a span of time 

that, geologically speaking, could be considered a blink of an eye. Although 

phylogenetically linked, every big lake, and even some of the smaller ones, hosts 

its own radiation that gave life to a plethora of endemic species, whose complex 

evolutionary history and rapid explosion have been thrilling scientists for decades.  

Lake Tanganyika cichlid radiation (250 species) is the oldest of the area and the 

most diverse from an ecological, behavioural, morphological and genetical point of 

view (Salzburger et al., 2014; Svardal, H., Salzburger, W. & Malinsky, 2021). 

Taxonomically endemic species are grouped in 16 tribes (14 for some authors, 12 

for others), with quite different for number of species. Apart of representatives of 

the three tribes Coptodonini, Oreochromini and Tylochromini that come from a 

secondary colonization, all the other tribes are endemic, having evolved and 

diversified in situ, with a most recent common ancestor that lived 9.6 My ago 

(Ronco et al., 2021). One of these tribes, Haplochromini, have an incredible history 

of diversification since they colonized the rivers near Tanganyika and then invaded 

the lacustrine habitats of Malawi and Victoria, giving life to the entire radiation in 

these two lakes, in addition to a secondary radiation of this group in Tanganyika 

(Danley et al., 2012). Lake Malawi radiation (800-1000 species), according to 

Salzburger, 2018, started 800.000 years ago when the lake transitioned to a more or 
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less closed system and the current deep-water conditions arose. The delimitation of 

this impressive number of species is more complex since they diverged recently, 

and this is reflected by different subgroup proposals from different authors 

(Malinsky et al., 2018; Salzburger, 2018). Lake Victoria Species Flock (LVSF) 

counts approximatively 700 species and inhabits not only Lake Victoria but also 

nearby water bodies and even North African ones (only a couple of species). It is 

the product of the youngest of the African cichlid radiations with an estimated onset 

dated between 100.000 and 200.000 years ago, but evidence show that most of 

species diversified only after the recolonization of the Lake Victoria after a period 

of complete desiccation, 15.000 years ago. 

Geological and paleoclimatic studies showed that the unique event of African 

cichlid diversification had been possible only through the establishment of 

particularly favourable conditions. First, East Africa was subverted by the rise of 

the East African Rift System (EARS) at the border between Tanzanian and African 

plates, whose two branches started soaring respectively around 30-35 My ago for 

the eastern part and around 25-12 My ago for the western one. This uplift involved 

the formation of half graben structures and the consequent creation of basins where 

the water could be collected. Both Lake Tanganyika (9-12 My ago) and Lake 

Malawi (>8.6 My ago) formed in this way. Moreover, this new geomorphological 

conformation brought by the rise of the rift, entailed a change of river flow towards 

a topographic low between the two branches of the EARS that resulted in the 

formation of Lake Victoria (>0.4-1.6 My ago) (Danley et al., 2012). The 

consequence of this process was the opening of new-born available ecological 

niches to exploit without competitors. (Figure 1). 
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Figure 1. Geographic position of the study region and location of the East African rift. The 

approximate locations of the two main branches of the East African rift system are displayed in red-

dashed line (LV: Lake Victoria, LT: Lake Tanganyika, and LM: Lake Malawi). Credits: Danley et 

al., 2012. 

In this scenario the success of founder cichlids is understandable and corroborated 

by the fact that other taxa of the area, for example ostracods and gastropods but also 

non-cichlid fish families, faced a similar rapid diversification within these lakes, 

which gave birth to several endemic species (Salzburger, 2018). But even though 

the process of adaptive radiation is common across all these taxa, the number of 

endemic species of cichlids that were generated is at least one order of magnitude 

higher in comparison. So, the ecological opportunity provided by the African Great 

Lakes explains the diversification but not its width and its maintenance. Other 
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factors peculiar to this fish taxon should have played a role in this outstanding 

display of life. 

1.1.1. Cichlidae  

Cichlids include the highest number of genera of teleost with around 1700 species 

recognized to date, but more than 3000 estimated (Salzburger, 2018). They show a 

Gondwanan distribution with species that inhabits fresh and brackish waters of 

India, Sri Lanka, Middle East, Africa, South and Central America, Mexico and even 

Texas. 

The diversity within this group is not only taxonomic, but it permeates different 

levels of biological organization. Morphologically speaking they show a wide range 

of body shapes (from almost roundish to elongated) and sizes (from 3 cm to almost 

1 m), but are the structure that fulfil an ecological purpose, as for example the upper 

jaw and the peculiar pharyngeal jaw apparatus, that shows the highest variety in this 

group (Ronco et al., 2021). This is not a surprise because, in the case of adaptive 

radiation, diversification occurs via niche specialization so, a strong association is 

expected in the extant fauna between the environment occupied by a species and 

the specific morphological features used to exploit it (Schluter et al., 2000). For this 

reason, cichlids show also a great ecological variability. They occupy multiple rings 

in the lacustrine and riverine food chain, ranging from pelagic fish predators to 

benthic algae grazers, from scale eaters to planktivorous and detritivores. They 

inhabit rocky, weedy, muddy and sandy substrates and some species are shell 

dwellers, so they use barks of other animals as a refugia. Although few species 

inhabit primarily brackish water or even salt water, cichlids occur mostly in 

freshwater, either in streams, rivers and lakes, where they range from the shallow 

water habitats to the deeper ones (Salzburger, 2018). 

This group also shows a broad behavioural repertoire, beyond the one proper of a 

particular feeding niche. Many species have dominant males who use aggression 

displays to defend their territories and courting to attract females, while others form 

large schools (Salzburger, 2018). The mating behaviour is either substrate brooding 

or mouth brooding with both groups that show a wide range of intraspecific 

differences. The former system usually results in a lower investment in parental 
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care, while the latter can show maternal, paternal or biparental care (Keenlyside, 

1991).  

Pigmentation has a fundamental role in both intersexual and intrasexual rituals, so 

it is not surprising that cichlid species display an incredible array of colours and 

patterning. One of the most amazing examples is the evolutionary innovation of the 

anal fin egg-spots in haplochromines, coloured circular markings that vary 

substantially in colour, shape, number and arrangement between species and even 

within species (Figure 2). In the mouth brooding mating system of this tribe, egg-

spots are presented by the male to the female who responds by snatching and 

bringing her mouth close to the male’s genital opening. Here sperm are discharged 

and can fertilize the eggs inside the female’s mouth (Santos et al., 2014). 

 

 
Figure 2. Anal fin Haplochromines egg-spots. Credits: Santos et al., 2014. 

Interestingly, wherever they occur, cichlids show a strong tendency to form species 

flocks, an amazing display of diversification (Salzburger, 2018) that according to 

Chenuil et al. (2018) occurs when a monophyletic taxon displays high speciosity in 

an area in which it is endemic (the exclusive occurrence of a species or higher-level 

taxon in a confined geographic area), high ecological diversity among species, and 

if it dominates the habitat in terms of biomass. Species flock are most of the times 

outcome of adaptive radiations, so this taxon appears particularly prone to give life 

to these spectacular evolutionary explosions. But why? The answer is probably 

hidden in their genomic features, so an increasing number of studies started 

investigating the DNA of these fishes, supported by the great innovations in 

sequencing techniques and data analysis. 

1.1.2. Cichlid genomes 

Understanding the genomic features of a species or a group requires valuable 

assemblies and the possibility to confront sequences at an interspecific but also 

intraspecific level with more or less phylogenetically close species. For this reason, 
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a reliable phylogenetic reconstruction is needed. However, in a scenario like the 

one of the African Great Lakes cichlid radiation this task can be quite challenging 

because the speciation is young (and so genomes are more similar) and because of 

the high amount of incomplete lineage sorting (ILS) and introgression present in 

their genomes. ILS is typical in rapidly speciating lineages, and it consists of the 

maintenance of ancient polymorphism across different speciation events. It 

generates incongruences between gene tree and species tree topologies (Maddison 

et al., 2006). On the other hand, introgression is the transfer of genetic material from 

a species to another due to backcrossing of hybrids with one of the parental species, 

that can easily result into misleading phylogenies if not previously identified 

(Aguillon et al., 2022). Salzburger (2018) defines genomes of rapid diversifying 

cichlids as mosaic genomes, where different small fragments of the sequence tell 

different evolutionary histories. 

From the sequencing of the first five phylogenetically representative species by 

Brawand et al. (2014) the amount of genomic data on African cichlids has grown 

and several studies have proposed phylogenies based on genome wide markers and 

started comparative genomic investigations. 

Accelerated gene evolution was found in Brawand et al.’s (2014) five species with 

high rates of non-synonymous to synonymous substitutions in the coding sequence 

compared with Nile Tilapia. Even the gene regulatory portion of the genome shows 

a greater dynamic compared to other fish species, with higher rate of nucleotide 

substitutions and of insertions and deletions, evidence of relaxed purifying selection 

in cichlid genomes. 

The common idea is that natural selection is the main force that drives cichlid 

diversification, supported by the several examples of convergent evolution of 

similar ecotypes across different radiations, but a key role is played also by strong 

sexual selection as suggested by the high variability in male nuptial colorations 

(Brawand et al., 2014; Salzburger, 2018).  

The raw material on which evolutionary forces can act to generate adaptation to 

new environments is the genetic variation at functional loci, linked with fitness-

related phenotypes that can be inherited by the next generation. In spite of their 

great phenotypic diversity, Great African Lakes cichlid genomes show relatively 

low mean genetic variation compared with other vertebrates. Moreover, most of 
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their allele variation is shared by species of the same radiation, but surprisingly also 

by those of different ones (Svardal et al., 2021). The youth of the diversification 

and the inevitable gene flow of a sympatric speciation, clearly explains part of this 

DNA sharing and similarity, but a key role could have been played by the climate 

changes that interested Eastern Africa from the onset of cichlid explosion. 

Alternation of arid and wet climates caused cyclic low lake levels and even 

desiccations (Danley et al., 2012), mirrored by fragmentation and contraction of 

fish populations. During those bottlenecks the action of genetic drift probably 

strongly reduced the existing genetic diversity, and the gathering of survivors in 

refugia supported hybridization between them. 

Overall, these results suggest that low genome-wide nucleotide diversity levels may 

not limit rapid adaptation and speciation. Though, Svardal et al. (2020) noticed also 

that even if low, genetic variation is quite variable across the genome, with extended 

outlier regions of high diversity, introducing the possibility that variation is higher 

at functional loci in cichlids. 

Regarding how this genetic variation arose, the idea is that it was accumulated 

before the beginning of the radiation during a period of relaxed selective constraints 

through different evolutionary mechanisms (Brawand et al., 2014; Salzburger, 

2018), and apparently not due to an increase in the nucleotide mutational rate whose 

estimate is too slow to explain the actual divergence (Malinski et al., 2018).  

First, high rates of lineage specific gene duplication were found in this group. In 

particular, in the common ancestor of the East African cichlids it was estimated 4.5-

6-fold higher than in other clades and it is even higher in the common ancestor of 

haplochromines (Brawand et al., 2014). Duplication offers divergence possibilities 

allowing neofunctionalization of the new produced copy and/or modification of the 

duplicated gene protein expression pattern (Zhang, 2003). 

Transposable elements (TE) are another source of variation. They are repetitive 

elements able to replicate and insert themselves in the genome, including upstream 

of genes modifying their expressions. TE, with their potential of producing large 

changes in genome, can also create genetic interspecific incompatibilities favouring 

speciation (Serrato-Capuchina et al., 2018). An example of their evolutionary 

potential is the insertion responsible for the development of the egg-spots in 

haplochromines (Santos et al., 2014). Three or four waves of TE expansion were 
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detected in cichlid genomes including a group-specific burst of one of the TE 

families (Brawand et al., 2014).  

Another dynamic that can boost genetic variation is recombination, since it can 

assemble new genotypes producing combination of alleles previously not explored 

by evolution. Its contribution is stronger the more distinct are the parents involved, 

as for example during hybridization between two species (Mallet, 2007). Cichlid 

hybridization is largely reported even between different lake radiations, and 

introgressed material can be found throughout all these fish genomes (Brawand et 

al., 2014; Stelkens et al., 2015; Malinski et al.; 2018; Keller et al., 2013). Those 

results could be only the by-product of a limited geographical and reproductive 

isolation, but experimental work (Stelkens et al., 2009) and observation in the wild 

(Nichols et al., 2015) testify that hybridization in cichlids can produce new and 

extreme phenotypes whose success seems to depend on available ecological 

resources outside of the parental niches (Selz & Seehausen, 2019). It is a general 

consensus now that hybridization in East African cichlids has been an important 

factor for establishing and maintaining genetic variation (Gante et al., 2016; 

Salzburger, 2018; Svardal et al., 2021) with evidence of this process before or early 

in the adaptive radiation of LVSF (Meier et al., 2017) and Malawi cichlids (Svardal 

et al., 2020) and between the early lineages of Tanganyika (Irisarri et al., 2018).  

All these dynamics other than generating new genetic diversity, can have an impact 

on genome size (GS) contained in the cellular nucleus. Duplication contribution is 

probably the most straightforward: having two, or more, copies of the same gene 

retained, the genome will increase its size. Transposable elements, when not 

constrained, can replicate in an uncontrolled way and insert themselves multiple 

times in the host genome, causing genomic expansions. Finally, hybrids show a 

genomic content quite variable from the mean of the two parental species. This 

seems to depend on various factors including genomic features of parental species, 

transmission bias, genomic rearrangements but the most evident differences are 

linked to TE expansions (Romero-Soriano et al., 2016). Hybridization appears able 

to break down mechanisms of TEs repression present in the parental lineages 

releasing their evolutionary and replication potential in hybrids (Dion-Cotè et al., 

2014; Wright, 2017). 
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Brawand et al. (2014) found relatively similar GS for his five species, but the 

estimation came from assemblies, which crafting methods usually struggle to 

recreate repetitive regions of the genome (Sun et al., 2018), regions that are 

precisely the main contributors for GS changes (Tenaillon et al., 2010; Chalopin et 

al., 2015). 

From these premises, it seems plausible to expect intra- and interspecific GS 

variation in African Great Lakes cichlids, but no studies have demonstrated it yet. 

1.2. Genome size 

Genome size (GS) is commonly described as the amount of haploid nuclear DNA 

of an organism, typically measured in Megabases or picograms (1 pg = 978 Mb) 

(Doležel et al., 2010). 

It is a highly variable trait across eukaryotes with differences that range at least four 

orders of magnitude, as for example from the 19 Megabases of Pratylenchus 

coffeae, a parasitic nematode, to the 130 Gigabases of the marbled lungfish, 

Protopterus aethiopicus (Gregory, 2005) the animal with the biggest GS known to 

date. Although considerably smaller, differences within species, between sexes but 

also in general between individuals, are also present (Marescalchi et al., 1998; 

Jeffery et al., 2016; Neiman et al., 2011; Romero-Soriano et al., 2016). 

This striking variation does not correlate neither with organismal complexity, nor 

with number of genes (at least for eukaryotes) (Thomas, 1971), a puzzling scenario 

that scientists were not able to explain for a long time, to the point that they referred 

to it as the C-value paradox. 

Today we know that the nature of most of this extra DNA is non-coding and 

repetitive, with the coding part of the genome that correlates strongly and negatively 

with GS (Elliot and Gregory, 2015), but the reasons of its evolution and the 

mechanisms of its accumulation are still matter of debate. 

1.2.1. Mutational mechanisms 

Whatever the evolutionary scenarios of GS change might be, they must involve 

mutational mechanisms of addition and loss of DNA. Those differ for the entity of 
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the modification and so for the evolutionary time scale over which they can be 

effective (Petrov, 2001). The genome-size variants that arise from them sometimes 

affect phenotype and thus have to go through natural selection before becoming 

fixed. It is also likely that, within a certain range, genome-size variants could be of 

such similar selective values that their ultimate fates are determined primarily by 

neutral drift (Petrov, 2001). Moreover, singularly these mechanisms can have 

fitness-related effects that can go under selection independently from their impact 

on GS. 

Polyploidy or whole genome duplication is probably the most obvious of these 

mechanisms, with a huge impact on genome size and its evolution from a generation 

to the next. Usually, after this event the genome faces a series of chromosomal 

rearrangement and a process of deduplication (loss of most of the duplicated genes), 

both events that can mask the signs of an ancient polyploidization. This process is 

expected to cause a rapid and huge increase of GS and to carry all the phenotypic 

effects associated with those kinds of events (e.g., bigger cells, possible increase in 

developmental time) (Wright, 2017). 

Another chromosome-level impact on GS can be due to B-chromosomes, that are 

usually smaller than regular A-chromosomes and derive from them. They are 

considered as selfish genetic elements that can segregate independently at meiosis 

and often exhibit meiotic drive (transmission of one or more alleles favoured over 

another), that give them a way to quickly spread through populations causing 

changes in GS (Blommaert, 2020). 

Of relatively fast impact are amplification of repetitive DNA classes, like satellite 

DNA (passive proliferation, usually through DNA polymerase slippage), ribosomal 

DNA and transposable elements (TE). 

TE are selfish genetic elements that can actively amplify themselves throughout the 

genome, either via their own transposase enzymes, or by recruiting those of other 

elements (Blommaert, 2020). TE copy number can increase by 20-100 copies (0.1-

1 Mbp) in a single generation (Petrov, 2001) and its changes among species are 

often the most important predictor of genome size disparities (Tenaillon et al., 2010; 

Chalopin et al., 2015). Different processes and dynamics govern TE activity. They 

spread more in species with sexual reproduction and outcrossing, while low Ne 

populations tend to reduce the number of active TE due to genetic drift. Their 



 
 

13 
 

removal can be driven not only by deletion events but also by natural selection 

against both GS expansions and the harmful phenotypic effects from their insertions 

(interruption of functional genes and loss of function, disruption of gene 

expression) and even by illegitimate recombination between their long terminal 

repeats (Wright, 2017). Furthermore, modifications in silencing mechanisms that 

hosts adopt to limit TE activity can result in changes in their copy number. Both 

hybridization and duplication have been found capable to alter this control system 

(Marburger et al., 2018; Dion-Cotè et al., 2014). 

Spontaneous insertions and deletions are really slow mechanisms and therefore not 

plausible candidates to explain GS changes among closely related species or within 

species (Petrov, 2001). 

1.2.2. Evolutionary framework 

Two main theoretic hypotheses are currently debated for GS evolution, and each of 

them takes in account a different evolutionary force: a neutral (or nearly neutral) 

model that considers genetic drift as the main ruler of GS variation and an adaptive 

one that suggests that it is instead mostly driven by natural selection. The neutral 

scenario can be divided in two sub-branches that share the idea that the 

accumulation of new material, and so the insertion process, is regulated only by 

drift, but differ regarding the explanation of how it is removed. One, more strictly 

neutral, argues that GS reflects species specific insertion/deletion rates, and that big 

expansions of the genome are related with bursts in transposon activity or/and 

duplication events, then buffered by a constant rate of small deletions (Blommaert, 

2020). Indeed, several studies observed a distinct mutational spectrum of insertions 

and deletions in different species (Petrov et al., 1996, 2000; Bensasson et al., 2001) 

but a role of natural selection in the fixation of indels cannot be ruled out 

(Charlesworth, 1996) and, to date, a correlation between species-specific 

insertion/deletion rates and GS seems not to be present (Wright, 2017). More 

supported is the idea that transposon bursts followed by deletions is one of the 

natural processes that shape GS as observed across birds and mammals by Kapusta 

et al. (2017). The second sub-branch of the neutral hypothesis considers insertions 

as slightly deleterious for the genomes, at the point that, in a scenario of low genetic 

drift (e.g., high effective population size – Ne), natural selection-driven deletions 
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occur reducing GS. This creates a clear prediction: GS negatively correlates with 

Ne. That seems consistent at a broad taxonomic scale (Lynch and Conery, 2003), 

but fails to find validation at smaller scale or when comparative phylogenetic 

approaches are adopted (Whitney et al., 2010; Whitney and Garland, 2010; Ai et 

al., 2012). Moreover, small deletions could be as deleterious or more deleterious 

than small insertions (Leushkin et al., 2013), raising doubts on the effective 

direction that GS would take in case of scarce natural selection effect (Wright, 

2017).  

What emerges is that even if support for neutral hypothesis is not always confirmed, 

neutral evolutionary forces clearly play a role in GS evolution, at least as the default 

starting point on which other forces may act (Arkhipova, 2018; Blommaert, 2020). 

On the other hand, several other theories sustain an adaptive nature of GS that can 

therefore be shaped diversely by natural selection depending on the ecological 

pressures that the organism must face. A strong positive correlation exists between 

GS and cell size (Tsukaya, 2013), but also were observed correlations with body 

size, developmental time, seed size, duration of mitosis and meiosis (Beaulieu et 

al., 2008; Šímová et al., 2012; Gregory et al., 2002; Bennet, 1987; Chung, J. et al., 

1998) and other traits indeed linked with fitness and therefore plausible subjects of 

directional selection. Further proof that the phenotypic impacts of GS may be under 

selection comes from the fact that clines of this trait were found associated with 

environmental factors (Rayburn and Auger, 1990). Several studies show support 

for this hypothesis in different taxa, genome shrinkage driven by selection for rapid 

cell division and fast metabolism was for example observed in weedy plants 

(Bennett et al., 1998), animals with flight (Wright et al., 2014), and parasites 

(Cavalier-Smith, 2005). 

1.2.2.1. Body size-genome size correlation 

Correlation between body size and genome size was observed in different 

taxonomic groups, although the reasons at the base of this association could be 

different and bring to a different relationship between the two variables. 

Positive correlations were found in copepods species (Gregory et al., 2000) 

probably because they exhibit determinate cell number, so, to reach bigger size, 

they have to increment their cell size and, since it is directly correlated, genome 
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size. In salamanders, the positive relationship seems to be a consequence both of 

physical and morphogenetic constraints associated with large cells in small species 

and of mutational pressure to increase genome size once such constraints are lifted 

in larger species (Decena-Segarra et al., 2020). It is particularly evident in species 

that went through miniaturization (evolution of extremely small adult body size 

from a larger ancestor), since the consequences of body size reduction are largely 

mediated through cell size because the number of cells that form tissues or organ 

systems affects their complexity and function (Roth et al. 1994). Other species 

showing a positive correlation are flatworms (Gregory et al., 2000), birds and 

subsets of mammals (Gregory et al., 2002), but the causes for these associations are 

less clear. In fish Smith & Gregory (2009) found instead a negative correlation of 

these two variables, that could be explained by an inverse association between 

genome size and developmental rate in organisms of indeterminate growth. Bigger 

genomes need more time for mitosis and meiosis, producing an increase in 

developmental time and therefore potentially smaller sizes at an adult stage. 

It is interesting to notice that most of the evidence of the contrasting evolutionary 

hypothesis of GS are based on wide phylogenetic scale comparisons. Blommaert 

(2020) suggests a shift of focus on population-level differences in GS to exclude 

the confounding effects of large phylogenetic distances, before drawing 

conclusions about the importance of natural selection versus genetic drift. Few 

examples can be found in literature: a study on maize revealed that GS went through 

selection due to its effects on flowering time at different altitudes (Bilinski et al., 

2018), while another found that seed beetles specific GS differences are linked with 

difference in reproductive fitness (Arnqvist et al., 2015). Though, to date, studies 

that take in account interspecific GS differences and their phenotypic effects remain 

scarce.  

1.3. Aim of the thesis 

With this study we try to contribute to filling this gap, searching for variation in GS 

within Lake Victoria Super Flock (LVSF) radiation and investigating if those 

changes can be associated to body size variations in those species, possible evidence 
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for an adaptive history of GS diversity. To reach this aim we build a specific 

bioinformatic pipeline to estimate GS starting from whole genome shotgun Illumina 

reads and compare 210 individuals from 155 species belonging to the different 

radiations of Victoria region. To understand better the evolution of the trait we use 

ancestral reconstruction analysis plotting it on a Maximum Likelihood (ML) tree. 

To explore its relationship with body size we run regression analysis using 

phylogeny independent and dependent methods to take in account the effect of 

relatedness between species. Finally, we run average subclade disparity analysis for 

both GS and body size to see how it behaves through time. Even if our analysis is 

not focused on populations, the recent origin and the high relatedness of LVSF 

species should be enough to rule out effects due to large phylogenetic distances. 

1.4. Lake Victoria Super Flock 

Lake Victoria is the second largest lake of the planet by surface and spans the 

equator in between the East and the West branches of the EARS. It is hydrologically 

open with Kagera and Katonga rivers as major inlets and Victoria Nile as primary 

outlet that connects it to Lake Albert. Since it is not a rift basin, it is shallower than 

the other Great Lakes, with a maximum depth inferior to 100 meters. This feature 

makes it dependent from the balance between evaporation and precipitation, and 

since the former is more constant, the variability of the latter has a really strong 

impact on the lake level. For this reason, Victoria went through a series of 

desiccation events during its (young) geological history. Several smaller water 

bodies punctuate Victoria surroundings, comprehending rivers, streams, small 

young lakes and even older deep lakes like Kivu, Albert, Edward, George and 

Kyoga.  

Lake Victoria Super Flock originated between 200 and 100 thousand years ago 

(Verheyen et al., 2003) and comprehends around 700 species of haplochromines, 

spread mainly in lakes and rivers of Lake Victoria region but also in water bodies 

of North Africa and Israel (Danley et al., 2012). They are a monophyletic group 

sister of Malawi haplochromines with a common Tanganyika ancestor evolved 

around 4.7 million years ago (Elmer et al., 2009). Lake Victoria radiation counts 
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around 500 endemic species, probably diversified in the last 15 thousand years 

during a secondary colonization of the lake after a desiccation. Also, other big lakes 

of the area, Kivu, Albert, and Edward, host their own radiations, even if less copious 

(Meier et al., 2017). Each radiation comprises enormous diversity in habitat 

occupation, trophic ecology, coloration, and behaviour. The phylogeny of the group 

is particularly challenging and reflects the complex phylogeographic pattern due to 

past geological and climatic events. 

Mitochondrial (Verheyen et al., 2003) and nuclear (Elmer et al., 2009) analysis 

support Lake Kivu as the evolutionary origin of the LVSF. Haplotype network 

reconstruction by Verheyen et al. (2003), shows indeed that all LVSF lakes 

haplotypes are directly connected with, and therefore derived from, Lake Kivu’s 

and that the species of this radiation show a higher level of interspecific genetic 

diversity compared to the other lakes of the region even if counting only 15 endemic 

species.  Apparently, from this older and deeper lake four different lineages seeded 

the northern rift basins of Lake Edward, George, and Albert in a stepwise manner 

(Figure 3), through a connection that was interrupted recently (25,000-11,000 years 

ago) by the uplift of Virunga Volcanoes. This event blocked the northward drainage 

of Lake Kivu creating the modern river systems east of it (Schmidt, 2001). At least 

two lineages moved from Lake Kivu to Victoria (Figure 3) through a no longer 

existing connection and diversified (Verheyen et al., 2003). Elmer et al.’s (2009) 

data show, indeed, an introgression of genes of the first lake into the basin gene 

pool of the second, and not the reverse, reflecting the historical direction of 

migration. The split between Victoria’s and Kivu’s faunas has been estimated 

between 41,500 and 30,000 years ago, really close to the one of Virunga eruption 

making scientists think of a correlation of the two events that though has not been 

confirmed yet (Danley et al., 2012). 
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Figure 3. Possible scenario of colonization between lakes of Victoria region. Credits: Verheyen et 

al., 2003. 

The genomes of this group show a level of genetic variation higher compared to the 

mean of the rest of Great African Lakes cichlids (Svardal et al., 2021) and it is 

surprisingly high for LVSF recent origin (Bezault et al., 2011), suggesting that large 

amount of standing variation must have been present at the onset of the radiation. 

Hybridization is now recognized as the main source of this variation and the 

evolutionary history of this group is now considered an example of a hybrid swarm 

origin (Meier et al., 2017). This hypothesis considers an ancient hybridization 

between distant lineages as the genetic diversity provider to start and maintain a 

subsequent speciation. Meier et al. (2017) found evidence of ancient admixture at 

the onset of the LVSF radiation between two distantly related lineages of 

haplochromines that evolve in isolation in two river systems for more than a million 

years, one from the Upper Congo and one from the Upper Nile drainage. Probably, 

the former entered the Victoria region during a humid phase around 145,000-

200,000 years ago through the tributaries of Malgarasi river (a connection not 

existing now), and there it found the latter already established. Hybridization and 

introgression events derived from this area of contact, presumably allow these 

species to fully exploit the ecological opportunities offered by big lake habitats 
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starting the diversification process. This is supported by the fact that genomic loci 

likely involved in adaptation and divergence in Lake Victoria, show alternative 

alleles fixed in the hybridizing lineages but high divergence in Victoria species, 

which means that the sorting of alleles brought together by the admixture event is 

linked with speciation. One example of this dynamic is the LWS opsin gene, an 

exceptionally diverse gene in Victoria region that coded for the protein part of red-

sensitive visual pigments in cones (Terai et al., 2002). It plays an important role in 

adaptation to different ambient light levels and in reproductive isolation because 

divergent colour perception is associated with divergent male nuptial coloration 

(Terai et al., 2006). The variety of alleles at this locus are usually grouped in two 

major haplotype classes that differ mainly for a substitution that shift the 

absorbance peak of sensitivity and are usually associated to different habitats 

(clearer and shallow water and deep and murkier one) and each class is shared only 

with one parental lineage. 
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2. METHODS 

Short read sequence data were provided by Nathan Vranken, collected during the 

project KEAFish, funded by BELSPO (Belgian Federal Science Policy). Next 

Generation sequencing reads were obtained from Illumina whole genome 

sequencing of DNA extracted from ethanol-preserved fin tissue of cichlid fishes 

captured in lakes Kivu, Edward, Albert, and Victoria. Dataset consists in 300 

samples of 180 species with a mean of 1.67 individuals per species (range 1-34). 

Raw reads are 150 base pairs long and they are paired end (PE). PE sequencing 

enables both end of the DNA fragment to be sequenced with a known distance 

between each paired read, an information that allow alignment algorithms to map 

the reads over repetitive regions more precisely. For all the species ecological data 

were provided and for 133 of them also the maximum known standard length (SL) 

is reported, either from literature or from measuring the biggest captured specimen. 

2.1. Genome size estimation (GSE) 

Estimating genome size is not a trivial procedure and there are different approaches 

to tackle this challenge. A first big division that could be made is between 

experimental wet lab methods and computational ones. 

The former category includes techniques like Feulgen densitometry and flow 

cytometry that have been used for many years and were applied to tens of thousands 

of species, currently compiled in a GS database (Gregory et al., 2007). DNA flow 

cytometry is the most adopted method and involves preparation of aqueous 

suspensions of intact nuclei whose DNA is stained using a DNA fluorochrome. The 

nuclei are classified according to their relative fluorescence intensity or DNA 

content (Doležel and Bartoš, 2005), but this means that a set of standards is needed 

Even though, all of these experimental techniques rely on specific genomes that 

serve as internal and external size standards (Bennett et al., 2003; Doležel et al., 

2007; Hardie et al., 2002), the goal of creating a set of commonly accepted 

standards has not yet been achieved (Doležel and Bartoš, 2005; Doležel and 

Greilhuber, 2010).  When the same genome is analyzed in multiple laboratories, 
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this and additional factors such variations in sample preparation, staining/dyeing 

method, and stochastic drift of instruments can lead to noticeable changes in GSE 

for the same genome (Doležel et al., 1998). 

From the point of view of our resources, experimental methods would not be an 

option, as they require fresh tissue from which to extract cells and nuclei. This is 

not possible in our situation because our samples were already collected and 

sequenced, and even with another expedition it would be very difficult to preserve 

them well during the transport from Africa. 

Computational approaches, on the other hand, appear more accessible. 

Computational methods, indeed, are based on whole genome sequencing and 

bioinformatics tools. One approach of this kind involves assembling the genome 

whose size we want to estimate and counting the number of bases. This is usually 

biased because even with the latest algorithms it is difficult to fully assemble using 

short reads and include highly repetitive regions and non-coding ones (Torresen et 

al., 2019), so the genome size obtained in this way would result in an 

underestimation. Moreover, our coverage is too low to craft a reliable assembly. 

The choice instead was to use what is called a k-mer approach. The advantage of 

this method is that it requires as an input whole genome shotgun reads with a 

remarkably lower coverage that the ones necessary for crafting an assembly. On the 

other end it could be computationally heavy. 

Since we have a valuable number of computational resources thanks to the Vlaams 

Supercomputer Centrum access and good quality reads, even with low depth 

coverage, the kmer approach is the best choice for our GSE effort. 

Furthermore, as stated by Sun et al, 2018, k-mer based GSE methods are very robust 

against changes in the sequencing setup, and their estimations can be highly 

reproducible. 

In bioinformatics, k-mers are substrings of length k contained within a biological 

sequence (Compeau et al., 2011). In the field of computational biology, they are 

used for different analysis from the construction of De Brujin graph during the first 

step for crafting an assembly, (Compeau et al., 2011) to genomics-based taxonomy 

(Ounit et al., 2015), from phylogenetic purposes (Zhang, Q. et al., 2017) to genome 

size estimation (Pflug et al., 2020). 
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The k-mer approach for GSE starts from the assumption that NGS methods 

sequence all bases in a genome with equal probability, so if we divide the number 

of bases sequenced (N) by the length of the genome (GS) we obtain the mean 

coverage depth (C) (Sims et al., 2014). 

C = N/GS 

If we transfer this idea in a k-mer context, C is the number of times each k-mer is 

sequenced on average and N denotes the number of genomic k-mers in the reads. 

The relationship N=C*(G–k+1) allows to estimate GS with G ≈N/C as G >> k. 

Both C and N can be statistically inferred from a k-mer frequency histogram, which 

tells us how many distinct k-mers occur at a specific frequency within a given 

whole-genome sequencing data set (Sun et al., 2018). 

In a typical k-mer distribution of a diploid genome we have, starting from the left, 

a high peak at low frequencies that results from sequencing errors. They consist of 

many k-mers present in one or two copies. Usually other two peaks are present, the 

rightmost is the homozygous peak, characterized by k-mers present in both 

chromosomes sets, and, at half of homozygous peak frequency, the heterozygous 

peak with k-mers present in only one set. The higher the heterozygosity, the more 

dominant the heterozygous peak. The long tail at higher frequencies represents k-

mers of repetitive regions, present in multiple loci. Finally, if not previously filtered 

out, at even higher frequencies we can find small peaks of k-mers from 

mitochondrial and plastidial genomes which are present in multiple hundred copies 

in a cell (Sun et al., 2018).  

Simply dividing the number of genomic k-mers for the k-mer coverage is though 

quite an approximate approach due to sequencing errors and other interferences. 

For this reason, different software packages have implemented mathematical 

models to fit the distribution of distinct k-mer frequencies including mixed Poisson 

distributions (Li and Waterman, 2003), Bayesian estimation (Shan & Zheng, 2009) 

and negative binomial distributions (Vurture et al., 2017). 

For our analysis we chose to test two of them that adopt two different models. Given 

a distribution of k-mer frequencies, findGSE first fits the distribution iteratively 

with a skew normal distribution model; then it calculates the total number of k-mers 

(N) according to both fitted and the original counts and corrects the average k-mer 
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coverage (C) with the skewness of the fitted curve, based on which it calculates the 

genome size as N/C (Sun et al., 2018). GenomeScope 2.0 takes as input the k-mer 

spectrum, performs a nonlinear least-squares optimization to fit a mixture of 

negative binomial distributions, and outputs estimates for genome size, 

repetitiveness, and heterozygosity rates (Ranallo-Benavidez et al., 2020). 

2.2. Pipeline  

2.2.1. Pre-processing  

fastp -i ${name}_R1.fastq.gz -o ${name}_R1strict.fastq.gz -I ${name}_R2.fastq.gz                      

-O ${name}_R2strict.fastq.gz -w 16 -D --dup_calc_accuracy 5 -l 40 -q 30 -5 -W 2 

-M 30 -3        -W 2 -M 30 

Before the GSE, Illumina reads need to be pre-processed to remove possible 

uninterpretable signals due to sequencing errors. 

We use the package fastp v0.23.2 (Chen et al., 2018) that provides several filtering 

options for short reads in FASTQ format and can be run in parallel on multiple 

cores (-w option). Furthermore, it accepts paired ends reads as input and is able 

allows to correct mismatched base pairs in overlapped regions of paired end reads, 

if one base is with high quality while the other is with ultra-low quality. 

Before applying filters to the whole dataset, we tested them on different datasets of 

Illumina WGS reads of Nile tilapia (Oreochromis niloticus) downloaded from 

assembly projects in NCBI to benchmark the entire process. We distinguished a 

good initial read quality sample (gNT) and a bad initial read quality sample (bNT). 

This African cichlid has relatively good assemblies but, more importantly, it has 

genome size estimates from independent methods, so it is the perfect candidate for 

our benchmarking process. The GSE range for Nile tilapia goes from 0.95 billion 

bases to 1.15 billion according to Feulgen densitometry method (Gregory et al, 

2005).  

First, we discarded reads of low quality and bases with low phred quality score. 

A phred quality score is a measure of the quality of the identification of 
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the nucleobases generated by automated DNA sequencing. (Ewing B; Hillier L; 

Wendl MC; Green P. (1998)) 

Keeping bases with a low phred quality score would lower the quality of 

downstream analyses (e.g., de novo and reference-based assembly), by introducing 

sequencing artifacts and errors that may contribute to incorrect interpretation of data 

(Chen et al., 2018) and incorrect k-mer count. Moreover, estimation models are 

more prone to not converge when fed with low quality reads (Vurture et al., 2017). 

Running the entire pipeline for two samples of Nile tilapia WGS reads of different 

starting quality (gNT, bNT) allow us to assess how the starting quality impacts the 

analysis and if our trimming design will be able to, at least partially, correct 

erroneous estimations related with sequencing uncertainties. 

We performed a Fastqc analysis of the samples before and after the filtering to see 

how the quality had changed. We noticed that most of the low phred score (<28) 

bases were concentrated at the 3’and 5’ positions of the reads. For this reason, we 

used fastp --cut tail and --cut front options to create two sliding windows of size 2 

bp (-W 2), respectively starting from the front and from the tail of the read, that 

drops every couple of bases with mean score inferior of 30 (-M 30). When they 

encounter two bases with a mean quality above this threshold, they stop.  

To drop low quality reads we modify the -q option of fastp, which allows us to 

impose a quality threshold under which the bases are considered unqualified. When 

a certain percentage of bases of a read is unqualified (-u option, 40% by default), 

the read will be dropped. We kept -u at the default value and compared a “soft” 

trimming regime (-q 20) with a “strict” (-q 30) one. 

The downside of a more stringent filtering scenario is that a higher number of reads 

are dumped and that the remaining ones are characterized by a lower assembly 

coverage, with the consequent risk that in some cases data are too few for the 

estimation model to converge and to give a reliable GSE. 

We proceeded following the suggested pre-processing steps presented in the 

findGSE publication (Sun et al., 2018). Fastp algorithm automatically search for 

adapters-like sequences and trim them, so we keep it by default. 

Next, we need to remove PCR duplicates. PCR amplification is an important step 

in the preparation of DNA sequencing libraries prior to high-throughput sequencing 

but it introduces redundant reads in the sequence data. Clearly those kinds of 
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artifacts will affect the k-mer counting step and, consequently, the GSE, therefore 

is important to estimate the PCR duplication rate and filter them out. The -D option 

of fastp is designed exactly for this purpose. We chose a deduplication calculation 

accuracy of 5 on 6 (--dup_calc_acc), to have a good trade-off between the speed 

and the accuracy of the process. 

Mitochondrial reads are not included in the genome size calculation and are present 

in many copies in a cell. Consequently, they could be problematic, creating a high 

frequency k-mer peak in the histogram that could produce erroneous estimates and 

they need to be removed. We accomplished this task for our benchmarking species 

Nile Tilapia aligning our reads to the mitogenome assembly of the species 

(previously downloaded from NCBI) and filtering out all the ones that align with it. 

Although this approach will remove also nuclear reads similar enough to the 

mitochondrial sequence, we expect that their effective number will be limited and 

so, not impactful in the estimation stage (Pflug et al., 2020). We used BWA (Li and 

Durbin, 2009) and SAMtools (Li et al., 2009) to reach this goal. The mitochondrial 

reads removal was performed after the filtering since, if done before it, it can 

remove duplication signals necessary to dump PCR duplicates. 

Another issue can emerge intrinsically related with technical features of Illumina 

NGS. Since G bases are codified in the same way as no signals during sequencing, 

a variable number of polyGs (e.g., part of the sequence that consists in a repetition 

of G) can be identified at the level of the tail of the reads. Fastp algorithm trim them 

by default using a minimum length threshold of 10. 

Intensive trimming produces shorter reads. Until their length remains above the 

chosen k-mer size, the downward analysis should work correctly. To avoid that 

reads too short enter the kmer counting step, we use the -l option of fastp, that filter 

out reads shorter than a certain threshold, in this case 40 bp.  

2.2.2. K-mer counting 

kmc -m100 -k21 -ci1 -cx1000000 -cs1000000 -t36 @LIST ${name}k21.res tem 

kmc_tools transform ${name}k21.res histogram ${name}k21.histo   
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The next step of the analysis is k-mer counting that consists in determining all 

unique k-symbol long strings (usually with counters) in the read collection. We 

used the package KMC v3.2.1 for this procedure and kmc_tools for manipulation 

of sets produced with KMC (Kokot et al., 2017). 

To obtain a single kmer spectrum for the forward and the inverse reads combined 

we used a list including the two of them as input for KMC. 

The critical decision for this step is what k to use, however it is not obvious which 

one is optimal (Chikhi and Medvedev, 2014). The larger it is, more computational 

resources requests and smaller the total number of k-mer, with the risk to not have 

enough information for the model to converge. On the other hand, if it is too small, 

we risk having k-mers that are not unique in the genome (Liu et al. 2013). 

Partially following what was performed in the findGSE paper (Sun et al., 2018) we 

tested different, mostly odd, ks for both Nile tilapia samples from 17 to 31. We 

arbitrarily chose 17, 19, 21, 24, 27, 31. 

We raised the max amount of RAM (-m100) from the default 12 GB to 100GB to 

be sure that it’s enough to process the high number of reads (and so, of k-mers) of 

our samples. 

To be sure to include all the possible k-mers, we set the frequency lower accepted 

limit as one (-ci 1) and the upper limit as 1 million (-cx 1000000) while raising the 

maximal value of a counter to 1 million (-cs 1000000). This could have been 

problematic because even high frequency mitochondrial reads would have been 

going to enter the analysis but having already filtered them out that issue doesn’t 

exist. 

KMC can be run in parallel and we did it on 36 threads, generating a .res file with 

every single k-mer and the number it occurs. kmc_tools transform converts it in a 

k-mer frequency histogram that can be read by the estimation packages. 

2.2.3. Estimation 

Regarding the estimation packages, findGSE is implemented on R, while 

Genomescope2 can be run on Linux but also online with a user-friendly interface. 

Every benchmarking analysis was performed with both bioinformatic tools to 

compare their results. 
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2.2.3.1. FindGSE 

library (findGSE) 

findGSE (histo ='name_21.histo', outdir = "estimation", sizek = 21) 

For findGSE we kept everything in the standard mode, changing only the k-mer 

size according to the input histogram. Even if for gNT the heterozygous peak was 

clear in the histogram, it was not present in all our samples, so we didn’t include 

the parameter for heterozygous genomes. This is not completely unexpected, given 

the low heterozygosity scenario that emerges from Svardal et al. (2021) estimations. 

2.2.3.2. Genomescope2 

Rscript genomescope.R -i name_21.histo -o output_dir  -k 21  -l 8 

Regarding Genomescope2 we ran it on Linux because it is possible to modify more 

parameters in this way. In this case, differently from what we did for findGSE, we 

kept the -l parameter which consists in giving the initial k-mer coverage estimate 

of the heterozygous peak. Without it the model returns very low estimations, 

usually around half the ones with the parameter included. 

Even if well optimized these two algorithms cannot work with a small amount of 

data, because in that case the model is not able to converge. For findGSE a 10x 

reads coverage is still a safe data amount for correct estimations (Sun et al., 2018), 

while Genomescope2 requires a bit more (around 15x according to Ranallo-

Benavidez et al., 2020). 

To test if the GSE remains consistent even in low coverages conditions, we ran the 

analysis for subsamples of different number of reads, randomly extracted from the 

good and bad O.niloticus samples already strict-filtered. We chose subsamples of 

10, 12 and 15 estimated coverage to simulate a range of coverage close to the 

declared model limit. To estimate the coverage of subsamples, we use as Nile 

Tilapia GS the mean value of estimations obtained by Feulgen densitometry (1.05 

Gigabases). 

We also tested the possibility to pool reads from 2 individuals of the same species 

to obtain a higher coverage and avoid the issue. We chose 11 species from the 

dataset with at least two individuals, expressly selecting both species where 

individuals have a GSE for most of k-mer sizes (enough coverage for the model to 
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converge) and species where the model failed to converge. For every species we 

selected two individuals and pooled their reads together using the “cat” command. 

After that we ran the analysis for both single individuals and pool samples and we 

compared the results.   

2.3. Body size correlation and phylogenetic analysis 

2.3.1. Phylogenetic tree 

The phylogeny necessary for these analysis was again provided by Nathan Vranken 

and Hannes Svaardal group based in Antwerp. It is a Maximum Likelihood (ML) 

species tree built from a matrix of 1.000.000 SNPs through the package IQ-TREE 

v2.2.0 (Minh et al., 2020) and it includes most of our species plus some riverine 

species closely related. It was pruned to keep only the species of interest and 

through the phangorn library it was made ultra-metric, since that is a primary 

condition for subsequent analysis. 

The tree shows that the Lake Victoria Super Flock is monophyletic with a bootstrap 

support of 100, while within the Lake Victoria region, all species from Lakes Albert 

and Victoria each form a well-supported radiation. Most species from Lakes Kivu 

and Edward also form a well-supported clade, except for some species from Lake 

Edward that seem to have more ancestral positions to all other species from the 

Lake Victoria region and whose placement is more uncertain. These species include 

H. squamipinnis, H. aeneocolor, and H. limax 

2.3.2. Regression and lambda estimate 

Maximum known standard length (SL) was used as proxy of body size for the 

species for which it is available, while the remanent species were excluded from 

this analysis. We calculate regression between GS and SL using both phylogenetic 

and non-phylogenetic approaches. Ordinary Least Squares (OLS) is the phylogeny 

independent method since it assumes that the points are independent. Phylogenetic 

Generalized Least Squares (PGLS), instead, uses knowledge of phylogenetic 

relationships, in this case our ML tree, to produce an estimate of expected 

covariance in cross-species data. Because of their shared lineage, in this model it is 
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expected that closely related species have more comparable features and, as a result, 

yield more similar residuals from the least squares regression line. (Symonds & 

Blomberg, 2014). Various models were proposed to predict the structure of 

residuals in PGLS, we tested for the Brownian motion and the Ornstein-Ulhenbeck. 

Akaike weight was calculated for all three regression models to choose the best one. 

We used R package phylolm (Ho et al., 2016) to perform this analysis. 

Additionally, the phylogenetic signal contained in our data was estimated as Pagel’s 

lambda (Pagel, 1999) through the phylosig function of phytools (Revell, 2012), for 

both genome size and body size. 

2.3.3. Trait evolution and ancestral state reconstruction 

We map our GSE on the phylogeny using the contmap function of phytools package 

(Revell, 2012) to understand how it changed during time across lineages. The 

mapping is accomplished by reconstructing ancestral states with fastAnc, and then 

interpolating the states along each edge as maximum likelihood estimates under a 

Brownian evolutionary process. 

Also, for both body size and genome size a traitgram was produced, using the 

multirateBM function of phytools. It is again a reconstruction based on maximum 

likelihood and Brownian motion model that shows how the rate of evolution of a 

particular trait changed across different lineages during time. 

2.3.4. Disparity 

To explore if most of the variability in the two traits is distributed among subclades 

or within them and how this changed through time, disparity analysis for both traits 

was performed. The dtt function of geiger package (Harmon et al., 2008) was used 

for this analysis. 
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3. RESULTS 

3.1. Benchmarking results (Tab 1) 

Contrasting the two packages, Genomescope2, although with a slight 

underestimation in comparison with Feulgen densitometry estimates, remains more 

robust (lower SD) through different k-mer sizes for gNT on both not trimmed reads 

and the two filtering regimes. On the other hand, it fails to converge for every k-

mer size in 12 and 10 coverage subsamples and even for k17 and k31 of the bNT 

strict trim regime (even though it could be argued that the quality of the reads has 

a role in this), while the rest of the estimates for the two filtering regimes of bNT 

and for both 15 coverage subsamples are evidently lower than the reference. Low 

coverage emerges clearly as an issue for this method.  Also, Genomescope2 is quite 

sensitive to slight changes in the initial k-mer coverage value (-l), and since we set 

it approximately as half the coverage of the homozygous peak is not always easy to 

standardize it. 

FindGSE has higher jumps in estimates between different k-mer sizes (higher SDs), 

but it returns reliable estimations for both gNT and bNT through the two filtering 

scenarios (bNT strict k31 excluded as it seems a technical problem). The model also 

converges for gNT all sub15 k-mer sizes and for the three smallest of sub12, even 

if with an overestimation of GS in comparison with densitometry results for k27 

and k31 of sub15, and k17 and k19 of sub12. 

Looking at these data findGSE is our choice for this analysis, because even though 

of good quality, our dataset have a wide range of coverage including samples with 

low coverage, and this method seems more robust than Genomescope2 when 

coverage is lower.        

For what concerns the initial quality of the bases in our benchmarking process, it 

has an impact only at the lower coverages represented by bNT subsamples, where 

higher k-mer sizes struggle to converge, probably because intensive trimming 

reduced the mean length of the reads and consequently the amount of input data for 

the model. bNT seems also to produce in general lower estimates than gNT but this 
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could be due to individual differences in GS of the fish whose DNA composes the 

two samples. 

We opted for “strict” trimming (-q 30) because it seems to give more consistent 

estimates (lower SD throughout different k-mer sizes) for both the good and the bad 

sample, comparing to the “soft” one (-q 20) without sacrificing the reliability.  

Regarding mitochondrial filtering, at the end of the process, we noticed that a really 

low number of reads were filtered out. For example, for gNT only 200.000 reads 

(100.000 from R1 and 100.000 for R2) on 467 million aligned to the mitochondrial 

genome and where consequently removed. Moreover, the GSE with and without 

mitochondrial reads did not change and there is no evidence of high frequency 

peaks in the histograms of our samples, so we decided to avoid this time-consuming 

part for the entire dataset of Victoria region individuals.  

Since the model tends to fail more frequently using larger k-mers, due to lower 

coverage, k31 was removed from the analysis. Furthermore, an exploratory analysis 

on the dataset showed that k17 estimations tend to organize themselves in a bimodal 

distribution when all samples are considered. This behaviour cannot be observed in 

the estimates obtained with the other k-mers and it is probably an artifact of 

findGSE, so we removed k17. This preliminary analyses also highlighted the fact 

that findGSE estimations tend to grow when k-mer size is increased (Figure 4). To 

buffer this effect, the final individual GSE is considered the arithmetic mean of the 

GSE of the four-remaining k-mer sizes (19, 21, 24 and 27) for that individual. 

Samples that do not produce reliable estimates for all k-mer sizes were discarded. 
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Tab 1. Benchmarking results of two Nile Tilapia samples, one with good initial reads quality (ERR7448119) and the other with bad initial reads quality (SRR071614). Both 

samples were analysed raw, after two different filtering designs and subsampled after the stricter filtering in order to show expected coverage values of 10, 12 and 15.  Two 

estimation packages were tested: findGSE (in red) and Genomescope2 (in blue). The pipeline was run for 6 different k-mer sizes (k17, k19, k21, k24, k27, k31) and a mean 

of their estimates was computed with a standard deviation (STD DEV). The estimated coverage was calculated dividing the number of bases of each sample for 1,05 Gb, 

the average of the genome size range estimated by Feulgen densitometry in the Animal Genome Size Database (Gregory et al., 2005). 
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Figure 4. Violin plot comparison of individual genome size estimates for 4 different k-mer sizes (19, 

21, 24, 27). Dashed lines connect estimates belonging to the same individual. Sample size 210 

individuals.  

The pooling test gave us quite interesting results with the mean of pooling sample 

that fell quite near the mean of the respective individuals (pooling estimates differ 

by mean of 1,06 ± 2,77 % from respective individuals mean). Moreover, all pooling 

sample gave a reliable estimate even if one of the samples that compose them fail 

to converge for one or more k-mer sizes. Despite that, we decided to not adopt this 

solution because most species do not have more than one individual and we do not 

know if pooling can possibly introduce some artificial signals in the analysis, so we 

prefer to keep it standard. Instead, we use the arithmetic mean of species individuals 

as GSE for that species. 
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3.2. GSE 

3.2.1. Individuals 

210 samples belonging to 155 species with a mean of 1.35 individuals per species 

(range 1-14) arrived at the end of the pipeline with a valid GSE for all four k-mer 

sizes and were therefore used for the subsequent analysis.  

The genome size for our samples ranges from 0,855 Gb to 1,105 Gb with a mean 

of 0,971 Gb and a standard deviation of 0,039 Gb.  

Higher variability in different individual k-mer sizes estimates could be interpreted 

as a signal of scarce consistency and, therefore, increasing uncertainty of the 

findGSE model. To explore that we calculated a coefficient of variation (CV) that 

is simply the individual standard deviation for different k-mer sizes estimates 

divided by the mean estimate to normalize it.  The mean CV in our samples is 0,253, 

with a maximum of 0,721 and only nine samples over 0,5 (Figure 5). 

 

Figure 5. Density plot of the distribution of the coefficient of variation (CV). Sample size 210 

individuals.  

To test for possible causes of high variability, exploratory regression analyses were 

performed between CV and both percentage of lost reads during filtering (as proxy 

of initial data quality) and total number of reads after filtering (as proxy of low 
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amount of data). Both showed a very weak, if present, negative correlation (Figure 

6). 

 

 

Figure 6. Regression analysis performed between the coefficient of variation (CV) and, respectively, 

percentage of lost paired-end reads after filtering (A) and number of total paired-end reads after 

filtering (B). Sample size 211 individuals. 

3.2.2. Species 

At the species level, our samples show a mean GS of 0,970 Gb with a standard 

deviation of 0,035 Gb. The range goes from the 0,870 Gb of H. perrieri to the 1,094 

Gb of H. sp_sky_blue_picker (Figure 7). 34 species have more than one individual 

and the mean within species standard variation is 0,022 Gb. 
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Figure 7. Violin plot and box plot of genome size (Gb) species distribution. Sample size 155 species.  

The 155 remaining species are grouped in this way: 9 are from Lake Albert 

radiation, 32 from Lake Edward radiation, 5 from Lake Kivu radiation, 104 from 

Victoria radiation and 5 belong to the upper Nile lineage. A non-parametric 

Kruskal-Wallis test was performed using a Bonferroni correction for multiple 

comparisons, to test if fish from the same lakes/groups are more similar to each 

other than to fish from other lakes, but the p-value was not significant (Kruskal-

Wallis chi-squared = 6.4226, df = 4, p-value = 0.17). 

Pairwise comparison between lakes was also tested through a Dunn’s test, but none 

of them results significant (Tab 2). 
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Tab 2. Dunn’s test for genome size between 5 groups (Albert, Edward, Victoria, Upper Nile, Kivu) 

with p-value corrected with Bonferroni method. Sample size 155 species (9 Albert, 32 Edward, 104 

Victoria, 5 Upper Nile, 5 Kivu). 

3.3. Standard length 

120 of the remaining species have a SL estimation. The mean is 749,3 mm with a 

standard deviation of 537,1 mm, quite high but coherent with the evident bimodal 

distribution of the data (Figure 8). 

 

Figure 8. Violin plot and box plot of maximum standard length (mm) species distribution. Sample 

size 120 species. 
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The 120 species with an actual body size value are divided in this way: 9 belong 

from Lake Albert radiation, 32 from Edward radiation, 5 from Kivu radiation, 4 

from Upper Nile lineage and 70 from Victoria radiation. 

The Kruskal-Wallis test gave a significant p-value (Kruskal-Wallis chi-squared = 

13.829, df = 4, p-value = 0.007863), evidence that variation among groups is greater 

than within groups. 

Also, Dunn’s test showed a significant difference (p-value = 0,0195) in SL between 

fish of Lake Edward radiation and the ones from Victoria radiation (Tab 3). 

 

 

Tab 3. Dunn’s test for maximum standard length between 5 groups (Albert, Edward, Victoria, Upper 

Nile, Kivu) with p-value corrected with Bonferroni method. Sample size 120 species (9 Albert, 32 

Edward, 70 Victoria, 4 Upper Nile, 5 Kivu). 

3.4. Phylogenetic analysis 

11 of the 155 initial species were not present in the ML phylogeny and other 35 did 

not have an actual maximum SL estimate, so these analyses were run with 104 

species in total. 

3.4.1. Trait mapping and ancestral reconstruction 

Looking at the trait mapped on the tree (Figure 9) suggests that a phylogenetic 

signal for GS seems not to be present, since different values of this trait are common 

in close related species without a recognisable pattern. The same could be claim for 
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body size, except for Lake Albert species (in yellow in Figure 9) that show a similar, 

relatively big maximum standard length. Green and yellow colours are predominant 

on the tree, coherent with the data distribution that show most of the samples around 

the mean values.  

 

Figure 9. Tree mapping of the genome size trait (Gb) for 104 species of the dataset. Ancestral state 

reconstruction and branch evolution based on a Brownian motion model. Maximum standard length 

is also display for each individual and different colours indicate the belonging group of the species. 
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3.4.2. Regression 

Body size shows a weak positive and significant correlation with genome size for 

the Ordinal Least Squares model only (p-value = 0.02178), while the two 

phylogenetic dependent models did not find any significant relationship (p-value 

PGLS-BM = 0.2206, p-value PGLS-OU = 0.07617) (Figure 10 and tab 4).  

Figure 10. Regression analysis between body size (log) and genome size (log) for 104 species. Grey 

line represents regression computed with Ordinary Least Squares model (OLS), blue and red lines 

the regressions computed with Phylogenetic Generalized Least Square model (PGLS) respectively 

using Brownian motion (PGLS-BM) and Ornstein-Uhlenbeck (PGLS-OU) evolutionary model. 

Equation and adjusted R-squared are plotted. 

Tab 4. Statistics regarding the regression analysis of figure 10. 
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Observing Akaike’s weights (Tab 5), OLS has also the highest likelihood of being 

the best model among the set being considered for both GS (0.7043) and body size 

(0.72866), suggesting weak or absent phylogenetic signal in the data. 

 

 

Tab 5. Akaike weights (AICw) statistics for the three models adopted in figure xx regression for both 

genome size and body size. The higher the weight, the better the model.  

Surprisingly lambda estimation for GS is 1,43 and strongly significant (p-value = 

0,000531522), a value that indicates instead a phylogenetic effect stronger than the 

one predicted by a simple Brownian motion model. Body size phylogenetic signal 

is clearly lower (0,68) and not significant (p-value = 0.0102317) (Tab 6). 

 

 

Tab 6. Phylogenetic signal lambda statistics for genome size and body size. P-value significant < 

0,05. Sample size 104 species. 

3.4.3. Traitgram 

Looking at the traitgram of GS through time (Figure 11) it can be noticed that, for 

most of the branches, the trait shows a low rate of evolution around average values 

that results in an overlapped topology where all the branches are placed close to 

each other and end with similar value at the tips. Interestingly the lineage with 

higher rate of evolution and that comprehend the higher estimations for the data, is 
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the one formed by Upper Nile species (first branch to separate from the common 

ancestor in the figure). The ancestral reconstructed trait appears similar to the 

middle point of the actual distribution. 

 

 

Figure 11. Traitogram showing evolution through time and across lineages of genome size (Gb). 

Rate of evolution (log (δ2)) variation is displayed through a colour palette. X axis represents relative 

proportion of time passed from the common ancestor of the species. Sample size 104 species. 

Ancestral state reconstruction and branch evolution used a Brownian motion model. On the right 

the distribution of the dataset is plotted. 

Body size, on the other hand, shows high rates of evolution for most of the lineages 

with a clear tendency to evolve either smaller or larger body sizes, but not 

intermediate ones. The Upper Nile lineage is characterized by a low rate of 

evolution showing an almost horizontal branch, with species of relatively big body 

size that stayed almost the same during time. The plotted distribution again clearly 

shows a bimodal nature (Figure 12). 
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Figure 12. Traitgram showing evolution through time and across lineages of body size (log). Rate 

of evolution (log (δ2)) variation is displayed through a colour palette. X axis represents relative 

proportion of time passed from the common ancestor of the species. Sample size 104 species. 

Ancestral state reconstruction and branch evolution used a Brownian motion model. On the right 

the distribution of the dataset is plotted. 

3.4.4. Disparity 

Average subclade GS disparity shows the highest values at the beginning of the 

radiation, then decreases gradually and constantly at the beginning and then in a 

more stepwise manner, until the value of 0 in most recent times. This means that, 

during evolution, subclades become more and more similar in genome size. The 

trait seems to not follow at all the trajectory of an unconstrained Brownian model 

trait evolution (dashed line) (Figure 13). 
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Figure 13. Average subclade disparity through time for the genome size trait (full line). X axis 

represents the relative proportion of time passed from the common ancestor of the species. Dashed 

line shows the unconstrained Brownian motion model trait evolution simulation. Sample size 104 

species. 

Regarding body size disparity (Figure 14), it shows low levels for most of the 

radiation, except for a relative recent peak where it is higher than the one predicted 

by Brownian motion. This more recent increase in subclade diversity is probably 

due to the first bifurcating lineages of the traitgram (Figure 12) that start to lead to 

the two different body size conditions (big and small). 
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Figure 14. Average subclade disparity through time for the body size trait (full line). X axis 

represents the relative proportion of time passed from the common ancestor of the species. Dashed 

line shows the unconstrained Brownian motion model trait evolution simulation. Sample size 104 

species. 
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4. DISCUSSION  

The main purpose of this study was to estimate the interspecific variation of genome 

size across the Lake Victoria Super Flock through a specific-constructed 

bioinformatics pipeline, and to use those data to investigate the evolution of the trait 

and the possible relationship with body size, in this case considered as the maximum 

known standard length. 

The results show that most interspecific variation in genome size is included in a 

narrow range of 1,005–0,935 Gb. Cichlids of Victoria region appear therefore 

similar for this trait, apart for a small number of species that occupy the extremes 

of the distribution, which spans 0,224 Gb. Even among lake radiations and groups, 

the differences in genome size are statistically comparable to the ones registered 

within them. Even if not statistically different, species of the Upper Nile lineage 

show the highest genome size (H.sp_protruding_pedicel) and in general relatively 

high values for the trait. In light of the results of Meier et al. (2017), Upper Nile 

lineage was one of the two hybridizing clades at the origin of the LVSF radiation, 

therefore, the null hypothesis is that the newly formed hybrids genome size should 

have somewhat values in the middle between the ones of this lineage and the ones 

of the other basal clade, the Congolese lineage. Departures from this value can be 

related with different mutational mechanisms effects as for example transposable 

elements expansions. Including specimens from Congolese lineage in future 

analysis will help us to study these dynamics. 

Ancestral reconstruction methods also support the fact that genome size remained 

quite stable during the diversification of these groups, with low evolutionary rates 

registered for most of the lineages actually present in the Victoria region lakes, and 

an ancestral trait estimate a few megabases higher than the mean value of the current 

species. Clearly, interpreting these results, it should be taken into account the fact 

that Brownian motion reconstruction is considered the null hypothesis for trait 

evolution, while different evolutionary trajectories could have been shaped the 

current interspecific GS variation. Phylogenetic analyses seem to suggest the fact 

that Brownian motion is not the best way to describe genome size evolution. 

Although a pattern in genome size is not recognizable when the trait is mapped on 
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the tree, with relatively higher or lower estimations in closely related species, the 

estimated Pagel’s lambda for genome size is 1,43. This is evidence of a strong 

phylogenetic signal in the data, stronger than the one predicted by a simple 

Brownian motion model. One possible hypothesis is that genome size could have 

evolved under stabilizing selection in this clade of cichlids. Stabilizing selection is 

a particular type of natural selection that favours an average phenotype selecting 

against extreme variation (Schmalhausen, 1949). The data distribution and the low 

rates of evolution observed across lineages are compatible with this scenario. Still, 

more analyses, and probably an optimality approach, are needed to confirm that and 

to understand what kind of underlying constraints or selective pressures are possibly 

limiting genome size variation in this group. Interestingly the highest rates of 

evolution for our data were registered within species of the Upper Nile lineage, 

phylogenetically older than the LVSF radiation, and therefore maybe not be 

affected by constraints. It is also possible that those limitations in genome size 

variation arose due to the hybridization event, since Runemark et al. (2018) 

observed that both genome and organismal function can constrain hybrid genome 

formation and hence its size. Future analysis will focus on including more species 

of the basal clades and from other riverine groups placed at the base of the radiation 

to investigate these hypotheses. 

The trend of average subclade disparity is somewhat in line with this assumption, 

showing a constant decrease through time. This means that subclades become more 

and more similar between them regarding genome size variation, and this could be 

explained surely by great lineage diversification and consequent overlapping 

among them, but also by their possible converging towards an average optimum 

value. Again, the observed disparity emerges quite different to the one predicted by 

Brownian motion simulation. 

Regarding the relationship between genome size and body size, what we found is a 

weak but significant positive correlation between the two variables only for the 

phylogenetic independent Ordinary Least Squares method, that is also the best 

model between the three proposed according to Akaike’s weight. The positive 

correlation, although weak, found in this study, contradicts the general negative 

relationships that was found by Smith & Gregory (2019) in teleosts, but more 

information should be collected to understand this discrepancy. Even though 
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phylogenetic dependent method (PGLS) failed to return significant associations, 

the effect of phylogeny on this relationship cannot be ruled out.  First, the 

evolutionary models used for PGLS analysis could be inappropriate to capture the 

complex pattern of trait evolution of genome size and body size in our species. The 

high phylogenetic signal found for genome size and the observed inadequacy of 

Brownian motion modelling, seems to confirm this assumption. Moreover, PGLS 

regression method relies on precise and unbiased trait value, so OLS regression 

could simply be more robust to such measurement errors and, therefore, yield better 

model fit. 

Intriguingly, preliminary analysis limited to species of Lake Kivu, Edward and 

Albert (KEA region) showed a significant negative correlation between the two 

traits for all the three methods. One possible explanation can be that the exceptional 

ecological and morphological diversification that faced the younger Lake Victoria 

species altered the ancestral link between the two traits, still present in older and 

smaller lake radiations. An interesting future development could be comparing this 

regression results with those computed using data from Lake Malawi or Tanganyika 

radiation, whose species faced a wide ecological and morphological adaptation, like 

the Victoria one.  

Focusing on body size, our analysis has highlighted some unexpected but 

interesting patterns. As shown by the density plot, our species body size tends to 

show a bimodal-like distribution, with most of the samples grouped near two peaks 

and a final tail composed by a few high maximum standard-length species. These 

fish species apparently evolved either a larger size or a smaller one, but rarely show 

the middle values. Moreover, looking at the traitgram, it appears evident that most 

of the LVSF lineages bifurcated to alternate body size peaks during their 

diversification, driven by high rates of evolution. On the contrary, species from 

Upper Nile lineage remained similar in body size through time and show the lowest 

rates of evolution for this trait. The observed pattern suggests that disruptive 

selection could be acting on body size, since it is an evolutionary force that tends 

to favour extreme phenotypes, while selecting against intermediate ones. Thoday 

(1972) claims that such selection may be expected in two contrasting types of 

situations. First the two or more optimal phenotypes may depend on one another, 

second the optima may be set by heterogeneity of the environment such as a mosaic 
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of ecological niches or a clinal situation. More ecological and physiological 

information are needed to confirm one or both of those scenarios, but the latter 

seems quite appropriate to describe the situation found by cichlids when they 

colonized Lake Victoria (Seehausen, 2015).  

For body size a difference between inter- and intragroup variation was found 

significant, and Dunn’s test highlighted a significant difference between Edward 

and Victoria radiation species for the trait. Our initial hypothesis was that this 

difference was linked to the higher diversification of Victoria species that should 

result in a higher within group variation. Surprisingly standard deviations for body 

sizes of species from Edward radiation and species from Victoria radiation are very 

similar (499,9 mm for Edward, 508,8 mm for Victoria) but Edward species show a 

mean body size around 400 mm bigger (993,1 mm against 600,5 mm of Victoria). 

A first literature exploration did not find an explanation for this discrepancy, so, if 

adding more Victoria species will confirm this trend, future analysis will be needed 

to tackle this evolutionary question. 

It is also noticeable that Lake Albert species tend to show similar and relatively 

large body sizes (mean=1012,89 mm), while the other groups are characterized by 

both large and small species. In this lake, haplochromines are not the dominant 

clade and are mostly prey in a fish community dominated by predatory fish species 

such as Lates, Hydrocynus and Bagrus (Wandera et al., 2010). The evolution of 

bigger sizes could in this scenario be favoured to escape the high predatory 

pressures from species of other lineages. 

4.1. Considerations on the method 

The reliability of the method is clearly a fundamental part of these conjectures, since 

it is possible that the variation found is more technical than biological. The 

benchmarking process showed that our pipeline could give quite different results 

for the same sample under different coverage condition with gNT estimate that 

raised up of around 0,2 Gb when subsampled at 15x estimated coverage. Even 

considered that for those analysis the high k31 estimate was still considered, it is 

still legitimate to ask if it is appropriate to use a method whose error is comparable 
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to the range of the interspecific variation of the samples. Still, even with the 

probable presence of some noise, the signal in our data seems strong. The mean of 

the standard deviation of individual estimates from different k-mer sizes (0,024 Gb) 

and the mean standard deviation within species (0,022 Gb) are both lower than the 

interspecific standard deviation (0,035) and clearly lower than the whole range of 

variation (0,224 Gb). If results were driven by technical noise, a wider within 

species standard deviation would be expected. Also, considering the same 

underlying distribution, a standard deviation calculated for few individuals, as for 

most of our species, is more likely higher than if calculated for a dataset of 155 

species. Looking at this data the signal-to-noise ratio seems, therefore, favourable.   

Other two grey zones of our method are samples with high variation between 

different k-mer sizes estimates and samples with low coverage. The former ones 

are signal of inconsistency and show only a really weak, if present, correlation with 

low number and low starting quality of reads. For the latter ones instead, we are out 

of our benchmarking safety zone, since they have reliable estimates for all four k-

mer sizes, but coverages lower than the ones tested with Nile Tilapia subsamples 

and for which the model failed. Both these typologies of samples were kept in the 

analysis. Removing them in future analyses and confronting the results, will allow 

us to assess their effective impact on the conclusions.  
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