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Abstract 

 

Chromochloris zofingiensis is a unicellular microalga that has attracted considerable 

interest due to its robust growth, its remarkable capacity to accumulate high levels of 

triacylglycerol and its ability to synthesize valuable keto-carotenoids including 

astaxanthin, one of the strongest natural antioxidants. The purpose of this thesis is to 

optimize the growth of C. zofingiensis at different scales (1L bubble column and 200L 

tubular reactor) by considering the main abiotic factors influencing its growth. 

Conventional batch experiments and photorespirometry were employed to investigate the 

individual effects of light intensity, temperature, nitrate and phosphate concentration and 

a comprehensive growth model integrating the contribution of all these factors was 

developed. The model expresses light as the average intensity within the culture, 

calculated using the Beer-Lambert law, which has been demonstrated to accurately 

predicts light distribution under the investigated conditions. Furthermore, the study 

explores the impact of oxygen accumulation, a common phenomenon in tubular reactors. 

Results demonstrate a significant decrease in growth rate when high levels of dissolved 

oxygen concentrations (DOC) are present. Additionally, it is observed that C. zofingiensis 

growth remains adversely affected if accumulation has occurred even after degassing and 

reducing the DOC levels, highlighting the importance of avoiding such conditions to 

ensure optimal growth. The initial batch experiments conducted in the 200L reactor 

revealed lower growth rates compared to the bubble columns, indicating possible 

limitations and challenges associated with implementing the laboratory-developed model 

in larger-scale operations. Future batches in the 200 L reactor should include monitoring 

of DOC levels alongside a comprehensive fluid dynamic study to gain deeper insights 

into the factors hindering the application of the laboratory-developed model.   

 

 

 

 



  

  

 

 

 

 

  



Riassunto esteso 

Il lavoro di tesi rappresenta il risultato di un progetto di ricerca svolto presso l'Istituto di 

Automazione e l'Istituto di Tecnologia dei Materiali Naturali dell'Università Tecnica di Dresda 

nel periodo compreso tra ottobre 2022 e aprile 2023. Lo scopo principale di questo progetto è 

stato lo sviluppo di un modello matematico in grado di predire la crescita della Chromochloris 

zofingiensis, tenendo in considerazione i principali fattori abiotici e le possibili implicazioni nel 

processo di scalabilità.  La C. zofingiensis è un'alga verde unicellulare d'acqua dolce che ha 

suscitato un notevole interesse grazie alle sue caratteristiche uniche e alle sue molteplici 

applicazioni, tra cui la sua capacità di produrre elevati livelli di lipidi, in particolare 

triacilgliceroli (TAG), e l'antiossidante astaxantina. Attualmente l'applicazione industriale della 

C. zofingiensis è limitata da diverse sfide, tra cui un notevole consumo energetico, il rischio di 

contaminazione e altri fattori che emergono durante il processo di scaling-up da una scala di 

laboratorio a una scala industriale. Per superare tali ostacoli, l'utilizzo di modelli matematici 

riveste un ruolo cruciale nella previsione e nell'ottimizzazione del tasso di crescita delle 

microalghe, dimostrandosi fondamentale per valutare la redditività e la sostenibilità della 

coltivazione di alghe su larga scala. Tra i fattori chiave che influenzano la crescita, la luce 

riveste un ruolo di primaria importanza. All'interno di un sistema di coltivazione, la 

distribuzione della luce non è omogenea, pertanto la prima fase dello studio si è concentrata 

sulla modellazione di tale distribuzione e sulla definizione di una luce media da includere nel 

modello matematico finale. Successivamente, l'effetto dell'intensità luminosa, della 

temperatura e delle concentrazioni di nitrato e fosfato è stato analizzato in laboratorio attraverso 

esperimenti batch convenzionali e l'utilizzo della fotorespirometria, che si è dimostrata una 

valida alternativa per comprendere in modo più rapido l'impatto di tali fattori sull'attività 

fotosintetica della microalga.  L'influenza di ciascun fattore sulla crescita di Chromochloris 

zofingiensis è stata studiata adottando l'approccio One-Factor-At-a-Time (OFAT) e il modello 

di crescita finale è stato ottenuto combinando il contributo individuale di ciascun fattore sulla 

velocità di crescita complessiva della Chromochloris zofingiensis. Le condizioni ottimali 

determinate in laboratorio dovranno essere applicate al reattore da 200L al fine di valutare la 

possibilità di adottare il modello anche a scala industriale. Durante questo studio, sono stati 

condotti i primi due esperimenti batch sul reattore tubolare, i quali hanno evidenziato una 

velocità di crescita significativamente inferiore rispetto a quella ottenuta nelle colonne a bolle. 



  

  

 

 

Ciò potrebbe essere attribuito a diversi fattori, tra cui la diversa geometria e turbolenza a cui le 

cellule algali sono soggette, e l’elevata concentrazione di ossigeno disciolto (DOC) che tende 

a verificarsi nei reattori tubolari. A tal proposito, sono stati condotti ulteriori esperimenti 

fotorespirometrici per valutare come la crescita del C. zofingiensis diminuisca per elevati valori 

di DOC e le conseguenze di un eventuale accumulo una volta raggiunte le condizioni di 

saturazione. In conclusione, dai risultati ottenuti si consiglia in futuri studi sul reattore, di 

monitorare la concentrazione di ossigeno disciolto per assicurarsi che non raggiunga le 

condizioni di saturazione (raggiunte a circa 12 mgO2/L) e preferibilmente rimanga al di sotto 

di 9 mgO2/L, al fine di evitare una significativa diminuzione della crescita. Nel caso in cui i 

valori di DOC superino tali limiti, occorrerà adottare misure per migliorare l'efficienza del 

trasferimento di massa gas-liquido. Inoltre, per ottimizzare ulteriormente la crescita quando si 

opera a luce continua, si suggerisce di impiegare il modello di distribuzione della luce ottenuto 

in questo studio per aumentare l’intensità di luce incidente durante l’operazione e mantenere 

costante la luce media nel mezzo di coltura all'aumentare della concentrazione di biomassa. Per 

determinare il valore ottimale di luce media da mantenere costante, sarà necessario condurre 

ulteriori esperimenti batch sul reattore in diverse condizioni di illuminazione, seguendo 

l'approccio utilizzato in questo studio per le colonne a bolle. Ciò consentirà di individuare 

l'intensità luminosa media che massimizza la crescita e verificare se corrisponde a quanto 

riscontrato in scala di laboratorio in questo lavoro di tesi, o se la diversa geometria e dimensione 

del reattore comporta implicazioni sull'andamento della crescita in relazione alla luce. 
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Introduction 
 

Chromochloris zofingiensis is a unicellular green alga that has gained considerable attention for 

its unique attributes and versatile applications, particularly in producing the powerful 

antioxidant astaxanthin. However, its industrial application is hindered by contamination issues, 

high energy requirements, and scalability challenges. Mathematical modeling plays a crucial 

role in predicting and optimizing microalgae growth, essential for assessing large-scale 

cultivation's profitability and sustainability. This thesis investigates the impact of key factors 

on C. zofingiensis growth and explores the implications of scaling up, aiming to develop an 

accurate mathematical model for predicting and optimizing its productivity. The thesis 

comprises four chapters. 

• The first chapter provides an overview of microalgae, with a specific focus on the C. 

zofingiensis species. Key characteristics, applications, and the challenges associated with 

industrial cultivation are discussed. Additionally, the chapter analyses different factors that 

affect microalgae growth and presents the current state of the art regarding the development 

of mathematical models to predict their growth. 

• The second chapter is dedicated to describing the cultivation systems used and the 

experimental protocols implemented during the study. 

• The third chapter focuses on studying light attenuation in microalgal suspensions. The 

distribution of light intensity in tubular reactors under various light conditions and biomass 

concentrations will be assessed. Furthermore, a mathematical model capable of describing 

the obtained light profiles will be identified. 

• In the fourth chapter, the effects of light intensity, temperature, nitrate, and phosphate 

concentration on C. zofingiensis growth are investigated. Mathematical models that predict 

the influence of these factors on microalgae growth are analysed. 
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• The fifth chapter examines the impact of high dissolved oxygen concentrations on the 

photosynthetic efficiency of C. zofingiensis by means of photorespirometry. 

• Some final remarks and future perspectives conclude the work. 

  



Chapter 1  

Background 
 

1.1 Microalgae characteristics and growth 

Microalgae are unicellular photosynthetic microorganisms whose potential has been 

highlighted in the last decades due to the wide variety of applications in which they can be 

involved. There exist several hundred thousand species of microalgae in nature, out of which 

only a handful of them have been economically exploited (Chandra et al., 2019). They can differ 

significantly in size (from a few micrometres, to a few hundred micrometres) and can have a 

wide range of morphological variation (round, oval, cylindrical, and fusiform cells) as well as 

projections (thorns, cilia, etc.). The microalgal species can be distinguished by the light 

harvesting pigments present in the cell and can be classified in four main types (Metting, 1996): 

diatoms (Bacillariophyceae), green algae (Chlorophyceae), blue-green algae (Cyanophyceae) 

and golden algae (Chrysophyceae). 

Microalgae growth in batch culture can be generally characterized by four phases (Béchet et 

al., 2013): 

- The lag phase: the growth is delayed due to physiological adjustments in new 

environments. 

- The exponential phase: the growth rate is constant and microorganisms grow at 

maximum speed; the number of microalgae doubles at regular time intervals. 

- The saturation phase: the growth rate is zero. Light intensity reaches a saturation 

threshold, photosynthesis cannot process more photons and nutrients in the culture 

medium are exhausted. 

- The death phase: the number of viable cells decreases with the stop of division and 

metabolic phase. It can occur if light intensity further increases beyond an inhibitory 

threshold, photosynthesis rate starts decreasing due to several factors such as depletion 

of nutrients, excess biomass concentration, overheating, pH disturbance, or 

contamination. 
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1.1.1 Application and advantages of microalgae 

Considerable interest has been drawn towards the potential of microalgae for industrial 

exploitation over the past 70 years (Figure 1.1). Microalgae could be a viable solution for 

wastewater treatment since they assimilate phosphate and nitrogen, the main contributors to the 

eutrophication phenomena (Salama et al., 2017). Furthermore, they have a high carbon dioxide 

fixation rate, which can be used in flue gas treatment to reduce the concentration of this 

greenhouse gas in the atmosphere (Kumar et al., 2010).  

Another key attribute of microalgae is their capacity to produce long chain polyunsaturated 

fatty acids with positive effects on human health, they can also be a source of pigments and 

antioxidants for food, cosmetic and pharmaceutical industries (Vieira et al., 2020). Moreover, 

some species have gained significant interest in biofuel production thanks to their capability to 

store large amounts of triacylglycerol that can be then converted into biodiesel (Neofotis et al., 

2016). The advantages compared to other crops are their high photosynthetic efficiency per 

area, and the possibility of cultivating them even in non-arable land avoiding the impact on 

agricultural land (Mata et al., 2010).  

 

 

Figure 1.1 Applications of microalgae in different fields (Rizwan et al., 2018). 
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1.1.2 Factors affecting the photosynthetic process 

Microalgae growth can be affected by several factors that can be divided in three categories 

(Mohsenpour et al., 2021):  

- Abiotic factors including light, temperature, nutrients (CO2, N, P, K, etc.), O2, pH, salinity 

and toxins. 

- Biotic factors such as bacteria, fungi, viruses, and other species in competition with 

microalgae. 

- Operational factors including mixing and stirring conditions, dilution ratio, vessel geometry, 

and harvest frequency. 

In the last century, extensive studies were conducted to explore the effects of these different 

factors on the growth and composition of algal cultures, contributing to a comprehensive 

understanding of their intricate relationships and potential applications. 

 

1.1.2.1 Nutrients  

The availability of nutrients, especially carbon (C), nitrogen (N) and phosphorus (P) can 

significantly affect the biochemical composition of microalgae and their growth kinetics. Due 

to the diversity of species, it is not possible to define a general molecular formula however the 

minimum nutritional requirements needed for their growth can be estimated by the approximate 

molecular formula CO0.48H1.83N0.11P0.01 (Christy et al., 2007). According to this formula, about 

50% of biomass is composed of carbon, therefore high concentrations of carbon sources are 

required and depending on how this demand is met, microalgae can be cultivated at different 

conditions. In photoautotrophic conditions, microalgae rely on photosynthesis as their primary 

source of energy, they use light and carbon dioxide (CO2) to produce organic compounds. In 

heterotrophic conditions instead, microalgae obtain their energy and carbon from external 

organic sources such as glucose, glycerol or cellulose hydrolysis products. Finally, mixotrophic 

conditions represent a combination of both photoautotrophic and heterotrophic modes of 

growth (Kim et al., 2013). The most important element after carbon is nitrogen, which is 

responsible for the production of proteins, vitamins, nucleic acids, and photosynthetic pigments 

(Chowdury et al., 2020). The most common nitrogen sources are nitrate, nitrite, urea and 

ammonium; nevertheless, nitrate is preferred for microalgae culture over ammonium salts due 
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to its greater stability and lower likelihood of causing pH shifts. Nitrogen can affect the biomass 

productivity and the cellular composition. Zhu et al. (2014) reported that under nitrogen 

starvation conditions, Chromochloris zofingiensis showed growth inhibition and increased lipid 

production. According to Feng. et al. (2012) the lipid content of C. zofingiensis was 65.1% in 

medium deficient of nitrogen, while only 33.5% was obtained from cells grown in full medium. 

Nitrogen limitation can result in a decrease in the cellular content of the thylakoid membrane, 

activation of acyl hydrolase, and stimulation of phospholipid hydrolysis, increasing the 

intracellular fatty acyl-CoA content (Chu et al., 2013). Phosphorus is another essential 

compound that has a significant impact on biomass productivity, lipid production, fatty acid 

yield and many cellular metabolic activities such as energy transfer, synthesis of nucleic acids, 

deoxyribonucleic acid (DNA), ribonucleic acid (RNA) and ATP (Atiku et al., 2016). 

Microalgae can absorb phosphorus in the form of polyphosphate or orthophosphate; however, 

it plays a less dominant role than carbon and nitrogen in the cellular duplication and the 

accumulation of lipids. Working at different concentrations of nitrogen and phosphorus can be 

an effective strategy to enhance the content of target substances; the N:P ratio in the culture 

medium plays an important role as shown by Yaakob et al. (2021) which summarizes the effect 

of nitrogen and phosphorus availability and starvation in different species of algae. 

 

1.1.2.2 Light and Temperature   

Light availability is the most important factor in the growth and productivity of photosynthetic 

microorganisms. Therefore, maintaining the light intensity within the optimal range is crucial 

to maximize microalgae growth. Below this range, growth is limited due to photolimitation, 

while exceeding this range leads to saturated conditions, resulting in an inefficient use of 

energy. Moreover, excessively high light intensity beyond the optimal range can induce 

photoinhibition and damage the photosynthetic apparatus (Wágner et al., 2018). Another 

important phenomenon to consider when working with a turbid media like algae culture is light 

attenuation: the irradiance inside microalgae cultures is not homogeneous but is a function of 

light intensity, culture depth, and biomass concentration (Chowdury et al., 2020). Light 

attenuation is affected by the absorption capacity of photosynthetic pigments, the self-shading 

effect by cells and light scattering caused by reactor wall and cells. To solve this problem, the 

concept of average irradiance has been introduced and will be discussed in §3.1. In addition to 

light intensity, the light wavelength has significant impact in microalgae growth and pigment 
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synthesis. The availability of specific wavelengths can influence the synthesis and composition 

of pigments in microalgae (Metsoviti et al., 2020). Depending on the types of pigments they 

contain, microalgae can absorb different wavelengths of light, mainly within the visible 

spectrum (PAR). Therefore, to maximize photosynthetic efficiency, it is essential to provide 

algae with light radiation that falls within the specific range absorbed by their pigments such as 

chlorophylls, carotenoids, phycoerythrin and phycocyanin. The two major groups of 

photosynthetic pigments in green algae are chlorophylls (green) and carotenoids (red-yellow). 

Chlorophylls absorb light in the blue (450–475 nm) and red (630–675 nm) spectrum bands, 

while carotenoids absorb light in the 400–550 nm spectral range. Chlorophylls are the main 

photon-harvesting pigments, while carotenoids serve as protective pigments, improving light 

absorption and utilization and providing defence against high irradiance and reactive oxygen 

species (Wagner et al., 2018). After nutrients and light, temperature plays the most important 

role in microalgae growth. The optimal temperature providing maximum growth rates is 

generally stated between 20 and 30 °C, although some thermophilic strains can endure up to 

40˚C (Ras et al., 2013).  

Below the optimal temperature, an increase in temperature results in an enhancement of 

enzymatic activities related to the Calvin cycle which entail a positive effect on photosynthesis 

and cell division. Above the optimal temperature, the growth rate of microalgae decreases 

dramatically (Figure 1.2), and this is generally explained by heat stress, which can affect 

enzyme functionalities (inactivation, denaturation) or modify proteins involved in 

photosynthetic processes, thus inhibiting growth (Manhaeghe et al., 2019). 

Figure 1.2. Thermal growth curve of the microalgae species Astrionella formosa 

(Bernard and Rémond, 2012). 
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1.1.2.3 Dissolved oxygen 

The dissolved oxygen concentrations (DOC) measured within the cultivation system is another 

crucial factor that can significantly affect microalgal growth. At high concentration, oxygen 

can compete with carbon dioxide for RuBisCo, which is the key enzyme in the Calvin cycle 

(Sforza et al., 2020). This phenomenon leads to the production of glycolate instead of the 

expected glyceraldehyde 3-phosphate at the output of the Calvin cycle. In addition, under high 

light conditions, the increased oxygen production along with the fluxes of photons and of 

electrons generated in Photosystem II significantly enhances the formation of reactive oxygen 

species (ROS). ROS can cause organelle dysfunction alteration of cell structures, and damage 

to proteins and membranes. High ROS concentrations induce oxidative stress, leading to cell 

mortality (López Muñoz et al., 2021). Photo-respirometric tests have shown that when the DO 

concentration is maintained below saturation levels, the photosynthetic oxygen production rate 

(OPR) of microalgae remains largely unaffected (Kliphuis et al., 2011). If the DOC exceeds 

this level, it becomes necessary to consider its impact when developing a mathematical model 

to optimize the production process and better control the growth conditions to avoid critical 

regimes where productivity decreases. 

 

1.2 Microalgae commercial cultivation techniques 

At the industrial level, a wide range of cultivation systems have been studied and developed for 

microalgae mass production. These reactors vary significantly depending on several factors 

such as the light source applied, the process mode (batch, semi-batch, continuous) and the 

reactor geometry (Ahmad et al., 2021). Basically, these systems can be categorized into two 

main types based on the cultivation method. The first one is conducted in open systems while 

the second cultivation method is conducted in closed, transparent systems. Open ponds are the 

most widely used at commercial scale as they have lower capital and operating costs. However, 

biomass productivity is lower than that achieved in closed systems, due to the dependence on 

the local weather and higher likelihood of contamination by other microorganisms. On the other 

hand, closed systems are becoming very popular and attractive due to the better control and 

higher production rates they offer; however, because of their high investment costs and energy 

requirement (particularly for mixing and cooling processes) their use is still limited. They can 

be defined as closed vessels for the photoautotrophic cultivation of microalgae in which energy 

is provided by artificial light or sunlight. They are characterized by many different geometric 
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configurations including vertical PBRs, flat plate PBRs, helical PBRs, tubular PBRs and 

internally-illuminated PBRs (Placzek et al., 2017). Vertical PBRs consist of vertical oriented 

tubes with a gas sparger at the bottom to facilitate mixing and gas mass transfer (Figure 1.3) 

and can be classified into bubble column PBRs and air lift PBRs. Vertical PBRs present 

numerous advantages such as high efficiency of photosynthesis, high potential of scalability, 

reduced risk of photoinhibition and photooxidation, cost-effectiveness and easy maintenance. 

Nevertheless, an inherent limitation of vertical PBRs is the small surface area available for light 

exposure, that is additionally reduced with the increase of column diameters. Flat panel systems 

are characterized by rectangular or square panels with shallow depths, typically made of 

transparent or translucent material. Agitation is provided by air bubbling or mechanical rotation 

of a motor through a perforated tube. Noteworthy advantages of flat panels include a high 

surface-to-volume ratio, uniform light distribution across the entire cultivation volume, and 

small concentration of dissolved oxygen. However, possible drawbacks are the risk of fouling 

and that scaling up requires the use of multiple modules and support structures (Ahmad et al., 

2021). Tubular photobioreactors are manufactured using plastic or glass straight tubes, that are 

arrayed in vertical, inclined, helical, or serpentine configurations. The basic design principle of 

tubular PBRs can be divided into two parts. The first part is the tubular part or the reactor in 

which the microalgae are grown while the second one is the degasser unit which is used to 

remove the gas and the pump system which provides circulation and mixing of the microalgae 

culture. The serpentine tubular photobioreactor, as the one used in this work, consists of straight 

tubes connected by U-bends to form a flat loop (the photostage) that may be arranged either 

vertically or horizontally (Zittelli et al. 2013). These reactors are characterized by relatively low 

capital cost and very large illumination surface area that makes them suitable for both indoor 

and outdoor cultivation. On the other hand, some drawbacks could be the risk of biofilm 

accumulation on tube walls, the poor mass transfer and the possible fluctuations in pH, 

concentration of dissolved O2 and CO2 along the tube length (photoinhibition risk). To further 

delve into details, the recent review by Chanquia et al. (2022) analyses the current challenges 

and advantages of each different type of photobioreactors, from the more conventional ones 

widely used in the industry to the more innovative designs currently limited to laboratory-scale 

operations. Despite advancements in bioengineering and biotechnology to enhance algal growth 

efficiency in photobioreactors, open systems remain the dominant approach for industrial-scale 

algae cultivation. This is primarily due to unresolved technical challenges and the high 

investment and production costs associated with photobioreactors. Extensive research is 
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currently underway to address and resolve these challenges, by combining a wide variety of 

photobioreactor (PBR) types with innovative technologies and advanced methods of lighting, 

aeration, and mixing, along with a deeper understanding of the growth mechanisms under 

different conditions, new and efficient strategies for large-scale microalgae cultivation are 

expected to emerge.  

 

 

 

 

 

 

 

 

1.2.1 Scale-up issues 

In biotechnological processes, scale-up criteria are usually based on determining the 

relationship between the culture parameters and fluid patterns within the PBRs, which, of 

course, do not scale linearly with the PBR size. For example, while mixing culture in laboratory-

scale PBR may be able to ensure that cells move along the light gradient within the same time 

scale as some biochemical processes, this is not the case for large scale PBRs. Therefore, it 

seems conceivable that kinetic models obtained in small-scale PBRs may be very far from the 

reality of what occurs in larger scale PBRs, where longer mixing times are involved and culture 

homogeneity is difficult to achieve. When scaling up, mixing time is certainly a key parameter 

to consider, along with pipe diameter and length (Torzillo et al., 2015). The flow pattern within 

the tube lumen can be regarded as a plug flow with minimal backward and forward mixing. 

Therefore, considerable spatial gradients of O2 and CO2 along the axis may occur and can gain 

Figure 1.3. Commercial-scale systems for microalgae production. (A) open ponds (Kumar et al., 

2014); (B) bubble columns (J. Algal Biomass Utln.); (C) flat-plate reactor (Lindblad et al., 2019); 

(D) tubular reactor (Alaswad et al., 2015). 
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importance with the increasing of the length of the tubes. Some studies have shown that long 

tubular photobioreactors are characterized by these high gradients along the tubes and that very 

high dissolved oxygen levels are easily reached (Molina et al., 2001; Benner et al., 2022) 

negatively affecting both growth and biomass protein content. Additionally, when a tubular 

photobioreactor is scaled up by increasing the diameter of tubes, the illumination surface to 

volume ratio would decrease and the cells located at the lower part of the tube will not receive 

the necessary amount of light for their growth (due to light shading effect), unless there is a 

good mixing system. Another factor that can compromise large scale microalgae cultures is 

contamination as demonstrated in many studies (Carney and Lane, 2014; Kamravamanesh et 

al., 2019) in which cultures grown in closed systems were usually affected by contaminants 

despite protection from the outside atmosphere. Wang et al. (2012) and Borowitzka et al. (2017) 

highlighted the role of water used to prepare the medium as a potential vehicle for 

contamination. Moreover, it has been observed that algal cultures become more vulnerable to 

infection and predation in poorly mixed systems or under stressed conditions, which, as 

previously mentioned, are necessary to increase the production of biosynthesized compounds 

such as lipids and carotenoids. 

 

1.3 Chromochloris zofingiensis 

Chromochloris zofingiensis is a freshwater green alga that has gained considerable attention 

due to its unique attributes and versatile applications. It has a complicated taxonomy history. In 

fact, since Dönz isolated it (Dönz, 1934), it has been assigned to several distinct genus, 

including Chlorella, Muriella, and Mychonastes. Finally, after further observations Fučíková 

et al. (2012) reclassified C. zofingiensis into the genus Chromochloris within the class 

Chlorophyceae. It is characterized by a spherical shape, without flagellum, and with a cell 

diameter ranging from 2 to 15 µm. The life cycle of C. zofingiensis is simple and generally 

involves three phases: growth, ripening and division, which occurs through a consecutive 

pattern of multiple fissions as shown by Koren et al. (2021). Microscopic observation of C. 

zofingiensis cells under favorable (up) and stress (bottom) growth conditions. From the left to 

the right: transmission electron microscopy (CP, chloroplast; LD, lipid droplet; SG, starch 

granule); fluorescent microscopy (red indicates chlorophyll autofluorescence and green 

indicates neutral lipids); light microscopy. 
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Under favourable growth conditions, the cells appear green while under stress conditions, 

reached through high light intensities and nitrogen starvation, the cells turn to orange (Figure 

1.4). This color change is attributed to the synthesis of secondary carotenoids, including 

astaxanthin, a valuable antioxidant pigment with potential applications in the nutraceutical and 

pharmaceutical industries. Therefore, when carotenoid accumulation is to be achieved, 

nitrogen-deficiency conditions must be applied by providing a high carbon-to-nitrogen (C:N) 

ratio around 200:1 (Chen et al., 2017).  

C. zofingiensis is recognized for its ability to produce high levels of lipids, particularly 

triacylglycerols (TAGs), but also proteins, essential amino acids and carbohydrates including 

starch. As a result, a notable feature of C. zofingiensis is its potential to simultaneously produce 

astaxanthin and TAGs. This characteristic opens up the possibility of generating multiple 

products, which can potentially yield higher revenue than extracting a single astaxanthin-lipid 

product (Wood et al., 2022). The TAGs can be used for biodiesel production or consumed as 

nutraceuticals. In addition, the starch content can be harnessed as a bioethanol feedstock or for 

bioplastics. Although other components such as proteins and carbohydrates are less explored in 

this species, they hold potential as valuable by-products for applications such as animal feed, 

fertilizers, biostimulants, enzymes, and cosmetics. (Figure 1.5) shows the wide range of 

potential products that could be obtained from C. zofingiensis. 

Figure 1.4. Microscopic observation of C. zofingiensis cells under 

favorable (top) and stress (bottom) growth conditions. From left to 

right: transmission electron microscopy (CP, chloroplast; LD, 

lipid droplet; SG, starch granule); fluorescent microscopy (red 

indicates chlorophyll autofluorescence and green indicates 

neutral lipids); light microscopy, (Zhang et al., 2021). 
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1.3.1 Astaxanthin 

Astaxanthin is a red-orange oxycarotenoid pigment known for its strong antioxidant properties, 

which help protect cells from oxidative damage caused by free radicals. Astaxanthin has gained 

significant attention due to its potential pharmacological effects, including anticancer, 

antidiabetic, anti-inflammatory, immune-stimulating effects, as well as its favourable impact 

on skin, eye and cardiovascular health (Sztretye et al., 2019). It can be obtained synthetically 

from the petrochemical industry, or naturally through microorganisms such as Chromochloris 

zofingiensis, Haematococcus pluvialis, red yeast Phaffia rhodozyma, and the marine bacterium 

Agrobacterium aurantiacum (Fakhri et al., 2018). The microalgae H. pluvialis represents the 

major natural source of astaxanthin and the only one currently approved by the Food and Drug 

Administration (FDA) for human nutrition, while the other sources have only been approved 

for aquaculture. At the moment, the market for astaxanthin is predominantly dominated by 

synthetic production, accounting for 95% of the market share. This is primarily due to the 

prohibitively high production cost of naturally derived astaxanthin from H. pluvialis, which 

ranges from $2500 to $7000 per kilogram, in contrast to the comparatively lower cost of $1000 

per kilogram for synthetic production (Wood et al., 2022). Nonetheless, natural astaxanthin is 

preferred due to its higher antioxidant activity and prevalence in the desirable esterified form 

compared to synthetic sources. Among other natural astaxanthin sources, microalgae are the 

Figure 1.5. Potential products from Chromochloris zofingiensis, (Wood et al., 2022). 
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ones with the biggest potential in terms of productivity. H. pluvialis produces more astaxanthin 

on cellular basis than C. zofingiensis: the highest astaxanthin content for C. zofingiensis is 13.1 

mg g−1 dry weight, still much lower compared to the 40 mg g−1 dry weight obtained with H. 

pluvialis (Sun et al., 2015; Zhang et al., 2021). However, C. zofingiensis could represent a 

promising alternative due to its ability to achieve higher growth rates and cell densities, and be 

less susceptible to contaminations (Wood et al., 2022). Despite the lower astaxanthin yield per 

cell, the potential reduction in production costs and time could propel C. zofingiensis into the 

high-value market of astaxanthin production. A detailed summary of research conducted on its 

production through C. zofingiensis under different culture conditions can be found in Zhang et 

al. (2021). 

 

1.4 State of the art in mathematical modeling 

The use of mathematical modeling plays a crucial role in predicting and optimizing the growth 

rate of microalgae, which is essential for assessing the profitability and sustainability of large-

scale algae cultivation. The biomass concentration in a batch reactor assuming perfectly mixed 

conditions and without considering the cellular death could be described by the following mass 

balance equation (Koller et al., 2017): 

𝑑𝐶𝑋

𝑑𝑡
= 𝜇 𝐶𝑋 (1. 1) 

Where Cx represents the biomass concentration [g L-1], μ the biomass growth rate [h-1] and t the 

generation time [h]. Solving Equation 1.1 involves determining the biomass growth rate μ, 

which is function of all the possible limitations that can occur in the cultivation system. 

Therefore, the selection of a specific growth kinetic model is a critical aspect of process 

modeling, as it must take into account the influences of all parameters. As a result, many 

different kinetic models have been reviewed by numerous studies, concerning the single and/or 

combined effects of the process conditions while keeping the other parameters at saturation 

levels. The following paragraphs summarize the main mathematical models developed to 

predict the biomass growth rate μ.  
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1.4.1 Light distribution model  

The biomass growth rate is function of the light intensity and, as already mentioned above, the 

distribution of light in microalgae cultures is characterized by significant heterogeneity. 

Apprehending the spatial distribution of the light intensity inside the photobioreactor is a 

keystone for productivity optimization, therefore, it is necessary to define a rigorous treatment 

of radiative transfer inside the culture. As light penetration inside a turbid medium is affected 

by the incident polar angle of the radiation on the illuminated surface, it is necessary to consider 

the light source positioning with respect to the optical transparent surface of the reactor 

(Pruvost, 2019). Additionally, light distribution inside the reactor is mainly influenced by the 

light attenuation caused by the biomass, which brings to an exponential decrease of light 

intensity with depth. This phenomenon is due to the absorption of light by intracellular pigments 

and the light scattering by the particles and the resulting light gradient can be described by 

different models including the Lambert-Beer law, the two-flux model and the radiative transfer 

equation (RTE) which is far more complex and requires great computational costs (Ross et al., 

2021). Considering the cultivation system under the one-dimensional hypothesis, the light 

attenuation occurs mainly along a single direction perpendicular to the illuminated surface, then 

simple radiative models can be applied with relative accuracy. The simplest one is represented 

by the Lambert–Beer law which can be defined by the following equation (Equation 1.2): 

𝐼 = 𝐼0𝑒−𝜉𝑧        (1. 2) 

Where I is the light intensity, I0 is the light intensity entering the media perpendicular to surface, 

z is depth, and ξ is the attenuation rate which can be defined and calculated in different ways: 

It can be described as a linear function of biomass concentration as shown by Grima et al. 

(1994) or as function of chlorophyll concentration (Packer et al., 2011), while other research 

relates k to both chlorophyll as well as biomass concentration in the media (Darvehei et al., 

2018). However, it should be noted that the effect of wavelength mentioned earlier, is not 

considered in any of these studies. Blanken et al. (2016) proposed a new formula (Equation 1.3) 

for light intensity inside the culture also considering this factor: 
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I(z) = ∑ Iλ(0)eaxCxzΔλ   

700

λ=400

 (1. 3) 

where Iλ(0) is light intensity at the surface for wavelength λ, ax is light absorption rate, Cx is 

biomass concentration, and z is depth of the point at which light intensity is calculated. To apply 

the Beer-Lambert Law, the culture medium must be isotropic, and light must not be scattered 

in the media, which is not correct when it comes to microalgal cultures. The aggregation of the 

effects of cell absorption and light scattering by cells into a single extinction coefficient has 

been stated to have poor accuracy with regard to modeling light attenuation in PBRs (Cornet et 

al., 1995). Therefore, some researchers proposed to overcome this issue and improve the model 

accuracy by developing modified versions of Equation 1.2 including an additional extinction 

coefficient that accounts for light scattering (Klok et al., 2013). A compromise between the 

complexity of the radiant transfer equation and the simplicity of the Lambert-Beer law was 

proposed by Cornet et al. (1995) and is known as the two-flux model.  It was derived based on 

assumptions made by Schuster (1905), that takes into account absorption and scattering of light 

by cells and that provides an analytical solution. The two‐flux approximation is expressed by 

Equations 1.4 – 1.6 below (Huang et al., 2015).  

I =
𝐼04𝛼

(1 + 𝛼)2𝑒𝛿 𝑋 𝑧 − (1 − 𝛼)2 𝑒−𝛿 𝑋 𝑧
 (1. 4) 

𝛼 = √
𝐸𝑎

𝐸𝑎 + 𝐸𝑠
 

(1. 5) 

𝛿 = √𝐸𝑎  (𝐸𝑎 + 𝐸𝑠) 
(1. 6) 

where Ea is the mass absorption coefficient and Es is the scattering coefficient. It should be 

noted that the two-flux approximation simplifies to the Beer–Lambert law if the effects of 

scattering can be ignored (Es = 0), that is only at low biomass concentrations (Krujatz et al., 

2015). 
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1.4.2 Growth kinetic model considering a light factor 

Microalgae require a specific light level in order to reach the maximum growth rate, referred to 

as a saturated light level (Figure 1.6). As discussed above, if light intensity is far above the 

saturation level, the growth will be inhibited by light (called photoinhibition). On the other 

hand, if light intensity is below the saturation level, the growth will be limited by light (called 

light-limitation) (Darvehei et al., 2018). 

 

 

 

 

 

 

 

 

Many models have been suggested in the last few decades and according to Lee et al. (2015) 

they can be characterized into three different groups:  

- First group: models consider light-limitation conditions and assume algae exist as individual 

cells. The models in this group have simple structures with two or three parameters so that they 

are easy to implement. 

- Second group: models accounting for light attenuation by adopting an average light intensity 

or absorbed light intensity. 

- Third group: models consider both light-limitation and photoinhibition. 

A summary of the various proposed models can be found in Darvehei et al. (2018), here will be 

reviewed the details of the most prominent ones.  

As part of the first group, the Tamiya model (Tamiya et al.,1953) is one of the earliest and most 

widely applied model that can be found in the literature and it is analogous to a Monod-type 

expression (Monod, 1949) in describing the effect of light on microalgae growth.  In fact, the 

Figure 1.6. A schematic of PI curve showing three light regions: (1) light 

limited, (2) light saturated, and (3) light inhibited (Darvehei et al., 2018) 
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equation is obtained by substituting the substrate concentration used in Monod, which considers 

only nutrient limitations conditions, with the irradiance: 

𝜇 = 𝜇max

𝐼

𝐼 + 𝐾𝐼
 (1. 7) 

In this model the growth rate is related to the incident light intensity with two parameters: μmax 

is the maximum specific growth rate and it indicates the maximum achievable specific growth 

rate when culture is in light saturated condition, KI is the light half-saturation constant at which 

the specific growth rate is half its maximum value. If the incident light intensity I is lower than 

KI, then the growth is limited by light according to first order kinetics; while when I is far above 

KI, then the growth is independent from light and μ approaches to μmax. Later, in addition to this 

model several empirical models have been developed. Van Oorschot (1955) considers an 

exponential equation known as Poisson function to describe the effect of light, while Bannister 

(1979) introduces a shape factor that enables the model to adjust its curvature based on the 

experimental data, and Chalker (1989) suggests hyperbolic tangent function to best fit the 

experimental data. The first group of models is preferable for low algae concentrations under 

laboratory conditions, assuming that there is minimal self-shading by the microalgae cells and 

so each individual cell equally receives incident light intensity. The models included in the 

second group instead, since light attenuation occurs, consider the light limitation associated 

with this phenomenon by adopting an average light intensity, which is determined by the 

incident light intensity, the light path, and the culture density. Grima et al. (1996) modified the 

Tamiya model by considering the light attenuation and by introducing an exponent in the 

formula, the parameter n describing the abruptness of the transition from weakly-illuminated to 

strongly-illuminated regions: 

 

 𝜇 = 𝜇max  
𝐼𝑎𝑣

𝑛

𝐼𝑘
𝑛+𝐼𝑎𝑣

𝑛  (1.8) 

 

the Ogbonna model (1995) also includes the cell concentration X the volume of the reactor V 

and the non-illuminated volume fraction (1-VF) to take into account respectively the effect of 

cell concentrations and of dark on the light attenuation (Equation 1.9): 
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𝜇 =  𝐾 { 
𝐼𝑎𝑏𝑠

𝑋𝑉
− 𝐼max (1 − 𝑉𝐹)}  

 

(1.9) 

So far, all equations suggest that by increasing light intensity the growth rate increases in turn 

approaching its maximum value. Nevertheless, this is contradictory to what was previously said 

and shown in the diagram (Figure 1.6), where under a very high incident light intensity, a 

detrimental impact on cell growth is expected due to photoinhibition. 

Therefore, Steele et al. (1962) pointed out that, in addition to the light limitation term, the 

photoinhibition term must be incorporated in the relation of light and growth by using an 

exponential expression (Equation 1.10): 

 

𝜇 = 𝜇max

𝐼

𝐼𝑜𝑝𝑡
𝑒

1−
𝐼

𝐼𝑜𝑝𝑡
 
 (1.10) 

 

In this model Iopt represents the optimum light intensity to achieve the maximum growth rate 

after which any increase in light intensity results in lower growth rate. 

Another equation later proposed by Aiba et al. (1982) added an inhibition term to Tamiya’s 

equation: 

 

𝜇 = 𝜇max  
𝐼

𝐾𝐼 + 𝐼 + 𝐼2/𝐾𝑖,𝐿
             

 

(1.11)  

Also other models in the same group involve an inhibition term in the denominator which is 

expressed as a function of the square of light intensity such as the Haldane model (Haldane et 

al., 1930), Talbot et al. (1991),  Lee et al. (1987),  and Bernard and Rémond (2012)  in which 

different light intensities were considered: incident light intensity I in the Aiba model (Equation 

1.11), average light intensity Iav in the Lee model, normalized incident light intensity I / Iopt in 

the Talbot model, and both I and I / Iopt in the Bernard and Rémond model. 

Several models with more complex formulas have also been proposed, such as the modified 

Molina-Grima model (1994) and Muller-Feuga model (2003), which are commonly applied to 

estimate the growth rate of algae. The modified Grima model (Molina Grima et al., 1996) was 

proposed to improve the previous Grima model by modifying the parameters Ik and n in order 

to also account for the effect of photoinhibition. 
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On the other hand, in the Muller-Feuga model the growth rate is related to the average light 

intensity considering three parameters, including the maximum specific growth rate μmax, the 

minimum light intensity for survival Ie and the optimum light intensity to achieve the maximum 

growth rate Iopt.  

𝜇 =  2 𝜇𝑚𝑎𝑥

(1 −
𝐼𝑒

𝐼𝑜𝑝𝑡
)(

𝐼
𝐼𝑜𝑝𝑡

−
𝐼𝑒

𝐼𝑜𝑝𝑡
)

(1 −
𝐼𝑒

𝐼𝑜𝑝𝑡
)

2

+  (
𝐼

𝐼𝑜𝑝𝑡
−

𝐼𝑒
𝐼𝑜𝑝𝑡

)
2             (1.12) 

This model described the effect of light-limitation using (I / Iopt − Ie / Iopt) at the nominator and 

the effect of photoinhibition by using (I / Iopt − Ie / Iopt)
2 at the denominator. 

Some mechanistic models describing the interaction of cells with light have been available for 

several years, since Eilers and Peeters (1988) presented their pioneering work on the subject by 

assuming that the cells photosynthetic units (PSUs) can exist in three states: resting, active or 

inactive and depending on light intensity, their interaction changes.  

Among other complex models, Camacho Rubio et al. (2003) developed a mechanistic model to 

account for photoadaptation, photoinhibition and the “flashing light effect”. This model 

assumes that photosynthesis occurs in the photosynthetic unit (PSU, a minimum unit leading to 

the generation of NADPH and ATP), and the stored photochemical energy is consumed in an 

enzyme-mediated process that obeys Michaelis-Menten kinetics; in addition, this model uses a 

square-root dependence on irradiance to explain photoinhibition. 

 

1.4.3 Growth kinetic model considering multiple factors 

For Modeling the combined effects of different factors affecting microalgae growth two 

different approaches have been used: 

- The model considers the dependency of different factors such as light, temperature, 

nutrients availability and dissolved oxygen as independent factors, so the relationship 

between them has been simplified to a multiplication of different functions representing 

each dependency. 

- The model accounts for the interdependence of different factors coupling their effect in 

one single equation. 

The first approach was adopted by Bernard and Rémond (2012) according to whom the growth 

can be expressed by the following equation: 
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𝜇(𝑇, 𝐼) =  𝑓 (𝐼)  𝜙(𝑇) (1.13)  

where φ (T) corresponds to the CTMI (the cardinal temperature model with inflexion) model 

(Equation 1.14) developed by Lobry et al. (1991): 

            𝜙(𝑇) =
(𝑇 − 𝑇max  )(𝑇 − 𝑇min  )

2

(𝑇opt − 𝑇min  ) ((𝑇opt − 𝑇min  )(𝑇 − 𝑇opt ) − (𝑇opt − 𝑇max  )(𝑇opt + 𝑇min  − 2𝑇)) 
 (1.14) 

It includes four parameters that have a direct biological interpretation, which makes the model 

rather straightforward to calibrate.  

The dependency from light is instead described by the function f (I), that is the reparametrized 

Haldane model suggested by Bernard and Rémond: 

𝑓(𝐼) =  𝜇max  

𝐼

𝐼 +
𝜇max  

𝛼
(

𝐼
𝐼𝑜𝑝𝑡

− 1)
2 (1.15) 

Where μmax is the maximum growth rate at optimal light intensity Iopt and optimal temperature 

Topt and α is the initial slope of the light response curve.  

López Muñoz et al. (2021) proposed a new model to represent the combined effect of light, 

oxygen concentration and temperature (LOT-model) on microalgae growth. The LOT-model is 

obtained by coupling the Haldane model to represent the light impact and the Hinshelwood 

model (Hinshelwood, 1945) for the temperature effect and by introducing oxygen concentration 

in order to represent the oxidative stress affecting the cultures, adding a toxicity term in the 

expression of the net growth rate. Solimeno et al. (2015) developed a new mechanistic 

mathematical model that includes crucial physical and biokinetic processes for the description 

of microalgae growth in different types of cultures, particularly in wastewaters. The main 

relevant feature of the model, respect to any previous model for microalgae production, consists 

in the inclusion of a carbon limitation on the growth of microalgae, as well as a dynamic model 

for photosynthesis, photolimitation, light attenuation, and photorespiration. It is well-known, 

however, that the simultaneous effects of light and temperature on microalgal growth rates are 

interrelated and the hypothesis of uncoupling is incorrect especially at high light intensities, 
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since it is known that temperature plays a role in photoinhibition. The model developed by 

Dermoun et al. (1992) and the one suggested by Talbot et al. (1991) are some of the few models 

that account for the potential interdependence of light and temperature on the rate of 

photosynthesis. However, the tight coupling between light and temperature in these models can 

lead to problems of identifiability, partially due to the large number of parameters. 

 

1.5 Aim of the thesis 

Although microalgae cultivation in photobioreactors at the industrial level is still in its early 

stages of development, their immense potential is widely recognized. Consequently, numerous 

studies are currently being conducted to overcome the challenges associated with scaling up the 

process and enhance its efficiency. This work focuses on monitoring and modeling the specific 

microalgae species, Chromochloris zofingiensis, known for its exceptional potential in 

producing the powerful antioxidant, astaxanthin. The ultimate goal is to optimize the production 

of astaxanthin at large scale by implementing a three-step cultivation procedure: working under 

optimal conditions to maximize the growth, inducing stress conditions to enhance lipid and 

astaxanthin accumulation through nitrogen starvation, and subsequently supplementing with 

salt. To achieve this, the development of a predictive model that accounts for the effects of key 

factors on growth rate and biomass composition is crucial. Furthermore, it is essential to 

understand how scale-up and photobioreactor (PBR) geometry factors influence the model's 

response. This work is focused on the initial phase of the microalgal cultivation process and 

involves the monitoring of microalgal growth under optimal conditions, at laboratory-scale and 

in a 200L tubular reactor. The objective of this work is to conduct a comprehensive 

investigation into the effect of the main factors including light, temperature, nutrients 

concentration and dissolved oxygen, on the growth rate of microalgae. Understanding the 

influence of these different factors, along with the implications of scale-up, aims to contribute 

to the development of a mathematical model to accurately predict and optimize C. zofingiensis 

growth. 



Chapter 2  

Material and experimental methods 

 

This chapter is dedicated to the presentation of instrumental tools, experimental procedures and 

analysis methods used for the thesis project. The experiments were conducted at the Institute 

of Natural Materials Technology at Technische Universität Dresden. 

 

2.1 Culture medium and cultivation systems  

The culture medium generally employed is the Bristol’s Modified medium (BM), with the 

following composition: NaNO3 – 7.5 10−1 [g/L], MgSO4·7H2O – 7.5 10−2 [g/L], CaCl2·2H2O – 

2.5 10−2 [g/L], K2HPO4 – 7.5 10−2 [g/L], KH2PO4– 1.75 10−1 [g/L], NaCl – 2.5 10−2 [g/L], 

ZnSO4·7H2O – 2.87 10−4 [g/L], H3BO3 – 6.10 10−5 [g/L], MnCl2·6H2O – 1.69 10−4 [g/L], 

CuSO4·5H2O – 2.5 10−6 [g/L], (NH4)6Mo7O24·7H2O – 1.24 10−6 [g/L] and FeCl3·6H2O – 5 10−3 

[g/L]. 

Due to cost constraints, it was not feasible to use the BM medium for the 200L reactor. In order 

to ensure consistency and facilitate comparisons across different cultivation systems, a custom 

fertilizer with the following composition was employed: 0.5 g L−1 of FertyII (N – 0.105 10−2 

[mol/L],  P – 0.5 10−3 [mol/L], K – 0.35 10−2  [mol/L], Mg – 0.6 10−3 [mol/L], Fe – 0.35 10−4 

[mol/L]) and 0.5g/L of NaNO3. 

The fertilizer composition was determined through batch experiments conducted in the Cell-

DEG system using HD10 cultivators. Different concentrations of FertyII and NaNO3 were 

tested in order to identify the one that exhibited a similar growth trend to the BM medium and 

optimized the growth of the microalgae. The growth rate was monitored over a period of 

approximately 70 hours, with optical density measurements taken twice daily at 750 nm. The 

results of these experiments are presented in Figure 2.1.  
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2.1.1 Bubble columns 

Bubble columns are cylindrical vessels characterized by a very simple design with no internal 

partition and with the ratio of the height to the diameter always greater than 2 (usually in the 

range from 4–8, to ensure an optimum relation of the reactor’s surface to its volume). The 

agitation of the suspension is realized by the presence of the gas phase, which is introduced into 

the culture in the form of small bubbles formed by a distributor located in the lower part of the 

column, which guarantees a sufficiently long duration of the contact between the algae and the 

gas phase.  Many variants of sparger can be used such as rings, plates, nozzles, or evenly spread 

silica air diffusers which work like porous solids (Benner et al., 2022). The gas flow rate is 

usually controlled between 0.1 and 1 vvm (volumes of gas per volume of medium per minute). 

The air dispersed at the bottom can have an atmospheric composition or it can be enriched with 

carbon dioxide (Maroneze et al., 2016). Illumination in bubble column photobioreactors can be 

achieved through external or internal sources. Fluorescent tubes or LED lamps are commonly 

used to provide light. To ensure a more homogeneous distribution of light especially in case of 

large diameter, internal illumination methods have been explored, such as using light tubes 

parallel to the axis (Ding et al., 2021) or floating wireless light emitters suspended within the 

system (Heining et al., 2015). Incident light intensities usually applied with bubble column 

photobioreactors are between 15 and 220 μmol/ (m2 s) (Hobuss et al., 2011). In this study the 

bubble columns will be illuminated through a LED panel placed in front of the column with a 

combination of blue and red light and the range of incident light intensity considered will be 

Figure 2.1. Growth curves of C. zofingiensis at different concentrations of Ferty and NaNO3. 
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between 30 and 150 μmol/ (m2 s). Bubble column photobioreactors are typically made of 

transparent material if external illumination is applied, such as polyvinyl chloride, plexiglass or 

glass which is the only one that allows thermal sterilization (Benner et al., 2022). Temperature 

is controlled by transparent double jackets around the bubble column or by placing the bubble 

column in an incubator. Another possibility is to use stainless steel tubes as a heat exchanger 

inside the bubble column López-Rosales et al., 2016).  These systems are commonly used in 

research, because they are characterized by low cost as they lack complexity of instrument parts 

and by great gas holdups providing a satisfactory heat and mass transfer (Kumar et al., 2011). 

In this study bubble columns will be used as pre-culture systems and for conducting 

experiments to investigate the effect of temperature, light intensity, and oxygen accumulation 

on C. zofingiensis growth. In Figure 2.2 is shown a typical 1 L bubble column used to monitor 

microalgae growth during batch experiments.  

 

 

 

 

 

 

For the batch experiments, atmospheric air will be supplied to replicate the conditions applied 

in the 200 L reactor, while when it is used for the pre-inoculation (as for photorespirometry), 

the air supplied will be enriched with CO2 to optimize the growth rate. Additionally, a magnetic 

stirrer will be employed to enhance the turbulence within the system. 

Figure 2.2. Experimental set-up of batch experiments using bubble column. 
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2.1.2 Cell-DEG system 

It is an innovative technology for photoautotrophic high-density cultures that consists on two-

tier vessels over a shaken platform. The inferior vessel contains air enriched with CO2 that can 

be regulated either through a carbonate buffer or controlled CO2 injection, depending on the 

volume of the high-density cultivators (HDCs). The upper vessel contains the liquid culture and 

the turbulent gas phase, which is exchanged with the atmosphere by diffusion. The two 

chambers are separated by a thin highly gas-permeable membrane in polypropylene (Chanquia 

et al., 2022). The spatial separation of CO2 supply from oxygen release effectively minimizes 

CO2 loss to the atmosphere, which can be considered negligible compared to its consumption 

during photosynthesis. In all Cell-DEG HDCs turbulence is achieved using high-frequency 

orbital shakers, ensuring very low shearing stress on the cells. The turbulent liquid flow close 

to the membrane surface enables rapid bubble-free mass transfer of CO2 into the culture, 

thereby preventing CO2 deficiency even at high volumetric rates of carbon assimilation. 

Furthermore, the intermittent light regime with short mean durations of the light/dark cycles 

created by the turbulent mixing allows for a high quantum yield of photosynthesis, even under 

intense artificial lighting.  

Overall, Cell-DEG HDCs offer a highly efficient and controlled environment for achieving 

photoautotrophic high-density cultures (Dienst et al., 2020). However, the total amount of 

biomass that is possible to obtain is limited, making their use primarly focused on the 

production of biomass at the research and preparative scale. In this study HD10 cultivators and 

HD100 cultivators (presented in Figure 2.3) will be used for different purposes: pre-cultivating 

Figure 2.3 . Experimental set-up of batch experiments using Cell-DEG HD100 cultivators. 
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C. zofingiensis for the batch experiments, monitoring the growth rate at different nitrate and 

phosphate concentrations as well as identifying the best composition for the fertilizer to use in 

the experiments to replace the BM medium in the 200L reactor. 

 

2.1.3 The 200L reactor 

The 200L tubular reactor is mainly composed of two units: the solar loop in which biomass 

growth takes place and the degassing tank (Figure 2.4). The role of degasification tank is 

concerned with removal of O2 produced during photosynthesis. The algal culture is circulated 

from the tank into the solar loop and returned into it, which prevents the photoinhibition 

phenomenon. The solar loop consists of slightly inclined, transparent tubes and bends with a 

diameter of 63 mm (inner diameter: 60 mm). 

 

 

 

 

 

The reactor is operated in a batch or semi-continuous mode. The circulation is achieved through 

an airlift using a gas flow rate of 20 L min-1, whereby air is injected to the inlet of the solar loop 

by means of a compressor. Oxygen has to be removed from the suspension by introducing air 

to the liquid in the degassing tank. Thereby, gas insertion is supposed to occur when the outflow 

of the solar loop encounters the liquid surface in the degassing tank, resulting in mixing 

movements. The reactor is equipped with sensors to continuously measure turbidity, 

temperature, pH, dissolved oxygen concentration and light intensity value during operation with 

a time interval of 1 minute. LED lights are mounted on the upper side of the wall of each tube 

and can be adjusted in both intensity and colour (red, white, blue and white light) (Figure 2.5). 

In this study, a constant white light intensity was applied to monitor changes in biomass 

Figure 2.4. The 200L tubular reactor during the first phase (on the right) and second phase (on the left) 

of the operation. 
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concentration and average light intensity inside the reactor over time. Due to issues with sensor 

functionality the measurement of dissolved oxygen concentration will not be considered in this 

study. The linear relationship between the incident light intensity expressed as a percentage 

within the reactor and the light intensity expressed in μmol/(m2 s) is depicted in Figure 2.6, 

while the relationship between turbidity and biomass concentration (g/L) is discussed in the 

next section § 2.2. Throughout the batch operation, it was assumed that both pH (approximately 

8.7) and temperature remained constant, although slight fluctuations were observed within a 

maximum range of 1.5 °C. Since no heat exchange was employed, the temperature variation 

was influenced by the specific time of the year when the study was conducted, with 

temperatures around 20°C in January and approximately 25°C in March. 

 

 

2.2 Experimental procedures 

2.2.1 Dry weight measurements 

In this study, the growth rate of C. zofingiensis will be monitored at laboratory scales by 

measuring the optical density, while for the 200L reactor, turbidity sensor will be used. To 

determine the biomass concentration in terms of g/L, it is essential to establish the relationship 

between these measurements. For this purpose, two different procedures, the filtration method 

and the freeze-drying method, have been employed to measure the biomass dry weight and 

evaluate the corresponding correlations. The filtration method involves washing a known 
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Figure 2.5. Light emission spectrum of the LED-light 

sources of the 200L reactor 

Figure 2.6. Linear correlation for the incident light 

intensity of the 200L reactor.  
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amount of culture (10 ml) with deionized water and performing vacuum filtration by the use of 

cellulose nitrate filters (0.2 μm porosity) previously dried at 60°C for 4 hours and weighed after 

drying (Figure 2.7).  

 

 

 

 

 

 

 

 

The filters are washed with deionized water both before and after adding biomass. After 

filtration, the filters (on which the microalgae are deposited) are placed in an oven at 60°C for 

24 hours to remove any residual moisture. At the end of the drying process, the filters are 

weighed one more time in order to obtain the net weight. Dividing this value by the initial 

known volume, the dry weight (DW) of the culture is obtained.  
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Figure 2.7. Experimental set-up of 

vacuum filtration. 

Figure 2.8. Linear correlation between Biomass concentration and Turbidity 

determined using the vacuum-filtration method. 
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To increase the accuracy of the results, three replicates are analyzed for each sample. Figures 

2.8 and 2.9 illustrate the turbidity and the optical density measured in the 200L reactor with the 

corresponding calculated dry weights and the linear correlations obtained. 

The freeze-drying method is another approach used to measure the dry weight of microalgae 

biomass. In this procedure, a known volume of culture (50 mL) is first transferred into pre-

weighed falcon tubes. The tubes are then centrifuged for 10 minutes at 15000 rpm to separate 

the supernatant from the pellet. The supernatant is carefully removed, and deionized water is 

added to the tubes that are centrifuged again to ensure thorough washing of the pellet. The tubes 

containing the pellet are stored at -80°C and then placed in a freeze-dryer, where the frozen 

culture is subjected to sublimation, through which the remaining water content is removed from 

the pellets. After the sublimation is complete, the tubes containing the dried biomass are 

weighed again to determine the net weight of the dry biomass. By dividing this weight by the 

initial known volume, the dry weight (DW) of the culture is calculated. Similarly to the filtration 

method, triplicates are typically analyzed for each sample to ensure the accuracy of the results. 

The freeze-drying technique offers the advantage of preserving the cellular structure and 

composition of the microalgae due to the gentle drying process. This is particularly beneficial 

when studying the biochemical properties or functionality of the microalgae biomass. Aljabri 

et al. (2023) in their work compare different drying techniques proving that the freeze-drying 

preserves the highest amounts of chlorophyll, proteins, and lipids but requires the highest 

amount of energy compared to the others methods. Figures 2.10 and 2.11 show the linear 

correlation obtained between dry weight, OD and turbidity, from the 200L reactor samples. The 
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Figure 2.9. Linear correlation between Biomass concentration and Optical density 

determined using the vacuum-filtration method. 
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results obtained through this second approach show consistency with the previous results. 

 

 

 

 

 

 

 

 

2.2.2 Photorespirometry 

In recent years, photorespirometry has emerged as a simple and efficient method for studying 

the growth kinetics of microalgae. Since oxygen is obtained as a by-product of photosynthetic 

reactions, this technique takes advantage of the oxygen evolution rate over time to evaluate 

photosynthetic rates. Additionally, it allows for the quantification of the oxygen consumption 

associated with algal respiration. Indeed, the basal respiration that can be determined by 
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Figure 2.11. Linear correlation between Biomass concentration and Optical density 

determined using the freeze-drying method. 

 

 

Figure 2.10. Linear correlation between Biomass concentration and Turbidity 

determined using the freeze-drying method 
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monitoring the oxygen consumption during the dark phase is represented by OPRD, while the 

net oxygen production rate (OPRL), which can be monitored when the algae are exposed to 

light, is determined by the combination of photosynthesis and respiration processes (Sforza et 

al., 2020). By analyzing these factors indication of the phototrophic growth can be obtained. 

The gross oxygen production rate (OPRGROSS) representing the overall photosynthetic oxygen 

production can be assessed by calculating the difference between OPRL and OPRD as follows: 

𝑂𝑃𝑅𝐺𝑅𝑂𝑆𝑆 = 𝑂𝑃𝑅𝐿 − 𝑂𝑃𝑅𝐷 (2.1) 

In this equation, the subscripts L and D refer to light and dark conditions respectively, and 

OPRD is obviously characterized by a negative value. Photorespirometry has been extensively 

used to investigate the effects of environmental parameters and estimate the optimal growth 

conditions for phototrophs. In suspensions of photoautotrophic microorganisms, it is essential 

to note that the changes in dissolved oxygen over time are influenced not only by the 

photosynthetic oxygen production rate (OPR) but also by the oxygen mass transfer from the 

liquid to the gas phase and it is described by Equation 2.2: 

𝑑𝐶𝑂2

𝑑𝑡
= 𝑘𝐿 𝑎 (𝐶𝑂2

∗ − 𝐶𝑂2
) + 𝑂𝑃𝑅 (2.2) 

The term of the oxygen mass transfer is characterized by the oxygen mass transfer coefficient 

(kLa) and by the driving force represented by the concentration difference between the current 

DOC (CO2) and the solubility concentration of oxygen in the liquid (CO2*), which is 

determined by Henry's law: 

𝐶𝑂2

∗ = 𝐻𝑂2
  𝑝𝑂2

 (2.3) 

Where HO2 is the Henry constant which is dependent on temperature and pO2 is the oxygen 

partial pressure. The kLa can be determined by measuring the re-aeration rate of the medium 

after deoxygenation, typically achieved by stripping with nitrogen bubbling. However, 

according to Krujatz et al. (2020), which employed a similar methodology and experimental 

setup as this thesis for photorespirometric experiments, the kLa is several magnitudes lower than 

the photosynthetic OPR. Thus, in this study, the contribution of mass transfer has been assumed 
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negligible, and the following simplified equation will be considered: 

𝑑𝐶𝑂2

𝑑𝑡
= 𝑂𝑃𝑅 (2.4) 

Generally, photorespirometric experiments (Figure 2.12) involve batch tests consisting of 

alternating light-dark phases, which can be repeated over time to obtain replicated values and 

assess their statistical significance.  

In some cases, batch experiments are also conducted under constant lighting conditions (i.e. 

only the light or the dark phase is considered during the test), however it is important to note 

that in such cases it is not possible to evaluate the gross oxygen production rate. Recently 

photorespirometric studies were focused on investigating the impact of light intensity and light 

spectrum, the availability of nutrients, the dissolved oxygen concentration and the main 

physical/chemical parameters (pH, temperature, salinity) on microalgae growth.  In the present 

study, a similar respirometry protocol to that developed by Sforza et al. (2019) was applied to 

determine the impact of temperature, light intensity and high dissolved oxygen concentrations 

on the growth of C. zofingiensis, and to estimate the model kinetic parameters to describe this 

growth. The detailed protocol and experimental setup of the conducted respirometry 

experiments are explained in §4.2. 

  

Figure 2.12. Set-up of photorespyrometry experiment 



 



 

Chapter 3  

Light intensity distribution 
 

Light availability is one of the most important factors affecting microalgae growth. Therefore, 

the use of mathematical models that accurately reflect the dynamic of light distribution is 

critical to ensure effective reactor operation. This chapter provides a better understanding of 

light transmission during microalgal cultivation. The distribution of light intensity in tubular 

reactors under different biomass concentration and light conditions will be assessed, and a 

mathematical model able to describe the obtained light profiles will be identified. 

 

3.1 Effect of biomass concentration 

The experimental setup involved using a cylindrical tube, identical to the tubes used in the 

tubular reactor at PUEVIT company (PUEVIT GmbH, Dresden, Germany), as a measuring 

container. Light intensity was measured using two different devices. A light sensor capable of 

being immersed in liquid was used to measure the light intensity within the culture inside the 

tube. Additionally, a spectrometer was used to also detect the wavelength of the applied light.  

 Figure 3.1. Set-up of light attenuation measurements within 

Chromochloris zofingiensis culture. 
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The tube was placed in a light-proof box and continuous artificial light was provided on one 

side of the tube by a LED panel whose colors and intensity were specially adjusted to reproduce 

the same light conditions used for the tubular reactors of the Puevit Company and for the 200L 

reactor of the P20 Lab. Therefore, in the first case a combination of blue and red light with an 

incident light intensity equal to 200 μmol/(m² s) was applied, while in the second case a white 

light with an incident light intensity equal to 220 μmol/(m² s) was used. The sensor was placed 

in four different positions: in front of the tube (d1), inside the tube near the wall (d2), in the 

middle of the tube (d4) and behind the tube (Figure 3.1). Taking into account the impact of the 

tube thickness, it was also possible to estimate the light intensity at the end of the tube on the 

inner side (d3). This was achieved by analyzing the difference in light intensity measured in the 

tube, when it is empty, between positions d1 and d2 and applying the obtained correlation to 

the measurement taken behind the tube. Measurements were conducted at various concentration 

values, starting with a concentrated solution with OD750nm of 2. Subsequently, the solution was 

progressively diluted, and measurements were repeated until OD750nm around 0.2 was attained.  

Figure 3.2 represents light intensity values measured with white light and provides a graphical 

representation of how the light intensity through a C. zofingiensis culture changes along the 

tube as the concentration of cells in the microalgal suspension increases. Within a distance of 

less than 4cm, the light intensity has already decreased by approximately 40% for the lowest 

Figure 3.2. Light intensity distribution within the tube at different OD considering 

the white light. 
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biomass concentration under investigation. Towards the end of the tube, when the optical 

density is low (about 0.5), around 70% of the incident light is absorbed by the culture, and this 

absorption increases to 95% at an optical density of 1.     

 

3.2 Effect of light wavelength 

Light absorption characteristics of microalgae are also significantly influenced by the light 

spectrum. Figure 3.3 illustrates the variations in the light intensity measured within the tube 

when using two distinct light spectra, highlighting how differently light is absorbed. It is evident 

that the pigments primarily absorb blue and red light, excluding the dark red range (> 680 nm). 

This suggests that the absorption spectrum of chlorophylls encompasses wavelengths in the 

blue and orange-red light range.  

Figure 3.4 shows the variations in light intensity, measured at the center of the tube (d2), as a 

function of optical density, for the two different light conditions applied. It is evident that the 

light distribution profile differs between white light and blue-red light. Notably, for the same 

biomass concentration, the light intensity measurements obtained with the blue-red light are 

significantly lower.  

Figure 3.3. Comparison of light spectra measured in an empty tube (top) 

and a tube filled with microalgal solution under blue-red light (A) and 

white light (B) conditions. 
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As biomass concentration increases, there is a more pronounced decrease in blue-red light 

intensity. At optical density of approximately 0.7, the light intensity with white light is around 

40 μmol/(m² s), whereas with blue-red light it reduces to approximately 15 μmol/(m² s), 

indicating that nearly 95% of the intensity has been absorbed. This difference can be attributed 

to both the lower incident light intensity (100 μmol/(m² s) compared to 120 μmol/(m² s)) and 

the enhanced absorption of this wavelength by the pigments. These findings highlight the 

importance of considering not only the light intensity but also its wavelength when modeling 

light distribution. Since absorption of different wavelengths and microalgae pigmentation are 

closely interconnected, modifying the biomass composition, such as increasing the 

accumulation of astaxanthin, will inevitably affect light attenuation. Consequently, 

conventional light attenuation models that only account for biomass concentration (Beer–

Lambert model, Cornet model, etc.) are no longer suitable for distinguishing the light 

distribution characteristics in microalgal suspensions with different pigment contents. 

 

3.3 modeling light intensity  

As discussed earlier in §1.4, different model complexities have been developed to account for 

light intensity in the PBRs. The simplest mathematical equation for predicting light distribution 

is the Lambert-Beer law (Equation 1.2). Knowing the incident light I0, the depth z which 

corresponds to the inner diameter of the tube (6cm), and the values of light intensity measured 

Figure 3.4. Comparison of light intensity measured at the center of the 

tube at different optical densities (OD) under blue-red light and white 

light conditions. 
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at that depth for each optical density, the only remaining unknown parameter is the extinction 

coefficient ξ which is function of the biomass concentration.  

The biomass concentration is estimated from the optical density through the linear correlation 

established by measuring the dry weights as described in §2.2. Figure 3.5 illustrates the 

relationship between the extinction coefficient ξ, evaluated through the Lambert-Beer law, and 

the biomass concentration, for the two different light conditions applied.   

As mentioned above ξ can be expressed in different way. The simplest one is by defining it as 

the product of an absorption coefficient k and biomass concentration X in order to decouple the 

effect of biomass concentration on light attenuation: 

𝜉 = 𝑘 𝑋 (3.1) 

With this assumption a single parameter is used to describe light absorption disregarding the 

effects of light scattering. Since scattering cannot be neglected, especially in dense microalgal 

cultures, the equation may be useful as a first approximation to describe light regime in a 

photobioreactor, but a more comprehensive expression is required to obtain an accurate 

prediction of microalgal growth and minimize uncertainty in model predictions. Therefore, 

more complex expressions involving multiple empirical parameters have been proposed to 

better define the extinction coefficients. In this study the light distribution was modeled using 

0

20

40

60

80

100

120

0 0,25 0,5 0,75 1 1,25 1,5 1,75 2

ξ 
[/

]

X [g/L]

white light

blue-red light

Figure 3.5. Comparison of extinction coefficient measured at the 

center of the tube at different biomass concentration under blue-red 
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the Lambert Beer law (with ξ defined by the previous equation) and the Schuster's law 

(Equation 1.4). A comparison was made between the two models to assess the difference in 

results when accounting for the scattering effect. The different model structures were 

implemented in Python, and the parameters were estimated using the curve_fit function based 

on the Levenberg-Marquardt algorithm in order to minimize the sum of squared errors between 

the model function and the observed data. The estimated parameter values are presented in 

Table 3.1. The optimization of the model parameters based on the two sets of experimental data 

reveals significant differences, particularly in the case of the Schuster's law. These results show 

that different light conditions affect the distribution of light in a given cultivation system 

geometry. Consequently, the estimated values of the model parameters will vary accordingly 

to best fit the specific characteristics of each experimental scenario. 

 

Table 3.1. Estimation of light distribution model parameters under different light conditions. 

 

Regarding the measurements taken with blue-red light, it is noteworthy that the estimated 

parameter Es in Schuster’s law approaches zero, while Ea is almost equal to the attenuation 

coefficient k in Lamber-Beer law. These results indicate that, at the concentrations studied, the 

scattering has a negligible effect. Consequently, the Schuster’s law becomes identical to the 

Lambert-Beer law. This observation can be clearly noticed in Figure 3.6, where the fitting of 

the two models applied are completely overlapped. For the other set of data instead, the fitting 

curves between the two models exhibit a subtle variation, with the Schuster's law providing a 

slightly better accuracy compared to the Lambert-Beer law. However, considering the marginal 

improvement, it is not advantageous to apply a more complex model when the simpler model 

with a single parameter can already effectively predict the light profile.  

Light distribution model 
PUEVIT reactor 

(blue-red light) 
200L reactor 

(white light) 

The Lambert-Beer law 

𝐼 = 𝐼0𝑒−𝜉𝑧   

𝜉(𝑋) = 𝑘 𝑋 k =  78.58 [m²/kg] k =  107.90 [m²/kg] 

The Schuster’s law 

𝐼 =
𝐼04𝛼

(1 + 𝛼)2𝑒𝛿 𝑋 𝑧 − (1 − 𝛼)2 𝑒−𝛿 𝑋 𝑧
 

𝛿 = √𝐸𝑎 (𝐸𝑎 + 𝐸𝑠) 

𝛼 = √
𝐸𝑎

𝐸𝑎 + 𝐸𝑠
 

Ea =  44.44[m²/kg] 

Es = 81.36 [mˉ¹] 

Ea =  107.89 [m²/kg] 

Es = 0.002 [mˉ¹] 
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Overall, based on the obtained results, it can be concluded that for biomass concentrations lower 

than 2 g/L, the scattering effect can be considered negligible, and the simple Lambert-Beer law 

is sufficient to model the light distribution within a tubular reactor. Therefore, this expression 

will be adopted to calculate the average light intensity, which will be subsequently included in 

the growth model discussed in the following chapter. In fact, as shown above in Figure 3.2 the 

light regime within the tube is heterogeneous; to overcome this phenomenon, an average 

irradiance within the entire thickness of the reactor (L) is estimated by integrating the Lambert 

Beer law over the entire width L.  

𝐼𝑎𝑣 =
1

𝐿
∫ 𝐼 (𝑧) 𝑑𝑧

𝐿

0

 (3.2) 

Assuming that biomass is uniformly distributed over the whole reactor volume, the average 

light intensity within the reactor can be described by:  

𝐼𝑎𝑣 =
𝐼0

𝑘 𝑋  𝑧
 (1 − 𝑒−𝑘 𝑋 𝑧  ) (3.3) 

Where k is the attenuation coefficient identified earlier by fitting the experimental data, z is the 

Figure 3.6. Variation of light intensity with biomass concentration at the 

end of the tube. Comparison of experimental data (dots), and the 

corresponding model predictions (dashed lines). 
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inlet diameter, I0 the incident light intensity and X the biomass concentration. 

It is crucial to highlight that the value of k is influenced by the concentration and types of 

pigments present in the microalgae, as they absorb different wavelengths. Therefore, in the 

second phase of the process considered for this study, when after growing under optimal 

conditions, microalgae are subjected to stress conditions to induce astaxanthin accumulation, 

the light profile changes and the k parameter has to be reestimated. Further investigations are 

needed to examine the impact of nitrogen starvation on the model. A possible approach 

proposed by Sheng et al. (2018) involves the modeling of light attenuation curves for microalgal 

suspensions cultivated with various initial nitrate concentrations. Their findings demonstrate 

that the parameters describing light attenuation in H. pluvialis suspension are influenced by 

astaxanthin content. Similarly, Ma et al. (2022) observed significantly higher estimated 

attenuation coefficient values under nutrient-limited cultivation compared to nutrient-saturated 

conditions. This has led to the development of a more complex attenuation model that accounts 

for light spectra, chlorophyll concentration and carotenoids concentration, which could 

potentially be adopted for future applications in this study.



 

Chapter 4  

 Growth rate modeling 

 

In this chapter the influence of the main factors on Chromochloris zofingiensis growth will be 

investigated adopting the One-Factor-At-a-Time (OFAT) approach. The effect of variables 

(light intensity, temperature, nitrate and phosphate concentrations) will be assessed individually 

by monitoring the growth rate while keeping the other factors fixed at their optimal values. The 

final growth model will be obtained by combining the mathematical expressions that have been 

developed to characterize the growth response to each analyzed factor. 

 

4.1 Modeling the effects of light intensity 

4.1.1 Modeling the biomass growth rate 

The growth rate of C. zofingiensis has been monitored in a batch system under six different 

incident irradiances: 30, 50, 70, 100, 120 and 150 μmol/(m² s). The experiments were conducted 

in a 1 L double-walled bubble column agitated using a magnetic stirrer at speed of 270 rpm. 

Atmospheric air at a gas flow rate of 1.5 L h-1 was continuously supplied. The inoculum was 

prepared by pre-cultivation in 200mL shake flasks. The column was placed into a light-proof 

cabinet and artificially illuminated by a LED panel providing a combination of blue and red 

light. The temperature was kept constant at its optimal value of 25°C using a circulating water 

thermostat. Samples were collected two or three times per day and the biomass concentration 

was determined by measuring the optical density at 750 nm using a spectrophotometer. The 

relationship between OD750 and biomass concentration was established by linear regression, 

using the procedure discussed in § 2.2. Each batch experiment was started with an initial optical 

density of about 0.2 and has a duration of one week. Figure 4.1 illustrates the growth curves 

obtained from the six batch cultivations performed. The growth curves demonstrate the typical 

progression expected for microalgal cultures. In each case, except for the light intensity of 50 

μmol/(m² s), an initial lag phase is observed as the microalgae acclimate to the new 

environmental conditions. However, for the 50 μmol/(m² s) condition, measurements begin at 

an optical density of 0.4 instead of 0.2, and this difference may account for the distinct trend 
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observed. At 30 μmol/(m² s) the light intensity is too low, resulting in a final optical density of 

approximately 0.8 which correspond to a biomass concentration of around 0.72 g/L.  

As the irradiance gets higher, the growth rate also increases. At 120 μmol/(m² s), the maximum 

optical density is reached, and the biomass concentration doubles compared to the previous 

value (1.6 g/L). This observation can be attributed to the characteristic shading effect 

experienced by phototrophic microorganisms (Metsoviti et al., 2020). When the photon flux 

density is too low, even low cell densities are sufficient to hinder light to penetrate the whole 

reactor thickness, and cells located at the back of the cultivation chamber do not receive any 

photons for photosynthesis. Consequently, the final biomass concentration remains low at low 

incident photon flux density. Increasing the light beyond the optimal value results again to a 

decrease of the final biomass concentration. In fact, when the light intensity becomes too high, 

the cells respond by reducing the number of lamellae in their chloroplasts, promoting lipid 

accumulation (Juneja et al., 2013) and reducing chlorophyll content with a consequent 

reduction of the photosynthetic activity. Therefore, to optimize biomass productivity, the ideal 

approach would be to maintain the average light intensity inside the reactor at its optimal value. 

This can be achieved by gradually increasing the incident light intensity as the biomass 

concentration increases. Measurements obtained at 100 μmol/(m² s) deviate from the typical 

Figure 4.1. Chromochloris zofingiensis growth curves for different incident light intensity. 
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trend described above and will not be considered in the study. Although the growth curve trend 

initially appears similar to that obtained at 120 μmol/(m² s) for the first 100 hours, thereafter a 

significant decrease in the growth rate is observed. This unusual behaviour may be attributed 

to the occurrence of contamination. In order to evaluate radiation levels causing light-limited 

growth, photosaturation and photoinhibition phenomena, the growth rate for each light intensity 

applied was estimated by identifying the exponential phase of the growth curve in Figure 4.1 

and by applying the following Equation 4.1:  

𝜇 =
𝑙𝑛 𝑋2 − 𝑙𝑛 𝑋1

𝑡2 − 𝑡1
 (4.1) 

where X2 and X1 correspond to biomass concentration (in g/L) at times t2 and t1 (in days), the 

end and beginning of the exponential growth phase, respectively.  

The photosynthesis versus irradiance (P–I) curve obtained is presented in Figure 4.2. As 

expected from the previous graphs, the growth rate increases with light intensity until it reaches 

an optimal value of approximately 0.32 h-1 at around 100 μmol/(m² s). Beyond this value, a 

significant photo-inhibitory effect is observed, resulting in a sharp decline in growth rate. To 

accurately fit the experimental data obtained, several growth kinetic models accounting for 

photoinhibition at high irradiance have been proposed. Complex models, such as the Camacho 

Rubio model mentioned earlier (Camacho Rubio et al., 2003), have not been considered in this 
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Figure 4.2. Effect of incident light intensity on phototrophic growth of C. 

zofingiensis in a bubble column. 
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analysis; although these models are capable of fitting accurately the data, their high number of 

parameters introduces the risk of overfitting, leading to poor generalization and performance 

on new data. The growth models selected are the Lee’s model (Lee et al., 1987), the Steele’s 

model (1962), the Muller-Fuega’s model (1999) and the Bernard and Remond’s model (2012). 

The results are illustrated in Figure 4.3, where a comparison between the growth rates predicted 

by the different growth models (red curve) and the growth rates obtained from batch 

experiments (blue dots) is presented.  

 

 

The growth rate is expressed as function of the average light intensity, which is calculated, as 

discusses in §3.3, by knowing the incident light intensities, the extinction coefficient, the inner 

diameter of the bubble column (8 cm) and assuming a constant biomass concentration 

(specifically the concentration at which the exponential growth phase begins). Among the 

presented models, Bernard and Remond's model shows the best fit to the experimental data. 

Figure 4.3. Growth rate of C. zofingiensis in a bubble column as a function of average light intensity. 

Experimental data have been fitted with various growth models (Table 4.1). 
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Steele’s and Lee’s model appear to be not suitable to describe light-dependent growth of C. 

zofingiensis and they would seem to be more appropriate for less light-sensitive microalgae 

species. Muller-Feuga’s model fails to accurately predict the significant decline caused by 

photoinhibition, and it also involves more empirical parameters that are not entirely biologically 

justifiable compared to Bernard and Remond's model. Therefore, Bernard and Remond's model 

was found to be the most suitable solution for describing the growth rate of C. zofingiensis in a 

bubble column batch process. The corresponding kinetic parameters were estimated using the 

curve_fit function in Python, which optimizes the fitting based on the least-squares method. 

The parameter values obtained for each model analyzed are provided in Table 4.1 below. 

 

Table 0.1 Kinetic parameters of C. zofingiensis growth rate as function of average light intensity, identified by 

non-linear regression of experimental data, for different growth models. 

 

 

 

REFERENCES MODEL PARAMETERS R2 

Lee et al. 

(1987) 
𝝁 =  𝝁𝒎𝒂𝒙

𝑰

𝑲𝑰 + 𝑲𝒊 𝑰
𝟐 

μmax = 0.59 d-1 

Ki = 0.05   μmol-1  m2 s   

KI = 25.05  μmol m-2 s-1           

0.6 

Steele et al. 

(1962) 
𝝁 = 𝝁𝒎𝒂𝒙

𝑰 

𝑰𝒐𝒑𝒕
𝒆

(𝟏−
𝑰

𝑰𝒐𝒑𝒕
)
 

μmax = 0.27 d-1 

Iopt  = 22.89  μmol m-2 s-1           

0.59 

Muller-Fuega et al. 

(1999) 
𝝁 =  𝟐 𝝁𝒎𝒂𝒙

(𝟏 −
𝑰𝒆

𝑰𝒐𝒑𝒕
)(

𝑰
𝑰𝒐𝒑𝒕

−
𝑰𝒆

𝑰𝒐𝒑𝒕
)

(𝟏 −
𝑰𝒆

𝑰𝒐𝒑𝒕
)

𝟐

+  (
𝑰

𝑰𝒐𝒑𝒕
−

𝑰𝒆

𝑰𝒐𝒑𝒕
)

𝟐 

μmax = 0.29 d-1 

Iopt  = 20.20  μmol m-2 s-1           

Ie   = 4.16 μmol m-2 s-1           

0.73 

Bernard and Remond et al. 

(2012) 

𝝁 =  𝝁𝒎𝒂𝒙

𝑰

𝑰 +
𝝁𝒎𝒂𝒙

𝜶
(

𝑰
𝑰𝒐𝒑𝒕

− 𝟏)
𝟐 

μmax = 0.33 d-1 

Iopt  = 21.86  μmol m-2 s-1           

α = 0.01 m2 s μmol-1 d-1          

0.86 
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4.1.2 Modeling the oxygen production 

In the last decades, the estimation of kinetic parameters from photorespiratory data has been 

widely adopted (Sforza et al., 2020; Franke et al., 2022). This alternative approach has been 

employed to further investigate the effect of light intensity and validate the results obtained in 

§4.1, where each experiment under different light condition was conducted a single time and 

thus the reliability of the data obtained is questioned. Photorespirometry experiments were 

performed in a 500 mL double-walled bubble column with an inner diameter of 8cm. The 

column was equipped with an oxygen sensor to monitor the dissolved oxygen concentration 

DOC. To prevent gas losses via the headspace, the bottle was completely filled with the 

microalgal suspension at an optical density of 0.5. The suspension was mixed using a magnetic 

stirrer at a speed of 270 rpm. The DOC measurement was recorded every five seconds by a 

GMH 3611 oximeter (GWO 3600 probe, GHM Messtechnik GmbH, Remscheid Germany) and 

the EBS 20 M monitoring software. The temperature was maintained constant at its optimal 

value (25°C). Respirometric tests were conducted at six different incident light intensities (30, 

50, 70, 100, 120, 150 μmol/(m² s)). To provide enough biomass for the respirometry 

experiments, C. zofingiensis was cultivated in a 1 L bubble column under sterile conditions, 

stirred at 270 rpm, with a gas stream of CO2–Air (1.5% v/v) supplied and continuously 

illuminated. A blue-red LED panel was used to provide an incident light intensity of 100 

μmol/(m² s) for the experiments conducted at a light intensity less than or equal to this, while 

for the ones conducted at 120 and 150 μmol/(m² s) the incident light intensity was set to 150 

μmol/(m² s). This procedure ensures that microalgae are already acclimated to the highest light 

tested and will not be subjected to excessive stress. The biomass harvested for each experiment 

was replaced with fresh medium to ensure the same inoculum conditions (in the exponential 

phase) for all the experiments. The determination of the photosynthetic oxygen production rate 

(OPR) and the oxygen consumption rate (OCR) of C. zofingiensis was carried out under defined 

cultivation conditions, specifically at moderate dissolved oxygen concentration (DOC) levels 

below air saturation. For this purpose, at the beginning of each experiment, the DOC in the 

bubble column was reduced to approximately 4.5 mgO2/L by supplying CO2. Once the system 

was sealed, the set-up was exposed to alternating light and dark periods and a total of five light-

dark cycles, each lasting around 8 minutes, were executed for each experiment. The data of the 

first light-dark cycle were discarded to account for the adaptation of the cells to the exerted 

conditions. The DOC during the experiments was maintained within the range of 4.5 to 6.5 

mgO2/L. Figure 4.4 shows the DOC (mg/L) measured by the oxygen sensor during the four 
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light-dark cycles for each incident light intensities applied. 

The estimation of the photosynthetic oxygen production rate during the light period (OPRL) and 

the oxygen consumption rate during the dark period (OPRD) is determined by performing a 

linear regression analysis on Microsoft Excel. The four slopes obtained for these respective 

periods were determined and the final OPRL and OPRD values were defined as the average 

between these four slopes. It is worth noting that the slopes of the cycles performed at an 

incident light intensity of 30 μmol/(m² s) indicate a significant decrease in both oxygen 

production and consumption compared to the other irradiances tested, proving that the 

photosynthesis process is light limited. The P-I curve, representing the relationship between 

light intensity and OPRGROSS, is presented in Figure 4.5. The OPRGROSS was obtained by 

summing the contributions of OPRL and OPRD (Equation 2.1) for each light intensity tested and 

normalizing the result with respect to the biomass concentration. Experimental data were fitted 

to the Bernard and Remond’s model which has been identified as the most suitable model for 

predicting C. zofingiensis growth rate. The model is described by Equation 4.1, derived by 

substituting the biomass growth rate in Equation 1.15 with the oxygen production rate. 

Figure 4.4 Effect of incident light intensity on dissolved oxygen concentration measured during the four light-

dark cycles. 
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 rO2

𝑋
= 𝑔𝑂𝑃𝑅 =  𝜇𝑚𝑎𝑥𝑂2

𝐼

𝐼 +
𝜇𝑚𝑎𝑥𝑂2

𝛼
(

𝐼
𝐼𝑜𝑝𝑡

− 1)
2 

(4.1) 

The parameters were estimated by minimizing the sum of squared errors, following the same 

procedure described in the previous experiments in §4.1. The resulting value for the maximum 

specific oxygen rate μmaxO2 obtained is 0.44 mgO2 mgX-1 d-1 which is related to the biomass 

maximum specific growth rate μmax by means of a yield factor. The values of the other two 

parameters Iopt and α are 22.64 μmol/(m² s) and 0.019 (m² s/(µmol d))  respectively and are 

comparable to the ones obtained previously through the conventional batch experiments (Iopt = 

21.86 μmol/(m² s), α= 0.009 (m² s/(µmol d)). 

The model successfully fits the experimental data (R2 = 0.97) and the resulting trend of the P-I 

curve aligns with previous findings. This further enhances the credibility and reliability of the 

results obtained. Previous studies have reported that gOPR is directly proportional to the growth 

rate of Chlorella vulgaris (Kazbar et al., 2019). Therefore, based on the biomass generation 

rate, the corresponding photosynthetic oxygen production rate (rO2) can be identified using the 

yield factor 𝑌O2 ⁄ X (Equation 4.2). 

Figure 4.5. The resulting specific gross OPR (gOPR) as a 

function of average light intensity. Data fitting was obtained 

based on the minimization of sum of squared errors adjusting the 

parameters from Bernard and Remond’s model. 
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𝑟𝑂2
= 𝑌𝑂2

𝑋⁄
 𝑟𝑋 (4.2) 

The value of 𝑌O2 ⁄ X for C. zofingiensis is not available in the literature. However, based on 

similar microalgae species, such as Chlorella vulgaris, which exhibits properties comparable 

to C. zofingiensis, the 𝑌O2 ⁄ X value is reported to be 1.5 kg of oxygen per kg of biomass (Kazbar 

et al., 2019). From the experimental results obtained in this study, the estimated 𝑌O2 ⁄ X value is 

1.4, which aligns reasonably well with the literature value.  

One limitation of using photorespirometry to measure the photosynthetic activity as function of 

light intensity might be that in a few hours of measurement, the effect of acclimation is not 

captured. Moreover, testing different light conditions on the same biomass within a short time 

frame may compromise the actual microalgae behavior. This limitation raises concerns about 

the reliability of photorespirometry, especially when aiming to develop a model applicable to 

larger-scale systems, such as a tubular reactor. For this reason, the conventional batch growth 

experiments described above, are supposed to be more suitable for accounting and describing 

the behavior in long-term steady-state cultivations. However, this study demonstrates that the 

results obtained through photorespirometry tests align with those obtained from long-term batch 

cultures. This finding highlights the potential of photorespirometry as an interesting alternative 

approach, as it offers the advantage of being less time-consuming, allowing for a faster 

understanding of the effects of light on growth within a few days, as opposed to the several 

weeks or months required for conventional batch experiments. 

 

4.2 Modeling the effect of temperature 

Different photorespirometry tests were conducted also to investigate the effect of temperature 

on C. zofingiensis growth. The same methodology and experimental set-up as in the evaluation 

of irradiance effects were used. A 500 mL double-walled bubble column completely filled with 

microalgal suspension with an optical density equal to 0.5 agitated by a magnetic stirrer at 270 

rpm and equipped with oxygen sensor was used to monitor the oxygen production and 

consumption during light-dark cycles. In this case, the focus was on assessing the impact of 

temperature, which was adjusted for each test using a circulating water thermostat. The incident 

light intensity instead was fixed at its optimal value which had been determined to be 

approximately 100 μmol/(m² s). A total of eight respirometric tests were conducted, with 
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temperatures ranging from 13°C to 31°C (13, 16, 19, 22, 25, 27, 29, 31°C). The biomass used 

for the tests was acclimated to a light intensity of 100 μmol/(m² s) and a temperature of 25°C, 

as it had been obtained by cultivating C. zofingiensis in a 1 L bubble column under these 

conditions. To avoid abrupt changes and to limit stress, the respirometry experiments were 

initiated at a temperature of 25°C. Subsequently, the temperature was gradually increased or 

decreased to analyze the values below and above the optimal one. A time period of 

approximately half an hour was allowed between temperature changes before resuming the 

light-dark cycles and monitoring the photosynthetic activity. Each light-dark cycle had a 

duration of 10 minutes and was repeated five times for each tested temperature. Data from the 

first cycle were excluded to account for the acclimation of the microorganisms to the new 

environmental conditions. Figure 4.6 shows the data collected by the oxygen sensor during the 

subsequent four light-dark cycles, highlighting how the slopes related to oxygen production and 

consumption rates are influenced by temperature. 

From the experimental data, it is evident that the slopes of the cycles obtained at 25°C are 

significantly higher compared to the other temperatures, indicating that the temperature at 

which the growth of C. zofingiensis is maximized will be around this value, in agreement with 

previous studies (Gorgich et al., 2021). Furthermore, it can be observed that the slopes gradually 

decrease as the temperature deviates from this value. Specifically, at 25°C the dissolved oxygen 

Figure 4.6. Effect of temperature on dissolved oxygen concentration measured during the four light-dark cycles. 
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concentration during the light period increases by almost 0.35 mgO2/L, at 29°C and 22°C it 

increases by approximately 0.2 mgO2/L while at 16°C the minimum increase of only 0.15 

mgO2/L was recorded. Each OPR value was calculated as the average of the four slopes 

obtained. The specific oxygen production rates (mgO2/(mgX s)) were estimated by 

normalization of OPR (mgO2/(L s)) with respect to the initial biomass concentration measured 

(g /L). The model selected to fit the calculated specific oxygen production rates as function of 

the temperature is the CTMI model (Equation 1.14), which represents a good trade-off between 

complexity (few parameters with a direct biological interpretation), fit quality and calibration 

easiness (Grimaud et al., 2017). The model parameters were determined based on the 

minimization of sum of the squared error (μopt= 0.41 mgO2 /(mgX d), Tmin= 9.07 °C, Tmax= 30.63 

°C, Topt= 26.58 °C) and the resulting temperature values align well with those reported in the 

literature (Del Campo et al., 2004).  

 

 

 

 

 

 

 

The results are reported in Figure 4.7, where the blue points represent the calculated specific 

gross gOPR and the red curve corresponds to the thermal growth curve obtained by fitting the 

experimental data through the CTMI model. The model exhibits a good fit with a coefficient of 

determination R2 equal to 0.95. C. zofingiensis demonstrates a pronounced sensitivity to 

temperature. The highest growth rate is observed between 25 and 27°C. Therefore, in order to 

optimize the growth, it is recommended to operate the reactor within this temperature range. 

Even slight deviations from this optimal range, especially above it, lead to a significant decline 

Figure 4.7. The resulting specific gross OPR (gOPR) as a 

function of temperature. Data fitting was obtained based on the 

minimization of sum of squared errors adjusting the parameters 

from CTMI model. 
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in growth. These findings provide insights into the short-term photosynthetic activity of C. 

zofingiensis, highlighting the immediate impact of temperature changes on growth. To further 

investigate the effect of temperature, it would be advisable to conduct conventional batch 

experiments, similar to those carried out for light intensity in §4.1.1, to assess the comparability 

of the results with those obtained from long-term cultures. Additionally, it would be worthwhile 

to extend the acclimation period between different conditions to evaluate the extent of its impact 

on the observed results. 

 

4.3 Modeling the effect of nitrate and phosphate 

For this study, a batch experiment was conducted using HD10 Cultivators by CellDEG GmbH. 

The cultivators (Figure 4.8) were arranged in parallel and placed on a shaking platform, agitated 

at 350 rpm. The experimental conditions included the supply of atmospheric air enriched with 

a specific concentration of CO2 (3% v/v), while maintaining optimal values for light intensity 

(100 μmol/(m2 s)) and temperature (25°C). The stock solution consists of NaNO3, K2HPO4 and 

KH2PO4 whose concentration has been reported in Table 4.2 as described by Ibanez et al. 

(2020). 

Table 0.1. Concentrations of Components in the Medium and Calculated Concentrations of Total Phosphate 

(PO4), Potassium (K), Nitrate (NO3), and Sodium (Na). 

 

The total concentration of nitrate and phosphate in the final solution was determined and 

considered as the optimal one, since it represents the composition of the culture medium. To 

evaluate the impact of these two macronutrients on the biomass growth rate, different 

concentrations of nitrate and phosphate were tested. In order to investigate the effect of nitrogen 

on the growth of the culture, eight different concentrations were considered (0.05, 0.1, 0.2, 0.3, 

0.4, 0.7, 0.85, 1 g/L), five below the optimal value and three above it. The concentration of the 

other nutrients including phosphate, potassium and sodium were maintained at their optimal 

level. Similarly, eight different concentrations of phosphate were tested (0.01, 0.05, 0.08, 0.1, 

0.12, 0.22, 0.35 g/L) while keeping the other nutrients at their ideal concentration. To ensure 

Final Concentration (g/L) 

K2HPO4 KH2PO4 NaNO3 Total PO4 Total K NO3 Na 

0,075 0,175 0,750 0,160 0,084 0,550 0,203 
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consistent potassium (K) and sodium (Na) levels, potassium chloride (KCl) and sodium 

chloride (NaCl) were respectively supplied. Each concentration was tested in duplicate. The 

biomass growth rate was monitored by measuring the optical density (OD) through a 

spectrophotometer at 750 nm light wavelength. OD measurements were taken twice per day 

over the course of one week. To accurately determine biomass concentration, a correlation was 

applied between OD measurements and the actual biomass dry weight, which has been 

evaluated in previous works as described in §2.2.1 has been applied. 

Figure 4.9 shows the change in measured optical density over time for the smallest 

concentration of nitrate XN provided (0,05 g/L) and the optimal phosphate concentration XP. An 

exponential phase can be identified where a steep linear increase in the plotted data is observed. 

The growth rate μ (t) was estimated as described for the experiments in §4.1.1 by the previously 

defined equation (Equation 4.1). 

 

 

 

 

 

Figure 4.8. CellDEG HD100 cultivators with C. zofingiensis 

at different initial nitrate concentration after one week. 
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Figure 0.9. C. zofingiensis growth curve in cellDEG HD100 at optimal light intensity and 

temperature and the lowest concentration of nitrate tested (0.05 g/L). 
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By repeating the experimental procedure for all phosphate and nitrate concentrations 

considered, the effect of these two macronutrients on biomass growth rate can be investigated. 

The resulting graphs (Figure 4.10) clearly exhibit a rapid increase in growth rate followed by a 

plateau, indicating the attainment of the saturation condition. The Monod model (Equation 1.7), 

which represents the most widely used expression to describe the specific growth rate as a 

function of nutrient concentrations, was applied to fit the experimental data.  

The curve fitting process to find the parameters of the model that minimize the sum of the 

squared residuals was performed through the optimization function "curve_fit" in Python. The 

estimated parameter values are presented in Table 4.3 

Table 0.2. Kinetic parameters of C. zofingiensis growth as function of nitrate 

and phosphate concentration, identified by non-linear regression of 

experimental data using the Monod model. 

 

 

 

 

 

 

MODEL PARAMETERS R2 

𝝁 = 𝝁𝒎𝒂𝒙

𝑿𝑷

𝑿𝑷 + 𝑲𝑷

 

μmax = 0.580 [d-1] 

KP =0.004 [g/L] 

0.988 

𝝁 = 𝝁𝒎𝒂𝒙

𝑿𝑵

𝑿𝑵 + 𝑲𝑵

 

μmax = 0.941 [d-1] 

KN = 0.006 [g/L] 

0.999 

Figure 0.10. Growth rate of C. zofingiensis as a function of phosphate (A) and nitrate (B) concentration. Data 

fitting was obtained based on the minimization of sum of squared errors adjusting the parameters from Monod 

model. 
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Based on the results obtained, the Monod model accurately predicts the experimental data, 

providing insights into how nitrogen and phosphorus concentrations influence C. zofingiensis 

growth rate. In the experiment investigating different nitrate concentrations, it can be noticed 

that at excessively low concentrations, the algae exhibited signs of stress, manifested by an 

orange coloration (Figure 4.8). This stress condition has a significant impact on both growth 

rate and cell composition. However, it is noteworthy that even at concentrations lower than the 

optimal one present in the growth medium, the growth rate is able to reach the saturated 

conditions, except for the two lowest concentrations of 0.05 and 0.1 g/L. This suggests that for 

XN greater than 0.1 g/L the maximum achievable growth rate is not affected, but rather the time 

before nutrient limitation and depletion. In the experiment focusing on varying phosphate 

concentrations, no colour alteration was observed, and growth rate was affected only by using 

the lowest concentration tested, suggesting that phosphate availability has a lower impact on 

the algae physiological response compared to nitrate availability. However, it is necessary to 

repeat these measurements. As evident from the two plots, the maximum growth rates do not 

coincide as expected. In the graph related to different phosphate concentrations, the obtained 

trend suggests a lower maximum growth rate compared to the other plot, which appears 

inconsistent. The expected results should have shown a similar trend, but with saturation 

conditions reached at μ values equal to those observed in the plot related to XN. Therefore, to 

ensure accurate and reliable results, it is essential to repeat the experiment and investigate the 

discrepancy further. The accurate predictions provided by the Monod model highlight its utility 

in studying nutrient limitation and its impact on algae growth and physiology. Modeling the 

effect of macronutrients on the growth rate is crucial for optimizing the production of 

astaxanthin in C. zofingiensis. These findings contribute to our understanding of the complex 

interactions between nutrient availability and algal growth, enabling the inclusion of these 

factors in the formulation of the final growth rate expression. By considering nutrient 

availability alongside other significant influencing factors, such as light, temperature and 

dissolved oxygen concentration, more accurate predictions for process optimization will be 

possible. 

 

4.4 Growth rate optimization in tubular reactor  

Considering all the mathematical equations applied to predict the influence of light intensity, 

temperature, nitrate and phosphate concentrations on C. zofingiensis growth rate, a 
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comprehensive growth model is formulated (Equation 4.4). The model is developed assuming 

that the factors analyzed are independent of each other, as discussed in §1.4. The final rate of 

photosynthesis is expressed as the product of all the mathematical functions representing the 

contribution of each factor allowing for a combined assessment of their individual effects on 

the overall growth dynamics: 

𝜇 (𝑇 , 𝐼 , 𝑋𝑁 , 𝑋𝑃)  =  𝜇𝑚𝑎𝑥    
𝐼

𝐼 +
𝜇𝑚𝑎𝑥

𝛼
(

𝐼
𝐼𝑜𝑝𝑡

− 1)
2     

𝑋𝑃

𝑋𝑃 + 𝐾𝑃
    

𝑋𝑁

𝑋𝑁 + 𝐾𝑁
   𝜙(𝑇) (4.3) 

For the 200L reactor, the initial phase of the process involves concentrations of nitrate and 

phosphate that correspond to those presented in the BM medium (Table 4.2) and it has been 

demonstrated that at these concentrations, the growth rate of C. zofingiensis is not limited by 

nutrients. Therefore, the two functions representing the dependency on nitrate and phosphate 

can be omitted to model the first phase of growth under optimal conditions, but they  will need 

to be considered in the second phase of the process, for modeling the growth of C. zofingiensis 

under nitrogen starvation conditions. Additionally, the temperature is assumed to be constant 

since no heat exchanger is used and any oscillations related to ambient temperature are 

considered negligible. Consequently, during the batch operation of the 200L reactor, the only 

variable measured and monitored was turbidity, which serves as an indicator of biomass 

concentration.  

 

Figure 0.11. Variation of biomass concentration (A) and average light intensity (B) over time in the tubular 

reactor. 

(A) (B) 
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To remove outliers, reduce noise, and minimize fluctuations in the data recorded by the turbidity 

sensor every five minutes, a moving average with a specified window size was applied. This 

technique helps smooth out the data by replacing each data point with the average of itself and 

its neighboring points within the window. After smoothing the turbidity data, the change in 

biomass concentration (g/L) over time was determined by applying the correlation presented in 

§2.1.3. Throughout this period, the incident light intensity was maintained at a constant level 

(250 μmol /(m2 s)). However, due to the increasing biomass concentration, the average light 

intensity experienced a decrease (Figure 4.11). This decrease was assessed using the Beer-

Lambert law, with the extinction coefficient estimated in §3.3 for the specific wavelength and 

tubes used in the 200L reactor. The calculated average light intensity within the reactor is 

significantly higher compared to the intensities testes at the laboratory scale. According to the 

results obtained by monitoring microalgae growth rate in a bubble column in §4.1, the applied 

incident light intensity is excessively high and limits the growth of C. zofigiensis. This could 

be one of the reasons behind the low growth rate observed; indeed, starting the exponential 

phase at the same biomass concentration of approximately 0.2 g/L in both the reactor and the 

1L bubble column, it takes considerably more time for the 200L reactor to reach the same final 

biomass concentration, even when considering the lowest light conditions tested with bubble 

column (Figure 4.1). This is more evident in Figure 4.12 which illustrates the evaluated growth 

rate throughout the batch operation. 

Figure 0.12. Growth rate values of C. zofingiensis in the tubular 

reactor calculated daily as function of the average light intensity. 
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The growth rates were assessed daily by fitting the data of Figure 4.11 with a polynomial 

function and applying Equation 4.1 to the resulting regression curve. As expected, the growth 

rate values obtained in the current study are lower than those obtained in the bubble column 

(Figure 4.2). While photoinhibition could explain this disparity based on previous experiments, 

it is important to consider other potential factors that may affect the growth. Monitoring the 

dissolved oxygen concentration is crucial, as it may also play a role in limiting growth. 

Additionally, due to the differences in the type and size of the two cultivation systems, it is 

possible that the turbulence in the reactor is more favorable, allowing for shorter mean durations 

of light-dark cycles and potentially avoiding photoinhibition even under high incident light 

intensities. To gain further insights, a comprehensive fluid dynamic study should be undertaken 

to compare the turbulence experienced by microalgal cells in the two different systems. Figure 

4.11 illustrates that as the biomass concentration increases, light penetration into the culture 

decreases due to light scattering and absorption by cells. This results in reduced light 

availability for the lower cell layers, leading to a decrease in photosynthetic activity and growth 

rate (Figure 4.12). In order to prevent a decrease in the average light intensity experienced by 

individual cells within the culture, it is necessary to increase the incident light intensity during 

the operation. To accomplish this, further studies should include additional batch experiments 

conducted under different light conditions. The objective will be to identify the average light 

intensity that maximizes growth, then maintain this value consistently throughout the batch 

operation, and evaluate whether it aligns with the optimal intensity identified in the bubble 

columns. Up to now, two batches were conducted, and the aforementioned results correspond 

to the batch performed with an incident light intensity of approximately 250 μmol/(m2 s). 

During the exponential phase of this batch, a growth rate of approximately 0.8 d-1 was observed. 

The second batch was carried out under the same conditions, except that the incident light 

intensity was reduced by half (125 μmol/(m2 s)), resulting in slightly higher growth rate values 

during the exponential phase, around 0.95 d-1. It is worth noting that while the temperature is 

assumed to be constant, there is a notable difference in temperature between the two datasets. 

The second batch was conducted in February, while the first batch was carried out in March, 

resulting in measured temperatures of approximately 20°C and 25°C, respectively. As indicated 

by the findings in §4.2 and in previous works (Del Campo et al., 2004), 25°C is nearly the 

optimal temperature for maximizing C. zofingiensis growth. Consequently, the batch conducted 

in February was further away from the optimal temperature compared to the other one and it 

would likely exhibit even greater growth under the same temperature conditions. 



 

Chapter 5 

Oxygen accumulation in photobioreactors 

 

It is widely known that high dissolved oxygen concentrations (DOC) can inhibit microalgal 

growth. Inhibition by high DOCs depends on cultivation conditions and exposure duration and 

varies for different strains. High amounts of oxygen can be accumulated especially in tubular 

photobioreactors due to the low gas-liquid mass transfer efficiency of this cultivation system 

that can lead to extensive spatial gradients of oxygen along the tube axis (§1.2.1). Therefore, in 

the following sections, photorespitometry experiments have been conducted to investigate the 

impact of high dissolved oxygen concentration on the growth of C. zofingiensis and contribute 

to the development of strategies to optimize cultivation conditions and to increase productivity. 

 

5.1 Experimental set-up 

The photorespirometry protocol applied in this study is based on a procedure developed and 

refined by Sforza et al. (2019, 2020) which consists of two phases. In the first phase, microalgal 

cells are exposed to intermittent light-dark illumination cycles following a similar procedure 

used for analyzing the effect of light intensity and temperature (§4.1 and §4.2): five alternating 

light-dark illumination cycles, lasting approximately 10 minutes each, with data from the first 

cycle discarded. The aim of this phase is to establish the basal oxygen production and 

consumption rate below saturation conditions, at moderate dissolved oxygen concentrations 

(between 4-7 mgO2/L). To achieve this, the DOC in the bubble column is initially lowered to 

around 3 mgO2/L by supplying CO2. In the second phase, the light is continuously provided 

until a constant dissolved oxygen value is reached within the system. The oxygen production 

rate (OPR) can be determined by analyzing the temporal change in DOC during the continuous 

light phase, calculating the differential quotient 𝑑𝐶O2/𝑑𝑡 over time intervals of approximately 

10 minutes (Equation 2.4). Once the saturated condition is reached, an additional phase has 

been introduced to the conventional protocol during which CO2 is supplied to decrease the DOC 

back to the initial value, and the light/dark cycles are repeated to assess whether photosynthetic 
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activity is affected once saturation conditions are reached, despite no longer being in such 

conditions. The photorespirometric tests have been conducted in a 500 mL double-walled 

bubble column, agitated at 270 rpm, at constant optimal values of light intensity (100 μmol/(m² 

s)) and temperature (25°C). The pre-inoculum was cultivated in a 1 L bubble column under the 

same light and temperature conditions, and fresh medium was periodically added in order to 

maintain it at the same conditions (exponential growth phase) for each experiment. The tests 

were performed for five different optical densities (0.2, 0.5, 0.8, 1 and 1.5) selected to the range 

of concentrations that are typically attained during cultivation processes of C. zofingiensis in 

the 200L tubular reactor. Since each experiment lasted only a few hours, it was assumed that 

the optical density remained constant throughout the duration of the experiment. 

 

5.2 Results 

Figure 5.1 illustrates the dissolved oxygen concentration data collected during the experiment 

at optical density of 0.2. It can be observed that above a dissolved oxygen concentration of 7 

mgO2/L, with the increasing of exposure duration and higher DOCs, the increment of DOC 

gradually slows down, until it eventually becomes zero at the maximum DOC. The second 

phase lasts about 4 hours, and the saturation conditions are reached for a DOC of approximately 

12 mgO2/L. Comparing the two sets of light-dark cycles, it is evident that even before 

calculating the oxygen production rate (OPR), the slopes observed after reaching the saturation 
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Figure 5.1. Respirometric protocol example performed at optical density of 0.2. 
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condition are slightly lower than those observed before it, thus providing clear evidence of the 

impact of oxygen accumulation on the growth rate of C. zofingiensis. This is better illustrated 

in Figure 5.2 where the two sets of executed light-dark cycles are presented in the same plot for 

a more straightforward and immediate comparison. During the light phase, the dissolved 

oxygen concentration increases by approximately 0.4 mgO2/L in 4 minutes in the cycles 

obtained at the beginning of the experiment, while it increases by around 0.3 mgO2/L in the 

cycles executed once the saturation conditions have been reached. The consumption of oxygen 

during the dark phase also appears to be lower in the latter case: in 8 minutes the dissolved 

oxygen concentration decreases by approximately 0.3 mgO2/L and 0.15 mgO2/L in the first and 

second case respectively. Since the specific gross OPR is calculated by summing the 

contribution of the OPRs during the light and dark phases, the values evaluated after reaching 

the saturation condition will naturally be lower, indicating that the cells have been affected by 

the previous oxygen accumulation.  

The OPRs were determined using the same methodology as described in the previous 

experiments, which involved assessing the positive and negative slopes for each cycle and 

calculating the average of the four obtained results. The results are presented in Figure 5.3 as 

histograms where each bin represents the gross OPR, composed of a yellow section and a blue 

section representing the two contributions OPRL and OPRD, respectively. The biomass 

concentration was determined by multiplying the optical density considered by 0.9 in 

accordance with the linear correlation obtained in previous works as described in §2.2.1.  
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Figure 5.2. Comparison between the four light-dark cycles executed before and after reached 

the saturation condition at optical density of 0.2. 
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Comparing the sets of light-dark cycles represented in the two histograms, as mentioned above, 

it appears that gross OPR values decrease in the second set of cycles executed after reaching 

the saturated condition. Both OPRL and OPRD are affected by the previous oxygen 

accumulation, but the impact is more significant on the oxygen production during the light 

phase. In theory, as the biomass concentration increases, more cells are available for 

photosynthetic activity, leading to an expected increase in both oxygen production and 

consumption. However, a higher concentration of algae results in a lower average light 

intensity, which can potentially limit photosynthesis, especially if the system is not adequately 

agitated. Microalgae require sufficient light energy for photosynthesis to occur efficiently and 

when the light intensity becomes too low, the photosynthetic rate may reach a maximum level 

and remain constant, even with higher biomass concentrations. This phenomenon is evident in 

the plots, where it can be observed that during the light period, oxygen production decreases 

with increasing biomass concentrations until around 0.7 g/L. Beyond this point, further 

increases in biomass concentration do not significantly affect the oxygen production rate 

(OPRL), which remains relatively constant. In contrast, during the dark period, there is a 

progressive increase in oxygen consumption (OPRD) with increasing biomass concentration. 

The OPR when light was provided continuously has been assessed by considering time intervals 

of approximately 8 minutes in order to approximate the curve into several lines for which by 

linear regression evaluate the slope.  

Figure 5.3. OPRL (yellow) and OPRD (blue) calculated are reported as a function of biomass concentration before 

(A) and after (B) reached the saturation condition. 
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By assigning the corresponding DOC measured at the beginning of the respective time interval 

for each value of OPR evaluated, the decrease of the OPR over increasing DOCs can be plotted.  

For a better comparison, the experimentally obtained OPR data were normalized on the OPR 

reference values that were calculated during the first phase of the respective experiment, and 

the results are reported in Figure 5.4. The trends are quite similar among the five biomass 

concentrations analyzed. Up to approximately 6 mgO2/L, the OPRL remains relatively constant, 

however, beyond this point, the OPRL starts to decrease and reaches zero at around 12 mgO2/L. 

Experimental data could be described using the following model (Equation 5.1) proposed by 

Costache et al. (2013): 

𝑂𝑃𝑅𝐿 = 1 − (
𝐶𝑂2

𝐾𝑂2 
)

𝑛

 (5.1) 

In this equation, KO2 is the oxygen inhibition constant, CO2 is the dissolved oxygen 

concentration and n is a form parameter. By fitting the experimental data to this equation, the 

characteristic parameter values were determined (KO2 = 12.02 mg/L, n = 3.44), verifying that 

the model can simulate the inhibitory response to DOC. 

It is crucial to verify that the DOC measure inside the 200L reactor does not exceed the value 

of 12 mgO2/L and preferably remains below 9 mgO2/L to minimize the impact on the 
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photosynthetic rate. If the DOC exceeds these thresholds, measures to enhance gas-liquid mass 

transfer efficiency and prevent oxygen accumulation should be implemented. One possible 

solution is to increase the gas flow rates; nevertheless, it should be considered that high gas 

flow rates can induce shear stress on the cells and result in significant energy costs. Another 

approach is to incorporate a degassing unit that removes oxygen from the culture through air or 

CO2 stripping. However, solely relying on degassing units would only create optimal growth 

conditions immediately after the degassing system, as concentration gradients of increasing 

DOCs would emerge along the lengths of the tubular photobioreactors. Another solution could 

involve increasing the gas-liquid interface. In this regard, ongoing research is focusing on 

exploring several alternative tools such as hollow fiber modules and porous membrane systems 

that can be integrated into the tubes of the photobioreactors (tPBRs).  



 

Conclusions 
 

This thesis focuses on optimizing the growth of C. zofingiensis, a unicellular microalga that is 

gaining attention for its robust growth and its ability to co-produce high levels of lipids, 

particularly triacylglycerols (TAGs), and value-added products including the powerful 

antioxidant astaxanthin, representing a promising strategy to improve production economics 

and facilitate industrial-scale implementation. In order to maximize the growth, the impact of 

key factors was investigated at laboratory scale using the One-Factor-At-a-Time (OFAT) 

approach. the optimal values of average light intensity, temperature, phosphate and nitrate 

concentration were determined and a growth model accounting for the contribution of all these 

factors was developed. The experimental data analysed were obtained through a series of 

conventional batch experiments and photorespirometry, which proved to be a valuable tool for 

quickly assessing the impact of these factors on the microalga's photosynthetic activity. The 

distribution of light was accurately modelled using the Beer-Lambert law, indicating that under 

the considered conditions of light and biomass concentration, the scattering effect can be 

neglected. However, it is crucial to note that the developed model cannot be directly applied to 

the second stage of the process, while working under stress condition, as the extinction 

coefficient value is influenced by the concentration and types of pigments present in the 

microalgae. Thus, further investigations are needed to examine the impact of nitrogen starvation 

on the model. The optimal conditions determined in the laboratory will have to be applied to 

the 200L reactor to assess the possibility of adopting the model also on an industrial scale. 

During this study, the first two batch experiments were conducted on the 200L reactor showing 

a significantly lower growth rate than that obtained in the bubble columns. This discrepancy 

could be attributed to various factors, including the distinct geometry of the system, which can 

lead to different levels of turbulence, as well as the potential occurrence of oxygen 

accumulation commonly observed in tubular reactors. Therefore, for future studies, it is 

recommended to conduct a comprehensive fluid dynamic study to investigate the turbulence 

experienced by microalgal cells in the 200L reactor and it is suggested to include DOC 

monitoring in future studies, by employing two sensors placed at the reactor inlet and outlet to 

account for potential spatial gradients of oxygen along the tube. The results obtained in this 

study suggest the importance of maintaining the DOC below 9 mgO2/L to prevent a significant 
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decrease in growth and to avoid reaching saturation conditions (around 12 mgO2/L), as it was 

demonstrated that microalgal cells experience adverse effects once saturation is reached. 

Moreover, to further optimize growth during continuous light operation, it is recommended to 

use the light distribution model obtained in this study to increase the incident light intensity 

during operation and maintain a constant average light level in the culture medium as biomass 

concentration increases. To ensure the applicability of the developed model at a larger scale, 

further batch experiments in the 200L reactor under different lighting conditions, following the 

methodology employed for the bubble columns, should be conducted to identify the optimal 

average light intensity that maximizes growth and verify its consistency with the findings 

observed at the laboratory scale. Overall, this study provides valuable insights into optimizing 

the growth conditions of C. zofingiensis. The recommendations and findings presented here lay 

the foundation for future research and potential implementation of these strategies at an 

industrial scale, thus contributing to the advancement and sustainability of microalgae-based 

production.
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