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Introduction

The analysis of complex systems usually involves the study of huge families of
interacting components: the aim is understanding the internal mechanisms
that regulate such networks, modelling complexity and investigating eventual
self-organization.

In this thesis, the interacting components we shall consider are the neurons
in the brain; more specifically, we look at a multi-population system of inter-
acting neurons and study their behaviour, with the purpose of answering the
following question: can a system exhibit a collective periodic behaviour even
though the single units have no natural tendency to behave periodically?
In the biological context, the answer is positive: indeed, it is a matter of
fact that biological rhythms are ubiquitous in living beings, since the emer-
gence of recurrent dynamical patterns is observed at all scales. We can just
think of the 24-hours rhythm for the day/night regulation, of the circadian
rhythm, or of the limb movements, which are essentially made of flexions and
extensions. Moreover, spreading the discussion outside the neuronal context,
we know rhythmic patterns and self-organized collective behaviours are ex-
hibited also on larger levels: to have in mind some examples, we can think
of the predator-prey equilibria, or of applauding audiences, and so on and
so forth. Some of these phenomena are well-understood from a theoretical
standpoint, others need further investigations.
In the present thesis we aim at modelling periodic behaviours of brain neu-
ral activity. We consider a multi-population network of neurons (each class
representing, for instance, a different functional area of the brain), and we
model it using a particular type of counting processes, a multi-class system
of non-linear multivariate Hawkes processes, which possesses the right fea-
tures to represent the spiking activity of a neuron. Within this framework,
the activity of each neuron is represented via counting the number of suc-
cessive spikes it emits in a certain interval of time. The specific nature of
the Hawkes processes allows providing a good model of this synaptic inte-
gration phenomenon, since it takes into account all the proper features of
the network, such as the spiking activity of the single neuron, the interaction
(in terms of excitation/inhibition) between the different classes, the delay of
transmission, the past history of the neuron and the noise of the network.
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Equipped with this mathematical structure, and following the work carried
out by Susanne Ditlevsen and Eva Löcherbach in their paper [17], throughout
this thesis we study such a model with the aim of detecting the emergence
of a periodic collective dynamics, i.e. self-sustained oscillations: not only we
do this from a theoretical point of view, but also we provide evidence for
such rhythms through numerical simulations.

In particular, the thesis is structured as follows:

• In Chapter 1 we provide the reader a biological overview: we open a
brief parenthesis about the general functioning of the nervous system
and the spiking activity of neurons, trying to understand what are the
usual mathematical means for modelling such ensembles. In addition,
we deepen the theme of rhythmic collective behaviours emerging in liv-
ing and complex systems, which leads to the discussion on oscillations
for multi-class systems of interacting neurons which is the object of the
current work.

• In Chapter 2 we equip the reader with the mathematical tools needed
throughout the thesis. Each section will be also supplied of the neces-
sary references to eventually deepen the topics at stake and to figure
out in which part of the thesis such tools are used.

• In Chapter 3 we actually get into the main topic of the thesis.
First of all, we set the mathematical framework and probabilistic set-
ting by expliciting the model via multi-class systems of non-linear mul-
tivariate Hawkes processes, working in a mean-field framework. After
that, having at disposal the multivariate process representing the spik-
ing activity of the ensemble of neurons, we study its large population
limit, i.e. we consider a situation in which the total number of neurons
tends to infinity.
In particular, we show that the system can be approximated by a
system of inhomogeneous and independent Poisson Processes, hence
arriving to the first relevant result: in Theorem 3.6 we prove Propaga-
tion of Chaos, discovering that, in the large population limit, within
the same class, neurons converge in law to i.i.d. copies of the same
limit law.
In addition to that, we investigate the relation between the large time
behaviour of the limit system and the large time behaviour of the finite
size system: to this purpose, and considering both time and the total
number of neurons tending to infinity, we provide -in Theorem 3.11- a
Central Limit Theorem.

• In Chapter 4 we focus on the limit system, leading finally towards
the emergence of oscillations. We consider a situation in which the
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different classes of neurons interact following a Monotone Cyclic Feed-
back System (MFC), in which the choice of the memory kernels in form
of an Erlang distribution is essential. In this context, and by means
of dynamical systems theory, we get to Theorem 4.2, in which, under
suitable assumptions, it is proven that the limit system possesses at-
tracting and non-constant periodic orbits, i.e., it presents oscillations.

• In Chapter 5 we deepen the study of the model analyzing several
aspects.
In the first part of the chapter, we exploit the specific Erlang structure
of the memory kernels to associate to the original finite size system
represented by the multivariate Hawkes process a Piecewise Determin-
istic Markov process (PDMP) which entirely determines the dynamics
of the original process.
After that, with the aim of relating the behaviour of the limit sys-
tem with the one of the finite size system, we consider the newly built
(PDMP) and we construct an Approximating Diffusion Process (ADP).
Having at disposal these two new processes, in Theorem 5.1 we discover
that, as the total number of neurons tends to infinity, the (PDMP) -
whose dynamics entirely determines the one of the original finite size
process- is well approximated by the diffusion and that both processes
converge to the limit process.

After that, we deepen the study of the diffusion process in the par-
ticular case of just two interacting populations. The aim is, having
in mind the oscillatory behaviour of the limit system (MFC), seeing
how the (ADP) imitates those oscillations. Towards a Lyapunov ar-
gument, we show that once the diffusion enters the basin of attraction
of the periodic orbit of the limit system, it keeps entering a compact
set- which contains such a basin of attraction- infinitely often, almost
surely. This means that, for N -total number of neurons- large enough,
the approximating diffusion presents the same type of oscillations as
the limit system.

• In Chapter 6 to end up, we provide simulations to highlight the
theoretical results achieved throughout the whole thesis: essentially, we
first simulate the limit system (MFC) and the diffusion approximation
(ADP) for a fixed number of neurons, to compare their oscillatory
behaviours. Secondly, we simulate (ADP) in a larger time horizon
with respect to the first set and gradually increasing the total number
of neurons, to make evidence of the fact (ADP) follows the same trend
of the limiting system.





Chapter 1

Biological overview

The human brain is an unbelievably complex system, spanning several spatial
scales of organizations, from microcircuits to whole-brain networks. In order
to have in mind -at least from an elementary point of view- which are the
internal mechanisms that undergo the functioning of such an impressively
structured system, we proceed by giving a brief overview about the nervous
system and the processes that drive the information transmission thanks to
the electrical impulses fired by neurons.

After that, we give a small outline concerning how mathematical modelling
of neuronal networks works; to conclude, we focus on rhythmic behaviours
and the emerging of oscillating attitudes in biological systems: this will lead
us to the main aim of the current thesis, that is investigating the emergence
of oscillatory behaviour in a multi-population system of interacting neurons.

The reader can hence consider this chapter as an introduction in order to
have in mind the biological context in which the current thesis is set.

1.1 Nervous system and spiking neurons

The nervous system, which coordinates actions and sensory information by
transmitting signals to and from different parts of its body, in vertebrates
consists of two main parts, the Central Nervous system and the Peripheral
Nervous system, which, respectively, involve the brain and spinal cord on the
one side and the nerves -that connect the Central Nervous system to every
other part of the body- on the other side.

When considering the Central Nervous system, the brain and the spinal
cord play a central role: they are vitally important elements on for the
living being, being encased in the bone for protection and located in the
dorsal body cavity. The brain, situated in the cranial vault, is for sure the
main pillar of the whole system; each brain hemisphere has four sections,
called lobes: frontal, parietal, temporal and occipital, and each lobe controls
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12 Biological overview

specific functions. Hence, when modelling the functioning of the brain, it is
natural to consider different hierarchical groups or areas in it, and let them
interact.

Figure 1.1: Functional areas of the brain. Image credits:
https://www.dana.org/article/neuroanatomy-the-basics/

The real motors of the brain are, of course, neurons: they consist of highly
specialized cells for receiving, processing and transmitting information to
other neurons or effector cells via electrical and chemical signals; being elec-
trically excitable, they work through firing electric signals called action po-
tentials or spikes- which are localised electrochemical phenomena consisting
of fast trans-membrane currents of Na+ and K+ ions- across the neuronal
network which constitutes the whole brain.

A single neuron is made of a cell body and of "extensions", which are an
axon on one side and the dendrites on the other; the whole structure is
surrounded by protective membrane, called plasma membrane. The cell body
contains the nucleus, and it often has a spherical or pyramidal shape, while
the dendrites are branched fibres, with a granular appearance and irregular
contours. The axon, instead, is a fibre of variable length with a sharp and
regular outline. The axons of human nerve cells are wrapped by Schwann
cells that form the insulating myelin sheath, which is interrupted at so-called
nodes of Ranvier.

How can neurons interact via electrochemical impulses? First of all, we must
point out that the plasma membrane of a neuron is polarised, i.e., it has a
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Figure 1.2: What a typical neuron looks like. Image credits:
https://training.seer.cancer.gov/anatomy/nervous/tissue.html

difference in electrical charge between the inside and outside of the cell. This
difference is due to the concentration of positive ions (mainly sodium ions
Na+), which is greater on the outside than on the inside: such an asymmetry
produces an electrical potential difference called resting potential, which is
maintained by the action of a membrane protein - the sodium-potassium
pump - which transports Na+ ions from the inside to the outside of the cell
and K+ potassium ions from the outside to the inside.

Entering more in detail, K+ ions can pass freely through membrane pro-
teins and tend to balance their concentration, moving from the inside to the
outside, while Na+ ions would also distribute themselves evenly by passing
through other proteins, but this is not the case because when the neuron is
at rest these channels are closed. In this way, the resting potential is kept
constant at around −70 mV.
Hence, the nerve impulse is generated by a sudden change in this potential
difference, and it is always followed by the restoration of normal conditions.
In fact, if the neuron is stimulated, due to the opening of certain sodium
channel proteins, the membrane potential can rise from about −70 mV to
about −50 mV, and such a value is called the threshold potential.
When this threshold value is reached, many sodium channels open and many
Na+ ions pass from outside to inside the cell. As the concentration of posi-
tive charges inside increases, the potential is suddenly reversed and reaches
a value of +35 mV, that is the action potential. This whole sequence of
phenomena is called membrane depolarisation.
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A few moments later, the membrane repolarisation phenomenon takes place:
the sodium channel proteins close again, while those for potassium - which
were closed in the meantime - reopen and, the sodium-potassium-pump re-
stores the resting condition.

Once that the nerve impulse is generated, it is transmitted along the mem-
brane of nerve cell axons. The nerve impulse proceeds by "jumping" from
one node of Ranvier to another and thus advances much faster than it would
if it were to travel along the entire axon. In order to have this transportation
of the impulse, depolarisation must be transmitted from the area where it
occurred to the immediately adjacent tract: the propagation of the stimu-
lus only occurs in one direction due to the fact that, in the tract affected
by the action potential, the sodium-potassium pump is working to restore
conditions to rest.

An important fact to be highlighted is that the spiking activity is always
followed by a refractory period, that turns out in the so called delay, in
which the same neuron can’t emit another firing; during this time, which lasts
approximately 2 milliseconds, the membrane cannot receive any stimulus and
this period of refractoriness prevents the transmission of depolarisation in the
same direction from which it came, effectively preventing the transmission
of the impulse from being blocked. More specifically, it happens that the
concentration of potassium ions in the interstitial fluid outside the cell is,
for a brief instant, higher than under normal conditions at rest; this causes
a hyper-polarisation of the membrane which persists until the value of −70
mV is restored.

Once understood how the transmission process works, we can now point out
how the transmission continues, in order to reach the target cells. Indeed,
the situation is the following: sensory neurons, which acquire the sensory
stimulus, and association neurons, which perform the function of process-
ing and integration, pass the impulse on to other nerve cells, while motor
neurons, on the other hand, pass the stimulus to muscle cells.

At this point the synapses play the crucial role in the transmission of the
impulses: indeed, a nerve impulse is transferred from one cell to another and
to the muscle cells thanks to synapses. They indeed consists of the contact
points between two neurons or between a neuron and a muscle cell, and they
transmit the nerve impulse to the next cell, entering in the game in the mo-
ment at which the impulse reaches the end of the axon.
Notice that the synapses can be either chemical or electrical. When con-
sidering electrical synapses, the action potential passes from one cell to the
next in a mechanism that is very similar to the propagation of the impulse
within the cell itself, and in this case the transmission of the nerve impulse
can take place in both directions. On the other side, chemical synapses
are found where impulse processing is more varied and complex; the trans-
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mission of the impulse between one neuron and the next is here mediated
by certain chemicals, contained in vesicles, called neurotransmitters. Notice
that chemical synapses have a small space between the pre-synaptic neuron
and the post-synaptic neuron, and it is exactly this separation that prevents
the direct transfer of the electrical impulse.

For what concerns the basics needed in order to have the right context in
which the current thesis is submerged, the above biological information seem
to be enough. We are now ready to open a brief parenthesis about modelling
neuronal networks, before passing to the more compelling discussion about
rhythmic behaviours in living beings.

1.2 Modelling ensembles of interacting neurons

Once understood how the single firing activity of a neuron works, it is useful
to focus for a while on the so-called biological neuron models, usually denoted
as a spiking neuron models: they simply consist of a formal mathematical
description of the properties of neurons generating their action potentials
or spikes; building such models seems to be necessary to study and try to
understand the internal mechanisms that undergo the complex network of
neuronal connections.

Recall for a while the context we work in: a neuronal network is composed
of interacting units -neurons- combined in such a way that the spiking inten-
sity of a single neuron depends not only on the past history of the neuron
itself, but also on the action of other neurons in the network. The interaction
between neurons, as already pointed out, happens thanks to the synapses:
the spike of a pre-synaptic neuron leads to an increase (excitatory synapse),
or a decrease (inhibitory synapse), of the membrane potential (recall that
when the membrane potential reaches a certain upper threshold, the neuron
is ready to fire a spike) of the post-synaptic neuron, after some delay, and
these set of phenomena is usually referred to as synaptic integration. Thus,
excitatory inputs from the neurons in the network increase the firing inten-
sity, and inhibitory inputs decrease it.
One of the best strategies consists of representing the firing activity of each
neuron with a counting process which records the successive times at which
the neuron fires a spike; hence, a complete realization of these point processes
makes up the spike trains “attached” to each neuron. Indeed, recall that the
form and the duration of a spike is always the same: the main information is
contained in the sequence of spiking times; that is why we need to focus on
time series of spiking events, and this is usually done via counting processes.

More specifically, in the context of this thesis, we represent such a situation
using the so-called Hawkes processes, widely used in (and born for) the insur-
ance and banking context: due to the structure of their intensity processes,
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Hawkes processes seem to be the best tool to model the kind of network we
are here dealing with. Their formal definition, together with their properties,
is deepened in the next chapter, when discussing all the needed Mathematical
Tools.

Coming back to a more general situation, and having in mind the functioning
of the neuronal activity as above mentioned, we can schematically say that
a neuron has an input (its internal dynamics, taking place inside of the cell
body) and an output, which generally consists of all functions of discrete or
continuous time. For a real neuron, the input is through synapses onto the
neuron’s dendrites, or onto the neuron’s cell body, and the output is through
axons that connect it chemically to other neurons. Hence, a formal neuron
can be described in terms of its "state" at each time t: it is a set of real
numbers giving the output and values of internal dynamics at time t, and
the output, i.e. the spike, can be coded as a 0 or a 1. When the output
at time t is 1 the neuron is said to have "fired" at time t, i.e., the neuron
generated an action potential or spike. Then, one keeps track of all the
successive spikes, building in this way the sequence of spiking times, which
is the main object of study.
Once modelled the firing activity of the single neuron, it is natural to pass
to consider large sets of identical and interacting particles.

We must always remember that, in this whole modelling process, noise and
delay are important factors to be taken into account: for instance, for what
concerns delay, it is essential to keep in mind, if considering the successive
spiking times as a reference, that every neuron is thought to be subject to a
refractory period (with a duration that we can indicate with r), after firing an
action potential; hence, when looking at populations of interacting neurons
we must acknowledge that the proportion of binary neurons that fire in the
successive r milliseconds depends both on the proportion of neurons that are
not delayed and on the proportion that receives at least threshold excitation.

Considering all these elements, we can point out that are many different ways
to model neurons and their functioning: one of the best known and of the
first models about spiking neurons, which has also been awarded with the
Nobel Prize in 1963, is for sure the Hodgkin–Huxley model (for a reference, see
[36]): designed in 1952 to explain the mechanisms that undergo the firing of
action potentials in the squid giant axon, it consists of the first mathematical
description of how action potentials in neurons are initiated and propagated.
It uses a continuous time dynamical system’s approach, i.e. it approximates
with a system of nonlinear differential equations the electrical characteristics
of excitable cells such as neurons and muscle cells.
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1.3 Rhythmic behaviours and oscillations

The analysis of real world and complex systems naturally involves the study
of huge families of interacting components: this can be observed in a great
variety of areas, such that biology, socioeconomics, medicine, physics, sta-
tistical mechanics, and so on and so forth. A component can be a cell, a
person, a particle, or, in the case we are going to consider in this work, a
neuron being part of a system of interacting populations of neuronal cells.

How to approach the study of such a large number of interacting units? One
usually tries to model the system, first considering each single unit, and then
building a more complex and larger model including N of these -identical-
“particles”, maybe letting N tend to infinity: complexity and eventual self-
organization then arise on a macroscopic scale from the dynamics of these
minimal components that evolve coupled by interaction terms.
Once that the model has been formalized, the main aim is to capture and
highlight some key behaviours and phenomena, both including the single
components and the system considered as a whole unique block-unit.

In our context, in which we consider families of interacting neurons, the key
question to be answered, i.e., the key phenomenon to be highlighted, is the
following: can a system exhibit collective periodic behaviour even though the
single units have no tendency to behave periodically? The answer is, simply:
yes! Indeed, many real systems consisting of large quantities of interacting
parts, as, for example, neuronal networks, may exhibit collective periodic
behaviour even if the single component itself has no tendency to behave
periodically. More generally, we can say that living systems are characterized
by the emergence of recurrent dynamical patterns at all scales of magnitude.

In particular, in this thesis we are going to provide evidence of the emergence
of collective periodic behaviour in the spiking activity of large populations
of interacting neurons. Notice that this issue could be widely applied and
addressed to many other fields– not only neuronal oscillations: self-organized
collective behaviours are as well observed observed both in large communities
of microscopic components and on larger levels, such as predator-prey equi-
libria, applauding audiences etc.; indeed, periodic and oscillating behaviours
are the most common observed ways of self-organization in biology, ecology,
and socioeconomics, just to have in mind a few of them.

One could also ask: what are the mechanisms that can enhance the emergence
of rhythmic behaviours? Between many factors, it is of interest -in our
context of neuronal networks- to highlight the role of noise and delay. When
talking about delay we refer to the standard refractory period that classically
involves a neuron that has just fired a spike.
The concept of noise, instead, is quite more complicated: the activity of a
population of neurons embodied in the brain inevitably occurs in the pres-
ence of noise, which essentially consists of stochastic fluctuations -arising
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from internal and external sources- due to thermal energy, ion channel chat-
tering, irregular synaptic inputs from other neurons, and other possible dis-
turbances, such as unreliable neurotransmitter release, and identifying all
noise sources may be challenging. The different sources of noise combine so
that spiking activity is highly irregular: what we can say is just that the
mean spike counts approximately equal to the variance.

Hence, when dealing with large populations of interacting neurons, the re-
sulting ensemble dynamics is a mixture of non-linear neuronal dynamics,
inter-neuronal coupling, delays and noise. And all these different factors
combine in such a way that the resulting dynamics can turn out to be peri-
odic.

How to detect such a rhythmic behaviour in practice, when dealing, for in-
stance, with the human brain? The brain structural networks are typically
assessed with diffusion tensor/spectrum imaging techniques, which can pro-
vide an image on the complex interconnections that are the paths along the
neurophysiological dynamics takes place. One way to measure such neuronal
activity is through functional Magnetic Resonance Imaging (fMRI), that has
widely highlighted the emergence of collective and coherent brain activities
following some recurrent patterns.
It is clear that one of the main aims of the current studies on neurophysiology
is to understand the relation between the structure of brain networks and
their functions. Simple models of neuronal activity can provide an effective
description of the features that enhance the whole-brain spontaneous activ-
ity when tuned at their critical point, but rhythms generating mechanism
are poorly understood.

Hence, passing to the model object of this work, the objective is to specialize
the current discussion about rhythmic behaviours to what really happens
in the brain: it is evident that living beings are characterized by biological
intrinsic and ubiquitous rhythms which are classically controlled by the brain
(just think of the 24h for the day-night rhythm of most animals or of limb
movements, which are composed of alternating flexions and extensions). The
aim is then to investigate the emergence of such a rhythmic tendency, and to
understand how these “oscillations” emerge, knowing that the single neuron
emits its spikes without following a periodic dynamics: hence, the focus is
on the collective behaviour of the whole model, looking for the emergence of
self-organized rhythms.

To this purpose of study, the current thesis relies on the work carried out
by Susanne Ditlevsen and Eva Löcherbach in their paper [17]. The main
motivation for their work, besides the above highlighted interest in finding
regular behaviours in complex and noisy systems, comes from the rhythmic
scratch like network activity in the turtle, induced by a mechanical stimulus,
and recorded and analyzed by Berg and co-workers (for a reference, see, for
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example, [5], [6],[7] and [31]).

The objective is then to build a model consisting of large families of in-
teracting neurons which can generate self-sustained periodic behaviour, i.e.,
oscillations. This will be here done, as above mentioned, by modelling the
network via Hawkes processes, and the astonishing result, which turns out
to be evident also through the simulations we are going to provide, is that,
always having in mind the fact a single neuron doesn’t follow a periodic dy-
namic when firing a spike, a collective periodic behaviour, i.e., oscillations,
emerges, highlighting an intrinsic periodicity of the system and a natural
tendency to self-organization, enhanced both by delay and noise.





Chapter 2

Mathematical Tools

In this chapter we provide a miscellany of preliminary results that can be
consulted to better understand the mathematical tools needed in the current
thesis. Clearly, the notation used here below is going to be as general as
possible: in the subsequent chapters -regarding the specific object of this
work- we will then specify notations and symbols, adapting them to the
study of the neuronal network in which we are interested.

2.1 Point Processes, Counting Processes, Hawkes
Processes

In order to understand the way we are going to model the multi-class system
of interacting neurons which is the object of the current work, we need a few
notation concerning the so-called point processes and counting processes:
such a discussion will then lead us to talk about Hawkes processes, that
are the kind of instruments we shall use to model properly such a complex
network, due to their particular and specific nature.

Following the same notation as in [30], first of all we recall that a point pro-
cess on the non-negative half-line (indexed on times) is a strictly increasing
sequence of random times, let’s call them (Ti)i≥1, without any accumulation
points; we can say that Ti is the time at which a certain event verifies.
Analogously, the associated counting process (Nt)t≥0, with Nt a function
defined for t ≥ 0 and assuming integer and non-negative values, is defined as
the number of events of the point process (Ti)i≥1 that happen before time t.
More formally, indeed, we can write

Nt :=
∑︂
i≥1

1[t≥Ti]

where it is clear that N0 = 0. Notice that Nt, counting the number of events
happened until time t, provides a representation that is equivalent to the
one of the correspondent point process.

21
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The simplest -and also most known- type of point process is for sure the
so-called Poisson process with intensity λ.

Definition (Poisson Process). Let (τi)i≥1 be a sequence of random, inde-
pendent variables having exponential distribution with parameter λ, and
consider a sequence of times Tn :=

∑︁n
i=1 τi. Then, the process described by

the sequence Tn (or equivalently by the associated counting process Nt for
t ≥ 0) is called Poisson process with intensity λ.

A first property of a Poisson process that we can point out, which is inherited
by the fact the r.v. (τi)i≥1 are distributed exponentially, is the so-called lack
of memory : indeed, the temporal location of future events is independent
from the one of past events.

A second important characteristic is the fact that the above described Pois-
son process is a homogeneous point process: in fact, the events are observed
with constant intensity λ. A different situation, which gives rise to the so-
called inhomogeneous Poisson processes, happens when we consider a vari-
able intensity λ(t), depending on time and also on the past history of the
process, considered up to time t.

Remark. When considering Poisson processes, and more generally point
processes with deterministic intensity, the waiting times between two suc-
cessive events are independent. This doesn’t happen when the intensity
depends on the history of the process itself, and is then random.

Hence, we can proceed via defining the variable intensity of a process as
follows:

Definition (Intensity). The intensity of a point process (Nt)t≥0 -assuming
the existence of the limit- is defined as follows:

λ(t) := λ(t | Ft) = lim
h→0

P(Nt+h −Nt = 1 | Ft)

h

where Ft is the history of the process until time t and therefore contains the
sequence of times Ti.
Notice that this kind on intensity completely characterizes the distribution
of the point process.

Hawkes Processes

When we need to describe more complicated situations, it is handful to con-
sider a new class of point processes in which the intensity function depends
explicitly on past events, hence considering processes that are self-exciting :
namely, observing an event causes the increment of the intensity function of
the process itself.
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A well-known example of this kind of processes in represented by the so-
called Hawkes processes: named after Alan G. Hawkes, they are widely
used for statistical modeling of events in mathematical finance, epidemiology,
earthquake events, trade orders, bank defaults, gang violence, and other
fields in which a random events may exhibit a self-exciting behaviour, like
the neuronal network we are going to present in the current work.

We can give a first elementary definition, remaining in the uni-dimensional
context:

Definition. Let (Nt)t≥0 be a point process associated to its history Ft, for
t ≥ 0. Recall it is completely determined by its intensity function λ(t).
The process is said to be an Hawkes process if the intensity function λ(t) is
in the form:

λ(t) := λ(t | Ft) = λ0(t) +
∑︂
i:t>Ti

ϕ(t− Ti)

where λ0(t) : R → R+ is a function determining the "baseline" intensity of
the process, which is independent of other events, while ϕ : R → R+ plays
the role of a memory kernel.

Notice that Hawkes processes represent a particular class of inhomogeneous
Poisson processes, in which the intensity function its explicitly depending on
past events through the function ϕ(·): indeed, all events happening at a time
Ti < t, i.e. the ones already happened and observed before time t, contribute
to the intensity function considered at time t; this means that each arrival
increases the rate of future arrivals for some period of time.

Entering in more detail about the specific structure of the intensity of a
Hawkes process we can say what follows:

• λ0(t) > 0 describes the observation of those events which are triggered
by external factors.

• ϕ(t−Ti) is the kernel that modulates the change that an event at time
t causes to the intensity function; hence, the self-exciting nature of the
Hawkes process derives from the summation

∑︁
i:t>Ti

ϕ(t− Ti).

2.1.1 Multivariate versions of the counting processes

We are now ready to specify all these processes to a multi-class context, like
the one we are going to consider in this thesis when dealing with populations
of interacting neurons. In order to be consistent with the notation we will
use when dealing with the neuronal network in object, we generally indicate
with (Z1

t , . . . , Z
N
t )t≥0 a multivariate counting process. This means that,

as in the uni-dimensional case, each component Zi
t records the number of

events related to the i − th component that happens before time t, i.e., in
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the interval [0, t]. As in the standard case, also the multivariate version of
the counting process is characterized by its intensity process (λ1t , . . . , λNt )t≥0

via the relation:

P(Zi has a jump in [t, t+ dt] | Ft) = λit dt, i = 1, . . . , N.

with Ft denoting, as always, the sigma-field (i.e. the history) generated by
the process (Zi)1≤i≤N up to time t.

Multivariate Hawkes Processes

How to recover the multivariate version of a Hawkes process? In order to
model multivariate and self-exciting Hawkes processes (see [25] and [26]) the
intensity process is given in the form:

λit = hi

(︃ N∑︂
j=1

∫︂ t−

0
ϕji(t− s)dZj

s

)︃

where ϕji : [0,∞) → R are functions modelling how Zj influences Zi via
directly influencing its intensity process λi. Moreover, notice that when
ϕji = 0, we immediately fall in the standard Poisson process case.

At this point we can pass to a formal definition of a general multivariate
Hawkes process, which is the one we use from Chapter 3 on to present the
neuronal model in object.

Before giving the formal definition, we need to open a brief parenthesis about
the setting: we work on a general filtered probability space (Ω,F , (Ft)t≥0),P),
where we consider (Zt)t≥0 to be a counting process if it is:

• non-decreasing;

• càdlàg, i.e., defined on R, everywhere right-continuous, having left lim-
its everywhere;

• integer-valued and finite for all times;

• such that it has jumps of height 1.

Now, it is also useful to recall the notion of compensator of a process: having
(Zt)t≥0 a (Ft)t≥0-adapted counting process, we know it exists a unique non-
decreasing predictable process, let’s denote it with (Λt)t≥0 such that (Zt −
Λt)t≥0 is a local martingale; such a process (Λt)t≥0 is said the compensator
of (Xt)t≥0.

Hence, in this context, consider a directed and countable graph G = (S, E)
where S is the set of nodes, E the set of directed edges (we write e =
(j, i) ∈ E for the oriented edge). Moreover, we take into account a kernel
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ϕ = (ϕji, (j, i) ∈ E) with ϕji : [0,∞) → R, and a non-linear intensity
component h = (hi, i ∈ S) with hi : R → [0,∞).
Therefore, we can give the following definition of Hawkes process, which
corresponds to Definition 1 in [15]:

Definition 2.1 (Hawkes process). A Hawkes process with parameters (G,ϕ,h)
is a family of (Ft)t≥0-adapted counting processes (Zi

t)i∈S,t≥0 such that:

1. almost surely, ∀i ̸= j, (Zi
t)t≥0 and (Zj

t )t≥0 never jump simultaneously;

2. for every i ∈ S, the compensator (Λi
t)t≥0 of (Zi

t)t≥0 has the form
Λi
t =

∫︁ t
0 λ

i
sds, where the intensity process (λit)t≥0 is given by

λit = hi

(︃∑︂
j→i

∫︂ t−

0
ϕji(t− s)dZj

s

)︃

where
∑︁

j→i stands for a sum over the edges of type {j : (j, i) ∈ E}.

Moreover, notice that we generally say that a Hawkes process is linear when
hi(x) = µi + x ∀ x ∈ R, i ∈ S, µi ≥ 0, ϕji ≥ 0.

How does the self-exciting process work? Considering a Hawkes process like
the one in the above definition, let’s consider a vertex i ∈ S: then, looking
at Zi, its rate of jump at time t, i.e., its intensity, is given by

λi(t) = hi(
∑︂
j→i

∑︂
k≥1

ϕji(t− T j
k )1{T j

k<t}),

(T j
k )k≥1 being the time occurrences of the jumps of the process Zj .

Looking at this situation in a self-excitation context, the fact is that each
time one of the Zj ’s jumps, it excites its neighbours increasing their rate of
jump (when considering h increasing and ϕ positive).

We can give an equivalent definition of Hawkes process (to check the actual
equivalence the reader is invited to refer to Proposition 3 of [15]); such a new
definition is going to be useful, in particular in the proof of Theorem 3.6,
where we need to study Hawkes processes in terms of a system of Poisson-
driven stochastic differential equations, in order to speak of existence and
uniqueness and to prove a propagation of chaos result via a coupling argu-
ment.

Then, the situation is the following: working on a filtered probability space
(Ω,F , (Ft)t≥0,P) and considering a family (πi(ds, dz), i ∈ S) of i.i.d. (Ft)t≥0-
Poisson measures with intensity measure dsdz on [0,∞)× [0,∞) (the reader
can refer to Section 2.2 to deepen the concept of Poisson random measure),
then:
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Definition 2.2. A family (Zi
t)i∈S,t≥0 of càdlàg (Ft)t≥0-adapted processes is

called a Hawkes process with parameters (G,ϕ,h) if a.s., for all i ∈ S, all
t ≥ 0

Zi =

∫︂ t

0

∫︂ ∞

0
1{z≤hi(

∑︁
j→i

∫︁ s−
0 ϕji(s−u)dZj

u)}π
i(dsdz)

2.2 Poisson Random Measures

Generally speaking, as continuous processes can be represented by means of
a driving underlying Brownian Motion, jump processes can be treated using
an underlying discrete noise, i.e., by a Poisson Random Measure (PRM).

Definition 2.3 (Poisson Random Measure). Let (Zn)n≥1 be random vectors
defined on a probability space (Ω,F ,P), taking values on R+ × R+. It is
possible to associate to this sequence of r.v. a random counting measure
defining

N :=

∞∑︂
n=1

δZn

If considering µ a σ-finite measure on R+×R+, thenN is said to be a Poisson
Random Measure (PRM) having intensity measure µ if the followings hold:

• ∀ A in B(R+ × R+),

N(A) =

∞∑︂
n=1

1A(Zn) ∼ Poiss(µ(A))

considering N(A) = +∞ a.s. if it holds µ(A) = ∞ and N(A) = 0 if
µ(A) = 0.

• ∀ n, ∀ A1, . . . , An in B(R+ × R+), mutually disjoint, it holds

N(A1), . . . , N(An) are ⊥⊥

where the symbol ⊥⊥ indicates mutual independence between the vari-
ables.

In the current discussion it shall be convenient to set the measure µ as equal
to the Lebesgue measure.

Remark (About PRMs).

• Setting the filtration FN
t := σ(N(A) : A ⊂ [0, t] × R+) for t ≥ 0, and

letting (λ(t))t≥0 be a (FN
t )-predictable process taking values in R+,

put

Zt :=

∫︂
[0,t]

∫︂
R+

1{z≤λ(s)}N(ds, dz)

Then λ(t) is an FN
t -intensity of Z, and we say the process (Z(t))t≥0 is

obtained from thinning of N .
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• Let ψ(s, z, w) be (Ft)-predictable and such that

E

[︄∫︂ t

0

∫︂
R+

|ψ(s, z)|dsdz

]︄
<∞ ∀ t ≥ 0

Then, ∫︂ t

0

∫︂
R+

ψ(s, z)N(ds, dz)−
∫︂ t

0

∫︂
R+

ψ(s, z)dsdz

is a (FN
t )-martingale.

The reader is invited to notice that such a construction via underlying PRMs
helps for coupling, which is one of the most common available ways to prove
a result of propagation of chaos; indeed, will use this technique in the proof
of Theorem 3.6, to prove a propagation of chaos result related to our model
of interacting neurons; we will come back on this topic in Section 3.3. For the
time being, we invite the reader to consult [10], (Chapter 4, Section 4.1 -in
particular Definition 4.1- which presents the best known coupling methods
in the context of proving propagation of chaos) or [16] and [39] for a general
overview on coupling methods in probability theory.

2.3 Basics on Renewal Theory

Generally speaking, Renewal Theory is the branch of probability theory that
generalizes the Poisson processes for arbitrary holding times; indeed, instead
of exponentially distributed holding times, a renewal process may have any
i.i.d. holding times, which must have finite mean. It is concerned with
the study of the so-called renewal equation, representing one of the essential
theories of probability, being strictly connected, for example, with the study
of regenerative processes.

In the current work, we use its tools to prove an essential Central Limit
theorem result in Chapter 3; hence, we need to proceed giving some general
basics -following the ones presented in [8] (Chapter 4)- about renewal theory
that shall be henceforth useful.

2.3.1 Renewal Point Processes

We consider an i.i.d. sequence {Sn}n≥1 of non-negative random variables
with common cumulative distribution

F (x) := P(Sn ≤ x)

The distribution F is either called defective if F (∞) < 1 or proper if F (∞) =
1. Given this, we call the sequence of variables {Sn}n≥1 the inter-renewal-
sequence.
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We naturally associate to {Sn}n≥1 another sequence {Tn}n≥0, which is the
associated renewal sequence, defined by:

Tn := Tn−1 + Sn for n ≥ 1

where the initial delay T0 is a finite and non-negative random variable, which
is independent of the inter-renewal sequence {Sn}n≥1, and time Tn is called
renewal time (or an event). Notice that if T0 = 0 we say the renewal sequence
is an undelayed sequence.

To any renewal sequence as the one above described, we can associate the
following stochastic process

N([0, t]) :=
∑︂
n≥0

1{Tn≤t} t ≥ 0

which is the counting process recording the number of events in the closed
interval [0, t]. We can clearly point out that the function t ↦→ N([0, t]) is a
right-continuous function having limit on the left for each t > 0, i.e., N [0, t).

Having in mind these objects, we now present a list of important results,
notations and definitions which we shall use in the sequel. For shortness, we
omit the proofs.

The first result we can highlight, concerning the counting process N([0, t]),
is the following:

Theorem. ∀ t ≥ 0, it holds that E[N([0, t])] < ∞. In particular, a.s.
N([0, t]) <∞ ∀ t ≥ 0.

Proof. For a proof of this result, see Theorem 4.1.1 in [8].

At this stage, we are ready to give the proper definition of renewal function,
which is essential for the further developing of the theory:

Definition. The function R : R → R̄+ defined as:

R(t) := E[N([0, t])]

with N being the counting process associated to the undelayed renewal se-
quence, is said the renewal function.

Since R is right-continuous and non-decreasing, we can associated a unique
measure -called the renewal measure, and sometimes denoted, again, with
the letter R- µR on R+ in such a way that µR([0, t]) = R(t); notice that
µR({0}) = R(0) = 1.
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Example (The Poisson Process). We report a first example in order to
make everything clear: considering the case of the exponential inter-event
times having cumulative distribution F (t) = 1− e−λt for t ≥ 0; we have that
the undelayed renewal process is then an Homogeneous Poisson Process with
intensity λ, to which a point at time time t is added; hence, it is clear that
the correspondent renewal function is R(t) = 1 + λt.

It is often convenient to express the function R in terms of the cumulative
distribution F : to this aim, just take the undelayed case and observe that
we can express time Tn as

Tn := S1 + · · ·+ Sn

i.e., as the sum of n independent random variables having F as cumulative
distribution; hence we can write

P(Tn ≤ t) = F ∗n(t)

where F ∗n stands for the n-fold convolution of the function F , and its clas-
sically defined in a recursive way as:

F ∗0(t) = 1[0,∞)(t) F ∗n(t) =

∫︂
[0,t]

F ∗(n−1)(t− s)dF (s) n ≥ 1

The role of 0 in the above integral is the following:∫︂
[0,t]

ϕ(s)dF (s) = ϕ(0)F (0) +

∫︂
(0,t]

ϕ(s)dF (s)

Given this notation, the key point of this discussion now emerges: indeed we
can write

E[N([0, t])] = E[1 +
∑︂
n≥1

1{Tn≤t}] = 1 +
∑︂
n≥1

P(Tn ≤ t)

which leads to

R(t) =
∞∑︂
n=0

F ∗n(t)

Theorem. It holds that:

P(S1 <∞) < 1 ⇐⇒ P(N([0,∞)) <∞) = 1 ⇐⇒ E[N([0,∞))] <∞

Proof. For a proof, see Theorem 4.1.4 in [8].

We conclude this section with a bit of nomenclature: a renewal process
is either said recurrent or transient depending on the fact the cumulative
function F is proper of defective, i.e., respectively, if P(S1 < ∞) = 1 and
P(S1 <∞) < 1.
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2.3.2 The Renewal Equation

In the previous section we set the basics about renewal theory; at this point,
we have to get to the gist of it, via defining the renewal equation.

Let F : R+ → R+ be a generalized cumulative distribution function on
R+, meaning F = cG with c > 0 a constant and G a proper cumulative
distribution function of a non-negative real random variable. Then, by means
of convolution, we define the renewal equation as

f = g + f ∗ F (Renewal equation)

i.e.,

f(t) = g(t) +

∫︂
[0,t]

f(t− s)dF (s) t ≥ 0

where g : R+ → R is a measurable function said data.
The nomenclature related to the renewal equation is the following: we say
it is proper if F (∞) = 1, defective if F (∞) < 1, excessive if F (∞) > 1.

At this point, we get to the key result:

Theorem. The renewal function R satisfies the so-called Fundamental Re-
newal equation

R = 1 +R ∗ F

Proof. For a proof of this result, see Theorem 4.1.6 in [8]

One of the best known examples of models represented towards means of
renewal theory and renewal equations is for sure the Lotka-Volterra popula-
tion model, which features the evolution of a population of women: much
literature has been produced on it, this being one of the most famous models
about populations dynamics.

Despite what one could think, it is relatively easy to obtain an expression
for the solution of the renewal equation in terms of the renewal function R.
Indeed, when taking the data g as locally bounded, it holds the following:

Theorem. If F (∞) ≤ 1, the renewal equation f = g+f ∗F admits a unique
and locally bounded solution f : R+ → R given by f = g ∗R, i.e.,

f(t) =

∫︂
(0,t]

g(t− s)dR(s)

Proof. For a proof, we invite the reader to refer to Theorem 4.1.14 in [8]

We could say much more in relation to this topic, but these are the basics that
suffice for us to understand the demonstration strategies used in Chapter 3,
where we adapt these tools to the multidimensional case using matrix renewal
equations strategies.
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2.4 Basics about Markov processes: generators and
semigroups

In order to deal properly with the main tools used in Chapter 5, we need
some additional basic concepts related to Markov processes: the aim is to
introduce the notions of infinitesimal generator and semigroup. This will be
done using the same notation as in [9].
It will also be of interest for a further developing to deepen the relation
between these objects and some specific PDEs, like the Fokker-Planck equa-
tion.

First of all, recall that a stochastic process X = {Xt}t≥0 taking values in Rd

is said to be a Markov process if ∀ 0 ≤ s ≤ t <∞ and ∀ B ∈ B(Rd) it holds
that:

P(Xt ∈ B | Fs) = P(Xt ∈ B | Xs)

meaning that the conditional law of Xt knowing the whole history of the
process until time s (represented by the filtration Fs) is only a function of
Xs: the future depends on the past only through the present state.

Given this, and for 0 ≤ s < t < ∞, we define the transition nucleus
Qs,t(x, dy) as any regular version of Xt with respect to Xs: hence, Q is
a probability nucleus such that

P(Xt ∈ dy | Ft) = Qs,t(Xs, dy)

Moreover, we say X is a homogeneous Markov process if Qs,t(x, dy) =
Qt−s(x, dy), meaning that the conditional law of Xt+h with respect to Xt

doesn’t depend on the specific time t, but only on h. For t, h ≥ 0 we hence
have: ∫︂

y∈Rd

Qs(x, dy)Qt(y, dz) = Qt+s(x, dz)

also known as the Chapman-Kolmogorov Equation.

At this point, and from now on, assume to work on a filtered probability
space (Ω,F , (Ft)t≥0,P) and let X be a diffusion (see Section 2.5.1), i.e. such
that dXt = b(t,Xt)dt + σ(t,Xt)dBt. Notice that in the following we shall
indicate with P = Px the dependence on x in the probability.

The key point -that is the reason why we widely use the notions we are here
going to introduce in relation to diffusion processes in Chapter 5- is that
diffusion processes are Markov and homogeneous processes, meaning that:

Px(Xt+h ∈ B | Ft) = Pz(Xh ∈ B)|z=Xt
= Qh(Xt, B)

where Qh(x, dy) = Px(Xh ∈ dy) is the transition semigroup.

This shall be more clear when getting to Section 2.5.1 and deepening the
proper concept of diffusion process.
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Infinitesimal generators

A Markov process X is characterized by its infinitesimal behaviour through
the so-called infinitesimal generator, which we indicate with A: consider
C0(Rd,R) the space of continuous functions tending to zero as |x| → ∞.
The infinitesimal generator of X is defined as follows:

Af(x) := lim
t→0

Ex[f(Xt)]− f(x)

t

for all those functions f in C0(Rd,R) such that the limit exists (and such a
set of functions is the domain of the generator).
It is possible to prove that the generator determines completely the law of
the Markov process!

In the case of a diffusion, the infinitesimal generator A is the following dif-
ferential operator:

Af(x) =
d∑︂

i=1

bi(x)
∂

∂xi
f(x) +

1

2

d∑︂
i,j=1

(σσt)ij(x)
∂2

∂xi∂xj
f(x)

Markov semigroups

In addition to the concept of infinitesimal generator, we naturally associate
to a Markov process X a family of operators {Pt}t≥0 which are called semi-
groups of the process, acting on f ∈ C0(Rd,R) as follows:

Ptf(x) := Ex[f(Xt)] =

∫︂
Rn

f(y)Qt(x, dy)

Together with the notion of infinitesimal generator, the semigroups will be
essential to handle all the results of Chapter 5.

For what concerns the basic properties of these objects, first of all we can
point out that Ptf ∈ C0(Rd,R) ∀f ∈ C0(Rn,R). Moreover, we can notice
that the name "semigroup" comes from the fact that it holds that Pt ◦Ps =
Pt+s, i.e., Pt(Psf) = Pt+s ∀ s, t ≥ 0, for all f ∈ C0(Rd,R).

Notice that the generator A completely determines the semigroup Pt!

Kolmogorov equations

At this point, we can open a brief parenthesis related to the connection
between the above mentioned objects and a particular class of PDEs, the
Kolmogorov backward and forward equations, which are strictly connected
with the Fokker-Planck equation.
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Let X be a diffusion with an absolutely continuous (for all t > 0) transi-
tion nucleus Qt(x, dy) = Px(Xt ∈ dy); this simply means that it exists a
measurable function qt : Rd × Rd → R such that

Qt(x, dy) = qt(x, y)dy ∀ t > 0,∀ x, y ∈ Rd

Under suitable assumptions one can show that qt(x, y) satisfies the Kol-
mogorov backward equation, for all y ∈ Rd fixed:

∂

∂t
qt(x, y) = Axqt(x, y) ∀ t > 0,∀ x ∈ Rd

where Ax means the generator acts on the x-variable of qt(x, y).

Moreover -that’s the key point- it also holds the so-called Kolmogorov forward
equation, alternatively called exactly Fokker-Planck equation, for all x ∈ Rd

fixed:
∂

∂t
qt(x, y) = A∗

yqt(x, y) ∀ t > 0, ∀ y ∈ Rd

where A∗ is the adjoint operator of A, given by:

A∗f(y) =
1

2

d∑︂
i,j=1

∂2

∂yi∂yj
[(σσt)ij(y)f(y)]−

d∑︂
i=1

∂

∂yi
[bi(y)f(y)]

Hence, it is clear that the Fokker-Planck equation, whose importance in the
context of mathematical modelling can be deepened by the reader by consult-
ing [37], plays a crucial role when dealing with diffusion processes: all these
connections between ensembles of interacting neurons and diffusion processes
will be clearer in Chapter 5, where we build a diffusive approximation of the
neuronal network model at stake.

2.5 Diffusions and Piecewise Deterministic Markov
Processes

In the previous section the concept of diffusion has emerged: it is there-
fore necessary, at this point, to introduce a brief background on stochastic
processes in order to better understand what we are dealing with.

Almost all continuous-time stochastic process models of applied probability
consist of some combination of the following three main elements: diffusion,
deterministic motion, random jumps. Usually, the main approach to model
diffusion is related to Itô calculus and stochastic differential equations, while
an heterogeneous collection of models is used to deal with deterministic mo-
tion and random jumps, i.e. to handle all non-diffusion applications; the
most important historical change of pace in this context happened in 1984,
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when M.H.A. Davis introduced the class of PDMPs (i.e. Piecewise Deter-
ministic Markov Processes), providing a general family of stochastic models
covering virtually all non-diffusion applications, that can be analyzed via
methods that are analogous to the ones used in diffusion theory: the aim is
putting all non-diffusion models on the same footing as diffusion theory. We
explore this kind of processes in detail in the upcoming sections.

2.5.1 Basics about Diffusion Processes

Generally speaking, diffusion processes are a class of continuous time Markov
processes with almost surely continuous sample paths, for which the Kol-
mogorov forward equation is the Fokker-Planck equation, and are used to
model many real-life stochastic systems.

From a mathematical point of view, a d-vector valued process (Xt) is gener-
ally represented as the solution of the Itô stochastic differential equation:

dXt = b(t,Xt)dt+ σ(t,Xt)dBt (2.1)

i.e. via a deterministic (drift) part b and some noise which is driven by (or
approximated by) a Brownian motion. Indeed, in (2.1), Bt = (B1

t , · · · , Br
t )

′

represents a vector of independent Brownian motions, while b(t, x) and σ(t, x)
are respectively a d-vector and a d×r-vector satisfying some smoothness con-
ditions in the variables (t, x) to ensure the uniqueness of the solution.

To enter in more detail, the increments Xt+dt −Xt of the process (Xt) have
mean equal to b(t,Xt) and covariance given by a(t,Xt)dt = σ(t,Xt)σ

′(t,Xt)dt.

More precisely, and as already mentioned, (Xt) is a Markov process with
continuous sample paths and having differential generator A given by:

Af(x) =
∑︂
i,j=1

aij(t, x)
∂2f

∂xi∂xj
+
∑︂
i=1

bi(t, x)
∂f

∂xi

for f ∈ C2(R).

Under some smoothness assumptions, the main interpretation of what above
is that the density function p(t, x) of (Xt) satisfies the Fokker-Planck Equa-
tion: {︄

∂p
∂t (t, x) = A∗p(t, x) t > 0

p(0, x) = p0(x)

where p0(x) is the given density of x0 and A∗ is the formal adjoint of the
operator A.
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The Approximating Diffusion Technique

Since in Chapter 5 we are going to build an approximating diffusion process
for the process at stake, we can now pass to a brief analysis of the widely
used technique of the diffusion approximation. To deepen this kind of topic,
and to know more about what we are here going to present from a general
point of view, the reader is invited to consult [21].

The general idea underlying this technique is the following: we want to
replace a complicated and analytically intractable stochastic process by an
appropriate diffusion process, which simply is -as above mentioned- a Markov
process having continuous sample paths; the approach under the application
of a diffusion approximation can be compared, as we are going to see in a
while, to the standard normal approximation for sums of random variables
using to the well-known Central Limit Theorem.

Entering in more detail, assume to be dealing with X an analytically in-
tractable process: the aim is then finding a diffusion process Y such that
the distribution of X can be approximated by the one of Y is a weak sense
(meaning convergence in distribution), in the sense that

X
d
≈ Y

The standard approach in this case is to phrase an approximation in terms
of a limit theorem: hence we want to find a sequence Yn = {Xn(t) : t ≥ 0}
such that X may be identified with Yn for n large, and then X

d
≈ Y equals

to Yn
w−→ Y in distribution.

Hence, first of all we need to make explicit the definition of weak convergence:

Definition (Weak convergence). Consider {Yn : n ≥ 0} a sequence of
random variables. We say it converges weakly to Y if and only if there
exists (Ω,F ,P) probability space supporting a family of random variables
{Y ′, Y ′

n : n ≥ 0} such that:

• Yn
d
= Y ′

n;

• Y
d
= Y ′;

• Y ′
n −−−→

n→∞
Y ′ on (Ω,F ,P);

where the last item of the list refers to the notion of convergence in a function
space; therefore, it is necessary to define a metric on such a space in order
to have that Y ′

n → Y ′ ⇐⇒ d(Y ′
n, Y ) → 0. In order to do that, the most

used function space is the space of càdlàg functions, which we denote with
DE [0,∞) = {w : [0,∞) → E | w(·) is right continuous for every t ≥



36 Mathematical Tools

0 and has left limits at every t ≥ 0}, with E an Euclidean space. And the
most suitable metric for this function space is for sure the Skorokhod metric
d on DE [0,∞) (see [32] to get further information about this topology).

The most important result which comes into play at this stage is the famous
Donsker’s Theorem, which is a well-known limit theorem describing the be-
haviour of the Rd-valued random walk over long intervals of time, indicating
it is well approximated by Brownian motion.

Hence, consider {Zn : n ≥ 0} an i.i.d. sequence of Rd-valued random vari-
ables, and let Sn = Z1 + · · · + Zn (with S0 = 0) be the Rd-valued random
walk.
Having in mind the classical results given by the Strong Law of Large Num-
bers (SLLN ) and the Central Limit Theorem (CLT ), the idea underlying
the building of approximating diffusion process is to recover a process-valued
version of them.

Indeed, considering the process Ȳ n(t) = S[nt]/n, one can immediately show
that a functional SLLN (i.e. a process-valued one) holds, in the sense that
d(Ȳ n, Ȳ ) −−−→

n→∞
0 a.s. where Ȳ (t) = µt.

In the same context, a version of the CLT can be pointed out: just consider
the process Yn(t) =

√
n(S[nt]/n − µt) =

√
n(Ȳ n(t) − Ȳ (t)). It is possible

to show that Yn(t)
w−→ Σ1/2N(0, t1) for all t ≥ 0 (with Σ the covariance

matrix). And for finite-dimensional distributions of Yn we have that:

(Yn(t1), · · · , Yn(tn)))
w−→ (Y (t1), · · · , Y (tn))

which means a convergence in distribution to a multivariate normal vector
such that the mean is E[Y (ti)] = 0 and variance is E[Xt(ti)X(tj)] = Σ{ti,tj}.

At this stage the key point is the following: since the only process supported
on DE [0,∞) with finite dimensional distributions described by the above
properties of the mean and the covariance is the Brownian-motion process,
then, if Y ∈ DE [0,∞), it must be Y d

= Σ1/2B, where B(·) is a standard
Brownian motion process on Rd.

Having in mind what above, we are ready to state the famous Donsker’s
Theorem, also called Functional CLT, which gives a precise statement of the
limit behaviour of the process {Yn : n ≥ 0}.

Theorem. If E∥Zn∥2 <∞ then Yn
w−−−→

n→∞
Σ1/2B in DE [0,∞)

Since Σ1/2B is the most fundamental diffusion process, this theorem gives
the prototypical diffusion approximation, suggesting the common features a
diffusion approximation should have, in the form:

S[nt]
d
≈ µnt+

√
nΣ1/2B(t)
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This means that the limit process used to approximate S[nt] depends on the
random-walk only through the mean vector µ = E[Zn] and the covariance
matrix Σ of Zn, and this is essentially what we do in Section 5.2, adapting
this kind of approximation to our neuronal context.

2.5.2 About Piecewise Deterministic Markov Processes

Once deeply investigated the class of diffusion processes, we can pass to
the analysis of non-diffusion models, via introducing the already mentioned
Piecewise Deterministic Markov Processes -from now on PDMPs. This kind
of processes will be essential in Chapter 5 -Section 5.1- where we build an
associated PDMP in relation to the neuronal model at stake.

Before passing to the formal definition, we start by referring the reader to [14]
in order to deepen the simpler class of piecewise-linear processes, to become
aware of several examples of models, e.g. in queuing theory, which are built
using this kind of processes, and to get to know more in detail the huge class
of PMDPs.

As already mentioned in the introduction of this section, a PDMP is a process
in which the behaviour is generated by random jumps and deterministic
motion, meaning that the motion consists of random jumps at points in
time whose evolution is deterministically governed by an ordinary differential
equation. These processes are characterized by three quantities: the flow,
the jump rate, and a transition measure, which we are now going to analyze.
The reader is also invited to notice that, for the time being, we are simply
considering piecewise deterministic processes: Markovianity will naturally
come later as a natural consequence/property.

Hence, let us consider the following state space

E = ∪ν∈KMν = {(ν, ξ) : ν ∈ K, ξ ∈Mν}

where K is a countable set, d : K → N a given function, and for all ν ∈ K,
Mν is an open subset of Rd(ν).
Then, take into account E the class of measurable sets in E, i.e.,

E = {∪ν∈KAν ∈ Mν}

with Mν being the Borel sets of Mν .
Hence, (E, E) is a Borel space, and the state space of the process is denoted
by Xt = (νt, ξt).

In this context, a probability law of (Xt) is determined by the following
objects:

• the vector fields (Hν , ν ∈ K);
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• A measurable function λ : E → R+;

• A transition measure Q : E × (E ∪ Γ∗) → [0, 1]

where the vector fields must satisfy the following equation:{︄
d
dtf(ξt) = Hf(ξt) ∀ f smooth
ξ0 = z

(2.2)

with ξ(t, x) being the integral curve of the vector field H. More precisely,
the vector fields Hν are supposed to be such that there is a unique integral
curve ϕν(t, z) satisfying (2.2) with H = Hν and ξt = ϕν(t, z).

Let now us consider:

• ∂Mν as the boundary of Mν ;

• ∂∗Mν = {z ∈ ∂Mν : ϕν(t, ξ) = z, ∃ (t, ξ) ∈ R+ × Mν}, i.e. the
boundary points at which the integral curves of Mν exit from Mν .

Moreover, we set:
Γ∗ = ∪ν∈K∂

∗Mν

For x = (ν, ξ) ∈ E we define:

t∗(x) = inf{t > 0 : ϕν(t, ξ) ∈ ∂∗Mν}

And to conclude we write Hh(x) for the action of the vector fields Hν on
functions h : E → R at x = (ν, ξ) ∈ E.

For what concerns the intensity λ, we suppose that for each (ν, ξ) ∈ E
there exists ϵ > 0 such that the function s ↦→ λ(ν, ϕν(s, ξ)) is integrable for
s ∈ [0, ϵ[.

It remains to specify the transition measure Q(A;x): it is a measurable
function of x for each fixed A ∈ E , defined for x ∈ E ∪ Γ∗, being essentially
a probability measure on the state space (E, E) for each x ∈ E.

At this point, everything has been defined, so that we can build the motion
of the process (Xt) starting from the point x = (n, z) ∈ E.

How to build such a process? We define the function F as follows:

F (t) =

⎧⎨⎩exp

(︃
−
∫︁ t
0 λ(n, ϕn(s, z))ds

)︃
if t < t∗(x)

0 if t ≥ t∗(x)
(2.3)

Then, we select a random variable T1 such that P[T1 > t] = F (t) (i.e. the
jump happens after time t with a probability given by the function F (t)).
After that, we choose, independently, an E-valued random variable (N,Z)
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having distribution Q(·;ϕn(T1, z)). The trajectory of (Xt) for t ≤ T1 hence
is:

Xt = (νt, ξt)

{︄
(n, ϕn(t, z)) if t < T1

(N,Z) if t = T1
(2.4)

Starting from XT1 , we then proceed by selecting the next inter-jump time
T2 − T1 and post-jump location XT2 using the same procedure, and so
on. This gives a piecewise deterministic trajectory (Xt) with jump times
T1, T2, . . . .

Remark (About Markovianity). It is possible to show that (Xt) is a Markov
process, in fact strong Markov, i.e. having Markov property holding at all
stopping times and not just at fixed times. This means that the distribution
of the jump time Tk+1 only depends on the current state (νt, ξt) of the
process, and the process begins "anew" at Tk+1. And, for this reason, we
actually talk about Piecewise Deterministic Markov processes.

For the time being, the current chapter is enough to handle the essential
mathematical tools needed in the upcoming sections: to get further infor-
mation about the objects at stake, and to deepen all those concepts we do
not have time to present here in detail, the reader is invited to refer to the
Bibliography and to use all the references that can be found throughout this
thesis when introducing new notions and materials.





Chapter 3

Modelling systems of
interacting neurons via Hawkes
processes

The aim of this thesis is to study a microscopic model representing several
large families of interacting neurons; as seen in the biological introduction,
this situation can be modelled using multi-class systems of nonlinear Hawkes
processes, which -by their nature- are particularly effective in modelling these
neuronal patterns. In particular, we are interested in the mean field limits
of such processes: in the upcoming sections we arrive, hence, to establish
propagation of chaos of the finite system and an associated Central Limit
Theorem.
Therefore, first of all we must proceed by giving the setting needed for this
kind of model. After that, we deepen the study by considering the evolution
of the system as the total number of neurons goes to infinity and in the
long-time behaviour context.

3.1 General framework for the neuronal model

We consider a large network of interacting neurons, taking n populations of
neurons, where each of them contains exactly Nk neurons, for k = 1, . . . , n.
This means the total number of neurons in the model is N = N1+ · · ·+Nn.

The activity of each neuron in the model is described by a counting process,
in particular a Hawkes process, that represents the successive times at which
each neuron emits a spike; hence, the whole model is represented by a mul-
tivariate Hawkes process, as we shall see in detail. More specifically, each
neuron is characterized by its own spike train, since we consider as attached
to each neuron its counting process

ZN
k,i(t) as k = 1, . . . , n, i = 1, . . . , Nk, t ≥ 0

41
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Figure 3.1: Recall that, when talking about "interacting populations" we
mean that each population might represent a different functional group of
neurons, or that populations can be pools of excitatory and inhibitory neu-
rons in a network. A classical example is the different hierarchical layers
in the visual cortex: indeed, researchers have discovered nearly 30 different
cortical areas that contribute to visual perception. The primary area (V1)
and the secondary area (V2) are surrounded by many other tertiary and as-
sociative visual areas: V3, V4, V5 (or MT), PO, etc., and all these distinct
areas can be considered as interacting populations of neurons. Image credits:
https://thebrain.mcgill.ca/intermediaire.php

Figure 3.2: Example : a system made of n = 12 different interacting classes
of neurons; each of them contains Ni neurons, so that the total number of
neurons of the model is N = N1 + · · ·+N12.
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where the index k indicates the population the neuron in object belongs
to, i is a label given to the i − th neuron in population number k, and
considering only positive times means assuming no spiking activity before
time 0; therefore, ZN

k,i(t) records the number of spikes in the given interval of
time, i.e., before time t, emitted by the i−th neuron belonging to population
k. This means that, for all k and ∀ i we consider the sequence

T k,i
0 = 0 < T k,i

1 < · · · < T k,i
n < . . .

as the sequence of successive spiking times of the i-th neuron belonging to
population k. Hence, we could equivalently write

ZN
k,i(t) = ♯ of spikes of neuron i belonging to population k, before time t

=

∞∑︂
n=1

1{Tk,i
n ≤t}

As it is known, each counting process ZN
k,i(t) is identified by its intensity

process (λNk,i(t)), that depicts the probability of jumping -i.e. emitting a
spike- of the process, in a given interval of time; namely:

Definition 3.1 (Stochastic intensity). Let Ft denote the filtration

Ft = σ(ZN
k,i(s), s ≤ t, 1 ≤ k ≤ n, 1 ≤ i ≤ Nk)

i.e., the internal history of the process (ZN
k,i(t))1≤k≤n,1≤i≤Nk

. Any (Ft)-
predictable positive process (λNk,i(t))t≥0 such that

E[ZN
k,i(t)− ZN

k,i(s) | Ft] = E[
∫︂ t

s
λNk,i(u)du | Fs] ∀ 0 ≤ s ≤ t

is called an Ft-intensity of ZN
k,i.

Notice that, generally speaking, if λNk,i ≡ µ, with µ constant, then the pro-
cesses in object are simply Poisson processes with intensity µ.

In our case of study, we can write

P(ZN
k,i jumps in ]t, t+ dt] | Ft) = λNk,i(t)dt for k = 1, . . . , n, i = 1, . . . , Nk

This means that λNk,i(t) is the instantaneous jump rate of neuron i in popu-
lation k, at time t.

When explicating the intensities in our neuronal context, they are the clas-
sical form of the ones of a multivariate nonlinear Hawkes process:
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Definition 3.2 (Hawkes intensities).

λNk,i(t) = fk

(︄
n∑︂

l=1

1

Nl

Nl∑︂
j=1

∫︂
]0,t]

hkl(t− s)dZN
l,j(s)

)︄
(3.1)

The two functions fk and hkl appearing the previous formula are essential
for the description of the model, indeed:

• fk : R −→ R+ is the spiking rate function associated to a given popula-
tion;

• {hkl : R+ −→ R}, is a family of synaptic weight functions, also called
memory kernels, modelling how population l influences population k.
More precisely, the leak terms h·(t − s) describe how an event lying
back t− s time units in the past influences the present time t, and we
assume this influence vanishes at +∞.

It is commonly admitted that spike trains should be processes with infi-
nite memory, and this in fact achieved if the kernels hkl are not compactly
supported: in that case the framework is the one of truly infinite memory
processes. Moreover, from the form of the intensities in (3.1) it is evident
that the setting is the one of self-exciting processes, the firing activity of each
neuron being influenced by the past history of the neuron itself and also by
the activity of the other neurons in the network.

It is now needed to set two essential properties we have to assume about the
quantities at stake.

Assumption 1. The functions fk and hkl need to satisfy the following:

• Assumption for hkl: hkl ∈ L2
loc(R+;R), 1 ≤ k, l ≤ n.

• Assumptions for fk:

– fk ∈ C1(R,R+) ∀ k = 1, . . . , N ;
– Lipschitzianity condition: there exists a finite constant L such

that for all x, x′ ∈ R, for all 1 ≤ k ≤ n,

|fk(x)− fk(x
′)| ≤ L|x− x′| (3.2)

Since we work within a mean field framework of interacting units, it is im-
portant to notice that population l influences population k only through its
empirical measure; roughly speaking, we recall the empirical measure of a
set of random variables is a random measure arising from a particular re-
alization of a (usually finite) sequence of those variables, usually computed
collecting a certain number of realizations of the variables and calculating
the relative frequencies. Formally, the definition is the following:



3.2 Probabilistic setting and Hawkes processes 45

Definition 3.3 (Empirical measure). Consider Z1, . . . , Zn a set of i.i.d. ran-
dom variables, taking values on a state space which we call S and with
probability distribution P . Then, the empirical measure Pn is defined for
measurable subsets M of the state space S as:

Pn(M) :=
1

n

n∑︂
i=1

δZi(M)

Hence, specifying this random measure to the generic k-th population of
neurons, we get that the empirical measures we need are

1

Nk

Nk∑︂
i=1

δ(ZN
k,i(t))t≥0

k = 1, . . . , n

The mean field assumption implies, in addition, that all neurons belonging
to the same population behave in the same way and are, therefore, exchange-
able. More precisely, in the multi-class context we deal with, we consider
the following notion of multi-exchangeability :

Definition 3.4 (Multi-exchangeability). The sequence of random variables
(Zk,i)1≤k≤n,1≤i≤Nk

is said to be multi-exchangeable if its law is invariant
under any permutation of the indexes within the classes; namely, for any
1 ≤ k ≤ n and any permutation σk of {1, . . . , Nk} the following equality in
distribution holds:

(Zk,σk(i), 1 ≤ k ≤ n, 1 ≤ i ≤ Nk)
L
= (Zk,i, 1 ≤ k ≤ n, 1 ≤ i ≤ Nk)

In this context, we are interested in studying the large population limit, in
which the total number of neurons N −→ ∞; we find out that the evolution
within a class is described by a nonlinear limit differential equation driven
by a Poisson random measure, arriving to state a Central Limit Theorem
result. Plus, as we shall see in the subsequent chapters, this study leads us
to look for the emergence of self-sustained oscillations in the limit system
even in absence of periodic behaviour of the single neuron.
To these aims, we assume that for all k = 1, . . . , N , the limit

lim
N→∞

Nk

N
= pk exists and ∈ ]0, 1[

3.2 Probabilistic setting and Hawkes processes

Given the general setting as described above, we now need to give further
information about the proper probabilistic framework we work in.
The model is studied in a filtered probabilistic space

(Ω,A,F) = (M,M, (Mt)t≥0)
I

where:
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• The probability space is M := {m = (tn)n∈N such that t1 > 0, tn ≤
tn+1, tn < tn+1 if tn <∞, with limn→∞ tn = +∞}; this is the canonical
path space of a simple point process, representing the "time path" of
the process in object as a sequence of successive time steps tending to
infinity as the number of neurons in the network goes to infinity.

• Given m ∈ M, n ∈ N, set Tn(m) := tn; each element m ∈ M is so
identified by its associated point measure µ :=

∑︁
n δTn(m).

• The filtration is Mt := σ{µ(A) : A ∈ B(R), A ⊂ [0, t]}.

• The considered σ-algebra is simply M = M∞.

• I = ∪n
k=1{(k, i), i ≥ 1}, i.e. the union on the k populations of neurons

of the couples (given population, neurons of that population).

Then, we look at the multivariate point measure (ZN
k,i(t))1≤k≤n,1≤i≤Nk

on
the finite dimensional subspace

(M,M, (Mt)t≥0)
IN where IN = ∪n

k=1{(k, i), 1 ≤ i ≤ Nk}

considering neurons just up to the bound Nk, which is the exact number of
neurons within each population.

Therefore we can now say that in the neuronal context of our interest an
Hawkes process with parameters (fk, hkl)k≥1,l≤n is a probability measure P
on the filtered probability space (M,M, (Mt)t≥0)

I such that:

• P-almost surely, for each couple (k, i), (l, j) ∈ I such that (k, i) ̸= (l, j),
the processes ZN

k,i(t), Z
N
l,j(t) never jump simultaneously; this means

that when considering different neurons belonging to the same popu-
lation, or different neurons in distinct populations, we don’t expect to
have simultaneous firings.

• Recalling the notion of compensator for a counting process, for all the
couples (k, i) in IN , the compensator of ZN

k,i(t) is
∫︁ t
0 λ

N
k,i(s)ds, where

λNk,i(t) are the intensity processes in (3.1).

Notice that this definition is consistent with the first definition of Hawkes
process the reader can find in the Chapter dedicated to Mathematical tools,
which is reported from [15].

Given this background, we are sure about the uniqueness of such a pro-
cess: more precisely, provided Assumption 1, there exists a path-wise unique
Hawkes process (ZN

k,i(t))(k,i)∈IN for all t ≥ 0. (For a detailed proof of this
result see [15], (Theorem 6)).
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3.3 Towards Propagation of Chaos

Given the finite model, the aim is to study the limit behaviour of the multi-
variate process (ZN

k,i(t))1≤k≤n,1≤i≤Nk
modelling the spiking activity of neu-

rons as the total number of neurons itself tends to infinity.

To this purpose, we need to set the framework that leads to build an approxi-
mation of the finite system with a system of inhomogeneous and independent
Poisson processes.

We need to consider the classical notions of chaoticity and propagation of
chaos for single-class systems and to focus on their extension to multi-class
systems of particles in order to establish a propagation of chaos result for the
finite system. Generally speaking, with the term chaoticity, it is intended the
convergence in law of a starting set of exchangeable random variables to in-
dependent and identically distributed random variables; directly connected
with this concept, we find the equally important notion of propagation of
chaos: it is said to hold when the initial chaos, i.e., the initial chaotic distri-
bution, is propagated at later times. In other words, propagation of chaos
means that the stochastic independence of two random particles in a many-
particle system persists in time, as the number of particles tends to infinity.
Namely, handling these concepts, we will show that, generally speaking, the
initial chaos of the system -intended as the fact that, in the large popula-
tion limit, within each class the neurons become statistically independent-
is propagated at later times. (To deepen this kind of topics related to prop-
agation of chaos and chaoticity, we refer the reader to [10], [22], and [38]).

To this aim we consider the space of càdlàg functions D(R+,R+) (recall this
means they are everywhere right-continuous and have left limits everywhere)
endowed with the Skorokhod topology (the interested reader can deepen the
choice of this type of topology in place of the more common uniform topology
by consulting [32]). Hence, we work on the set of probability measures on
this space, i.e. with (P(D(R+,R+)), equipped with the weak convergence
topology associated to the Skorokhod topology on D(R+,R+).

The notions of multi-exchangeability and multi-chaoticity play a fundamental
role in this study. Therefore, in order to make explicit the definition of
multi-chaoticity for the finite-system (ZN

k,i(t))(k,i)∈IN , we consider P1, . . . , Pn

∈ P(D(R+,R+)) and get the following :

Definition 3.5 (Multi-chaoticity). The system (ZN
k,i(t))(k,i)∈IN is said to be

P1 ⊗ · · · ⊗ Pn-multi-chaotic if for any m ≥ 1,

lim
N→∞

L((ZN
k,i(t))(k=1,...,n, i=1,...,m)) = P⊗m

1 ⊗ · · · ⊗ P⊗m
n

In this framework of mean field study, the limit process Z̄1(t), . . . , Z̄n(t)
associated to the finite system (ZN

k,i(t))(k,i)∈IN has distribution P1, . . . , Pn
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and models the number of spikes fired by a neuron in the interval [0, t]
belonging to population k as N → ∞.

To get the form of the limit system, notice that, re-writing (3.1) in the
following way:

λNk,i(t) = fk

(︄
n∑︂

l=1

∫︂
]0,t]

hkl(t− s)

[︄
1

Nl

Nl∑︂
j=1

dZN
l,j(s)

]︄
⏞ ⏟⏟ ⏞

↓ LLN

)︄

dE(Z̄ l(s))

(where LLN stands for Law of Large numbers), it follows that Zk̄(t) is a
process with intensity:

fk

(︄
n∑︂

l=1

∫︂ t

0
hkl(t− s)dE(Zl̄(s))

)︄
dt (3.3)

So that the limit system consists of a family of counting processes Zk̄(t) for
k = 1, . . . , n, that are solutions of the inhomogeneous equations given by:

Zk̄(t) =

∫︂ t

0

∫︂
R+

1{z≤fk(
∑︁n

l=1

∫︁ s
0 hkl(s−u)dE(Zl̄(u))}N

k(ds, dz), 1 ≤ k ≤ n (3.4)

where the function fk is the spiking rate of population k in the original
system, the kernels hkl model the influence between populations, and the
Nk are i.i.d. PRM (Poisson Random measures, see Chapter 2 (Section 2.2))
on R+ × R+ with intensity measure dsdz.

It is now natural to associate to the limit process its mean-value as follows:

E(Z1̄(t), . . . , Zn̄(t)) = mt = (m1
t , . . . ,m

n
t ) (3.5)

Having in mind Definition 3.4 and taking expectations, we easily see that
the mean values in (3.5) are solutions of the form:

mk
t =

∫︂ t

0
fk

(︄
n∑︂

l=1

∫︂ s

0
hkl(s− u)dml

u

)︄
ds k = 1, . . . , n. (3.6)

Having set up the whole context, the question to be investigated concerns
how the large time behaviour of the limit system represented by the inte-
grated intensities (m1

t ,m
2
t . . . ,m

n
t ) predicts the large time behaviour of the

finite system we started with; in particular, the upcoming chapter will focus
on the limit system, studying the emergence of oscillations.
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For the time being, equipped with this piece of information, we are going to
state the convergence of the process (ZN

k,i(t))(k,i)∈IN in the large population
limit in terms of the empirical measures

1

Nk

Nk∑︂
i=1

δ(ZN
k,i(t))t≥0

, k = 1, . . . , n

A direct consequence of the main theorem of this section is that a weak
law of large numbers holds for the empirical measures, which converge in
distribution to the law Pk of the limit system (see Corollary 3.7). As it is
known, this convergence result is equivalent to the (multi)-chaoticity of the
system (for a proof of this result, see Proposition 2.2 in [38], in which the
topic is discussed in one-dimension).

Therefore, we are ready to state and prove the main result of this part: it
assures the multi-chaoticity of the finite system and, by showing the con-
vergence in law of the finite system to the limit system, it establishes the
propagation of chaos as foreseen.
This means that, in the large population limit, neurons belonging to the same
class converge to i.i.d. copies of the same limit law, or, better, that neurons
of class k behave according to the law Pk of the correspondent limit system
Zk̄.

Moreover, as a consequence of multi-chaoticity and multi-exchangeability,
the restriction to each class of neurons is chaotic itself, and any finite sub-
system of neurons is asymptotically independent with neurons of class k
having the law Pk; indeed, there is an asymptotic independence between the
different classes, the interactions between classes only surviving in law.

Theorem 3.6. Provided Assumption 1, then:

1. There exists a path-wise unique solution to (3.4) such that the function
t −→ E(

∑︁n
k=1 Zk̄(t)) is locally bounded.

2. Multi-chaoticity The system of processes (ZN
k,i(t))(k,i)∈IN is P1 ⊗ · · · ⊗

Pn-multi-chaotic, with Pk = L(Zk̄) for k = 1, . . . , n.

3. Propagation of chaos: For any i ≥ 1,

((ZN
1,i(t), . . . , (Z

N
n,i(t)))t≥0)

L−−−−→
N→∞

((Z1̄(t), . . . , Zn̄(t))t≥0)

meaning convergence in D(R+,Rn
+), endowed with the Skorokhod topol-

ogy.
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Proof. We proceed by splitting the proof into two main steps and retracing
what has been done in Theorem 8 of [15], extending it to a multi-class
context.

i. We must prove the path-wise uniqueness of the solution to the equation
for the limit system (3.4) which makes the function t −→ E(

∑︁n
k=1 Zk̄(t))

locally bounded.

Therefore, let (Z̄1(t), . . . , Z̄n(t)) be any solution of (3.4) and set mt =
(m1

t , . . . ,m
n
t ) = E(Z̄1(t), . . . , Z̄n(t)) as the associated vector of the

integrated intensities. By construction, this vector is solution of (3.6).

At this point, we need to apply the multi-dimensional version of the
following auxiliary lemma, which corresponds to Lemma 24 in [15]:

Lemma. Let h : R −→ [0,∞) be a Lipschitz-continuous function and
let ϕ : [0,∞) −→ R be locally integrable. Then the equation

mt =

∫︂ t

0
h

(︃∫︂ s

0
ϕ(s− u)dmu

)︃
ds

has a unique non-decreasing and bounded solution; moreover m is of
class C1[0,∞).

Looking at the general notation used in the above lemma, using the
spiking rates fk in place of h and the weights hkl as ϕ (noticing we are
allowed to do that thanks to Assumption 1), we immediately get that
equation (3.6) has a unique, locally bounded, non-decreasing solution
(in each coordinate), that moreover is of class C1.

It is now left to prove uniqueness and well-posedness of the solu-
tion: considering (Z̄k(t))(1≤k≤n,t≥0) a solution of (3.4), its mean value
mt = (m1

t , . . . ,m
n
t ) = E(Z̄1(t), . . . , Z̄n(t)) is a solution to (3.6) by con-

struction; therefore it is defined uniquely, and this implies that the
right hand side in (3.4) is also unique, leading to uniqueness.

To prove existence, it is sufficient to consider m as the unique solution
to (3.6) and to set

Zk̄(t) =

∫︂ t

0

∫︂
R+

1{z≤fk(
∑︁n

l=1

∫︁ s
0 hkl(s−u)dE(Zl̄(u))}N

k(ds, dz), 1 ≤ k ≤ n

We just need to prove that mt = (m1
t , . . . ,m

n
t ) = E(Z̄1(t), . . . , Z̄n(t)).

But it is clear that

E(Z̄k(t)) =

∫︂ t

0
fk

(︃ n∑︂
l=1

∫︂ s

0
hkl(s− u)dml

u

)︃
ds k = 1, . . . , n

which is exactly mk
t since m solves (3.6).



3.3 Towards Propagation of Chaos 51

ii. Propagation of chaos: first of all we need to consider the i.i.d.PRMs
(NN

k,i(ds, dz))(k,i)∈IN on R+ × R+ with intensity dsdz, i.e., the associ-
ated measure µ being the Lebesgue measure, representing ⊥⊥ noises.
We look at the process (ZN

k,i(t))(k,i)∈IN ,t≥0,N≥1:

ZN
k,i(t) =

∫︂ t

0

∫︂ ∞

0
1{z≤λN

k,i(s)}
NN

k,i(ds, dz)

=

∫︂ t

0

∫︂ ∞

0
1{z≤fk(

∑︁n
l=1

1
Nl

∑︁Nl
j=1

∫︁ s−
0 hkl(s−u)dZN

l,j(u))}
NN

k,i(ds, dz)

(3.7)

Thanks to the equivalence of the two definitions of Hawkes processes,
as already pointed out when discussing about the Mathematical tools,
the process defined above is clearly a Hawkes process also according to
our notion of Hawkes process in this neuronal context.

At this point, we need to apply a coupling method, hence we shall open
a brief parenthesis:

Remark. Roughly speaking, coupling means the joint construction
of two or more random elements (in our case, processes), in order to
deduce properties of the individual item; this terminology is used in
two different ways in standard probability theory: in the general sense
of constructing joint versions of random elements (as mentioned) and
intending the construction of "intermediate" versions of two stochastic
processes in such a way that their paths coincide.
In the context of using underlying PRMs, we can briefly focus on the
so-called synchronous coupling, which consists of building two stochas-
tic processes using the same underlying PRM, in order to favour com-
mon jumps: more specifically, suppose to have a first process Z with
intensity λ (w.r.to its own filtration), and a second process Z̃ with in-
tensity λ̃ (w.r.to its own filtration); then, we build these two processes
as thinnings of the same underlying PRM, and see that the uncommon
jumps are caused by atoms (s, z) such that either λ(s) < z < λ̃(s)
or λ̃(s) < z < λ(s). This kind of procedure turns out to be useful
to prove a convergence result on the paths of these processes (since,
indeed, common jumps are favoured), leading to prove propagation of
chaos.

Hence, the idea is -having in mind the finite system ZN
k,i(t))(k,i)∈IN -

constructing N nonlinear processes by taking the same Poisson random
measures as those defining the particle system, and to this aim, we
proceed coupling the finite system ZN

k,i to the limit process through
the following:

Z̄
N
k,i(t) =

∫︂ t

0

∫︂ ∞

0
1{z≤fk(

∑︁n
l=1

∫︁ s
0 hkl(s−u)dml

u)}N
N
k,i(ds, dz) (3.8)
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where mt is the unique solution to (3.6) and (NN
k,i){1≤k≤n, 1≤i≤Nk} is

the same Poisson random measure used in the dynamics of the process
(3.7); notice also that the processes in (3.8), with k running from 1 to
n (populations of neurons) and i running between 1 and Nk (neurons
within each population) are all independent processes.

We can also point out that, recalling the form of the limit process Z̄k

in (3.4), the convergence in law Z̄
N
k,i

L−→ Z̄k is realized.

The key point in the proof is proving that the processes (Z̄
N
k,i(t)) and

(ZN
k,i(t)) are asymptotically close, i.e. that for all T ≥ 0, 1 ≤ k ≤ n,

1 ≤ i ≤ Nk

lim
N→∞

E
[︃
sup

u∈[0,t]
|Z̄N

k,i(u)− ZN
k,i(u)|

]︃
= 0

Therefore, it is convenient to set up the following notation:

• ∆N
k,i(t) =

∫︁ t
0 |d[Z̄

N
k,i(u)−ZN

k,i(u)]|, i.e., the total variation distance;

• δNk,i(t) = E(∆N
k,i(t)), i.e. the expectation of the previously defined

quantity. Notice that, by construction, the neurons within each
class are exchangeable, so that this quantity doesn’t depend on i;
therefore, we are allowed to write δNk (t) in place of δNk,i(t).

We can now immediately notice that the following easy inequalities
hold:

∆N
k,i(t) ≥ sup

u∈[0,t]
|Z̄N

k,i(u)− ZN
k,i(u)|

δNk (t) ≥ E
[︃
sup

u∈[0,t]
|Z̄N

k,i(u)− ZN
k,i(u)|

]︃ (3.9)

Once understood what has been done so far, we can start controlling
the quantity ∆N

k,i(t); first of all we write it explicitly using the defini-
tions of the processes Z̄N

k,i and ZN
k,i:

∆N
k,i(t) =

∫︂ t

0

∫︂
R+

⃓⃓⃓⃓
1{z≤fk(

∑︁n
l=1

∫︁ s
0 hkl(s−u)dml

u)}

− 1{z≤fk(
∑︁n

l=1
1
Nl

∑︁Nl
j=1

∫︁ s−
0 hkl(s−u)dZN

l,j(u))}

⃓⃓⃓⃓
NN

k,i(ds, dz)

Then, we compute the expectation E on both sides, exploiting the
lipschitzianity with constant L of the spiking rate functions fk and the
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triangular inequality to get:

E(∆N
k,i(t))

L
≤
∫︂ t

0

n∑︂
l=1

E
⃓⃓⃓⃓
1

Nl

Nl∑︂
j=1

∫︂ s−

0
hkl(s− u)(dml

u − dZ̄
N
l,j(u))

⃓⃓⃓⃓
ds

+

∫︂ t

0

n∑︂
l=1

E
⃓⃓⃓⃓
1

Nl

Nl∑︂
j=1

∫︂ s−

0
hkl(s− u)d[Z̄

N
l,j(u)− ZN

l,j(u)]

⃓⃓⃓⃓
ds

(3.10)

Looking at the right hand side of the previous inequality, we denote
with A the integral on the first line, with B the one on the second line;
with this notation we can re-write:

1

L
E(∆N

k,i(t)) ≤ A+B

where A is a variance term; from now on our aim is controlling A and
B separately, going towards the final estimate that allows to conclude
with the propagation of chaos result.

Estimate for B: it is simple to bound this term -recalling the notation
for ∆ and δ- just by using some evident inequalities and the following
auxiliary lemma, which corresponds to Lemma 22 in [15], whose proof
relies on Fubini’s theorem :

Lemma. Given the functions ϕ : [0,∞) −→ R locally integrable and
α : [0,∞) −→ R such that α(0) = 0, both with finite variations on
compact intervals, the following equalities hold ∀ t ≥ 0:∫︂ t

0

∫︂ s−

0
ϕ(s−u)dα(u)ds =

∫︂ t

0

∫︂ s

0
ϕ(s−u)dα(u)ds =

∫︂ t

0
ϕ(t−s)α(s)ds

Therefore, coming back to the needed estimate for the B, let’s apply
the previous lemma recalling the definition of term B, in order to get
to the following chain of inequalities:

B ≤
∫︂ t

0
E
∫︂ s−

0

[︃ n∑︂
l=1

|hkl(s− u)|d∆N
l,1(u)

]︃
ds

≤
∫︂ t

0

[︃ n∑︂
l=1

|hkl(t− u)|δNl (u)

]︃
du

Estimate for A: to bound this term, we introduce the following random
variables:

XN
k,l,j(t) =

∫︂ t−

0
hkl(t− u)dZ̄

N
l,j(u) 1 ≤ j ≤ Nl (3.11)
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We can easily notice that these are i.i.d. random variables having mean
value

∫︁ t
0 hkl(t− u)dml

u by definition of m.

Let’s now substitute in the previous equation (3.11) the definition of
Z̄

N
k,i(t) as in (3.8), therefore getting:

XN
k,l,1(s) =

∫︂ s−

0

∫︂ ∞

0
1{z≤fl(

∑︁n
m=1

∫︁ u
0 hlm(u−r)dmm

r )}hkl(s−u)NN
l,1(du, dz)

where we are allowed to consider j = 1 thanks to the exchangeability
property of neurons within the same population.
At this stage we are allowed, thanks to the fact the integrand is deter-
ministic, to compute the difference Y N

k,l,1(s) = XN
k,l,1(s)− E(XN

k,l,1(s)),
which is useful to compute the variance:

Y N
k,l,1(s) =

∫︂ s−

0

∫︂ ∞

0
1{z≤fl(

∑︁n
m=1

∫︁ u
0 hlm(u−r)dmm

r )}hkl(s−u)Ñ
N
l,1(du, dz)

with Ñ
N
l,1(du, dz) simply being the difference NN

l,1(du, dz) − dsdz, i.e.
the compensated PRM.

Recalling the definition of variance for a random variable, the following
equality comes up:

V ar(XN
k,l,1(s)) =

∫︂ s

0
fl

(︃ n∑︂
m=1

∫︂ u

0
hlm(u− r)dmm

r

)︃
h2kl(s− u)du

(3.6)
=

∫︂ s

0
h2kl(s− u)dml

u

This turns out to be essential to bound A, since by definition of A itself
and of XN

k,l,j(s) the following holds:

A ≤
n∑︂

l=1

1√
Nl

∫︂ t

0

√︂
V ar(XN

k,l,1(s))ds

The path is now clear to give an estimate of the whole sum A + B;
indeed, remember that our interest is to give a bound to

1

L
E(∆N

k,i(t)) =
1

L
δNk (t)

To work more comfortably over the different population of neurons
(k = 1, . . . , n), we introduce the 1-norm of the noticeable involved
quantities, i.e. we set

∥δN (t)∥1 =
n∑︂

k=1

δNk (t), ∥mt∥1 =
n∑︂

k=1

mt
k, ∥h(t)∥1 =

n∑︂
k,l=1

|hkl(t)|
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Hence, recalling that 1
LE(∆

N
k,i(t)) ≤ A+B and combining the estimates

found for A and B respectively, we get:

∥δN (t)∥1
L

≤
(︃ n∑︂

k=1

1√
Nk

)︃∫︂ t

0

√︄(︃∫︂ s

0
∥h(s− u)∥21d∥mu∥1

)︃
ds

+

∫︂ t

0
∥h(t− u)∥1∥δN (u)∥1du

(3.12)

Then,

sup
t≤T

∥δN (t)∥1 ≤ CT

(︃ n∑︂
k=1

1√
Nk

)︃
(3.13)

Which comes from the direct application of the following auxiliary
lemma, corresponding to point (i) in Lemma 23 of [15], in its general-
ization to the multi-class context:

Lemma. Let ϕ : [0,∞) → [0,∞) be a locally integrable function and
g : [0,∞) → [0,∞) be a locally bounded function. Moreover, consider
a locally bounded and non-negative function u such that for all t ≥ 0:

ut ≤ gt +

∫︂ t

0
ϕ(t− s)usds ∀ t ≥ 0

Then,
sup
[0,T ]

ut ≤ CT sup
[0,T ]

gt

for some constant CT only depending on T and ϕ.

Indeed, starting from (3.12), the function∫︂ t

0

(︃∫︂ s

0
∥h(s− u)∥21d∥mu∥1

)︃1/2

ds

is locally bounded thanks to the fact the weights h are locally square
integrable (Assumption 1), and at point i. it was proved that the
solution m is of class C1.

Therefore from (3.13), passing to the limit for the number of neurons
N −→ ∞, considering any fixed couple (k, i) ∈ IN and thanks to the
bounds in (3.9), we arrive to the following convergence -more precisely,
uniform convergence on compact time intervals- result:

E
[︃

sup
u∈[0,T ]

|Z̄k,i(u)− ZN
k,i(u)|

]︃
≤ CT

(︃ n∑︂
k=1

1√
Nk

)︃
−−−−→
N→∞

0 (3.14)

Given this, to conclude it is sufficient to notice that the topology of
uniform convergence on compact time intervals is finer than the Sko-
rokhod topology we are here working with.
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Hence, considering the fixed length sequences l1, . . . lk for k = 1, . . . , n,
the following convergence in law (in D(R+,Rl1+···+ln

+ )) takes place, di-
rectly thanks to the bound in (3.14):

((ZN
1,1(t))t≥0, . . . , (Z

N
1,l1(t))t≥0, . . . , (Z

N
n,1(t))t≥0, . . . , (Z

N
n,ln(t))t≥0)

↓ L
( Z̄1, . . . , Z̄1⏞ ⏟⏟ ⏞
l1 i.i.d. copies

, . . . , . . . , . . . , Z̄n, . . . , Z̄n⏞ ⏟⏟ ⏞
ln i.i.d. copies

)

Therefore, also propagation of chaos was established.

As a direct consequence, and specializing to our neuronal context what
has been done in [23], (Corollary (5.2)), we get immediately the following
mean field approximation, which is equivalent, as already mentioned, to the
chaoticity of the system:

Corollary 3.7. Assume multi-exchangeability and multi-chaoticity of the
system and take the hypotheses of Theorem 3.6 as given. Recall the form of
the limit system Z̄k(t) with associated distribution Pk. Then, the convergence
in distribution of the empirical distributions

1

Nk

Nk∑︂
i=1

δ(ZN
(k,i)

)
L−−−−→

N→∞
Pk ∀ 1 ≤ k ≤ n (3.15)

holds for the weak topology on P(D(R+,R+)) with D(R+,R+) endowed with
the Skorokhod topology.

3.4 Associating a Central Limit Theorem

We now go straight towards to study the large time behaviour. Since the
solution to the limit system equation (3.4) is in the form of an inhomogeneous
Poisson process, provided we have enough information about the integrated
intensities in (3.3), its large-time behaviour can be easily described. In this
context, we ask whether it is possible to use the large time estimates of the
mean field limit system to describe the large-time behaviour of the original
Hawkes process with a large number of particles, but of finite size.

Hence, in this section we get to state and prove a Central Limit Theorem
result not only looking at the large population limit as N → ∞, but also con-
sidering the convergence of time t to infinity; that is, we study the behaviour
of the limit system by looking at the integrated intensities (m1

t , . . . ,m
n
t ) and

controlling their longtime behaviour.
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Since Hawkes processes can be seen as branching processes, as we are going
to deepen in a while, we do this by looking at the "transition matrix" Λ
-which we now introduce- and studying its spectral properties.

Indeed, recalling for a moment the form of a classical uni-dimensional Hawkes
process, we know it can generically be represented as a point process whose
intensity λ(t) is in the form:

λ(t) = λ0(t) +
∑︂
i:t>Ti

ϕ(t− Ti)

where λ0(t) is a function modelling the initial intensity of the process, and
ϕ plays the role of the memory kernel, in which it is evident that all events
happening before time t contribute to the total intensity of the process (ac-
cordingly to the fact Hawkes processes are truly self-exciting processes).

Given this easy notation, and interpreting the classical "arrivals" involved in
point processes as the spike trains of each neuron, it is clear that due to the
structure of such a process, the neuronal firings in the process of intensity
ϕ(t − tk) are "sons" of the spike that is emitted at time tk. Therefore, just
by integrating the memory kernels on the positive real line, i.e, computing∫︁∞
0 ϕ(t)dt, we get the "average number of sons" of each spike, and such a

number is classically called branching ratio. From an intuitive point of view,
it represents the number of events appearing in the whole process, or, to
use a more modern term stolen from the medical world, the "virality" of the
process.

Thus, viewing the successive emissions of a spike as descendants of earlier
neuronal firings allows to compare such a Hawkes process with a Galton-
Watson type branching process (the reader is invited to refer to [1] to deepen
the field of branching processes). We recall that these processes, originally
born to study the propagation of family names, are now generalized and
simple models to investigate populations of individuals evolving in time, in
which each n− th generation gives birth to a random number of individuals,
called offspring, in a i.i.d. way.

Having in mind this comparison, it useful to perform an analysis on the num-
ber of the descendants: if the branching ratio is < 1 -the so called subcritical
case-, then the number of "descendant" spikes is finite with probability 1;
on the other hand, when the ratio is > 1 -supercritical case- then each firing
has a positive probability of having infinitely many descendants.

Remark. Even though the rate functions fk are not linear, we are allowed to
use such a procedure of "comparison" with a branching process thanks to the
assumption lipschitzianity (with constant L) of the rates. Moreover, notice
that the fact the rates fk are not supposed to be linear also implies that the
similarity between the classical results in [15] has to be adapted to the case in
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object using matrix renewal equations and matrix-convolution equations. A
general overview about the so-called renewal theory is reported in Chapter
2 (Section 2.3), in order to give the reader the basics to understand the
upcoming proofs.

Hence, passing to our multi-class and nonlinear system, we must specify the
matrix of the integrated memory kernels Λ := (Λij) with i, j running in the
set of populations 1, . . . , n, to the model in object, hence obtaining:

Λij = L

∫︂ ∞

0
|hij(t)|dt 1 ≤ i, j ≤ n (3.16)

In our notations we re-write Λ using an auxiliary matrix as follows:

Λ =

∫︂ ∞

0
H(t)dt with H(t) =

(︃
L|hik(t)|

)︃
1≤,i,k≤n

for any t ≥ 0 (3.17)

The study we are about to do concerns the spectral properties of such a
matrix Λ; considering its eigenvalues, and performing a criticality analysis,
we look at the subcritical and supercritical case, indicating with µ1 the
largest eigenvalue of Λ.

We can immediately notice a difference between the context we are working
with (spiking rates just Lipschitz) and the more classical results obtained,
for example in [15], when assuming the rates to be linear.
Indeed, if the rates were linear, as N, t → ∞, we would not have to assume
any additional conditions on N, t in the subcritical case, while in the super-
critical we would just need the assumption eγt/N → 0, for some constant γ.
In our model, instead, we are just able to obtain a Central Limit Theorem in
the subcritical case in the regime N/t→ 0, while the supercritical situation
is more difficult, needing to assume eγtt−1N−1/2 → 0.

Moreover, as we shall see, the rate of convergence emerging in the Central
Limit Theorem is (mk

t )
1/2 for k = 1, . . . , n, but in our framework we don’t

dispose of general asymptotical equivalents of t→ mk
t ; thus, in this context,

to get the final result, it is essential to bound the mean values mk
t in order

to have them of at least linear growth within populations (actually, as we
are going to see, we work in a situation in which the growth is linear if
considering the subcritical framework, exponential in the supercritical). In
other words, this means we assume that within each population there is
always some minimal strictly positive spiking intensity.

We are almost ready to proceed with the analysis of the two cases as above,
needing to find two (one for each criticality region) preliminary bounds on
the growth of the integrated intensities mk

t ; as we shall see, this is more
tricky in the supercritical framework.
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3.4.1 Preliminary work: Subcritical case

Subcritical case (u1 < 1): consider the synaptic weights hkl ∈ L1(R+;R)∩
L2(R+;R) for 1 ≤ k, l ≤ n, and take into account Assumption 1. Then,

Proposition 3.8. Given the above hypotheses, there exists a constant γ0
such that

mk
t ≤ γ0t ∀ k = 1, . . . , n

Moreover, given the Z̄N
k,i as in (3.8), there exists a constant C such that the

following inequality holds:

E
(︃
sup
s≤t

|ZN
k,i(s)− Z̄

N
k,i(s)|

)︃
≤ Ct√

N
for 1 ≤ k ≤ n. (3.18)

Proof. First of all the aim is finding a linear bound for the growth of the
integrated intensities mk

t ; looking at their form in (3.6), we get that the
intensities λkt are:

λkt :=
dmk

t

dt
= fk

(︃∫︂ t

0

n∑︂
l=1

hkl(t− s)dml
s

)︃
(3.19)

Just by applying the fact the spiking rate functions are Lipschitz with con-
stant L, we get to the following preliminary bound:

λkt = fk(0) +
n∑︂

l=1

L

(︃∫︂ t

0
|hkl(t− s)|λls

)︃
(3.20)

Now, recall that the matrices H and Λ were defined as

H(t) = (L|hik(t)|)1≤,i,k≤n Λ =

∫︂ ∞

0
H(t)dt

So that the bound (3.20) becomes:

λt ≤ f(0) +H ∗ λ(t)

where f(0) has to be intended as an n-dimensional vector, i.e. (f1(0), . . . , fn(t))T ,
and the symbol ∗ denotes the convolution operation.
The main quantity we now take into account is the following:

Γl :=

l∑︂
k=1

H∗k

where H∗k is the k-fold convolution.
In order to give an explicit formula for its integral, recall the following result,
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up to well-posedness of the integrals- for matrix-valued functions convolu-
tions:

∫︁∞
0 A ∗B(t)dt = (

∫︁∞
0 A(t)dt)(

∫︁∞
0 B(t)dt)

Hence, it follows that

∫︂ ∞

0
Γl(t)dt =

l∑︂
k=1

Λk (3.21)

Since we are dealing with the subcritical case, i.e. the maximal eigenvalue µ1
of Λ is strictly smaller than 1, it is clear that the unique maximal eigenvalue
of (3.21) must be

∑︁l
k=1 µ

k
1 ≤ u1

1−µ1
as it is a geometric series with reason

smaller than 1.

Therefore, the function Γ(t) =
∑︁n

l=1H
∗l(t) is locally bounded and well-

defined; moreover, we can conclude that the integral function
∫︁∞
0 Γ(t)dt is

exactly µ1

1−µ1
.

At this point recall that, given a general renewal equation f = g+f ∗F , with
f, g, F functions, g : R → R+, the so called "data", measurable and locally
bounded and F : R+ ∈ R+ the generalized cumulative distribution function,
we know it admits a unique locally bounded solution f : R+ → R given by
f = g ∗R, where R is the renewal function, i.e. R(t) =

∑︁
n≥0 F

∗n(t).

Therefore, specifying this fact to our case of study, we notice that any solu-
tion y(t) of the equation y = f(0)+H∗y is in the form y(t) = f(0)+Γ∗f(0) =
f(0) +

∫︁ t
0 Γ(s)f(0)ds, since, in our case, the renewal function is given by Γ,

and the "data" playing the role of g is f(0).
Hence, the following bound on λ, to be intended as holding component-wise,
comes out:

λ(t) ≤ f(0) +

(︃∫︂ t

0
Γ(s)ds

)︃
f(0) ≤ f(0) +

(︃∫︂ ∞

0
Γ(s)ds

)︃
f(0)

This allows to conclude with the first point of the proposition: indeed, since
we found out λ(t) is a bounded function of t, recalling relation (3.19), we
get that also the wanted linear bound on the growth of the intensities mk

t is
achieved.

At this stage, we want to prove (3.18) holds; recalling the notation used in
the proof of Theorem 3.6 for δNk (t) and ΛN

k,i(t), and recalling the inequali-
ties found in (3.10) and (3.12) of that proof, we get the following chain of
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relations, with δN (t) = (δN1 (t), . . . , δNn (t))T :

δNk (t) ≤ C√
N

∫︂ t

0

n∑︂
l=1

[︃∫︂ s

0
h2kl(s− u)λludu

]︃1/2
+ (H ∗ δN )k(t)

≤ Ct√
N

+ (H ∗ δN )k(t)

(⋆)

≤ Ct√
N

+
C√
N

∫︂ t

0

n∑︂
l=1

Γkl(t− s)sds

≤ Ct√
N

where, in general, the constant C might change value from line to line and
even within the same equation; inequality (⋆) comes from the fact we proved
the intensities λlu are bounded and thanks to Assumption 1, in which we
supposed the synaptic weights hkl ∈ L2(R+;R).
Hence, as we did in the proof of Theorem 3.6, from the bound found in the
last line of the previous chain of inequalities we get:

E
(︃
sup
s≤t

|ZN
k,i(s)− Z̄

N
k,i(s)|

)︃
≤ Ct√

N

for k = 1, . . . , n. Therefore, the proof of the proposition is done.

3.4.2 Preliminary work: Supercritical case

Supercritical case (u1 > 1): take into account Assumption 1 and consider
the functions hkl belonging to L1(R+;R) for 1 ≤ k, l ≤ n; moreover assume
that there exist p ≥ 1 and C constants such that |hkl(t)| ≤ C(1 + tp) for all
t ≥ 0. Then,

Proposition 3.9. Given the above hypotheses, there exists a unique constant
γ0 such that

∫︁∞
0 e−γ0tH(t)dt has greatest eigenvalue µ = +1, such that:

mk
t ≤ ceγ0t ∀ k = 1, . . . , n

Moreover, there exists a constant C such that the following inequality holds:

E
(︃
sup
s≤t

|ZN
k,i(s)− Z̄

N
k,i(s)|

)︃
≤ Ceγ0t√

N
for 1 ≤ k ≤ n. (3.22)

To prove this proposition, first of all we need the following auxiliary result
involving classical notions about systems of renewal equations:

Lemma 3.10. Consider the matrix H(t) = (L|hik(t)|)1≤,i,k≤n for t ≥ 0 as
in (3.17) and take as valid the assumptions made for the supercritical case
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above.
Moreover, set the following notation: Γ(t) :=

∑︁
k≥1H

∗k(t), where the nota-
tion (.)∗k stands for the k-fold convolution.
Then, the followings hold:

1. There exists a unique constant γ0 such that
∫︁∞
0 e−γ0tH(t)dt has as

largest eigenvalue the value +1;

2. The function Γ is locally bounded and there exists a constant C such
that the entries of Γ are bounded in such a way that:

Γij(t) ≤ Ceγ0t (3.23)

3. For all pairs of locally bounded functions u, h : R+ → Rn such that
u = h+H ∗ u, it holds the following equality: u = h+ Γ ∗ h

Proof. The proof is essentially based on results on systems of renewal equa-
tions that can equivalently be found in Corollary 3.1 and Theorem 3.1 in
[13], to which we refer the reader.

We can now easily prove Proposition 3.9:

Proof. It is sufficient to recall that, as in the proof of Proposition 3.8, we
can get the bound (3.20) on the intensities λkt for k = 1, . . . , n. Therefore,
we use the above Lemma 3.10, point 2. to get the chain of inequalities:

λkt ≤ fk(0) +

n∑︂
l=1

(

∫︂ t

0
Γkl(s)ds)fl(0) ≤ fk(0) + Ceγ0t ≤ ceγ0t

where it is sufficient to take c = max1≤k≤n fk(0)+C. In this way, the expo-
nential bound to the growth of the intensities, and hence of the integrated
intensities mk

t , is obtained.

Given this bound, repeating the very same procedure as in the second part
of the proof of Proposition 3.8, we get to inequality (3.22) as wanted.

3.4.3 Main Result: CLT for systems of interacting neurons

Thanks to this preliminary work, we get to the main result of this section,
which is, as foreseen, a Central Limit Theorem that takes into account the
convergence to infinity of both the number of neurons N and the time t. It
shows clearly that the finite size system is close to the system of integrated
intensities (m1

t , . . . ,m
n
t ), and that the rate of convergence is, indeed, (mk

t )
1/2.

Theorem 3.11. Assume to be either in the situation described in the sub-
critical case or in the supercritical case. Consider the limits for N → ∞ and
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for t → ∞, with the additional assumptions that t
N → 0 if working in the

subcritical situation, eγ0t

t
√
N

→ 0 if in the supercritical.
Suppose also that:

lim inf
t→∞

mk
t

t
≥ γk (∃ γk > 0) for k = 1, . . . , n (3.24)

Then,

1. For any fixed index i, for some constant C and for 1 ≤ k ≤ n it holds
the following:

lim sup
N,t→∞

√︂
mk

t E
[︃⃓⃓⃓⃓
ZN
k,i(t)

mk
t

− 1

⃓⃓⃓⃓]︃
≤ C

meaning that the ratio
ZN
k,i(t)

mk
t

converges to 1 in probability.

2. Central limit result Assume in addition that limN→∞
Nk
N > 0 for all

population k = 1, . . . , n. Then, for all fixed (l1, . . . , ln), the following
convergence in law holds:(︄(︃

ZN
1,i(t)−m1

t√︁
m1

t

)︃
i=1,...,l1

, . . . ,

(︃
ZN
n,i(t)−mn

t√︁
mn

t

)︃
i=1,...,ln

)︄
L−−−−−−→

(t,N)→∞
N

where N is a multivariate normal variable with mean vector 0 and
covariance matrix Il1+···+ln, i.e N ∼ N (0, Il1+···+ln)

Proof. The proof exploits the two propositions we have already proved, so
that we must distinguish between subcritical and supercritical situation,
adapting the proof of Theorem 10 in [15] to our nonlinear study:

• Subcritical case: first of all we define the following process

UN
k,i(t) := ZN

k,i(t)−mk
t for (k, i) ∈ IN

Moreover, recalling the form of the process Z̄N
k,i(t) as in (3.8), we in-

troduce the martingales:

MN
k,i(t) =

∫︂ t

0

∫︂ ∞

0
1{z≤fk(

∫︁ s
0 hkl(s−u)dml(u))}Ñ

N
k,i(ds, dz) = Z̄

N
k,i(t)−mk

t

where Ñ
N
k,i = NN

k,i(ds, dz)−dsdz is the compensated PRM. Hence, the
following relations hold:

UN
k,i(t) =MN

k,i(t) +RN
k,i(t), RN

k,i(t) = ZN
k,i(t)− Z̄

N
k,i(t)
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Now, remember the bound (3.18) found in Proposition 3.8, that using
the previous notation results in:

E
(︃
sup
s≤t

|RN
k,i(s)|

)︃
≤ Ct√

N
(3.25)

At this point we need to recall the notion of quadratic covariation for
two Càdlàg martingalesM,N , defined by [M,N ]t =MtNt−

∫︁ t
0 Ms−dNs−∫︁ t

0 Ns−dMs. From this, and considering the fact we are assuming that
the processes ZN

k,i, Z
N
l,j never jump simultaneously for (k, i) ̸= (l, j), we

immediately get that [MN
k,i,M

N
l,j ]t = 0 if (k, i) ̸= (l, j).

Plus, by definition of quadratic covariation, the variation [MN
k,i,M

N
k,i]t

equals to Z̄N
k,i(t). Hence, the expectation E[(MN

k,i(t))
2] = E(Z̄N

k,i(t)) =

mk
t .

Putting everything together:

E|UN
k,1(t)|
mk

t

≤
E|MN

k,1|
mk

t

+
CtN−1/2

mk
t

≤ (mk
t )

−1/2 +
Ct

mk
t

√
N

(3.26)

At this point, we must bring into play the hypotheses t/N → ∞ and
lim inft→∞mk

t = γk > 0; using the bound achieved above and recalling
the definition of UN

k,i(t), we get to:

lim sup
N,t→∞

√︂
mk

t E
[︃⃓⃓⃓⃓
ZN
k,1(t)

mk
t

− 1

⃓⃓⃓⃓]︃
= lim sup

N,t→∞

√︂
mk

t

[︃E|UN
k,1(t)|
mk

t

]︃
≤ 1

And since the first part of the theorem consists, in fact, of proving that
the quantity on the left hand side of the previous line is bounded by a
constant, the first item in the theorem is done.

It is now time to prove point 2., meaning we want to get the conver-
gence in law of the vector(︄(︃

ZN
1,i(t)−m1

t√︁
m1

t

)︃
i=1,...,l1

, . . . ,

(︃
ZN
n,i(t)−mn

t√︁
mn

t

)︃
i=1,...,ln

)︄
to a multivariate normal variable N (0, Il1+...ln) for any fixed l1, . . . ln.
To this aim, for all k and considering i = 1, . . . lk with lk ≤ Nk, we can
write: √︂

mk
t

(︃
ZN
k,i(t)

mk
t

− 1

)︃
=
UN
k,i(t)√︂
mk

t

=
MN

k,i(t)√︂
mk

t

+
RN

k,i(t)√︂
mk

t

At this stage, it is immediate to notice, as in (3.25) that the second
term in the last summation is such that

E((mk
t )

−1/2|RN
k (t)|) ≤ (mk

t )
−1/2CtN−1/2
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which tends to zero as N, t→ ∞.

Hence, to give an estimate of
√︂
mk

t

(︃
ZN
k,i(t)

mk
t

−1

)︃
, it is sufficient to show

that the vector(︄(︃
MN

1,i(t)−m1
t√︁

m1
t

)︃
i=1,...,l1

, . . . ,

(︃
MN

n,i(t)−mn
t√︁

mn
t

)︃
i=1,...,ln

)︄

tends in law to N (0, Il1 + . . . Iln) as t,N → ∞. To this end, we can
directly use the following Central Limit Theorem for martingales, gen-
eralizing it to our multi-class situation (the reader can refer to Lemma
12 of [15] to see the proof of this result):

Lemma. Let l ≥ 1, N ≥ 1 be fixed numbers and consider a fam-
ily (MN

1 (t), . . . ,MN
l (t))t≥0 of l-dimensional local martingales satisfy-

ing the condition MN
i (0) = 0.

Assume they have bounded jumps and that [MN
i ,M

N
j ]t = 0, i ̸= j for

all N ≥ 1 and for t ≥ 0.
Plus, assume it exists a function (vt)t≥0 : [0,∞) → [0,∞),continuous
and increasing, such that ∀ i = 1, . . . , l it holds:

lim
t,N→∞

v−2
t [MN

i ,M
N
i ]t −→ 1 in probability

Then, the vector v−1
t (MN

1 (t), . . . ,MN
n (t)) converges in law, as t,N →

∞, to the Gaussian distribution N (0, Il), with Il being the l× l identity
matrix.

Since all the hypotheses are verified taking as the equivalent of vt
the functions (mk

t )
−1/2, and we have already seen that the covariation

[MN
k,i(t),M

N
l,j(t)]t = 0 for (k, i) ̸= (l, j) we just have to prove that

the convergence
[MN

k,i(t),M
N
k,i(t)]t

mk
t

→ 1 in probability as t,N → ∞ takes
place.
But we have know that [MN

k,i(t),M
N
k,i(t)]t = Z̄

N
k,i(t): hence, such a

convergence is an immediate consequence of the previous point. Thus,
directly applying the lemma, the proof for the subcritical case is done.

• Supercritical case: given the proof in the subcritical case, it is quite
easy to end this step in the supercritical situation; indeed, we use the
very same quantities and notations as in the previous case, and recall
that in Proposition 3.9 we got the following bound:

E
(︃
sup
s≤t

|RN
k,i(s)|

)︃
≤ Ceγ0t√

N
(3.27)
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Hence, as we did in (3.26) for the subcritical situation, we easily reach
the following control:

E|UN
k,1(t)|
mk

t

≤ 1

mk
t

+
Ceγ0t

mk
t

√
N

(3.28)

Now, remember we are assuming the constraint eγ0t

t
√
N

→ 0 as N, t→ ∞.
Then, it is immediate to prove the first part of the theorem, just by
applying a lim sup:

lim sup
N,t→∞

√︂
mk

t E
[︃⃓⃓⃓⃓
ZN
k,1(t)

mk
t

− 1

⃓⃓⃓⃓]︃
= lim sup

N,t→∞

√︂
mk

t

[︃E|UN
k,1(t)|
mk

t

]︃
≤ C

, for some constant C and for k = 1, . . . , n. And, with this, point 1. of
the theorem is done.

To prove 2., it is sufficient to repeat the same procedure used in the
proof of the subcritical case.

In this way, the theorem is completely proved.



Chapter 4

Emerging oscillations in the
Monotone Cyclic Feedback
system

In the previous chapter, the Central Limit Theorem revealed that the finite
size system is close to the system of integrated intensities within each pop-
ulation, i.e (m1

t , . . . ,m
n
t ), and showed that the rate of convergence is of the

order of (mk
t )

1/2.
At this point, we are ready to talk about the emergence oscillations, which
is the main landing of this work. The setting is the same as in the previous
section, but henceforth we need further assumptions, in particular on the
form of the memory kernels.
As mentioned in the introduction, we know that many real systems com-
posed of interacting units, such as the neuronal network model in object,
may exhibit collective periodic behaviour even if the single components have
no natural tendency to behave periodically; it is known that biological and
internal rhythms are ubiquitous in living beings, and one of the main ques-
tions concerns how do these rhythms arise and are controlled by the brain.
The whole situation turns out in the emergence of macroscopic oscillations,
which are one of the most common self-organizing behaviours observed in
living systems.
In this chapter, knowing that such oscillations are observed in the way infor-
mation is processed in the brain, we present conditions under which the limit
process presents solutions periodic in law. This is done characterizing the
interaction between classes accordingly to a monotone cyclic feedback sys-
tem: using an approach which is typical of the study of dynamical systems,
the main theorem of the section shows situations in which the system of the
integrated intensities previously introduced (mk

t for k running between pop-
ulations, k = 1, . . . , n), possesses non-constant, attractive, periodic orbits,
i.e., it exhibits an oscillatory behaviour.

67
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Figure 4.1: How the cyclic system works: population k + 1 is in some sense
"connected" just with population k, and it influences population k according
to the form of the memory kernels hkk+1.

4.1 General setting for the Monotone Cyclic Feed-
back System

To investigate situations in which oscillations related to the limit system
(Z̄k(t))(1≤k≤n) and (mk

t )(1≤k≤n) (in the forms (3.4),(3.6)) occur, we describe
the way information is transported through the system according to a Mono-
tone Cyclic Feedback (from now on, MFC ) system (similarly to what has
been done in [3] and [34]), dealing with a special type of memory kernels hkl,
given in the form of Erlang kernels.
First of all we need to explain what does MFC mean:

• Monotone: we suppose that the rate functions fk for k = 1, . . . , n are
non-decreasing.

• Cyclic: meaning that population k is only influenced by population
k+1 ∀ k; this leads directly to the fact hkl = 0 ∀ k, l such that l ̸= k+1.

• Feedback: in the sense that population n is only influenced by popu-
lation 1 (i.e. we identify n+ 1 with 1).

In this context, it is evident that, due to the cyclicity assumption, the inten-
sity of the process associated to the i − th neuron belonging to population
k is given by the following expression, which comes from an adaptation of
(3.1) to this new context:

λNk,i(t) = fk

(︃
1

Nk+1

Nk+1∑︂
j=1

∫︂ t

0
hkk+1(t− s)dZN

k+1,j(s)

)︃
(4.1)
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Having in mind this background, we can pass to the examination of the
role of the memory kernels hkk+1, which, we recall, describe how population
k + 1 influences population k. We consider a special form of these synaptic
weights: the functions hkk+1 will, from now on, be Erlang kernels, i.e. given
in the form of an Erlang distribution, as follows:

hkk+1(s) = cke
−νk

sηk

ηk!
hn1(s) = cne

−νn s
ηn

ηn!
(4.2)

where the parameters ck ∈ {+1,−1} describe the influence between popula-
tions, taking the value +1 if the influence of population k+1 on population
k is excitatory, −1 if inhibitory, and ηk ∈ N0, νk > 0 are fixed constants,
described in the picture below: ηk+1 is the order of delay, while the param-
eter νk is also called the rate.
In addition, we set the quantity δ =

∏︁n
k=1 ck, and distinguish between two

cases: if δ > 0, we say the system is of total positive feedback, if δ < 0 of
negative feedback ; this is exactly the case we take into consideration from
now on along this discussion.

4.1.1 Focus on the Erlang Kernels

Figure 4.2: Examples of Erlang kernels as the parameters ηk, νk change
value, modelling the excitatory (ck = 1) influence of population k on popu-
lation k+1. The graphs describing, instead, an inhibitory influence between
populations would be symmetrical with respect to the horizontal axis.

Remark 1 (Erlang distribution). We recall some basics about the Erlang
distribution, in order to better understand the choice of such a type of ker-
nels: originally born to model the number of calls which might be made at
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the same time to the operators of a switching station, it is a two-parameters
family of continuous probability distributions with support [0,∞), whose
parameters are k, λ, respectively called the "shape" and the "rate" of the
distribution. It represents the sum of k independent exponential variables,
or, equivalently and more compellingly to our discussion, it is the distribu-
tion of the time until the k− th event of a Poisson process with rate λ takes
place. The density function is:

f(x; k, λ) =
λkxk−1e−λx

(k − 1)!

with mean value and mode that are respectively k/λ and (k− 1)/λ. Within
this framework, the parameters that come into play in the description of the
memory kernels, i.e ηk, νk, correspond to, respectively, parameters k− 1 and
λ in the classical Erlang distribution.

Hence, considering the generalities about the Erlang distribution, the delay
of influence of population k + 1 on population k takes its maximum abso-
lute value at ηk/νk time units back in time, while the mean, if we consider
the normalization to a probability density and according to the notation
associated to the Erlang distribution, is (ηk + 1)/νk.

Remark 2 (About delay). One could ask: what about the delay? Why do we
need to introduce it in such a distributed form? To answer to these questions,
it is useful to open a brief parenthesis about the usual choices of delays while
modelling systems like the one we are considering in our discussion.

We recall that, usually, e.g. in population dynamics, a lot of situations are
often modelled by introducing a discrete time delay into the equations; this
means obtaining a (DDE) -Delay Differential Equation-, which has the prop-
erty that the time derivative at the current time depends on the solution and
maybe on the derivatives at a previous time. Hence, there is a dependence on
the past history, and for this reason this type of equations are quite common
in many models, since they allow to build more realistic scenarios than the
ones independent of past history.
When considering a discrete delay, it is implicitly assumed that the delays are
distributed over the population by a δ-Dirac distribution, and the resulting
(DDEs) are often used to study the properties of the model, like stability of
equilibria or existence of stability switches, as function of the discrete delay
taken as parameter.

Hence, why should we choose a continuous or distributed delay, instead of a
discrete one? That’s because, sometimes, introducing a discrete delay is a
vague approximation of a real situation of delay over a large size population;
in these contexts it is more reasonable to choose a continuously distributed
delay: the key point is that the mean delay, in this case, is equal to the
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discrete delay, and the model is built in such a way that the variance is
positive, to keep in mind the delay difference among individuals, as we are
doing in this thesis when choosing the Erlang distribution. Moreover, notice
that the higher the order of the delay, the more concentrated is the delay
around its mean value: this means that, in our context, as ηk → ∞ (keeping
fixed the mean value (ηk+1)/νk), the distributed delay converges to a discrete
delay: thus, we recover the discrete delay model.

4.2 The Monotone Cyclic Feedback system

At this stage, we are ready to start properly the discussion that leads to the
discovery of the emergence of internal oscillations in the system. First of all
we need to introduce the following memory variables, for k = 1, . . . , n:

xkt =

∫︂ t

0
hkk+1(t− s)dmk+1

s (4.3)

Hence, recalling the form (3.6) of the variables (mk
t )1≤k≤n, it is clear that

within this new framework, they become:

mk
t =

∫︂ t

0
fk(x

k
s)ds (4.4)

It is now essential to understand the reason below the choice of the kernels in
the Erlang form: by choosing the synaptic weights in this way, we allow the
developing of the system of memory variables introduced above into a high
dimensional (precisely, of dimension τ , which we describe hereafter) system
(see, below, MFC ) of differential equations without delay, which we call a
Markovian cascade of successive memory terms. Moreover, this choice allows
- as we shall see in the upcoming chapter- a Markovian description of the
Hawkes processes in object, helping us to study much more easily how the
behaviour of the limit system we are now dealing with is observed within the
finite size system ZN

k,i.

Starting by differentiating the kernels with respect to time, we get the fol-
lowing expression:

h′kk+1(t) = −νkhkk+1(t) + ck
tηk−1

(ηk − 1)!
e−νkt

And the identification xkt = xk,0t brings us to the natural definition of the
auxiliary variables

xk,lt =

∫︂ t

0
cke

−νk(t−s) (t− s)ηk−l

(ηk − l)!
dmk+1

s (4.5)
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for k = 1, . . . , n and for l = 0, . . . , ηk. Therefore, we obtain a dynamics in
which a delay kernel acts on the interactions between populations: at any
time t the influence of population k+1 depends on the trajectory up to time
t, and it is weighted through the delay kernel.
At this point, with the aim of obtaining a differential equation, we differen-
tiate the variables in (4.5) with respect to time, getting:

dxk,lt

dt
= −νkxk,lt + xk,l+1

t , l < ηk (4.6)

We are now ready to present the proper MFC system as foresaw; it is suffi-
cient to iterate the previous differentiation argument to obtain the following
system of coupled equations:⎧⎪⎪⎨⎪⎪⎩

dxk,l
t
dt = −νkxk,lt + xk,l+1

t , 0 ≤ l < ηk
dx

k,ηk
t
dt = −νkxk,ηkt + ckfk+1(x

k+1,0
t ), l = ηk

xk,l0 = 0 (initial conditions)

(MFC )

where it is useful to notice that the second equation comes from the fact the
mk

t are in the form (4.4), and to recall the identification xk = xk,0.

Hence, we have found a monotone cyclic negative feedback system that drives
the way information is transmitted into the network; its dimension, or better
the total order of delay, is clearly given by

τ := n+
n∑︂

k=1

ηk

since x = (x1,0, . . . , x1,η1 , x2,0 . . . , xn,ηn)T ; hence, it is the sum of the total
number of populations in the finite size regime and of the memory length,
i.e., related to the delay-

∑︁n
k=1 ηk.

From now on, the framework will be the one of the negative feedback, δ < 0;
since all the needed notation is set, we can start investigating the stability
properties of such a system, looking for equilibria and periodicity.

4.3 Existence of a unique equilibrium

We are ready to analyze the whole situation pointing towards the discovery
of oscillations: we need to use the typical tools proper of dynamical systems
theory, intended as systems whose dynamics is driven by a differential equa-
tion involving time derivatives, usually in the typical ẋ = F (x); for us, the
corresponding differential equations controlling the neuronal dynamics are
the ones found in MFC . This means we must talk about spectral stability
and equilibrium points, flows and invariant surfaces, Lyapunov functions and
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so on and so forth, calling into play some relevant and well-known results in
dynamical systems theory. With the aim of understanding better this kind
of results, the reader can refer to [2], which gives an overview about general
theory on dynamical systems. For the time being, we hereafter report a
"glossary" containing the essentials we will need throughout this chapter:

Glossary (Basics on Dynamical Systems Theory). As mentioned, a Dynam-
ical system is generally defined as a particle or ensemble of particles whose
state varies over time, obeying some differential equations involving time
derivatives (in the typical form ẋ = F (x), with F a vector field having a
certain regularity) describing how the state variables change as a function
of the current states and the system parameters. In other words, it consists
of a system whose state evolves with time over a state space according to a
fixed rule.

The basic notation and nomenclature in dynamical systems theory which is
going to emerge in the subsequent sections is the following:

• Phase space: the phase space is the geometric space spanned by all of
the system’s equations. If the system has N state variables, then its
phase space has dimension N .

• Flow : the flow of a dynamical system corresponds to the vectors for all
points in phase space. More specifically, given a C1 system ẋ = F (x),
the associated flow is the function ϕt(x0), which is the solution to the
initial value problem {︄

ẋ = F (x)

x(0) = x0

clearly depending on the initial position x0.

• Orbits: an orbit is a curve in the phase space that follows the system’s
flow, being a geometric representation of solution of the system under
a particular set of initial conditions, as the system evolves. As a phase
space trajectory is uniquely determined for any given set of coordinates,
different orbits can’t intersect in the phase space, hence constituting a
partition of the phase space.
A particular type of orbits corresponds to the so-called periodic orbits,
i.e., to special types of solutions which repeat themselves in time. If a
nearby orbit indefinitely stays close to a given orbit, then it is said to
be stable; moreover, if the nearby orbit converges to the given orbit,
then it is called asymptotically stable and the given orbit is said to be
attracting.

• Fixed points: an equilibrium (or fixed point) x∗ satisfies the condition
F (x∗) = 0, i.e., it is a stationary (constant in time) solution of the
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system’s equations. When talking about fixed points, it is of inter-
est characterizing their stability properties: intuitively, if considering
a system in a stable equilibrium state, then a small perturbation re-
sults in a localized motion, e.g. in small oscillations; in a system with
damping, a stable equilibrium state is moreover asymptotically stable.
Instead, if looking at unstable equilibria, a small disturbance results in
a motion with a large amplitude that may not converge to the original
state, i.e., the perturbation grows in time. Stability analysis can be
performed, for example, via Lyapunov arguments or spectral analysis
of the Jacobian matrix of F .

• Spectral stability of equilibria: the stability of equilibria (which we usu-
ally indicate with x∗) of smooth ODEs can be determined by the sign
of the real parts of the eigenvalues of the Jacobian matrix computed at
the equilibrium point x∗, i.e. of the matrix DF (x∗). The equilibrium
is said to be asymptotically stable if all eigenvalues have negative real
parts, while it is unstable if at least one eigenvalue has positive real
part.

• Lyapunov function: when speaking about Lyapunov theory, we con-
sider Lyapunov functions as particular class of scalar functions that
can be used to prove the stability of an equilibrium; indeed they pro-
vide a fundamental tool to establish Lyapunov stability or asymptotic
stability. For certain types of ODEs, the existence of Lyapunov func-
tions is a necessary and sufficient condition for stability, and in many
specific cases the construction of Lyapunov functions is known.
Considering the dynamical system ẋ = F (x), with F : Rn → Rn, and
supposing it has an equilibrium point at x∗ = 0, we say V : Rn → R
is a Lyapunov function for the dynamical system in object if it is con-
tinuous, of class C1, such that V (x) > 0 ∀ x ̸= 0, V (x∗) = 0 and
∇V · F ≤ 0. Via studying the function V it is possible to character-
ize different types of equilibria and to get to their stability features
(Lyapunov stability theory).

• Limit sets: we denote with ω(x) the so-called ω-limit set of ϕt(x),
i.e., the set of points y ∈ Rn satisfying the property that it exists a
strictly increasing sequence of times (tn)n≥0 such that limn→∞ tn =
∞ and limn→∞ ϕtn = y; namely, it is the set containing all those
points to which the flow starting from x converges. Similarly, we define
α(x), the α-limit set of ϕt(x), as the set of points y ∈ Rn such that
there exists a strictly decreasing sequence of times (tn)n≥0 with the
properties limn→∞ tn = −∞ and limn→∞ ϕtn(x) = y.

• Invariant sets for the flow : a set A is said to be an invariant set if it
holds that any trajectory entering in A, or starting in A, keeps staying
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in the set A ∀ t. In terms of the flow, A is an invariant set if ∀ x ∈ A
ϕt(x) ∈ A ∀ t ∈ R. Typical examples of invariant sets are the ω-limit
set and the α-limit set.

• Attractors and basins of attraction: an attractor is simply a set of states
toward which a system tends to evolve for a wide range of starting
conditions, meaning that system values that get close enough to the
attractor remain close to it even if subjected to some disturbance.
We say an attractor is structurally stable when a small change in the
system parameters only leads to a small change in its morphology;
otherwise it is said to undergo a bifurcation.
Each attractor is surrounded by its own basin of attraction, i.e., all of
the points in the phase space that flow onto that specific attractor.

• Repellors: they are the contrary of the concept of attractor; indeed, if
a set of points is periodic or chaotic, but the flow in the neighborhood
is away from the set itself, the set is not an attractor, but it is instead
called a repellor.

Given the above basics about dynamical systems, we can properly start our
discussion with the following intermediate result: it assures the existence -in
our hypotheses- of a unique equilibrium x∗ for the MFC system, which is
going to turn out to be unstable.

Proposition 4.1. The MFC system admits a unique equilibrium x∗ when
working in the negative feedback situation and assuming the hypothesis of
monotonicity of the rates is true.

Proof. The aim of the proof is to characterize uniquely the existence of an
equilibrium x∗; knowing that the dimension of the system is τ = n+

∑︁n
k=1 ηk,

we must find the τ values for the τ coordinates of x∗.

Along the proof, we show how to find the coordinate (x∗)n,ηn , exploiting a
recursive relation and the definition of equilibrium, i.e. a constant -in time-
solution to the differential equations system in MFC ; given the procedure to
find such a coordinate, all the other coordinates can be found in a similar
way.

Therefore, having in mind the MFC system, we must recall that an equilib-
rium ((x∗)k,l)(1≤k≤n, 0≤l≤ηk), must satisfy, for all k = 1, . . . , n, l = 1, . . . , ηk

d(x∗)k,l

dt
= 0

Hence, considering k = n, l = ηn, if (x∗)n,ηn has to be an equilibrium, then
it must hold that:

d(x∗)n,ηn

dt
= 0

MFC⇐⇒ νn(x
∗)n,ηn = cnf1(x

∗)1,0

⇐⇒ (x∗)n,ηn =
cn
νn
f1((x

∗)1,0)
(4.7)
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At this point, we must then consider the first equation in MFC to compute
explicitly (x∗)1,0:

d(x∗)1,0

dt
= 0

MFC⇐⇒ ν1(x
∗)1,0 = (x∗)1,1 ⇐⇒ (x∗)1,0 =

(x∗)1,1

ν1

Inserting this expression for the coordinate (x∗)1,0 into the one in (4.7) for
(x∗)n,ηn , we get:

(x∗)n,ηn =
cn
νn
f1
(︁
(x∗)1,0

)︁
=
cn
νn
f1

(︃
(x∗)1,1

ν1

)︃
Now, the mechanism is quite clear: from the first equation in MFC we get
the expression for (x∗)1,1 = (x∗)1,2/ν1, so that:

(x∗)n,ηn =
cn
νn
f1
(︁
(x∗)1,0

)︁
=
cn
νn
f1

(︃
(x∗)1,1

ν1

)︃
=
cn
νn
f1

(︃
(x∗)1,2

ν21

)︃
We iterate this procedure until we reach the values k = 1, l = η1, i.e.

(x∗)n,ηn =
cn
νn
f1

(︃
(x∗)1,η1

νη11

)︃
And then, in order to find the explicit expression for (x∗)1,η1 , we consider
again the second equation in the MFC system; taking into account station-
arity, we obtain:

d(x∗)1,η1

dt
= 0

MFC⇐⇒ ν1(x
∗)1,η1 = c1f2

(︁
(x∗)2,0

)︁
⇐⇒ (x∗)1,η1 =

c1
ν1
f2
(︁
(x∗)2,0

)︁
At this point it seems evident how to continue: we have to iterate this
procedure, combining the two equations in MFC system and the stationarity
condition for equilibria, until we get to:

(x∗)n,ηn =
cn
νn
f1 ◦

c1

νη1+1
1

f2 ◦
c2

νη2+1
2

f3 ◦ · · · ◦
cn−1

ν
ηn−1+1
n−1

fn
(︁
(x∗)n,0

)︁
(4.8)

To conclude, it is sufficient to notice that (x∗)n,0 is a solution of the following:

νn(x
∗)n,0 = (x∗)n,1 ⇐⇒ (x∗)n,0 =

(x∗)n,1

νn
=

(x∗)n,2

ν2n
= · · · = (x∗)n,ηn

νnn

And so, the entry (x∗)n,ηn must satisfy the relation:

(x∗)n,ηn =
cn
νn
f1 ◦

c1

νη1+1
1

f2 ◦
c2

νη2+1
2

f3 ◦ · · · ◦
cn−1

ν
ηn−1+1
n−1

fn

(︃
(x∗)n,ηn

νηnn

)︃
Notice that we are sure about the fact it exists exactly only one solution
(x∗)n,ηn in R because cn

νn
f1 ◦ c1

ν
η1+1
1

f2 ◦ · · · ◦ cn−1

ν
ηn−1+1

n−1

fn(
1

νηnn
) is a decreasing
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function: this follows from the fact we are considering the negative feedback
case (δ = c1 · · · · · cn < 0) and because of the assumption of monotonicity of
the rates.

Moreover, as mentioned, the values for the other components of the equi-
librium x∗ can be determined -in a unique way- using a similar procedure;
having this remark done, the proof is concluded.

4.4 Emergence of periodic behaviour: main theo-
rem

We are on the right way to state and prove the main result of this section; in
order to proceed, we need the following essential assumption, containing the
hypotheses of the previous proposition; hence, working in such a context,
the existence of the unique equilibrium x∗ is assured.

Assumption 2. Assume the followings are true:

• The spiking rates fk, for k = 1, . . . , n, are non-decreasing, bounded
and analytic functions.

• The quantity ρ :=
∏︁n

k=1 ckf
′
k((x

∗)k,0) is < 0.

At this point, recalling the roles of the parameters ηk and νk in the Erlang
kernels, we arrive to the main theorem of this section:

Theorem 4.2. Accepting as valid Assumption 2, considering the solutions
µ to the equation

n∏︂
i=1

(νi + µ)ηi+1 = ρ (4.9)

and supposing that there exist at least two solutions µ to the previous one
such that

Re(µ) > 0 (4.10)

then:

1. The equilibrium x∗ is linearly unstable; moreover the MFC system pos-
sesses at least one -and not more than a finite number- of periodic
orbits. Within them, at least one is asymptotically stable.

2. If τ is equal to 3, then it exists a globally attracting invariant surface
Σ such that the unstable equilibrium x∗ is a repellor for the flow on the
surface Σ itself.
Plus, every solution of the MFC system will be attracted to a non con-
stant periodic orbit.
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Proof. First of all, we immediately notice that, thanks to Assumption 2,
which assures the rates fk to be bounded, we are sure about the existence
of an invariant and compact subset K for the system MFC .
Then, we can rewrite MFC in the typical form of a dynamical system, i.e.
as ẋ = F (x), omitting the subscript t to indicate the variables (xk,lt ). Recall
that we work in a vectorial setting of dimension τ = n +

∑︁n
k=1 ηk, where

x = (x1,0, . . . , x1,η1 , x2,0 . . . , xn,ηn)T .

In order to study the stability of the system, we need the spectral analysis
of the Jacobian matrix of the linearization around the equilibrium x∗, whose
coordinates have already been explicitly computed in the proof of Propo-
sition 4.1. Therefore, we need the Jacobian matrix DF (x∗) and, then, its
characteristic polynomial P (µ).
First of all, we look at DF (x∗): recalling the equations in MFC , we have
that:

ẋ = (−ν1x1,0 + x1,1, . . . ,−ν1x1,η1 + c1f2(x
2,0), . . . ,−νnxn,ηn + cnf1(x

1,0))T

Therefore, the Jacobian matrix DF (x) is a τ × τ matrix in the form:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−ν1 1 0 0 0 . . . . . . . . .
0 −ν1 1 0 0 . . . . . . . . .

. . . . . .
. . . . . . 0 −ν1 c1f

′
2(x

2,0) 0 . . . 0
. . .

. . . . . . . . . . . . 0 −νn 1 . . .
. . .

cnf
′
1(x

1,0) 0 . . . . . . . . . . . . 0 −νn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
in which the cyclic fashion is evident.

At this point, we are interested in the characteristic polynomial of this matrix
computed at the equilibrium point, i.e.

P (µ) = det(DF (x∗)− 1µ)

Looking at the form of the matrix computed in x∗, and recalling that ρ =∏︁n
k=1 ckf

′
k((x

∗)k,0), we get:

P (µ) =
n∏︂

k=1

(νk − µ)ηk+1 − (−1)τρ = (−1)τ [
n∏︂

k=1

(νk + µ)ηk+1 − ρ]

Now, it is sufficient to recall hypothesis (4.10) of the theorem, which assures
the existence of at least two eigenvalues such that Re(µ)<0: from basic
theory in stability and dynamical systems, it is immediate to conclude that
the point x∗ in unstable.
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At this point, we must use Assumption 2 and recall that the quantity ρ is
supposed to be negative; considering the matrix DF (x∗) with reversed signs,
it follows that it holds:

det(−DF (x∗)) > 0 (4.11)

Hence, it is immediate to conclude that part 1. of the theorem is true thanks
to the following auxiliary result in dynamical system, which corresponds to
Theorem 4.3 in [34]:

Theorem. Consider an analytic monotone cyclic feedback system in Rn (like
the one discussed so far) with δ = −1 in Rn

+, which possesses a compact
attractor K ⊂ Rn

+. Moreover, suppose that K contains a single equilibrium
x∗, and that DF (x∗) satisfies the following condition

δ det(−DF (x∗)) < 0

and has at least two eigenvalues with positive real part.
Then, the monotone cyclic feedback system has at least one, but no more
than a finite number of, nontrivial periodic orbits. Plus, at least one of these
is orbitally asymptotically stable.

It remains to prove point 2.: therefore, from now on we work with τ = 3.
In this situation, there are only three different possibilities, since 3 = τ =
n+

∑︁n
k=1 ηk:

1. n = 1 population, and so η1 = 2 necessarily; notice that this case is not
of our interest since it would be trivial to take into account a model of
interacting populations having just one of them; however, we include
it in our discussion for completeness. In this case:

DF (x) =

⎛⎝ −ν1 1 0
0 −ν1 1

c1f
′
1(x

1,0) 0 −ν1

⎞⎠
2. n = 2 populations, and without loss of generality we can assume η1 = 0,
η2 = 1; therefore we have:

DF (x) =

⎛⎝ −ν1 c1f
′
2(x

2,0) 0
0 −ν2 1

c2f
′
1(x

1,0) 0 −ν2

⎞⎠
3. n = 3 populations, with η1 = η2 = η3 = 0; hence,

DF (x) =

⎛⎝ −ν1 c1f
′
2(x

2,0) 0
0 −ν2 c2f

′
3(x

3,0)
c3f

′
1(x

1,0) 0 −ν3

⎞⎠
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At this point it is important to recall that ρ must be strictly negative by
assumption; then: in the first case, c1f ′1(x1,0) < 0, in the second either
one between c1f

′
2(x

2,0) and c2f
′
1(x

1,0) is negative, in the third either or the
three factors are all negative or there is just one of them with this property.
However, in all the three situations, we can reduce ourselves to the case in
which all the non-zero entries which are outside the diagonal (which are, by
definition, already negative since νk > 0), are strictly negative (it is indeed
sufficient to act a change of variables to fall in this situation).

Therefore, when τ = 3, we have that −DF (x∗) is a positive irreducible ma-
trix; we are so allowed to use the popular Perron-Frobenius Theorem, which
assures that the Jacobian matrix DF (x∗) has a unique largest eigenvalue
µ < 0, whose associated eigenvector has all the components that are, again,
strictly negative. The theorem also implies that the remaining eigenvectors,
corresponding to the remaining pair of complex conjugate eigenvalues - that
have positive real part thanks to condition (4.10)- don’t have all components
of the same sign.

We are almost done: it is sufficient to adapt the following theorem -originally
born in the context of competitive differential equations- to conclude with
the second statement (for further information about this auxiliary result, the
reader is invited to see Theorem 1.7 in [27]):

Theorem. Consider n species represented by a system of differential equa-
tions:

ẋi = xiNi(x1, . . . , xn) = Fi(x1, . . . , xn) i = 1, . . . , n

with (x1, . . . , xn) ∈ Rn
+. We assume the following three conditions hold for

the system:

• Dissipation: there is a compact invariant set K -the fundamental attractor-
which uniformly attracts each compact set of initial values.

• Irreducibility: the community matrix DN = [∂Ni/∂xj ] is irreducible at
every point in the interior of Rn

+.

• Competition: the rates Ni are taken to be C1 functions satisfying the
competition condition ∂Ni/∂xj ≤ 0 for i ̸= j.

Then, assuming additionally that the origin is a source for the flow in Rn
+,

and that at every equilibrium in Rn
+\{0} it holds ∂Ni/∂xj < 0 for all i, j,

we have that every trajectory in Rn
+\{0} is asymptotic to one in Σ, which is

homeomorphic to the n− 1- dimensional simplex ∆n−1 by radial projection.

Adapting the above mentioned result to out neuronal context, we notice
that all the hypotheses hold thanks to the previous considerations about the
entries of Jacobian matrix DF (x∗) (that would correspond to the community
matrix) and thanks to the fact we have already proved that an invariant set
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K exists. Hence, we are sure about the existence of a globally attracting
invariant surface Σ such that every trajectory in the compact invariant set
K is, sooner or later, attracted to Σ. Notice that in the present context
this shows that the two-dimensional unstable manifold of the equilibrium x∗

is a neighborhood of x∗ in Σ, and, therefore, x∗ is a repellor for the flow
on the compact invariant set K, since it lies in the global attractor Σ (the
reader can refer to [3] to deepen these results, since what we are here going
is actually a generalization of what has been done in Theorem 6.3 of the
mentioned paper).

The essential tool to conclude, at this point, is the well-known Poincarè-
Bendixson theorem, which characterizes the long-term behaviour of orbits
of continuous dynamical systems. We report it in its simpler version, for a
generic dynamical system on the plane. (For a proof of this classical result
in dynamical systems theory, we refer the reader to [20]).

Theorem (Poincarè-Bendixson). Let ẋ = F (x) be a C1 autonomous sys-
tem in R2. Suppose that we have x ∈ R2 such that ω(x) is compact and
doesn’t contain any equilibria. Then, ω(x) is a periodic orbit. Similarly, if
α(x) is compact and doesn’t contain any equilibria, then α(x) is a periodic
orbit.

Thanks to it the thesis immediately follows; indeed, it implies that every
connected attractor-free set is either a periodic orbit (or eventually a set of
equilibria); hence, each of the aforementioned trajectories will finally con-
verge to a non constant periodic orbit.

Well, the bottom line is: Theorem 4.2, thanks to Poincarè-Bendixson, implies
that every solution to MFC is sooner or later be attracted by a non constant
and periodic orbit; here they are, oscillations for the limit system!

The question, at this point, is: since, by now, we have been dealing with
the limit system, to which extent are these oscillations felt by the finite size
system? A first answer is directly given by the Central Limit theorem we
proved in the previous chapter; indeed, it follows as an immediate corollary
of Theorem 4.2 that hypothesis (3.24) needed to state Theorem 3.11 (i.e.
CLT ) is satisfied when considering two populations, (n = 2).

Corollary 4.3. Consider, for the model in object, a situation with n = 2
populations, and suppose that assumptions and conditions needed for Theo-
rem 4.2 hold true. Then, there exist γ1, γ2 > 0 such that:

lim inf
t→∞

mk
t

t
≥ γk, k = 1, 2

Proof. We are dealing with a negative feedback system, so that -since k =
1, 2- we have c1c2 < 0. Therefore, thanks to Theorem 4.2, every solution is
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-sooner or later- attracted to a non constant periodic orbit.
Now recall the form of the integrated intensities in (4.4), i.e.

mk
t =

∫︂ t

0
fk(x

k
s)ds =

∫︂ t

0
fk(x

k,0
s )ds

Moreover, take into account that the spiking rates fk, for k = 1, 2, are
supposed to be functions fk : R → R+, that means they are strictly positive.
Hence, thanks to the well-known Mean Value Theorem for integrals, we have:

1

t
mk

t =
1

t

∫︂ t

0
fk(x

k,0
s )ds = fk(x

k,0
s̄ ) ∃ s̄ ∈ [0, t]

And it directly follows that:

lim inf
t→∞

mk
t

t
> 0

Notice that this turns out to be relevant for our discussion, since in the
followings (see section 5.3 and on) the focus will be on the two-class situation.
Before coming back to the main question about how oscillations in the limit
system are felt by the finite size system and studying the two-populations
case in detail, in the following section we analyze for a while the interesting
phenomena of stability switches.

4.5 About phase transitions and stability switches

We have already pointed out that the assumption of distributed delay, in-
herent in the use of the Erlang kernels, is a matter of fact that is necessary
to take into account when modelling in biological sciences. As we are deal-
ing with an unstable equilibrium, in our notation x∗, we can pass to the
examination of the so called stability switches, or phase transitions. Indeed,
in the current section, we analyze how the stability properties of the model
change when delay is increased, since it is known that the stability of an
equilibrium may be lost when delay is increased, and that a further increase
in the dimension of the delay may result in restabilization. (For an in depth
analysis of these phenomena, the reader is invited to refer to [4] and [12]).

Therefore, in our context, and recalling that the distributed delay converges
to a discrete delay as ηk → ∞ (while keeping ηk/νk constant), we investigate
what happens to the equilibrium when increasing the memory (i.e. ηk for
some k = 1, . . . , n), or, equivalently, the whole dimension τ of the system.

In order to do that, we need a brief parenthesis on the instability condition
pointed out in (4.10).
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Remark. We consider the particular situation in which the parameters νk
for k = 1, . . . , n are such that ν1 = ν2 = · · · = νn = ν, and let the whole
dimension of the system be τ ≥ 3.
Then, the characteristic polynomial that turned out in the proof of Theorem
4.2 becomes:

P (λ) = (−ν − µ)τ − (−1)τρ = (−1)τ [(ν + µ)τ − ρ]

where we recall that, by assumption, ρ < 0. Therefore, to compute explicitly
the τ eigenvalues, we need to distinguish two cases:

• Case τ odd : the condition to obtain the eigenvalues, i.e. being a zero
of the characteristic polynomial, is the following:

(ν + µ)τ = ρ ⇐⇒ (ν + µ)τ = (−1)|ρ| ⇐⇒ µ = −ν − τ
√︁

|ρ|

Hence, recalling how to take square roots of complex numbers, we
obtain that the eigenvalues in this case are:

µj = −ν − |ρ|
1
k ei

2jπ
τ j = 0, . . . , τ − 1

At this point, since τ is odd, it is important to notice that between
the τ eigenvalues, there is one real root (the one corresponding to
j = 0, i.e. µ = −ν − |ρ|

1
τ , which is < 0), while the remaining are

all complex conjugates pairs with real part −ν − |ρ|
1
τ cos(2jπτ ). Recall

that we are interested in the real parts of such eigenvalues in order
to give conditions for instability as the one in (4.10). The maximal
value for these real parts is assumed in correspondence of the indexes
j ∈ {(k−1)/2, (k+1)/2}, since, due to the presence of the sign minus,
we need to minimize the function cos(α), which means keeping the
angle α near to π.
Hence, we arrive to the main point of this remark: we want to state a
condition concerning explicitly the real part of the eigenvalues, which
would imply condition (4.10). To this aim, we consider the maximal
value for the real parts of the eigenvalues µ which has been found above:
of course, if such a maximal value is > 0, recalling the solutions are
complex conjugate pairs, then there are for sure at least two µj such
that Re(µj) > 0 as the hypotheses of Theorem 4.2 asked. Therefore,
we have:

Re(µ) > 0 ⇐⇒ −ν + |ρ|
1
τ cos(

π

τ
) > 0 ⇐⇒ |ρ| > ντ

(cos(πτ ))
τ

(4.12)

• Case τ even: in this case, the previous conditions become

(ν + µ)τ = (−1)|ρ| ⇐⇒ µ = −ν + τ
√︁

−|ρ| = −ν + τ
√
−1 τ
√︁

|ρ|
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And so, the eigenvalues are:

µj = −ν + |ρ|
1
k e−iπ

τ ei
2jπ
τ = −ν + |ρ|

1
k ei

(2j−1)π
τ j = 1, . . . , τ

Since τ is even, the eigenvalues in this situation are all complex con-
jugate pairs, whose real part is given by −ν + |ρ|

1
τ cos( (2j−1)π

τ ). The
maximal value for such eigenvalues is assumed when j ∈ {1, τ}: this
comes directly from the fact there is a plus in the formula −ν +
|ρ|

1
τ cos( (2j−1)π

τ ; thus, since the function cos(α) assumes the maximal
values in correspondence of angles α ∈ {0, 2π}, then the correspondent
indexes to be considered to achieve the maximum are exactly j = 1, τ .
In correspondence of these indexes -as in the odd case- the maximal
value for the real parts is −ν + |ρ|

1
τ cos(πτ ); hence, again, condition

(4.12) found out in the case τ odd implies (4.10).

Recalling the previous remark, the study of phase transitions due to in-
creasing memory can now start, working in a situation as the one described
above, i.e. considering ν1 = · · · = νn = ν while modelling n populations of
interacting neurons.

In the first example -recalling τ is the whole dimension of the system MFC -
we assume τ = 2: hence, we are in the even situation, and the eigenvalues
in this case are exactly µ1,2 = −ν ± i

√︁
|ρ|; the real part is, in both cases,

−ν, which is strictly negative: therefore, the equilibrium point in stable,
and so, at the latest, there will be only damped oscillations. Therefore, this
situation is not of particular interest.

Instead, focusing on the case τ ≥ 3, ν1 = · · · = νn = 1, a relevant threshold
comes out: first of all, notice that, in this situation, increasing the memory
(i.e. the values of some ηk or the dimension τ of the system), the coordinates
(x∗)k,0 of the equilibrium x∗ don’t change, due to the fact ν = 1 stands at
the denominator counting with a power of order k (the reader can refer to
the proof of Proposition 4.1 to get convinced about that); hence, recalling
that ρ = c1f

′
1((x

∗)1,0) · · · · · cnf ′n((x∗)n,0), also its value doesn’t change if
increasing the memory. Therefore, recalling (4.12):

|ρ| > ντ

(cos(πτ ))
τ

it is immediate to notice that, on the right, as τ → ∞, the value of the
fraction tends to one, and considering |ρ| ∈ (1, 8) (which comes out from
the fact, given τ = 3,the previous inequality on |ρ| turns out in : |ρ| >

1
(cos(π

3
))3

= 8), we immediately get that for ρ ∈ (−8,−1) there exists τ̄ > 3,
minimal, such that:

|ρ| > ντ

(cos(πτ ))
τ

∀ τ ≥ τ̄
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whence,

|ρ| ≤ ντ

(cos(πτ ))
τ

for τ < τ̄

It is evident that, increasing the memory up to a value that overcomes the
threshold τ̄ , the equilibrium x∗, from being stable and attracting, becomes
unstable: a phase transition occurs.

In a more general situation, only assuming ν1 = · · · = νn, we can study
what happens as taking limits due to increasing memory in relation (4.12);
the l.h.s |ρ| keeps being always bounded thanks to the fact the spiking rates
are assumed to be Lipschitz continuous, whence the r.h.s tends to ∞ as ν
increases, ∀ τ . Thus, the situation is the following:

• If the parameter ν is large enough, then |ρ| ≤ ντ

(cos(π
τ
))τ , so that the

system is stable and with no oscillations for any value of the memory.

• Instead, if ν > 1 is fixed, the r.h.s of the previous inequality tends to
∞ if increasing the dimension τ of the memory: hence, it is possible
that for small values of τ condition (4.12) holds -meaning the system
is unstable- whereas the increase of τ leads to reversing the sign of the
inequality and having a stabilization.

The main implication of this general discussion is the following: recalling
that a discrete delay is attained as a limit of the parameters in the game,
i.e. sending ηk → ∞ when keeping constant the ratio ηk/νk, and noticing
that τ = n +

∑︁n
k=1 ηk, then ηk → ∞ ⇒ τ → ∞: this results in the fact

that a discrete delay system never exhibits oscillations, being always stable.
This is another reason below the choice of the Erlang kernels, modelling the
memory/delay in a distributed and not in a discrete way.

Thereupon, one of the take-home messages of this discussion about the emer-
gence of oscillations and possibly of phase transitions is that, in the context
of modelling such a system of interacting neurons, the choice of the Erlang
kernels plays a crucial role; indeed, as we have already anticipated and we
are now going to see in the next chapter, the very specific structure of this
type of memory kernels -which play the role, in this context, of synaptic
weights- allows us to adopt a Markovian description of the Hawkes processes
in object; this turns out to be essential to simplify the discussion that will
follow from here on, allowing us to give a more in-depth answer to the main
question that had previously arisen: how does the behaviour of the limit sys-
tem affect the finite size system? As we have seen, a first result to this issue
is given by CLT ; the rest is investigated in depth in the following section
through the construction of an approximating diffusion process.





Chapter 5

A Diffusion Approximation for
the Hawkes Process

Once investigated the oscillatory behaviour of the limit system, it is of in-
terest analyzing the influence of such a behaviour on the finite size system.
The credit for the following results relies on the choice of the very specific
structure of the Erlang kernels; indeed they allow a Markovian description,
through their intensities, of the Hawkes process playing this game. This is
a crucial point: we have already pointed out that, in general, Hawkes pro-
cesses are infinite memory processes, while the Markovian world relies on
memorylessness, dealing just with the fact that, given the present state, the
future does not depend on the past events. Moreover, we know that working
in a Markovian world simplifies and allows a lot of studies, and different
considerations, due to the strong theory that stands below.

Recalling that the setting is the one of the previous section, dealing with
Erlang kernels, in a monotone, cyclic and negative feedback context, in the
subsequent section we build a Piecewise Deterministic Markov Process (from
now on, PDMP), that allows a new -equivalent- representation of the multi-
class system in object.

Then, in a later section, we deepen the analysis of the model building an
approximating diffusion process, which we show to be close "in a weak sense"
to the previously defined PDMP.

We conclude our study looking at just two interacting populations: the mind-
blowing result we show at the end of the chapter is that the fixed population
size system exhibits the same type of oscillations as the limit system.

87
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5.1 Building an associated Piecewise Deterministic
Markov Process

Recalling the form (4.2) of the Erlang memory weights, we shall see in a
moment that, just by deriving them successively with respect to time, it is
possible to write the intensity processes (remember the form of the inten-
sities as introduced in the previous chapter (4.1)) to get an equivalent high
dimensional -of dimension τ - system of PDMPs.
The procedure is the following: first of all we need to consider the stochastic
processes

XN
k (t) :=

1

Nk+1

Nk+1∑︂
j=1

∫︂
]0,t[

hkk+1(t−s)dZN
k+1,j(s) =

∫︂
]0,t[

hkk+1(t−s)dZ̄
N
k+1(s)

(5.1)
with Z̄

N
k+1(s) = 1

Nk+1

∑︁Nk+1

j=1 ZN
k+1,j(s) being the empirical spike counting

measure, which has not to be confused with the limit process Z̄k(t).
These processes (XN

k (t−))t≥0 are Càdlag adapted processes (of which we
have to consider the left continuous version due to the fact the intensities are
assumed to be predictable processes) that determine completely the dynamics
of the system: to get convinced about that it is sufficient to recall the form
of the intensities. Notice that, if we hadn’t chosen the synaptic weights
in the form of an Erlang distribution, these variables wouldn’t have been
Markovian; this is a key point in the further developing of the system of
stochastic processes, since it goes beyond the fact Hawkes processes are truly
infinite memory processes for a general choice of the kernels.

Figure 5.1: The intensities XN
k describe the accumulated memory belonging

to the directed edge pointing from population k + 1 to population k.

At this point, having in mind the very same procedure we followed to derive
system MFC and the successive derivatives with respect to time of the Erlang
kernels

h′kk+1(t) = −νkhkk+1(t) + ck
tηk−1

(ηk − 1)!
e−νkt
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we introduce the "auxiliary" processes

XN
k,l(t) := ck

∫︂
]0,t[

e−νk(t−s) (t− s)ηk−l

(ηk − l)!
dZ̄

N
k+1(s) (5.2)

Then, following the same procedure as in the derivation of MFC , we directly
obtain the following system of stochastic differential equations, that hence
corresponds to the stochastic version of MFC , which we call, due to the
structure of the interaction between populations, a cascade of memory terms.
As MFC , the resulting total dimension is τ = n+

∑︁n
k=1 ηk.{︄

dXN
k,l(t) = [−νkXN

k,l(t) +XN
k,l+1(t)]dt, 0 ≤ l < ηk

dXN
k,ηk

= −νkXN
k,ηk

(t)dt+ ckdZ̄
N
k+1(t), l = ηk

(PDMP)

with the usual identification XN
k = XN

k,0.

Let’s immediately point out that, in the subsequent discussion, we shall need
to consider AX and PX

t as, respectively, the infinitesimal generator and the
Markovian semigroup of such a process as defined in PDMP .

Notice we are using the same notation introduced above, i.e. Z̄
N
k+1(s) =

(
∑︁Nk+1

j=1 ZN
k+1,j)/Nk+1, where ZN

k,j "jumps" with intensity fk+1(X
N
k+1,0(t−)):

to get convinced about that, it is sufficient to recall the form of the intensities
(4.1) and what we had found out in MFC , comparing the "last" equations
of each cycle in MFC and in PDMP :

dxk,ηkt

dt
= −νkxk,ηkt + ckfk+1(x

k+1,0
t ), l = ηk (MFC)

dXN
k,ηk

= −νkXN
k,ηk

(t)dt+ ckdZ̄
N
k+1(t), l = ηk (PDMP )

Hence, the "mean" process Z̄N
k+1(t) has "jumps" (recalling that in this con-

text they can be considered as fired spikes) of size 1/Nk+1, whence the
"jump" rate equals to Nk+1fk+1(X

N
k+1,0(t−)) (just looking at it as a su-

perposition of processes).
It directly follows -and this is essential to build a diffusion approximation-
that the variance of such a process is

V ar(Z̄
N
k+1(t)) = V ar

(︃
1

Nk+1

Nk+1∑︂
j=1

ZN
k+1,j

)︃
=

1

N2
k+1

Nk+1∑︂
j=1

V ar(ZN
k+1,j(s))

=
Nk+1fk+1(X

N
k+1,0(t−))

N2
k+1

=
fk+1(X

N
k+1,0(t−))

Nk + 1
(5.3)

where the fact V ar(Z̄N
k+1,j(t)) = fk+1(X

N
k+1,0(t−)) comes directly from the

fact we are considering counting processes with exactly these intensities.
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At this point, the essential fact is the following: due to the equivalence
between the description of the system offered by the process in (5.1) and the
original Hawkes process in the finite size regime (ZN

k,i(t))(k,i)∈IN (see Section
(3.2)), we have that:

5.2 The Approximating Diffusion Process

At this stage we are ready to build an approximating diffusion process ADP
that is henceforth going to substitute the role of PDMP in the study of the
model.
But why should we pass to an approximating diffusion process? The complete
answer to this huge issue can be found either in the "biological" introduction
in Chapter 1, or more in detail from a mathematical point of view in the
Mathematical Tools chapter, but briefly we can say that diffusion is used
to deal with noise more easily and to replace complicated and analytically
intractable stochastic processes with an appropriate process, much easier to
handle.

Hence, having in mind the variance computed in the previous section and the
definition of the process Z̄N

k+1(t), we can consider the generalities about the
well-known technique of the approximating diffusion in the neuronal context,
related to the Fokker-Planck equation, which we henceforth call Y N :⎧⎪⎨⎪⎩
dY N

k,l(t) = [−νkY N
k,l(t) + Y N

k,l+1(t)]dt, 0 ≤ l < ηk

dY N
k,ηk

= −νkY N
k,ηk

(t)dt+ ckfk+1(Y
N
k+1,0(t))dt+ ck

√︂
fk+1(Y

N
k+1,0)(t)√

Nk+1
dBk+1(t)

(ADP)

where the "noise" of each population -intended as the stochastic fluctuations
the activity of a population of neurons inevitably occurs in due to many
different factors, as deepened in Chapter 1- is approximated by the Brownian
motions (Bk(t))1≤k≤n (which we assume to be standard and independent).

As we can see, we are approximating the process Z̄N
k+1(t) via capturing the

drift (of the mean, i.e the rate fk+1(Y
N
k+1,0(t))) and diffusion (change in

the variance), modelled by the term
√
V ar dBk+1(t), as prescribed by the

approximating diffusion operation, and accordingly to the more general fact



5.2 The Approximating Diffusion Process 91

that a stochastic random process often consists in a deterministic (drift)
part, and of a random component (or noise).

Notice that as MFC and PDMP , the dimension of the state space of the
diffusion approximation process Y N is τ ; moreover, in the following we shall
use AY and P Y

t , accordingly to the notation used for XN , to indicate re-
spectively the infinitesimal generator and the Markov semigroup of process
Y N .

Notation. Denoting an element x ∈ Rτ as x = (x1, . . . , xτ ), we consider
the following norm for a generic function f defined on Rτ :

∥f∥l,∞ :=

l∑︂
j=0

∑︂
|i|=j

∥∂if∥∞

where we recall that ∥f∥∞ = supx |f(x)|, x ∈ Rτ .

The setting is now ready to give the statement and the proof of the main
theorem of this section: it is a first step towards a convergence in law result,
showing that that approximating diffusion process Y N is a good approxima-
tion of XN .

Theorem 5.1. Suppose the spiking rates fk ∈ C5
b := {f |f is a bounded func-

tion having derivatives up to order 5 which are bounded themselves}. Then,
there exists C constant (depending on the rates f1, . . . , fn and the bounds
holding for their derivatives) such that, for any function ϕ ∈ C4

b (Rτ ;R), the
following is true:

∥PX
t ϕ− P Y

t ϕ∥∞ ≤ Ct
|ϕ∥4,∞
N2

(5.4)

where N is the total number of neurons within the model.

Hence, being able to approximate the original process with the approximat-
ing diffusion process Y N allows to find out that ADP is a good small noise
approximation of PDMP when N → ∞, being close in "weak sense" to
the original PDMP defining the Hawkes process. (However, we must notice
that for N → ∞ the diffusive component of ADP tends to zero as the total
number of neurons tends to infinity, so that we can’t say anymore ADP is
properly a diffusion).

In any case, the fact the PDMP XN -which, we recall, entirely determines
the dynamics of the original Hawkes process- is well approximated by ADP
is essential: indeed, in the subsequent section, we study the approximating
diffusion Y N in the case of two populations of neurons, in order to see how
their collective behaviour is similar to the oscillatory one predicted -for the
limit system- in the previous chapter.
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Proof. To prove the theorem in just a few steps, we need the following three
auxiliary results about generators (which we denote with A·) and Markov
semigroups (denoted by P ·

t ); all the three of them need, in the hypotheses,
that the assumptions for Theorem (5.1) hold, so that we give them for grant
and omit to repeat them in each statement.
For a proof of these subsidiary lemmas, we refer the reader to [17].

Lemma 1. There exists a constant C such that for all ϕ ∈ C3
b (Rτ ;R) it

holds:

∥AXϕ−AY ϕ∥∞ ≤ C
∥ϕ∥3,∞
N2

(5.5)

Lemma 2. There exists a constant C such that for all ϕ ∈ C4
b (Rτ ;R), for

any δ > 0 the following two estimates hold:

∥P Y
δ ϕ− δAY ϕ∥∞ ≤ Cδ2∥ϕ∥2,∞ (5.6)

And,
∥PX

δ ϕ− ϕ− δAXϕ∥∞ ≤ Cδ2∥ϕ∥2,∞ (5.7)

Lemma 3. There exists a constant C such that for all ϕ ∈ C4
b (Rτ ;R), for

any t > 0 the following holds:

∥P Y
t ϕ∥4,∞ ≤ C∥ϕ∥4,∞ (5.8)

Given the above results, it is easy to conclude with the actual proof of the
Theorem in object.

First of all, set δ > 0 and consider the times tk defined as tk = kδ ∧ t for
k ≥ 0.
Then, define the quantity:

∆δϕ(x) = PX
δ ϕ(x)− P Y

δ ϕ(x)

Given the above notation, the following estimate -which relies on a telescopic
sum- comes out:

∥PX
t ϕ− P Y

t ϕ∥∞ ≤
t/δ∑︂
k=0

∥PX
t−tk+1

∆δP
Y
tk
ϕ∥∞ ≤

t/δ∑︂
k=0

∥∆δP
Y
tk
ϕ∥∞ (5.9)

At this point we can notice that, combining the two estimates in (5.6) and
(5.7) and using a version of the triangular inequality for the norm we are
dealing with, we get that:

∥∆δϕ(x)∥∞ = ∥PX
δ ϕ(x)− P Y

δ ϕ(x)∥∞ ≤ δ∥AXϕ−AY ϕ∥∞ + δ2∥ϕ∥4,∞
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Hence, applying to the previous chain of inequalities the bound (5.5) we got
in Lemma 1, we obtain:

∥∆δϕ(x)∥∞ = ∥PX
δ ϕ(x)− P Y

δ ϕ(x)∥∞ ≤
[︃
δC

1

N2
+ δ2

]︃
∥ϕ∥4,∞

We are now ready to conclude: it is sufficient to use (5.8) and (5.9) to get:

∥PX
t ϕ(x)− P Y

t ϕ(x)∥∞ ≤ C

(︃
1

N2
+ δ

)︃
∥ϕ∥4,∞

(︃ t/δ∑︂
k=0

δ

)︃

Noticing that |{k : kδ ≤ t}| ≤ t
δ and choosing δ = 1

N2 , the last inequality
can be estimated as:

∥PX
t ϕ(x)− P Y

t ϕ(x)∥∞ ≤ Ct
∥ϕ∥4,∞
N2

that is exactly the bound we wanted to prove.

5.3 Study for the fixed population size: two inter-
acting populations

Let’s recap for a moment what we have done so far: while studying the
limit system, we built MFC and we discovered the emergence of collective
periodic behaviour in the limit system itself, using proper tools of dynamical
systems theory. After that, we asked ourselves to which extent the discovered
oscillations are felt by the finite size system, and we saw a first answer was
given by CLT.
Afterwords, we moved our attention to the study of the finite size system:
first of all, thanks to the specific structure of the chosen memory weights, we
built system PDMP , which entirely determines the dynamics of the original
Hawkes process modelling the interacting neurons. Then, through build-
ing an approximating diffusion process Y N and setting system ADP , we
found that the process Y N is indeed a good small noise approximation of
the PDMP .
Hence, we are now ready to study in more detail the relation between the
periodic behaviour we investigated for the limit system and the finite size
system; or better, we would like to understand -and discover if- the high-
lighted oscillations of the limit system in MFC affect the behaviour of the
finite system, which we shall, from now on, identify with the diffusion ap-
proximation process Y N described by ADP (we are allowed to to that thanks
to convergence result found in Theorem (5.1)).
In order to perform such a study, henceforth we consider just n = 2 in-
teracting populations of neurons: the synaptic weights are the in the usual
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Erlang form, hence populations 1 and 2 are respectively identified by the pa-
rameters η1, ν1 and η2, ν2, by the respective spiking rates f1 and f2, and by
the constants c1,2 ∈ {+1,−1} describing the excitatory/inhibitory influence
between the two populations.
First of all we can point out the drift vector b(x), corresponding to the
"deterministic" part of the process and the diffusion matrix σ(x) (which
is, more precisely, a τ × 2 matrix, corresponding to noise) of ADP , in the
specific case of n = 2 interacting populations, with the generic notation
x = (x1, . . . , xτ ) ∈ Rτ (τ = n + η1 + η2 = 2 + η1 + η2) in place of the
extended version x = (x1,0, . . . , x1,η1 , x2,0, . . . , x2,η2):

Drift vector =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−ν1x1 + x2

−ν1x2 + x3

...
−ν1xη1+1 + c1f2(x

η1+2)
−ν2xη1+2 + xη1+3

...
−ν2xτ + c2f1(x

1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=: b(x) (5.10)

Diffusion matrix =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0
...

...
0 c1√

N2

√︁
Nf2(xη1+2)

0 0
...

...
c2√
N1

√︁
Nf1(x1) 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=: σ(x) (5.11)

Given this setting it is obvious to write the following SDE (Stochastic Differ-
ential Equation), corresponding to system ADP , specified to the case n = 2,
in vectorial form:

dY N (t) = b(Y N (t))dt+
1√
N
σ(Y N (t))dB(t) (ADP(2))

where the label ADP(2) is used to recall to the reader the fact we are dealing
with the approximating diffusion process for n = 2 populations. Moreover,
notice that, of course, when writing B(t) in this context, we are considering
the bi-dimensional Brownian motion (B1(t), B2(t))T .

5.3.1 Oscillations in the diffusion approximation

The framework to work with ADP in the case of 2 interacting populations
is, at this point, set.
Throughout this section, with the purpose of investigating behaviours, we
build the scaffolding that allows to get to the final result: the diffusion
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approximation ADP(2) has the same type of oscillations as the limit system
(m1

t ,m
2
t ) in (MFC)!

Part 1 - The approximating diffusion visits the oscillatory region

First of all we require the following:

Assumption 3. We need to assume as true all the assumptions made to
state Theorem 4.2, in particular working in a negative feedback situation in
which δ = c1c2 < 0, and dealing with f1 > 0, f2 > 0, smooth functions and
non decreasing. Moreover, accordingly to Theorem 4.2, we need condition
(4.10) to hold for the limit system, in order to be sure about the existence
of a non constant, periodic, asymptotically orbitally stable orbit, let it be Γ,
for the limit system itself.
This means: we work in a situation in which oscillations for the limit system
occur.

Notation. Given a generic vector x, we write s(x) to consider a smoothed
version of |x|, meaning that:

• s(x) = |x| ∀ |x| ≥ 1;

• |s′(x)| ≤ C ∃ C, ∀ x;

• |s′′(x)| ≤ C ∃ C, ∀ x;

At this point, we must have in mind that (as more explicitly pointed out
in [11] and [40] which, respectively, present the theory below generalized
Lyapunov functions and invariant set theorems for nonlinear dynamical sys-
tems and generalized Lyapunov criteria on stability of stochastic nonlinear
systems) the existence of a generalized Lyapunov function for a stochastic
process, given using a characterization in terms of infinitesimal generator of
the process, directly leads to the existence of a compact and invariant set,
which we shall call K from now on; an invariant set like this has the impor-
tant property of being such that the process visits it almost surely, infinitely
many times. Hence, in the following proposition we set the definition of such
a Lyapunov function for the system Y N = (Y N

1 , Y N
2 ).

Proposition 5.2. Consider Assumption 3 to hold true. Set:

G(x) :=
2∑︂

k=1

ηk∑︂
l=0

l + 1

νlk
s(xk,l)

Then, G is a Lyapunov-function for (ADP(2)) in the sense:

AYG(x) ≤ −cG(x) + d (5.12)

for some constants c, d > 0 constants depending on the quantity maxk=1,2∥fk∥∞
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Proof. Recalling that, for a generic uni-dimensional diffusion process of the
type:

dYt = bdt+ σdBt

the infinitesimal generator, given f a function with the needed regularity, is

Af(x) = bf ′(x) +
σ2

2
f ′′(x)

we have that the drift part of AYG is given by the following dot product
between τ -dimensional vectors:

2∑︂
k=1

ηk−1∑︂
j=0

[︃
−νkxk,j + xk,j+1

]︃
∂G

∂xk,j
+

2∑︂
k=1

[︃
−νkxk,ηk + ckfk+1(x

k+1,0)

]︃
∂G

∂xk,ηk

Notice that, at this point, we are interested in giving a bound just on the drift
part (since the diffusion part of AYG is itself bounded due to the structure
of the matrix), and, in particular, we just look at those entries xk,j such that
|xk,j | ≤ 1, since the other ones are for sure already bounded.

Hence, considering |xk,j | ≤ 1, we have:[︃
−νkxk,j + xk,j+1

]︃
∂G

∂xk,j
=

[︃
− νkx

k,j + xk,j+1

]︃
j + 1

νjk
sgn(xk,j)

≤ −j + 1

νj−1
k

|xk,j |+ j + 1

νjk
|xk,j+1|

While, considering the components xk,ηk , for |xk,ηk | < 1 it holds:[︃
−νkxk,ηk + ckfk+1(x

k+1,0)

]︃
∂G

∂xk,ηk
=[︃

−νkxk,ηk + ckfk+1(x
k+1,0)

]︃
ηk + 1

νηkk
sgn(xk,ηk)

By splitting the two cases, j = 0, j = 1, . . . , ηk, we see that, in conclusion,
the drift part of AYG can be bounded, ∀ k, j, by:

−
2∑︂

k=1

νk|xk,0|−
2∑︂

k=1

ηk∑︂
j=1

1

νj−1
k

|xk,j |+2max

(︃
η1 + 1

νη11
∥f1∥∞,

η2 + 1

νη22
∥f2∥∞

)︃
= ∗

Now, recalling that G(x) :=
∑︁2

k=1

∑︁ηk
j=0

j+1

νjk
s(xk,j), we immediately notice

that the previous line is such that:

∗ ≤ −cG(x) + d

with c, d constants evidently just depending on maxk∥fk∥∞; hence this ends
the proof.
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As mentioned, as a consequence of the existence of the global Lyapunov
function G we are sure about the existence of a compact invariant set K
such that ADP(2) visits it infinitely often and almost surely; we can make
the particular choice of considering

K = {G ≤ 2d/c}

with c, d corresponding to the ones in the above proposition, to get immedi-
ately that inequality (5.12) becomes:

AYG(x) ≤ − c
2
G(x) + d1K(x) (5.13)

Notice that, in general, when studying the recurrence properties of continuous-
time Markov processes, it is well-known (in particular, see [18]) and [19] that
a "drift" condition on the generator like the one above obtained in (5.13) is a
reliable criterion to provide an explicit bound on the exponential behaviour
of the hitting times of a specific test-set. Hence, defining the hitting time of
our interest, i.e. the one related to the compact invariant set K:

θK = inf{t ≥ 0 : Y N (t) ∈ K}

it holds (as in [19]) that
Ex(e

c
2
θK ) ≤ G(x)

meaning that the excursions out of the invariant set K have exponential
moments. Therefore, the situation can be summarized as follows:

Limit system Approximating diffusion
Theorem 4.2 and assumption (4.10)
assure the existence of Γ non-
constant orbit which is asymptoti-
cally orbitally stable, with period T .
Without loss of generality we can as-
sume Γ lives in the compact invari-
ant set K.

The existence of the global Lya-
punov function G allows to de-
duce the approximating diffusion
possesses a compact invariant set K
to which it comes back infinitely of-
ten, with external excursions having
exponential moments.

What we shall show in a while is that each time Y N comes back to K, it
visits the neighborhoods of the periodic orbit Γ.

Notation. In the sequel, we consider the followings:

• S := S(ϵ,Γ) := {x : d(x,Γ) < ϵ}, the "tube" around the orbit Γ (the
periodic orbit for the limit system);

• QY
x := the law of the solution (Y N (t))t≥0 of ADP(2), with initial

condition Y N (0) = x;
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• U = {ϕ ∈ C(R+;Rτ ) : ϕ(t) ∈ S(ϵ,Γ) ∀ 1 ≤ t ≤ t∗} for fixed t∗ > 1,
i.e. the set of continuous functions that keep being in the tube S(ϵ,Γ)
in the whole interval [1, t∗]; notice that we could easily shift the time
and work in any interval of the type [t0, t

∗] for any fixed t0 > 0.

Figure 5.2: Representation of the compact subset K, on which we assume
the periodic orbit Γ lies on. The yellow region, of radius ϵ, corresponds to
the tube S(ϵ,Γ) := {x : d(x,Γ) < ϵ}

At this point, we have the following preliminary result:

Proposition 5.3. Consider Assumption 3 to hold true. Then:

∀ x ∈ Rτ , QY
x (U) > 0

The above proposition is powerful: it claims that the approximating diffu-
sion Y N visits the tube S, starting from an arbitrary initial point x in Rτ

and in the chosen interval [1, t∗] with positive probability! This is a first
step towards discovering the same oscillatory behaviour it has already been
detected for the limit system also for the two-populations model.

Proof. In order to prove this Proposition we need some additional notation,
which we need to introduce a control argument essential for the proof.

First of all we have to deal with the Cameron-Martin functional space,
which we denote with letter H, whose definition is the following: setting
an arbitrary but fixed time T ∗ < ∞, the functions h ∈ H are such that
h : [0, T ∗] → R2 verifies the following properties:
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• h is measurable;

• h has absolutely continuous components, i.e., hi(t) =
∫︁ t
0 ḣ

i
(s)ds, for

i = 1, 2;

• It holds that
∫︁ T ∗

0 (ḣ
i
)2ds <∞, for i = 1, 2;

In this framework, we consider the following deterministic system on [0, T ∗]:{︄
dϕ(t) = b(ϕ(t))dt+ 1√

N
σ(ϕ(t))ḣ(t)dt

ϕ(0) = x
(5.14)

where ϕ : [0, T ∗] → Rτ is a function depending on N , i.e. "the number of
neurons", x, the initial position and h, i.e., the choice of the function in the
Cameron-Martin space. (We immediately notice the analogy with system
ADP(2)).

Proceeding as in [28], (Theorem 3.1, part (a)), we consider the following
control argument, originally taken from [35], to which we refer the reader
to deepen the field of support theorems for diffusion processes. Notice that
the proof of the following auxiliary result is quite long and technical: hence,
we invite the reader to see the Appendix of [28], not to further burden the
discussion.

Proposition. Assume that the hypotheses beyond Theorem 4.2 are fulfilled
and let Qt∗

x be the law of the solution (Y N (t))0≤t≤t∗ of ADP with initial
position Y N (0) = x.
Consider ϕ = ϕ(N,h,x) a solution of system (5.14) and fix x ∈ K -where
K is the compact invariant subset already discussed- and h ∈ H such that
ϕ = ϕ(N,h,x) exists on a time interval [0, T ∗] for T ∗ > t∗.
Then, it holds the following:

(ϕ(N,h,x))|[0,t∗] ∈ supp(Qt∗
x )

The above result is the fundamental tool we now use to prove Proposition 5.3
in object: considering the same setting of the above proposition and recalling
we are working with the two-populations model, from now on, as we did in
the definitions of the drift and the diffusion matrices in (5.10) and (5.11),
for x ∈ Rτ we write x = (x1, . . . , xτ ) with τ = n+ η1 + η2 = 2 + η1 + η2 in
place of the extended version x = (x1,0, . . . , x1,η1 , x2,0, . . . , x2,η2).

With this notation, it is important to bear in mind that the "first" component
in each population (i.e. x1,0 for population 1 and x2,0 for population 2)
corresponds, respectively, to x1 and xη1+2, while the only two components
interested by Brownian noise (i.e. x1,η1 for the first population and x2,η2 for
the second) are respectively denoted with xη1+1 and xτ .



100 A Diffusion Approximation for the Hawkes Process

Hence, we fix an initial configuration x ∈ Rτ and a time t∗ > 1, and we
recall that, in our notation, we use Γ to denote the periodic (of period T )
orbit of the limit system; thus, it seems natural to consider, hereafter, Γ(t),
for t ∈ [0, T ] a parametrization of the orbit.

At this point, the control argument takes hold of the proof: the aim is
finding a smooth trajectory controlling the dynamics of the two components
ϕ1 and ϕη1+2 (in terms of the solution Y N , respectively corresponding to
Y N
1,0 and Y N

2,0) from the initial position x to a position on the periodic orbit
Γ, considering a time period of unitary length.

To this aim, we show that we can choose a control h (with the conventions
introduced in the auxiliary Proposition above), which allows to write the
equalities ϕ1 = γ1, ϕη1+2 = γ2, with γ : R+ → R2 being a C∞-solution to:⎧⎪⎨⎪⎩

γ(t) ≡ (Γ1(t),Γη1+2(t)) for t ∈ [1,∞)

γ1(0) = x1

γ2(0) = xη1+2

(5.15)

Having in mind that the only coordinates driven by Brownian noise are xη1+1

and xτ (since the diffusion coefficient σ is null on the other coordinates), we
must notice that any choice of such a control h allows to control directly
these coordinates, while, in system (5.15) we are prescribing the trajectories
for x1, xη1+2.

Hence, given the above remark, we must prove we are allowed to choose
a control h such that ϕ1 = γ1, ϕη1+2 = γ2: to this aim, assume we have
already found this control function h. Then, recalling the form (5.10) of the
drift vector b(x), and having prescribed, i.e. fixed, ϕ1 and ϕη1+2 towards
the action of γ, for sure we have that all the other coordinates are entirely
determined as and measurable functions of γ as follows:

• Population 1 :

ϕ2(t) =
dϕ1(t)

dt
+ ν1ϕ

1(t)

. . . . . . . . . . . . . . .

ϕη1+1(t) =
dϕη1(t)

dt
+ ν1ϕ

η1(t)

(5.16)

• Population 2 :

ϕη1+3(t) =
dϕη1+2(t)

dt
+ ν2ϕ

η1+2(t)

. . . . . . . . . . . . . . .

ϕτ (t) =
dϕτ−1(t)

dt
+ ν2ϕ

τ−1(t)

(5.17)
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Remark. The previous expressions for the coordinates of ϕ directly come
from (5.14), which we recall being:

dϕ(t) = b(ϕ(t))dt+
1√
N
σ(ϕ(t))ḣ(t)dt

and from the structure of b and σ in (5.10) and (5.11), just by moving the
derivatives on the right hand sides and making explicit the correspondent
entry of ϕ on the left.

At this point we must recall the cyclic structure of the limit system in MFC ,
in order to look at its periodic orbit Γ:⎧⎨⎩

dxk,l
t
dt = −νkxk,lt + xk,l+1

t , 0 ≤ l < ηk
dx

k,ηk
t
dt = −νkxk,ηkt + ckfk+1(x

k+1,0
t ), l = ηk

(MFC )

Recalling the previous relations for ϕ and MFC , we immediately see the
relations are the same, meaning that ϕ(t) = Γ(t) for all t ≥ 1, i.e, after time
1, the trajectory evolves on the periodic orbit Γ (which is exactly what we
would like to prove).

Hence, we must show we can find a control h which allows the above consid-
erations for ϕ: as mentioned, the control h can directly act on the coordinates
ϕη1+1 and ϕτ towards drift part and diffusion coefficient σ as follows:

dϕη1+1(t)

dt
= −ν1ϕη1+1(t) + c1f2(ϕ

η1+2(t)) +
c1√
N2

√︁
Nf2(ϕη1+2(t)))ḣ

1
(t)

dϕτ (t)

dt
= −ν2ϕτ (t) + c2f1(ϕ

1(t)) +
c2√
N1

√︁
Nf1(ϕ1(t)))ḣ

2
(t)

(5.18)

with ḣ
1
(t), ḣ

2
(t) which have, of course, to be chosen, depending on the choice

of the control function h, and where all the ϕ’s are measurable functions of
the trajectory γ.

The game is nearly closed; indeed, let’s look at the following possible choice
for the control h : [0,∞[→ R2:⎧⎪⎪⎨⎪⎪⎩

ḣ
1
(t) =

dϕη1+1(t)
dt

+ν1ϕη1+1(t)−c1f2(ϕη1+2(t))

c1
√
N/

√
N2

√
f2(ϕη1+2(t))

ḣ
2
(t) =

dϕτ (t)
dt

+ν2ϕτ (t)−c2f1(ϕ1(t))

c2
√
N/

√
N1

√
f1(ϕ1(t))

(5.19)

Why does this choice hold? First of all, notice that inserting these derivatives
in (5.18), the equality is trivially verified; moreover, recall that the spiking
rates for the two populations, f1 and f2, are assumed to be (strictly) positive
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and lower bounded on the invariant subset K, hence the derivatives are well-
defined ∈ H.

Since we have ϕ1(t) = Γ1(t) and ϕη1+2(t) = Γη1+2(t) ∀ t ≥ 1, i.e. the
two components move on the periodic orbit of the limit system, looking at
the dynamics of all the other components of ϕ as prescribed by (5.16) for
population 1 and (5.17) for population 2, it necessarily must be

ϕ(t) = Γ(t) ∀ t ≥ 1

Moreover, looking at (5.19), we notice that

ḣ
1
(t) = 0 ⇐⇒ dϕη1+1(t)

dt
= ν1ϕ

η1+1(t) + c1f2(ϕ
η1+2(t))

ḣ
2
(t) = 0 ⇐⇒ dϕτ (t)

dt
= ν2ϕ

τ (t) + c2f1(ϕ
1(t))

(5.20)

and since ϕ(t) = Γ(t) for all t ≥ 1, hence ϕ verifies MFC , it is immediate to
notice that the above equalities trivially hold, so that ḣ

1
(t) = ḣ

2
(t) = 0 for

all t ≥ 1.

The moral is: we built a control function h ∈ H that forces the trajectory of
the system to evolve on the periodic orbit Γ of the limit system after a fixed
time.

To conclude, recall that U = {ϕ ∈ C(R+;Rτ ) : ϕ(t) ∈ S(ϵ,Γ) ∀ 1 ≤ t ≤
t∗} for fixed t∗ > 1; hence, if we consider the set R = R(ϵ, ϕ) := {ψ ∈
C(R+;Rτ ) : d(ϕ(t), ψ(t)) < ϵ ∀ 1 ≤ t ≤ t∗}, having ϕ(t) = Γ(t) ∀ t ≤ 1, it is
evident that R ⊂ U .

At this point the auxiliary proposition comes into play; indeed recall:

ϕ(N,x,h)|[0, t∗] ∈ supp(Qt∗
x )

Wherefore we get Qt∗
x (R(ϵ, ϕ)) > 0, meaning that:

R ⊂ U, Qt∗
x (R(ϵ, ϕ)) > 0 =⇒ Qt∗

x (U) > 0

Hence, ∀ x ∈ Rτ , QY
x (U) > 0, ∀ t∗ > 1, as wanted.

Part 2 - The visits happen within a finite time horizon

At this point, the situation is the following: there is a positive probability
Y N visits the tube around the periodic orbit Γ, which, let us again recall,
is the periodic orbit of the limit system, but the question is: what about
the time period in which this visit takes place? Or better, can we already
say that this visit happens almost surely within a finite time horizon? The
answer is: not yet. We need to proceed with our discussion and to introduce
a few more definitions and notation in order to be (almost) sure about the
visit to the tube to take place in a finite time horizon.
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Definition 5.4 (Lie Algebra ∆L∗
M

). Consider σ1, σ2 : Rτ → Rτ the two
columns in the diffusion matrix σ in (5.11) of ADP(2), and let b be the drift
vector in (5.10). Define a set L of vector fields by the initial condition σ1, σ2

and an arbitrary number of iterates as

L ∈ L ⇒ [b, L], [σ1, L], [σ2, L] ∈ L (5.21)

Consider a natural number M ∈ N and define LM as the subset of L deter-
mined by the same initial conditions and at most M iterations (5.21).
Use the notation L∗

M to indicate the closure of the subset LM under the Lie
bracketing operation.
Then, define:

∆L∗
M

:= LA(LM )

as the linear span of L∗
M ; we call ∆L∗

M
the Lie algebra spanned by the subset

LM .

Remark (Lie bracket). Recall that the Lie bracket between two smooth
vector fields g, h : Rτ → Rτ is:

[g, h]j =

τ∑︂
i=1

(︃
hi
∂gj

∂xi
− gi

∂hj

∂xi

)︃
for j = 1, . . . , τ

Definition 5.5 (Full weak Hörmander dimension). A point x∗ in Rτ is said
to be of full weak Hörmander dimension if it exists M ∈ N such that:

(dim∆L∗
M
)(x∗) = τ

meaning that the dimension of the Lie algebra is the maximal possible, i.e.
the whole dimension τ of the state space.

Given the above notation, the crucial result is the following:

Proposition 5.6. Considering the spiking rates f1(·) > 0, f2(·) > 0 accord-
ingly to Assumption 3, it holds that, for all x ∈ Rτ , given M = max(η1, η2):

(dim∆L∗
M
)(x) = τ

Hence, the weak Hörmander dimension condition holds for all point x ∈ Rτ !
Notice that there is an implicit dependence on the orders of delay of the
two populations, i.e. η1, η2, since the maximum number of iterations M to
"generate" the Lie algebra is M = max(η1, η2).

Proof. The proof simply follows just by computing the Lie-brackets [σ1, b],
[σ2, b] and then bracketing the results successively with b. Everything works
straightforward thanks to the structure of the drift vector b in (5.10) and
thanks to the assumption f1, f2 strictly positive. Since it consists of elemen-
tary but quite long operations about computing Lie brackets, let us omit
this calculation in order not to further burden the discussion.
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Remark. Since the weak Hörmander condition holds, we know from [29]
(Lemma 5.1, part (i)) that the following is true: considering Pt the semigroup
of a diffusion process, then it is a Feller semigroup, i.e., it maps the space of
bounded continuous functions into itself; furthermore, if the weak Hörmander
condition is satisfied, then Pt is a strongly Feller semigroup, mapping the
space of bounded measurable functions to the one of bounded continuous
functions. The reader can deepen this kind of topics, strictly related to the
Feller property, in [24].

Hence, this implies that the process in object is strong Feller, and this im-
mediately allows to get to the following corollary:

Corollary 5.7. Consider a set B ∈ B(C(R+;Rτ )) such that B = {ϕ : ϕ(t) ∈
A ∀ t∗ ≤ t ≤ t1, t

∗ < t1}, ∃ A ∈ B(Rτ ). Then,

x ↦→ QY
x (B)

is a continuous function.

Proof. Our aim is to prove the continuity of the function x ↦→ QY
x (B) for

sets B of the type B = {ϕ : ϕ(t) ∈ B ∀ t∗ ≤ t ≤ t1}, but since we are dealing
with a Markovian and homogeneous context, what matters is the increment
t1 − t∗; hence we are allowed to write:

QY
x (B) =

∫︂
QY

y ({ϕ : ϕ(t) ∈ B ∀ 0 ≤ t ≤ t1 − t∗})P Y
t∗ (x, dy) = P Y

t∗φ(x)

where the second inequality comes directly from the definition of Markov
semigroup since φ(x) = QY

x ({ϕ : ϕ(t) ∈ B ∀ 0 ≤ t ≤ t1 − t∗}, P Y
t∗ (x, dy) is

the transition probability of process Y N and P Y
t∗ corresponds to the Markov

semigroup.

We are ready to conclude: it is sufficient to notice that φ(x) is a measurable
and bounded function, and the fact Y N has be proven to be strong Feller
directly implies, by definition, the continuity of P Y

t∗φ(x). Hence, having
QY

x (B) = P Y
t∗φ(x), we have that x ↦→ QY

x (B) is a continuous function, as
wanted.

The consequence we are interested in is a direct application of the previous
corollary; indeed, in order to prove that the visits to the periodic region
arrive a.s. within a finite time horizon, the aim is to show that x ↦→ QY

x (U) is
lower-bounded on compact sets, which means giving a control on the starting
configuration x. And of course, in order to get the lower-boundedness on
compacts, it is sufficient to get a continuity result on Borel sets ((C(R+;Rτ ))),
as the above corollary exactly does.
Indeed, taking an initial condition x ∈ K -recalling that K is the invariant
compact subset already cited- and considering the above introduced type of



5.3 Study for the fixed population size: two interacting populations 105

sets U = {ϕ ∈ C(R+;Rτ ) : ϕ(t) ∈ S(ϵ,Γ) ∈ B(C(R+;Rτ )) ∀ 1 ≤ t ≤ t∗}, the
corollary allows to conclude that

K ∈x ↦→ QY
x (U)

is strictly lower bounded for all t∗ > 1, which assures the visits to the
oscillatory region to happen within a finite time horizon.

Conclusion - Oscillations for the diffusion approximation

At this point, the game is almost closed: the following theorem allows to show
that, indeed, the approximating diffusion for n = 2 populations ADP(2) has
the same type of oscillations as the limit system (m1

t ,m
2
t ), which have been

already investigated in the previous chapter. In particular, we show that
the process Y N visits the tube centered on the periodic orbit Γ - i.e. the
oscillatory region- infinitely often during time intervals of fixed length t∗

and that the waiting times between the visits possess exponential moments.

Theorem 5.8. Let Γ be a non constant, periodic, asymptotically orbitally
stable orbit of the limit system of period T ; moreover, consider Assumption
3 to hold true.
Define the following

θΓ(t
∗) := inf{t ≥ 0 : Y N (s) ∈ S(ϵ,Γ) ∀ t ≤ s ≤ t+ t∗}

which is the smaller time t such that in the interval [t, t + t∗] the solution
Y N keeps being inside the tube centered at the periodic orbit.
Then ∀ ϵ > 0 and ∀ t∗ > 1, there exists C, λ strictly positive constants such
that:

Ex(e
λθΓ(t

∗)) ≤ CG(x)

where G is the Lyapunov function as defined in Proposition 5.2.
In addition, we have that:

lim sup
t→∞

1{Y N (s)∈S(ϵ,Γ) ∀ t≤s≤t+t∗} = 1 Px − a.s. ∀ x ∈ Rτ

Proof. Thanks to Proposition 5.3, we already know that QY
x (U) > 0 for all

initial positions x and for each fixed time t∗. Moreover, taking into account
K is a compact set and having the continuity of the function x ↦→ QY

x (U)
from Corollary 5.7, we can immediately deduce that infx∈K QY

x (U) > 0.

At this point, recall that, as a consequence of Proposition 5.2, we got that
Ex(e

c
2
θK ) ≤ G(x), so that we know the process Y N visits the compact set K

infinitely often and almost surely, with excursions outside of K possessing
exponential moments. Henceforth, equipped with this piece of information,
and needing to prove a result concerning a lim sup, it is natural to apply
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the conditional version of the well-known Borel-Cantelli lemma (we refer the
reader to [33] to deepen this classical probability argument) to conclude that:

lim sup
t→∞

1{Y N (s)∈S(ϵ,Γ) ∀ t≤s≤t+t∗} = 1 Px − a.s. ∀ x ∈ Rτ

i.e., Y N (s) visits the oscillatory tube Px-almost surely during time intervals
of length t∗, infinitely often.

Remark (On the choice of t∗). As we have already pointed out, we can
choose the fixed time t∗ freely: we know that the periodic orbit Γ has period
T , and that the process Y N visits the oscillatory region infinitely often during
a time interval of length t∗; hence, if we choose t∗ in such a way that t∗ ≥ kT ,
∃ k ≤ 1, k ∈ N, it is clear to notice that the process Y N will oscillate infinitely
often a.s.

It is now natural to regroup ideas to summarize what has been done so
far throughout this section by comparing the dynamics of the limit system
(m1

t ,m
2
t ) and the one of the approximating diffusion process (Y N

1 , Y N
2 ).

Looking at what has been done in the previous chapter, Theorem 4.2 as-
sured the existence of an orbit Γ, non constant and periodic, asymptotically
orbitally stable. Indeed, it was shown that the limit system exhibits oscil-
lations. Hence, the general dynamical systems theory assures the existence
of a Lyapunov function in a neighborhood of such an orbit, that decreases
along the trajectories of the limit system itself, therefore describing the "at-
traction" the periodic orbit Γ exerts on the system.

Moving on to the study that has been carried out in the current chapter, in
which the approximating diffusion process has been derived, the procedure
has been the following: towards a Lyapunov argument it was shown that
the diffusion process comes back to an invariant compact set K infinitely
often and almost surely, and, without loss of generality it was assumed Γ ⊂
K. After that, the cascade structure of drift vector in ADP(2) allowed to
conclude that the weak Hörmander condition holds on the whole space, hence
getting that the diffusion Y N is strong Feller.

These whole considerations enabled to show that that once the diffusion
enters K, it also enters the basin of attraction of the periodic orbit Γ (i.e.
the tube S around the orbit), being attracted by Γ itself; at the end, towards
a control argument, Proposition 5.3 and Theorem 5.8 allowed to prove that
the entrances in the basin of attraction (hence, the visits to the periodic
region) happen - infinitely often and almost surely- and within a finite time
horizon, with waiting times possessing exponential moments.

Therefore, summarizing, it is clear that Theorem 5.8 gives a staggering result:
the Approximating Diffusion process has the very same type oscillations as
the Limit System!



Chapter 6

Numerical simulations:
detecting oscillations

Throughout this chapter we focus on checking what has been predicted in
the previous sections, via performing two different sets of simulations:

- In the first set, we fix the total number N of neurons and look at the
behaviour, as time t increases, of both the limit system described by MFC
and the approximating diffusion process ADP , in order to compare them.

- In the second set, we further investigate the behaviour of ADP : the objec-
tive is to convince the reader that it follows the oscillatory trend of the limit
system MFC . To this aim, we perform new simulations of ADP , progres-
sively increasing the total number of neurons N : we look at this situation
at longer times with respect to the first set of studies.

6.1 General setting of the parameters

We must set all the needed parameters and quantities to perform our simula-
tions. Since the aim is, beyond checking how the total number N of neurons
in the model affects the approximating diffusion, comparing the behaviours
of MFC and ADP , we proceed reminding the reader the form of the two
systems; indeed, recall that the limit system is described by the following
monotone cyclic (negative) feedback system:

⎧⎪⎪⎨⎪⎪⎩
dxk,l

t
dt = −νkxk,lt + xk,l+1

t , 0 ≤ l < ηk
dx

k,ηk
t
dt = −νkxk,ηkt + ckfk+1(x

k+1,0
t ), l = ηk

xk,l0 = 0

(MFC )
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While the approximating diffusion process Y N follows⎧⎪⎨⎪⎩
dY N

k,l(t) = [−νkY N
k,l(t) + Y N

k,l+1(t)]dt, 0 ≤ l < ηk

dY N
k,ηk

= −νkY N
k,ηk

(t)dt+ ckfk+1(Y
N
k+1,0(t))dt+ ck

√︂
fk+1(Y

N
k+1,0)(t)√

Nk+1
dBk+1(t)

(ADP)

In order to be consistent with the fixed population size study performed in
Section 5.3 and for an easier handling of the whole simulations, we study
the case in which the total number of interacting populations is n = 2,
in a context of negative feedback, ρ < 0. This means that, without loss
of generality, having n = 2 and needing c1c2 < 0, we can take c1 = −1
(meaning the first population in object is inhibitory), c2 = 1 (that is, the
second one is excitatory).

Moreover, to fall into the hypotheses we have assumed throughout the whole
discussion, we must set the spiking rates fk, for k = 1, 2, to be bounded,
Lipschitz and strictly increasing functions: to this aim, we take the follow-
ings:

f1(x) =

{︄
10ex if x < log(20)
400

1+400e−2x if x ≥ log(20)
(f1)

and,

f2(x) =

{︄
ex if x < log(20)
40

1+400e−2x if x ≥ log(20)
(f2)

To conclude with the settings, we recall that the two systems we are dealing
with live in a state space of dimension τ = n+

∑︁n
k=1 ηk, that is, in our case,

τ = 2 + η1 + η2. Hence, in the three different sets of upcoming simulations,
it is important to choose and specify the values for the parameters η1, η2 ∈
N0 (related to delay/memory) and ν1, ν2 > 0. The complete choice of all
parameter values is then allowing us, at each step, to specify the systems
MFC and ADP to the case in object, for n = 2.

It is also important to point out that, in order not to unbalance the model
between the two interacting populations, it is assumed that N1 = N2, hence
N = 2 ·N1, throughout all the sets of simulations.

6.2 Sets of numerical simulations

We are now ready to deepen our study and look in detail at the following
different sets of simulations.
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6.2.1 First set: Approximating Diffusion Process vs Mono-
tone Cyclic Feedback system, fixing the total number
of neurons

In this set of simulations we fix the dimension τ of the system at τ = 7, via
setting η1 = 3 and η2 = 2, and we put ν = ν1 = ν2 = 1. The number of
neurons is set equal to 20 in each population, so that N1 = N2 = 20.

What do we expect: we want to make evident the oscillatory behaviour
of both MFC and ADP .

Having in mind the above choice of the parameters, we would like to make
explicit the value for the coordinates of the equilibrium x∗. Solving the MFC
system, with these choices we obtain that (x∗)1,l for l = 0, . . . η1 = 3 equals
to −2.424; on the other side, we get that (x∗)2,l for l = 0, . . . η2 = 2 is 0.885.

Hence, we can proceed with the computation of the quantity ρ:

ρ : =
2∏︂

k=1

ckf
′
k((x

∗)k,0)

= −f ′1((x∗)1,0)) · f ′2((x∗)2,0)
= −f ′1(−2.424) · f ′2(0.885)
= −2.15

At this point we would like to check if condition (4.12) is verified for such a
value of ρ. Therefore, recalling the condition in object was

|ρ| > ντ

(cos(πτ ))
τ

and that we are considering the special case τ = 7, ν = ν1 = ν2 = 1 we get
that, indeed

2.15 >
1

(cos(π7 ))
7)

= 2.08

Hence, recalling that this condition corresponds to condition (4.10) of Theo-
rem 4.2, we can conclude that the equilibrium x∗ is unstable, having at least
one but a finite number of periodic orbits; moreover, amongst them there is
one orbit which is asymptotically stable.
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Figure 6.1: Comparison MFC vs ADP: it is evident that the two systems
follow the very same type of oscillations. The dotted lines are in correspon-
dence of the location of the critical point x∗; the inset is a blow-up of the
last part of the simulation.
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6.2.2 Second set: Approximating Diffusion Process, increas-
ing the total number of neurons

In this second set of simulations we fix the dimension τ of the system at
τ = 7, via setting η1 = 3 and η2 = 2, and we put ν = ν1 = ν2 = 1, exactly
as we did in the previous set. We study ADP as the total number (N)
of neurons increases, examining four different cases passing from a starting
value N1 = N2 = 10, 50, 100, 500. Each of the following panels of simulations
contains 10 realizations of the process ADP .

What do we expect: if N is small, and with respect to the oscillations
concerning the limit system MFC , we see ADP oscillates but changing phase
randomly; instead, increasing N , it should be evident that ADP has the very
same type of oscillations as MFC (it is sufficient to look at the first set of
simulations to get convinced about that). As N increases, the graphs of the
oscillations become even more evident, and are practically superimposable
to the ones of MFC .

Figure 6.2: The Diffusion Approximation ADP , for increasingN . Each panel
contains 10 realizations of the process.





Conclusions

In this thesis we studied the emergence of a collective periodic behaviour
in a multi-population system of interacting neurons: knowing that periodic
patterns and rhythms are pervasive in complex and living systems, we set
our study to the purpose of investigating the appearance of oscillations in
the collective spiking activity of the neurons at stake in the model.

With this aim, modelling the network via a multivariate system of non-linear
Hawkes processes recording the number of spikes of the neurons in a given
interval of time, we firstly established Propagation of Chaos and a Central
Limit Theorem in the large population regime.

After that -focusing on the limit system- we studied the interaction between
classes according to a Monotone Cyclic Feedback System (MFC), consider-
ing the memory kernels given in the form of an Erlang distribution: this
enabled us, via a dynamical systems approach, to evidence an oscillatory
behaviour for the limit system, which possesses attracting, non-constant,
periodic orbits.

Then we considered, in association to the original system finite size sys-
tem, a Piecewise Deterministic Markov Process (PDMP) whose dynamics
entirely determines the dynamics of the original Hawkes process. Having
at disposal this Markovian tool, we hence built an Approximating Diffusion
Process (ADP) which is shown to be a good approximation of the (PDMP).
Moreover, we discovered the tendency -in the large population limit- of both
the processes (PDMP) and (ADP) to the limit system.

Lastly, we investigated the behaviour of the Approximating Diffusion Pro-
cess in the fixed population size case, for n = 2, where n is the total number
of interacting populations. The result, after some work, is that the finite size
system (ADP) is attracted to the same periodic orbit of the limiting system:
not only, but also we discovered that, once (ADP) enters the basin of attrac-
tion of such an orbit, it continues visiting the vicinities of the orbit infinitely
often and almost surely. Hence, the diffusion approximation possesses the
same kind of oscillations of the limit system; to end up, we have shown these
results in the last chapter, the one dedicated to numerical simulations.
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To cite the famous poetess Maya Angelou (1928-2014), "everything in the
universe has a rhythm" : this thesis is just an attempt to make evidence
of the fact that apparently complex and chaotic systems can be sometimes
reduced to recurrent, periodic and also simple patterns; Mathematics is, as
always, the best language to tell such an astonishing story.
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