
UNIVERSITÀ DEGLI STUDI DI PADOVA

Dipartimento di Ingegneria Industriale DII

Corso di Laurea Magistrale in Ingegneria Aerospaziale

Using machine learned features for
robot ego-motion estimation through

an event-camera

Relatore:
Ing. Sebastiano Chiodini

Trevisanuto Giovanni, 2021383

Anno Accademico 2022/2023

Abstract

This thesis analyses the advantages offered by event-cameras in ego-motion esti-
mation. Traditional cameras suffer from poor performance in low light conditions
or high-speed motion. Event-cameras overcome these limitations by detecting and
processing only the changes in the visual scene, offering a higher dynamic range and
a lower power consumption. In particular, this thesis analyses a feature detection
method based on machine learning that takes advantage of the peculiarities of this
type of data, resulting in higher precision and longer feature tracks with respect
to handcrafted methods. The inference pipeline is composed of a module repeated
twice in sequence, formed by a Squeeze-and-Excite block and a ConvLSTM block
with residual connection. It is followed by a final convolutional layer that provides
the trajectories of the corners as a sequence of heatmaps. A novel training method
is described and evaluated.

Riassunto esteso

Questa tesi analizza i vantaggi offerti dalle event-camera nella stima dell’ego-
motion. Le telecamere tradizionali presentano limitazioni importanti in condizioni
di scarsa luminosità o di di movimento ad alta velocità. Le event-camera superano
queste limitazioni rilevando e processando solo i cambiamenti nella scena in maniera
completamente asincrona, offrendo un range dinamico più elevato e un consumo
energetico inferiore. In particolare, questa tesi analizza un metodo di rilevamento
dei keypoints basato sul machine learning che sfrutta le peculiarità di questo tipo
di dati, ottenendo una maggiore precisione e tracks più lunghi rispetto ai metodi
tradizionali. La pipeline di inferenza è composta da un modulo ripetuto due volte
in sequenza, costituito da un blocco Squeeze-and-Excite e da un blocco ConvLSTM
con residual connection. Questi sono poi seguiti da un layer convoluzionale finale
che fornisce le traiettorie dei keypoints come una sequenza di heatmaps. Da queste
è poi possibile risalire alle posizioni dei keypoints identificando i massimi locali che
superano una certa soglia. Viene descritto e valutato un nuovo metodo per il train-
ing della rete, basato su dati acquisiti tramite una camera DAVIS 346, che permette
l’acquisizione contemporanea di frame e eventi. I dati di training sono costruiti
utilizzando il metodo di Harris nei frame tradizonali e interpolando linearmente
la posizione dei keypoint trovati tra ciascuna coppia di immagni consecutive per
ottenere la posizione con la risoluzione temporale (molto maggiore) richiesta dagli
eventi. Queste label sono poi confrontate con le heatmap fornite in output dalla rete.
In questo modo si incoraggia la corrispondenza tra i masismi relativi delle heatmap
e la posizione dei keypoints. I keypoint ottenuti sono quindi sottoposti a match-
ing tra "frame" successivi, filtrando quelli affetti da rumore tramite un algoritmo
RANSAC, e tracciati nel tempo. In particolare si è utilizzato un semplice algor-
timo Nearest Neighbor, scelta resa possibile dall’elevatissima risoluzione temporale
della rilevazione. Le tracce ottenute, pur essendo tra loro coerenti e rappresentando
con buona approssimazione il movimento registrato, sono affette da un’importante
quantità di rumore. Questo è probabilmente dovuto alla qualità dei dati di training,
che in diversi casi includono keypoint non rilevati dal metodo di Harris, generando
instabilità nei risultati forniti dalla rete. Inoltre, parte di questo rumore potrebbe
essere rimossa tramite l’utilizzo di un algoritmo di tracciamento più sofisticato.

3

Contents

1 Ego-motion estimation 11
1.1 Camera calibration . 12
1.2 Motion estimation . 14

2 Event-cameras and event processing 15
2.1 Architecture and operation . 15
2.2 Advantages of event-based cameras 18
2.3 Event processing . 21

2.3.1 Event representation . 22
2.3.2 Processing algorithms . 23

3 Method 35
3.1 Event cube representation . 35
3.2 Architecture . 35
3.3 Training data . 37
3.4 Tracking . 40
3.5 Experimental apparatus . 40

4 Results 41

5 Conclusions and future development 47

6 Acknowledgements 49

5

List of Figures

1.1 Calibration process using a checkerboard pattern. 13

2.1 DVS pixel schematic [1] . 16
2.2 Principle of operation of a DVS pixel [1] 17
2.3 ATIS pixel functional diagram [2]. 17
2.4 DAVIS pixel schematics [2]. 18
2.5 Example of acquisition with an event camera. The event camera is

able to detect the building and tree branches outside the window,
while the traditional sensor is saturated. Motion blur is also not
present in the event frame. Data acquired with a DAVIS 346 [3]. . . . 20

2.6 Example of individual events representation [4]. 22
2.7 Example of event frame representation [4]. 23
2.8 Example of time surface representation [4]. 23
2.9 Example of voxel grid representation [4]. 24
2.10 Example of motion compensated image representation [4]. 24
2.11 Examples of the time surface used in eHarris for an edge (a) and a

corner (b). Its gradients are computed and, following the application
of a Gaussian window for smoothing, the Harris score is calculated to
determine whether the analyzed event is a corner [5]. 25

2.12 Representation of the eFAST algorithm pattern [6]. 26
2.13 The same corner, under different motion directions, can generate two

very different SAEs. In the right case eFAST is not able to detect
the corner [7]. 26

2.14 Example of the SAE proposed in [7] for the Arc algorithm [7]. 26
2.15 Representation of the Arc algorithm [7]. 27
2.16 Example of the threshold-ordinal surface described in [8]. 28
2.17 For each incoming event, the state is approximated with the best scor-

ing hypothesis (in blue). In this example (using only 5 hypotheses),
the feature is moving in the +x direction [9]. 29

2.18 Simplified 2D representation of KCSCAN. Point A is a core point
because it is surrounded by points of equal polarity, while point B,
being surrounded by points of different polarity is classified as noise
[10]. 29

2.19 Raw events are clustered by polarity. Consecutive tracks are then
concatenated to provide longer and more robust tracks [10]. 30

2.20 An edge moving from left to right at two different speeds creates the
same slope in the Speed Invariant Time Surface (bottom), a different
slope in the standard TS (top) [11]. 31

2.21 The architecture used for the visual odometry in [12]. 32

7

2.22 The resonator network described in [12]. s is the vector that encodes
the events and ĥ, v̂, r̂ represent respectively the horizontal and vertical
displacement and the rotation. m̂ is the map [12]. 33

3.1 Example of an event cube. The event frame generated by the same
2000 events is represented in figure 4.1c. (a) to (f) represent respec-
tively temporal bins 1 to 6. Temporal bins 7 to 12 not shown. 36

3.2 The architecture used in this work, first proposed in [13]. 37
3.3 Selection of the frames used for interpolation in training data gener-

ation. 38
3.4 Generation of training data: the features matched between two frames

are interpolated. The interpolation is then sampled at NH equally
spaced time instants in the [tmin, tmax] interval. 38

3.5 Example of a set of labels Ĥ, corresponding to the event cube rep-
resented in figure 3.1. (a) to (f) represent respectively labels 1 to 6.
Labels 7 to 12 not shown. 39

3.6 The DAVIS346 event-camera used in this work [14]. 40

4.1 Examples of keypoint detection. (a), (c), (e) represent the event
frame composed by the 2000 events used to generate the event cube
(ON events in blue, OFF events in red). (b), (d), (f) represent the
extracted keypoints with eHarris (red) and the method described in
this work (green). For the latter, the keypints detected in the first
predicted frame are depicted. Grayscale images just for reference. . . 42

4.2 Keypoint tracking for a checkerboard pattern. 43
4.3 Keypoint tracking for an outdoor scene. 43
4.4 Close-up of some erroneous tracks in the checkerboard pattern. Dif-

ferent tracks are merged together by outlier keypoints. 44
4.5 Keypoint tracking for checkerboard pattern, using N = 5000. The

tracks are longer but also noisier. 44
4.6 Number of keypoints detected (blue), matched (red) and tracked (yel-

low) in the checkerboard data. 45
4.7 Number of keypoints detected (blue), matched (red) and tracked (yel-

low) in the outdoor data. 45

8

List of Tables

3.1 Training details. 39

4.1 Average values for the number of keypoints extracted, matched and
tracked in each predicted frame. 42

9

Ego-motion estimation

Ego-motion estimation refers to the process of estimating the motion of a camera
or an observer in a given environment based on visual information captured by
the camera. It is a fundamental task in robotics, augmented reality, autonomous
vehicles, and other computer vision applications. Ego-motion estimation enables
the tracking of camera movements, such as translation (movement along the x, y,
and z axes) and rotation (yaw, pitch, and roll). In particular, Monocular Visual
Odometry (VO) is a technique that estimates the ego-motion of a camera using a
single monocular camera. It relies on the analysis of consecutive frames to track
visual features and estimate camera motion.
A high-level overview of the typical pipeline for monocular VO includes:

1. Feature Detection and Tracking: In the first step, distinctive visual features,
such as corners or keypoints, are detected in the initial frame. Common feature
detectors include Harris, FAST or SURF. These features are then tracked
across subsequent frames to serve as reference points for estimating camera
motion.

2. Feature Matching: In each frame, features are matched between the current
frame and the previous frame to establish correspondences. Various techniques
can be used for feature matching, such as nearest-neighbor matching or robust
feature matching methods. The matched feature correspondences provide in-
formation about the apparent motion of the camera.

3. Motion Estimation: Using the matched feature correspondences, the camera
motion is estimated. The essential matrix is computed from the feature corre-
spondences, and robust estimation methods like RANSAC (RAndom SAmple
Consensus) are used to filter out outliers and obtain an accurate estimate
of the essential matrix. From the essential matrix, the relative camera pose
(rotation and translation) between frames can be extracted.

4. Scale Estimation: Monocular VO cannot directly determine scale because it
lacks depth information. However, scale can be estimated by incorporating
additional information sources. For example, scale can be inferred from known
object sizes in the scene, or by using data from other sensors such as IMU
(Inertial Measurement Unit) or GPS.

5. Trajectory Integration: The estimated camera motion is integrated over time
to generate the camera trajectory. By accumulating the relative motion esti-
mates, a continuous estimate of the camera’s 3D position and orientation is
obtained.

6. Loop Closure: In long-duration monocular VO, errors can accumulate over
time, leading to drift. Loop closure techniques aim at recognizing previously

11

visited locations and correcting the accumulated drift. Loop closure can be
achieved by matching features between distant frames or by utilizing place
recognition techniques.

In particular, this work focuses on feature detection, matching and tracking, in
hopes to help developing a full event-based VO pipeline.

1.1 Camera calibration

The calibration operation is a necessary step in all the applications that require a
camera, as it allows correcting the distortions, both radial and tangential, introduced
by camera by extracting its intrinsic parameters. The behavior of a camera can be
described by

k

⎡⎣xy
1

⎤⎦ =

⎡⎣Sxf Sθf x0

0 Syf y0
0 0 1

⎤⎦⎡⎣XY
1

⎤⎦
where [X, Y, Z]T is the vector containing the coordinates of the generic observed

point in the observer’s reference frame, [x, y, z]T is the vector containing the coor-
dinates of its projection on the image plane, Sx and Sy represent the pixel density
respectively along the x and y axes, Sθ is a skew factor that takes into account the
non-orthogonality between the x and y axes of the camera’s imaging system and x0

and y0 are the coordinates of the top left corner of the image in the image plane
reference frame.
In this work, the Zhang calibration method was used, which involves capturing a
sequence of images of a chessboard of known dimensions in different positions. The
dedicated software (in this specific case, the calibration module of DV [15] by ini-
Vation) processes all the images and, with an error minimization routine, provides
the desired values. Specifically, if the scene’s coordinate system origin is centered
at the top-left corner of the chessboard and the Z-axis is chosen to be orthogonal to
it, the coordinates of the chessboard’s square vertices can be completely determined
based on the known dimensions of the chessboard. The chessboard’s vertices are
identified in the images using feature detection techniques. Using a chessboard with
m vertices, m systems of linear equations can be written as follows

km⃗ = k

⎡⎣xy
1

⎤⎦ =

⎡⎣p1,1 p1,2 p1,3 p1,4
p2,1 p2,2 p2,3 p2,4
p3,1 p3,2 p3,3 p3,4

⎤⎦
⎡⎢⎢⎣
X
Y
0
1

⎤⎥⎥⎦ =

⎡⎣p1,1 p1,2 p1,4
p2,1 p2,2 p2,4
p3,1 p3,2 p3,4

⎤⎦⎡⎣XY
1

⎤⎦ = Hw⃗′

from which follows

km⃗ = Hw⃗′ =⇒ km⃗×Hw⃗′ = 0 =⇒

⎡⎣ yhT
3 w⃗

′ − hT
2 w⃗

′

hT
1 w⃗

′ − xhT
3 w⃗

′

xhT
2 w⃗

′ − yhT
1 w⃗

′

⎤⎦ = 0, where H =

⎡⎣hT
1

hT
2

hT
3

⎤⎦
which can be written as

12

Figure 1.1: Calibration process using a checkerboard pattern.

⎡⎣ 0 −w⃗′T yw⃗′T

w⃗′T 0 −xw⃗′T

−yw⃗′T xw⃗′T 0

⎤⎦⎡⎣h1

h2

h3

⎤⎦ = Ah = 0

For each chessboard vertex, 3 equations in 9 unknowns can be written, but only
2 of them are linearly independent. Therefore, for each image, there will be 2m
equations in 9 unknowns. An initial estimation of Hi is obtained by minimizing the
norm of Ah while imposing ||h|| = 1. Starting from this initial estimation, the error
is further minimized by comparing the predicted coordinates of each chessboard
vertex with the measured ones. More precisely, the equation

∑︁
j ||mj − Hiw

′
j||2 is

minimized using a least squares algorithm.
Once Hi is known (up to a scale factor), it is possible to derive the intrinsic and
extrinsic parameters of the camera considering the following relationship

H = kA
[︁
r1 r2 T

]︁
where A represents the intrinsics matrix. Considering R is an orthogonal matrix,

we can write

rT1 r2 = 0 =⇒ hT
1A

−TA−1h2 = 0

rT1 r1 = rT2 r2 =⇒ hT
1A

−TA−1h1 = hT
2A

−TA−1h2

The unknowns are therefore the elements of the matrix B = A−TA−1, which,
being A an upper triangular matrix, is symmetric. This results in a linear system
of 2n equations in 6 unknowns, solvable if at least 3 images are available. At this
point, it is possible to estimate the distortion coefficients and, if needed, proceed
with image rectification. In this work, MATLAB’s undistortImage function was
used.

13

1.2 Motion estimation

While feature detection, matching and tracking are to be discussed in the rest of
this work, a brief overview of motion estimation is given in this section.
Once the feature correspondences are established between consecutive frames, the
camera motion can be estimated. One commonly used approach is to compute the
essential matrix from the feature correspondences. The essential matrix represents
the geometric relationship between two camera views and encodes the relative cam-
era pose. It describes how corresponding points in one image relate to corresponding
points in another image, considering both rotation and translation. The essential
matrix is a 3× 3 matrix that relates points in the two camera views using epipolar
geometry.
To compute the essential matrix, a robust estimation method like RANSAC (RAn-
dom SAmple Consensus) is often employed. RANSAC is an iterative algorithm that
filters out outliers and provides a more accurate estimation of the essential matrix. It
randomly samples a minimal set of correspondences, calculates the essential matrix
for each sample, and then evaluates the consensus between the estimated models
and the remaining correspondences. The process is repeated multiple times, and the
model with the highest consensus is selected as the best estimate.
Once the essential matrix is obtained, the relative camera pose between frames can
be extracted. The essential matrix decomposes into the product of a rotation ma-
trix and a translation vector, representing the camera’s rotational and translational
displacement. This decomposition can be achieved using techniques like singular
value decomposition (SVD) or eigenvalue decomposition.
By continuously integrating the relative motion estimates over multiple frames, a
trajectory is formed, representing the camera’s path through space over time. The
accumulated camera poses provide a continuous estimate of the camera’s 3D posi-
tion and orientation at each point in time.
It’s important to note that trajectory integration is subject to accumulation errors
and drift over time. Errors in motion estimation, camera calibration, and envi-
ronmental factors can cause deviations from the true trajectory. To mitigate these
errors, techniques such as loop closure detection, bundle adjustment, and sensor
fusion with additional sensors (e.g., IMU or GPS) can be employed to refine the
trajectory and improve accuracy.

14

Event-cameras and event processing

In recent years, the field of computer vision has witnessed a significant breakthrough
with the emergence of event-based cameras. Unlike traditional frame-based cameras,
event-based cameras capture visual information based on changes occurring in the
scene rather than capturing images at fixed time intervals. This novel technology
has revolutionized vision sensing by enabling high-speed, low-latency and efficient
visual processing for various applications.
Event-based cameras are also known as neuromorphic or asynchronous cameras and
are inspired by the functioning of the human eye and the brain’s visual processing
system. Their natural application, and the way to exploit their full potential, is to
couple them with neuromorphic processors that handle data through Spiking Neural
Networks. These are, as well, attempts at mimicking the human brain’s behaviour,
in hopes to transfer some of its extreme efficiency to our computing capabilities.
Unlike traditional cameras, which capture images at a fixed frame rate, event-based
cameras operate based on the principles of pixel-level temporal contrast. Each pixel
in an event-based camera independently monitors changes in intensity and generates
an event when a significant variation occurs. These events, also known as "spikes",
contain information about the location, timing, and polarity of the intensity change.

2.1 Architecture and operation

The first attempts at designing retinomorphic vision devices were mainly aimed at
demonstrating neurobological models and theories, lacking the attention at practical
applicability. Many pixel designs that were interesting from a conceptual point of
view could not yield practically usable devices because of limitations such as circuit
complexity, low fill factors, or high noise levels. In more recent times the interest
in transferring these biological models to industrial applications increased, and with
some good results.
One of the biggest challenges faced while working on this objective is reproducing
the "wiring" complexity of nature: the about one million retinal neurons that com-
pose the optic nerve with their axons should find an analogous in a wire for each
single pixel transferring data out of the array. While this is clearly not feasible for
industrial-grade sensors, a possible solution, and thus a crucial step towards practi-
cal applications, is represented by Address-Event Representation (AER).
AER is a communication and encoding scheme that enables the efficient transmission
and processing of spikes, taking advantage of the difference in bandwidth between a
neuron and a typical digital bus. This allows designers to multiplex the signals from
the neurons over a few wires, making use of a large number of switches instead. The
low-frequency (10-1000 Hz) spikes are encoded with an address (e.g. the x and y
coordinates of the pixel that generated them within the array), while the timestamp
is encoded implicitly and can be made explicit when tranferring data to a non-AER

15

processor.

One first example of event-based vision sensor is represented by the DVS (Dy-
namic Vision Sensor). It was first proposed by Lichtsteiner and Delbruck in 2005
[16, 1] and is built on a simplified model of the retina composed of 3 layers: a
photoreceptor circuit, a differecing circuit (corresponding to the bipolar cells of the
retina) and comparators (corresponding to the ON/OFF ganglion cells). An ab-
stracted pixel schematic is visible in figure 2.1.

Figure 2.1: DVS pixel schematic [1]

The first stage transduces photocurrent to a voltage proportional to the logarithm
of light intensity

Vp = VDC + AνUT ln(I)

The second stage amplifies Vp by C1/C2. Every time this amplified voltage
changes over a fixed threshold Vth, the charge integrated at C2 is reset. As a result,
the pixel generates a spike every time the incident light varies by ln I(t2)− ln I(t1) =
±θev. The third stage uses comparators to assign a polarity to the event generated.
Each pixel is decoupled from the others, meaning it responds asinchronously to
changes in the local intensity with a time resolution in the order of microseconds.
The output is thus dependent of the scene dynamics, and in particular on the re-
flectance changes. The traditional idea of frame is completely surpassed. An exam-
ple of DVS pixel operation is shown in figure 2.2

DVS pixels do not acquire any information on the scene absolute light intensity.
The contrast sensitivity, i.e. the minimum variation that can be detected by a pixel
is

θev =

⃓⃓⃓⃓
ln

I(t2)

I(t1)

⃓⃓⃓⃓
≈

⃓⃓⃓⃓
∆I

I

⃓⃓⃓⃓
In practical applications, values of contrast sensitivity of around 1% have been

reached.
Different improvements to the DVS pixel design have been proposed since its first
description, mainly with the aim of making it more compact.

Though in many applications DVS events are sufficient, some still require some
form of static output.
This idea of combining the event-based output with information on the absolute

16

Figure 2.2: Principle of operation of a DVS pixel [1]

value of light intensity is at the basis of the ATIS (Asyncronous Time-based Image
Sensor) pixel design [17]. This idea is not new, as one of the major drawbacks of
traditional cameras is redundancy: ideally, only information that is unknown should
be acquired and processed. Different solutions have been proposed, such as frame
differencing, but they still rely on frame acquisition and their temporal resolution is
limited to the frame rate achievable by the camera.
ATIS introduces a conditional exposure measurement circuit, combined with a DVS
change detector, in order to transfer this compression process to the pixel level.
The DVS part asynchronously triggers the acquisition of the grayscale value only
if an intensity change greater than a certain threshold is detected in that pixel. A
functional diagram of the ATIS pixel is represented in figure 2.3. The disadvantages
of the ATIS are a large area of the pixel (at least double than that of the DVS pixel)
and the limitations in dark environments: the time between two intensity readouts
can be long and new events may interrupt it [2].

Figure 2.3: ATIS pixel functional diagram [2].

A different approach is represented by DAVIS (Dynamic and Active pixel Vision
Sensor) [18]. This design merges the DVS pixel with gray-level information on the
scene acquired by a traditional CMOS pixel. The schematics is represented in figure
2.4. Since the photodiode is shared between the two, the area of the DAVIS pixel is
just 5% larger than the DVS, needed to accommodate the extra transistors.
This allows to bring back the "familiar" frames, with all the research that has been

17

conducted on them, and with their already discussed limitations as well. The role of
the DAVIS could be to bring together these two paradigms, for example triggering
frame capture efficiently by analysing the scene dynamics.
In this work a DAVIS sensor was used: the synchronous frames were used to extract
machine learned features from the event stream.

Figure 2.4: DAVIS pixel schematics [2].

2.2 Advantages of event-based cameras

As briefly mentioned above, event-cameras offer many advantages over traditional
cameras:

• High Temporal Resolution: Event-based cameras offer extremely high tempo-
ral resolution, capturing changes in the scene with microsecond precision. This
enables the detection and tracking of fast-moving objects that might be missed
or blurred by traditional cameras, making them suitable for applications such
as robotics, autonomous vehicles, and sports analysis.

• Low Latency: The asynchronous nature of event-based cameras allows them
to respond almost instantaneously to changes in the scene, reaching sub-
millisecond latency in real-world applications [4]. This low latency is crucial
in real-time applications where immediate feedback or action is required.

• High Dynamic Range: Since each pixel operates independently and in log-
arithmic scale, event-cameras can reach dynamic ranges better than 120dB,
when high-quality frame-based cameras only reach about 60dB.

• Low Power Consumption and Data Throughput: Event-based cameras con-
sume significantly less power compared to traditional frame-based cameras.
Since they only transmit data when an event occurs, ignoring redundant
data, event-based cameras are highly energy-efficient, making them suitable
for battery-powered or resource-constrained devices.

• Robustness to Motion Blur: Traditional frame-based cameras capture images
over a finite exposure time, resulting in motion blur when objects move rapidly.

18

Event-based cameras, with their high temporal resolution, capture only the
changes in the scene, eliminating motion blur and ensuring sharper images,
even in dynamic environments.

An illustrative example of some of these features is shown in figure 2.5. These
characteristics make them a potentially disruptive technology in applications such
as:

• Robotics and Autonomous Systems: Event-based cameras have transforma-
tive potential in robotics and autonomous systems. Their low latency and high
temporal resolution make them ideal for visual feedback in control systems, en-
abling robots to react quickly to their surroundings. They can enhance object
detection, tracking, and pose estimation, contributing to improved perception
and manipulation capabilities.

• Surveillance and Security: Event-based cameras offer significant advantages
in surveillance and security applications. Their ability to capture fast-moving
objects and operate in challenging lighting conditions makes them effective in
tracking and analyzing events in real-time. They can aid in detecting anoma-
lies, recognizing objects, and monitoring crowded environments with enhanced
accuracy and efficiency.

• Augmented and Virtual Reality: Event-based cameras can enhance the user
experience in augmented and virtual reality (AR/VR) applications. Their low
latency and high temporal resolution enable faster tracking of user movements
and gestures, resulting in more immersive and responsive AR/VR experiences.
Moreover, event-based cameras can reduce the computational load by trans-
mitting only the relevant visual changes, leading to more efficient processing
in AR/VR systems.

• Automotive and Transportation: Event-based cameras have the potential to
revolutionize the automotive and transportation industries. Their high-speed
and low-latency capabilities make them suitable for advanced driver-assistance
systems (ADAS) and autonomous vehicles. Event-based cameras can improve
object detection, pedestrian tracking, and collision avoidance in real-time, en-
hancing road safety.

• Space: Event cameras have emerged as a promising technology for space ap-
plications, offering unique advantages over traditional frame-based cameras.
They have the potential to revolutionize areas such as visual odometry, nav-
igation, and object tracking in space missions. With their low-latency mo-
tion estimation capabilities, event cameras can enhance spacecraft navigation,
enabling precise trajectory tracking and facilitating autonomous operations.
Furthermore, their ability to capture fast and dynamic events makes them
well-suited for object tracking, collision avoidance, and situational awareness
in space. Additionally, event cameras can contribute to spaceborne imaging,
capturing high-speed phenomena with their high dynamic range and low power
consumption. They can also play a vital role in robot-assisted space opera-
tions, improving the accuracy and efficiency of tasks such as maintenance,
repairs, and sample collection. The sparse and efficient data provided by
event cameras can be utilized for on-board image compression, reducing data
transmission and storage requirements while preserving critical information.

19

(a) Event frame generated with N=5000 events. Different colors indicate dif-
ferent polarities.

(b) Grayscale frame generated by the same view.

Figure 2.5: Example of acquisition with an event camera. The event camera is able to
detect the building and tree branches outside the window, while the traditional sensor is
saturated. Motion blur is also not present in the event frame. Data acquired with a DAVIS
346 [3].

20

Lastly, event cameras have the potential to enhance space surveillance and
situational awareness by continuously monitoring a wide field of view, aiding
in space traffic management and the monitoring of space debris populations.
As event camera technology continues to advance, their integration into space
missions is expected to bring about significant advancements in various aspects
of space exploration and satellite operations [19, 20, 21].

2.3 Event processing

In the previous sections the potential of event-cameras was discussed, but the new
paradigm also poses many challenges, mainly in the way we can process this new
type of data and extract useful information from it. Vision algorithms developed
for frame-based cameras can’t be directly applied to event streams: for once, the
output from event-cameras is sparse, whereas traditional frames are dense, but most
importantly event streams encode different photometric properties and they depend
on the current and past relative motion between the camera and the scene.
Another challenge that was only tangentially touched above is noise. While some
noise is inherently present in every sensor, in this case it is strictly related to the
contrast sensitivity: setting it too low results in a lot of events being generated. For
this reason, while lower values have been achieved in a laboratory setting, typical
DVS have a threshold between 10% and 50% intensity change [4]. A complete model
of the noise that affects the sensor in various illumination condition has not yet been
achieved, but some noise filtering techniques have been developed, mainly based on
the idea that "real" events should be more correlated than noise events. Some of
these include:

• Refractory Period Filtering: One common noise filtering technique is to employ
a refractory period, where events are ignored within a short time window after
a previous event occurs. This filtering approach helps eliminate duplicate
events caused by noise.

• Temporal Consistency Filtering: This technique involves examining the tem-
poral consistency of events within a spatiotemporal neighborhood. By consid-
ering the consistency of event timestamps and spatial locations, events that
do not adhere to the expected temporal patterns can be identified and filtered
out as noise.

• Spatial Consistency Filtering: Similar to temporal consistency filtering, spatial
consistency filtering considers the spatial relationships between events. Events
that occur in spatially disconnected regions or deviate significantly from the
expected spatial patterns can be considered noise and filtered out.

• Adaptive Thresholding: Adaptive thresholding methods dynamically adjust
the threshold for event detection based on the local contrast characteristics of
the scene. By adaptively setting the threshold, noise events with low contrast
can be suppressed while preserving important events with higher contrast.

• Machine Learning-based Approaches: Various machine learning techniques can
be employed for noise filtering in event cameras. These approaches can learn
to distinguish noise events from genuine events by training on labeled event

21

data. Machine learning models can capture complex spatiotemporal patterns
in the event stream and provide effective noise filtering.

2.3.1 Event representation

One first useful step in the development of algorithms for processing event streams
is exploring different possible representations of the data. This is helpful because
one single event does not convey enough information and thus aggregating them in
some way becomes a necessity.

• Individual Events: Each event is considered individually in the form ek =
(xk, tk, pk), where xk is a vector representing its location on the image plane,
tk is its timestamp and pk represents its polarity, i.e. the sign of the intensity
variation. Figure 2.6.

Figure 2.6: Example of individual events representation [4].

• Event Packets: Events are aggregated based on their temporal proximity and
processed together: ε = {ek}Ne

k=1. The choice of the number of events that
compose each packet becomes critical and highly dependent on the processing
algorithm to be used.

• Event Frames: Event packets are processed in a simple way, for example accu-
mulating polarity pixel-wise, to obtain a frame-like object. While this allows
to use the many algorithms developed for frame-based vision, the risk is to not
fully take advantage of the peculiarities of event-based vision, like asinchronic-
ity and low latency. Many feature detection algorithms still make use of some
form of event frames because of their simplicity and ease of interpretation and
because they convey information on the edges present in the scene, which are
the most informative region of the image. Figure 2.7.

• Time Surfaces: Each pixel stores a single time value, typically the timestamp
of the last event at that pixel, composing a "frame" that contains dynamic
information on the scene motion. While time surfaces can achieve a high
compression of the information, their limits emerge when facing a highly tex-
tured scene, in which the frequent spiking of the pixels can lead to the loss of
information. Figure 2.8.

22

Figure 2.7: Example of event frame representation [4].

Figure 2.8: Example of time surface representation [4].

• Voxel Grids: Events are represented in a 3D histogram, where each voxel
corresponds to a particular location and time interval. Figure 2.9.

• Motion Compensated Images: Based on the hypothesis that events are trig-
gered on the pixels traversed by an edge moving on the image plane. Maxi-
mizing the alignment of the events by warping them, the motion of the edge
can be estimated. Figure 2.10.

2.3.2 Processing algorithms

Different approaches have been proposed to extract information from event streams.
The choice of the processing algorithm is highly linked to the representation used
and to the hardware available (dense representations are the natural choice for tra-
ditional processors, while event-by-event representations make the most sense when
coupled with neuromorphic hardware) [4].
One main classification that can be made distinguishes between methods that op-
erate on an event-by-event basis, meaning that the state of the system can change
upon the detection of one single new event, and methods that operate on a number
of accumulated events, thus introducing some latency.
This last category is largely composed of methods that preprocess the events to be
analysed in a representation that allows the application of algorithms developed for
frame-based computer vision. While this, on the one hand, means working with
algorithms that have been studied and used for a long time, on the other presents

23

Figure 2.9: Example of voxel grid representation [4].

Figure 2.10: Example of motion compensated image representation [4].

the risk of not fully exploiting the advantages offered by event-based vision.

eHarris [5] is an adaptation of the well-known Harris corner detector, that iden-
tifies a corner if a matrix containing the first derivatives of intensity has two large
eigenvalues, i.e. if the intensity gradients centered around that pixel occur in two
different directions. The authors use a time surface composed of a fixed number of
events, in order to avoid the dependency on the scene speed. One time surface is
generated for each polarity and they are then binarized depending on the presence
of an event, as shown in figure 2.11.

The surface obtained is thus defined as

Σb : N2 −→ N

Σb(p) =

{︄
1 : ∃ e at p
0 : ∄ e at p

where e = (p, t, pol) represents each event and p = (x, y)T is its position.
The gradients of Σb are then computed, and, after filtering them with a Gaussian
window function, a score is assigned to each event based on the previously men-
tioned eigenvalues. If this score is greater than a set threshold, the event is labelled
as a corner event.

24

Figure 2.11: Examples of the time surface used in eHarris for an edge (a) and a corner
(b). Its gradients are computed and, following the application of a Gaussian window for
smoothing, the Harris score is calculated to determine whether the analyzed event is a
corner [5].

Another classical algorithm that has been reproduced is FAST (Features from
Accelerated Segment Test) [22]. The idea it is based upon is checking a 16-pixel
circumference around the candidate corner pixel. If a sufficient number of adjacent
pixels are found to be brighter or darker than the candidate pixel by at least a
threshold value, the candidate is considered a potential corner. The event represen-
tation chosen in this case [6] is the Surface of Active Events (SAE) described in [23],
which is a simple time surface defined by

SAE : (x, y) −→ t

The events are separated by polarity and treated independently in this case, too.
A FAST-like algorithm is applied to the position of the current event (instead of
iterating over all the pixels, as it is done in a traditional frame): since the current
event is always the latest, meaning it always represents the maximum value of the
SAE, comparing its value to the surrounding pixels does not provide any informa-
tion. Some modifications to FAST are thus necessary.
The idea is that a moving corner creates two clearly separated regions, one contain-
ing recent events and one containing older events. Identifying contiguous pixel with
a higher value than the surrounding ones will thus correspond to finding corners. A
circular search (similar to FAST) allows the algorithm to be isotropic and efficient.
As can be seen in figure 2.12, two circles around the latest event are considered for
higher accuracy. Since the SAE is updated with each new event arrival, the algo-
rithm maintains some of the asynchronicity characteristic of event-based vision. The
performance of eFAST is slightly worse than eHarris, but it allows for a significantly
lighter computational cost, as it avoids complex computations, such as derivatives.

One of the limitations of eFAST is its inability to detect corners when the scene
dynamics causes the SAE to form circular arcs of newest events greater than 180 deg,
as depicted in figure 2.13. This is necessary to avoid identifying straight edges as
corners.

From this shortcoming springs Arc [7, 24]. One first difference with eFAST is
the SAE used: in Arc an additional variable is considered, the refernce time tr. The
new SAE is thus defined as

25

Figure 2.12: Representation of the eFAST algorithm pattern [6].

Figure 2.13: The same corner, under different motion directions, can generate two very
different SAEs. In the right case eFAST is not able to detect the corner [7].

SAE∗ : (x, y) −→ (tr, tl)

When a new event is detected at time t, the latest timestamp is always updated
tl ←− t, while the reference timestamp is only updated if the previous event in the
same location does not fall into a time-window k, such that tr ←− t if t > tl + k.
When querying for values in a specific location, the reference time is returned and
the algorithm only considers the events that update tr. This new SAE is inspired
by the observation that, because of hardware limitations, there exists a minimum
time between two consecutive events. An example is depicted in figure 2.14.

Figure 2.14: Example of the SAE proposed in [7] for the Arc algorithm [7].

The algorithm is then similar to eFAST : a circular set of pixels around the latest

26

event is considered. Among these, the one with the most recent event and the two
adjacent ones (ECCW , ECW) are considered. This arc is then expanded in the direc-
tion of the higher SAE* value between ECCW and ECW until a pixel where SAE*
is lower than the other is found (example in figure 2.15). The pixel is marked as a
corner if this arc or its complementary has a length included in a fixed window. In
[7, 24] this detector is coupled with a dedicated tracking algorithm that takes into
account different hypotheses using a tree graph.
Experimental results show that Arc performs similarly to eHarris, but with a signifi-
cantly higher False Positive Rate. On the other hand its very limited computational
cost allows it to run in real time.

Figure 2.15: Representation of the Arc algorithm [7].

A different attempt at adapting the Harris corner detector to an event stream
is represented by luvHarris [8]. The arc-based detectors described above have the
great advantage of being fast to compute, and that’s because they only consider
a few pixels around the corner candidate. However this characteristic also causes
them to be highly susceptible to noise in those pixels. To overcome this problem
luvHarris makes use of the robust Harris algorithm, but with an architecture that
allows it to run in real time.
The proposed method is composed of two parts: a threshold-ordinal surface (TOS)
that is updated each time a new event is recorded and a Harris-score computation
that takes place any time the previous instance is finished, independently of the
number of new events detected.
The TOS is defined as

TOS : (x, y) −→ 0 ∪ [(255− TTOS), 255]

where TTOS is a threshold value. The advantage of this time surface are that it
has an unused range between 0 and 255− TTOS, increasing the signal-to-noise ratio
of gradients for the Harris algorithm and that it is forced to return to 0 after an
edge has passed (figure 2.16).

The Harris score is computed over the most up-to-date TOS as frequently as the
computation allows. The output of the Harris detector constitutes a look-up table
L, which is used for multiple events (the number varies depending on the event
throughput): if L > TR the event is marked as a corner.
This two-part algorithm allows to modulate computations depending on the scene
structure and dynamics, granting more flexibility and increasing the event frequency
that can be handled in real time. Since the two parts are completely decoupled, it
also lends itself well to parallel operations.
While this architecture seems to work well in high-rate event streams, it becomes
less efficient than other algorithms when the event-rate decreases, as the whole Har-
ris score computation becomes redundant in this scenario.

27

Figure 2.16: Example of the threshold-ordinal surface described in [8].

Other than these attempts at adapting algorithms designed for frame-based vi-
sion, some corner detectors have also been designed specifically with the event-based
paradigm in mind.

HASTE [25, 9] is a detection and tracking algorithm that treats the problem as
an optimization problem, with the aim of matching the current view to a feature
template. The high temporal resolution and asynchronicity of the event stream are
what make this approach possible.
Each feature is represented by an n × n template T and a vector x = {x, y, θ}
containing its position and orientation in the image plane. Assuming the optimal
feature state at each instant can be determined by a window ε containing the latest
m events registered in the feature patch, upon arrival of a new event its coordinates
p are transformed to the feature’s reference frame following x, such that p’ =
RT (θ)(p− [x, y]T). Each time a new event is registered in the patch, it replaces the
oldest event in the window and the template is also updated.
The optimization problem

x(k+1) = argmin
x∈X

f(ε(k+1), T (k+1),x)

is approximated over a discretized space of solutions H

x(k+1) = argmin
x∈H(x(k))

f(ε(k+1), T (k+1),x)

The space of solutions considered is defined as

H(x) = {(x = {x, y, θ}) ∪ {x±∆x, y ±∆y, θ ±∆θ}

where the values considered are (∆x = ∆y = ±1, δθ = 0◦) and (∆x = ∆y =
0, δθ = ±4◦).

28

Upon arrival of a new event the correlation score for each hypothesis is com-
puted and when one of this scores is better than that of the null hypothesis (which
is the previous optimum), it becomes a new optimal state (figure 2.17). A new set
of hypotheses is then computed and the process is repeated, meaning the feature is
tracked in an event-driven fashion. Different variants of the score function f have
been proposed and evaluated by the authors in [9].

Figure 2.17: For each incoming event, the state is approximated with the best scoring
hypothesis (in blue). In this example (using only 5 hypotheses), the feature is moving in
the +x direction [9].

eCDT [10] is a feature detection and tracking algorithm that makes use of clus-
tering in an attempt to avoid frame-based representations.
The first step it includes is separating clusters of events with the same polarity
observing that they are bounded by clusters of different polarity, as illustrated in
figure 2.18. The authors gave this algorithm the name KCSCAN.

Figure 2.18: Simplified 2D representation of KCSCAN. Point A is a core point because
it is surrounded by points of equal polarity, while point B, being surrounded by points of
different polarity is classified as noise [10].

Clustering equal polarities is shown to be weak in handling sudden polarity in-
versions caused by changes in edge direction. To address this, a cluster descriptor
is created to enable continuous tracking even with inverted polarities. Data associ-
ation between clusters is crucial, and the spatiotemporal neighboring characteristic

29

of events is exploited. By searching the proximity of space where a cluster ends, lost
features can be recaptured. The search is limited by a temporal search time. The
problem is formulated as finding matching descriptors in a spatiotemporal space
near the termination of a cluster. In situations of sudden movement where polarity
inverts, the shape created by the edge remains constant in a short time window.
Therefore, the problem only requires matching the shape and position of a termi-
nating cluster with newly created adjacent ones. Cluster head descriptors are used
to find preceding clusters from the same edge, and cluster tail descriptors are used
to find future clusters. A mutual information-based descriptor matching method is
incorporated, where the tail descriptor of one cluster is matched with the head de-
scriptor of another cluster. The sets of tail and head pixel locations are collected for
a short time interval. The mutual information (intersection over union) is computed
to measure the similarity between the tail and head descriptors. Clusters with the
largest mutual information are grouped together, allowing for longer tracks. This
approach enhances tracking by addressing polarity inversions and changes in direc-
tion, enabling more robust and continuous feature tracking, as shown in figure 2.19.
The feature tracks are reconstructed by computing the center of gravity of events in
each cluster in a temporal window.

Figure 2.19: Raw events are clustered by polarity. Consecutive tracks are then concate-
nated to provide longer and more robust tracks [10].

While the performance of eCDT is substantially on par with HASTE, the re-
sulting tracks display some more noise. This is caused by the fact that the edge
features are simplified as single centroid points.

A different class of methods is composed of learned methods, rather than hand-
crafted as the ones described until now.

In [11] the authors propose a random forest classifier to discriminate corner from
non corner events. In order to do so, they chose a novel representation: a Speed
Invariant Time Surface that normalizes the times of events based on their local
speed. Instead of sorting local patches, which is computationally expensive, a single
value is maintained for each pixel location and polarity. When a new event arrives,
a large value is stored at its pixel location, and the values for surrounding locations
are progressively reduced. This process ensures that the profile of the event wave
remains consistent regardless of the contour’s speed.
The Speed Invariant Time Surface algorithm initializes the surface to 0 and updates
it for each incoming event. The neighboring pixel locations within a specified radius
are considered, and if a neighboring value is larger than the current pixel’s value,
1 is subtracted from it. Finally, the current pixel’s value is set to the square of
the radius. The algorithm ensures that the Speed Invariant Time Surface remains

30

within the range of 0 to 2r + 1, where r is the specified radius.
The Speed Invariant Time Surface exhibits a consistent slope for edges moving at
different speeds, while the other methods result in varying slopes (figure 2.20). It
also enhances contrast after the edge by reducing values, leading to improved results
compared to the standard Time Surface and sorting normalization method.

Figure 2.20: An edge moving from left to right at two different speeds creates the same
slope in the Speed Invariant Time Surface (bottom), a different slope in the standard TS
(top) [11].

A Random Forest classifier F consists of a collection of decision trees, Fl. The
overall prediction of the Random Forest is obtained by averaging the predictions of
each individual tree

F (s) =
1

L

L∑︂
l=1

Fl(s)

Each decision tree recursively splits the input sample, s = (s1, ..., sK), by branch-
ing its nodes until reaching a leaf node. At each node, a binary split function is
applied to determine whether the sample should be sent to the left or right child
node.
In the implementation presented in [11], the authors use decision stumps as the
split functions, where a specific descriptor dimension, dk, is compared to a threshold
value, th. This choice is both computationally efficient and effective. The predic-
tion of the decision tree is stored at the leaf node reached by the sample. In this
case, this prediction represents the probability of the sample being a feature point.
During the training phase, each tree is trained independently, following a greedy
approach. The optimal split parameters, (dk, th), are determined by minimizing the
Gini impurity index through an exhaustive search. The dataset is recursively split
into left and right child nodes based on these split parameters.
The dataset used for training was generated starting from the gray-level data pro-
vided by the ATIS sensor used, to which the Harris detector was applied in order
to label the corner events as positive samples and non-corner events as negative
samples.

31

A different approach is presented in [26, 12]. The inspiration is once again found
in biology: the authors propose Vector Symbolic Architectures (VSAs), a family
of models that encode the critical structures of cognition, namely variable bind-
ing, sequence, and hierarchy, into distributed representations. VSAs encode data
structures holographically in a fixed-dimensional vector space. Operations such as
addition, multiplication, and permutation are used to manipulate and build data
structures in this vector space. To access or decode the components of a VSA-
encoded data structure, the high-dimensional vector representing it needs to be
decomposed into its primitive vectors. Though multiple approaches to this prob-
lem have been proposed, they resort to brute force methods or have limited data
structure depth, resulting in limited applicability. The proposed solution is to factor-
ize high-dimensional vectors into their primitives using a resonator network [27, 28],
which is a type of recurrent neural network. The resonator network searches through
the solution space using the VSA principle of superposition, avoiding an exhaustive
search. It iteratively searches for potential factorizations until stable fixed points
are found.
In particular, events are encoded with fractional power encoding (FPE) [29] as the
sum of the exponentiated seed vectors h0 and v0 (for horizontal and vertical coor-
dinates):

s =
∑︂

x,y in E

hx
0 ⊗ vy

0

where x, y are the coordinates of each event and ⊗ represents the Hadamard
product. With this method event polarity is discarded and all the events are treated
equally.
Figure 2.21 illustrates the division of the network into three components: (1) the
hierarchical resonator responsible for tracking (represented in detail in figure 2.22),
(2) the reference frame transformation that converts camera coordinates to map
coordinates, and (3) the map update process. The hierarchical resonator takes the
encoded image and the map as inputs and produces estimates of the transformation
between them. The subsequent module utilizes these estimates to convert the en-
coded input image from camera coordinates to map coordinates. The transformed
image in map coordinates is then utilized to update the map.

Figure 2.21: The architecture used for the visual odometry in [12].

32

Figure 2.22: The resonator network described in [12]. s is the vector that encodes the
events and ĥ, v̂, r̂ represent respectively the horizontal and vertical displacement and the
rotation. m̂ is the map [12].

[30] showcased the feasibility of reconstructing high-quality grayscale images from
event streams. However, a drawback of this approach is that it requires a large neu-
ral network for accurate grayscale image reconstruction, rendering it unsuitable for
low-power and real-time applications, which are typically the main motivations be-
hind the utilization of event-based cameras. Several gray-level corner detectors rely
on image derivatives rather than intensity values, and event cameras, sensitive to il-
lumination changes, produce events directly linked to the spatio-temporal gradients
of the scene. Therefore, the authors of [13] propose to train a recurrent neural net-
work to predict image gradients from events instead of intensity values. The Harris
detection algorithm is then applied using these gradients. Since the prediction of
gradients from events is a simpler task compared to predicting images, a lightweight
recurrent neural network is sufficient.
The architecture employed is a fully convolutional network with five layers, uti-
lizing 3×3 kernels. Each layer consists of 12 channels and incorporates residual
connections. The second and fourth layers adopt ConvLSTM, while the last layer,
responsible for gradient prediction, is a conventional convolutional layer. For the
remaining feed-forward layers, Squeeze-Excite (SE) connections are utilized. This
architectural design ensures both efficiency and the ability to learn gradients from
event data.
An immediate evolution of this is presented in [31]: the architecture used is the
same, but this time the network is trained to output a sequence of heatmaps, whose
local maxima correspond to the keypoint locations.

33

Method

This work is based on the detector presented in [31]. As mentioned above, the
detector receives an event cube as input and outputs a sequence of heatmaps, whose
local maxima correspond to the location of the keypoints.

3.1 Event cube representation

The use of event cubes as a useful representation of event streams was first proposed
in [32]. Like the other representations, they still integrate the events generated in
a time window to gather enough information and filter out noise, but, while in the
other cases the events are compressed onto a 2D representation, in the event cube
much more temporal resolution is maintained by adding a third dimension.
In particular the event cube is a B × H ×W tensor, H and W being the sensor
height and width and B being the number of temporal bins in which the integration
time is discretized. In this work, an event cube was produced every N = 2000
events, ensuring that the integration time (and thus the representation) still follows
the scene dynamics. Each incoming event contributes to the two closest temporal
bins of the event cube E through a trinagular kernel and based on its polarity pi

E(x, y, t) =
∑︂
i

pi max(0, 1− |t− t∗i |)

where t∗i is the normalized timestamp of the event

t∗i =
ti − tmin

∆T
(B − 1)

tmin being the beginning time of the integration period. For this work B = 12
was chosen. An example of event cube is presented in figure 3.1.

3.2 Architecture

A simple recurrent neural network is used to predict the heatmaps, similar to the
one proposed in [33]. The event cube is fed into a Squeeze and Excitation block [34],
followed by a Convolutional LSTM block [35]. These two layers are repeated and a
final simple convolutional layer outputs the heatmaps. The values of the predicted
heatmaps are constrained between 0 and 1 by applying the logistic function. Each
layer has 12 channels and residual connections. The network is represented in figure
3.2.

A sequence of NH heatmaps contitutes the output. Based on the results pre-
sented in [31], in this work NH = 12 was chosen. This means that for each set of 2000
events, 12 time steps are considered, resulting in a very high temporal resolution

35

(a) (b)

(c) (d)

(e) (f)

Figure 3.1: Example of an event cube. The event frame generated by the same 2000
events is represented in figure 4.1c. (a) to (f) represent respectively temporal bins 1 to 6.
Temporal bins 7 to 12 not shown.

36

Figure 3.2: The architecture used in this work, first proposed in [13].

of the feature detection. At inference, the heatmaps undergo a local non-maximum
suppression process for every patch of 7× 7 pixels and every maximum with a value
higher than tkeypoint = 0.7 is identifed as a keypoint and inserted in the correspond-
ing "predicted frame".
To train the network a set of labelled locations Ĥ, such that Ĥ(x, y) = 1 if there
is a keypoint at location (x, y) and Ĥ(x, y) = 0 otherwise, was created. The loss
function is then calculated as the binary cross-entropy between these labels and the
heatmaps H predicted by the network

L =
∑︂

h∈[1;NH]

∑︂
(x,y)

BCE(Hh(x, y), aĤh(x, y))

In [31] the necessity of hard negative mining during training was noted. It is
caused by the fact that the number of keypoints is much smaller than the number
of non-keypoints, which causes the network to converge to the solution of never
detecting any keypoints, since this would already yield a relatively low loss value.
In this work, the factor a was added, which only increases the weight of the keypoints’
locations in the balance. a = 500 was empirically selected.

3.3 Training data

It is now clear that the training data should be composed by a B × H ×W event
cube E and its respective NH ×H ×W set of labels Ĥ.
Differently from [31], in which the network was trained on synthetic data generated
by a simulator, in this work the training is done on data acquired with a DAVIS 346
event camera [3] by iniVation (figure 3.6). This device collects both the gray-level
frame and the asynchronous events with a resolution of 346 × 260 pixels. It also
includes an IMU, which however was not used for this work.
The labels are generated starting from the gray-level frames. First, they are analysed
with a Harris detector to locate the corners. The corners in each two consecutive
frames are matched by performing a nearest neighbor search. The matched corners
are then filtered using a MSAC algorithm, which takes into account the epipolar
constraint. Lastly, since event cubes have a much higher frequency than gray-level
frames, the labels are obtained by linearly interpolating the positions of the filtered
keypoints.

37

Figure 3.3: Selection of the frames used for interpolation in training data generation.

Figure 3.4: Generation of training data: the features matched between two frames are
interpolated. The interpolation is then sampled at NH equally spaced time instants in the
[tmin, tmax] interval.

In particular, for each set of 2000 events, tmin and tmax are defined as the timestamps
of the first and last event in the set respectively. The two frames between which
the interpolation is performed are then chosen to include the interval [tmin, tmax], as
depicted in figure 3.3.

The interval [tmin, tmax] is divided into NH equal segments, obtaining the times-
tamps of the heatmaps at which the interpolation is computed (figure 3.4). The
locations obtained are then rounded to nearest integer since they are expressed in
number of pixels.

This solution was employed considering that the dataset used is generated by
a relatively smooth and slow motion, meaning the linear interpolation is a good
enough approximation of the motion between two successive frames.
An example of the labels obtained is depicted in figure 3.5.

Table 3.1 contains the details of the training.

38

(a) (b)

(c) (d)

(e) (f)

Figure 3.5: Example of a set of labels Ĥ, corresponding to the event cube represented in
figure 3.1. (a) to (f) represent respectively labels 1 to 6. Labels 7 to 12 not shown.

Number of epochs Learning rate Number of event cubes
40 0.0001 6750

Number of events Number of keypoints Avg number of keypoints per label
13.5 ∗ 106 5442164 67.187

Table 3.1: Training details.

39

Figure 3.6: The DAVIS346 event-camera used in this work [14].

3.4 Tracking

Once the keypoints are extracted, they are matched between successive predicted
frames with a nearest neighbor matching algorithm, provided that the Euclidean
distance between matched points is smaller than 4 pixel. The tracks are then merged
if the following conditions are verified between the last point (xi, yi, ti) of one and
the first point (xj, yj, tj) of another:

• d((xi, yi), (xj, yj)) < 4 pixels, where d(a, b) represents the Euclidean distance
between points a and b, meaning the tracks extremities are close in space;

• tj − ti > 0, meaning the first track ends before the second begins;

• tj − ti < 250 event frames, meaning the track extremities are close in time;

A simple nearest neighbor tracking algorithm was chosen, following other work
in literature, because of the extremely high temporal resolution of the predicted
frames, which ensures the movement between consecutive frames is minimal.

3.5 Experimental apparatus

The data used in this work was collected with a DAVIS346 event camera (figure 3.6)
by iniVation [3]. It can acquire event streams and grayscale frames simultaneously
with a resolution of 346 × 260 pixels. The dynamic range for the DVS is 120 dB,
while the APS only reaches 56.7 dB. The minimum latency is about 20 µs and the
bandwidth is 20 Mevents/s. The DAVIS346 is also equipped with a 6-axis built-in
IMU. Without the lens, the device’s dimensions are 40× 60× 25 mm and it weighs
100 g. Its total power consumption is lower than 180 mA @ 5V DC, but the DVS
chip conusumes between 10 and 30 mV depending on the activity.
The DV software [15] was used to record the data from the camera and for calibra-
tion.

40

Results

Different acquisitions were considered, consisting of both indoor and outdoor envi-
ronments. As a benchmark to validate the results obtained, eHarris was applied to
the same data (in an implementation based on the description provided in [5]).
Figure 4.1 presents three examples of keypoints detection. The extracted keypoints
are superimposed on the closest graylevel frame just for reference, though it was not
used in any way to detrmine their position. To allow for a qualitative comparison,
the same 2000 events were fed into a eHarris detector and plotted on the same image.

The quality of the detected keypoints appears to be comparable to that of the
keypoints detected with eHarris. It is also immediately clear how the detector pre-
sented in this work is affected by noise: while most of the keypoints are identified,
in the examples provided there are many false positives generated by noise in the
event streams. This problem becomes much more evident in highly textured areas.
The number of events accumulated in every event cube is a key parameter: while
on the one hand a longer accumulation time can help average the noise out, on the
other hand it exposes to the risk of getting events cubes that are too cluttered to
extract any useful information.

Figure 4.2 and figure 4.3 depict the result of the tracking process, as described
in section 3.4, respectively for a checkerboard pattern and an outdoor scene. Only
tracks spanning at least 20 predicted frames are included.

These examples once again prove the quality of the extracted keypoints: the
tracks are coherent and follow a common motion, as expected. This is especially
clear in the checkerboard case, it being a less complex image. On the other hand,
the instability of the keypoints is also shown. In general the tracks are pretty short
and the regularity of the checkerboard pattern allows to spot different locations in
which keypoints are incorrectly merged into the same track (figure 4.4). Again,
the number of accumulated events is an important parameter: figure 4.5 shows the
tracking of keypoints obtained with event cubes composed of 5000 events. While
the tracks are much longer, they are also much noisier.

The observations made until now are confirmed by figure 4.6 and figure 4.7. They
show the number of keypoints detected, matched (between two succesive predicted
frames and filtered with an MSAC algorithm to satisfy the epipolar constraint) and
tracked (i.e. part of a track spanning at least 20 predicted frames in length). Table
4.1 contains the average values for these numbers. It is clear that, though a good
number of keypoints is detected, the proposed algorithm struggles to track them
reliably. This is probably caused by the fact that the extracted keypoints are not
stable enough to be tracked with a simple nearest neighbor algorithm. The slightly
better performance in the outdoor case is likely caused by the higher probability of
spurious matches in a more textured environment.

41

(a) (b)

(c) (d)

(e) (f)

Figure 4.1: Examples of keypoint detection. (a), (c), (e) represent the event frame
composed by the 2000 events used to generate the event cube (ON events in blue, OFF
events in red). (b), (d), (f) represent the extracted keypoints with eHarris (red) and the
method described in this work (green). For the latter, the keypints detected in the first
predicted frame are depicted. Grayscale images just for reference.

Extracted KP Matched KP Tracked KP Matched
Extracted

Tracked
Extracted

Checkerboard 119.7 16.2 1.9 13.5% 1.5%
Outdoor 138.7 22.3 4.4 16.1% 3.2%

Table 4.1: Average values for the number of keypoints extracted, matched and tracked
in each predicted frame.

42

Figure 4.2: Keypoint tracking for a checkerboard pattern.

Figure 4.3: Keypoint tracking for an outdoor scene.

43

Figure 4.4: Close-up of some erroneous tracks in the checkerboard pattern. Different
tracks are merged together by outlier keypoints.

Figure 4.5: Keypoint tracking for checkerboard pattern, using N = 5000. The tracks are
longer but also noisier.

44

Figure 4.6: Number of keypoints detected (blue), matched (red) and tracked (yellow) in
the checkerboard data.

Figure 4.7: Number of keypoints detected (blue), matched (red) and tracked (yellow) in
the outdoor data.

45

Conclusions and future development

This work presents the first steps towards a full ego-motion estimation pipeline. A
novel training methodology is suggested for the keypoint detector network discussed.
Though the results presented are encouraging, some work is still required to reach
state of the art performance in keypoint extraction and tracking.

One first aspect that needs to be addressed is the quality of the training data:
while the idea of using the grayscale frames as a reference is appealing, it is nec-
essary to ensure that feature detection is accurate. The data used in this work
presents a considerable amount of missed detections (mainly) and false positives
(more rarely), which is probably the main cause for the noise that affects the ex-
tracted keypoints. While filtering with a RANSAC algorithm ensures most outliers
are removed, the risk is to incorrectly label as non-keypoint pixels that are, in fact,
keypoints. This, of course, has an important role in the quality of training achiev-
able. One direction that appears interesting to explore is training the network with
less, but better, data. This could mean either experimenting with different combi-
nations of detection, matching and filtering algorithms, or even manually labelling
the data, or a hybrid solution between these two. Also, since the DAVIS 346 event
camera is equipped with an IMU, its data could be included as well in this process,
for example through a Visual-Inertial Odometry pipeline. This would also allow to
deal with different datasets, as the linear interpolation approximation wouldn’t be
needed anymore: the motion between two frames could be reconstructed with the
IMU data. This issue should in any case be the main focus of future work.

It could be interesting to experiment with different values of N , as it appears to
be a key parameter: higher values help mitigate noise, but also increase the clutter
making it more difficult to select useful information among the events. In this work
an example is presented where increasing N the value leads to longer but noisier
tracks. This is only partially representative of the possible effects, because a network
trained on 2000-event event cubes was still used. Training from the beginning with
different values could yield much different results.

A different aspect that appears important to tackle is tracking: while cleaner
data could be obtained as described above, a more sophisticated tracking algorithm
could allow to track keypoints more reliably even with the current results. This is
made especially clear by the checkerboard example: many tracks that are actually
contiguous are not merged and, on the other hand, some spurious matches are al-
lowed by outlier events. For example, it could be interesting to apply a tracking
algorithm similar to the one described in [6], as it could help mitigate these issues.
Also, to render the current tracks usable for ego-motion estimation, it could be use-
ful to approximate the position of the keypoint with some kind of centroid of the

47

track, following [10].

Once reliable tracking is obtained, this keypoint detection algorithm could be
integrated in a complete ego-motion estimation pipeline, allowing to efficiently es-
timate the trajectory of an autonomous vehicle. Lastly, once completed, it could
be transferred to ROS (Robot Operating System) to be run in real time, given how
computationally light this keypoint detection algorithm is.

48

Acknowledgements

The DVS/DAVIS technology was developed by the Sensors group of the Institute of
Neuroinformatics (University of Zurich and ETH Zurich), which was funded by the
EU FP7 SeeBetter project (grant 270324).

49

Bibliography

[1] P. Lichtsteiner, C. Posch, and T. Delbruck. A 128×128 120 db 15 µs latency
asynchronous temporal contrast vision sensor. IEEE Journal of Solid State
Circuits, 43(2):566–576, 2008.

[2] C. Posch, T. Serrano-Gotarredona, B. Linares-Barranco, and T. Delbruck.
Retinomorphic event-based vision sensors: Bioinspired cameras with spiking
output. Proceedings of the IEEE, 102(10):1470–1484, 2014.

[3] iniVation. DAVIS 346, 08/2019. Accessed: 01 07 2023.
https://inivation.com/wp-content/uploads/2019/08/DAVIS346.pdf.

[4] G. Gallego, T. Delbruck, G. Orchard, C. Bartolozzi, B. Taba, A. Censi,
S. Leutenegger, A. J. Davison, J. Conradt, K. Daniilidis, and D. Scaramuzza.
Event-based vision: A survey. IEEE Transactions on Pattern Analysis & Ma-
chine Intelligence, 44(01):154–180, jan 2022.

[5] V. Vasco, A. Glover, and C. Bartolozzi. Fast event-based harris corner detection
exploiting the advantages of event-driven cameras. In 2016 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), pages 4144–4149,
2016.

[6] E. Mueggler, B. Huber, and D. Scaramuzza. Fast event-based corner detection.
In 2017 IEEE International Conference on Robotics and Automation (ICRA),
pages 1136–1141, 2017.

[7] I. Alzugaray and M. Chli. Asynchronous corner detection and tracking for
event cameras in real time. IEEE Robotics and Automation Letters, 3(4):3177,
October 2018.

[8] A. Glover, A. Dinale, L. De Souza Rosa, S. Bamford, and C. Bartolozzi. lu-
vharris: A practical corner detector for event-cameras. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2023.

[9] I. Alzugaray and M. Chli. Haste: multi-hypothesis asynchronous speeded-up
tracking of events. In British Machine Vision Conference, 2020.

[10] S. Hu, Y. Kim, H. Lim, A. J. Lee, and H. Myung. ecdt: Event clustering for
simultaneous feature detection and tracking. In 2022 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 3808–3815, 2022.

[11] J. Manderscheid, A. Sironi, N. Bourdis, D. Migliore, and V. Lepetit. Speed
invariant time surface for learning to detect corner points with event-based
cameras. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition Workshops, pages 4609–4618. IEEE, 2021.

51

[12] A. Renner, L. Supic, A. Danielescu, G. Indiveri, B. A. Olshausen, Y. San-
damirskaya, F. T. Sommer, and E. P. Frady. Neuromorphic visual scene under-
standing with resonator networks, 2022.

[13] P. Chiberre, E. Perot, A. Sironi, and V. Lepetit. Detecting stable keypoints from
events through image gradient prediction. In 2021 IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops (CVPRW), pages 1387–
1394, 2021.

[14] . . Accessed: 04 07 2023. https://blog.csdn.net/tfb760/article/details/119637494.

[15] iniVation. dv-core, 2023. Accessed: 04 07 2023.
https://gitlab.com/inivation/dv.

[16] P. Lichtsteiner and T. Delbruck. A 64x64 aer logarithmic temporal deriva-
tive silicon retina. In Research in Microelectronics and Electronics, 2005 PhD,
volume 2, pages 202–205, 2005.

[17] C. Posch, D. Matolin, and R. Wohlgenannt. A qvga 143 db dynamic range
frame-free pwm image sensor with lossless pixel-level video compression and
time-domain cds. IEEE Journal of Solid-State Circuits, 46(1):259–275, 2011.

[18] R. Berner, C. Brandli, M. Yang, S.-C. Liu, and T. Delbruck. A 240 x 180 10
mw 12 µs latency sparse-output vision sensor for mobile applications. IEEE
Journal of Solid-State Circuits, 48(5):1340–1351, 2013.

[19] ESA - Advanced Concepts Team. Retinomorphic Vision Model
for On-chip Feature Extraction. Accessed: 04 07 2023.
https://www.esa.int/gsp/ACT/projects/retinomorphicvision/.

[20] O. Sikorski, D. Izzo, and G. Meoni. Event-based spacecraft landing using time-
to-contact. In 2021 IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), pages 1941–1950, 2021.

[21] M. Wudenka, M. G. Müller, N. Demmel, A. Wedler, R. Triebel, D. Cremers,
and W. Stürzl. Towards robust monocular visual odometry for flying robots on
planetary missions. In 2021 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 8737–8744, 2021.

[22] E. Rosten and T. Drummond. Machine learning for high-speed corner detection.
In European Conference on Computer Vision (ECCV), pages 430–443, 2006.

[23] R. Benosman, C. Clercq, X. Lagorce, S.-H. Ieng, and C. Bartolozzi. Event-based
visual flow. IEEE Transactions on Neural Networks and Learning Systems,
25(2):407, February 2014.

[24] I. Alzugaray and M. Chli. Asynchronous multi-hypothesis tracking of features
with event cameras. In 2020 IEEE International Conference on Robotics and
Automation (ICRA), 2020.

[25] I. Alzugaray and M. Chli. Asynchronous multi-hypothesis tracking of features
with event cameras. In 2019 International Conference on 3D Vision (3DV),
pages 269–278, 2019.

52

[26] A. Renner, L. Supic, A. Danielescu, G. Indiveri, E. P. Frady, F. T. Sommer, and
Y. Sandamirskaya. Neuromorphic visual odometry with resonator networks,
2022.

[27] E. P. Frady, S. J. Kent, B. A. Olshausen, and F. T. Sommer. Resonator net-
works, 1: An efficient solution for factoring high-dimensional, distributed rep-
resentations of data structures. Neural computation, 32(12):2311–2331, Dec
2020.

[28] S. J. Kent, E. P. Frady, F. T. Sommer, and B. A. Olshausen. Resonator net-
works, 2: Factorization performance and capacity compared to optimization-
based methods. Neural computation, 32(12):2332–2388, 2020.

[29] E. Paxon Frady, Denis Kleyko, Christopher J. Kymn, Bruno A. Olshausen,
and Friedrich T. Sommer. Computing on functions using randomized vector
representations (in brief). In Proceedings of the 2022 Annual Neuro-Inspired
Computational Elements Conference, page 115–122, New York, NY, USA, 2022.
Association for Computing Machinery.

[30] H. Rebecq, R. Ranftl, V. Koltun, and D. Scaramuzza. Events-to-video: Bring-
ing modern computer vision to event cameras. In 2019 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages 3852–3861, 2019.

[31] P. Chiberre, E. Perot, A. Sironi, and V. Lepetit. Long-lived accurate keypoints
in event streams. ArXiv, abs/2209.10385, 2022.

[32] Alex Zihao Zhu, Liangzhe Yuan, Kenneth Chaney, and Kostas Daniilidis. Un-
supervised event-based learning of optical flow, depth, and egomotion. 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pages 989–997, 2018.

[33] C. Scheerlinck, H. Rebecq, D. Gehrig, N. Barnes, R. Mahony, and D. Scara-
muzza. Fast image reconstruction with an event camera. In IEEE Winter
Conference on Applications of Computer Vision, pages 156–163, 2020.

[34] J. Hu, L. Shen, S. Albanie, G. Sun, and E. Wu. Squeeze-and-excitation
networks. IEEE Transactions on Pattern Analysis and Machine Intelligence,
42(8):2011–2023, 2020.

[35] X. Shi, Z. Chen, H. Wang, D.-Y. Yeung, W.-k. Wong, and W.-c. Woo. Convolu-
tional lstm network: A machine learning approach for precipitation nowcasting.
In Proceedings of the 28th International Conference on Neural Information Pro-
cessing Systems - Volume 1, NIPS’15, pages 802–810, Cambridge, MA, USA,
2015. MIT Press.

53

	Ego-motion estimation
	Camera calibration
	Motion estimation

	Event-cameras and event processing
	Architecture and operation
	Advantages of event-based cameras
	Event processing
	Event representation
	Processing algorithms

	Method
	Event cube representation
	Architecture
	Training data
	Tracking
	Experimental apparatus

	Results
	Conclusions and future development
	Acknowledgements

