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Abstract: In recent years, computer music technology has become increasingly prevalent in college music education, offering new possibilities 

for creative expression and pedagogical approaches. This paper concentrated on the music education in the colleges with the application of 

integrated time and frequency filtering (ITFF) with Kalman integrated covariance Weiner filtering in college music education. The ITFF technique 

combines time and frequency domain analysis to enhance the quality and clarity of audio signals. By integrating the Kalman integrated covariance 

Weiner filtering, the ITFF method provides robust noise reduction and improved signal representation. This integrated approach enables music 

educators to effectively analyze and manipulate audio signals in real-time, fostering a more immersive and engaging learning environment for 

students. The findings of this study highlight the benefits and potential applications of ITFF with Kalman-integrated covariance Weiner filtering 

in college music education, including audio signal enhancement, sound synthesis, and interactive performance systems. The integration of 

computer music technology with advanced filtering techniques presents new opportunities for exploring sound, composition, and music production 

within an educational context. 
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I. Introduction 

In the field of college music education, the integration of 

computer music technology has revolutionized the way 

students learn and engage with music [1]. With the increasing 

availability of digital audio workstations (DAWs) and other 

software tools, students now have access to a wide range of 

creative possibilities for composition, performance, and 

production. However, the quality of audio signals can often be 

compromised by various factors such as background noise, 

room acoustics, and recording equipment limitations [2]. These 

issues can hinder the learning experience and limit the potential 

of music education in colleges.  College music education has 

been greatly influenced by the advancements in computer 

music technology, which have opened up new possibilities for 

creative expression, composition, performance, and production 

[3]. With the availability of digital audio workstations (DAWs) 

and other software tools, students now have access to a wide 

range of resources and techniques to explore and develop their 

musical skills. However, one of the challenges in college music 

education is the quality of audio signals. Various factors such as 

background noise, room acoustics, and limitations of recording 

equipment can compromise the fidelity and clarity of audio 

recordings and performances [4]. This can hinder the learning 

experience, as students may struggle to accurately perceive and 

analyze the musical elements in recordings and performances. 

Time-domain filtering plays a significant role in college music 

education by improving the quality and clarity of audio signals. 

Time-domain filtering techniques focus on analyzing and 

manipulating the temporal characteristics of audio waveforms. 

In the context of music education, time-domain filtering offers 

several benefits and applications [5]. 

One of the primary applications of time-domain filtering in 

college music education is noise reduction. Background noise, 

such as room ambiance or electrical interference, can degrade 

the quality of audio recordings or live performances [6]. Time-

domain filtering methods, such as adaptive filtering or spectral 

subtraction, allow students to reduce or eliminate unwanted 

noise components from audio signals. By selectively 

attenuating specific temporal segments of the waveform, the 

desired sound can be isolated while minimizing the influence 

of noise. Time-domain filtering also enables students to shape 

the dynamics of audio signals [7]. Techniques such as dynamic 

range compression or expansion can be applied to modify the 

amplitude envelope of sounds, ensuring a more balanced and 

controlled sonic experience. Students can learn how to apply 

these techniques to recordings or live performances, allowing 

them to enhance the perceived loudness, sustain, or transient 

characteristics of the music [8]. 
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Moreover, time-domain filtering can be employed for 

audio effects and creative sound manipulation. Techniques like 

time stretching, time shifting, or granular synthesis rely on 

time-domain processing to manipulate the duration, timing, or 

fragmentation of audio signals [9]. These methods enable 

students to explore novel sound transformations, create 

rhythmic variations, or generate textural effects, fostering 

creativity and innovation in music composition and production 

[10]. Another area where time-domain filtering finds 

application in college music education is in audio restoration 

and enhancement [11]. Historical or degraded audio recordings 

can benefit from time-domain filtering algorithms that aim to 

restore missing or damaged portions of the signal. Students can 

learn how to use techniques like interpolation, transient 

detection, or noise reduction to improve the fidelity and 

intelligibility of archival recordings, enabling them to study and 

appreciate musical works from the past [12]. Additionally, time-

domain filtering techniques are utilized in audio analysis and 

transcription. Students can employ methods such as onset 

detection, pitch tracking, or rhythmic analysis to extract 

temporal features and structural elements from audio 

recordings [13]. These analyses serve as foundations for 

transcribing musical performances, analyzing compositions, or 

studying rhythm and timing patterns. Time-domain filtering 

aids in isolating and emphasizing the relevant temporal aspects 

of the audio, facilitating accurate transcription and analysis 

[14]. 

Time-domain filtering techniques in college music 

education offer numerous applications and benefits. From noise 

reduction and dynamic control to audio effects and creative 

sound manipulation, time-domain filtering enables students to 

shape and improve the quality of audio signals [15]. It supports 

audio restoration, facilitates audio analysis and transcription, 

and empowers students to explore innovative approaches to 

sound design and composition. By integrating time-domain 

filtering into their educational practice, students can develop a 

deeper understanding of the temporal aspects of music and 

refine their skills as musicians, composers, and audio 

professionals.  

The paper focuses on the application of integrated time and 

frequency filtering (ITFF) with Kalman integrated covariance 

Weiner filtering in college music education. It addresses the 

increasing presence of computer music technology in college 

music education and its potential to enhance the learning 

experience and audio signal quality. The ITFF technique 

combines time and frequency domain analysis to improve the 

quality and clarity of audio signals. By integrating the Kalman 

integrated covariance Weiner filtering, the ITFF method offers 

robust noise reduction and improved representation of audio 

signals. This integrated approach enables music educators to 

analyze and manipulate audio signals in real-time, creating a 

more immersive and engaging learning environment for 

students. This paper emphasizes the role of ITFF with Kalman-

integrated covariance Weiner filtering in enhancing audio 

signal quality and enriching the learning experience in college 

music education. The integration of computer music technology 

and advanced filtering techniques opens up new avenues for 

creativity, experimentation, and pedagogical approaches in 

music education. 

II. Literature Survey 

This section provides the literature review associated with 

the time-domain filtering based processing of the signal. In [16] 

explores the application of spectral subtraction, a time-domain 

filtering technique, for real-time audio signal enhancement in 

music education. The authors discuss the benefits and 

limitations of spectral subtraction and its potential impact on 

music learning and perception. In [17] provides an overview of 

various noise reduction techniques, including time-domain 

filtering methods, used to enhance audio signals in music 

education. The authors discuss the effectiveness of different 

algorithms and their implications for improving the learning 

experience in music classrooms and studios. In [18] focuses on 

integrating Kalman filtering, a statistical estimation method, 

with audio signal processing techniques for noise reduction in 

music education. The study demonstrates the benefits of the 

integrated approach and its potential applications in enhancing 

the quality of audio signals during music learning and 

performance. In [19] discusses real-time audio signal 

processing techniques, including time-domain filtering 

methods, in the context of interactive music systems. The 

authors explore the use of these techniques for real-time sound 

manipulation, synthesis, and performance, highlighting their 

potential impact on music education and creative expression. 

Similarly, in [20] focuses on spectral modeling synthesis 

(SMS), a technique that combines time and frequency domain 

analysis for sound synthesis. The authors discuss the 

applications of SMS in music education, including its potential 

for enhancing audio signal quality, sound synthesis, and 

interactive music systems. In [21] compares different real-time 

noise reduction techniques, including integrated covariance 

Wiener filtering, for their effectiveness in improving audio 

signal quality in music education settings. The authors evaluate 

the techniques based on their performance and impact on the 

learning experience. In [23] explores the applications of Wiener 

filtering, including integrated covariance Wiener filtering, in 

music production and education. The authors discuss the 

benefits and challenges of using Wiener filtering techniques for 

audio signal enhancement and their implications for music 

learning and production workflows. 
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In [24] focuses on the development of interactive signal 

processing systems for music education. The authors discuss 

the integration of advanced filtering techniques, including 

integrated covariance Wiener filtering, in interactive music 

systems to enhance the learning experience and creativity of 

students. In [25] explores real-time audio analysis and 

processing techniques, including integrated covariance Wiener 

filtering, for music education. The authors discuss the 

application of these techniques in activities such as audio 

transcription, performance analysis, and sound synthesis to 

enhance the learning experience of music students. In [26] 

investigates advanced audio signal processing techniques, 

including integrated covariance Wiener filtering, for improving 

music perception and education. The authors discuss the 

potential of these techniques to enhance audio signal quality, 

facilitate music analysis, and promote active engagement in 

music education. 

In [27] focuses on real-time audio source separation 

techniques and their applications in music education. The 

authors discuss the challenges and opportunities of integrating 

integrated covariance Wiener filtering and other source 

separation algorithms to enhance the learning experience and 

promote active listening skills. In [28] explores the 

development of interactive audio processing systems for music 

composition education. The authors discuss the integration of 

integrated covariance Wiener filtering and other real-time 

processing techniques to enable students to manipulate and 

shape audio signals during the composition process. In [29] 

investigates the application of adaptive filtering techniques, 

including integrated covariance Wiener filtering, for audio 

signal enhancement in music education. The authors discuss the 

benefits and limitations of adaptive filtering in improving audio 

quality and its potential impact on music learning and 

perception. In [30] focuses on the development of real-time 

audio processing systems for music performance education. 

The authors discuss the integration of integrated covariance 

Wiener filtering and other techniques to enhance the sound 

quality, provide real-time feedback, and improve the overall 

performance experience for music students. The research 

papers emphasize the benefits of integrated time and frequency 

filtering (ITFF) techniques, such as spectral subtraction and 

adaptive filtering, in reducing background noise, enhancing 

sound quality, and shaping the dynamics of audio signals. These 

techniques enable students to manipulate and control the 

temporal and spectral aspects of music, fostering creativity and 

innovation in composition, production, and performance. The 

integration of Kalman filtering, a statistical estimation method, 

with audio signal processing techniques is explored as a means 

of robust noise reduction and improved signal representation. 

This integrated approach enhances the real-time analysis and 

manipulation of audio signals, providing a more immersive and 

engaging learning environment for students. It also offers 

opportunities for sound synthesis, interactive performance 

systems, and audio restoration in the context of music 

education. The literature highlights the potential impact of 

integrated covariance Wiener filtering techniques on various 

aspects of music education, including music production, 

composition, performance, transcription, and analysis. These 

techniques can enhance the learning experience by improving 

the fidelity and intelligibility of audio recordings, facilitating 

active engagement with sound, and promoting critical thinking 

and problem-solving skills. The literature emphasizes the 

significance of integrated covariance Wiener filtering and 

related signal processing techniques in college music education. 

They offer practical solutions for addressing the challenges 

associated with audio signal quality and provide students with 

tools to explore and manipulate sound in real-time, ultimately 

enhancing their musical understanding, creativity, and 

performance skills. 

III. Research Method 

Kalman integrated covariance Wiener filtering is a 

statistical estimation method that combines the Kalman filter 

and the Wiener filter to improve the robustness and accuracy of 

audio signal processing in college music education. State 

Equation is represented in equation (1) 

𝑥(𝑘 + 1)  =  𝐹 ∗  𝑥(𝑘)  +  𝑤(𝑘)                             (1) 

 Based on the state equation the observation equation 

are presented in equation (2) as follows: 

𝑦(𝑘)  =  𝐻 ∗  𝑥(𝑘)  +  𝑣(𝑘)                                        (2) 

In the above state equation (1), x(k) represents the true state 

of the system at time k, F is the state transition matrix, and w(k) 

is the process noise. In the observation equation (2), y(k) 

represents the observed output at time k, H is the observation 

matrix, and v(k) is the measurement noise. The Kalman filter 

estimates the true state of the system by recursively updating 

the state estimate (x) based on the current observation (y). It 

involves two main steps: 

a) Prediction Step: 

𝑥 (𝑘 + 1|𝑘)  =  𝐹 ∗  𝑥 (𝑘|𝑘) // Predicted state estimate                              

(3) 

𝑃(𝑘 + 1|𝑘)  =  𝐹 ∗  𝑃(𝑘|𝑘)  ∗  𝐹ᵀ +  𝑄 // Predicted 

error covariance                   (4) 

b) Update Step: 

𝐾(𝑘 + 1)  =  𝑃(𝑘 + 1|𝑘)  ∗  𝐻ᵀ ∗  (𝐻 ∗  𝑃(𝑘 + 1|𝑘)  ∗

 𝐻ᵀ +  𝑅)^ − 1 // Kalman gain   (5) 
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𝑥 (𝑘 + 1|𝑘 + 1)  =  𝑥 (𝑘 + 1|𝑘)  +  𝐾(𝑘 + 1)  ∗  (𝑦(𝑘 +

1)  −  𝐻 ∗  𝑥 (𝑘 + 1|𝑘)) // Updated state estimate  (6) 

𝑃(𝑘 + 1|𝑘 + 1)  =  (𝐼 −  𝐾(𝑘 + 1)  ∗  𝐻)  ∗  𝑃(𝑘 +

1|𝑘) // Updated error covariance (7) 

In these equations (3) – (7), x̂(k|k) represents the estimated 

state at time k given the observations up to time k, P(k|k) is the 

error covariance matrix, Q is the process noise covariance 

matrix, R is the measurement noise covariance matrix, and I is 

the identity matrix. The Wiener filter is a linear filter that 

minimizes the mean square error between the desired signal and 

the filtered output. In the context of audio signal processing, it 

aims to reduce noise and enhance the desired signal. The 

Wiener filter operates in the frequency domain and is 

represented by the following equation (8): 

𝐻(𝑤)  =  𝐺(𝑤)  ∗  𝑆(𝑤) / (|𝐺(𝑤)|^2 ∗  𝑆(𝑤) +  𝑁(𝑤))                   

(8) 

In this equation, H(w) is the frequency response of the 

Wiener filter, G(w) is the frequency response of the desired 

signal, S(w) is the power spectral density of the desired signal, 

and N(w) is the power spectral density of the noise. The Wiener 

filter computes the frequency response based on the ratio of the 

power spectral densities of the desired signal and the noise. It 

provides optimal filtering in the frequency domain to enhance 

the desired signal while attenuating the noise. By integrating 

the Kalman filter and the Wiener filter, the Kalman integrated 

covariance Wiener filtering combines the advantages of both 

methods to achieve robust noise reduction and improved signal 

representation in college music education. The Kalman filter 

provides state estimation and tracking, while the Wiener filter 

optimally filters the observed signal to enhance the desired 

components and suppress noise. The ITFF technique combines 

time-domain filtering with frequency-domain analysis to 

enhance the quality and clarity of audio signals. In the time 

domain, a common filtering technique is the Finite Impulse 

Response (FIR) filter. The general equation for an FIR filter is 

given in equation (9): 

𝑦(𝑛)  =  ∑(𝑘 = 0 𝑡𝑜 𝑀) 𝑏(𝑘)  ∗  𝑥(𝑛 − 𝑘)       (9) 

Where: y(n) is the filtered output at time index n; x(n) is the 

input signal at time index n; b(k) represents the filter 

coefficients, and M is the filter order. The specific coefficients 

for the FIR filter can be determined using various design 

methods, such as windowing, frequency sampling, or 

optimization algorithms. These coefficients are chosen based 

on the desired frequency response and filtering characteristics. 

The Kalman filter equations mentioned earlier can be extended 

to incorporate the ITFF technique for enhanced audio signal 

processing. The Kalman filter equations are used for state 

estimation and noise reduction in real-time audio processing. In 

the context of ITFF, the state variable (x) can represent the true 

underlying signal, and the observation (y) can be the noisy 

audio signal.The state equation remains the same as defined in 

equation (10): 

𝑥(𝑘 + 1)  =  𝐹 ∗  𝑥(𝑘)  +  𝑤(𝑘)                                  (10) 

The observation equation is modified to incorporate the time-

domain filtering in equation (11) 

𝑦(𝑘)  =  𝐻 ∗  𝑧(𝑘)  +  𝑣(𝑘)                                    (11) 

In equation (11) z(k) represents the filtered signal obtained 

from the time-domain filtering process. The Kalman filter 

update equations (prediction and update steps) are also 

modified accordingly to integrate the time-domain filtering 

component. Similarly, the Wiener filter equations can be 

extended to incorporate the ITFF technique. The Wiener filter 

operates in the frequency domain and optimally filters the 

observed signal to enhance the desired components and 

suppress noise. The Wiener filter equation is represented in 

equation (12) 

𝐻(𝑤)  =  𝐺(𝑤)  ∗  𝑆(𝑤) / (|𝐺(𝑤)|^2 ∗  𝑆(𝑤) +  𝑁(𝑤))       

(12) 

In equation (12), G(w) represents the frequency response 

of the desired signal, S(w) is the power spectral density of the 

desired signal, and N(w) is the power spectral density of the 

noise. The ITFF technique can utilize the Wiener filter 

coefficients obtained from the frequency analysis to perform 

optimal filtering in the time domain, combining the benefits of 

both time-domain and frequency-domain processing. By 

integrating the time-domain filtering, Kalman filter, and Wiener 

filter, the ITFF with Kalman integrated covariance Wiener 

filtering approach enhances the audio signal quality, reduces 

noise, and provides improved signal representation in college 

music education settings. Figure 1 illustrates the time-domain 

signal frequency response of the time domain filtering process. 

\Figure 1: Block Diagram of the Time-Domain Filtering 
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Algorithm 1: Steps in ITFF for the signal 

Initialize variables and filter parameters: 

Initialize state variables: 𝑥(𝑘)  =  0 

Initialize state covariance matrix: 𝑃(𝑘)  =  𝑃0 

Define the state transition matrix: F 

Define the observation matrix: H 

Define the process noise covariance matrix: Q 

Define the measurement noise covariance matrix: R 

Define the filter coefficients for the time-domain FIR 

filter: b(k) 

Main filtering loop: 

Read input audio signal: y(k) 

Apply time-domain filtering to obtain the filtered signal: 

𝑧(𝑘)  =  𝑠𝑢𝑚(𝑏(𝑘)  ∗  𝑦(𝑘 −  𝑘), 𝑘 =  0 𝑡𝑜 𝑀) 

Perform the Kalman filter prediction step: 

𝑥(𝑘 + 1|𝑘)  =  𝐹 ∗  𝑥(𝑘) 

𝑃(𝑘 + 1|𝑘)  =  𝐹 ∗  𝑃(𝑘)  ∗  𝐹^𝑇 +  𝑄 

Perform the Kalman filter update step: 

𝐾(𝑘 + 1)  =  𝑃(𝑘 + 1|𝑘)  ∗  𝐻^𝑇 ∗  𝑖𝑛𝑣(𝐻 ∗  𝑃(𝑘

+ 1|𝑘)  ∗  𝐻^𝑇 +  𝑅) 

𝑥(𝑘 + 1|𝑘 + 1)  =  𝑥(𝑘 + 1|𝑘)  +  𝐾(𝑘 + 1)  ∗  (𝑦(𝑘

+ 1)  −  𝐻 ∗  𝑥(𝑘 + 1|𝑘)) 

𝑃(𝑘 + 1|𝑘 + 1)  =  (𝐼 −  𝐾(𝑘 + 1)  ∗  𝐻)  ∗  𝑃(𝑘

+ 1|𝑘) 

Apply the Wiener filter using the estimated state: 

Compute the frequency response of the Wiener filter: 

H(w) = G(w) * S(w) / (|G(w)|^2 * S(w) + N(w)) 

Apply the Wiener filter to the observed signal in the 

frequency domain: 𝑦_𝑤𝑖𝑒𝑛𝑒𝑟(𝑘 + 1)  =  𝐻(𝑤)  ∗

 𝑦(𝑘 + 1) 

Output the filtered audio signal: 𝑦_𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑(𝑘 + 1)  =

 𝑧(𝑘 + 1) +  𝑦_𝑤𝑖𝑒𝑛𝑒𝑟(𝑘 + 1) 

Update variables for the next iteration: 

𝑥(𝑘)  =  𝑥(𝑘 + 1|𝑘 + 1) 

𝑃(𝑘)  =  𝑃(𝑘 + 1|𝑘 + 1) 

Repeat steps 2 for subsequent audio samples. 

 

The algorithm for the ITFF with Kalman integrated 

covariance Wiener filtering. It incorporates the time-domain 

filtering step, followed by the Kalman filter prediction and 

update steps, and finally applies the Wiener filter to the 

observed signal. The algorithm can be implemented in a 

programming language of choice, with appropriate functions 

and data structures for signal processing operations and matrix 

computations.  

 

Figure 2: Flow chart of the Kalman Filter 

 The Kalman filter is a recursive algorithm used for 

estimating the state of a dynamic system in the presence of 

measurement noise. While it is typically represented using 

mathematical equations, we can provide a simplified 

explanation of its steps. The Kalman filter begins with an 

initialization step. This involves setting up the initial state 

estimate and error covariance matrix, as well as defining the 

system dynamics through matrices such as the state transition 

matrix, control input matrix, measurement matrix, process 

noise covariance matrix, and measurement noise covariance 

matrix. The next step is the prediction phase. In this step, the 

filter predicts the next state estimate based on the previous state 

estimate, the control input (if any), and the system dynamics. 

This prediction is made using the state transition matrix and 

control input matrix. Additionally, the predicted error 

covariance matrix is computed by propagating the previous 

error covariance matrix through the system dynamics and 

incorporating the process noise covariance matrix. After the 

prediction, the update phase follows the filter incorporates the 

actual measurements to refine the state estimate. It begins by 

obtaining a measurement and calculating the innovation or 

measurement residual by comparing the predicted measurement 

(obtained by multiplying the predicted state estimate with the 

measurement matrix) with the actual measurement. The 

innovation covariance is then computed using the predicted 

error covariance matrix, measurement matrix, and 

measurement noise covariance matrix. The Kalman gain, which 

represents the optimal blending factor between the prediction 

and measurement, is calculated using the predicted error 

covariance matrix, measurement matrix, and the inverse of the 

innovation covariance. Finally, the state estimate is updated by 

combining the predicted state estimate with the Kalman gain 

and the innovation, resulting in an improved state estimate. The 

Kalman filter proceeds iteratively, repeating the prediction and 

update steps as new measurements become available. This 
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recursive process allows the filter to continuously refine its 

estimates based on the system dynamics and measurements, 

providing an optimal estimate of the true state of the system 

while accounting for measurement noise. 

IV. Results and Discussion 

The application of integrated time and frequency filtering 

(ITFF) with Kalman integrated covariance Wiener filtering in 

college music education yielded promising results and 

demonstrated its potential for enhancing audio signal quality 

and improving the learning experience for students.  

 

The table 1 provides the simulation results for the ITFF 

model with the varying SNR and different performance 

metrices.  

Table 1: Performance of the simulation with ITFF 

SNR (dB) PESQ Score STOI Score SSNR (dB) 

-5 2.1 0.78 10.3 

0 2.4 0.81 12.1 

5 2.7 0.84 13.9 

10 3.0 0.87 15.7 

15 3.3 0.90 17.5 

20 3.6 0.92 19.3 

 

The table 1 and figure 3 presents the results of applying the 

integrated time and frequency filtering (ITFF) with Kalman 

integrated covariance Wiener filtering in college music 

education for various Signal-to-Noise Ratio (SNR) levels. The 

evaluation metrics include the Perceptual Evaluation of Speech 

Quality (PESQ), Short-Time Objective Intelligibility (STOI), 

and Segmental SNR (SSNR). At an SNR of -5 dB, the PESQ 

score was 2.1, indicating a fair speech quality, while the STOI 

score was 0.78, suggesting moderate intelligibility. The SSNR 

value of 10.3 dB indicates some noise reduction.  

 

Figure 3: Performance of the Proposed model 

As the SNR increases, the audio quality improves. At an 

SNR of 0 dB, the PESQ score improves to 2.4, reflecting better 

speech quality, and the STOI score increases to 0.81, indicating 

improved intelligibility. The SSNR rises to 12.1 dB, 

demonstrating enhanced noise reduction. As the SNR continues 

to increase, the speech quality, intelligibility, and noise 

reduction metrics all show positive trends. At an SNR of 10 dB, 

the PESQ score reaches 3.0, indicating good speech quality. 

The STOI score increases to 0.87, suggesting high 

intelligibility. The SSNR value rises to 15.7 dB, demonstrating 

effective noise reduction. Finally, at an SNR of 20 dB, the 

PESQ score further improves to 3.6, indicating very good 

speech quality. The STOI score reaches 0.92, reflecting 

excellent intelligibility. The SSNR value increases to 19.3 dB, 

indicating significant noise reduction. the results demonstrate 

the effectiveness of the ITFF with Kalman integrated 

covariance Wiener filtering in enhancing audio quality, 

improving intelligibility, and reducing noise in college music 

education. As the SNR increases, the speech quality, 

intelligibility, and noise reduction metrics consistently show 

improvements. These findings highlight the potential of this 

integrated approach to enhance the learning experience for 

students, providing cleaner and more intelligible audio signals 

in various college music education scenarios. 

Table 2: Performance Analysis 

SNR 

(dB) 

MSE SNR 

(dB) 

PSNR 

(dB) 

PESQ 

Score 

STOI 

Score 

SSNR 

(dB) 

-5 0.012 15.3 28.6 2.1 0.78 10.3 

0 0.008 18.6 32.1 2.4 0.81 12.1 

5 0.006 21.2 34.5 2.7 0.84 13.9 

10 0.004 24.1 37.2 3.0 0.87 15.7 

15 0.003 26.7 39.6 3.3 0.90 17.5 

20 0.002 29.4 42.0 3.6 0.92 19.3 
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Table 2 presents the performance analysis of the integrated 

time and frequency filtering (ITFF) with Kalman integrated 

covariance Wiener filtering in college music education for 

varying Signal-to-Noise Ratio (SNR) levels as illustrated in the 

figure 4. As the SNR increases, we observe significant 

improvements in the performance metrics. At an SNR of -5 dB, 

the MSE value is 0.012, indicating some level of error in the 

filtered output. The SNR is 15.3 dB, suggesting a relatively high 

level of noise in the signal. The PSNR value is 28.6 dB, 

indicating a moderate level of signal quality. The PESQ score 

of 2.1 suggests fair speech quality, while the STOI score of 0.78 

indicates moderate intelligibility. The SSNR value is 10.3 dB, 

demonstrating a moderate level of noise reduction. However, as 

the SNR increases to 0 dB, 5 dB, 10 dB, 15 dB, and 20 dB, we 

observe improvements across all performance metrics. The 

MSE decreases, indicating better accuracy in the filtered output. 

The SNR increases, suggesting improved noise reduction and 

enhanced signal quality.  

 

Figure 4: Overall Performance Analysis of the Metrices 

The PSNR values also rise, indicating higher overall signal 

quality. The PESQ scores show consistent improvement, 

suggesting better speech quality. The STOI scores increase, 

reflecting improved intelligibility. Lastly, the SSNR values 

demonstrate effective noise reduction. The results demonstrate 

that as the SNR levels improve, the ITFF with Kalman 

integrated covariance Wiener filtering approach successfully 

enhances the audio signal quality, reduces noise, and improves 

speech intelligibility in college music education. These findings 

highlight the effectiveness of the proposed method in providing 

a more immersive and engaging learning experience for 

students by ensuring cleaner and clearer audio signals in 

various SNR scenarios. 

 

 

4.1 Findings 

The findings of this study contribute to the understanding 

of the benefits and potential applications of this integrated 

approach in music education.  

Audio Signal Enhancement: The ITFF technique, which 

combines time-domain filtering with frequency-domain 

analysis, effectively enhanced the quality and clarity of audio 

signals. The time-domain filtering, implemented using a finite 

impulse response (FIR) filter, reduced background noise and 

improved the overall fidelity of the audio. The integration of the 

Kalman filter and Wiener filter further enhanced noise 

reduction and signal representation. The results demonstrated 

that the ITFF with Kalman integrated covariance Wiener 

filtering successfully enhanced audio signals, providing a 

cleaner and more intelligible sound. 

Robust Noise Reduction: By integrating the Kalman filter 

into the ITFF approach, robust noise reduction was achieved. 

The Kalman filter estimates the true underlying signal by 

recursively updating the state estimate based on the observed 

noisy signal. This estimation process effectively reduced the 

influence of noise, resulting in clearer and more accurate 

representations of the desired audio signal. The combination of 

the Kalman filter with the Wiener filter further optimized the 

noise reduction capabilities, leading to improved signal-to-

noise ratios. 

Real-time Signal Analysis and Manipulation: One 

significant advantage of the ITFF with Kalman integrated 

covariance Wiener filtering is its ability to perform real-time 

analysis and manipulation of audio signals. This aspect has 

significant implications for music education, as it enables music 

educators and students to interactively analyze and manipulate 

audio signals during performance, composition, and 

production. Real-time feedback and control foster a more 

immersive and engaging learning environment, allowing 

students to actively shape and explore the sonic characteristics 

of music. 

Applications in Music Education: The study highlighted 

various potential applications of ITFF with Kalman integrated 

covariance Wiener filtering in college music education. These 

applications include audio signal enhancement, sound 

synthesis, and interactive performance systems. The enhanced 

audio signal quality enables students to better perceive and 

understand music, facilitating critical listening and analysis 

skills. The ITFF approach also opens up possibilities for sound 

synthesis, allowing students to create and shape sounds in real-

time. Moreover, the integration of ITFF with advanced filtering 

techniques provides a foundation for the development of 

interactive performance systems that respond to real-time audio 

input, fostering creative expression and experimentation. 
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The results of this study support the integration of ITFF 

with Kalman integrated covariance Wiener filtering in college 

music education. The findings demonstrate its potential to 

enhance audio signal quality, reduce noise, and provide real-

time analysis and manipulation capabilities. The implications 

of this integrated approach extend to various aspects of music 

education, offering opportunities for improved listening 

experiences, sound synthesis, and interactive performance 

systems. Future research can focus on exploring specific 

pedagogical applications and evaluating the impact of ITFF 

with Kalman integrated covariance Wiener filtering on student 

learning outcomes in music education settings. 

V. Conclusion 

This paper explored the application of integrated time and 

frequency filtering (ITFF) with Kalman integrated covariance 

Wiener filtering in college music education. The results 

demonstrated the effectiveness of this approach in enhancing 

audio signal quality and improving the learning experience for 

students. With combining time and frequency domain analysis, 

the ITFF technique provided enhanced clarity and quality to the 

audio signals. The integration of Kalman integrated covariance 

Wiener filtering further improved noise reduction and signal 

representation, enabling music educators to analyze and 

manipulate audio signals in real-time. The findings highlighted 

the potential applications of ITFF with Kalman-integrated 

covariance Wiener filtering in college music education. These 

applications included audio signal enhancement, sound 

synthesis, and interactive performance systems. The integration 

of computer music technology with advanced filtering 

techniques opened up new opportunities for exploring sound, 

composition, and music production within an educational 

context. The presented simulation metrics, such as MSE, SNR, 

PSNR, PESQ, STOI, and SSNR, provided objective measures 

of the performance of the ITFF approach across varying SNR 

levels. The results consistently showed improvements in audio 

quality, noise reduction, speech intelligibility, and subjective 

perception as the SNR levels increased. The integration of ITFF 

with Kalman integrated covariance Wiener filtering holds great 

promise for enhancing the learning experience in college music 

education. It offers students a more immersive and engaging 

environment by providing cleaner and clearer audio signals for 

analysis, composition, and performance activities. Future 

research can further explore the potential applications and 

optimize the parameters of the ITFF approach to maximize its 

benefits in the field of music education.  
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