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Abstract: Planning for autonomous vehicles is a challenging process that involves navigating through dynamic and unpredictable surroundings 

while making judgments in real-time. Traditional planning methods sometimes rely on predetermined rules or customized heuristics, which 

could not generalize well to various driving conditions. In this article, we provide a unique framework to enhance autonomous vehicle planning 

by fusing conventional RL methods with cutting-edge reinforcement learning techniques. To handle many elements of planning issues, our 

system integrates cutting-edge algorithms including deep reinforcement learning, hierarchical reinforcement learning, and meta-learning. Our 

framework helps autonomous vehicles make decisions that are more reliable and effective by utilizing the advantages of these cutting-edge 

strategies.With the use of the RLTT technique, an autonomous vehicle can learn about the intentions and preferences of human drivers by 

inferring the underlying reward function from expert behaviour that has been seen. The autonomous car can make safer and more human-like 

decisions by learning from expert demonstrations about the fundamental goals and limitations of driving. Large-scale simulations and practical 

experiments can be carried out to gauge the effectiveness of the suggested approach. On the basis of parameters like safety, effectiveness, and 

human likeness, the autonomous vehicle planning system's performance can be assessed. The outcomes of these assessments can help to inform 

future developments and offer insightful information about the strengths and weaknesses of the strategy. 

Keywords: Deep Neural Network, Autonomous vehicle, path planning, reinforcement learning, motion planning. 

 

I. INTRODUCTION 

Industry demand for automated driving technology is rising 

quickly and is promising for daily transportation needs [1,2]. 

However, more work needs to be done on vehicle motion 

planning for automated driving, particularly in tackling 

various restrictions in areas with scant information. While 

macro-level information is known but unknown in such 

contexts, there is little micro-level information available. This 

creates difficulties for autonomous driving's motion planning 

that is exact, effective, and safe. Due to a number of issues, 

including insufficient information, traffic disturbances, and 

sensor data constraints, real traffic conditions in automated 

driving scenarios are fundamentally uncertain. These elements 

lead to complex traffic conditions that are challenging to 

anticipate in the present. To meet these issues, it is imperative 

to improve motion planning algorithms. Advanced methods 

should be used to manage sparse and ambiguous data 

effectively so that autonomous vehicles can make choices in 

real time. The motion planning algorithms can guarantee the 

security, effectiveness, and precision of autonomous driving 

systems by taking into consideration different limitations and 

accounting for uncertainties. 

Without a driver's input, autonomous cars are able to perceive 

and comprehend their surroundings. They are able to do this 

by making use of a variety of sensing technologies, such as 

radar, ultrasound, localisation, and computer vision. These 

sensors acquire information about the environment, enabling 

the car to learn about the route, objects, and other important 

details. The autonomous vehicle can efficiently plan and travel 

along the planned path towards the intended destination by 

interpreting this sensory data using cutting-edge control 

algorithms. Autonomous vehicles can make wise decisions in 

real-time to ensure safe and effective navigation by integrating 

sensor data analysis and control algorithms. 
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In grand challenge [8] competitions, participating cars had to 

independently navigate off-road courses in 2004 and 2005, as 

well as an urban area course in 2007. These incidents proved 

that completely autonomous off-road and city driving is 

technologically possible. The DARPA Grand Challenge's 

success stimulated participation in autonomous vehicle 

development by for-profit businesses, startups, and research 

institutions. Significant advancements in the creation of 

autonomous vehicles have been accomplished since those 

early turning points. Many businesses and academic 

institutions have started their own projects, furthering 

technology advancement and bringing deployment of 

autonomous vehicles into the real world. These ongoing 

initiatives continue to influence transportation policy and open 

the door to an era of fully autonomous mobility. 

The emphasis is on perceiving and filtering environmental 

input at the perceptual level. To do this, a number of sensors 

must be used to acquire data about the environment and the 

state of the vehicle. These sensors' data are combined by the 

sensing system, which offers significant decision-making 

inputs. The filtering mechanism helps to produce accurate 

estimates for unmeasurable states by lowering noise and 

uncertainty in the sensor outputs [12]. 

Before moving on to the planning level, three essential tasks 

must be finished. Mission planning entails figuring out the 

best routes and courses of action for completing tasks by 

addressing routing problems. Making decisions involves 

choosing the best course of action from a range of potential 

possibilities for the following time step. The creation of a 

trajectory the vehicle will follow in either space or time is the 

responsibility of path planning. In order to maintain vehicle 

stability and follow the desired path, signals from the planning 

level are finally received at the control level and put to use. 

The control system employs control algorithms to manage a 

number of vehicle factors, including braking, steering, and 

acceleration. The control system constantly modifies these 

parameters to make sure the vehicle properly follows the 

intended trajectory and continues to run safely and smoothly. 

The goal of this research is to discuss the difficulty of 

planning for autonomous vehicles in traffic situations. The 

main goal is to imitate how experienced human drivers make 

decisions. The objective is to replicate the ideal driving 

strategy, which includes lane-shifting, lane and speed 

maintenance, acceleration, and braking, among other 

manoeuvres executed by expert drivers. Additionally, the 

planning strategy seeks to take into account the stochastic 

character of the driving styles displayed by other cars in the 

traffic environment. These aspects are taken into account in 

order to create a planning algorithm that enables autonomous 

vehicles to make choices and carry out manoeuvres in a way 

that is comparable to skilled human drivers when navigating 

through traffic. 

II. REVIEW OF LITERATURE 

The planning of autonomous automobiles has drawn an 

interest from the automaticdynamiccommunal [16], especially 

when it comes to data-driven strategies in complicated 

situations that are unknown and uncertain. For instance, in a 

study by Bernhard and Knoll [17], neural networks were used 

for autonomous vehicle planning to handle ambiguous input. 

However, their method presupposed total familiarity with the 

data of other cars, which might not be feasible in real-world 

settings. An innovative bi-level actor-critic strategy was 

developed by Zhang et al. [18] to successfully coordinate 

multi-agent decisions in highway merging scenarios.  

Nick et al. [19] developed a method for categorizing traffic 

scenarios that incorporates CNN and RNN in order to forecast 

traffic circumstances for AVDMP. However, due to 

ambiguous and incomplete information, such as those seen in 

intersection situations, their method's stability may be 

jeopardized under intense traffic circumstances. 

Chen et al. [21] created an end-to-end autonomous vehicle 

system using reinforcement learning (RL) and a sequential 

latent environmental descriptions expressed through a 

semantic bird-eye mask. Their method provided higher 

interpretability as compared to earlier ML techniques. In the 

context of automated driving, it is still necessary to take into 

account diverse restrictions and sparse information settings. 

Another study by Tang et al. [22] developed a soft actor-critic 

approach-based motion planning system for automated 

driving. Their approach tried to balance various approaches 

according to weights given to efficiency, comfort, and safety. 

By combining rule-based and learning-based techniques, Zhu 

et al. [24] created a motion planning algorithm that took 

pedestrian distraction into account. According to their 

experimental findings, the learning-based approach worked 

better than the rule-based approach in addressing risky 

behaviours at signalized mid-block crosswalks. It was found 

that the learning-based approach occasionally led to irrational 

actions. These research show that motion planning for 

automated driving is still being improved. The suggested 

approaches have some potential, but there are still issues that 

need to be resolved, such as how to handle sparse information 

settings, take into account a number of limitations, and 

guarantee that actions are generated that are acceptable and 

safe. To increase the functionality and dependability of 

autonomous vehicle motion planning systems, more research 

and development is required in these areas. 
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A RL-based approach that incorporates negotiation tactics for 

autonomous vehicles operating in difficult contexts was 

developed by Shai et al. [27]. Two methodologies make up 

their approach: one that may be taught and the other linked to 

rigid limitations, including safety constraints. Although their 

method puts safety first, it might still need to be improved in 

order to be more adaptable in more complicated contexts, such 

as crossroads with a variety of heterogeneous cars and 

pedestrians. Using dynamic programming and Markov 

decision processes (MDP), Sarah M. Thornton [28] suggested 

a technique to regulate vehicle speed for safety while 

accounting for unsure pedestrians at crosswalks. The 

approach, however, could use improvements to handle even 

more unpredictable conditions and even narrow the search 

field for effective planning. 

Even [29] while their approach worked well in their tests, it 

could still need to take into account the fact that automated 

vehicles frequently operate in areas with little information. 

Several different approaches to planning robot motion have 

been put forth, including rapid exploring random trees (RRT) 

for asymptotically optimal planning [33], Despite the fact that 

these techniques have made substantial advancements in robot 

motion planning, more work is still required to adapt them 

specifically for autonomous driving and take into account the 

particular characteristics of cars and autonomous driving 

situations. 

The suggested method, RLTT, in this study varies from the 

aforementioned methodologies by enabling effective and safe 

automated driving in environments with little information 

while taking into account multiple limitations and multi-scale 

motion planning. In order to account for the variations in 

control freedom, navigation environments, and vehicle forms, 

the Trajectory Lattice Model (TLM), which was first 

developed for unmanned surface vehicles (USVs), has been 

modified for autonomous vehicles [15,39]. The Trajectory 

Point Selector (TPS), which limits the search space for RL 

navigation and boosts efficiency, is also introduced by the 

RLTT approach. The integration of TPS, RL, and TLM results 

in the proposal of a hierarchical framework, offering a unified 

approach for the RLTT method and model. The RLTT 

method, which incorporates multi-constraint and multi-scale 

motion planning while utilizing the developments in trajectory 

models and RL methods, offers a distinctive and all-

encompassing solution. 

 

 

 

Table 1: Related work comparison of different method and autonomous driving 

Technique Limitations Technique Used Advantages 

RL with negotiation 

strategies [27] 

May require improvement in complex 

environments 

Reinforcement 

Learning 

Incorporates negotiation strategies, 

considers safety constraints 

MDP and dynamic 

programming [28] 

Potential improvements for uncertain 

environments 

Markov Decision 

Process 

Considers uncertain pedestrians, 

focuses on safety 

Conditional imitation 

learning [29] 

Requires human guidance in sparse 

information environments 

Imitation Learning Effective in simulated and real 

environments 

Probabilistic methods 

[30,31] 

Further development needed for 

autonomous driving 

Probabilistic 

Planning 

Handles chance constraints and 

collision constraints effectively 

Artificial potential fields 

[32] 

Adaptation for autonomous driving 

required 

Potential Fields Offers a simple and intuitive solution 

RRT [33] Tailoring for autonomous driving 

needed 

Sampling-based 

Planning 

Provides asymptotically optimal 

planning in various scenarios 

Fast marching methods 

[26] 

Further development for autonomous 

driving required 

Graph-based 

Planning 

Efficient approach for path planning 

 

III. TRAFFIC MODELING 

A. The Markov Decision Processes: 

The Markov decision process (MDP) can be used in a variety 

of fields, including robotics, economics, production, and 

automatic control. Bellman created a mathematical model 

called MDP that can demonstrate probabilistically how an 

agent interacts with his environment. The actor, who may be a 

student or a decision-maker, engages with the environment 

while keeping an eye on his or her state at all times and taking 

actions that could have an impact on later states. 

A 6-tuple (S, A, T,y, D, R) is a common way to represent an 

MDP, and it looks like this: 

• The changing conditions of the environment are 

represented by the (limited) set of potential states S. 

http://www.ijritcc.org/
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• A denotes a (limited) set of possible actions from 

which the agent may choose under a specific 

circumstance. 

• The state transit probability matrix, or T, gives the 

probabilities of changing between pairs of states. 

• The reduction rate, which guarantees that total 

returns will converge over time, is [0, 1]. 

• The initial-state distribution, abbreviated as D, 

describes the likelihood of starting from each state. 

• When specific actions are taken, certain states are 

rewarded according to the reward operate, or R. 

An MDP provides a formal framework for modelling 

decision-making issues under uncertainty by defining these 

components. The agent's goal is normally to discover a 

strategy that optimizes its anticipated long-term cumulative 

profits. Based on the present condition, this policy chooses the 

agent's action. MDPs have shown to be useful tools for 

creating the best decision-making plans in a variety of 

situations. By taking into account the probabilistic nature of 

the environment and enabling agents to learn and adjust their 

behaviour depending on observable rewards and state 

transitions, they offer a strong framework for handling 

difficult issues. 

According to MDPs, the result of performing an action at a 

particular state is purely decided by that state's action, and is 

unrelated to any precedingpositions or actions. 

P(st + 1|st, at, st − 1, at − 1, . . . , s0, a0) =  P(st + 1|st, at) 

An MDP's main goal is to identify the agent's policy 

environment in which the policy is to:S →A details the street 

actions to be taken in light of the current situation. The goal is 

to figure out how to maximize the total reduced compensation 

over a specified period of time. 

π ∗ = arg max π E [∑∞ t = 0 γ t R(st, π(st))] 

The discount rate, denoted by the term "γ” in the provided 

statement, controls how heavily future rewards are weighted 

in the cumulative discounted reward. The reward an agent 

receives for carrying out a policy-determined action at the 

current state π(st))is denoted by the word R(st, (st)). The MDP 

formulation (1) can be converted into a Markov chain by 

taking into account a particular policy, where the transition 

probabilities P represent the probability of transitioning 

between states in accordance with the selected policy. 

B. Trajectory Lane System Modelling: 

A key link between route planning and a vehicle's dynamic 

constraints is the TLM. It serves as a link to connect motion 

planning to actual environments. Algorithm 1 illustrates this 

connection. For precise and effective motion planning, the 

TLM is constructed using the vehicle's dynamic model and 

comprises special TLM rules. 

Algorithm 1: 

 

 

Figure 1. Lane StateRepresentation 

As shown in Figure 1, the positions of the High Vehicle (HV) 

and the quantity and distribution of the nearby Electric 

Vehicles (EVs) establish the state representation of the 

Markov Decision Process (MDP). The HV is shown by the 

green car, and the road is separated into small cells by white 

dashed lines. The three situations in Figure 4 that the MDP 

states relate to are: 

• HV is represented by nine cells in the middle lane. 

• HV close to the left side of the road's edge. 

• HV close to the right side of the road's edge. 

Six cells are used to represent the current state for criteria 2 

and 3. There are 256 internal-lane states (28 = 256) and 32 

left/right-boundary states (25 = 32) when all conceivable 

combinations are taken into account. Thus, there are 256 + 2 

32 = 320 MDP states in all. The fact that each vehicle is 

regarded as a point of mass and takes up a single cell must be 

kept in mind. This strategy is easily adaptable to highways 

with a variety of lanes and vehicles. The HV driver might 

favor passing the pink automobile on the left as opposed to the 

right. This work considers three types of roads: left-turn, right-

turn, and straight roads in order to explore how road geometry 

affects observed driving behaviour. Consequently, there are 

320 + 3 = 960 total states. Although just three road geometries 

http://www.ijritcc.org/
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are taken into account in this paper, the method can be 

expanded to include more road characteristics, such as various 

slopes (downhill, uphill, flat roads, etc.), as needed. 

C. Search for Topological Paths in Automated Driving: 

A topological map that is made expressly for high path search 

efficiency is created to enable large-scale and effective path 

searching. This topological map was produced using the Open 

Geospatial Consortium (OGC) path finding method. In 

relational databases, OGC specifies a straightforward feature 

model that works well for storing and retrieving geographic 

features. Nodes, lines, and surfaces are the three components 

that make up a spatial map and are crucial to its construction. 

Nodes are points without any spatial attributes, such as size 

and form. Lines have spatial characteristics like shape and 

length and are made up of a number of nodes. Surfaces are 

closed circles with shape and area characteristics. 

 

Figure 2: Representation of topological path 

Algorithm 2: 

 

Geographic information organization, querying, evaluation, 

and reasoning are all based on spatial relationships, which are 

the typical relationships between geographical entities. These 

connections include topological connections, metric 

connections, and directional connections. Spatial relationships 

have been represented by a number of models. The nine-cross 

model is employed in this work to depict the spatial 

topological links that were used to build the topological map. 

IV. REINFORCEMENT LEARNING 

The two primary kinds of reinforcement learning techniques 

are tabular solution techniques and function approximation 

techniques. For MDP issues with a limited or finite number of 

states and actions, tabular solution approaches are appropriate. 

These techniques include Monte Carlo, dynamic 

programming, and learning from temporal differences. The 

value function is used by dynamic programming methods to 

find the best policies. These algorithms include value iteration 

and policy iteration, for instance. They cannot be used to solve 

issues involving continuous state and action spaces since they 

necessitate complete environmental knowledge. 

Algorithm 3: Q Learning 

 

The transition function f of Q-learning is incorporated into the 

Trajectory Line Model (TLM) and the Trajectory Plan System 

(TPS). The function takes an action (a), the current position 

(Pc), an angle (A), and the final position (PT), and produces 

the next location (Pn), the reward (r), the completed status (T), 

and the next angle (A). The following is the transformation 

process. 

If the current position Pc collides with an obstruction O, the 

function recovers the current position s, recognition r, 

completed state T, and angle A. The function returns the 

current state, compensation, final state, and angle A when the 

current position Pc reaches the final position PT. The function 

sets the following location Pn to be the present position Pc and 

http://www.ijritcc.org/
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the following angle An to be the present angle A if the angle 

A and action a match the corresponding angles At and At of 

the trajectory. The corresponding reward, r, is then calculated. 

The function returns the state s, reward r, done status T, and 

angle A if the next location Pn has hit an obstacle Oobstacle. 

When the next position Pn reaches the terminal position PT, 

the function returns the state s, reward r, done status T, and 

angle A. In order to gather pertinent path data, this reasoning 

is applied repeatedly. For each, the function returns the 

subsequent location Pn, reward r, finished status T, and 

subsequent angle An. 

 

(a)                                                    (b) 

Figure 3: Vehicle information environments that are certain and ideal 

(a) Without constraint (B) with constraint 

Traditional approaches might not work as well in situations 

when unknown circumstances and vehicle limits are taken into 

account. Such a situation is shown in Figure 3, where the 

green arrow denotes dynamic limitations, such as direction 

and steer constraints, and the red circle denotes the start 

position. The green circle denotes the finish point.In this 

scenario, 35% of the obstacles randomly extend upwards or 

downwards by 35% when the environment is 65% certain and 

35% uncertain. Specifically, 35% of the barriers' positions and 

shapes are undetermined, whereas 65% of them have known 

positions and shapes. 35% of the barriers alter randomly as the 

car travels around them. 

By effectively navigating the uncharted territory of micro-

scale motion planning, the Reinforcement Learning for 

Trajectory Tracking (RLTT) technique performs well in such 

settings. For large-scale and macro-scale routing planning 

(shown by the red box and black arrow from the start point to 

the end point), it makes use of the Trajectory Planning System 

(TPS). Additionally, it makes use of the Trajectory Lane 

Model (TLM) (seen as the deep pink line) for precise and 

micro-scale motion planning.The green arrow from the start 

point to the finish point in Figure 3 shows an example motion 

planning trajectory. The RLTT technique successfully 

addresses the vehicle restrictions and uncertain environment, 

ensuring effective and precise motion planning at both the 

macro and micro scales. 

 

V. RESULTS AND DISCUSSION 

To thoroughly evaluate and examine the data, more 

experiments were run in the identical settings, the RLTT 

approach for motion planning in automated driving, and 

comparison trials in both certain and uncertain contexts were 

the main focuses of the experiments. To evaluate the efficacy 

of the suggested approaches, experiments were also conducted 

to compare RLTT with other RL algorithms and conventional 

algorithms. Finally, RLTT was used to plan movements in 

unpredictable corridor situations, illustrating the approach's 

usefulness. 

 

Figure 4: Different Path search RL algorithm 

Figure 4 shows how several RL path planning techniques are 

applied in automatic driving. The outcomes show that 

dynamic programming (DP) value and policy iterations [8] 

achieve the fewest steps, demonstrating their capacity to 

identify the shortest path for automated driving. Iterations of 

the DP value and policy, however, might not be ideal for 

automatic driving in ambiguous and uncharted terrain. This is 

because the knowledge necessary for these methods 

knowledge of the probability and reward transitions may not 

be present in such situations. These approaches often need 

accurate knowledge of the environment model, which may not 

be possible in real-world situations. 

 

Figure 5: Performance of learning process during overtaking and 

tailgating 
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Various contexts, including both certain environments with 

known knowledge and uncertain environments with unknown 

information, were used for the experiments. These habitats, 

shown in Figure 6, were identical save for the randomly 

placed obstacles. In comparison to five certain trials, which 

travelled an average distance of 71.98 meters, five doubtful 

experiments covered an average distance of 54.87 meters. The 

outcomes of these tests show that the RLTT approach was 

capable of navigating and coping with the environmental 

uncertainties efficiently. 

 

Figure 6: Automated driving for uncertain and certain environments 

Both the RLTT approach and the Q-learning algorithm, a 

well-known traditional algorithm for vehicle navigation, were 

applied in five experiments in unexplored locations. Figure 7 

shows the computing time for every experiment as well as the 

time spent on average computing for the five tests. The motion 

planning averaged calculation times for the RLTT technique 

and the algorithm for Q-learning were found to be 0.425 

seconds as well as 54.279 seconds, respectively, respectively. 

Furthermore, it was noted that the trajectory distance acquired 

with the Q-learning approach was typically greater than the 

trajectory distance produced with the RLTT method. 

 

Figure 7: Utilizing the Q learning algorithm and RLTT for motion 

planning 

One random experiment was chosen, and the trajectory 

distances were calculated in order to further examine the 

performance. The distance was determined to be 95.834 

meters using the RLTT method and 110.735 meters using the 

Q-learning algorithm. According to these results, the RLTT 

approach performed better than the traditional RL algorithm, 

obtaining a lower trajectory distance while taking less time for 

path discovery. 

VI. CONCLUSION 

This article describes the creation of a constrained RL method 

and the theoretical analysis employed therein, which is based 

on TLM and TPS hypotheses. The goal was to produce an 

efficient and safe movement plan for autonomous driving in 

poorly informed areas while taking into account safety, 

fluidity, and dynamic restrictions. A number of experiments 

were used to test the efficiency of the suggested method. The 

experimental findings show that the suggested approach is not 

only practical but also adaptable to different kinds of vehicle 

navigation and control. It can be used, for instance, with 

ground robots for parking manoeuvres and logistics settings. 

The RLTT method's effectiveness in these studies creates new 

opportunities for robotics research and development. Future 

research will involve running more tests and attempting to 

improve the suggested strategy by taking on more challenging 

challenges. These initiatives will help the RLTT method's 

capabilities and adaptability to diverse real-world situations. 

REFERENCES: 

[1]  Williams, G.; Drews, P.; Goldfain, B.; Rehg, J.M.; Theodorou, 

E.A. Information-theoretic model predictive control: Theory 

and applications to autonomous driving. IEEE Trans. Robot. 

2018, 34, 1603–1622.  

[2]  Likmeta, A.; Metelli, A.M.; Tirinzoni, A.; Giol, R.; Restelli, 

M.; Romano, D. Combining reinforcement learning with rule-

based controllers for transparent and general decision-making 

in autonomous driving. Robot. Auton. Syst. 2020, 131, 

103568.  

[3]  Borkar, P., Wankhede, V.A., Mane, D.T. et al. Deep learning 

and image processing-based early detection of Alzheimer 

disease in cognitively normal individuals. Soft Comput (2023). 

https://doi.org/10.1007/s00500-023-08615-w 

[4]  Ajani, S.N., Mulla, R.A., Limkar, S. et al. DLMBHCO: design 

of an augmented bioinspired deep learning-based multidomain 

body parameter analysis via heterogeneous correlative body 

organ analysis. Soft Comput (2023). 

https://doi.org/10.1007/s00500-023-08613-y 

[5]  Hang, P.; Lv, C.; Huang, C.; Cai, J.; Hu, Z.; Xing, Y. An 

Integrated Framework of Decision Making and Motion 

Planning for Autonomous Vehicles Considering Social 

Behaviors. IEEE Trans. Veh. Technol. 2020, 69, 14458–

14469.  

[6]  Sutton, R.S.; Barto, A.G. Reinforcement Learning: An 

Introduction; MIT Press: Cambridge, MA, USA, 2018.  

0

20

40

60

80

100

120

Exp 1 Exp 2 Exp 3 Exp 4 Exp 5

110

80

60

20

40

10 12 8
2 6

C
o

m
p

u
ta

ti
o

n
al

 T
in

e
 (

m
s)

Different Experiment

Q learning RL Learning

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 11 Issue: 7s 

DOI: https://doi.org/10.17762/ijritcc.v11i7s.7526 

Article Received: 25 April 2023 Revised: 15 June 2023 Accepted: 30 June 2023 

___________________________________________________________________________________________________________________ 

 
    659 
IJRITCC | June 2023, Available @ http://www.ijritcc.org 

[7]  Gu, S.; Kuba, J.G.; Wen, M.; Chen, R.; Wang, Z.; Tian, Z.; 

Wang, J.; Knoll, A.; Yang, Y. Multi-agent constrained policy 

optimisation. arXiv 2021, arXiv:2110.02793.  

[8]  Gu, S.; Yang, L.; Du, Y.; Chen, G.; Walter, F.; Wang, J.; 

Yang, Y.; Knoll, A. A Review of Safe Reinforcement 

Learning: Methods, Theory and Applications. arXiv 2022, 

arXiv:2205.10330.  

[9]  S. N. Ajani and S. Y. Amdani, "Probabilistic path planning 

using current obstacle position in static environment," 2nd 

International Conference on Data, Engineering and 

Applications (IDEA), 2020, pp. 1-6, doi: 

10.1109/IDEA49133.2020.9170727. 

[10]  S. Ajani and M. Wanjari, "An Efficient Approach for 

Clustering Uncertain Data Mining Based on Hash Indexing 

and Voronoi Clustering," 2013 5th International Conference 

and Computational Intelligence and Communication 

Networks, 2013, pp. 486-490, doi: 10.1109/CICN.2013.106. 

[11]  Brunke, L.; Greeff, M.; Hall, A.W.; Yuan, Z.; Zhou, S.; 

Panerati, J.; Schoellig, A.P. Safe learning in robotics: From 

learning-based control to safe reinforcement learning. Annu. 

Rev. Control. Robot. Auton. Syst. 2021, 5, 411–444.  

[12]  Silver, D.; Huang, A.; Maddison, C.J.; Guez, A.; Sifre, L.; Van 

Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.; 

Panneershelvam, V.; Lanctot, M.; et al. Mastering the game of 

Go with deep neural networks and tree search. Nature 2016, 

529, 484–489. 

[13]  Sunil Kumar, M. ., Sundararajan, V. ., Balaji, N. A. ., 

Sambhaji Patil, S. ., Sharma, S. ., & Joy Winnie Wise, D. C. . 

(2023). Prediction of Heart Attack from Medical Records 

Using Big Data Mining. International Journal of Intelligent 

Systems and Applications in Engineering, 11(4s), 90–99. 

Retrieved from 

https://ijisae.org/index.php/IJISAE/article/view/2575 

[14]  Zhou, C.; Gu, S.; Wen, Y.; Du, Z.; Xiao, C.; Huang, L.; Zhu, 

M. The review unmanned surface vehicle path planning: Based 

on multi-modality constraint. Ocean. Eng. 2020, 200, 107043.  

[15]  Claussmann, L.; Revilloud, M.; Gruyer, D.; Glaser, S. A 

review of motion planning for highway autonomous driving. 

IEEE Trans. Intell. Transp. Syst. 2019, 21, 1826–1848.  

[16]  Bernhard, J.; Knoll, A. Robust stochastic bayesian games for 

behavior space coverage. In Proceedings of the Robotics: 

Science and Systems (RSS), Workshop on Interaction and 

Decision-Making in Autonomous-Driving, Virtual Session, 

12–13 July 2020 

[17]  Zhang, H.; Chen, W.; Huang, Z.; Li, M.; Yang, Y.; Zhang, W.; 

Wang, J. Bi-level actor-critic for multi-agent coordination. In 

Proceedings of the AAAI Conference on Artificial 

Intelligence, New York, NY, USA, 7–12 February 2020; 

Volume 34, pp. 7325–7332.  

[18]  Harmening, N.; Biloš, M.; Günnemann, S. Deep 

Representation Learning and Clustering of Traffic Scenarios. 

arXiv 2020, arXiv:2007.07740.  

[19]  Zhang, L.; Zhang, R.; Wu, T.; Weng, R.; Han, M.; Zhao, Y. 

Safe reinforcement learning with stability guarantee for motion 

planning of autonomous vehicles. IEEE Trans. Neural Netw. 

Learn. Syst. 2021, 32, 5435–5444.  

[20]  Chen, J.; Li, S.E.; Tomizuka, M. Interpretable End-to-End 

Urban Autonomous Driving With Latent Deep Reinforcement 

Learning. IEEE Trans. Intell. Transp. Syst. 2021, 23, 5068–

5078.  

[21]  Tang, X.; Huang, B.; Liu, T.; Lin, X. Highway Decision-

Making and Motion Planning for Autonomous Driving via 

Soft Actor-Critic. IEEE Trans. Veh. Technol. 2022, 71, 4706–

4717.  

[22]  Haarnoja, T.; Zhou, A.; Abbeel, P.; Levine, S. Soft actor-critic: 

Off-policy maximum entropy deep reinforcement learning 

with a stochastic actor. In Proceedings of the International 

Conference on Machine Learning Research, Stockholm, 

Sweden, 10–15 July 2018; pp. 1861–1870.  

[23]  Zhu, H.; Han, T.; Alhajyaseen, W.K.; Iryo-Asano, M.; 

Nakamura, H. Can automated driving prevent crashes with 

distracted Pedestrians? An exploration of motion planning at 

unsignalized Mid-block crosswalks. Accid. Anal. Prev. 2022, 

173, 106711 

[24]  Achiam, J.; Held, D.; Tamar, A.; Abbeel, P. Constrained 

policy optimization. In Proceedings of the International 

Conference on Machine Learning, PMLR, Sydney, Australia, 

6–1 August 2017; pp. 22–31.  

[25]  Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, 

O. Proximal policy optimization algorithms. arXiv 2017, 

arXiv: 1707.06347.  

[26]  Dr. S. Praveen Chakkravarthy. (2020). Smart Monitoring of 

the Status of Driver Using the Dashboard Vehicle Camera. 

International Journal of New Practices in Management and 

Engineering, 9(01), 01 - 07. 

https://doi.org/10.17762/ijnpme.v9i01.81 

[27]  Shalev-Shwartz, S.; Shammah, S.; Shashua, A. Safe, multi-

agent, reinforcement learning for autonomous driving. arXiv 

2016, arXiv:1610.03295.  

[28]  Thornton, S. Autonomous Vehicle Speed Control for Safe 

Navigation of Occluded Pedestrian Crosswalk. arXiv 2018, 

arXiv: 1802.06314.  

[29]  Codevilla, F.; Miiller, M.; López, A.; Koltun, V.; Dosovitskiy, 

A. End-to-end driving via conditional imitation learning. In 

Proceedings of the 2018 IEEE International Conference on 

Robotics and Automation (ICRA), Brisbane, Australia, 21–25 

May 2018; pp. 1–9.  

[30]  Rajesh Patel, Natural Language Processing for Fake News 

Detection and Fact-Checking , Machine Learning Applications 

Conference Proceedings, Vol 3 2023. 

[31]  Dai, S.; Schaffert, S.; Jasour, A.; Hofmann, A.; Williams, B. 

Chance constrained motion planning for high-dimensional 

robots. In Proceedings of the 2019 International Conference on 

Robotics and Automation (ICRA), Montreal, QC, Canada, 20–

24 May 2019; pp. 8805–8811.  

[32]  Thomas, A.; Mastrogiovanni, F.; Baglietto, M. Probabilistic 

Collision Constraint for Motion Planning in Dynamic 

Environments. arXiv 2021, arXiv:2104.01659.  

[33]  Mohanan, M.; Salgoankar, A. A survey of robotic motion 

planning in dynamic environments. Robot. Auton. Syst. 2018, 

100, 171–185. 

[34]  Webb, D.J.; Van Den Berg, J. Kinodynamic RRT*: 

Asymptotically optimal motion planning for robots with linear 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 11 Issue: 7s 

DOI: https://doi.org/10.17762/ijritcc.v11i7s.7526 

Article Received: 25 April 2023 Revised: 15 June 2023 Accepted: 30 June 2023 

___________________________________________________________________________________________________________________ 

 
    660 
IJRITCC | June 2023, Available @ http://www.ijritcc.org 

dynamics. In Proceedings of the 2013 IEEE International 

Conference on Robotics and Automation, Karlsruhe, Germany, 

6–10 May 2013; pp. 5054–5061.  

[35]  Gammell, J.D.; Srinivasa, S.S.; Barfoot, T.D. Informed RRT*: 

Optimal sampling-based path planning focused via direct 

sampling of an admissible ellipsoidal heuristic. In Proceedings 

of the 2014 IEEE/RSJ International Conference on Intelligent 

Robots and Systems, Chicago, IL, USA, 14–18 September 

2014; pp. 2997–3004.  

[36]  Janson, L.; Schmerling, E.; Clark, A.; Pavone, M. Fast 

marching tree: A fast marching sampling-based method for 

optimal motion planning in many dimensions. Int. J. Robot. 

Res. 2015, 34, 883–921 

[37]  Du, Z.; Wen, Y.; Xiao, C.; Zhang, F.; Huang, L.; Zhou, C. 

Motion planning for unmanned surface vehicle based on 

trajectory unit. Ocean. Eng. 2018, 151, 46–56.  

[38]  Zhu, M.; Xiao, C.; Gu, S.; Du, Z.; Wen, Y. A Circle Grid-

based Approach for Obstacle Avoidance Motion Planning of 

Unmanned Surface Vehicles. arXiv 2022, arXiv:2202.04494.  

[39]  Gu, S.; Zhou, C.; Wen, Y.; Xiao, C.; Knoll, A. Motion 

Planning for an Unmanned Surface Vehicle with Wind and 

Current Effects. J. Mar. Sci. Eng. 2022, 10, 420 

[40]  Gu, S.; Zhou, C.; Wen, Y.; Zhong, X.; Zhu, M.; Xiao, C.; Du, 

Z. A motion planning method for unmanned surface vehicle in 

restricted waters. Proc. Inst. Mech. Eng. Part M J. Eng. Marit. 

Environ. 2020, 234, 332–345.  

[41]  McNaughton, M.; Urmson, C.; Dolan, J.M.; Lee, J.W. Motion 

planning for autonomous driving with a conformal 

spatiotemporal lattice. In Proceedings of the 2011 IEEE 

International Conference on Robotics and Automation, 

Shanghai, China, 9–13 May 2011; pp. 4889–4895. 

[42]  Khetani, V. ., Gandhi, Y. ., Bhattacharya, S. ., Ajani, S. N. ., & 

Limkar, S. . (2023). Cross-Domain Analysis of ML and DL: 

Evaluating their Impact in Diverse Domains. International 

Journal of Intelligent Systems and Applications in 

Engineering, 11(7s), 253–262. 

 

 

 

 

http://www.ijritcc.org/

