
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 6

DOI: https://doi.org/10.17762/ijritcc.v11i6.7260

Article Received: 30 March 2023 Revised: 28 April 2023 Accepted: 14 June 2023

103

IJRITCC | June 2023, Available @ http://www.ijritcc.org

Dynamic Offloading Technique for Latency-

Sensitive Internet of Things Applications using Fog

Computing

Priya Thomas1, Deepa V Jose2
1Research Scholar, Dept of Computer Science

2Associate Professor, Dept of Computer Science

 CHRIST (Deemed to be University)

Bangalore, India
1priya.thomas@res.christuniversity.in

2deepa.v.jose@christuniversity.in

Abstract—Internet of Things (IoT) has evolved as a novel paradigm that provides com-putation power to different entities connected to it.

IoT offers services to multiple sectors such as home automation, industrial automation, traffic management, healthcare sector, agriculture

industry etc. IoT generally relies on cloud data centers for extended analytics, processing and storage support. The cloud offers highly scalable

and robust platform for IoT applications. But latency sensitive IoT applications suffer delay issues as the cloud lies in remote location. Edge/fog

computing was introduced to overcome the issues faced by delay-sensitive IoT applications. These platforms lie close to the IoT network,

reducing the delay and response time. The fog nodes are usually distributed in nature. The data has to be properly offloaded to available fog

nodes using efficient strategies to gain benefit from the integration. Differ-ent offloading schemes are available in the literature to overcome

this prob-lem This paper proposes a novel offloading approach by combining two effi-cient metaheuristic algorithms, Honey Badger Algorithm

(HBA) and Fla-mingo Search Algorithm (FSA) termed as HB-FS algorithm. The HB-FS is executed in an iterative manner optimizing the

objective function in each it-eration. The performance evaluation of the proposed approach is done with different existing metaheuristic

algorithms and the evaluations show that the proposed work outperforms the existing algorithms in terms of latency, response time and

execution time. The methodology also offers better degree of imbalance with proper load balancing under different conditions.

Keywords- Task Offloading, Internet of Things, Latency sensitive IoT, Fog Computing, Quality of Service, Cloud Computing.

I. INTRODUCTION

Internet of things (IoT) has emerged as a promising

technology within a short span of time. The IoT has made life

smarter and more comfortable. It has drastically transformed the

way different applications operate. The old-fashioned cities and

homes have been made smart with an improved Quality of

Service (QoS) due to the integration of IoT. Due to millions of

connected applications, IoT generates huge amounts of data

every second. IoT nodes are energy-constrained and it generally

depends on cloud platforms to provide support for the storage

and analysis of generated data. Cloud data centers offer robust

and reliable services to connected applications based on pay per

use policy. Moreover, the cloud also helps to achieve the QoS

and quality of experience (QoE) requirements of the applications

[1]. Even though lots of applications benefit from this extension,

cloud being at a remote location suffers from few drawbacks.

The problem of single point of failure and higher response time

due to congestion in the path has to be addressed to make the

integration more acceptable. Fog computing was designed as an

extension to cloud computing where processing happens near the

edge of the connected network reducing the response time and

latency-related issues. The fog is distributed in nature solving the

problem of single point of failure. The terminology fog

computing lies synonymous with the terms: edge computing,

mist computing, micro cloudlets etc.

 Fog computing was designed to support real-time

applications with better reliability and improved security. Fog

also supports better load balancing and faster responses as it lies

in the edge of the network. Fog improves the scalability and data

confidentiality providing organizations a better control over their

resources lying within the premises of the organization network

[2]. Therefore, delay-sensitive ap-plications can rely on fog

computing for task offloading with minimum drainage of battery

life. This has framed the IoT-Fog-Cloud three-tier architecture

where IoT devices which generates input data forms the lower

most layer passes to intermediate fog layer which supports

distributed processing of the received data. The upper most layer

is the cloud layer which supports extended storage, processing

and analytics. This three-tier architecture has gained wide

popularity, especially for time-sensitive IoT applications. But

the fog layer also suffers from few drawbacks which needs to be

addressed to make the integration more powerful. The fog being

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 6

DOI: https://doi.org/10.17762/ijritcc.v11i6.7260

Article Received: 30 March 2023 Revised: 28 April 2023 Accepted: 14 June 2023

104

IJRITCC | June 2023, Available @ http://www.ijritcc.org

distributed in nature requires strong algorithms to offload the

incoming data to the available fog nodes. The storage and

processing capacity of individual fog nodes also has to be

considered while designing the proper framework. The task

deadline, the avail-ability of fog nodes, the conditions of

overload and underload, etc. need to be ad-dressed while

integrating fog into the IoT application. Since the distribution of

tasks to fog nodes, which is also termed offloading is an active

area of research, this work focuses on designing an effective

mechanism for offloading the tasks to the fog lay-er with the

support of efficient meta-heuristic algorithms.

There are several techniques discussed in the literature to

address the offloading issues. The survey on these techniques

revealed few research gaps in this area. The common research

gaps are as follows: Most of the offloading techniques focus on

improving one or two parameters only. But this will not

significantly improve the overall QoS. More parameters have to

be considered to improve the overall performance of the IoT

applications. Another research gap identified is the lack of

novelty in chosen techniques for offloading. Most of the works

repeatedly use the same algorithms with minor modifications.

Novel algorithms need to be explored and experimented to

reduce the complexity. One approach to solve the offloading

problem is to consider it as an optimization problem. Meta-

heuristic algorithms are wide class of algorithms that provide

feasible solutions to many optimization problems. These

algorithms also need to be experimented more. By considering

the identified re-search gap, this work focuses on designing an

efficient meta-heuristic-based task offloading framework that

tries to minimizes the latency, response time, communication

cost and execution time with better load balancing.

The proposed offloading model is designed using a

combination of HBA [3] and FSA [4] algorithms (HB-FS

algorithm). The two algorithms were evaluated and features

were analyzed and conclusions were derived in our previous

work. The HBA is an algorithm which guarantees better

convergence speed, output stability and can be used for solving

optimization problems with complex search-space. But HBA

also sometimes suffers from the problem of getting trapped in

local optima resulting in earlier convergence [5]. The FSA

algorithm is proved to have strong exploration capabilities

without getting trapped in local optima. This feature is utilized

in the proposed model to make the solution more accurate. The

FSA and HBA algorithms are modified and combined to suit the

requirements for our offloading problem. The FSA iterates on

the output of digging phase of honey badger algorithm and

generates the final optimized output. The numerical analysis of

the proposed model shows better response time, reduced latency,

execution time and better degree of imbalance compared to

algorithms such as Particle Swarm Optimization, Grey Wolf

Optimization, Slap Swarm optimization, Genetic Algorithm,

Modified Ant Colony Optimization Algorithm etc.

The major contributions of the proposed model are as

follows:

• The task offloading problem in the IoT- Fog environment

is formulated as a multi-objective optimization problem.

• The identified problem is NP-hard and to effectively solve

the problem, a combined approach, HB-FS is proposed

which is a combination of two major optimization

algorithms: flamingo search algorithm (FSA) and honey

badger algorithm (HBA).

• The solution for proposed problem works by optimizing

different parameters such as latency, response time,

communication cost, resource utilization, and execution

time.

• Extensive performance evaluation of the proposed

approach is done under different scenarios to prove the

efficiency of proposed model over the compared

approaches.

The remainder of the paper is organized as follows: section

2 surveys the existing techniques in literature, section 3

elaborates on the proposed methodology, section 4 discusses the

results of performance evaluation and section 5 concludes the

paper.

II. LITERATURE REVIEW

The offloading problem in IoT-Fog-Cloud integration is

addressed using different schemes in the literature. This section

discusses few recent advancements in the field. A computational

offloading scheme based on Q learning in a Fog-Cloud

environment is introduced by S. Aljanabi et al. The paper models

the offloading problem as a Markov model and finds the solution

to the model using the reinforcement learning approach.

Numerical results show that the work provides better balancing

of workload with reduced delay [2]. The issues such as

communication overhead and decision-making time need to be

addressed to make the integration more powerful.

The offloading problem in edge-cloud environment is

addressed using a hierarchical game model by Mingyue Yu et al.

The paper discusses a cost-effective solution for the offloading

problem with comparatively better load balancing [6]. Reducing

the task delay is required to improve the performance of the

application further. The service requests from the IoT devices

are modelled as an optimization problem in [7]. The problem

being NP-hard uses Genetic algorithm to solve it. The

performance evaluations show that the work offers lower latency

compared to existing techniques.

Baek, J et al. use reinforcement learning-based approach to

minimize the task processing time and overall overloading

probability. The mechanism helps incoming tasks to be directed

to the appropriate fog node which guarantees the QoS

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 6

DOI: https://doi.org/10.17762/ijritcc.v11i6.7260

Article Received: 30 March 2023 Revised: 28 April 2023 Accepted: 14 June 2023

105

IJRITCC | June 2023, Available @ http://www.ijritcc.org

requirements. The results show that the paper achieves better

convergence speed and complexity [8]. A neuro-fuzzy model

based offloading approach is modelled in [9] where offloading

is made more secure with machine learning approach. The

offloading problem is solved using Particle Swarm Optimization

technique. The numerical results shows that the approach

improves security.

Genetic algorithm based offloading scheme is proposed by

M.Abbasi et al. The paper focuses on reducing the energy

consumption and delay between the fog nodes and the cloud. The

multi-objective optimization model uses NSGA II for solving

the offloading problem [10]. M.Bala et al. proposes proximity

algorithm for placing the data to nearest available fog nodes and

Cluster algorithm [11] to reduce the band-width consumption in

the network. The experimental evaluations shows that the work

offers lesser latency but needs to work on more parameters for

optimization.

Resource allocation problem in edge-cloud model is

formulated as a stochastic game model in [12]. The formulated

problem is solved using NSGA II algorithm. The results show

that the proposed model is energy efficient and cost effective.

Healthcare sector is one of the major applications of IoT. A

secure offloading scheme for healthcare sector is proposed by

V.Meena et al. The paper uses algorithms such as optimal

service offloader and trust assessment [13] to identify the

appropriate fog nodes and to offload data in a secure manner.

The power consumption and delay issues in the fog cloud

integration is addressed by M. Keshavarznejad et al. The paper

formulates a multi objective optimization problem for task

offloading and uses two meta-heuristic algorithms such as

NSGA II and Bees algorithm [14] to solve the problem. The

numerical analysis show that the model offers lesser energy

consumption and delay. Smart Ant Colony based optimization

technique is proposed in [15] to solve the computational

offloading problem. The paper formulates the offloading

problem as a multi-objective optimization problem and uses

meta-heuristic approach to solve it. The algorithm offers reduced

complexity with better load balancing.

QoS aware task offloading scheme is proposed by P. Kauret

et. al. The paper uses Smart Flower Optimization Algorithm to

improve the QoS requirements of the fog nodes. The parameters

such as task deadline and budget constraints are taken into

consideration for optimization [16]. The performance

evaluations shows that the proposed approach works well with

small sized workload.

An extended multi-layer reinforcement learning based task

offloading framework is proposed in [17]. The framework

considers tradeoff between energy consumption and execution

time to generate a feasible strategy which minimizes both. The

numerical evaluations shows that the proposed approach offers

better performance under complex and uncertain situations.

Yakubu I.Z. et al uses m modified Harris-Hawks

Optimization technique to address the task offloading problem

in fog layer. The paper follows a priority-based task scheduling

with the aim to minimize the execution time, latency, cost etc.

and to enhance the resource usage [18]. The experimental

evaluations shows that the pro-posed method effectively

balances the load over the compared approaches and im-proves

the performance of the system.

The survey on recent works in computational offloading

algorithms shows that most of the approaches focus on one or

two parameters only. More parameters need to be optimized for

improving the QoS requirements. The survey of existing

approaches also show that novel optimization algorithms are

least explored with very few exceptions.

III. PROPOSED MODEL FOR TASK OFFLOADING

The proposed model is built on the IoT-Fog-Cloud three tier

architecture. The three-tier architecture has IoT devices at lower

most layer and distributed fog nodes in the intermediate layer.

The intermediate layer processes the incoming IoT requests.

The cloud layer is used for permanent storage. The three-tier

model is depicted in Fig 1. below.

The IoT devices are capable of generating different types of data

which are considered as requests to the fog layer. The data

generated from IoT devices in the lower most layer is assumed

to be time constrained. The data will be forwarded to the

intermediate fog layer through wireless communication

medium. Each fog node will have a maximum capacity. It can

accept the requests till the maximum limit is reached. The

overload and underload fog nodes will be continuously

monitored, and load balancing will be done based on the chosen

algorithms. The problem formulation considers the main

objectives that as network latency, energy consumption,

resource utilization, total load and execution time.

Fig. 1. Architecture of proposed IoT-Fog-Cloud model for optimal

task offloading

The workflow of the proposed model is as follows: Initially, the

offloading problem is formulated as a multi-objective

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 6

DOI: https://doi.org/10.17762/ijritcc.v11i6.7260

Article Received: 30 March 2023 Revised: 28 April 2023 Accepted: 14 June 2023

106

IJRITCC | June 2023, Available @ http://www.ijritcc.org

optimization problem. To solve the problem, an effective

strategy is proposed with an aim to optimize different

parameters such as network latency, response time,

communication cost, resource utilization and execution time.

As the identified problem is NP-hard, a combined approach

using two recent meta-heuristic algorithms, the Honey Badger

Algorithm (HBA) [3] and the Flamingo Search Algorithm

(FSA) [4] is proposed. The HB-FS algorithm works by

optimizing the solution in every iteration generating the final

optimized output. Finally, the experimental evaluations are

done under different scenarios to prove the efficiency of the

proposed approach.

A. Proposed System model

The system model used for task offloading in IoT-Fog-Cloud

architecture is explained in this section. The proposed system is

basically designed to reduce the delay and latency issues in IoT

applications that are latency sensitive and to improve the overall

performance of IoT-Fog-Cloud architecture.

Formulation of computational model

The IoT-Fog-Cloud computational model uses different

terminologies and variables for formulation of the model as

given below:

• Sij: Sensor nodes used in lower layer where j=1,

2…. n.

• fgij: Fog nodes in the middle layer where j=1,2…n.

• λij: rate of data generated by the sensor nodes

• Ljk: Network latency between Sij and fgij

• Ljc: Network latency between Fog layer and cloud

layer

• FgCCostjk: Communication Cost among Sij and

associated fog node fgij

• Dsj: Size of data

• Bl: Bandwidth of the local network

• CloudCCostjk: Communication cost among fgij and

Cloud

• Ljc: Network latency among cloud and fgij

• Bc: Bandwidth of the cloud

• CCost jk: Total communication cost

• µjk: Service rate

• STjk: Task offloading service time

• Uij: Resource utilization

• Rjk: Response time

The IoT-Fog-Cloud model has ‘n’ number of IoT sensors Si1,

Si2, …. Sim, where each sensor node, Sij will be generating the

data at rate λij. The data generated by IoT layer moves to the fog

layer which has distributed set of fog nodes fgi1, fgi2 ..., fgin.

Different connected sensors Sij will generate the data based on

Poisson distribution with the data arrival rate λij. The generated

data will be time constrained and will be processed at the fog

nodes and will be forwarded to the remote cloud for extended

storage processing and analysis. The total communication cost

can be calculated as the sum of communication cost among the

Sij and the associated fog node fgij and communication cost

among fog node fgij and the Cloud as represented by (1).

𝐶𝐶𝑜𝑠𝑡𝑗𝑘 = 𝐶𝑙𝑜𝑢𝑑𝐶𝐶𝑜𝑠𝑡𝑗𝑘 + 𝐹𝑜𝑔𝐶𝐶𝑜𝑠𝑡𝑗𝑘 (1)

where, FgCCostjk and CloudCCostjk can be computed using the

equations (2) and (3). FgCCostjk is computed as the sum of Ljk

(network latency) among Sij and fgij and transfer time of data

among Sij and fgij

𝐹𝑔𝐶𝐶𝑜𝑠𝑡𝑗𝑘 = 𝐿𝑗𝑘 +
𝐷𝑠𝑗

𝐵𝑙
 (2)

The cloud cost is the sum of cloud latency Ljc and transfer time

of data among cloud and fgij.

𝐶𝑙𝑜𝑢𝑑𝐶𝐶𝑜𝑠𝑡𝑗𝑘 = 𝐿𝑗𝑐 +
𝐷𝑠𝑗

𝐵𝑐
 (3)

where Bc is the bandwidth of cloud.

The service time of task offloading of Sij to fgij is computed

based on the M/M/1 queuing model as given in (4).

 𝑆𝑇𝑗𝑘 =
1

𝜇𝑗𝑘−𝜆𝑗𝑘
 (4)

where, µjk is the service rate. The total latency will be computed

as a sum of communication latency and computation latency

which is a function of time. The computation latency is also

influenced by the underlying offloading algorithm policies such

as decision-making time, time taken to balance the tasks among

available fog nodes and number of tasks being offloaded to each

fog nodes.

The resource utilization (Uij) value of fog nodes is computed as

summation of resource utilization of different offloaded tasks

by connected sensors as given in (5).

𝑈𝑖𝑗 = ∑ ∑ 𝑦𝑖𝑗𝑘𝜖𝑐𝑐 ×
𝜆𝑖𝑗

𝜇𝑖𝑗
 (5)

Here, yij=1, when Sij tasks are offloaded to fgij.

The total response time is computed as:

𝑅𝑗𝑘 = 𝐶𝐶𝑜𝑠𝑡𝑗𝑘 + 𝑆𝑇𝑗𝑐 (6)

 The load of connected nodes can be evaluated using (7) and (8)

as given below:

𝑅𝑘 = ∑ 𝑅𝑘𝑐𝑘 / (1 − 𝜇𝑗𝑐) (7)

𝐿𝑜𝑎𝑑𝑘 = 1 −
(𝑅𝑘 − 𝑅𝑎𝑣𝑒𝑟𝑎𝑔𝑒)

∑ 𝑅𝑘𝑘
 (8)

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 6

DOI: https://doi.org/10.17762/ijritcc.v11i6.7260

Article Received: 30 March 2023 Revised: 28 April 2023 Accepted: 14 June 2023

107

IJRITCC | June 2023, Available @ http://www.ijritcc.org

B. Proposed task offloading algorithm

The task offloading problem is designed to effectively distribute

the incoming IoT tasks to the available fog nodes. The fog nodes

chosen by the tasks should be capable of meeting the QoS

requirements. The complexity of this problem will

exponentially increase with the increase in number of sensors

and fog nodes. So, to solve this problem we need optimization

algorithms which are efficient as well as less complex. Meta-

heuristic algorithms are wide class of algorithms designed to

solve complex optimization problems. According to No-Free-

Lunch theorem, none of the optimization algorithms are capable

of solving all the problems. When two algorithms are combined,

we can obtain the benefits from both optimization algorithms.

This work proposes a hybridized approach by combining the

essential features of HBA and FSA algorithms. The output

obtained from HB-FS algorithm proves to be better solution

with reduced latency, average response time, execution time

and standard deviation.

Proposed HB-FS Algorithm

The proposed HB-FS algorithm for task offloading.

1. Set parameters like Cj, β, M, number of nodes, max,

flamingos and tm.

2. Iterate digging phase of HBA.

3. Initialize the Flamingo population using the sample

generated in step 2.

4. Initialize foraging and migrating characteristics of

flamingos.

5. Perform position update using foraging and migration

phase.

6. Evaluate fitness and update the best position in each

iteration.

7. Repeat the steps 4-7 until desired solution is obtained.

8. End.

Honey Badger Algorithm (HBA) is a recent optimization

algorithm designed to model the predatory behavior of Honey

Badger, an intelligent mammal found in areas like India’s

subcontinent, Africa, and southwest Asia. The animal is well

known for its predatory behavior and fear-less nature. The HBA

algorithm is designed in two phases: digging phase and honey

phase. The honey badger identifies prey using the smell

intensity of prey and dig holes to catch the prey. During honey

phase, the honey badger takes the help of honey bird to identify

honey. The digging phase is utilized in the proposed model.

The HBA algorithm is initialized using (9)

𝑦𝑗 = 𝐿𝐿𝑗 + 𝑟𝑎𝑛𝑑1 + (𝑈𝐿𝑗 − 𝐿𝐿𝑗) (9)

where rand1 is a random number ranging between 0 and 1. The

jth position of honey badger is represented as yj, and the lower

and upper bounds of the entire search space is given as LLj and

ULj.

The smell intensity of the prey In is updated using (10) where,

rand2 is a random number between 0 and 1.

𝐼𝑛 = 𝑟𝑎𝑛𝑑2 ×
𝑅

4𝜋𝐷𝑗
2 (10)

 where, 𝑅 = (𝑦𝑗 − 𝑦𝑗+1)2 (11)

 𝐷𝑗 = 𝑦𝑝𝑟𝑒𝑦 − 𝑦𝑗 (12)

Here, the focusing power is represented as R, distance between

prey and jth HB is given as D and the global best position of prey

is given as y prey.

Density factor (α) updations: This factor is responsible for

controlling the time varying randomization and provide better

transition from exploration to exploitation. α minimizes with

each iteration and is expressed as:

𝛼 = 𝐶𝑗 × exp (
−𝑡

𝑡𝑚
) (13)

Where Cj is constant and tm is maximum iterations.

Overcome form local optima: This phase helps to reduce the

possibility of algorithm getting trapped in local optima by

varying the searching direction.

𝐹 = {
1 𝑤ℎ𝑒𝑛 𝑟𝑎𝑛𝑑3 ≤ 0.5

−1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (14)

where rand3 random number and it ranges from 0 to 1.

The digging phase of honey badger is updated using (15)

─ 𝑦𝑛𝑒𝑤 = 𝑦𝑝𝑟𝑒𝑦 + 𝐹 × 𝛼 × 𝐼 × 𝑦𝑝𝑟𝑒𝑦 + 𝐹 × 𝛼 × 𝑟𝑎𝑛𝑑4 ×

𝐷𝑗 × | cos(2𝜋𝑟𝑎𝑛𝑑5) × [1 − cos(2𝜋𝑟𝑎𝑛𝑑6)]|

 (15)

where α is capacity of HB for getting food, rand4, rand5 and

rand6, are the various random numbers and it ranges from 0 to

1.

The HBA algorithm evaluates fitness in each iteration based on

the objective function and update the HB population based on

digging phase. As the HBA algorithm has the drawback of

getting trapped in local optima and poor convergence [5] the

results obtained in the digging phase is further optimized by

passing to the second algorithm, FSA. The FSA algorithm is a

global exploration algorithm which improves solution with

reduced randomness in input sample and hence iterate over the

obtained input to generate final solution.

FSA algorithm is designed to imitate the foraging and migrating

behavior of gregarious birds, flamingos. The flamingos are

migratory birds which search for food as a group and sing to

each other to communicate the availability of food source. This

is represented as the foraging characteristics of flamingos and

is coded as foraging phase. The flamingos migrate to different

location if food is scarce in a particular region and cannot feed

the existing population. This behavior is modelled as migration

phase. The FSA is proved to have faster convergence rate and

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 6

DOI: https://doi.org/10.17762/ijritcc.v11i6.7260

Article Received: 30 March 2023 Revised: 28 April 2023 Accepted: 14 June 2023

108

IJRITCC | June 2023, Available @ http://www.ijritcc.org

accuracy compared to different algorithms such as Ant Colony

optimization (ACO), Particle Swarm Optimization (PSO), Grey

Wolf optimizer (GWO) [4] etc. The mathematical model for

FSA is detailed below:

To characterize the foraging behavior of flamingos let us

assume that search agent with more food availability in kth

dimension is ybk and the location of jth flamingo in kth dimension

of the flamingo population is yjk. The maximum distance that

can be covered by flamingo’s beak is represented as

𝐽2 × | 𝐽1 × 𝑦𝑏𝑘 + 𝛾2 × 𝑦𝑗𝑘| , where J1 is a random number

following normal random distribution, γ2 is random number

between -1 and +1and J2 is a random number. While foraging

for food, the bipedal movement of flamingo is represented as γ1

x ybk, where γ1 is random number and it ranges from -1 or +1.

The sum of distance covered by the beak and claws of flamingos

can be represented as (16).

𝐶𝑗𝑘
𝑡 = (𝛾1 + 𝑦𝑏𝑘) + (𝐽2 × |𝐽1 × 𝑦𝑏𝑘

𝑡 + 𝛾2 × 𝑦𝑗𝑘
𝑡 |) (16)

The initial and updated locations of flamingos in foraging stage

is represented in (17) and (18) respectively:

 𝑦𝑗𝑘
𝑡 (0) =

𝑅𝑗𝑘

𝑅𝑎𝑣𝑔
 (17)

𝑦𝑗𝑘
𝑡+1 =

(𝑦𝑗𝑘
𝑡 +𝛾1+𝑦𝑏𝑘

𝑡 +𝐽2×| 𝐽1×𝑦𝑏𝑘
𝑡 +𝛾2×𝑦𝑗𝑘

𝑡 |)

𝐼
 (18)

where, jth flamingo in kth dimension during (t+1) th and tth

iterations are represented as y jk
t+1and yt

jk. I is the diffusion

factor.

The migration characteristics of flamingos is represented as:

𝑦𝑗𝑘
𝑡+1 = 𝑦𝑗𝑘

𝑡 + 𝛼 × (𝑦𝑏𝑘
𝑡 − 𝑦𝑗𝑘

𝑡) (19)

where α is Gaussian random number

 𝜂𝑗𝑘(𝑡) =
𝑙𝑜𝑎𝑑𝑘

𝑅𝑗𝑘
 (20)

Here, when Rjk increases, ηjk
(t) and load k are decreased.

The migratory flamingos are selected based on evaluating the

fitness of flamingos. In our problem, the tasks are arriving in

time constrained manner which has deadlines for completion.

Each fog node has a maximum capacity expressed as duration

time. The fog node accepts only the tasks whose deadline can

be satisfied within the duration time allotted for it. So, the

migration phase of flamingos is modified to consider the

deadline of tasks along with the fitness value.

The complete workflow of HB-FS can be modelled as given

below:

Algorithm 1. Pseudo code of proposed HB-FS Algorithm

1. Set parameters like Cj, β, M, no. of flamingos,

number of nodes, Max and tm.

2. Initialize the population of Flamingos

2.1. Initialize the honey badger population

randomly

2.2. Evaluate fitness of each honey badger and

save the best position

2.3. For t= 1 to tm, do

2.4. Update the density factor, α

2.5. For j=1 to M do

2.6. Compute smell intensity of prey, In

2.7. Perform position update using digging

phase and compute fitness in each

iteration.

2.8. End for loop

2.9. End for loop

2.10. Return intermediate result

3. Initialize the foraging and migrating characteristics

of flamingos

4. For i=1 to Max i , do

5. Compute foraging characteristics using Eq. (18) and

6. Compute migration characteristics using Eq. (19)

7. Evaluate fitness and update flamingo location

8. Update the best solution

9. End for loop

10. Return the final optimized solution.

IV. RESULTS AND DISCUSSION

The proposed methodology is tested against different existing

works to evaluate the performance. The simulations are done

using the iFogSim simulator toolkit which is Java based. The

implementation uses synthetically generated IoT online gaming

dataset for evaluation purpose. The processor used is AMD

Ryzen 5, 3500U with Radeon Vega Mobile @ 2.10 GHz. The

RAM memory used is 8GB with 64-bit operating system. The

different parameter value settings used for the simulation is

shown in Table 1. below:

TABLE 1. PARAMETER CONFIGURATIONS

Parameters Value

Sensor nodes 2500

No. of fog nodes 10-25

Max no of iterations 50

Bl 700 Mb/s

Bc 37 Mb/s

Ljk 2-20 ms

Ljc 20-30 ms

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 6

DOI: https://doi.org/10.17762/ijritcc.v11i6.7260

Article Received: 30 March 2023 Revised: 28 April 2023 Accepted: 14 June 2023

109

IJRITCC | June 2023, Available @ http://www.ijritcc.org

A. Performance Evaluation

The proposed methodology is tested against different

algorithms such as Genetic algorithm (GA), Slap swarm

algorithm (SSA), and GWO (Grey wolf optimization), Bee life

algorithm (BLA) [19], modified particle swarm optimization

(MPSO) [20], Smart Ant Colony Optimization (SACO [15] ,

Throttle and RR (round robin). The major evaluation

parameters used are latency, average response time, standard

deviation (SD), execution time, degree of imbalance (DI) etc.

The results of the comparison are discussed in section below:

(a) Scenario 1 & 2

Initially, the evaluation is carried out using 10 fog nodes. The

parameters used for the evaluation are λij=15,10,5 and

µij=50,75,100. The proposed model is compared with different

algorithms for evaluating the latency time. Evaluations show

that proposed model offers lesser latency than the compared

methods as shown in Fig 2(a) below. The evaluations also

shows that latency time is increased when we increase the

number of sensors. When the number of sensors is 2500, the

latency time of RR is 126s, Throttle is 104s, MPSO is 102s,

BLA is 101s, SACO is 97s, SSA is 100s, GA is 116s, GWO is

99s and the proposed model is 80s respectively.

For scenario 2, the parameters chosen are λij=50,40,30 keeping

the service rate and number of fog nodes same as scenario 1.

The observations shows that latency can be reduced if the data

rate is increased. When the number of sensors is 1750, the

latency of RR is 107s, Throttle is 98s, MPSO is 97s, BLA is

96s, SACO is 94s, SSA is 77s, GA is 78s, GWO is 77s and the

proposed model is 60s respectively.

(b) Third and fourth scenario

The third scenario is modelled by increasing the number of fog

nodes to 25. The other parameters used are λij=50,40,30 and

µjk=400,350,300. The figure 3(a) shows that there is slight

change in the latency when service rate is increased. When the

number of IoT sensors are 2000, latency time of RR is 116s,

Throttle is 114s, MPSO is 114s, BLA is 112s, SACO is 110s,

GWO is 100s, GA is 121 s and SSA is 105s and the proposed

model is 67s respectively.

Figure 3(b) shows the outcomes of the fourth scenario. Here, 25

sensors are considered, λij=30,25,20 and µjk=400,350,300. It is

observed that number of IoT sensors are 1750, latency time of

RR is 110 s, Throttle is 107s, MPSO is 107s, BLA is 106s,

SACO is 101s, GWO is 120s, GA is 123s and SSA is 122s and

the proposed model is 64s. From all the four scenarios it can be

proved that the proposed model generated lesser latency under

different conditions.

Figure 4 represents the response time comparison of the

proposed and existing algorithms like RR, ACO, PSO GWO,

GA and SSA. The average response time for different tasks are

observed on every iteration. In this case, the ART is maintained

consistently even as the total tasks are increased by providing

many IoT sensors. When compared to the existing models,

proposed optimization maintains less response time when the

IoT sensors are increased.

The execution time comparison of different algorithms is

presented in Figure 5. The results show that for offloading

process, the average time taken by the approaches like SACO,

MPSO, throttle, RR, BLA, GWO, GA SSA and proposed

approach are 107ms, 113.2ms, 115ms, 122ms, 110ms, 165.4ms,

81ms, 76ms and 45ms respectively. The proposed model

converges with lesser execution time.

Degree of imbalance is another evaluation measure which

evaluate how well the algorithm can balance the available load

It is computed using (21).

𝐷𝐼 =
𝑀𝑎𝑥(𝑅𝑘)−𝑀𝑖𝑛(𝑅𝑘)

𝑅𝑎𝑣𝑔
 𝑘 = 1,2, … . 𝑁𝑛𝑜𝑑𝑒 (13)

Figure 6 depicts the comparison of degree of imbalance of

proposed algorithm with existing algorithms. The results shows

that the proposed algorithm maintains better degree of

imbalance under different load conditions and can be

effectively used for balancing the load. When the sensors are

increased, the degree of imbalance is maintained in a balanced

manner.

Standard deviation (SD): It is used for evaluating the load

distribution between fog nodes. For smaller ranges, largely

balanced nodes are obtained. It is computed as:

𝑆𝐷 =
√∑ (𝑅𝑘 −𝑅𝑎𝑣𝑔)

2
𝑘

𝑁𝑛𝑜𝑑𝑒
 (22)

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 6

DOI: https://doi.org/10.17762/ijritcc.v11i6.7260

Article Received: 30 March 2023 Revised: 28 April 2023 Accepted: 14 June 2023

110

IJRITCC | June 2023, Available @ http://www.ijritcc.org

Figure 7 represents the SD comparison of the proposed and the

existing algorithms. These results are obtained by varying the

number of IoT sensors. The standard deviation of response time

Fig. 2. Latency time comparison for (a) scenario 1 and (b) scenario 2

Fig. 3. Latency time comparison for (a) scenario 3 and (b) scenario 4

Fig. 4. and 5. Average response time and execution time comparison of the proposed and existing algorithms.

Fig. 6. and 7. Degree of imbalance and standard deviation comparison

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 6

DOI: https://doi.org/10.17762/ijritcc.v11i6.7260

Article Received: 30 March 2023 Revised: 28 April 2023 Accepted: 14 June 2023

111

IJRITCC | June 2023, Available @ http://www.ijritcc.org

is the difference on response time of entire offloaded tasks from

ART. From the figure it is clearly proved that the proposed task

offloading technique performs better when compared to RR,

ACO, PSO, GWO, GA and SSA respectively.

From the experimental analysis, it is noted that the proposed

model achieves better latency time, average response time,

standard deviation, execution time and degree of imbalance

compared to the existing techniques. The observations from the

analysis shows that by optimizing these parameters the QoS can

be enhanced. Thus, the proposed model can be efficiently used

for task offloading in latency sensitive IoT applications.

V. CONCLUSION

The tremendous growth of IoT applications over the past few

years has increased the dependence of technology on cloud

resources. The application generates millions of data every

second. Cloud computing offers promising solutions to IoT

applications for data storage, processing and analytics. However,

latency sensitive IoT applications finds it difficult to completely

depend on cloud for processing as the delay induced by remote

cloud is intolerable. The introduction of fog computing offers

timely delivery of services to IoT applications increasing the

popularity of IoT-Fog-Cloud model. The task offloading in Fog

layer is crucial as it impacts the QoS and performance of

connected applications. This work focuses on designing an

effective offloading approach using the combination of two

novel meta-heuristic algorithms, Honey Badger Algorithm and

Flamingo Search Algorithm. The proposed HB-FS algorithm

utilizes the digging phase of HBA to initialize the population for

FSA algorithm. The optimization function is designed to

optimize different parameters like network latency, response

time, resource utilization etc. The performance evaluations are

carried out under different scenarios to prove the efficacy of

proposed model. The quantitative results depicts that the

proposed work performs better than compared techniques in

terms of network latency, average response time, execution time.

The model also offers better load balancing making it suitable

for applications with varying load conditions. In future, this

work will be considering the scalability issues and security

factors to enhance the QoS and performance further.

REFERENCES

[1] Z. Qu, Y. Wang, L. Sun, D. Peng, and Z. Li, “Study QoS

optimization and energy saving techniques in cloud, Fog,

EDge, and IoT,” Complexity, vol. 2020, 2020, doi:

10.1155/2020/8964165.

[2] S. Aljanabi and A. Chalechale, “Improving IoT Services Using

a Hybrid Fog-Cloud Offloading,” IEEE Access, vol. 9, pp.

13775–13788, 2021, doi: 10.1109/ACCESS.2021.3052458.

[3] F. A. Hashim, E. H. Houssein, K. Hussain, M. S. Mabrouk,

and W. Al-Atabany, “Honey Badger Algorithm: New

metaheuristic algorithm for solving optimization problems,”

Math. Comput. Simul., vol. 192, pp. 84–110, 2022, doi:

10.1016/j.matcom.2021.08.013.

[4] “Flamingo Search Algorithm: A New Swarm Intelligence

Optimization Algorithm | Enhanced Reader.” .

[5] A. M. Nassef, E. H. Houssein, B. E. din Helmy, and H. Rezk,

“Modified honey badger algorithm based global MPPT for

triple-junction solar photovoltaic system under partial shading

condition and global optimization,” Energy, vol. 254, p.

124363, Sep. 2022, doi: 10.1016/J.ENERGY.2022.124363.

[6] M. Yu, A. Liu, N. N. Xiong, and T. Wang, “An Intelligent

Game-Based Offloading Scheme for Maximizing Benefits of

IoT-Edge-Cloud Ecosystems,” IEEE Internet Things J., vol. 9,

no. 8, pp. 5600–5616, 2022, doi: 10.1109/JIOT.2020.3039828.

[7] R. O. Aburukba, M. AliKarrar, T. Landolsi, and K. El-Fakih,

“Scheduling Internet of Things requests to minimize latency in

hybrid Fog–Cloud computing,” Futur. Gener. Comput. Syst.,

vol. 111, pp. 539–551, 2020, doi:

10.1016/j.future.2019.09.039.

[8] J. Y. Baek, G. Kaddoum, S. Garg, K. Kaur, and V. Gravel,

“Managing Fog Networks using Reinforcement Learning

Based Load Balancing Algorithm,” IEEE Wirel. Commun.

Netw. Conf. WCNC, vol. 2019-April, pp. 1–7, 2019, doi:

10.1109/WCNC.2019.8885745.

[9] A. A. Alli and M. M. Alam, “SecOFF-FCIoT: Machine

learning based secure offloading in Fog-Cloud of things for

smart city applications,” Internet of Things, vol. 7, no. 2019,

p. 100070, 2019, doi: 10.1016/j.iot.2019.100070.

[10] M. Abbasi, E. Mohammadi Pasand, and M. R. Khosravi,

“Workload Allocation in IoT-Fog-Cloud Architecture Using a

Multi-Objective Genetic Algorithm,” J. Grid Comput., vol. 18,

no. 1, pp. 43–56, 2020, doi: 10.1007/s10723-020-09507-1.

[11] M. I. Bala and M. A. Chishti, “Offloading in cloud and fog

hybrid infrastructure using iFogSim,” Proc. Conflu. 2020 -

10th Int. Conf. Cloud Comput. Data Sci. Eng., pp. 421–426,

2020, doi: 10.1109/Confluence47617.2020.9057799.

[12] X. Liu, J. Yu, Z. Feng, and Y. Gao, “Multi-agent

reinforcement learning for resource allocation in IoT networks

with edge computing,” China Commun., vol. 17, no. 9, pp.

220–236, 2020, doi: 10.23919/JCC.2020.09.017.

[13] V. Meena, M. Gorripatti, and T. Suriya Praba, “Trust Enforced

Computational Offloading for Health Care Applications in Fog

Computing,” Wirel. Pers. Commun., vol. 119, no. 2, pp. 1369–

1386, 2021, doi: 10.1007/s11277-021-08285-7.

[14] M. Keshavarznejad, M. H. Rezvani, and S. Adabi, “Delay-

aware optimization of energy consumption for task offloading

in fog environments using metaheuristic algorithms,” Cluster

Comput., vol. 24, no. 3, pp. 1825–1853, 2021, doi:

10.1007/s10586-020-03230-y.

[15] A. Kishor and C. Chakarbarty, “Task Offloading in Fog

Computing for Using Smart Ant Colony Optimization,” Wirel.

Pers. Commun., no. 0123456789, 2021, doi: 10.1007/s11277-

021-08714-7.

[16] P. Kaur and S. Mehta, “Improvement of Task Offloading for

Latency Sensitive Tasks in Fog Environment,” Lect. Notes

Data Eng. Commun. Technol., vol. 74, pp. 49–63, 2022, doi:

10.1007/978-981-16-3448-2_3.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 6

DOI: https://doi.org/10.17762/ijritcc.v11i6.7260

Article Received: 30 March 2023 Revised: 28 April 2023 Accepted: 14 June 2023

112

IJRITCC | June 2023, Available @ http://www.ijritcc.org

[17] A. Robles-Enciso and A. F. Skarmeta, “A multi-layer guided

reinforcement learning-based tasks offloading in edge

computing,” Comput. Networks, vol. 220, no. September

2022, p. 109476, 2023, doi: 10.1016/j.comnet.2022.109476.

[18] Yakubu, I.Z., Murali, M. An efficient meta-heuristic resource

allocation with load balancing in IoT-Fog-cloud computing

environment. J Ambient Intell Human Comput (2023).

https://doi.org/10.1007/s12652-023-04544-6

[19] S. Bitam, S. Zeadally, and A. Mellouk, “Fog computing job

scheduling optimization based on bees swarm,” Enterp. Inf.

Syst., vol. 12, no. 4, pp. 373–397, 2018, doi:

10.1080/17517575.2017.1304579.

[20] A. Al-Maamari and F. A. Omara, “Task scheduling using PSO

algorithm in cloud computing environments,” Int. J. Grid

Distrib. Comput., vol. 8, no. 5, pp. 245–256, 2015, doi:

10.14257/ijgdc.2015.8.5.24.

http://www.ijritcc.org/

