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Abstract—Internet of Things (IoT) has evolved as a novel paradigm that provides com-putation power to different entities connected to it. 

IoT offers services to multiple sectors such as home automation, industrial automation, traffic management, healthcare sector, agriculture 

industry etc. IoT generally relies on cloud data centers for extended analytics, processing and storage support. The cloud offers highly scalable 

and robust platform for IoT applications. But latency sensitive IoT applications suffer delay issues as the cloud lies in remote location. Edge/fog 

computing was introduced to overcome the issues faced by delay-sensitive IoT applications. These platforms lie close to the IoT network, 

reducing the delay and response time. The fog nodes are usually distributed in nature. The data has to be properly offloaded to available fog 

nodes using efficient strategies to gain benefit from the integration. Differ-ent offloading schemes are available in the literature to overcome 

this prob-lem This paper proposes a novel offloading approach by combining two effi-cient metaheuristic algorithms, Honey Badger Algorithm 

(HBA) and Fla-mingo Search Algorithm (FSA) termed as HB-FS algorithm. The HB-FS is executed in an iterative manner optimizing the 

objective function in each it-eration. The performance evaluation of the proposed approach is done with different existing metaheuristic 

algorithms and the evaluations show that the proposed work outperforms the existing algorithms in terms of latency, response time and 

execution time. The methodology also offers better degree of imbalance with proper load balancing under different conditions. 

Keywords- Task Offloading, Internet of Things, Latency sensitive IoT, Fog Computing, Quality of Service, Cloud Computing.  

 

I.  INTRODUCTION  

Internet of things (IoT) has emerged as a promising 

technology within a short span of time. The IoT has made life 

smarter and more comfortable. It has drastically transformed the 

way different applications operate. The old-fashioned cities and 

homes have been made smart with an improved Quality of 

Service (QoS) due to the integration of IoT. Due to millions of 

connected applications, IoT generates huge amounts of data 

every second. IoT nodes are energy-constrained and it generally 

depends on cloud platforms to provide support for the storage 

and analysis of generated data. Cloud data centers offer robust 

and reliable services to connected applications based on pay per 

use policy. Moreover, the cloud also helps to achieve the QoS 

and quality of experience (QoE) requirements of the applications 

[1]. Even though lots of applications benefit from this extension, 

cloud being at a remote location suffers from few drawbacks. 

The problem of single point of failure and higher response time 

due to congestion in the path has to be addressed to make the 

integration more acceptable. Fog computing was designed as an 

extension to cloud computing where processing happens near the 

edge of the connected network reducing the response time and 

latency-related issues. The fog is distributed in nature solving the 

problem of single point of failure. The terminology fog 

computing lies synonymous with the terms: edge computing, 

mist computing, micro cloudlets etc.  

 Fog computing was designed to support real-time 

applications with better reliability and improved security. Fog 

also supports better load balancing and faster responses as it lies 

in the edge of the network. Fog improves the scalability and data 

confidentiality providing organizations a better control over their 

resources lying within the premises of the organization network 

[2]. Therefore, delay-sensitive ap-plications can rely on fog 

computing for task offloading with minimum drainage of battery 

life. This has framed the IoT-Fog-Cloud three-tier architecture 

where IoT devices which generates input data forms the lower 

most layer passes to intermediate fog layer which supports 

distributed processing of the received data. The upper most layer 

is the cloud layer which supports extended storage, processing 

and analytics. This three-tier architecture has gained wide 

popularity, especially for time-sensitive IoT applications. But 

the fog layer also suffers from few drawbacks which needs to be 

addressed to make the integration more powerful. The fog being 
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distributed in nature requires strong algorithms to offload the 

incoming data to the available fog nodes. The storage and 

processing capacity of individual fog nodes also has to be 

considered while designing the proper framework. The task 

deadline, the avail-ability of fog nodes, the conditions of 

overload and underload, etc. need to be ad-dressed while 

integrating fog into the IoT application. Since the distribution of 

tasks to fog nodes, which is also termed offloading is an active 

area of research, this work focuses on designing an effective 

mechanism for offloading the tasks to the fog lay-er with the 

support of efficient meta-heuristic algorithms. 

There are several techniques discussed in the literature to 

address the offloading issues. The survey on these techniques 

revealed few research gaps in this area. The common research 

gaps are as follows: Most of the offloading techniques focus on 

improving one or two parameters only. But this will not 

significantly improve the overall QoS. More parameters have to 

be considered to improve the overall performance of the IoT 

applications. Another research gap identified is the lack of 

novelty in chosen techniques for offloading. Most of the works 

repeatedly use the same algorithms with minor modifications. 

Novel algorithms need to be explored and experimented to 

reduce the complexity. One approach to solve the offloading 

problem is to consider it as an optimization problem. Meta-

heuristic algorithms are wide class of algorithms that provide 

feasible solutions to many optimization problems. These 

algorithms also need to be experimented more. By considering 

the identified re-search gap, this work focuses on designing an 

efficient meta-heuristic-based task offloading framework that 

tries to minimizes the latency, response time, communication 

cost and execution time with better load balancing. 

The proposed offloading model is designed using a 

combination of HBA [3] and FSA [4] algorithms (HB-FS 

algorithm). The two algorithms were evaluated and features 

were analyzed and conclusions were derived in our previous 

work. The HBA is an algorithm which guarantees better 

convergence speed, output stability and can be used for solving 

optimization problems with complex search-space. But HBA 

also sometimes suffers from the problem of getting trapped in 

local optima resulting in earlier convergence [5]. The FSA 

algorithm is proved to have strong exploration capabilities 

without getting trapped in local optima. This feature is utilized 

in the proposed model to make the solution more accurate. The 

FSA and HBA algorithms are modified and combined to suit the 

requirements for our offloading problem. The FSA iterates on 

the output of digging phase of honey badger algorithm and 

generates the final optimized output. The numerical analysis of 

the proposed model shows better response time, reduced latency, 

execution time and better degree of imbalance compared to 

algorithms such as Particle Swarm Optimization, Grey Wolf 

Optimization, Slap Swarm optimization, Genetic Algorithm, 

Modified Ant Colony Optimization Algorithm etc.  

The major contributions of the proposed model are as 

follows: 

• The task offloading problem in the IoT- Fog environment 

is formulated as a multi-objective optimization problem. 

• The identified problem is NP-hard and to effectively solve 

the problem, a combined approach, HB-FS is proposed 

which is a combination of two major optimization 

algorithms: flamingo search algorithm (FSA) and honey 

badger algorithm (HBA). 

• The solution for proposed problem works by optimizing 

different parameters such as latency, response time, 

communication cost, resource utilization, and execution 

time. 

• Extensive performance evaluation of the proposed 

approach is done under different scenarios to prove the 

efficiency of proposed model over the compared 

approaches.  

The remainder of the paper is organized as follows: section 

2 surveys the existing techniques in literature, section 3 

elaborates on the proposed methodology, section 4 discusses the 

results of performance evaluation and section 5 concludes the 

paper. 

II. LITERATURE REVIEW 

The offloading problem in IoT-Fog-Cloud integration is 

addressed using different schemes in the literature. This section 

discusses few recent advancements in the field. A computational 

offloading scheme based on Q learning in a Fog-Cloud 

environment is introduced by S. Aljanabi et al. The paper models 

the offloading problem as a Markov model and finds the solution 

to the model using the reinforcement learning approach. 

Numerical results show that the work provides better balancing 

of workload with reduced delay [2].  The issues such as 

communication overhead and decision-making time need to be 

addressed to make the integration more powerful. 

The offloading problem in edge-cloud environment is 

addressed using a hierarchical game model by Mingyue Yu et al. 

The paper discusses a cost-effective solution for the offloading 

problem with comparatively better load balancing [6]. Reducing 

the task delay is required to improve the performance of the 

application further. The service requests from the IoT devices 

are modelled as an optimization problem in [7]. The problem 

being NP-hard uses Genetic algorithm to solve it. The 

performance evaluations show that the work offers lower latency 

compared to existing techniques.  

Baek, J et al. use reinforcement learning-based approach to 

minimize the task processing time and overall overloading 

probability. The mechanism helps incoming tasks to be directed 

to the appropriate fog node which guarantees the QoS 
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requirements. The results show that the paper achieves better 

convergence speed and complexity [8]. A neuro-fuzzy model 

based offloading approach is modelled in [9] where offloading 

is made more secure with machine learning approach. The 

offloading problem is solved using Particle Swarm Optimization 

technique. The numerical results shows that the approach 

improves security.  

Genetic algorithm based offloading scheme is proposed by 

M.Abbasi et al. The paper focuses on reducing the energy 

consumption and delay between the fog nodes and the cloud. The 

multi-objective optimization model uses NSGA II for solving 

the offloading problem [10]. M.Bala et al. proposes proximity 

algorithm for placing the data to nearest available fog nodes and 

Cluster algorithm [11] to reduce the band-width consumption in 

the network. The experimental evaluations shows that the work 

offers lesser latency but needs to work on more parameters for 

optimization.  

Resource allocation problem in edge-cloud model is 

formulated as a stochastic game model in [12]. The formulated 

problem is solved using NSGA II algorithm. The results show 

that the proposed model is energy efficient and cost effective. 

Healthcare sector is one of the major applications of IoT. A 

secure offloading scheme for healthcare sector is proposed by 

V.Meena et al. The paper uses algorithms such as optimal 

service offloader and trust assessment [13] to identify the 

appropriate fog nodes and to offload data in a secure manner.  

The power consumption and delay issues in the fog cloud 

integration is addressed by M. Keshavarznejad et al. The paper 

formulates a multi objective optimization problem for task 

offloading and uses two meta-heuristic algorithms such as 

NSGA II and Bees algorithm [14] to solve the problem. The 

numerical analysis show that the model offers lesser energy 

consumption and delay. Smart Ant Colony based optimization 

technique is proposed in [15] to solve the computational 

offloading problem. The paper formulates the offloading 

problem as a multi-objective optimization problem and uses 

meta-heuristic approach to solve it. The algorithm offers reduced 

complexity with better load balancing.  

QoS aware task offloading scheme is proposed by P. Kauret 

et. al. The paper uses Smart Flower Optimization Algorithm to 

improve the QoS requirements of the fog nodes. The parameters 

such as task deadline and budget constraints are taken into 

consideration for optimization [16]. The performance 

evaluations shows that the proposed approach works well with 

small sized workload.  

An extended multi-layer reinforcement learning based task 

offloading framework is proposed in [17]. The framework 

considers tradeoff between energy consumption and execution 

time to generate a feasible strategy which minimizes both. The 

numerical evaluations shows that the proposed approach offers 

better performance under complex and uncertain situations.  

Yakubu I.Z. et al uses m modified Harris-Hawks 

Optimization technique to address the task offloading problem 

in fog layer. The paper follows a priority-based task scheduling 

with the aim to minimize the execution time, latency, cost etc. 

and to enhance the resource usage [18]. The experimental 

evaluations shows that the pro-posed method effectively 

balances the load over the compared approaches and im-proves 

the performance of the system.  

The survey on recent works in computational offloading 

algorithms shows that most of the approaches focus on one or 

two parameters only. More parameters need to be optimized for 

improving the QoS requirements. The survey of existing 

approaches also show that novel optimization algorithms are 

least explored with very few exceptions.  

III. PROPOSED MODEL FOR TASK OFFLOADING 

The proposed model is built on the IoT-Fog-Cloud three tier 

architecture. The three-tier architecture has IoT devices at lower 

most layer and distributed fog nodes in the intermediate layer. 

The intermediate layer processes the incoming IoT requests. 

The cloud layer is used for permanent storage. The three-tier 

model is depicted in Fig 1. below.  

 

The IoT devices are capable of generating different types of data 

which are considered as requests to the fog layer. The data 

generated from IoT devices in the lower most layer is assumed 

to be time constrained. The data will be forwarded to the 

intermediate fog layer through wireless communication 

medium. Each fog node will have a maximum capacity. It can 

accept the requests till the maximum limit is reached. The 

overload and underload fog nodes will be continuously 

monitored, and load balancing will be done based on the chosen 

algorithms. The problem formulation considers the main 

objectives that as network latency, energy consumption, 

resource utilization, total load and execution time.  

 

 

Fig. 1. Architecture of proposed IoT-Fog-Cloud model for optimal 

task offloading 

The workflow of the proposed model is as follows: Initially, the 

offloading problem is formulated as a multi-objective 
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optimization problem. To solve the problem, an effective 

strategy is proposed with an aim to optimize different 

parameters such as network latency, response time, 

communication cost, resource utilization and execution time.  

As the identified problem is NP-hard, a combined approach 

using two recent meta-heuristic algorithms, the Honey Badger 

Algorithm (HBA) [3] and the Flamingo Search Algorithm 

(FSA) [4] is proposed. The HB-FS algorithm works by 

optimizing the solution in every iteration generating the final 

optimized output. Finally, the experimental evaluations are 

done under different scenarios to prove the efficiency of the 

proposed approach.  

A. Proposed System model  

The system model used for task offloading in IoT-Fog-Cloud 

architecture is explained in this section. The proposed system is 

basically designed to reduce the delay and latency issues in IoT 

applications that are latency sensitive and to improve the overall 

performance of IoT-Fog-Cloud architecture. 

Formulation of computational model  

The IoT-Fog-Cloud computational model uses different 

terminologies and variables for formulation of the model as 

given below: 

• Sij: Sensor nodes used in lower layer where j=1, 

2…. n. 

• fgij: Fog nodes in the middle layer where j=1,2…n. 

• λij: rate of data generated by the sensor nodes 

• Ljk: Network latency between Sij and fgij 

• Ljc: Network latency between Fog layer and cloud 

layer 

• FgCCostjk: Communication Cost among Sij and 

associated fog node fgij 

• Dsj: Size of data 

• Bl: Bandwidth of the local network 

• CloudCCostjk: Communication cost among fgij and 

Cloud 

• Ljc: Network latency among cloud and fgij 

• Bc: Bandwidth of the cloud 

• CCost jk: Total communication cost 

• µjk: Service rate  

• STjk: Task offloading service time 

• Uij: Resource utilization 

• Rjk: Response time 

 

The IoT-Fog-Cloud model has ‘n’ number of IoT sensors Si1, 

Si2, …. Sim, where each sensor node, Sij will be generating the 

data at rate λij. The data generated by IoT layer moves to the fog 

layer which has distributed set of fog nodes fgi1, fgi2 ..., fgin. 

Different connected sensors Sij will generate the data based on 

Poisson distribution with the data arrival rate λij. The generated 

data will be time constrained and will be processed at the fog 

nodes and will be forwarded to the remote cloud for extended 

storage processing and analysis. The total communication cost 

can be calculated as the sum of communication cost among the 

Sij and the associated fog node fgij and communication cost 

among fog node fgij and the Cloud as represented by (1).  

𝐶𝐶𝑜𝑠𝑡𝑗𝑘 = 𝐶𝑙𝑜𝑢𝑑𝐶𝐶𝑜𝑠𝑡𝑗𝑘  + 𝐹𝑜𝑔𝐶𝐶𝑜𝑠𝑡𝑗𝑘 (1) 

where, FgCCostjk and CloudCCostjk can be computed using the 

equations (2) and (3). FgCCostjk is computed as the sum of Ljk 

(network latency) among Sij and fgij and transfer time of data 

among Sij and fgij 

𝐹𝑔𝐶𝐶𝑜𝑠𝑡𝑗𝑘 = 𝐿𝑗𝑘  +
𝐷𝑠𝑗 

𝐵𝑙 
                       (2) 

The cloud cost is the sum of cloud latency Ljc and transfer time 

of data among cloud and fgij. 

𝐶𝑙𝑜𝑢𝑑𝐶𝐶𝑜𝑠𝑡𝑗𝑘 = 𝐿𝑗𝑐  +
𝐷𝑠𝑗 

𝐵𝑐
              (3) 

where Bc is the bandwidth of cloud.  

The service time of task offloading of Sij to fgij is computed 

based on the M/M/1 queuing model as given in (4).  

    𝑆𝑇𝑗𝑘 =
1

𝜇𝑗𝑘−𝜆𝑗𝑘
                                      (4) 

where, µjk is the service rate. The total latency will be computed 

as a sum of communication latency and computation latency 

which is a function of time. The computation latency is also 

influenced by the underlying offloading algorithm policies such 

as decision-making time, time taken to balance the tasks among 

available fog nodes and number of tasks being offloaded to each 

fog nodes.  

The resource utilization (Uij) value of fog nodes is computed as 

summation of resource utilization of different offloaded tasks 

by connected sensors as given in (5).  

𝑈𝑖𝑗 = ∑ ∑ 𝑦𝑖𝑗𝑘𝜖𝑐𝑐 ×
𝜆𝑖𝑗 

𝜇𝑖𝑗
                                                 (5) 

Here, yij=1, when Sij tasks are offloaded to fgij.  

The total response time is computed as: 

𝑅𝑗𝑘 = 𝐶𝐶𝑜𝑠𝑡𝑗𝑘 + 𝑆𝑇𝑗𝑐                                                 (6) 

 The load of connected nodes can be evaluated using (7) and (8) 

as given below: 

𝑅𝑘 = ∑  𝑅𝑘𝑐𝑘 / (1 −  𝜇𝑗𝑐)                                            (7) 

𝐿𝑜𝑎𝑑𝑘 = 1 −
(𝑅𝑘 − 𝑅𝑎𝑣𝑒𝑟𝑎𝑔𝑒)

∑ 𝑅𝑘𝑘
                                          (8) 
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B. Proposed task offloading algorithm 

The task offloading problem is designed to effectively distribute 

the incoming IoT tasks to the available fog nodes. The fog nodes 

chosen by the tasks should be capable of meeting the QoS 

requirements. The complexity of this problem will 

exponentially increase with the increase in number of sensors 

and fog nodes. So, to solve this problem we need optimization 

algorithms which are efficient as well as less complex. Meta-

heuristic algorithms are wide class of algorithms designed to 

solve complex optimization problems. According to No-Free-

Lunch theorem, none of the optimization algorithms are capable 

of solving all the problems. When two algorithms are combined, 

we can obtain the benefits from both optimization algorithms. 

This work proposes a hybridized approach by combining the 

essential features of HBA and FSA algorithms. The output 

obtained from HB-FS algorithm proves to be better solution 

with reduced latency, average response time, execution time 

and standard deviation.  

Proposed HB-FS Algorithm 

The proposed HB-FS algorithm for task offloading. 

1. Set parameters like Cj, β, M, number of nodes, max, 

flamingos and tm. 

2. Iterate digging phase of HBA. 

3. Initialize the Flamingo population using the sample 

generated in step 2. 

4. Initialize foraging and migrating characteristics of 

flamingos.  

5. Perform position update using foraging and migration 

phase. 

6. Evaluate fitness and update the best position in each 

iteration. 

7. Repeat the steps 4-7 until desired solution is obtained.  

8. End. 

Honey Badger Algorithm (HBA) is a recent optimization 

algorithm designed to model the predatory behavior of Honey 

Badger, an intelligent mammal found in areas like India’s 

subcontinent, Africa, and southwest Asia. The animal is well 

known for its predatory behavior and fear-less nature. The HBA 

algorithm is designed in two phases: digging phase and honey 

phase. The honey badger identifies prey using the smell 

intensity of prey and dig holes to catch the prey. During honey 

phase, the honey badger takes the help of honey bird to identify 

honey. The digging phase is utilized in the proposed model.  

The HBA algorithm is initialized using (9) 

𝑦𝑗 = 𝐿𝐿𝑗 + 𝑟𝑎𝑛𝑑1 + (𝑈𝐿𝑗 − 𝐿𝐿𝑗)           (9) 

where rand1 is a random number ranging between 0 and 1. The 

jth position of honey badger is represented as yj, and the lower 

and upper bounds of the entire search space is given as LLj and 

ULj. 

The smell intensity of the prey In is updated using (10) where, 

rand2 is a random number between 0 and 1.  

𝐼𝑛 = 𝑟𝑎𝑛𝑑2  ×
𝑅

4𝜋𝐷𝑗
2                                        (10) 

             where,  𝑅 = (𝑦𝑗 − 𝑦𝑗+1)2                                   (11) 

                              𝐷𝑗 = 𝑦𝑝𝑟𝑒𝑦 − 𝑦𝑗            (12) 

Here, the focusing power is represented as R, distance between 

prey and jth HB is given as D and the global best position of prey 

is given as y prey.  

Density factor (α) updations: This factor is responsible for 

controlling the time varying randomization and provide better 

transition from exploration to exploitation. α minimizes with 

each iteration and is expressed as: 

𝛼 = 𝐶𝑗 × exp (
−𝑡

𝑡𝑚
)                                                           (13) 

Where Cj is constant and tm is maximum iterations. 

Overcome form local optima: This phase helps to reduce the 

possibility of algorithm getting trapped in local optima by 

varying the searching direction. 

𝐹 = {
1 𝑤ℎ𝑒𝑛 𝑟𝑎𝑛𝑑3 ≤ 0.5

−1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                              (14) 

where rand3 random number and it ranges from 0 to 1. 

The digging phase of honey badger is updated using (15) 

─ 𝑦𝑛𝑒𝑤 = 𝑦𝑝𝑟𝑒𝑦 + 𝐹 × 𝛼 × 𝐼 × 𝑦𝑝𝑟𝑒𝑦 + 𝐹 × 𝛼 × 𝑟𝑎𝑛𝑑4 ×

𝐷𝑗 × | cos(2𝜋𝑟𝑎𝑛𝑑5) × [1 − cos(2𝜋𝑟𝑎𝑛𝑑6)]|                                                          

                                                          (15) 

where α is capacity of HB for getting food, rand4, rand5 and 

rand6, are the various random numbers and it ranges from 0 to 

1.  

The HBA algorithm evaluates fitness in each iteration based on 

the objective function and update the HB population based on 

digging phase. As the HBA algorithm has the drawback of 

getting trapped in local optima and poor convergence [5] the 

results obtained in the digging phase is further optimized by 

passing to the second algorithm, FSA. The FSA algorithm is a 

global exploration algorithm which improves solution with 

reduced randomness in input sample and hence iterate over the 

obtained input to generate final solution.  

FSA algorithm is designed to imitate the foraging and migrating 

behavior of gregarious birds, flamingos. The flamingos are 

migratory birds which search for food as a group and sing to 

each other to communicate the availability of food source. This 

is represented as the foraging characteristics of flamingos and 

is coded as foraging phase. The flamingos migrate to different 

location if food is scarce in a particular region and cannot feed 

the existing population. This behavior is modelled as migration 

phase. The FSA is proved to have faster convergence rate and 
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accuracy compared to different algorithms such as Ant Colony 

optimization (ACO), Particle Swarm Optimization (PSO), Grey 

Wolf optimizer (GWO) [4] etc. The mathematical model for 

FSA is detailed below:  

To characterize the foraging behavior of flamingos let us 

assume that search agent with more food availability in kth 

dimension is ybk and the location of jth flamingo in kth dimension 

of the flamingo population is yjk. The maximum distance that 

can be covered by flamingo’s beak is represented as 

𝐽2 × | 𝐽1 × 𝑦𝑏𝑘 + 𝛾2 × 𝑦𝑗𝑘|   , where J1 is a random number 

following normal random distribution, γ2 is random number 

between -1 and +1and J2 is a random number. While foraging 

for food, the bipedal movement of flamingo is represented as γ1 

x ybk, where γ1 is random number and it ranges from -1 or +1. 

The sum of distance covered by the beak and claws of flamingos 

can be represented as (16).  

𝐶𝑗𝑘
𝑡 = (𝛾1 + 𝑦𝑏𝑘) + (𝐽2 × |𝐽1 × 𝑦𝑏𝑘

𝑡 + 𝛾2 × 𝑦𝑗𝑘
𝑡 |)        (16) 

The initial and updated locations of flamingos in foraging stage 

is represented in (17) and (18) respectively: 

                  𝑦𝑗𝑘
𝑡 (0) =

𝑅𝑗𝑘

𝑅𝑎𝑣𝑔
                                                      (17) 

𝑦𝑗𝑘
𝑡+1 =

(𝑦𝑗𝑘
𝑡 +𝛾1+𝑦𝑏𝑘

𝑡 +𝐽2×| 𝐽1×𝑦𝑏𝑘
𝑡 +𝛾2×𝑦𝑗𝑘

𝑡  |)

𝐼
                             (18) 

where, jth flamingo in kth dimension during (t+1) th and tth 

iterations are represented as y jk
t+1and yt

jk. I is the diffusion 

factor. 

The migration characteristics of flamingos is represented as:  

𝑦𝑗𝑘
𝑡+1 = 𝑦𝑗𝑘

𝑡 + 𝛼 × (𝑦𝑏𝑘
𝑡 − 𝑦𝑗𝑘

𝑡 )                                     (19) 

where α is Gaussian random number  

         𝜂𝑗𝑘(𝑡) =
𝑙𝑜𝑎𝑑𝑘

𝑅𝑗𝑘
                                                              (20) 

Here, when Rjk increases, ηjk
(t) and load k are decreased.  

The migratory flamingos are selected based on evaluating the 

fitness of flamingos. In our problem, the tasks are arriving in 

time constrained manner which has deadlines for completion. 

Each fog node has a maximum capacity expressed as duration 

time. The fog node accepts only the tasks whose deadline can 

be satisfied within the duration time allotted for it. So, the 

migration phase of flamingos is modified to consider the 

deadline of tasks along with the fitness value.  

 

The complete workflow of HB-FS can be modelled as given 

below: 

 

Algorithm 1. Pseudo code of proposed HB-FS Algorithm 

1. Set parameters like Cj, β, M, no. of flamingos, 

number of nodes, Max and tm. 

2. Initialize the population of Flamingos 

2.1. Initialize the honey badger population 

randomly 

2.2. Evaluate fitness of each honey badger and 

save the best position 

2.3. For t= 1 to tm, do 

2.4.    Update the density factor, α  

2.5.    For j=1 to M do 

2.6. Compute smell intensity of prey, In    

2.7. Perform position update using digging 

phase and compute fitness in each 

iteration. 

2.8.  End for loop 

2.9. End for loop 

2.10. Return intermediate result 

3. Initialize the foraging and migrating characteristics 

of flamingos 

4. For i=1 to Max i , do 

5. Compute foraging characteristics using Eq. (18) and 

6. Compute migration characteristics using Eq. (19)  

7. Evaluate fitness and update flamingo location 

8. Update the best solution 

9. End for loop 

10. Return the final optimized solution.  

IV. RESULTS AND DISCUSSION 

The proposed methodology is tested against different existing 

works to evaluate the performance. The simulations are done 

using the iFogSim simulator toolkit which is Java based. The 

implementation uses synthetically generated IoT online gaming 

dataset for evaluation purpose. The processor used is AMD 

Ryzen 5, 3500U with Radeon Vega Mobile @ 2.10 GHz. The 

RAM memory used is 8GB with 64-bit operating system. The 

different parameter value settings used for the simulation is 

shown in Table 1. below:  

TABLE 1. PARAMETER CONFIGURATIONS 

Parameters Value 

Sensor nodes  2500 

No. of fog nodes  10-25 

Max no of iterations 50 

Bl 700 Mb/s 

Bc 37 Mb/s 

Ljk 2-20 ms 

Ljc 20-30 ms 
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A. Performance Evaluation  

The proposed methodology is tested against different 

algorithms such as Genetic algorithm (GA), Slap swarm 

algorithm (SSA), and GWO (Grey wolf optimization), Bee life 

algorithm (BLA) [19], modified particle swarm optimization 

(MPSO) [20], Smart Ant Colony Optimization (SACO [15] , 

Throttle  and RR (round robin). The major evaluation 

parameters used are latency, average response time, standard 

deviation (SD), execution time, degree of imbalance (DI) etc. 

The results of the comparison are discussed in section below:  

(a) Scenario 1 & 2  

Initially, the evaluation is carried out using 10 fog nodes. The 

parameters used for the evaluation are λij=15,10,5 and 

µij=50,75,100. The proposed model is compared with different 

algorithms for evaluating the latency time. Evaluations show 

that proposed model offers lesser latency than the compared 

methods as shown in Fig 2(a) below. The evaluations also 

shows that latency time is increased when we increase the 

number of sensors. When the number of sensors is 2500, the 

latency time of RR is 126s, Throttle is 104s, MPSO is 102s, 

BLA is 101s, SACO is 97s, SSA is 100s, GA is 116s, GWO is 

99s and the proposed model is 80s respectively. 

For scenario 2, the parameters chosen are λij=50,40,30 keeping 

the service rate and number of fog nodes same as scenario 1. 

The observations shows that latency can be reduced if the data 

rate is increased. When the number of sensors is 1750, the 

latency of RR is 107s, Throttle is 98s, MPSO is 97s, BLA is 

96s, SACO is 94s, SSA is 77s, GA is 78s, GWO is 77s and the 

proposed model is 60s respectively. 

(b) Third and fourth scenario 

The third scenario is modelled by increasing the number of fog 

nodes to 25. The other parameters used are λij=50,40,30 and 

µjk=400,350,300. The figure 3(a) shows that there is slight 

change in the latency when service rate is increased. When the 

number of IoT sensors are 2000, latency time of RR is 116s, 

Throttle is 114s, MPSO is 114s, BLA is 112s, SACO is 110s, 

GWO is 100s, GA is 121 s and SSA is 105s and the proposed 

model is 67s respectively.  

Figure 3(b) shows the outcomes of the fourth scenario. Here, 25 

sensors are considered, λij=30,25,20 and µjk=400,350,300. It is 

observed that number of IoT sensors are 1750, latency time of 

RR is 110 s, Throttle is 107s, MPSO is 107s, BLA is 106s, 

SACO is 101s, GWO is 120s, GA is 123s and SSA is 122s and 

the proposed model is 64s. From all the four scenarios it can be 

proved that the proposed model generated lesser latency under 

different conditions.  

Figure 4 represents the response time comparison of the 

proposed and existing algorithms like RR, ACO, PSO GWO, 

GA and SSA. The average response time for different tasks are 

observed on every iteration. In this case, the ART is maintained 

consistently even as the total tasks are increased by providing 

many IoT sensors. When compared to the existing models, 

proposed optimization maintains less response time when the 

IoT sensors are increased. 

The execution time comparison of different algorithms is 

presented in Figure 5. The results show that for offloading 

process, the average time taken by the approaches like SACO, 

MPSO, throttle, RR, BLA, GWO, GA SSA and proposed 

approach are 107ms, 113.2ms, 115ms, 122ms, 110ms, 165.4ms, 

81ms, 76ms and 45ms respectively. The proposed model 

converges with lesser execution time. 

Degree of imbalance is another evaluation measure which 

evaluate how well the algorithm can balance the available load 

It is computed using (21). 

𝐷𝐼 =
𝑀𝑎𝑥(𝑅𝑘)−𝑀𝑖𝑛(𝑅𝑘)

𝑅𝑎𝑣𝑔
   𝑘 = 1,2, … . 𝑁𝑛𝑜𝑑𝑒 (13) 

Figure 6 depicts the comparison of degree of imbalance of 

proposed algorithm with existing algorithms. The results shows 

that the proposed algorithm maintains better degree of 

imbalance under different load conditions and can be 

effectively used for balancing the load. When the sensors are 

increased, the degree of imbalance is maintained in a balanced 

manner.  

Standard deviation (SD): It is used for evaluating the load 

distribution between fog nodes. For smaller ranges, largely 

balanced nodes are obtained. It is computed as:                                           

𝑆𝐷 =
√∑ (𝑅𝑘 −𝑅𝑎𝑣𝑔)

2
𝑘

𝑁𝑛𝑜𝑑𝑒
                (22) 
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Figure 7 represents the SD comparison of the proposed and the 

existing algorithms. These results are obtained by varying the 

number of IoT sensors. The standard deviation of response time  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2. Latency time comparison for (a) scenario 1 and (b) scenario 2 

 

 
Fig. 3. Latency time comparison for (a) scenario 3 and (b) scenario 4 

 

 
Fig. 4. and 5. Average response time and execution time comparison of the proposed and existing algorithms. 

 

 
Fig. 6. and 7. Degree of imbalance and standard deviation comparison 
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is the difference on response time of entire offloaded tasks from 

ART. From the figure it is clearly proved that the proposed task 

offloading technique performs better when compared to RR, 

ACO, PSO, GWO, GA and SSA respectively. 

From the experimental analysis, it is noted that the proposed 

model achieves better latency time, average response time, 

standard deviation, execution time and degree of imbalance 

compared to the existing techniques. The observations from the  

analysis shows that by optimizing these parameters the QoS can 

be enhanced. Thus, the proposed model can be efficiently used 

for task offloading in latency sensitive IoT applications. 

V. CONCLUSION 

The tremendous growth of IoT applications over the past few 

years has increased the dependence of technology on cloud 

resources. The application generates millions of data every 

second. Cloud computing offers promising solutions to IoT 

applications for data storage, processing and analytics. However, 

latency sensitive IoT applications finds it difficult to completely 

depend on cloud for processing as the delay induced by remote 

cloud is intolerable. The introduction of fog computing offers 

timely delivery of services to IoT applications increasing the 

popularity of IoT-Fog-Cloud model. The task offloading in Fog 

layer is crucial as it impacts the QoS and performance of 

connected applications. This work focuses on designing an 

effective offloading approach using the combination of two 

novel meta-heuristic algorithms, Honey Badger Algorithm and 

Flamingo Search Algorithm. The proposed HB-FS algorithm 

utilizes the digging phase of HBA to initialize the population for 

FSA algorithm. The optimization function is designed to 

optimize different parameters like network latency, response 

time, resource utilization etc. The performance evaluations are 

carried out under different scenarios to prove the efficacy of 

proposed model. The quantitative results depicts that the 

proposed work performs better than compared techniques in 

terms of network latency, average response time, execution time. 

The model also offers better load balancing making it suitable 

for applications with varying load conditions. In future, this 

work will be considering the scalability issues and security 

factors to enhance the QoS and performance further.  
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