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Abstract— In recent years, XML has become the de facto internet wire language. Data may be organized and given context with the use of 

XML. A well-organized document facilitates the transformation of raw data into actionable intelligence. In B2B1 applications, the XML data is 

sent and created. This implies the need for fast query processing on XML data. The processing of XML tree sample queries (XTPQ) that provide 

an efficient response (also known as sample matching) is a topic of active study in the XML database field.DOM (Parser) may be used to 

transform an XML document into a tree representation. Extensible Markup Language (XML) query languages like XPath and XQuery use tree 

samples (twigs) to express query results.XML query processing focuses mostly on effectively locating all instances of twig 1 samples inside an 

XML database. Numerous techniques for matching such tree samples have been presented in recent years. In this study, we survey recent 

developments in XTPQ processing. This summary will begin by introducing several algorithms for twig sample matching and then go on to 

provide some background on holistic techniques to process XTPQ. 

Keywords- XML Tree Generation, Identical XML Instances, Extensive XML Structures, TwigStack. 

 

I. INTRODUCTION 

The necessity for XML data in enterprise data transfer systems 

is expanding. Twig samples (also known as sample matching) 

are the results of evaluating XML tree sample queries 

(XTPQ). The growth of this 1 B2B point calls for effective 

sample matching techniques on massive XML data sets in 

order to evaluate tree samples (twigs). The DOM parser 

creates an XML tree to represent the document. Once again, 

you may choose between ordered (ancestor and left-to-right 

ordering among sibling connections matter) and unordered 

(only ancestor relationship matters) XML trees. The results of 

certain algorithms are presented as unordered XML trees, 

whereas the results of others are presented as ordered, labelled 

XML trees (twigs).In the past, XML trees were analysed as a 

series of ordered, tagged twigs. Ordered matching ignores the 

possibility that the sub-elements first name and last name can 

be in reverse order when looking for a child node of the 

element student with those nodes and their associated values. 

It's possible, however, that this is the pupil we've been 

seeking. The only important connections in the query twig are 

those between ancestors and descendants; the other links 

(axes) between ancestors and siblings, between siblings, and 

between siblings and the ancestors are all unimportant. As 

XML becomes the go-to format for representing data, there 

has been a surge of interest in query processing over tree-

structured data models. Since trees are often used to represent 

data objects in many computer languages (e.g. XPath [1], 

XQuery [2]), twig sample matching is of paramount 

importance. Book [title='XML'] is the query.//author 

[name='Jane']'s sample may be visualised as a twig. Book 

elements having a child title element whose value is "XML" 

and whose sub-element name includes the string "Jane" are 

matched. In the above query, "/" represents a parent-child 

connection and "//" represents an ancestor-descendant one. In 

practise, XML data may be quite large, complex, and include 

nested elements. Finding all twig samples in a database of 
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XML documents rapidly is, thus, an important part of 

processing XML queries. There have been several proposals 

for matching such twig samples ([3, 4]) in recent years. These 

techniques first establish a tagging scheme to record the 

structure of XML files, and then use this information to Use 

just the labels to match tree samples, rather than the XML files 

themselves. 

In the past, solutions to this problem have focused on 

developing labelling systems based on tree-traversal ordering, 

textual placements of start and end tags (such as region 

encoding [5]), route expressions (such as Dewey ID [6]), or 

prime numbers (such as [7]). These labelling techniques allow 

us to examine the labels of two XML document components 

and infer their relationship to one another (ancestor, 

descendant, parent, child, etc.). 

II. RN MATCHING TWIG 

XML queries are kept in the form of twigs in both Lore [8] 

and Timber [9]. Storage and query processing of XML data in 

relational databases have been investigated [6, 7]. Processing 

of XML twig samples (XTPQ) has been made more efficient 

in recent papers [10, 11]. Ordered, a comprehensive approach 

to ordering XML tree queries, is presented in [10]. 

TwigStackListNot is a paper [11] that deals with negation 

questions. Data streaming algorithms were established by 

Chen et al. [12] to enhance the holistic nature of processing 

XML tree samples. There was a larger optimal class because 

of improved techniques for streaming data. Requests for 

generic examples of XML trees are likewise satisfied by 

Twig2Stack [13]. Here, examples of generic and extended 

XML trees are shown. The optional axis in this generalised 

XML tree example represents the LET and RETURN clause 

expressions in XQuery. Negative functions, wildcards, and 

order restrictions are only some of the numerous constraints 

shown in the aforementioned big XML tree sample. XML tree 

sample matches may also be converted into sequence matches 

by using ViST[14] or PRIX[15]. It is challenging to extend 

these two methods to handle unordered queries. The research 

shows that the holistic tree sample technique is reliable and 

guarantees performance [16]. Choi et al. [20] conducted a 

theoretical investigation into XML tree sample matching and 

found that no unified method can guarantee optimality for 

queries with every possible permutation of Parent-Child and 

Ancestor-Descendant relationships. The complexity of the 

query space for XML twigs was studied by Shalem et al. [21]. 

Based on their findings, the maximum time required for a full-

edge search that includes Parent-Child and Ancestor-

Descendant edges is O(D), where D is the total number of 

documents. Theoretically, their results show that no algorithm 

can effectively process any query of the form Q/, //, *. XML 

element tagging ensures that data relationships are correct. 

Most labels use a prefix or a limiting phrase. To improve 

query results, Zhang et al. [17] applied containment labelling. 

Parent-child and ancestor-descendant relationships are 

intricate, as seen by regional labelling. Labelling XML 

prefixes with an example using Dewey ID. During the query 

processing, the path information is kept safe. Route 

information, such as element identifiers and names, is encoded 

in Lu at el. [14]'s complex Dewey encoding [18]. 

III. HOLISTIC XML QUERY PROCESSING 

ALGORITHMS 

In this work, we provide two distinct techniques for handling 

an XML twig query. Two-stage methods for evaluating the 

health of a twig Algorithms for the comprehensive assessment 

of twigs in a single phase 

A. The TwigStack Algorithm 

Bruno et al. [5] developed a unique holistic XML twig 

sample matching approach called TwigStack based on the 

confinement labelling system [17], which eliminates the need 

to save intermediate findings unless they contribute to the final 

results. Unlike the decomposition-based approach, this one 

doesn't involve calculating a lot of unnecessary intermediate 

outcomes. TwigStack's primary drawback is that it may 

generate a high number of "useless" intermediate results if a 

query has a parent-child connection. Although it has been 

shown that for searches involving just A-D edges, TwigStack's 

algorithms are I/O-optimal in terms of output size, for queries 

including parent-child (P-C) edges, they still lack the ability to 

regulate the size of intermediate results. TwigStack consists of 

two stages: (1) generating a list of intermediate route solutions 

as intermediate results, and (2) performing a merge-join on the 

list of intermediate path solutions to get the final solutions. 

TwigStack's Algorithm: 

1. Initiate a while loop that will run until the query 

finishes processing. 

2. Extract the next nested query element. 

3. See if the current element is the root. 

4. If the current element is not the root, clean the 

parent stack by eliminating elements until you reach 

the beginning of the stack. 

5. If this is the first item in the stack or if the parent 

stack is not empty: 

6. Eliminate all items from the self stack until you 

reach the end of the current element. 

7. Using the "moveToStack" method with a pointer to 

the parent stack's top element, copy the current 

element into the "Sqact" stack. 
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8. If this node is a leaf, do the following. 

9. Using the "Sqact" stack, demonstrate your solutions, 

which may include blocking. 

10. Take the top "Sqact" stack item and pop it. 

11. If the current node is not a leaf node, then: 

12. The next round of query processing has begun. 

13. Iterate the loop until the inquiry is complete. 

14. Combine the results of all the paths found when 

processing the query. 

B. TwigStackList Algorithm   

Our method, in contrast to the older Algorithm TwigStack 

[5], considers the level information of elements, which results 

in significantly less intermediate pathways being reported for 

query twig samples that contain parent-child edges. We have 

demonstrated analytically that the I/O cost of TwigStackList is 

only equal to the sum of the sizes of the input and the output 

when all edges below branching nodes (nodes that has more 

than one child) in the query sample are ancestor-descendant 

connections. In other words, unlike TwigStack, which only 

guarantees the optimality for queries with exclusively A-D 

relationships, TwigStackList [19] finds a bigger query class to 

ensure the I/O optimality. For queries involving only ancestor-

descendant relationships, our method achieves similar 

performance to TwigStack, according to experimental results. 

However, for queries involving parent-child relationships, our 

method is significantly more efficient than TwigStack, 

especially for deep data sets with complicated recursive 

structure. 

Algorithm for TwigStackList: 

1. Set up a repeating loop that will run indefinitely. 

2. Locate the following node in the XML file and store 

its contents in the qact variable. 

3. To see if the present node (qact) is the root, we need 

to test it. 

4. If this is not the root node, remove all children from 

the parent stack, starting at the node indicated by 

getStart(qact). 

5. The if clause is done. 

6. Verify that the parent stack (Sparent) is not empty or 

that the present node is the root node. 

7. If the current node is the root or the parent stack is 

not empty, then all items in the self stack (Sqact) up 

to and including the node represented by 

getEnd(qact) should be removed. 

8. Influence the current. 

C. Ordered TJ Algorithm 

It's an enhancement to the existing TwigStackList 

functionality. The following is accomplished in this work: a) 

We provide a new method, which we call OrderedTJ[10], for 

processing ordered twig samples on a global scale.   In 

OrderedTJ, an item only counts towards the final tally if the 

order of its children coincides with the order of relevant query 

nodes. 

When the ordered query only includes A-D relations from 

the second branching edge, we show analytically that 

OrderedTJ [10] is I/O optimal among all sequential algorithms 

that read the entire input. This terminology is used to 

distinguish edges between branching nodes and their children 

as branching edges and the branching edge connecting to the 

then'th child as the then'th branching edge. According to 

OrderedTJ's optimality, P-C edges may be present in both the 

initial branching edge (a node with several children) and the 

non-branching edge (a node with just one child). 

Algorithm for OrderedTJ 

1. Start a while loop until the end of the query is reached. 

2. Get the next element from the root of the query and 

assign it to the variable 'qact'. 

3. If the current element is the root element or if the 

parent stack associated with 'qact' is not empty, 

execute the following steps: a. Clean the stack 

associated with 'qact' by removing elements until 

reaching the end of 'qact'. 

4. Move the stream to the stack 'Sqact' using the 

'moveStreamToStack' function, with 'qact' as the 

input. 

5. If the current element is a leaf node, execute the 

following steps: a. Show path solutions using the 'Sq' 

stack and the element obtained from 'qact'. 

6. If the current element is not a leaf node, proceed to the 

next step in processing the query. 

7. Repeat the loop until the end of the query is reached. 

8. Merge all path solutions obtained during the query 

processing. 

D. TJFast Algorithm (A Fast Twig Join Algorithm) 

A Fast Twig Join (FTJ) algorithm is an efficient approach 

for executing twig pattern queries on XML data. Twig pattern 

queries are typically used to retrieve structured information 

from XML documents. The main idea behind the FTJ 

algorithm is to minimize the number of intermediate results and 
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reduce the search space during query processing. It achieves 

this by exploiting the structural relationships and the order of 

nodes in the XML document. Here is a high-level overview of 

the steps involved in a typical FTJ algorithm: 

1. To optimise query processing, an index structure is 

formed on the XML document. The index structure captures 

XML element structural connections like parent-child and 

ancestor-descendant. 

2. Decompose the twig pattern by dividing the query into 

smaller subpatterns based on the structural relationships 

between the nodes. Both the number of intermediate results and 

the search space may be reduced by using decomposition. 

3. The algorithm works from the bottom up, joining smaller 

patterns as it goes the join operation between the pertinent 

nodes for each sub-pattern is performed using an index 

structure in this approach. 

4. Filtering and Optimization: The method uses filtering 

and optimization to minimize search space and increase query 

speed. Structural pruning, early result termination, and efficient 

index lookups are examples. 

5. The procedure combines intermediate results to obtain 

the final result set that matches the original twig pattern query 

after assessing all sub-patterns. 

The specific implementation details and optimizations may 

vary based on the FTJ algorithm variant and research 

advancements in the field. FTJ algorithms aim to strike a 

balance between query performance and resource utilization, 

making them efficient for processing twig pattern queries on 

XML data. 

E. TreeMatch Algorithm 

This approach increases optimum query classes. It matches 

results using simple encoding and minimises superfluous 

intermediary outcomes. 

1. `locateMatchLabel(Q)`: This function is responsible for 

locating the next element in the hierarchical structure that 

matches the given query pattern, represented by 'Q'. The details 

of how this function locates the match are not provided in the 

code snippet. 

2. Start a while loop until the end of the root element is 

reached. 

3. `fact = getNext(topBranchingNode)`: Get the next top-

level branching node from the root of the hierarchical structure 

and assign it to the variable 'fact'. 

4. Check if 'fact' is a return node, indicating that it matches 

the query pattern. 

5. If 'fact' is a return node, add the corresponding element 

from the hierarchical structure to the output list. The function 

`NAB(fact)` retrieves the element associated with 'fact', and 

`cur(Tfact)` represents the current position in 'Tfact'. 

6. Advance to the next element in 'Tfact', which is the 

hierarchical structure being processed. 

7. Update the set encoding, possibly related to the matching 

or processing of the element. 

8. `locateMatchLabel(Q)`: Locate the next element in the 

hierarchical structure that matches the given query pattern. This 

function is called recursively to continue matching the query 

pattern. 

9. Empty all sets related to the root element. This step may 

involve resetting or clearing any sets used for encoding or 

tracking information during the matching process. 

 

Figure (a and b): Illustration to Algorithm TreeMatch for 

class Q/,//,* 

It's important to note that the specific details of functions 

like `locateMatchLabel`, `addToOutputList`, `updateSet`, 

`NAB`, and `emptyAllSets` are not provided in the code 

snippet. Additional context or information would be required to 

understand the functionality and behavior of these functions 

and the overall algorithm.  

TABLE I.    

Table Column Head 

Current Elements set encoding s a set encoding s c 

B1,D1,E1 <0, “10”,Q> 

<0.1.2, “10”,Q> 

<0.1.2.1, “01”,Q> 

 

B1,D1,E2 <0, “11”,”0.0”> 

<0.1.2, “11”,Q> 

<0.1.2.1, “11”,Q> 

 

B2,D1,E2 
<0, “11”,”0.0”> 

<0.1, “11”,”0.1.0”> 

<0.1, “11”,”0.0”> 

<0.1.2.1, “10”,Q> 

 

TABLE1 lists access, settings encoding, and output 

elements. Queries branch twice. Scan B1, D1, and E1 first. C1 

and C2 are added to SC with bit Vectors "10" and "01," 

indicating they have one child each. TJFast may yield route 
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solutions A1/A2/C1/D1 and A1/A2/C1/C2/E1 that are not 

suitable for final findings. TreeMatch eliminates unnecessary 

I/O. Since C1 has two progeny, E2 is scanned and the bit 

Vector (C1) becomes "11." 11 is A1's bitVector. A1 matches 

the sample tree since bitVector (A1) has all 1s. SA gets A2 

after scanning B2. Treematch yields B1 and B2 results. 

TJFast and TreeMatch have two differences. 

1) TreeMatch uses bitVector encoding to solve TJFast's 

unnecessary intermediary path A1/A2/C1/C2/E1. 

2) TreeMatch provides return nodes (node B in the query) to 

reduce I/O cost, whereas TJFast outputs the route solution for  

 

 

 

 

 

 

 

 

 

 

 

Figure. (b) Execution time of Q/,//,* on random data 

 

 

 

 

 

 

 

 

Figure (c): Execution time of Q/,//,*,< on random data 

 

IV. CONCLUSION  

The current investigation addressed the XML twig 

sample matching issue and reviewed previous techniques. 

TwigStack, TwigStackList, OrderedTJ, TJFast, and TreeMatch 

are introduced. TreeMatch runs fast and processes generalised 

tree samples. TwigStack, TwigStackList, OrderedTJ, and 

TJFast work on two-phase query evaluation, whereas 

TreeMatch works on one-phase query assessment. TreeMatch 

twig sample matching method may answer complex questions 

and perform well. 
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