
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 8s

DOI: https://doi.org/10.17762/ijritcc.v11i8s.7238

Article Received: 26 April 2023 Revised: 15 June 2023 Accepted: 30 June 2023

 559

IJRITCC | July 2023, Available @ http://www.ijritcc.org

Strategies and Approaches for Generating Identical

Extensive XML Tree Instances

1Dr. Bhargavi Peddi Reddy, 2Harikrishna Bommala, 3Dr. Srikanth Bhyrapuneni
1Associate professor

Department of Computer Science and Engineering

Vasavi college of engineering , Hyderabad

bhargavi.peddyreddy@gmail.com
2Department of Computer Science and Engineering

KG Reddy College of Engineering & Technology

Moinabad, Hyderabad, Telangana, India

haribommala@gmail.com
3Associate professor

Department of Computer Science and Engineering

Koneru Lakshmaiah Education Foundation

Vijayawada, AP, India

bsrikanth@kluniversity.in

Abstract— In recent years, XML has become the de facto internet wire language. Data may be organized and given context with the use of

XML. A well-organized document facilitates the transformation of raw data into actionable intelligence. In B2B1 applications, the XML data is

sent and created. This implies the need for fast query processing on XML data. The processing of XML tree sample queries (XTPQ) that provide

an efficient response (also known as sample matching) is a topic of active study in the XML database field.DOM (Parser) may be used to

transform an XML document into a tree representation. Extensible Markup Language (XML) query languages like XPath and XQuery use tree

samples (twigs) to express query results.XML query processing focuses mostly on effectively locating all instances of twig 1 samples inside an

XML database. Numerous techniques for matching such tree samples have been presented in recent years. In this study, we survey recent

developments in XTPQ processing. This summary will begin by introducing several algorithms for twig sample matching and then go on to

provide some background on holistic techniques to process XTPQ.

Keywords- XML Tree Generation, Identical XML Instances, Extensive XML Structures, TwigStack.

I. INTRODUCTION

The necessity for XML data in enterprise data transfer systems

is expanding. Twig samples (also known as sample matching)

are the results of evaluating XML tree sample queries

(XTPQ). The growth of this 1 B2B point calls for effective

sample matching techniques on massive XML data sets in

order to evaluate tree samples (twigs). The DOM parser

creates an XML tree to represent the document. Once again,

you may choose between ordered (ancestor and left-to-right

ordering among sibling connections matter) and unordered

(only ancestor relationship matters) XML trees. The results of

certain algorithms are presented as unordered XML trees,

whereas the results of others are presented as ordered, labelled

XML trees (twigs).In the past, XML trees were analysed as a

series of ordered, tagged twigs. Ordered matching ignores the

possibility that the sub-elements first name and last name can

be in reverse order when looking for a child node of the

element student with those nodes and their associated values.

It's possible, however, that this is the pupil we've been

seeking. The only important connections in the query twig are

those between ancestors and descendants; the other links

(axes) between ancestors and siblings, between siblings, and

between siblings and the ancestors are all unimportant. As

XML becomes the go-to format for representing data, there

has been a surge of interest in query processing over tree-

structured data models. Since trees are often used to represent

data objects in many computer languages (e.g. XPath [1],

XQuery [2]), twig sample matching is of paramount

importance. Book [title='XML'] is the query.//author

[name='Jane']'s sample may be visualised as a twig. Book

elements having a child title element whose value is "XML"

and whose sub-element name includes the string "Jane" are

matched. In the above query, "/" represents a parent-child

connection and "//" represents an ancestor-descendant one. In

practise, XML data may be quite large, complex, and include

nested elements. Finding all twig samples in a database of

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 8s

DOI: https://doi.org/10.17762/ijritcc.v11i8s.7238

Article Received: 26 April 2023 Revised: 15 June 2023 Accepted: 30 June 2023

 560

IJRITCC | July 2023, Available @ http://www.ijritcc.org

XML documents rapidly is, thus, an important part of

processing XML queries. There have been several proposals

for matching such twig samples ([3, 4]) in recent years. These

techniques first establish a tagging scheme to record the

structure of XML files, and then use this information to Use

just the labels to match tree samples, rather than the XML files

themselves.

In the past, solutions to this problem have focused on

developing labelling systems based on tree-traversal ordering,

textual placements of start and end tags (such as region

encoding [5]), route expressions (such as Dewey ID [6]), or

prime numbers (such as [7]). These labelling techniques allow

us to examine the labels of two XML document components

and infer their relationship to one another (ancestor,

descendant, parent, child, etc.).

II. RN MATCHING TWIG

XML queries are kept in the form of twigs in both Lore [8]

and Timber [9]. Storage and query processing of XML data in

relational databases have been investigated [6, 7]. Processing

of XML twig samples (XTPQ) has been made more efficient

in recent papers [10, 11]. Ordered, a comprehensive approach

to ordering XML tree queries, is presented in [10].

TwigStackListNot is a paper [11] that deals with negation

questions. Data streaming algorithms were established by

Chen et al. [12] to enhance the holistic nature of processing

XML tree samples. There was a larger optimal class because

of improved techniques for streaming data. Requests for

generic examples of XML trees are likewise satisfied by

Twig2Stack [13]. Here, examples of generic and extended

XML trees are shown. The optional axis in this generalised

XML tree example represents the LET and RETURN clause

expressions in XQuery. Negative functions, wildcards, and

order restrictions are only some of the numerous constraints

shown in the aforementioned big XML tree sample. XML tree

sample matches may also be converted into sequence matches

by using ViST[14] or PRIX[15]. It is challenging to extend

these two methods to handle unordered queries. The research

shows that the holistic tree sample technique is reliable and

guarantees performance [16]. Choi et al. [20] conducted a

theoretical investigation into XML tree sample matching and

found that no unified method can guarantee optimality for

queries with every possible permutation of Parent-Child and

Ancestor-Descendant relationships. The complexity of the

query space for XML twigs was studied by Shalem et al. [21].

Based on their findings, the maximum time required for a full-

edge search that includes Parent-Child and Ancestor-

Descendant edges is O(D), where D is the total number of

documents. Theoretically, their results show that no algorithm

can effectively process any query of the form Q/, //, *. XML

element tagging ensures that data relationships are correct.

Most labels use a prefix or a limiting phrase. To improve

query results, Zhang et al. [17] applied containment labelling.

Parent-child and ancestor-descendant relationships are

intricate, as seen by regional labelling. Labelling XML

prefixes with an example using Dewey ID. During the query

processing, the path information is kept safe. Route

information, such as element identifiers and names, is encoded

in Lu at el. [14]'s complex Dewey encoding [18].

III. HOLISTIC XML QUERY PROCESSING

ALGORITHMS

In this work, we provide two distinct techniques for handling

an XML twig query. Two-stage methods for evaluating the

health of a twig Algorithms for the comprehensive assessment

of twigs in a single phase

A. The TwigStack Algorithm

Bruno et al. [5] developed a unique holistic XML twig

sample matching approach called TwigStack based on the

confinement labelling system [17], which eliminates the need

to save intermediate findings unless they contribute to the final

results. Unlike the decomposition-based approach, this one

doesn't involve calculating a lot of unnecessary intermediate

outcomes. TwigStack's primary drawback is that it may

generate a high number of "useless" intermediate results if a

query has a parent-child connection. Although it has been

shown that for searches involving just A-D edges, TwigStack's

algorithms are I/O-optimal in terms of output size, for queries

including parent-child (P-C) edges, they still lack the ability to

regulate the size of intermediate results. TwigStack consists of

two stages: (1) generating a list of intermediate route solutions

as intermediate results, and (2) performing a merge-join on the

list of intermediate path solutions to get the final solutions.

TwigStack's Algorithm:

1. Initiate a while loop that will run until the query

finishes processing.

2. Extract the next nested query element.

3. See if the current element is the root.

4. If the current element is not the root, clean the

parent stack by eliminating elements until you reach

the beginning of the stack.

5. If this is the first item in the stack or if the parent

stack is not empty:

6. Eliminate all items from the self stack until you

reach the end of the current element.

7. Using the "moveToStack" method with a pointer to

the parent stack's top element, copy the current

element into the "Sqact" stack.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 8s

DOI: https://doi.org/10.17762/ijritcc.v11i8s.7238

Article Received: 26 April 2023 Revised: 15 June 2023 Accepted: 30 June 2023

 561

IJRITCC | July 2023, Available @ http://www.ijritcc.org

8. If this node is a leaf, do the following.

9. Using the "Sqact" stack, demonstrate your solutions,

which may include blocking.

10. Take the top "Sqact" stack item and pop it.

11. If the current node is not a leaf node, then:

12. The next round of query processing has begun.

13. Iterate the loop until the inquiry is complete.

14. Combine the results of all the paths found when

processing the query.

B. TwigStackList Algorithm

Our method, in contrast to the older Algorithm TwigStack

[5], considers the level information of elements, which results

in significantly less intermediate pathways being reported for

query twig samples that contain parent-child edges. We have

demonstrated analytically that the I/O cost of TwigStackList is

only equal to the sum of the sizes of the input and the output

when all edges below branching nodes (nodes that has more

than one child) in the query sample are ancestor-descendant

connections. In other words, unlike TwigStack, which only

guarantees the optimality for queries with exclusively A-D

relationships, TwigStackList [19] finds a bigger query class to

ensure the I/O optimality. For queries involving only ancestor-

descendant relationships, our method achieves similar

performance to TwigStack, according to experimental results.

However, for queries involving parent-child relationships, our

method is significantly more efficient than TwigStack,

especially for deep data sets with complicated recursive

structure.

Algorithm for TwigStackList:

1. Set up a repeating loop that will run indefinitely.

2. Locate the following node in the XML file and store

its contents in the qact variable.

3. To see if the present node (qact) is the root, we need

to test it.

4. If this is not the root node, remove all children from

the parent stack, starting at the node indicated by

getStart(qact).

5. The if clause is done.

6. Verify that the parent stack (Sparent) is not empty or

that the present node is the root node.

7. If the current node is the root or the parent stack is

not empty, then all items in the self stack (Sqact) up

to and including the node represented by

getEnd(qact) should be removed.

8. Influence the current.

C. Ordered TJ Algorithm

It's an enhancement to the existing TwigStackList

functionality. The following is accomplished in this work: a)

We provide a new method, which we call OrderedTJ[10], for

processing ordered twig samples on a global scale. In

OrderedTJ, an item only counts towards the final tally if the

order of its children coincides with the order of relevant query

nodes.

When the ordered query only includes A-D relations from

the second branching edge, we show analytically that

OrderedTJ [10] is I/O optimal among all sequential algorithms

that read the entire input. This terminology is used to

distinguish edges between branching nodes and their children

as branching edges and the branching edge connecting to the

then'th child as the then'th branching edge. According to

OrderedTJ's optimality, P-C edges may be present in both the

initial branching edge (a node with several children) and the

non-branching edge (a node with just one child).

Algorithm for OrderedTJ

1. Start a while loop until the end of the query is reached.

2. Get the next element from the root of the query and

assign it to the variable 'qact'.

3. If the current element is the root element or if the

parent stack associated with 'qact' is not empty,

execute the following steps: a. Clean the stack

associated with 'qact' by removing elements until

reaching the end of 'qact'.

4. Move the stream to the stack 'Sqact' using the

'moveStreamToStack' function, with 'qact' as the

input.

5. If the current element is a leaf node, execute the

following steps: a. Show path solutions using the 'Sq'

stack and the element obtained from 'qact'.

6. If the current element is not a leaf node, proceed to the

next step in processing the query.

7. Repeat the loop until the end of the query is reached.

8. Merge all path solutions obtained during the query

processing.

D. TJFast Algorithm (A Fast Twig Join Algorithm)

A Fast Twig Join (FTJ) algorithm is an efficient approach

for executing twig pattern queries on XML data. Twig pattern

queries are typically used to retrieve structured information

from XML documents. The main idea behind the FTJ

algorithm is to minimize the number of intermediate results and

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 8s

DOI: https://doi.org/10.17762/ijritcc.v11i8s.7238

Article Received: 26 April 2023 Revised: 15 June 2023 Accepted: 30 June 2023

 562

IJRITCC | July 2023, Available @ http://www.ijritcc.org

reduce the search space during query processing. It achieves

this by exploiting the structural relationships and the order of

nodes in the XML document. Here is a high-level overview of

the steps involved in a typical FTJ algorithm:

1. To optimise query processing, an index structure is

formed on the XML document. The index structure captures

XML element structural connections like parent-child and

ancestor-descendant.

2. Decompose the twig pattern by dividing the query into

smaller subpatterns based on the structural relationships

between the nodes. Both the number of intermediate results and

the search space may be reduced by using decomposition.

3. The algorithm works from the bottom up, joining smaller

patterns as it goes the join operation between the pertinent

nodes for each sub-pattern is performed using an index

structure in this approach.

4. Filtering and Optimization: The method uses filtering

and optimization to minimize search space and increase query

speed. Structural pruning, early result termination, and efficient

index lookups are examples.

5. The procedure combines intermediate results to obtain

the final result set that matches the original twig pattern query

after assessing all sub-patterns.

The specific implementation details and optimizations may

vary based on the FTJ algorithm variant and research

advancements in the field. FTJ algorithms aim to strike a

balance between query performance and resource utilization,

making them efficient for processing twig pattern queries on

XML data.

E. TreeMatch Algorithm

This approach increases optimum query classes. It matches

results using simple encoding and minimises superfluous

intermediary outcomes.

1. `locateMatchLabel(Q)`: This function is responsible for

locating the next element in the hierarchical structure that

matches the given query pattern, represented by 'Q'. The details

of how this function locates the match are not provided in the

code snippet.

2. Start a while loop until the end of the root element is

reached.

3. `fact = getNext(topBranchingNode)`: Get the next top-

level branching node from the root of the hierarchical structure

and assign it to the variable 'fact'.

4. Check if 'fact' is a return node, indicating that it matches

the query pattern.

5. If 'fact' is a return node, add the corresponding element

from the hierarchical structure to the output list. The function

`NAB(fact)` retrieves the element associated with 'fact', and

`cur(Tfact)` represents the current position in 'Tfact'.

6. Advance to the next element in 'Tfact', which is the

hierarchical structure being processed.

7. Update the set encoding, possibly related to the matching

or processing of the element.

8. `locateMatchLabel(Q)`: Locate the next element in the

hierarchical structure that matches the given query pattern. This

function is called recursively to continue matching the query

pattern.

9. Empty all sets related to the root element. This step may

involve resetting or clearing any sets used for encoding or

tracking information during the matching process.

Figure (a and b): Illustration to Algorithm TreeMatch for

class Q/,//,*

It's important to note that the specific details of functions

like `locateMatchLabel`, `addToOutputList`, `updateSet`,

`NAB`, and `emptyAllSets` are not provided in the code

snippet. Additional context or information would be required to

understand the functionality and behavior of these functions

and the overall algorithm.

TABLE I.

Table Column Head

Current Elements set encoding s a set encoding s c

B1,D1,E1 <0, “10”,Q>

<0.1.2, “10”,Q>

<0.1.2.1, “01”,Q>

B1,D1,E2 <0, “11”,”0.0”>

<0.1.2, “11”,Q>

<0.1.2.1, “11”,Q>

B2,D1,E2
<0, “11”,”0.0”>

<0.1, “11”,”0.1.0”>

<0.1, “11”,”0.0”>

<0.1.2.1, “10”,Q>

TABLE1 lists access, settings encoding, and output

elements. Queries branch twice. Scan B1, D1, and E1 first. C1

and C2 are added to SC with bit Vectors "10" and "01,"

indicating they have one child each. TJFast may yield route

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 8s

DOI: https://doi.org/10.17762/ijritcc.v11i8s.7238

Article Received: 26 April 2023 Revised: 15 June 2023 Accepted: 30 June 2023

 563

IJRITCC | July 2023, Available @ http://www.ijritcc.org

solutions A1/A2/C1/D1 and A1/A2/C1/C2/E1 that are not

suitable for final findings. TreeMatch eliminates unnecessary

I/O. Since C1 has two progeny, E2 is scanned and the bit

Vector (C1) becomes "11." 11 is A1's bitVector. A1 matches

the sample tree since bitVector (A1) has all 1s. SA gets A2

after scanning B2. Treematch yields B1 and B2 results.

TJFast and TreeMatch have two differences.

1) TreeMatch uses bitVector encoding to solve TJFast's

unnecessary intermediary path A1/A2/C1/C2/E1.

2) TreeMatch provides return nodes (node B in the query) to

reduce I/O cost, whereas TJFast outputs the route solution for

Figure. (b) Execution time of Q/,//,* on random data

Figure (c): Execution time of Q/,//,*,< on random data

IV. CONCLUSION

The current investigation addressed the XML twig

sample matching issue and reviewed previous techniques.

TwigStack, TwigStackList, OrderedTJ, TJFast, and TreeMatch

are introduced. TreeMatch runs fast and processes generalised

tree samples. TwigStack, TwigStackList, OrderedTJ, and

TJFast work on two-phase query evaluation, whereas

TreeMatch works on one-phase query assessment. TreeMatch

twig sample matching method may answer complex questions

and perform well.

REFERENCES

[1]. Berglund, S. Boag, and D. Chamberlin. XML path

language (XPath) 2.0. W3C Recommendation 23 January

2007 http://www.w3.org/TR/xpath20/.

[2]. S. Boag, D. Chamberlin, and M. F. Fernandez. Xquery

1.0: An XML query language. W3C Working Draft 22

August 2003.

[3]. Choi, M. Mahoui, and D. Wood. On the optimality of the

holistic twig join algorithms. In Proceeding of DEXA,

pages 28–37, 2003.

[4]. Zhang, J. F. Naughton, D. J. DeWitt, Q. Luo, and G. M.

Lohman. On supporting containment queries in relational

database management systems. In Proc. of

SIGMODConference, pages 425-436, 2001.

[5]. H. Wang, S. Park, W. Fan, and P. S. Yu. ViST: A

dynamic index method for querying XML data by tree

structures. In SIGMOD, pages 110-121, 2003.

[6]. Singh, P. ., & Sharma, D. V. . (2023). Pre-Processing of

Mobile Camera Captured Images for OCR . International

Journal of Intelligent Systems and Applications in

Engineering, 11(2s), 147–155. Retrieved from

https://ijisae.org/index.php/IJISAE/article/view/2518

[7]. T. Yu, T. W. Ling, and J. Lu. Twigstacklistnot: A holistic

twig join algorithm for twig query with not-predicates on

xml data. In DASFAA, pages 249-263, 2006.

[8]. H. V. Jagadish and S. AL-Khalifa. Timber: A native

XML database. Technical report, University of Michigan,

2002.

[9]. X. Wu, M. Lee, and W. Hsu. A prime number labeling

scheme for dynamic ordered XML trees. In Proc. Of

ICDE,pages 66-78, 2004.

[10]. N. Bruno, D. Srivastava, and N. Koudas. Holistic twig

joins: optimal XML sample matching. In Proc. of

SIGMOD Conference, pages 310-321, 2002.

[11]. Avinash, D. & Nalebuff, B. (1991). Thinking

Strategically. New York: Norton & Co.

[12]. Bicchieri A & Cristina J. (2007). Game Theory: Some

Personal Reflections. In V.F. Hendricks and

P.G.Hansen (eds.), Game Theory: 5 Questions,

Copenhagen: Automatic Press.

[13]. Binmore, K. (1991). Fun and Games: A Text on Game

Theory. D.C.: Heath Lexington, MA.

[14]. Binmore, K. (2007). Playing for Real: A Text on Game

Theory. New York: OxfordUniversity Press.

[15]. Brook, T. (2007). Computing the Mixed Strategy Nash

Equilibria for Zero-Sum Games. Bath, U.K.: University

of Bath.

[16]. Davis, M. (1983). Game Theory: A Nontechnical

Introduction. New York: Basic Books.

[17]. Davis, M. (1997). Game Theory: A Non-Technical

Introduction. New York: Dover Books.

[18]. De Bruin, B. (2009). Over mathematisation in game

theory: Pitting the Nash Equilibrium Refinement.

Studies in History and Philosophy of Science, 40, 2-10.

[19]. Dixit, A. K. and Nalebuff, B. J. (1991). Thinking

Strategically: The Competitive Edge in Business, Politics,

and Everyday Life. NewYork: Norton.

[20]. Gilbbons, R. (1992). Game Theory for Applied

Economics. New Jersey: Princeton University Press,

Princeton.

[21]. Gipin, A. & Sandholm, T. (2007). Lossless abstraction of

imperfect information games. Journal of the ACM,

54(5), 2-29.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 8s

DOI: https://doi.org/10.17762/ijritcc.v11i8s.7238

Article Received: 26 April 2023 Revised: 15 June 2023 Accepted: 30 June 2023

 564

IJRITCC | July 2023, Available @ http://www.ijritcc.org

[22]. Kelly, A. (2003). Decision Making using Game Theory:

An Introduction for Managers. Cambridge, United

Kingdom: Cambridge University Press.

[23]. Klempere, P. (1999). The Economic Theory of Auctions.

London: Edward Elgar Lim, J.J. (1999). Fun, Games &

Economics: An appraisal of game theory in economics.

Undergraduate Journal of Economics, 3(1), 2-22.

[24]. Fibonacci technique for privacy and security to sensitive

data on cloud environment H Bommala, S Kiran, T

Venkateswarlu, MAA Sheela - International Journal of

Advanced Networking and …, 2020.

http://www.ijritcc.org/

