Analytical Study of Two Serial Channels with Priority and Reneging

Aarti Saini¹, Dr. Deepak Gupta², Dr. A. K. Tripathi³

¹Department of Mathematics, Maharishi Markandeshwar (Deemed to be University), Mullana, India aartisaini195@gmail.com ²Department of Mathematics, Maharishi Markandeshwar (Deemed to be University), Mullana, India guptadeepak2003@yahoo.com ³Department of Mathematics, Maharishi Markandeshwar (Deemed to be University), Mullana, India tripathi.adesh@gmail.com

Abstract— Most of the studies of queuing theory, which are useful in our daily life has been investigated by many researchers. The present research is the study of pre-emptive priority queuing system consisting two serial channels in stochastic environment. The impatient behavior of customer's will be discussed with exponential service distribution and Poisson arrivals. Higher priority customers have pre-emptive priority over the low priority customers. The G.F. technique is used to derive the performance measures of high & low priority queues and assuming FCFS discipline in busy schedule of higher priority class. Also evaluate queue behavior graphically and discussed a special case at the end which shows utilization of channels.

Keywords- priority, reneging, serial channels, impatient behavior

I. INTRODUCTION

Several real-world systems can be designed, capacity planned, behavior assessed, and modified with the use of queueing theory. In the most basic configurations, it is believed that all queueing system users are homogeneous and have similar needs and credentials to services. This is not applicable to plenty of real-world systems. Due to various factors, some customers or classes of customers are given a higher priority when it comes to reaching the servers than other groups. These explanations may vary. A smart choice of priorities can greatly enhance the financial gain obtained from running a corresponding system and income-generating enterprises. As a result, priority queueing models have received a huge interest from scholars. Problems related to queues in series was studied by O'Brien [1], Jackson [2] with the assumption no reneging at any server without completing the service in the system. It was Barrer [3] who used the concept of Markovian reneging in their research. Later on, Singh M. [4] studied serial queue network model with impatient customers. Further T. P. Singh & Arti [5,6] extended the work by discussed the effect of reneging on various performance measures of queues in stochastic and fuzzy environment. In [7] Satyabir Singh et al introduced a connection between serial and non- serial service channels with balking and reneging. Meenu Gupta [8] et al analyzed impatient behavior of customer in stochastic situation with the assumption of finite waiting space multichannel queuing system and derived timeindependent solution. Recently, Meenu Gupta [9] et al analyzed a queuing model with balking, reneging and queue discipline for service is pre-emptive priority. Saini V [10] studied a feedback queue model consisting two serial servers with impatient customers.

In this paper we extend the work done by T.P. Singh [5,6] et al by analyzing a queuing model comprised of two servers in series. This type of situation commonly occurs in our day to life and most of the time we notice priority is given to someone by ignoring others. Graphical representation of the study is given for understanding the role of reneging in the system.

II. PRACTICAL ENHANCEMENT

The practical utility of the purposed model can be seen in banking sector, amusement park, theatres, educational institutions, saloons, offices etc. if we take an example of amusement park in which at entry there is a ticket counter where there are two types of customers, one is high priority (kids, senior citizens, VIP's,) and second is low priority (adults). If place is overcrowded then few of the people leave without taking the service due to shortage of time & some urgent works. Those who succeed in collecting tickets for entry go inside park and enjoy the service accordingly they need.

III. ASSUMPTIONS

- A customer who wants service join the system at C₁ after that go to next server for next phase
- Priority is allowed only at C₁
- Calling population is infinite
- If customer gets impatience due to lack of time and services then he may leave the system
- Arrival and service pattern follow Poisson distribution.

IV. MODEL DESCRIPTION

This model consists two service channels $C_1 \& C_2$ which are in series. Both type of customers low and high priority arrives in the system for getting service with arrival rate $\lambda_{1L} \& \lambda_{1H}$ and service rate at C_1 is $\mu_{1L} \& \mu_{1H}$ respectively. If high and low priority type customer gets impatient due to long queue length or slow service rates or shortage of time or pre-emptive priority is given to high over the low then he will leave the system with reneging rate r_{1H} and r_{1L} respectively. After getting service at C_1 customer visit to next server C_2 where service rate is μ_2 and finally exit the system.

Figure1. Purposed Priority Queue Model

V. STEADY - STATE ANALYSIS

Define Probability function $P\eta_{1L}$, η_{1H} , η_2 (t) and η_{1L} , η_{1H} , η_2 number of customers in queues Q _{1H}, Q _{1L}, Q₂ in front of servers C₁, C₂ respectively, where η_{1L} , η_{1H} , $\eta_2 \ge 0$

In Steady-State, Differential Difference equation is defined as $(\lambda_{1L} + \lambda_{1H} + \mu_{1H} + r_{1H} + \mu_2) P\eta_{1L}, \eta_{1H}, \eta_2 = \lambda_{1L} P\eta_{1L-1}, \eta_{1H}, \eta_2 + \lambda_{1H}$ $P\eta_{1L}, \eta_{1H} - \eta_1, \eta_2 + \mu_{1H} P\eta_{1L}, \eta_{1H} + \eta_1, \eta_{2-1} + r_{1H} P\eta_{1L}, \eta_{1H} + \eta_1, \eta_2 + \mu_2$ $P\eta_{1L}, \eta_{1H}, \eta_{2+1}$

$$\eta_{1L}, \eta_{1H}, \eta_2 > 0$$

 $\eta_{1L}\!=0$

 $(\lambda_{1L} + \lambda_{1H} + \mu_{1H} + r_{1H} + \mu_2) P_0, \eta_{1H}, \eta_2 = \lambda_{1H} P_0, \eta_{1H} - 1, \eta_2 + \mu_{1H} P_0, \\ \eta_{1H} + 1, \eta_{2-1} + r_{1H} P_0, \eta_{1H} + 1, \eta_2 + \mu_2 P_0, \eta_{1H}, \eta_2 + 1$ (2)

 $\eta_{1H} = 0$

 $\begin{aligned} & (\lambda_{1L} + \lambda_{1H} + \mu_{1L} + r_{1L} + \mu_2) \ P\eta_{1L}, \ _0, \ \eta_2 = \lambda_{1L} \ P\eta_{1L-1,0}, \ \eta_2 + \mu_{1H} \\ & P\eta_{1L,1}, \ _{\eta_2-1} + r_{1H} \ P\eta_{1L, \ _1}, \ _{\eta_2} + \mu_{1L} \ P\eta_{1L+1,0}, \ _{\eta_2-1} + r_{1L} \ P\eta_{1L+1}, \ _{0}, \ _{\eta_2} + \\ & \mu_2 \ P\eta_{1L}, \ _{0}, \ _{\eta_2+1} \end{aligned}$

 $\eta_2 = 0$

 $\begin{array}{l} (\lambda_{1L} + \lambda_{1H} + \mu_{1H} + r_{1H}) \ P\eta_{1L}, \ \eta_{1H, 0} = \lambda_{1L} \ P\eta_{1L^{-1}}, \ \eta_{1H, 0} + \lambda_{1H} \ P\eta_{1L}, \\ \eta_{1H^{-1}, 0} + r_{1H} \ P\eta_{1L}, \ \eta_{1H^{+1}, 0} + \mu_{2} \ P\eta_{1L}, \ \eta_{1H, 1} \qquad (4) \end{array}$

$$\eta_{1L} = \eta_{1H} = 0$$

 $\begin{aligned} &(\lambda_{1L}+\!\lambda_{1H}+\mu_2)\;P_{0,\;0,\;\eta_2}=\!\mu_{1H}\;P_{0,1,\;\eta_{2^{-1}}}+r_{1H}\;P_{0,\;1,\;\eta_2}+\mu_{1L}\;P_{1,0,\;\eta_2}-\\ &+r_{1L}\;P_{1,\;0,\;\eta_2}+\mu_2\;P_{0,\;0,\;\eta_2+1} \end{aligned}$

$\eta_{1L}=\eta_2=0$

 $(\lambda_{1L} + \lambda_{1H} + \mu_{1H} + r_{1H}) P_0, \eta_{1H, 0} = \lambda_{1H} P_0, \eta_{1H} -_{1,0} + r_{1H} P_0, \eta_{1H + 1}$

 $\eta_{1H}=\eta_2=0$

 $\begin{aligned} (\lambda_{1L} + \lambda_{1H} + \mu_{1L} + r_{1L}) \ P\eta_{1L, 0, 0} &= \lambda_{1L} \ P\eta_{1L-1, 0, 0} + r_{1H} \ P\eta_{1L, 1, 0} + \\ r_{1L} \ P\eta_{1L+1, 0, 0} + \mu_2 \ P\eta_{1L, 0, 1} \ (7) \end{aligned}$

$$\begin{split} \eta_{1L=} & \eta_{1H=} \eta_{2=} 0 \\ (\lambda_{1L} + \lambda_{1H}) \; P_{0, \ 0, \ 0} = r_{1H} \; P_{0, \ 1, 0} + r_{1L} \; P_{1, \ 0, 0} + \mu_{2} \; P_{0, \ 0, 1} \eqno(8) \end{split}$$

VI. SOLUTION METHODOLOGY

To solve the above differential equations, we use the g.f and p.g.f as:

$$G(X, Y, Z) = \sum_{\eta=1}^{\infty} \sum_{\eta=1}^{\infty} \sum_{\eta=1}^{\infty} \sum_{\eta=0}^{\infty} \sum_{\eta=2}^{\infty} P_{\eta_{1L}, \eta_{1H}, \eta_2} X^{\eta_{1L}} Y^{\eta_{1H}} Z^{\eta_2},$$

X|=1, |Y|=1, |Z|=1 (9)

Also define the partial generating functions as:

$$G_{\eta_{1H},\eta_2}(\mathbf{X}) = \sum_{\eta_{1L}=0}^{\infty} P_{\eta_{1L},\eta_{1H},\eta_2} X^{\eta_{1L}}$$
(10)

$$G_{\eta_2}(\mathbf{X}, \mathbf{Y}) = \sum_{\eta_1 H=0}^{\infty} G_{\eta_{1H}, \eta_2}(\mathbf{X}) Y^{\eta_{1H}}$$
(11)

$$G(X, Y, Z) = \sum_{\eta^2 = 0}^{\infty} G_{\eta_2}(X, Y) \ Z^{\eta_2}$$
(12)

And adopt solution methodology given by T.P. Singh et al, we get

$$G_{1}\left[\mu_{1H}\left(1-\frac{Z}{Y}\right)-\mu_{1L}\left(1-\frac{Z}{X}\right)+r_{1H}\left(1-\frac{1}{Y}\right)-r_{1L}\left(1-\frac{1}{X}\right)\right]+\\ \mu_{2}\left(1-\frac{1}{Z}\right)G_{3}+\\ +\left[\mu_{1L}\left(1-\frac{Z}{X}\right)+r_{1L}\left(1-\frac{1}{X}\right)\right]G_{2}\\ \hline \lambda_{1L}(1-X)+\lambda_{1H}(1-Y)+\mu_{1H}\left(1-\frac{Z}{Y}\right)+r_{1H}\left(1-\frac{1}{Y}\right)+\\ \mu_{2}\left(1-\frac{1}{Z}\right)$$
(13)

Where $G_3 = G_0(X, Y), G_1 = G_0(X, Z), G_2 = G_{0,0}(Z)$

Since, equation (13) is in indeterminate form when G(X, Y, Z) = 1 and |X| = 1, |Y| = 1, |Z| = 1. Now apply L' Hospital Rule to remove indeterminate form

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169 Volume: 11 Issue: 6 DOI: https://doi.org/10.17762/ijritcc.v11i6.7237 Article Received: 27 March 2023 Revised: 28 April 2023 Accepted: 10 June 2023

Differentiating w. r. t. X and taking Y=1, Z=1

$-\mu_{1L}G_1 - G_1r_{1L} + \mu_{1L}G_2 + G_2r_{1L} = -\lambda_{1L}$	(14)	LENC	GTH AT H	SOTH SEI OF HI	RVER WI	TH VAR	ANCE IN	RENEGIÌ	NG RATE	
		$r_{1\mu}$	γ1	ν ₂	ν ₂	L	La	La	L	
Differentiating w. r. t. Y and taking X=1, Z=1		1	.3333	.5833	.3980	.4999	1.3998	.6611	2.5608	
$\mu_{1H}G_1 + G_1r_{1H} = -\lambda_{1H} + \mu_{1H} + r_{1H}$	(15)	1.5	.3226	.5726	.3897	.4762	1.3397	.6385	2.4544	
		2	.3125	.5625	.3819	.4545	1.2857	.6179	2.3581	
Differentiating w r t Z and taking $X=1$ $Y=1$		2.5	.3030	.5530	.3745	.4347	1.2371	.5987	2.2705	
$ \begin{array}{c} \mu & G \\ \mu & G $	(16)	3	.2941	.5441	.3676	.4166	1.1935	.5813	2.1914	
$\mu_2 \sigma_3 - \mu_{1H} \sigma_1 + \mu_{1L} \sigma_1 - \mu_{1L} \sigma_2\mu_{1H} + \mu_2$	(10)	3.5	.2857	.5357	.3610	.3999	1.1538	.5649	2.1186	
		4	.2778	.5278	.3548	.3846	1.1177	.5499	2.0522	
After solving equations $(14) - (16)$ we get		4.5	.2702	.5203	.3490	.3702	1.0846	.5361	1.9909	
$G_3 = 1 - \frac{\lambda_{1L}\mu_{1L}}{\mu_2(r_{1L} + \mu_{1L})} - \frac{\lambda_{1H}\mu_{1H}}{\mu_2(r_{1H} + \mu_{1H})}$	(17)	5	.2632	.5132	.3435	.3572	1.0542	.5232	1.9346	
$G_1 = 1 - \frac{\lambda_{1H}}{(r_{1H} + \mu_{1H})}$	(18)			traff	ic Int	ensity	vs r1	Η		
$G_2 = 1 - \frac{\lambda_{1L}}{(r_{1L} + \mu_{1L})} - \frac{\lambda_{1H}}{(r_{1H} + \mu_{1H})}$	(19)	1	1							
1935		0.5								
$\gamma_1 = \frac{\lambda_{1H}}{(r_{1H} + \mu_{1H})}$	(20)	0								
$\gamma_2 = \frac{\lambda_{1L}}{(r_{1L} + \mu_{1L})} + \frac{\lambda_{1H}}{(r_{1H} + \mu_{1H})}$	(21)	0	1	1.5	2 2.5	3	3.5 4	4.5	5	
$\gamma_3 = \frac{\lambda_{1L}\mu_{1L}}{\mu_2(r_{1L} + \mu_{1L})} + \frac{\lambda_{1H}\mu_{1H}}{\mu_2(r_{1H} + \mu_{1H})}$	(22)				Figure2.	γ2 γ ₁ ,γ ₂ ,γ ₃ 1	νs r _{1H}			
The steady-state solution of the model is			Queue lengths vs r1H							
$P_{\eta_{1L},\eta_{1H},\eta_{2}} = \gamma_{1}^{1 1H} \gamma_{2}^{1 1L} \gamma_{3}^{1 2} (1-\gamma_{1})(1-\gamma_{2})(1-\gamma_{3})$)	3								
The solution of the model exist if $\gamma_1, \gamma_2, \gamma_3 < 1$	S.	2								
		1 -								
Partial queue lengths										
$L_1 = \frac{r_1}{(1 - \gamma_1)}$			1 1	5 2	2.5	3	3.5 4	4.5	5	
$L_2 = \frac{\gamma_2}{1-\gamma_2}$		Figure 3: L_1, L_2, L_3, L vs r_{1H}								
$-(1-\gamma_2)$										

 $L_3 = \frac{\gamma_3}{(1 - \gamma_3)}$

γ1 γ_2 Mean Queue Length (L) = $(1 - \gamma_1)$ $(1 - \gamma_2)$ $(1 - \gamma_3)$

VII. NUMERIC BEHAVIOUR ANALYSIS

Considering numerical values as:

 $\lambda_{1H} = 5, \lambda_{1L} = 3, \mu_{1L} = 10, \mu_{1H} = 14, \mu_2 = 18, r_{1H} = 3, r_{1L}$ = 2

We find the values of utilization factor and queue length at both the server as follows:

TABLE 1. TRAFFIC INTENSITY, PARTIAL AND MEAN QUEUE

TABLE 2: TRAFFIC INTENSITY, PARTIAL AND MEAN QUEUE LENGTH AT BOTH SERVER WITH VARIANCE IN RENEGING RATE OF LOW PRIORITY CUSTOMERS

r_{1L}	γ_1	γ_2	γ_3	L_1	L_2	L_3	L
1	.2941	.5668	.3803	.4166	1.3084	.6137	2.3387
1.5	.2941	.5549	.3737	.4166	1.2467	.5967	2.2599
2	.2941	.5441	.3677	.4166	1.1935	.5815	2.1916
2.5	.2941	.5341	.3621	.4166	1.1464	.5676	2.1306
3	.2941	.5249	.3570	.4166	1.1048	.5552	2.0766
3.5	.2941	.5163	.3522	.4166	1.0674	.5437	2.0277
4	.2941	.5084	.3478	.4166	1.0342	.5333	1.9841
4.5	.2941	.5009	.3437	.4166	1.0036	.5237	1.9439
5	.2941	.4941	.3399	.4166	.9767	.5149	1.9082

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169 Volume: 11 Issue: 6 DOI: https://doi.org/10.17762/ijritcc.v11i6.7237 Article Received: 27 March 2023 Revised: 28 April 2023 Accepted: 10 June 2023

traffic intensity vs r1L Queue Lengths vs µ1H 0.6 4 3 0.4 2 0.2 1 0 0 1 1.5 2.5 3 3.5 4 4.5 5 2 10 15 11 12 13 14 16 17 18 ν2 ν1 **γ**3 L1 -L2 --L3 -- 1 Figure 4: $\gamma_1, \gamma_2, \gamma_3 vs r_{1L}$ Figure 7: $L_1, L_2, L_3, L vs \mu_{1H}$ TABLE 4: TRAFFIC INTENSITY, PARTIAL AND MEAN QUEUE Queue Lengths vs r1L LENGTH AT BOTH SERVER WITH VARIANCE IN SERVICE RATE OF LOW PRIORITY CUSTOMERS 3 L_3 L L_1 L_2 μ_{1L} γ_1 Y2 Y3 2 .6274 .5586 7 .2941 .3584 .4166 1.6838 2.659 2.4478 8 .2941 .5941 .3621 .4166 1.4636 .5676 1 9 .2941 .5668 .3652 .4166 1.3084 .5753 2.3003 .2941 .5441 .3677 1.1935 2.1916 10 .4166 .5815 0 .2941 .5249 .3698 .4166 1.1048 .5868 2.1082 11 1 1.5 2 2.5 3 3.5 4 4.5 5 1.0342 2.0424 12 .2941 .5084 .3717 .4166 .5916 .2941 .4941 .3732 .9767 .5954 1.9887 13 .4166 L2 **L**3 11 .3746 .5990 1.9446 14 .2941 .4816 .4166 .9290 .2941 .4706 .3759 .4166 .8889 .6023 1.9078 15 Figure 5: $L_1, L_2, L_3, L vs r_{1L}$ TABLE 3: TRAFFIC INTENSITY, PARTIAL AND MEAN QUEUE LENGTH AT BOTH SERVER WITH VARIANCE IN SERVICE RATE OF Traffic Intensity vs µ1L HIGH PRIORITY CUSTOMERS 1 L_1 L_2 La L μ_{1H} γ_2 Ya γ_1 1.7367 .5444 2.9060 10 .3846 .6346 .3525 .6249 11 .3571 .6071 .3570 .5555 1.5452 .5552 2.6559 0.5 1.3998 12 .3333 .5833 .3610 .4999 .5649 2.4646 13 .3125 .5625 .3645 .4545 1.2857 .5736 2.3138 0 14 .2941 .5441 .3676 .4166 1.1935 .5813 2.1914 7 8 9 10 11 12 13 15 14 15 .2777 .5277 .3702 .3845 1.1173 .5878 2.0896 16 .2632 .5132 .3727 .3572 1.0542 .5941 2.0055 ν1 v^2 **ν**3 17 .25 .5 .3749 .3333 .5997 1.9330 1 18 .2381 .4881 .3769 .3125 .9535 .6049 1.8708 Figure 8: $\gamma_1, \gamma_2, \gamma_3 vs \mu_{1L}$ Traffic Intensity vs µ1H Queue Lengths vs µ1L 0.8 3 0.6 2 0.4 1 0.2 0 0

Figure 6: $\gamma_1, \gamma_2, \gamma_3 vs \mu_{1H}$

14

 v^2

15

16

ν3

17

18

7

8

9

L1

10

L2

11

12

L3

13

- L

14

15

10

11

12

13

ν1

VIII.RESULTS

- From above numerical calculation, it is clear that change in reneging and service rate effect the queue lengths and utilization factor in the system. Table 1 and Figure 2, 3 indicates that increase in reneging rate of high priority customers results constant decrease in traffic intensity and queue lengths at each server. But increase in reneging rate of low priority customers have no effect on queue length and utilization of server by high priority customers at C₁. It can be seen graphically in figure 4,5.
- If we increase service rate for higher priority class at first server shows reduction in congestion and marginal queue lengths at C_1 . Traffic intensity & queue length at second server increases slowly. figure 6,7 shows it. Table 4, figure 8,9 results increase in service rate of low priority class have no change in queue length of higher class. But length of queue increases at second server.

A. Special case

If priority is not given to the customers, then result resembles with results given by T. P. Singh et al [2014] and we get

$$\lambda_{1L} = 0, \lambda_{1H} = \lambda, r_{1L} = r_{1H} = r_1, \mu_{1L} = \mu_{1H} = \mu_1$$

$$L_1 = L_2 = \frac{\lambda}{(r_1 + \mu_1 - \lambda)}$$

$$L_3 = \frac{\lambda \mu_1}{\mu_2 (r_1 + \mu_1) - \lambda \mu_1}$$

$$L = \frac{\lambda}{(r_1 + \mu_1 - \lambda)} + \frac{\lambda \mu_1}{\mu_2 (r_1 + \mu_1) - \lambda \mu_1}$$

If we take, $\lambda = 5, r_1 = 3, \mu_1 = 14, \mu_2 = 18$

Then we get values as,

$$\gamma_1 = \gamma_2 = .2941, \gamma_3 = .2287,$$

 $L_1 = L_2 = .4166, L_3 = .2966, L = .7132$

IX. CONCLUSION

In this paper, we studied a queue network model containing two servers in series. Impatient behavior of customer with reneging rate of both type of Priority customer at entry server in the system were discussed. We find increase in reneging rate of low and high priority customer queues due to some urgent calls or slow service rate then the queue lengths at both the server increases with slow speed. From comparison of numerical calculation and special case, it is clear that if priority discipline is not considered in the system, then there is only 29% & 22% use of first and second server and mean length of queue decreases. That requires the change in planning and designing of the corresponding system for maximum utilization of the service facilities. The results of the research further carried in more complex real-life situations with multiple servers to demonstrate the effect of priority in queueing network system.

REFERENCES

- G.G. O'Brien, "The solution of some queuing problems", J. Soc. Ind. App. Math, vol. 2, pp. 133-142, 1954
- [2] R.R.P Jackson, "Queuing System with phase type services", O.R. Quart, vol. 5, pp. 109-120, 1954
- [3] D. Y. Barrer, "Queuing with impatient customers and indifferent clerks", Operation Research, vol. 5(5), pp. 650-656, 1957
- M. Singh, "Steady-state behavior of serial queuing processes with impatient customers", Math. Operations forsch. U. statist. Ser, statist., vol. 15(2), pp. 289-298,1984
- [5] T. P. Singh, A. Tyagi, "Cost analysis of a queue system with impatient customer", Aryabhatta Journal of Mathematics & Informatics, vol. 6(2), pp. 309-312, 2014
- [6] T. P. Singh, R. Bhardwaj, V. Kumar, "Analytical study of fuzzified queue system with impatient customers", Aryabhatta Journal of Mathematics & Informatics, vol. 8(1), pp. 135-143, 2016
- [7] S. Singh, M. Singh, G. Taneja, "The study of serial channels connected to non-serial channels with feedback and balking in serial channels and reneging in both types of channels", Aryabhatta Journal of Mathematics & Informatics, vol. 7(2), pp. 407-418, 2015
- [8] M. Gupta, M. Singh, D. Gupta, "The time independent analysis of finite waiting space generalized multichannel mixed queuing system with balking and reneging due to long queue and some urgent message", Journal of Computational and theoretical nanoscience, vol. 17(11), pp. 5057-5061, 2020
- [9] M. Gupta, M. Singh, M. Tonk, "Analysis of a queuing process with balking, reneging and pre-emptive priority", Aryabhatta Journal of Mathematics & Informatics, vol. 14(1), pp. 33-40, 2022
- [10] V. Saini, D. Gupta, A. K. Tripathi, "Analysis of feedback queue system comprised of two serial servers with impatient customers", Aryabhatta Journal of Mathematics & Informatics, vol. 14(2), pp. 145-152, 2022
- [11] O.R. Ajewole, C.O. Mmduakor, E.O. Adeyefa, J.O. Okoro And T.O. Ogunlade, "Preemptive-resume priority queue system with Erlang service distribution", Journal of Theoretical and Applied Information Technology, vol. 99 (6), pp. 1426-1434, 2021
- [12] A. Dudin, O. Dudina, S. Dudin, K. Samouylov, "Analysis of single-server multi-class queue with unreliable service, batch correlated arrivals, customers impatience and dynamical change of priorities", Mathematics 2021, 9, 1257. pp.1-17. https://doi.org/10.3390/math9111257.