
International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 11 Issue: 8s 

DOI: https://doi.org/10.17762/ijritcc.v11i8s.7183 

Article Received: 23 April 2023 Revised: 07 June 2023 Accepted: 29 June 2023 

___________________________________________________________________________________________________________________ 

 

    137 

IJRITCC | July 2023, Available @ http://www.ijritcc.org 

Classification of Mild Cognitive Impairment with 

Deep Transfer Learning Approach using CWT based 

Scalogram Images 

 

P. Saroja1, N. J. Nalini2, G. Mahesh3 
1Research Scholar, Department of Computer Science and Engineering, FEAT 

Annamalai University 

Chidambaram, Tamilnadu-608002, India. 

pathapati.saroja@gmail.com 
2Associate Professor, Department of Computer Science and Engineering, FEAT  

Annamalai University 

Chidambaram, Tamilnadu-608002, India. 

njncse78@gmail.com  
3Professor, Department of Computer Science and Engineering  

S.R.K.R. Engineering College  

Bhimavaram, Andhra Pradesh-534204, India. 

mahesh.gadiraju@gmail.com 

 

Abstract— Mild Cognitive Impairment (MCI) is a condition that can occur as a person gets older, and faces problems like recognition, 

memory, and language skills. Early detection of MCI is crucial, as it can progress to more severe conditions like Alzheimer's disease. This 

study proposes a method to use Scalogram images, obtained by applying Continuous Wavelet Transform (CWT) to EEG signals and pre-trained 

models like ResNet50, VGG16, InceptionV3, Inception_ResNetV2 through transfer learning to classify MCI and Healthy Control (HC). Fine-

tuning of the models is also used to improve the results, and various performance metrics are employed for classification. The study concludes 

that Inception_ResNetV2 transfer learning yielded good results, while ResNet50 and InceptionV3 transfer learning with fine-tuning resulted in 

higher accuracy using a low learning rate. 

Keywords- Mild Cognitive Impairment (MCI); Electroencephalography (EEG); Continuous Wavelet Transform (CWT); Healthy Control 

(HC). 

 

I.  INTRODUCTION 

A typical aspect of aging is a gradual decline in cognitive 

abilities, such as occasionally forgetting names, words, and 

misplacing things. However, for individuals with Mild 

Cognitive Impairment (MCI), this decline is more severe and 

may include frequent memory lapses, such as forgetting 

conversations and important information like appointments and 

planned events, which are more severe than what is typical for 

their age. MCI is a condition which affects an individual's ability 

to remember things, perform daily activities, and may also cause 

language and vision problems [1-2]. Detecting and treating MCI 

at an early stage can delay or even prevent its progression to 

Alzheimer's disease. (AD) [3-4].  

There are different methods to collect information about the 

brain, including MRI, CT, PET, and EEG. While MRI, CT, and 

PET are more affordable, EEG signals have gained significant 

attention in the last 20 years for their ability to collect detailed 

brain activity data. Electrical activity in the brain can be 

measured using signals obtained through an 

electroencephalogram (EEG) [5]. The placement of electrodes 

on the head based on the international 10-20 electrode system 

allows for the acquisition of EEG signals. 

Machine learning and deep learning algorithms works good 

based on the successful extraction of important features from 

EEG signals. Dimensionally reducing the data by preserving the 

important information contained in the EEG signals is the main 

objective of the feature extraction process [6]. Numerous 

techniques for extracting features have been suggested for 

particular tasks. These methods take into account various aspects 

of the signals, such as time, frequency, time-frequency, and 

spatial information [7-8]. Time-domain techniques for feature 

extraction include independent component analysis (ICA), 

principal component analysis (PCA), and autoregressive (AR) 

models are most commonly used [9]. Evaluating specific 

parameters in time-domain methods involves the use of 
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statistical measures including mean, standard deviation, 

variance, root mean square, skewness, kurtosis, relative band 

energy, and entropy [10]. 

EEG signals are analyzed using frequency-domain 

techniques like the Fast Fourier Transform (FFT) and the Short 

Time Fourier Transform (STFT) [11-12]. The Wavelet 

Transform (WT) and Continuous Wavelet Transform (CWT) are 

widely used techniques that extract features from both the time 

and frequency domains [13]. 

Classifying EEG signals into MCI subjects and HC subjects 

is done using a variety of classification algorithms and deep 

learning techniques. However, traditional methods for 

identifying MCI from EEG data often struggle with handling 

large amounts of data [14-15]. 

While ML algorithms have certain disadvantages such as 

taking a long time to produce accurate results and producing 

mismatched results, they can be outperformed by deep learning 

techniques when dealing with complex tasks. Deep learning has 

become increasingly popular in various applications, with 

convolutional neural networks (CNN), recurrent neural 

networks (RNN), and long short-term memory (LSTM), that 

have been successful in the computer-assisted diagnosis of AD, 

HC, and MCI for 1D or 2D biomedical signals like EEG, EMG, 

ECG, and EOG [16-19]. According to several studies, pre-

trained convolutional neural networks (CNNs) are highly 

effective in automatically diagnosing cognitive diseases from 

brain EEG signals. Examples of Deep neural networks that have 

been trained in advance and are successfully used in EEG signal 

analysis include AlexNet, VGG16, VGG11, ResNet-34, 

ResNet-50, U-Net, SqueezeNet, InceptionV3, and DenseNet201 

[20-21].   

Research gaps identified are- 

• The use of traditional classification and clustering 

algorithms with feature extraction can be time-

consuming and have high computational complexity. 

• A substantial amount of data is required for the training 

of deep learning techniques. 

• While pre-trained models can address some of the 

limitations of deep learning, they are only effective 

when applied to similar datasets on which they were 

trained.  

In our proposed approach, we utilize scalogram images 

generated from CWT in combination with transfer-learning 

techniques, both with and without fine-tuning. Figure 1. 

illustrates our methodology. Pre-trained models (VGG16, 

ResNet50, InceptionV3, InceptionResnetV2) are provided with 

the scalogram images as input and evaluate their performance in 

detecting MCI and HC. The main objective is to determine 

which model yields the best outcomes for this task. 

 

Figure 1. Proposed framework. 

The organization of this paper is presented as follows: In 

Section 2, we present the dataset that was utilized, while Section 

3 outlines the techniques employed for classifying MCI and HC, 

including the use of scalogram images generated by CWT, and 

the application of transfer learning with and without fine tuning. 

The experimental results and performance metrics are presented 

in Section 4, and the paper concludes in the final section. 

II. DATASET DESCRIPTION 

A dataset of EEG signals was obtained from the Isfahan 

MISP (Online database for medical images and signals) 

containing 61 participants aged 55, consisting of 29 normal cases 

and 32 MCI cases, to be used in experiments. The signals were 

collected with eyes closed during morning sessions. The 

recordings were made using a Galileo NT device and the 19 

electrodes utilized in the international 10-20 system include Fp1, 

Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, 

O1, and O2. The recordings were saved in EDF format [22].  

The EEG signals obtained from each participant, which were 

30 minutes in duration and had a 256 Hz sampling frequency, 

were broken down into 5-second epochs with overlap=1. Each 

segment had N = 1280 (5 x 256) samples, resulting in a total of 

28402 input EEG data points, including from 14757 MCI 

subjects and from 13645 HC subjects. 

III. METHODS 

A. Continuous Wavelet Transform (CWT) 

The CWT is a technique that can examine a signal in both 

time and frequency domains. It involves convolution of the 

signal with a family of wavelets, each of which is scaled and 

shifted in time. This results in a set of coefficients, known as the 

scalogram, which helps to assess the signal's frequency content 

at various time scales. CWT is frequently used in signal 
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processing and image analysis, including biomedical signal 

analysis, such as the analysis of EEG signals. 

The representation of the CWT in continuous time can be 

mathematically expressed through Equation (1): 

               Wx(s, τ) =
1

√s
∫ x(t)ψ∗(

t−τ

s
)dt

−∞

∞
        () 

In the above expression, the wavelet coefficients W(s, τ) 

represent the signal x(t) convolved with the conjugate of the 

basic wavelet function ψ(t) at a certain scale s and a time-shift 

τ. 

   Through multiple expansions and time shifting of the 

wavelet, the CWT can derive frequency components for 

analyzing continuous time signals [23]. To create a scalogram 

of a signal using CWT, at first, we select a wavelet function, 

such as the Morlet wavelet, to serve as the basic wavelet 

function. Then Define a range of scales and positions for the 

wavelet function and convolve the signal with the wavelet 

function at different scales and positions. Obtain the wavelet 

coefficients at each scale and position. Then Organize the 

wavelet coefficients in a 2D array, called the scalogram, 

where the horizontal axis corresponds to time and the vertical 

axis represents the scale parameter. By utilizing the 

scalogram, one can examine and visualize the signal's 

frequency content across various temporal resolutions or 

scales. There are libraries such as scipy, PyWavelets, and 

ssqueezepy, which can be used in Python to perform the CWT 

and convert a signal into a scalogram. 

   In our model, ssqueezepy library in Python is used to obtain 

the cwt of the signal.  The CWT converts the 1D EEG signals 

into 2D scalogram images. The following figures show the 

EEG signal image converted to scalogram image. 

 

Figure 2. EEG signal for Healthy control (HC) 

 

Figure 3. Scalogram Image for Healthy control (HC) 

 

Figure 4. EEG signal for Mild Cognitive Impairment (MCI) 

 

Figure 5. Scalogram Image for Mild Cognitive Impairment (MCI) 

B. Deep Learning Techniques 

     A popular deep learning method, Convolutional Neural 

Network (CNN), is frequently employed for the purpose of 

image classification. Its main function is to extract features and 

classify them. In most cases, the CNN framework consists of 

three distinct layers: the convolution layer, the pooling layer, 

and the fully connected layer [24]. Feature extraction is 

facilitated by the convolution and pooling layers, whereas the 

fully connected layer is employed for classification purposes in 

CNNs. Although CNNs are suitable for classification tasks, 

their training process necessitates large amounts of data to 

achieve optimal performance. To overcome this, pre-trained 

models can be used, which have already been trained on a large 

dataset such as ImageNet, which consists of 1000 classes. These 

models do not require additional training and have become 

increasingly popular. The current study aimed to determine the 

most suitable pre-trained CNN model among VGG16, 

ResNet50, InceptionV3, and InceptionResnetV2 by conducting 

a comparative analysis. 

1) Transfer Learning: Transfer learning refers to the 

approach of leveraging the knowledge gained by a pre-existing 

model to enhance the performance of a novel model for a 

distinct task. While the pre-trained model serves as the base 

model, fine-tuning involves training the new model on a new 

dataset to adapt to a different task. The size of the new dataset 

and the similarity of the data to the pre-existing model's training 

data and the available computational resources are crucial 

factors to consider during fine-tuning [25]. The success of fine-

tuning the pre-existing model relies on the similarity of the new 

dataset to the original training dataset, with greater similarity 

resulting in improved performance. 

 

Figure 6. Transfer learning model without Fine-tuning. 

In this study, four pre-trained models, VGG16, ResNet50, 

InceptionV3, and InceptionResnetV2, were used and all layers 

were frozen except for the fully connected (FC) layer. 
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Additional FC layers were added, and the configuration is 

detailed in Table 1. 

TABLE I.  DESCRIPTION OF PRETRAINED MODELS WITH REPLACED FINAL 

LAYERS 

 

2) Transfer Learning with Fine tuning pre-trained 

models: Fine-tuning a pre-trained model is achieved by 

adjusting specific layers of the model and adding new layers to 

adapt the model to a new task. The pre-trained model, which 

has already learned features from a large dataset, is used as a 

starting point. Some layers of the pre-trained model are frozen 

while others are unfrozen, allowing the new model to learn 

relevant features from a smaller dataset. The new layers are then 

trained on the smaller data set and fine-tuned to improve the 

performance. This technique enables the model to learn faster 

and with less data and computational resources than training a 

model from scratch [26]. The four pre-trained models are 

employed with varying learning rates and optimizers. 

 

Figure 7. Transfer learning model with Fine-tuning. 

TABLE II.  FINE-TUNED TRANSFER LEARNING MODEL WITH REPLACED 

FINAL LAYERS 

 

 

IV. EXPERIMENTAL RESULTS 

     The study employs transfer learning, using both fine-tuning 

and non-fine-tuning methods, on four pre-trained models to 

analyze a dataset of 28402 EEG signals collected from MCI and 

HC subjects. The dataset is divided into a testing set (75%) and 

training set (25%) which comprises of 14757 MCI and 13645 

HC samples. The training set contains 11067 and 10233 

samples for MCI and HC subjects respectively, while the testing 

set contains 3690 and 3412 samples respectively. The main aim 

of the study is to differentiate the MCI and HC subjects. 

A. Performance Analysis 

       A confusion matrix is a valuable tool to evaluate the 

performance of a classification algorithm, as it provides a 

breakdown of true  

positives, true negatives, false positives, and false negatives for 

a given test dataset. In the given table, the predicted class is 

denoted by the rows and the actual class is denoted by the 

columns. Samples that were classified correctly are shown in 

the diagonal entries, whereas misclassified samples are 

indicated in the entries outside the diagonal. Assessing a 

model's accuracy and identifying ways to improve it can be 

facilitated by utilizing this helpful tool. 

• Accuracy(A): It evaluates the ratio of accurate predictions 

made by the model to the total number of predictions made. 

                   A =
tp + tn

tp + fp + tn + fn
                 (2)            

• Precision(P): It measures the ratio of true positive 

predictions made by the model to the total number of 

positive predictions made. 

P =
tp

tp + fp
                             (3) 

• Recall (R): It is the proportion of true positive predictions 

made by the model out of all actual positive instances. 

        R =
tp

tp + fn
                             (4) 

• F1-Score (F1): It is an evaluation metric that combines 

precision and recall into a single score, providing a balanced 

measure of both. 

F1 =
2 x [(P x R)]

(P +  R)
                (5) 

B. Transfer Learning without Fine-tuning 

     To assess the performance of pre-trained models such as 

VGG16, ResNet50, InceptionV3, and Inception-ResNetV2, 

their fully connected layers were replaced and the resulting 

effectiveness was measured. Through the application of transfer 

Pre-trained

 model 

No. of

 Laye

rs 

No. of param

eters 

Input

 Imag

e size 

Replaced fi

nal layers 

No. of trai

nable par

ameters  

ResNet-50 50  25,636,712 224 x 

224 

avg_pool, p

redictions 

4098 

InceptionR

esnetv2 

164 55,873,736 

 

299 X

 299 

avg_pool, p

redictions 

3074 

InceptionV

3 

316 23,851,784 299 X

 299 

activation_

71, activati

on_75, max

_pooling2d

_3, mixed8 

4098 

VGG16 16  14,740,290 224 X

 224 

fc1, fc2, pre

diction 

25602 

Pre-trained 

model 

Replaced final layers No. of trai

nable para

meters  

ResNet-50 avg_pool, predictions 4098 

InceptionRes

netv2 

avg_pool, predictions 3074 

InceptionV3 activation_71, activation_75, max_pooli

ng2d_3, mixed8 

4098 

VGG16 fc1, fc2, predictions 25602 
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learning, it was determined that the InceptionV3 model 

exhibited superior performance, achieving the highest accuracy 

out of the four models that were evaluated. 

     Four pre-trained models were assessed by comparing their 

performance on 2D scalogram images that were generated from 

1D EEG signals. The fully connected layers of these models 

were replaced and they were evaluated on test data. The training 

and testing accuracy and loss were determined over the course 

of 30 iterations, utilizing a batch size of 32. The "epoch" and 

"batch" are hyperparameters in the transfer learning process. 

Because of limitations in computer memory, the entire training 

dataset could not be processed at once, so it was divided into 

smaller batches that could be handled by the memory. These 

batches were processed one by one for training. A single pass 

through all batches is called an epoch, and this process is 

repeated multiple times for successful training. During the 

training process, the InceptionResnetV2 model exhibited the 

highest accuracy among the other three models. The 

InceptionV3 and Resnet50 models performed well, while the 

VGG16 model had poor performance, as depicted in Figure. 

8(a). In Figure. 8(b), the training loss for each of the four models 

can be observed, where the InceptionResnetV2, InceptionV3 

and Resnet50 models had low loss values, while the VGG16 

model had high loss values compared to the other models. The 

testing accuracy and testing loss of the four models were 

displayed in Figure. 8(c) and (d), respectively. Fluctuations 

were observed for test data in all four models. The VGG16 

model had very poor performance and the InceptionResnetV2 

model performed effectively. 

 

       (a) 

 

             (b) 

 

       (c) 

 

            (d) 

Figure 8. (a) training accuracy, (b) training loss, (c) testing accuracy,  

(d) testing loss for pretrained Transfer Learning Models for 30 epochs 

 

The transfer learning models were evaluated for their 

performance using various metrics such as accuracy, precision, 

recall and F1-score which are shown in Table 3. 

TABLE III.  CLASSIFICATION RESULTS FOR TRANSFER LEARNING MODELS 

 

The models were evaluated based on their accuracy, 

precision, recall, and F1-score, and Inception-ResnetV2 

emerged as the best performer with an accuracy of 86.66%, 

precision of 81.85%, recall of 87.47%, and an F1-score of 

84.56%. While ResNet50 achieved a higher precision of 

94.69% and F1-score of 85.85% compared to the other models. 

The training time for the four models in seconds is also shown.  

C. Transfer Learning with Fine-tuning 

     In this study, four different transfer learning techniques were 

fine-tuned by adjusting the parameters in the final layers of the 

model to adapt it to the new task. The performance of these 

techniques was evaluated using different optimizers and 

learning rates. An optimizer is an algorithm that modifies the 

characteristics of a neural network, such as weights and learning 

rate, to minimize loss and improve accuracy. The models were 

trained using a range of optimizers, including Adam, SGD, and 

RMSprop, with various learning rates(lr), such as: 0.0001, 

0.001, 0.01, and 0.1. The results of these fine-tuned models 

were compared in Table 4. 

TABLE IV.  CLASSIFICATION TASK TO EVALUATE FINE-TUNED TRANSFER 

LEARNING MODELS 

Models 

Optimi

zers 

Learning 

Rate 

Accur

acy 

(%) 

Precisi

on 

(%) 

Recall 

(%) 

F1-

score 

(%) 

VGG16 

Adam 0.1 47.33 68.86 45.32 54.66 

0.01 62.45 56.66 60.02 58.29 

0.001 75.34 63.42 58.99 61.12 

0.0001 79.56 72.32 70.09 71.18 

SGD 0.1 80.13 72.16 74.44 73.28 

0.01 79.82 73.46 70.02 71.69 

0.001 72.33 69.56 67.32 68.42 

0.0001 70.02 71.33 69.73 70.52 

RMSP

ROP 

0.01 40.02 93.22 41.32 57.73 

0.01 41.32 93.99 40.02 56.13 

0.001 56.99 60.09 65.45 62.65 

0.0001 62.32 67.87 62.76 65.21 

ResNet5

0 

Adam 0.1 52.65 79.86 50.41 61.80 

0.01 78.45 67.25 84.67 74.96 

0.001 91.08 95.13 87.39 91.09 

0.0001 96.69 96.66 96.24 96.44 

 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-score 

(%) 

VGG16 78.50 90.24 65.53 75.92 

ResNet50 83.29 94.69 78.53 85.85 

InceptionV3 84.74 86.94 77.66 82.03 

Inception-

ResnetV2 
86.66 81.85 87.47 84.56 
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SGD 0.1 93.84 93.58 95.58 93.58 

0.01 92.88 91.59 93.45 92.51 

0.001 88.74 89.38 87.44 88.39 

0.0001 83.33 80.75 83.90 82.29 

RMSP

ROP 

0.1      

47.99 
100 47.99 64.77 

0.01 47.99 100 47.99 64.77 

0.001 87.33 81.67 91.11 86.09 

0.0001 93.63 91.15 95.37 93.21 

Inceptio

nV3 

Adam 0.1 80.25 63.93 92.62 75.64 

0.01 70.91 51.10 81.33 62.76 

0.001 92.99 91.59 93.66 92.61 

0.0001 92.99 92.69 92.69 96.69 

SGD 0.1 93.41 91.81 94.31 92.15 

0.01 93.41 96.01 90.79 93.32 

0.001 83.12 88.71 78.78 83.45 

0.0001 71.33 63.71 73.09 68.07 

RMSP

ROP 

0.1 47.99 100 47.99 64.77 

0.01 47.99 100 47.99 64.77 

0.001 92.67 92.92 91.90 92.40 

0.0001 96.05 97.35 94.48 94.90 

Inceptio

n-

ResnetV

2 

Adam 0.1 78.34 59.73 92.46 72.57 

0.01 89.75 87.16 90.90 88.99 

0.001 90.12 86.5 92.4 89.35 

0.0001 90.12 86.5 92.4 89.35 

SGD 0.1 89.49 92.24 91.14 91.68 

0.01 91.08 90.88 90.48 90.67 

0.001 84.92 84.73 83.99 84.35 

0.0001 70.50 56.63 75.96 64.88 

RMSP

ROP 

0.1 55.62 100 51.95 68.37 

0.01 85.24 94.02 79.14 85.56 

0.001 86.94 85.17 87.30 86.22 

0.0001 90.33 88.49 91.11 89.53 

     According to the data presented in Table 4, it appears that 

the Resnet50 model with the Adam optimizer and the 

InceptionV3 model with the RMSprop optimizer have The fine-

tuned transfer learning model with the lowest learning rate of 

0.0001 demonstrated superior classification results compared to 

the other models. The results suggest that RMSprop and Adam 

optimizers tend to be more effective at lower learning rates, 

while the SGD optimizer performs better with higher rates. The 

VGG16 model, in contrast, has lower performance compared to 

the other models when using Adam, RMSprop, and SGD 

optimizers. 

 

(a) 

 

(b) 

 

(c) 

Figure 9. Classification accuracy obtained for VGG16, Resnet50, InceptionV3 

and InceptionResnetV2 with (a) Adam optimizer, (b) SGD optimizer and (C) 

RMSprop optimizer for lr=0.1, 0.01, 0.001 and 0.0001. 

From Figure 9, it is evident that the VGG16, Resnet50, 

InceptionV3, and InceptionResnetV2 models, when fine-tuned 

with the Adam optimizer, achieve high accuracy using low 

lr0.0001. Additionally, the optimizer SGD is found to provide 

better accuracy for the VGG16 and Resnet50 models at a 

learning rate of 0.1, while the InceptionV3 model performs best 

at learning rates of 0.1 and 0.01. The InceptionResnetV2 model, 

on the other hand, achieves the highest accuracy at a lr=0.01. 

The optimizer, RMSprop also demonstrates good performance 

across all four models at a learning rate of 0.0001. 

V. CONCLUSION 

     The core objective of this study is to use various deep 

learning pre-trained models, both without fine-tuning and with 

fine-tuning, to detect MCI and HC using dataset containing 

electroencephalogram signals. The EEG signal dataset is 

converted into scalogram images to improve the accuracy of 

detecting MCI and HC. The models are fine-tuned using 

transfer learning techniques to improve their performance. The 

classification accuracy of the VGG16, Resnet50, InceptionV3 

and InceptionResnetV2 models, trained with Adam, SGD, and 

RMSprop optimizers, and different learning rates, is compared. 

The experiments conducted on the EEG signal dataset revealed 

that the Resnet50 and InceptionV3 models achieved the highest 

accuracy of 96.69% using the Adam optimizer with a lr=0.0001, 

and 96.05% using the RMSprop optimizer with a lr=0.0001. On 

the other hand, the VGG16 model exhibited the lowest 

performance compared to the other models. 
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