
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 8s

DOI: https://doi.org/10.17762/ijritcc.v11i8s.7181

Article Received: 22 April 2023 Revised: 12 June 2023 Accepted: 27 June 2023

 122

IJRITCC | July 2023, Available @ http://www.ijritcc.org

Effective Workflow Scheduling in Cloud using

Constriction Factor based Inertia Weight Particle

Swarm Optimization

Vinay Kumar Sriperambuduri1 , Nagaratna M2

Department of CSE
1,2JNTUH College of Engineering

Hyderabad, India.
1s.vinaykumar@staff.vce.ac.in, 2mratnaraju@jntuh.ac.in

Abstract—Cloud computing allows rapid provision of resources based on the need. This enables users to execute the independent tasks

and dependent tasks called workflows on the cloud system. Workflow scheduling is a crucial problem that is NP Hard and is still a challenging

problem. Particle Swarm Optimization (PSO) is one of the commonly used metaheuristic algorithms for solving task scheduling problems, but

it has issues with premature convergence and lack of diversity. In recent years, chaotic maps have been employed in PSO to enhance its

performance. This study proposes a Constriction factor-based inertia weight in PSO for workflow scheduling (CFPSO). The proposed algorithm

utilizes a constriction factor for updating the inertia weight, which enhances the exploration ability of the algorithm thereby avoid local optima.

The algorithm considers a fitness function with an aim to minimize makespan, service cost, and maximize load balance. The proposed algorithm

is evaluated using a set of benchmark workflows, and the obtained results are compared with the standard PSO algorithm, Grey Wolf Optimizer

(GWO) algorithm and Chaotic PSO algorithm. The extensive experimentation performed show that the proposed algorithm outperforms the

other algorithms in terms of makespan, service cost, and load balance. The proposed CFPSO shows reduction of 20% of makespan, 2% of the

service cost and 18% load balance rate compared to the conventional algorithms on Montage workflow with 1000 tasks. The use of constriction

factor enhances the performance of the algorithm and makes it suitable for solving complex problems with multiple objectives. The proposed

algorithm can be used in real-world applications to optimize workflow scheduling in cloud computing environments.

Keywords- Cloud computing; Particle swarm optimization; Grey wolf optimization; Workflow scheduling.

I. INTRODUCTION

Cloud computing has revolutionized the way computing

resources are utilized and managed. Workflow scheduling is a

significant issue in cloud computing that has an impact on the

performance and cost of the applications. The goal of workflow

scheduling is to assign tasks to resources in a way that minimizes

the makespan (the time to complete all tasks), reduces the service

cost, and maximizes the utilization of resources. However, due

to multiple objectives and constraints this is a challenging

optimization problem. Workflow scheduling architecture is

described in Figure 1.

Particle Swarm Optimization (PSO) proposed by Kennedy

and Eberhart [1] is a widely used technique for solving

optimization problems, including workflow scheduling. PSO is

a swarm-based algorithm that mimics the social behaviour of

birds or other animals. It has been utilized effectively in many

real-world optimization problems, including workflow

scheduling. However, the standard PSO algorithm may suffer

from premature convergence and lack of diversity, which can

result in suboptimal solutions.

In recent years, chaotic maps have been used to enhance the

performance of optimization algorithms. Chaotic maps can

generate pseudo-random sequences that have high sensitivity to

initial conditions and exhibit complex behaviour. This property

of chaotic maps enhances the exploration ability of optimization

algorithms and avoid getting stuck in local optima.

As task scheduling in cloud computing is an NP hard

problem, to address the problem many optimization algorithms

are developed [2-3]. The classic metaheuristics-based

optimisation techniques typically take more time to compute.

[4]. Additionally, the best solution can only be found by

examining a bigger search region, thus the workflow in this

situation needs to be well-managed [5-6].

Figure 1. Workflow Scheduling architecture

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 8s

DOI: https://doi.org/10.17762/ijritcc.v11i8s.7181

Article Received: 22 April 2023 Revised: 12 June 2023 Accepted: 27 June 2023

 123

IJRITCC | July 2023, Available @ http://www.ijritcc.org

In this work, we propose a new constriction factor based PSO

algorithm to perform workflow scheduling in cloud computing.

The algorithm employs a constriction factor to update the inertia

weight of PSO, which enhances the exploration ability of the

algorithm. The fitness function considers multiple objectives,

including makespan, service cost, and load balance, to find an

optimal schedule. The work analysed the effectiveness of the

algorithm on scientific workflows montage and sipht. The

developed algorithm outperforms the other algorithms in terms

of makespan, service cost or cost and load balance.

II. RELATED WORKS

The Particle swarm optimization (PSO) is a widely used

metaheuristic algorithm for solving complex optimization

problems. However, standard PSO tends to converge to local

optima, which can limit its performance. To overcome this

limitation, researchers have proposed various modifications to

the algorithm, one of which is the incorporation of chaos theory.

Chaotic inertia weight PSO (CPSO) algorithms employ chaotic

sequences to introduce randomness into the search process,

which can help the algorithm avoid local optima and improve its

performance. In this work we propose to introduce Constriction

factor-based inertia weight to avoid local optima.

The study by [7] proposed an adaptive PSO algorithm for

scheduling workflows in the cloud environment. The technique

uses a method depending on the type of VM and the amount of

its consumption. A given VM type's number is increased by 10%

or dropped by 10% depending on its consumption. The results

showed that the proposed algorithm outperformed traditional

PSO in terms of makespan and cost.

Similarly, [8] proposed a chaotic PSO (CPSO) for workflow

scheduling to minimize cost and avoid premature convergence.

The chaotic sequence applied is irregular and unpredictable that

has helped improve global search. They also inducted a penalty

factor for deadline is skipped and for the VMs idle time. The

results showed that the proposed algorithm outperformed

traditional PSO in terms of cost. However, load balance is

ignored.

In [9] proposed a novel adaptive inertia weight based PSO

that utilizes feedback on the swarm’s success rate to determine

the particles’ state in the search space. The algorithm is

evaluated on static test problems and compared against other

inertia weight techniques involving fuzzy rules, time-varying

and random. They did not consider tasks or workflow for

evaluation. Another study by Prasanna et al. (2020) [10]

proposed a PSO algorithm with a greedy algorithm and

clustering technique to optimize the makespan in task

scheduling. The results are compared with Greedy PSO and

showed that the cost is minimized. The proposed algorithm did

not take dependent tasks in to consideration. In optimization

problems, Wang et al. (2021) [11] proposed a hybrid PSO

algorithm that uses chaotic map and adaptive strategy to

optimize melt spinning progress application. The proposed

algorithm demonstrated better performance compared to other

algorithms such as ant colony optimization and genetic

algorithms. The work did not focus on task scheduling. In [12]

authors proposed a hierarchical scheduling strategy to minimize

the cost. They have considered the service contract signed

between the vendor and the user. They tested the algorithm on

SwinDeW-C architecture. In [13], authors developed a variable

neighborhood search technique as part of PSO algorithm that

minimizes the total cost of a workflow.

Li et. al. in [14] viewed the structure of the workflow as a

control structure and applied reduction technique. The results

showed the reduction of the execution cost in large workflows.

However, the total execution time and load were not considered.

In [15] authors proposed the assignment of tasks to VMs

based on the Poset with emphasis on critical and non-critical

paths to optimize cost and response time. Load balance is an

important aspect to be considered.

Many heuristic algorithms [16] were proposed, such as PSO

[17,18,19] for workflow scheduling, Ant colony optimization

[20,21] and Genetic Algorithm [22,23] to solve task scheduling

problems. In [24], Mirjalili et. al. proposed a GWO algorithm

that can be applied to optimization problems including workflow

scheduling.

To further improve exploration capability and to minimize

makespan and cost and maximize load balance on the resources

the proposed approach utilizes constriction factor-based inertia

weight.

III. PROPOSED METHODOLOGY

In this manuscript, the effectiveness of the proposed CFPSO

algorithm is investigated on the Montage and Sipht workflows.

One of the astronomy applications produced by the NASA/IPAC

Centre is the Montage Workflow. Sipht is a bioinformatics-

based application developed by Harvard

A. Problem Definition

A workflow refers to a sequence of tasks that need to be

executed on a set of machines to achieve a specific goal.

Workflows typically involve many tasks that are interdependent

and need to be executed in a definite order to achieve the desired

outcome. A workflow W= (G,E) represented as DAG as shown

in Figure 2 with G as a set of nodes and E as edges that show the

dependencies between the nodes or tasks.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 8s

DOI: https://doi.org/10.17762/ijritcc.v11i8s.7181

Article Received: 22 April 2023 Revised: 12 June 2023 Accepted: 27 June 2023

 124

IJRITCC | July 2023, Available @ http://www.ijritcc.org

Figure 2. Representation of sample workflow

The workflow tasks are computationally intensive or data

intensive in nature. A cloud vendor maintains a data center to

support the clients in terms of compute, network and storage

services. Data center, houses several host machines that provide

Virtual machines (VMs) as resources to the clients. The

workflow is submitted to the scheduler as input to generate a

mapping for Tasks to VMs ensuring the optimization of defined

parameters. In the proposed algorithm the parameters such as

Makespan (MS) , cost (C) and Load balance (LB) are optimized.

Makespan is measured from the begin time of the initial task

in the workflow to the finish time of the final task. It is presented

in Eq. (1).

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚{𝐹𝑖𝑛𝑖𝑠ℎ𝑇𝑖𝑚𝑒(𝑡1, 𝑡2… 𝑡𝑛)} (1)

Service Cost or Cost of executing a workflow on resources

is given in Eq. (3). It is computed based on the parameters such

as execution time of the tasks, data-transfer time, price of a VM

and data-transfer cost. The execution time of a task is presented

in Eq. (2).

𝐸𝑡𝑖 =
𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑎𝑠𝑘 𝑖𝑛 𝑀𝐼𝑃𝑆

𝑉𝑀 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑖𝑛 𝑀𝐼𝑃𝑆
 (2)

𝐶𝑜𝑠𝑡 = ∑ ((𝐸𝑡𝑖 × 𝐶𝑣𝑚𝑗) + (
𝑑𝑡𝑖

𝐵𝑊
× 𝐶𝐵𝑊))𝑛

𝑖=1 (3)

Where

𝐸𝑡𝑖 refers to the execution time of the task i

𝐶𝑣𝑚𝑗 refers to the cost of a VM j and j ranges between 1 ≤ 𝑗 ≤

𝑀𝑎𝑥.𝑁𝑜. 𝑜𝑓 𝑉𝑀𝑠

𝑑𝑡𝑖 refers to the size of the data given as input to task i.

𝐶𝐵𝑊 refers to the bandwidth cost.

Load balance refers to utilizing all the resources to equal

extent ensuring resource overloading. We have applied the Load

Balance Rate (LBR) mentioned in Eq. (4) as the measure to

determine the load balance across the available resources. LBR

value =1 means the resources are well balanced or equally

balanced, this being the ideal case. The LBR value more than 1

indicates an imbalance in utilization of the resources.

 𝐿𝑜𝑎𝑑 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 𝑟𝑎𝑡𝑒 = (
𝑀𝑅𝑈

𝐴𝑅𝑈
) (4)

MRU = Max. resource usage across all the resources used in

executing the workflow

ARU = Average resource usage across all the resources used

in executing the workflow.

The Fitness calculation is performed taking in to account three

parameters cost, makespan and load balance and is represented

in Eq. (5).

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝛼 × (
1

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛
) + 𝛽 × (

1

𝐶𝑜𝑠𝑡
) − 𝛾 ×

(
1

𝐿𝑜𝑎𝑑 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 𝑟𝑎𝑡𝑒
) (5)

α, β, γ represent the weightage given to each of the parameters.

The current work considers α=0.4, β=0.3 and γ=0.3.

B. Particle Swarm Optimization Algorithm

Particle Swarm Optimization (PSO) developed by Kennedy

and Eberhart [1] is a swarm-based algorithm that is inspired by

flocks of birds, where each individual in the group follows the

movement of its neighbors to find the optimal path towards a

goal. Below are the steps of the algorithm.

PSO Algorithm

1. Initialization of algorithmic parameters and the population

of particles with position

2. Calculate fitness of each particle

3. Evaluate fitness value

4. Update particle best and global best positions

5. Update particle velocity and position

6. Repeat steps 2 to step 5 until maximum iterations is

completed

PSO uses a set of particles or population to search through

the search space for the best possible solution. The location of

each particle in the search space corresponds to a potential

solution here it represents the task to VM mappings, and its

velocity denotes the speed and direction of movement. Through

the exchange of knowledge about their current optimum

placements, the particles in the population communicate with

one another. This interaction is made possible through a process

of collective learning in which each particle modifies its

velocity according to its individual experience called personal

best and the collective wisdom of the swarm called the global

best.

Particles move around the search space while the

optimization process is underway by varying their velocities in

accordance with acceleration constants, random variables, and

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 8s

DOI: https://doi.org/10.17762/ijritcc.v11i8s.7181

Article Received: 22 April 2023 Revised: 12 June 2023 Accepted: 27 June 2023

 125

IJRITCC | July 2023, Available @ http://www.ijritcc.org

the distance between their present places and the optimal

placements discovered. This makes it possible for particles to

find their way towards promising areas of the search space and

converge on the best ones.

Until a termination requirement, like reaching a maximum

number of iterations, is fulfilled, the algorithm iteratively

updates the positions and velocities of the particles. The best

position found by the swarm represents the optimal solution to

the problem.

C. Grey Wolf Optimizer Algorithm (GWO)

Mirjalili et.al. [19] observing the behaviour of grey wolves

proposed an algorithm named GWO. Wolf pack consists of α-

wolf, β-wolf, δ-wolf and ω-wolves. α-wolf, β-wolf, δ-wolf are

the top three wolves in order of precedence and all the remaining

wolves called ω-wolves follow these three wolves. Wolf pack

follows a series of steps as represented in the below mentioned

algorithm to attack a prey.

GWO Algorithm

1. Initialize a population of grey wolves randomly within the

search space.

2. Define the fitness value for each wolf based on the objective

function.

3. Identify the three alpha, beta, and delta wolves with the

highest fitness values in the population.

4. While maximum number of iterations:

5. Update the positions of all the wolves using the following

equations:

6. For each wolf:

7. Update the position of the wolf by adjusting it towards the

alpha, beta, and delta wolves using the hunting equation.

8. Limit the new position within the bounds of the search

space.

9. Update the fitness values for the new positions of the

wolves.

10. End For;

11. Identify the new alpha, beta, and delta wolves based on their

fitness values.

12. End While

13. Return the best wolf (alpha) and its corresponding fitness

value as the output.

To update the the positions of the wolves, the following

hunting equations represented by Eq. (6), (7) and (8) are used

for each wolf. The new position is computed using the Eq. (9).

𝐷∝
⃗⃗⃗⃗ ⃗ = |𝐶1

⃗⃗⃗⃗ ∗ 𝑋𝛼
⃗⃗ ⃗⃗ − 𝑋 |

𝑋1
⃗⃗⃗⃗ = 𝑋∝

⃗⃗ ⃗⃗ − 𝐴1
⃗⃗⃗⃗ . (𝐷∝

⃗⃗⃗⃗ ⃗) (6)

𝐷𝛽
⃗⃗ ⃗⃗ = |𝐶2

⃗⃗⃗⃗ ∗ 𝑋𝛽
⃗⃗ ⃗⃗ − 𝑋 |

𝑋2
⃗⃗⃗⃗ = 𝑋𝛽

⃗⃗ ⃗⃗ − 𝐴2
⃗⃗ ⃗⃗ . (𝐷𝛽

⃗⃗ ⃗⃗) (7)

𝐷𝛿
⃗⃗ ⃗⃗ = |𝐶3

⃗⃗⃗⃗ ∗ 𝑋𝛿
⃗⃗ ⃗⃗ − 𝑋 |

𝑋3
⃗⃗⃗⃗ = 𝑋𝛿

⃗⃗ ⃗⃗ − 𝐴3
⃗⃗ ⃗⃗ . (𝐷𝛿

⃗⃗ ⃗⃗) (8)

𝑋𝑛𝑒𝑤
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ =

𝑋1⃗⃗⃗⃗ ⃗+𝑋2⃗⃗⃗⃗ ⃗+𝑋3⃗⃗⃗⃗ ⃗

3
 (9)

where X represents the position of the wolf, X_newis the new

position after the updation, X_∝,X_β,X_δ are the positions

of the α , β , γ wolves, respectively, C_1 and C_2 are

coefficients that alter the exploration and exploitation ability of

the algorithm.

The equations for scaling factor A and C are given by Eq.

(10) and eq. (11).

𝐴 = (2 × 𝑎 × 𝑟1⃗⃗⃗) − 𝑎 (10)

𝐶 = (2 × 𝑟2⃗⃗ ⃗) (11)

𝑟1⃗⃗⃗ and 𝑟2⃗⃗ ⃗ are random vectors =[0,1].

D. Proposed Constriction Factor based Particle Swarm

Optimization Algorithm (CFPSO)

The proposed algorithm initializes the population of

particles, where each particle represents a potential solution

referring to the allocation of tasks to VMs. These particles move

through the search space by updating the position and velocity

of each particle based on its own experience called as personal

best and the experience of the swarm called as global best. For

each ith particle the velocity and position are updated using the

equations represented by Eq. (12) and Eq. (13) respectively as

shown below.

𝑉𝑖
𝑡+1 = 𝜔. 𝑉𝑖

𝑡 + 𝑐1. 𝑟1. (𝑋𝑝𝑏𝑒𝑠𝑡,𝑖
𝑡 − 𝑋𝑖

𝑡) +

 𝑐2. 𝑟2. (𝑋𝑔𝑏𝑒𝑠𝑡,𝑖
𝑡 − 𝑋𝑖

𝑡) (12)

𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + 𝑉𝑖
𝑡+1 (13)

Where,

𝑉𝑖
𝑡 = Velocity of the particle i at iteration t

𝑉𝑖
𝑡+1 = Velocity of particle i at iteration t+1

ω = Inertia weight

𝑐1 & 𝑐2 = Acceleration coefficients

𝑟1 & 𝑟2 = Random numbers in range [0,1]

𝑋𝑖
𝑡 = Current position of particle i at iteration t

𝑋𝑝𝑏𝑒𝑠𝑡,𝑖
𝑡 =Personal best position of particle i at iteration t

𝑋𝑔𝑏𝑒𝑠𝑡,𝑖
𝑡 = Global best position of the particle in a population

𝑋𝑖
𝑡+1 =Position of the particle i at iteration t+1.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 8s

DOI: https://doi.org/10.17762/ijritcc.v11i8s.7181

Article Received: 22 April 2023 Revised: 12 June 2023 Accepted: 27 June 2023

 126

IJRITCC | July 2023, Available @ http://www.ijritcc.org

Each particle based on its new position is evaluated against

the fitness function as shown in Eq. (5) to optimize makespan,

cost and load balance.

Proposed Algorithm CFPSO

Input:

 - objective function f(x)

 - population of size M

 - maximum number of iterations MAXiter

 - initial swarm position x_i and velocity v_i for

 i = 1, 2,..,M

 -maximum and minimum velocity limits v_max

 and v_min

 -maximum and minimum position limits x_max

 and x_min

 - constriction factor - initial inertia weight ω

 - parameters c1 and c2 (acceleration constants)

 - parameters ω_max and ω_min (maximum

 and minimum inertia weights)

 Output:

 - the best position found x_best

 - the best fitness value found f_best

1. Initialize the particle positions and velocities for each

particle in the swarm.

2. Initialize personal best positions and objective (fitness)

values for each particle.

3. Initialize the global best position.

4. Initialize the current iteration number.

5. Initialize the inertia weight ω.

6. Perform iterations until the maximum number of iterations

is reached.

7. For each particle in the swarm:

a) Generate random values r1 and r2.

b) Update the velocity of the particle using the PSO

equation using Eq. (12), considering its previous

velocity, personal best position, and global best position.

c) Clip the velocity within the maximum and minimum

velocity limits.

d) Update the position of the particle using the new velocity

using Eq. (13).

e) Clip the position within the maximum and minimum

position limits.

f) Evaluate the fitness value of the new position using Eq.

(5).

g) If the fitness value is better than the personal best, update

the personal best position and fitness value.

h) If the fitness value is better than the global best, update

the global best position and fitness value.

8. Update the constriction factor φ using Eq. (14).

9. Update the inertia weight ω using Eq. (15).

10. Increment the iteration number.

11. Output the best position found and the best fitness value

found

The proposed algorithm CFPSO employs the constriction

factor (φ) as indicated in Eq. (14) to update the inertia weight

(ω), which controls the exploration and exploitation of search

space in a balanced manner in the algorithm. A Constriction

factor was introduced by Clerc [25] in 1999 in his study on

convergence and stability of PSO. It is a scaling parameter that

restricts the velocity of particles during the PSO optimization

process. The idea behind the constriction factor is to ensure that

particles converge to the global optimum in a stable and efficient

manner, while also preventing them from overshooting the

optimal solution.

φ =
2

|2−𝑐1−𝑐2−√𝑐1
2+𝑐2

2+2𝑐1𝑐2−2𝑐1−2𝑐2+4|
 (14)

where 𝑐1and 𝑐2 are the acceleration coefficients used in the

velocity update equation and ensures the values is in the range

[0,1].

The inertia weight computation is done using the below Eq.

(15). This computation utilizes constriction factor (φ).

𝜔 =
𝜔𝑚𝑎𝑥−𝜔𝑚𝑖𝑛

𝜑
+ (𝜑 (𝜔𝑛−1 − 𝜔𝑚𝑎𝑥) + 𝜔𝑚𝑎𝑥) (15)

Where,

𝜔𝑚𝑎𝑥 = Maximum Inertia Weight Wight

𝜔𝑚𝑖𝑛 = Minimum Inertia Weight

𝜔𝑛−1= Inertia Weight generated in the previous iteration.

E. Case Study

Consider a workflow with 6 tasks shown in Figure 3 as

shown below.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 8s

DOI: https://doi.org/10.17762/ijritcc.v11i8s.7181

Article Received: 22 April 2023 Revised: 12 June 2023 Accepted: 27 June 2023

 127

IJRITCC | July 2023, Available @ http://www.ijritcc.org

Figure. 3 Workflow for casestudy

a) Particle Swarm Optimization (PSO): The Gantt chart for the

workflow execution on PSO algorithm is shown in Figure 4.

The figure clearly indicates the makespan for PSO is 130.55.

The load balance rate is 1.20 and cost of the workflow as per

the Eq. (3) is 357.43.

Figure 4. Gantt chart for workflow execution with PSO

The Load Balance Rate as per Eq. (4) is given below.

Load Balance Rate = MRU/ARU=51.7/42.96=1.20

b) Grey Wolf Optimizer: The Gantt chart for the workflow

execution on PSO algorithm is shown in Figure 5. The figure

clearly indicates the makespan for GWO as 125.1. The cost

and load balance rate are 362.91 and 1.07 respectively.

Figure 5. Gantt chart for workflow execution with GWO

c) Chaotic PSO(CPSO): The Gantt chart for the workflow

execution on CPSO algorithm is shown in Figure 6. The

figure indicates the makespan using CPSO is 119.65. The

cost of the workflow is 357.43 and load balance rate is 1.05.

Figure 6. Gantt chart for workflow execution with CPSO

d) Constriction Factor based PSO (CFPSO): The Gantt chart

for the workflow execution on CFPSO algorithm is shown

in Figure 7. The figure clearly indicates the makespan for

PSO is 113.01. The cost of the workflow is 347.47 and Load

balance rate is 1.04.

Figure 7. Gantt chart for workflow execution with CFPSO

IV. SIMULATION RESULTS

The proposed algorithm is executed on a system with Core

i5 processor, 16.00 GB RAM, Windows 8, 64-bit operating

system. The results are compared against regular PSO algorithm

and chaotic PSO algorithm for two scientific workflows

Montage and Sipht. These workflows are available in different

sizes, for example, Montage workflows contain 25, 50, 100, &

1000 tasks and Sipht workflows contain 30,60, 100 & 1000

tasks. The simulation and evaluation of performance of the

proposed algorithms is carried out on WorkflowSim-1.0, which

is an extension to CloudSim.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 8s

DOI: https://doi.org/10.17762/ijritcc.v11i8s.7181

Article Received: 22 April 2023 Revised: 12 June 2023 Accepted: 27 June 2023

 128

IJRITCC | July 2023, Available @ http://www.ijritcc.org

The set of values used for the parameters in the algorithms to

perform an experimentation to optimize makespan, service cost

and load balance is indicated in Table 1.

A. Makespan Analysis

The makespan comparison of CFPSO is done with GWO,

PSO and CPSO as shown in Figure 8 for Montage workflows

and Figure 9 for Sipht workflows. The makespan improvement

over GWO is 82%, over PSO is 42.95% and over CPSO

algorithm is 14.25% for Montage workflow with 25 tasks. For

Montage 50, it is 75.08%, 16.80% and 10.51%, for Montage

100, the improvement is 79.75%, 17.58% and 12.24%. Whereas

for Montage 1000, the improvement is 54.12%, 3.59% and

1.09% over GWO, PSO and CPSO respectively.

TABLE I. PARAMETERS SET FOR ALGORITHMS

PARAMETERS VALUES

NUMBER OF TASKS 25-1000

NUMBER OF

PARTICLES
100

NUMBER OF

ITERATIONS
500

R1, R2 RANDOM [0,1]

C1, C2 0.9

Ω

0.1 (PSO), CHAOTIC INERTIA

(CPSO), CONSTRICTION

FACTOR INERTIA (CFPSO)

NUMBER OF VMS 5 (HETEROGENOUS)

BANDWIDTH 100

For Sipht workflow, the improvement is over 78.38%,

43.82%, 7.99% for 30 tasks, 78.48%, 48.14%, 46.43% for 60

tasks, 89.14%, 18.94%, 34.64% for 100 tasks and 91.83%,

3.75%, 1.27% for 1000 tasks over GWO, PSO and CPSO.

Figure 8. Makespan for Montage Workflows

Figure 9. Makespan for Sipht workflows

B. Service Cost Analysis

In case of Montage workflow, the service cost through

CFPSO against GWO, PSO, CPSO is showing 7.39%, 4.38%,

6.14% increase for 25 tasks, 0.02%, 3.63%, 1.35% increase for

50 tasks, 10.21%, 5.25%, 6.66% increase for 100 tasks and

3.52%, 1.31%, 1.39% increase for 1000 tasks as shown in

Figure 10. For Sipht workflow, it is 30.15%, 28.63%, 8.53%

increase for 30 tasks, 20.92%, 32.38%, 30.18% increase for 60

tasks, 8.04%, 17.03%, 2.81% increase for 100 tasks and 2.77%,

0.83%, 1.69% increase for 1000 tasks as shown in Figure 11.

Figure 10. Cost for Montage workflows

Montage
_25

Montage
_50

Montage
_100

Montage
_1000

GWO 249.89 398.3 780.34 8397.84

PSO 196.27 265.71 510.44 5644.41

CPSO 156.86 251.42 487.26 5508.26

CFPSO 137.3 227.5 434.12 5448.76

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

M
ak

es
p

an

Makespan for Montage Workflows

Sipht_30 Sipht_60
Sipht_10

0

Sipht_10

00

GWO 7385.39 10683.45 14758.57 115891.89

PSO 5954.26 8867.68 9281.41 62678.12

CPSO 4471.21 8765.28 10506.39 61184.11

CFPSO 4140.22 5985.94 7803.18 60415.27

0

20000

40000

60000

80000

100000

120000

140000

M
ak

es
p

an

Makespan for Sipht Workflows

Montage_

25

Montage_

50

Montage_

100

Montage_

1000

GWO 954.52 1894.29 4132.41 44859

PSO 927.76 1962.74 3946.66 43898.52

CPSO 943.4 1919.54 3999.45 43935.78

CFPSO 888.82 1893.97 3749.67 43331.64

0
5000

10000
15000
20000
25000
30000
35000
40000
45000
50000

C
o
st

Cost for Montage Workflows

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 8s

DOI: https://doi.org/10.17762/ijritcc.v11i8s.7181

Article Received: 22 April 2023 Revised: 12 June 2023 Accepted: 27 June 2023

 129

IJRITCC | July 2023, Available @ http://www.ijritcc.org

Figure 11. Cost for Sipht workflows

The minimum load rate value indicates a good balance of

resources, ideally the load rate should be equal to 1. The average

load rate by proposed algorithm shows 6%, 2% and 3% increase

over the existing algorithms for Montage, Epigenomics and

Sipht workflows. Figure 8 represent the improvement in load

rate which is an indicator of load balance on resources.

C. Load Balance Analysis

The average load balance is improved by 47.42%, 5.48%,

5.74% over GWO, PSO and CPSO for montage workflows and

54.63%, 6.94%, 4.17% for Sipht workflows respectively as

shown in Figure 12, Figure 13 respectively.

Figure 12. Load balance for Montage workflows

Figure 13. Load balance for Sipht workflows

V. CONCLUSION AND FUTURE WORK

In conclusion, the use of constriction factor-based inertia

weight in PSO for optimizing makespan, service cost, and load

balance in workflow scheduling has shown promising results.

The use of constriction factor to generate the inertia weight

enhanced the exploration and exploitation of the search space,

leading to better convergence and higher-quality solutions. The

proposed methods have been tested on Montage and Sipht

benchmark scientific datasets and have been shown to

outperform traditional optimization methods in terms of the

quality of the solutions with minimal makespan, service cost,

and optimal load balance. The makespan on montage workflow

with 1000 tasks show that the developed CFPSO algorithm is

superior compared to GWO, PSO and CPSO algorithms by

54.12%, 3.59% and 1.09%, the cost is minimized by 3.52%,

1.31% and 1.39% and the load balance is improved by 49.11%,

1.79% and 4.46% respectively. Similarly, the performance on

Sipht workflows also shows improvement in terms of

makespan, cost and load balance.

Future research can focus on extending the proposed

methods to address other challenges in workflow scheduling,

such as energy optimization and reliability. Additionally, the

combination of constriction based PSO with other optimization

algorithms, like grey wolf optimization, genetic algorithms and

ant colony optimization, can be explored to further improve the

performance of the optimization method. Overall, the use of

constriction factor based PSO optimization technique in

workflow scheduling shows great potential for solving complex

problems in various domains.

CONFLICTS OF INTEREST

The authors declare no conflicts of interest.

Sipht_30 Sipht_60 Sipht_100
Sipht_100

0

GWO 18559.89 39217.59 59273.78 604546.9

PSO 18342.51 42935.99 64202.48 593107.12

CPSO 15476.65 42220.76 56404.76 598187.84

CFPSO 14260.04 32433.8 54860.64 588233.59

0

100000

200000

300000

400000

500000

600000

700000

C
o
st

Cost for Sipht Workflows

Montage_

25

Montage_

50

Montage_

100

Montage_

1000

GWO 1.68 1.67 1.67 1.67

PSO 1.27 1.24 1.14 1.14

CPSO 1.24 1.22 1.17 1.17

CFPSO 1.18 1.12 1.12 1.12

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

L
o
ad

 B
al

an
ce

 r
at

e

Load Balance of Montage Workflows

Sipht_30 Sipht_60 Sipht_100
Sipht_100

0

GWO 1.67 1.67 1.67 1.67

PSO 1.14 1.12 1.14 1.22

CPSO 1.16 1.11 1.11 1.12

CFPSO 1.08 1.08 1.08 1.08

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

L
o
ad

 B
al

an
ce

 r
at

e

Load Balance for Sipht Workflows

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 8s

DOI: https://doi.org/10.17762/ijritcc.v11i8s.7181

Article Received: 22 April 2023 Revised: 12 June 2023 Accepted: 27 June 2023

 130

IJRITCC | July 2023, Available @ http://www.ijritcc.org

REFERENCES

[1] J. Kennedy and R. Eberhart, “Particle swarm optimization”,

Encyclopedia of Machine Learning, pp. 760–766, 2010.

[2] M. Karpagam, K. Geetha, and C. Rajan, “A modified shuffled

frog leaping algorithm for scientific workflow scheduling using

clustering techniques”, Soft Computing, Vol. 24, No. 1, pp. 637-

646, 2020.

[3] A. Mohammadzadeh, M. Masdari, F.S. Gharehchopogh, and A.

Jafarian, “A hybrid multi-objective metaheuristic optimization

algorithm for scientific workflow scheduling”, Cluster

Computing, Vol. 24, No. 2, pp. 1479-1503, 2021.

[4] A. Kaur, P. Singh, R.S. Batth, and C. P. Lim, “Deep‐Q learning‐

based heterogeneous earliest finish time scheduling algorithm for

scientific workflows in cloud”, Software: Practice and

Experience, Vol. 52, No. 3, pp. 689-709, 2022.

[5] N. Anwar and H. Deng, “A hybrid metaheuristic for multi-

objective scientific workflow scheduling in a cloud environment”,

Applied sciences, Vol. 8, No. 4, p. 538, 2018.

[6] I. Gupta, M.S. Kumar, and P.K. Jana, “Efficient workflow

scheduling algorithm for cloud computing system: a dynamic

priority-based approach”, Arabian Journal for Science and

Engineering, Vol. 43, No. 12, pp. 7945-7960, 2018.

[7] Xue jun Li, Jia Xu,and Yun Yang, P. Guo and Z. Xue, "An

Adaptive PSO Based Real-Time Workflow Scheduling

Algorithm in Cloud Systems", 17th IEEE International

Conference on Communication Technology, 2017, pp. 1932-

1936.

[8] Xuejun Li, Jia Xu,and Yun Yang, "A Chaotic Particle Swarm

Optimization-Based Heuristic for Market-Oriented Task-Level

Scheduling in Cloud Workflow Systems", Computational

Intelligence and Neuroscience, 2015.

[9] Emma Smith, Deep Learning for Gesture Recognition and

Human-Computer Interaction , Machine Learning Applications

Conference Proceedings, Vol 3 2023.

[10] Ahmad Nickabadi, Mohammad Mehdi Ebadzadeh, Reza

Safabakhsh, “A novel particle swarm optimization algorithm with

adaptive inertia weight”, Applied Soft Computing, Volume 11,

Issue 4, 2011, Pages 3658-3670.

[11] Rui Wang, Kuangrong Hao, Lei Chen, Tong Wang, Chunli Jiang,

“A novel hybrid particle swarm optimization using adaptive

strategy”, Information Sciences, Volume 579, 2021, Pages 231-

250.

[12] Y. Home Prasanna Raju and Nagaraju Devarakonda, “Greedy-

Based PSO with Clustering Technique for Cloud Task

Scheduling”, Proceedings of International Conference on

Computational Intelligence and Data Engineering, pp 133–141,

Dec 2020.

[13] Wu, Z., Liu, X., Ni, Z. Dong Y., Yun Yang, “A market-oriented

hierarchical scheduling strategy in cloud workflow systems”,

Journal of Super computing, 63, 256–293, 2013.

[14] Nuttapong Netjinda, Booncharoen Sirinaovakul, and Tiranee

Achalakul, “Cost optimal scheduling in IaaS for dependent

workload with particle swarm optimization”, J. Supercomput.

68, 1579–1603, 2014.

[15] Jasim, R. M. . (2023). Hybride Particle Swarm Optimization to

Solve Fuzzy Multi-Objective Master Production Scheduling

Problems with Application. International Journal of Intelligent

Systems and Applications in Engineering, 11(1s), 201–208.

Retrieved from

https://ijisae.org/index.php/IJISAE/article/view/2493

[16] H. Li, H. Liu and J. Li, "Workflow scheduling algorithm based on

control structure reduction in cloud environment," 2014 IEEE

International Conference on Systems, Man, and Cybernetics

(SMC), San Diego, CA, USA, pp. 2587-2592, 2014.

[17] M. J. Nadjafi-Arani, S. Doostali and M. Younis, "Workflow

Scheduling with Guaranteed Responsiveness and Minimal Cost,"

in IEEE Transactions on Services Computing, 2022.

[18] Sriperambuduri Vinay Kumar, M Nagaratna, Lakshmi Harika

Marrivada, “Task scheduling in cloud computing using PSO

algorithm”, Smart Intelligent Computing and Applications,

Volume 1: Proceedings of Fifth International Conference on

Smart Computing and Informatics (SCI 2021), Springer Nature,

2021.

[19] C.-H. Liu, W.-H. Huang, and P.-C. Chang, “A two-stage AIS

approach for grid scheduling problems”, International Journal of

Production Research, vol. 50, no. 10, pp. 2665–2680, 2012.

[20] Sriperambuduri Vinay Kumar, M. Nagaratna, “Comparison of

Algorithms for Workflow Applications in Cloud Computing”,

International Journal of Engineering and Advanced Technology

(IJEAT), Volume-11 Issue-1, October 2021.

[21] W.-N. Chen and J. Zhang, “A set-based discrete PSO for cloud

workflow scheduling with user-defined Qos constraints,” in

Proceedings of the IEEE International Conference on Systems,

Man, and Cybernetics (SMC ’12), pp. 773–778, 2012.

[22] X. Li, S. Zhou, J. Wang, X. Liu, Yiwen Zhang, Cheng Z., and

Yun Yang, “Time-sharing virtual machine based efficient task-

level scheduling in scientific cloud workflows”, Future

Information Technology, pp. 121–126, Springer, 2014.

[23] P. Hirsch, A. Palfi, and M. Gronalt, “Solving a time constrained

two-crane routing problem for material handling with an ant

colony optimisation approach: an application in the roof-tile

industry”, International Journal of Production Research, vol. 50,

no. 20, pp. 6005–6021, 2012.

[24] Andrew Hernandez, Stephen Wright, Yosef Ben-David, Rodrigo

Costa, David Botha. Intelligent Decision Making: Applications of

Machine Learning in Decision Science. Kuwait Journal of

Machine Learning, 2(3). Retrieved from

http://kuwaitjournals.com/index.php/kjml/article/view/197

[25] Sardaraz M, Tahir M., “A parallel multi-objective genetic

algorithm for scheduling scientific workflows in cloud

computing”, International Journal of Distributed Sensor

Networks, 2020.

[26] Henrique Yoshikazu Shishido, Júlio Cezar Estrella, Claudio

Fabiano Motta Toledo, Marcio Silva Arantes, “Genetic-based

algorithms applied to a workflow scheduling algorithm with

security and deadline constraints in clouds”, Computers &

Electrical Engineering, Volume 69, Pages 378-394, 2018.

[27] Seyedali Mirjalili, Seyed Mohammad Mirjalili, Andrew Lewis,

“Grey Wolf Optimizer”, Advances in Engineering Software,

Volume 69, Pages 46-61, 2014.

[28] Clerc M., “The swarm and the queen: towards a deterministic and

adaptive particle swarm optimization”, Proceedings of the 1999

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 8s

DOI: https://doi.org/10.17762/ijritcc.v11i8s.7181

Article Received: 22 April 2023 Revised: 12 June 2023 Accepted: 27 June 2023

 131

IJRITCC | July 2023, Available @ http://www.ijritcc.org

Congress on Evolutionary Computation, Vol. 3, pp. 1951- 1957,

1999.

http://www.ijritcc.org/

