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Abstract— Hyperspectral image (HSI) classification is an important concern in remote sensing, but it is complex since few numbers of 

labelled training samples and the high-dimensional space with many spectral bands. Hence, it is essential to develop a more efficient neural 

network architecture to improve performance in the HSI classification task. Deep learning models are contemporary techniques for pixel-based 

hyperspectral image (HSI) classification. Deep feature extraction from both spatial and spectral channels has led to high classification accuracy. 

Meanwhile, the effectiveness of these spatial-spectral methods relies on the spatial dimension of every patch, and there is no feasible method 

to determine the best spatial dimension to take into consideration. It makes better sense to retrieve spatial properties through examination at 

different neighborhood scales in spatial dimensions. In this context, this paper presents a multi-scale hybrid spectral convolutional neural 

network (MS-HybSN) model that uses three distinct multi-scale spectral-spatial patches to pull out properties in spectral and spatial domains. 

The presented deep learning framework uses three patches of different sizes in spatial dimension to find these possible features. The process of 

Hybrid convolution operation (3D-2D) is done on each selected patch and is repeated throughout the image. To assess the effectiveness of the 

presented model, three benchmark datasets that are openly accessible (Pavia University, Indian Pines, and Salinas) and new Indian datasets 

(Ahmedabad-1 and Ahmedabad-2) are being used in experimental studies. Empirically, it has been demonstrated that the presented model 

succeeds over the remaining state-of-the-art approaches in terms of classification performance. 

Keywords- Deep learning; Multiscale; 3D-2D Convolutional; Classification; Hyperspectral image; Spectral-spatial information. 

 

I.  INTRODUCTION  

The trustworthiness of results from hyperspectral image 

(HSI) analysis has made it a popular topic of study for a plenty 

of earth monitoring applications, including military, 

environmental, mining, medical fields, and many others [1-3]. 

Hyperspectral image classification is a challenging task due to 

the minimal amount of labelled training examples and the high 

dimensional space that includes a wide range of spectral bands. 

Conventional image classification methods, such as SVM and 

KNN classifiers, have performed well for this challenge because 

they can compensate for the extensive spectrum information 

acquired in hyperspectral images [4].  

This research has been extensively reviewed in the studies 

[5-7]. Convolutional neural network (CNN)-based algorithms 

had recently obtained exceptional achievement for different 

image analysis-associated works, such as object identification 

and image classification, since enormous accomplishment of 

deep learning. In the literature [8], various supervised classifiers 

for HSI classification have developed. The extraction of features 

using deep convolutional neural network (CNN) methods had 

been shown to enhance the classification accuracy of HSI. The 

key element to achieving a high degree of classification 

precision is the acquisition of distinctive spatial-spectral features 

[9-11]. The spectral-spatial viewpoints must be chosen into 

consideration while classifying hyperspectral images.  

A hyperspectral image, also known as a spectral perspective 

image, is conceptually made up of numerous of smaller 

"images," every of which signifies a certain wavelength band of 

the electromagnetic spectrum. Consequently, 3D spectral-spatial 

data are typically used to represent hyperspectral images. While 

hyperspectral images capture objects from various perspectives, 

current CNN-based techniques [12] [13] that only consider 

spatial or spectral information necessarily ignore the entwined 

relationships between the pair. In essence, the interconnecting 

information can be utilized to enhance categorization 

achievement. Consequently, it is possible to train a 

comparatively good CNN-based classifier using only a small 

amount of labelled 3D spectral-spatial images. Meanwhile, the 

effectiveness of these spatial-spectral methods relies on the 

spatial size of every patch, and there is no feasible method to 

determine the best spatial size to take into consideration. It 
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makes better sense to retrieve spatial properties through 

examination at different neighborhood scales in spatial 

dimensions. 

There have been several early attempts in this direction to 

model spectral-spatial information simultaneously [14] [15]. 

These methods, referred to as 3D-CNN models, employ arrayed 

convolution activities on spectral-spatial feature region in a 

layer-by-layer fashion. The benefit of this particular 3D-CNN 

approach is seen in the produced feature maps. The fundamental 

drawback of these methods is that because the public HSI 

datasets are so limited, it is impractical to build a deep 3D-CNN 

method since more training instances are needed.  

We proposed a multi-scale hybrid spectral CNN (MS-

HybSN) model for HSI classification. In the presented MS-

HybSN, distinct spatial contexts of a particular pixel are 

examined to produce multi-scale 3D patches for the network to 

obtain spectral- spatial properties from the HSI. As can be 

observed in Figure. 1, the MS-HybSN model incorporates three 

Hybrid CNNs parallelly to retrieve deep spectral-spatial features 

from each network and all retrieved features are fused to fed to 

the fully-connected layers for further classification. As shown in 

Fig. 2, in the presented model, every HybSN is a combination of 

spatial-spectral 3DCNN and spatial 2DCNN. The 3DCNN 

optimizes the representation of combined spectral-spatial 

properties from a bundle of spectral channels. The 2DCNN built 

on above of the 3DCNN gains higher-level abstraction spatial 

modelling. As well, compared to using a 3DCNN alone, the 

usage of hybrid CNNs lowers the model's difficulty. It has been 

shown through experimental outcomes on benchmark dataset 

that the introduced MS-HybSN succeeds over various state-of-

the-art HSI classifiers. The subsequent summarizes the 

contributions of the work: 

 

• Distinct spatial contexts of a particular pixel are 

examined to produce multi-scale 3D patches to acquire 

the significant features from HSI to enhance 

classification accuracy. 

• Significant experiments were performed on publicly 

available datasets, and encouraging outcomes illustrate 

that the presented MS-HybSN outperforms other 

contemporary HSI classifiers. 

 

Here is how the remainder of the paper is laid out: The 

review of the literature for the proposed work is mentioned in 

Section II, and the model architecture is presented in Section III. 

The experimental research, outcomes and conversations of the 

proposed framework are stated in Section IV. Finally, Section V 

presents the inferences. 

 

II. RELATED WORK 

It is widely acknowledged in the research community that 

classifying hyperspectral images is a significant problem in the 

field. However, earlier research mostly focused on traditional 

computational techniques. We quickly cover the most recent 

deep learning pixel-based models in this section.   

A 2D-CNN pixel--based method was presented in [13] to 

retrieve the spectral-spatial data embedded in HSIs, where 2D-

CNN has been used to examine the band selection outcomes. A 

variety of pixel--based techniques were put forth to combine 

specific 2D-CNN models for the classification of HSI based on 

the band selection outcomes. As an illustration, Liu et al. [16] 

used deep belief networks to retrieve deep spectral 

characteristics. A 2D-CNN adaptive HSI classification model 

has been presented by Zhu [17] and is composed of adaptable 

convolutions and down sampling which integrate the underlying 

information of every input sequence in an adaptive manner. 

Through the addition of three feature regions based on spectrum 

information to spatial regions, in [18], Han developed a 2D-

CNN method to assess spectral-spatial characteristics. Zhao and 

Du [19] gave an example of a spectral-spatial feature-based 

categorization method that utilises a 2DCNN to collect spatial 

data and a linear local distinction encase to find spectral data. 

Although these methods might produce models with comparable 

performance, they required a huge training dataset, which is not 

feasible for the majority of real-world implementations. 

There are techniques that account the spatial-spectral 

features of the HSI data. As CNN models are so flexible, a wide 

range of methods and networks can be created to do spectral-

spatial analysis. Chen [20] presented a deep 3D-CNN model 

comprised of multiple 3D convolutional layers that extracted 

spectral–spatial characteristics for classification. Similar to this, 

Lee [21] proposed a deep network with such an emphasis on 3D 

data. The proposed model is capable of accurately capturing 

alterations in local impulses stated in spectral-spatial data. In 

order to evaluate a series of volumetric models of the HSI, 

Hamida [22] devised and assessed a set of 3D schemes that 

combine the conventional 3D convolution operations to enable 

a joint spatial-spectral information analysis. Kanthi [23] 

presented a 3D-CNN method that splits HSI into 3D regions and 

pulls deep spectral-spatial data for HSI classification. 

However, certain hybrid approaches incorporated 2D-CNNs 

and 3D-CNNs. For example, Roy [24] proposed HybridSN 

model that merges spectral and spatial 3D-CNN with spatial 2D-

CNN. Raviteja [25] established hierarchical image fusion model 

for HSI classification to merge specified spectral features into 

image groups. Wan [26] presented multiscale graph 

convolutional network for irregular image region convolution 

for HSI classification. Meng [27] employed connections with 

feed-forward shortcuts to access all convolutional layers’ 

hierarchical input to create a dense multiscale hybrid network 
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and a multi-scale HSI spatial and spectral HybridCNN was 

presented by Mohan [28] for Classification tasks. Kanthi [29] 

introduced a deep CNN model that uses three distinct multi-scale 

spatial-spectral regions to retrieve features from both the spatial 

and spectral bands.  

In contrast to 2D-CNN and 3D-CNN based models, 

multiscale hybrid pixel-based models certainly contain more 

features. As a result, the 3D-CNN based models have 

substantially higher network complexity and memory 

requirements than the 2D-CNN based methods. This seeming 

inability to directly apply these 3D-CNN based approaches to 

model such entangled interactions can be attributed to the 

following. It is challenging to optimize the prediction loss via 

these nonlinear design since majority of present 3D-CNN based 

techniques contain multiple 3D convolutional layers. Deep 

feature extraction from both spatial and spectral channels has led 

to high classification accuracy. Meanwhile, the effectiveness of 

these spatial-spectral methods relies on the spatial size of every 

patch, and there is no feasible method to determine the best 

spatial size to take into consideration. It makes better sense to 

retrieve spatial properties through examination at different 

neighborhood scales in spatial sizes. In this context, we 

motivated in this direction to present a MS-HybSN model that 

uses three distinct multi-scale spatial-spectral patches to pull out 

features in spectral and spatial domains.   

 

 

 

 

 
Figure. 1 Overview of the presented multiscale HybSN (MS-HybSN) network. 

 

 
Figure. 2 Integration of 3D-2D convolution for feature learning. 

III. PROPOSED METHODOLOGY 

In this section, we provide in detail the presented multiscale 

hybrid spectral network (MS-HybSN) method. As seen in Figure 

1, the presented approach MS-HybSN employs multiscale 3-D 

patches as input to generate integrated spectral-spatial features 

from the provided HSI. Assume that the provided HSI may be 

seen as a 3D cube with the dimensions 𝑊 x 𝐻 x 𝐵, in which 𝑊, 

𝐻  indicate the spatial height and width of the image, and 𝐵 

represents the number of spectral channels. 

 As with the most popular CNN architectures that already 

exist [18, 23, 25, 29, 30], the no. of channels was decreased 

initially using PCA, and 30 spectral bands were chosen for the 

IP and 15 spectral channels were chosen for other datasets 

employed in exploratory investigation. 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 11 Issue: 7s 

DOI: https://doi.org/10.17762/ijritcc.v11i7s.7026 

Article Received: 04 April 2023 Revised: 25 May 2023 Accepted: 05 June 2023 

___________________________________________________________________________________________________________________ 

 

    485 

IJRITCC | June 2023, Available @ http://www.ijritcc.org 

The presented framework MS-HybSN retrieves spatial-

spectral features for particular pixels in the pattern of multiscale 

3D-patches in three distinct spatial contexts. As depicted in Fig. 

1, these multiscale 3D-patches are supplied to three HybSN 

networks. Each patch has the dimensions 𝑝𝑖x 𝑝𝑖x 𝑑, where 𝑝𝑖  is 

the height and width of patch 𝑖 , 𝑑 is the patch depth and 𝑖  is 

number of patches associated with a single pixel. The RAM of 

25.51 GB Google Colab Pro GPU is used for all experiments in 

the current work. According to this setup, selected optimised 

three patches with sizes 𝑝1 x  𝑝1 x 𝑑 = 15 x 15 x 30 , 

𝑝2x 𝑝2x 𝑑 = 13 x 13 x 30 , and 𝑝3x 𝑝3x 𝑑 = 11 x 11 x 3 . As 

presented in Figure 2, every HybSN is a combination of spectral-

spatial 3DCNN and spatial 2DCNN. The 3DCNN optimizes the 

representation of combined spatial-spectral features from a 

bundle of spectral channels. 

The 2DCNN built on above of the 3DCNN gains higher-

level abstraction spatial modelling. Every HybSN network 

contains two 3D convolution layers (3𝐷 − 𝐶𝑜𝑛𝑣1 and 3𝐷 −

𝐶𝑜𝑛𝑣2), max pooling layer (3𝐷 − 𝑃𝑜𝑜𝑙) and two sets of filters 

𝐾1 = 16 and 𝐾2 = 32  having size 3 x 3 x 7 𝑎𝑛𝑑 3 x 3 x 5 

respectively in 3D-Convolution process and one 2D convolution 

layer  (2D − Conv)  with filter 𝐾3 = 64   having  size 3 x 3  in 

2D-Convolution process. Batch normalisation layer and 

activation function ReLU is used after each convolutional layer. 

The max-pool layer with stride 2 x 2 x 2  a 𝑖𝑠  aplied after the 

second 3D convolutional layer as Equation. (1).  

 

𝑓(𝑥) = {
0, 𝑥 < 0
𝑥, 𝑥 ≥ 0

    (1) 

The extracted features from multiple spatial context levels 

are reshaped and flattened before being given to the fully 

connected layers 𝑓𝑐𝑙1 , 𝑓𝑐𝑙2 , and 𝑓𝑐𝑙3  for classification. As a 

regularization strategy, the dropout layer was applied at a rate 

of 0.5% after each fully-connected-layer to remove the 

overfitting issue when training samples were few.  

Each neuron's activation function in a fully connected layer 

is calculated using Equation (2). 

 

𝐴𝑐𝑡𝑥(𝑓𝑐𝑙) = 𝑔(𝑤𝑥(𝑓𝑐𝑙) ∗ 𝑎𝑐𝑡𝑥−1(𝑓𝑐𝑙) + 𝑏𝑥)      (2) 

 

Where, 𝑤𝑥(𝑓𝑐𝑙) is the weighted total of all the inputs to the 

precedent layer and 𝑏𝑥 is the bias. 𝑔(. ) is a representation of the 

ReLU activation. 

Finally, the data is classified using a soft-max probabilistic 

model. 𝐹 = [𝐹𝑥]x, where x is a positive integer between 1 and 

n, represents the feature representations after the entire model 

has been implemented, as in Equation (3). 

 

Smax (𝐹)𝑥 =
𝑒𝐹𝑥

∑  𝑘
𝑥=1 𝑒𝐹𝑦

 for 𝑥 = 1,2,3, . . , 𝑛 (3) 

 

At last, there is the argmax function (maximum 

arguments). It establishes the location in the region of a function 

where the functional parameters are at their highest. Equation 

(3) can be used to allocate classes to a m number of 

hyperspectral image class labels ranging from 𝑄 =

{1, 2, 3, 4, .  . , 𝑚}. 

 

TABLE I. DESCRIPTION-BENCHMARK AND INDIAN HSI DATASETS. 

Parameters SA PU IP AH-1 AH-2 

Sensor AVIRIS ROSIS AVIRIS AVIRIS-NG AVIRIS-NG 

Wavelength Range 360–2500 µm 0.43–0.86 µm 0.4–2.5µm 0.37–2.5µm 0.37–2.48 µm 

No. of Classes 16 9 16 5 7 

No. of Spectral Bands 200 115 200 351 370 

Spatial Dimension 512 × 217 610 × 340 145 ×145 300 × 200 300 × 200 

 

TABLE II. PROPOSED MODEL CLASSIFICATION ACCURACIES (IN %) ON BENCHMARK DATASETS. 

Model 
SA PU IP 

AA OA Kappa AA OA Kappa AA OA Kappa 

2D-CNN [7] 94.63 94.94 94.23 92.86 93.18 92.03 88.29 91.69 90.65 

3D-CNN [7] 97.07 96.98 96.38 96.12 96.54 95.53 94.59 95.14 93.99 

HybridSN [25] 99.59 99.85 99.52 99.03 99.93 99.81 98.56 99.22 99.12 

HybridCNN [29] 99.87 99.95 99.98 99.98 99.99 99.99 99.72 99.80 99.76 

MS-3DCNN [30] 99.98 99.99 99.98 99.97 99.99 99.99 98.87 99.89 99.24 

Proposed Method 

 
99.99 99.99 99.98 99.98 99.99 99.99 99.13 99.98 99.92 
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TIBLE III. PROPOSED MODEL CLASSIFICATION ACCURACIES (IN %) ON INDIAN DATASETS. 

Model 
AH-1 AH-2 

AA OA Kappa AA OA Kappa 

3D-CNN [7] 82.41  80.99  78.17  69.30  70.06  67.93 

HybridSN [25] 85.03  85.69  83.79  76.71  79.55  75.82 

HybridCNN [29] 84.97 85.44 83.47 76.24 78.21 74.42 

MS-3DCNN [30] 87.15 87.24 85.74 77.05 80.10 76.72 

Proposed Method  88.24 88.13  86.06 78.21 80.93 77.97 

 
TABLE IV. TESTING TIME(SEC) AND TRAINING TIME(MIN) FOR BENCHMARK AND INDIAN DATASETS. 

Model 
SA  PU  IP  AH-1  AH-2  

Train  Test  Train  Test  Train  Test  Train  Test  Train  Test  

3D-CNN 62 78 52 65 45 52 91 112 92 110 

HybridSN 50 64 45 60 40 50 88 104 86 102 

HybridCNN 122 27 112 23 74 11 102 120 98 108 

MS-3DCNN 80 82 76 68 52 58 93 115 94 113 

Proposed Method 75 80 70 65 50 55 90 100 90 102 

 

TABLE V. EFFECT OF THE SPATIAL PATCH DIMENSION ON THE ACHIEVEMENT OF PRESENTED METHOD. 

Dataset 

Spatial patch sizes 

𝒑𝟏 = 𝟏𝟓𝐱𝟏𝟓, 𝒑𝟐 = 𝟏𝟑𝐱𝟏𝟑, 

 𝒑𝟑 = 𝟏𝟏𝐱𝟏𝟏 

𝒑𝟏 = 𝟏𝟑𝐱𝟏𝟑,   𝒑𝟐 = 𝟏𝟏𝐱𝟏𝟏, 

𝒑𝟑 = 𝟗𝐱𝟗 

𝒑𝟏 = 𝟏𝟏𝐱𝟏𝟏,  𝒑𝟐 = 𝟗𝐱𝟗, 

𝒑𝟑 = 𝟕𝐱𝟕 

SA 99.99 99.21 97.86 

PU 99.99 98.93 96.87 

IP 99.98 98.82 97.10 

AH-1 88.13 86.48 85.76 

AH-2 80.93 78.97 77.85 

 

IV. EXPERIMENTAL STUDY AND SNALYSIS 

This section provides the datasets descriptions, 

experimental setups, and experimental evaluation of MS-

HybSN model. the details are explained in the following 

subsections. 

A. Description of Datasets 

An experimental investigation was carried out using 

three publicly available HSI datasets: PU (Pavia-University), 

SA (Salinas), and IP (Indian-Pines). The ground truth is 

provided with 16 class-labels for the IP dataset, which was 

recorded from the Indian-Pines test-site in North-western-

Indiana During a flying-campaign above Pavia, northern-

Italy, PU was captured with 9 class-labels of ground-truth. 

The ground-truth for the SA was taken with 16 class-labels 

from the Salinas-Valley. Furthermore, two new Indian 

datasets, AH1 (Ahmedabad-1) and AH2 (Ahmedabad-2), 

had been employed to assess the potency of the presented 

method's performance. These datasets were gathered by the 

ISRO using AVIRIS-NG sensor [30]. The details are 

provided in Table 1. 

B. Experimental Setup 

The experiments are carried out using a GPU with 25-

GB RAM on the Google Cloud. The established network 

MS-HybSN is evaluated by randomly picking 20% of 

samples as train and 80% as test set from every dataset. In 

the optimization process, the Adagrad optimizer is 

employed, as well as a categorical cross-entropy with decay 

(1e-06) and learning rate (0.001). The approach was trained 

for 100 epochs using batch size of 32. On each data set, the 

experiments are recited 10 times and the average outcomes 

were reported. 

C. Classification Results and Analysis 

The kappa (K), AA (Average-Accuracy), and OA 

(Overall-Accuracy) had been incorporated to assess the 

efficacy of the provided network. Contemporary HSI 

classification models, like 3D-CNN [7], 2D-CNN [7], 

HybridSN [24], HybridCNN [28], and MS-3DCNN [29], are 

compared to the results of the presented MS-HybSN model. 

The classification accuracy attained by all these approaches 

is displayed in Table 2. It is identified that the presented 

model achieved 99.99% OA, 99.99% AA on Salinas, 99.99% 
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OA, 99.98% AA on Pavia, and 99.98% OA, 99.13% AA on 

IP. In light of assessment measures like K, AA, and OA, 

Table 2 demonstrates that the presented method's 

classification efficiency is superior to that of alternative 

models on the contrast datasets. The outcomes are generated 

using publicly accessible code for the comparable models, 

and the accuracies for 2D-CNN, 3D-CNN, HybridSN, 

HybridCNN, and MS-3DCNN models are taken from their 

respective articles. The presented model's kappa, AA, and 

OA values are much superior to those of state-of-the-art 

models. In almost all circumstances, the presented method 

outperforms the HybridSN approach. Moreover, HybridSN 

model used 30% samples and presented method uses 20% 

samples randomly from each category for the model training.  

The studies on two new Indian datasets, AH1 and AH2, 

are being carried out to ensure that the method is efficient 

and resilient. We used publicly available code to compare our 

method against models such as 3D-CNN, HybridSN, 

HybridCNN, and MS-3DCNN. In order to compare other 

methods, their code was unavailable. The proposed method 

achieved 88.13 % OA, 88.24 % AA on AH1 dataset and 

80.93 % OA, 78.24 % AA on AH2 dataset. On the new 

datasets, the provided model improved by 1% to 2%, as 

shown in Table 3. Table 4 indicates the train and test times 

for presented model and state-of-the-art approaches. The 

time spent training is measured in minutes, whereas the time 

spent testing is measured in seconds. The framework training 

time is shorter when compared to HybridCNN, but longer 

when compared to HybridSN and 3DCNN. The model 

requires substantially more testing time than HybridCNN 

since it uses more test data. On the AH-1 and AH-2 datasets, 

the proposed model's test and train durations are significantly 

more on the new datasets, regardless of the fact that it yields 

better classification accuracy levels.  

Table 5 depicts the cause of spatial patch dimensions 

on the presented method's efficiency. S. K. Roy [24] 

conducts similar research and concludes that as the spatial 

patch size is raised, the model's efficiency diminishes and it 

becomes computationally infeasible. The model's 

performance can also be improved by combining features 

retrieved with a few small-patches utilizing varying spatial 

sizes. As a result, three patches are used in the proposed work 

to gradually increase the spatial sizes of the filter for 

convolution. Since limitations of the computational setup, 

the investigations in this work are described with three patch 

sizes as inputs to the presented framework: 𝑝1 x  𝑝1 x 𝑑 =

15 x 15 x 30  , 𝑝2 x  𝑝2 x 𝑑 = 13 x 13 x 30 , and 

𝑝3 x  𝑝3 x 𝑑 = 11 x 11 x 30 . The comparison of various 

accuracies of proposed model with current methods for 

bench mark datasets and Indian datasets are illustrated in 

Figure 3.  Figure 4, Figure 5, and Figure 6 show the 

classification maps created by the presented model for 

benchmark datasets. The classification maps obtained by 

HybridSN, MS-3DCNN, and the presented approach for the 

AH-1, and AH-2 datasets are depicted in Figure 7, and Figure 

8. It's easier to compare the proposed method's classification 

maps to those made by other methods. Some parts of the 

presented model's maps are lesser noisy.  

 

  
(a) (b) 

Figure 3. Comparison of various accuracies of presented model with state-of-art approaches: (a) Benchmark datasets (b) Indian datasets. 
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Figure 4. IP (a) image-ground-truth, (b) classification map, (c) indicative class fables. 

 

  

 

 
  

Figure 5. PU (a) image-ground-truth, (b) classification map, (c) indicative class fables. 

 

 

  

 

 
  

Figure 6. SA (a) image-ground-truth, (b) classification map, (c) indicative class fables. 
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Figure 7. AH-1 (a) image-ground-truth, (b) HybridSN map, (c) MS-3DCNN map, (d) proposed model classification map with indicative class fables. 

 

   

  

    

 

Figure 8. AH-2 (a) image-ground-truth, (b) HybridSN map, (c) MS-3DCNN map, (d) proposed model classification map with indicative class fables. 

 

V. CONCLUSION 

Developing a more general deep learning approach for 

HSI classification is tricky. High classification accuracy may 

be attained in HSI classification by retrieving deep features 

from spatial and spectral bands. Although, there is no 

theoretically sound method for determining the best spatial 

dimension to examine. Towards this objective, a multiscale 

hybrid (MS-HybSN) model for HSI classification is 

recommended in this paper, that extracts deep features in 

both channels using three separate multi-scale spatial-

spectral patches which simply integrates spatial-spectral and 

spectral data in 3D and 2D convolutions.  Experiments on 

benchmark datasets exhibit that the presented model 

improves existing models relating to efficiency. The 

efficiency of the established model is further assessed on new 

datasets, and it outperforms the HybridSN, HybridCNN, and 

MS-3DCNN models by a significant margin. The proposed 

technique exhibited 1%-2% improvement in overall accuracy 

on benchmark and Indian datasets. 
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