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Abstract

Malaria is a disease caused by the parasite Plasmodium, transmitted by the bite of an infected female
Anopheles. In general, five species of Plasmodium that can cause malaria. Of the five species, Plasmodium
falciparum and Plasmodium vivax are two species of Plasmodium that can allow malaria superinfection in the
human body. Typically, the popular intervention for malaria eradication is the use of fumigation to control the
vector population and provide good medical services for malaria patients. Here in this article, we formulate
a mathematical model based on a host-vector interaction. Our model considering two types of plasmodium
in the infection process and the use of medical treatment and fumigation for the eradication program. Our
analytical result succeeds in proving the existence of all equilibrium points and how their existence and local
stability criteria depend not only on the control reproduction number but also in the invasive reproduction
number. This invasive reproduction number represent how one plasmodium can dominate other plasmodium.
Our sensitivity analysis shows that fumigation is the most influential parameter in determining all control
reproduction numbers. Furthermore, we find that the order in which numerous intervention measures are taken
will be very crucial to determine the level of success of our malaria eradication program.
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1. INTRODUCTION
Malaria is a disease caused by the parasite Plasmodium, transmitted by the bite of the female Anopheles

mosquito which infected with the parasite Plasmodium. In general, five species of Plasmodium that can cause
malaria, namely Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae, Plasmodium ovale, and
Plasmodium knowlesi. Of the five species, Plasmodium falciparum and Plasmodium vivax are the biggest
causes of malaria in the world [1]. Based on data from the World Health Organization (WHO), malaria
caused 405, 000 cases of death out of a total 228 million in 2018. WHO also reported that the total funding
for malaria control was estimated at 2.7 billion USD.

In regions of high malaria transmission, humans can be exposed to several hundred infected mosquitoes
per year [2], which highly possibly bring several types of Plasmodium, such as P. Vivax and P. Falciparum.
Many theories have been introduced to describe how superinfection in malaria occurs [3], [4]. They stated that
superinfection occurs when single individuals human host more than one Plasmodium species, which might
occur from consecutive bites or originated by a single bite of a mosquito who has multiple Plasmodium [5].
Nevertheless, it is well established that superinfection occurs in areas that have a high endemicity of malaria
[6], wich suggesting that superinfection originates from consecutive infectious bites. In Indonesia, around 80%
of the district/city is still categorized as malaria-endemic, and about 45% of the population lives in an area at
risk of contracting malaria. This allows for superinfection in several malaria-endemic regions, including the
Provinces of Maluku, North Maluku, Papua, West Papua, North Sumatra (Nias and Nias Selatan districts), and
NTT [7]. This indicates that malaria superinfection is possible in Indonesia because it is a malaria-endemic
area, and there are more than one species of Plasmodium in Indonesia.
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One of malaria control strategy can be done by treatment for infected humans. Artemisinin-based Com-
bination Therapies (ACT) is the best anti-malaria drug available nowadays. Artemisinin has the potential to
reduce the level of resistance Plasmodium to appear and transmit in the human body [8]. Also, controlling
malaria is not only done through treatment for infected humans, but also control of mosquitoes by fumigation.
Fumigation is a method of controlling mosquitoes in which pesticide gas or steam is released to the air or
injected to the ground to kill or eliminate mosquitoes. The benefit of fumigation is that it can reduce mosquito
populations and reduce the intensity of malaria transmission by eliminating mosquitoes which are resting and
breeding.

One way to study phenomena in the real world is by forming mathematical models [9]. Besides, mathemat-
ical modeling can help develop a scientific understanding of real-world problems, study the impact of each
component, and make predictions behavior of the system. The superinfection problem described earlier can
be compared with the SIR (host) – SI (vector) epidemic model. Furthermore, several studies have discussed
the modeling of malaria, including the effect of anti-malaria resistant drugs [10], [11], effect of reinfection,
relapse and/or recurrent [12], [13], [14], [15], [16], effect of bias mosquito preferences on blood resources
[17], [18], [19], [20], superinfection phenomena [21], [22], model with coinfection with other diseases [23],
[24], model with interventions [25], [26], [27], [28], [29], and many more.

Based on the background that has been explained, this research will discuss the formation of mathematical
models regarding malaria superinfection transmission with medical treatment and fumigation interventions.
Unlike the previous study conducted by Cai et al. [21], our article focuses on incorporating two distinct
plasmodium strains into our proposed model. This approach is similar to our previous study discussed in
[22]. However, there is a difference compared to [22] as we now consider an essential intervention factor in
our model, specifically medical treatment and fumigation. Both of these interventions are widely practiced
in many endemic areas to combat malaria. Additionally, we simplify our model using the Quassi Steady
State Approximation (QSSA) by assuming that the mosquito population has already reached its equilibrium
state. The question that will be addressed are: What is the mechanism of superinfection between Plasmodium
Falciparum and Plasmodium Vivax? Can they coexist at the same time in the human population? How robust is
our proposed model to the change of parameter value? Can the policymaker rely on fumigation and treatment
to eradicate superinfection in the population? This paper seeks to answer the aforementioned question by the
use of a mathematical model considering fumigation and treatment among superinfection phenomena.

Rest of the paper organized as follows. In Sec. 2, the mathematical model will be constructed and followed
with a discussion on the positiveness and boundedness of the model solution. Mathematical analysis regarding
the equilibrium points, control reproduction numbers, and invasion reproduction numbers given in Sec.3.
Sensitivity analysis of all reproduction numbers and local sensitivity of the model are given in Sec. 4 followed
with some examples of autonomous simulation in Sec. 5. Some conclusions given in the last section.

2. MODEL CONSTRUCTION

The first step in establishing a mathematical model of malaria superinfection transmission is divided
the human population into four groups (susceptible, humans infected with Plasmodium falciparum, humans
infected with Plasmodium vivax, and humans recovered from the infection) and then we divide mosquito
population into three groups (susceptible, mosquitoes infected with Plasmodium falciparum, and mosquitoes
infected with Plasmodium vivax). The transmission diagram of the model is shown in Figure 1.

If the transmission diagram is formed into the equation system, a model of malaria superinfection trans-
mission is formed in the system (1). Variable S is a subpopulation of healthy people who are susceptible to
infection, I1 is a subpopulation of humans infected with Plasmodium falciparum, I2 is a subpopulation of
humans infected with Plasmodium vivax, R is a subpopulation of people who recovered from an infection,
U is a subpopulation of healthy mosquitoes which are susceptible to infection, V1 is a subpopulation of
mosquitoes infected with Plasmodium falciparum, and V2 is a subpopulation of mosquitoes infected with
Plasmodium vivax.
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Figure 1: Transmission Diagram for Malaria Supreinfection with Medical Treatment and Fumigation. The blue and
red lines represent the transition and infection processes, respectively. On the other hand, the yellow line represents the
contribution of each variable to the infection process.
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= η2
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N

U − µvV2 − αV2, (1g)

Susceptible human and mosquito subpopulations can increase due to births of Ah and Av , respectively. Each
human and mosquito subpopulation can be reduced due to natural mortality at a rate of µh and µv , respectively.
There is an additional deaths in mosquito population due to fumigation at a rate of α. Susceptible humans can
get infected by malaria only due to contact with infected mosquitoes with its specific rate depending on the
type of the Plasmodium. The rate of infection in the human population due to Plasmodium falciparum and
Plasmodium vivax is given by β1 and β2, respectively. On the other hand, The rate of infection in mosquitoes
population due to Plasmodium falciparum and Plasmodium vivax is given by η1 and η2, respectively. Our
model accommodates the superinfection phenomena, where Plasmodium vivax can dominate Plasmodium
falciparum. Therefore, if I1 gets a successful infection by V2 with a rate of β3, they will become infected by
Plasmodium vivax. Due to the short lifetime period of the mosquito population, we assume no superinfection
phenomena in the mosquito population. Humans who have been infected could be recover from infection,
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both with treatment or not. The proportion of humans recovering from infections Plasmodium falciparum
without treatment is (1− q) with a recovery rate of γ1 and the proportion (1− p) is for humans recovering
from infections Plasmodium vivax without treatment with a recovery rate of γ3. Furthermore, the proportion
of people who have recovered from infection Plasmodium falciparum with treatment is q at the recovery
rate of γ2 and the proportion p is for humans recovering from infections Plasmodium vivax with treatment
at the recovery rate of γ4. The total human population (N(t) = S(t) + I1(t) + I2(t) +R(t)) in this model
is assumed to be constant and closed.

2.1. Positiveness

To show that the malaria superinfection model is epidemiologically meaningful, we will prove that all the
solutions of model (1) are positive for all time t > 0.

Theorem 2.1. Given the initial condition of the model in system (1), where S(0) ≥ 0, I1(0) ≥ 0, I2(0) ≥
0, R(0) ≥ 0, U(0) ≥ 0, V1(0) ≥ 0, and V2(0) ≥ 0, then the solution (S(t), I1(t), I2(t), R(t), U(t), V1(t),
V2(t)) of the model are always positive for t > 0.

Proof: From system (1), we have

dS

dt
(S = 0, I1 ≥ 0, I2 ≥ 0, R ≥ 0, U > 0, V1 ≥ 0, V2 ≥ 0) = Ah > 0,

dI1
dt

(S > 0, I1 = 0, I2 ≥ 0, R ≥ 0, U > 0, V1 ≥ 0, V2 ≥ 0) = β1
S

N
V1 ≥ 0,

dI2
dt

(S > 0, I1 ≥ 0, I2 = 0, R ≥ 0, U > 0, V1 ≥ 0, V2 ≥ 0) = β2
S

N
V2 + β3

I1
N

V2 ≥ 0,

dR

dt
(S > 0, I1 ≥ 0, I2 ≥ 0, R = 0, U > 0, V1 ≥ 0, V2 ≥ 0) = (1− q)γ1I1 + qγ2I1 + (1− p)γ3I2

+ pγ4I2 ≥ 0,
dU

dt
(S > 0, I1 ≥ 0, I2 ≥ 0, R ≥ 0, U = 0, V1 ≥ 0, V2 ≥ 0) = Av > 0,

dV1

dt
(S > 0, I1 ≥ 0, I2 ≥ 0, R ≥ 0, U > 0, V1 = 0, V2 ≥ 0) = η1

I1
N

U ≥ 0,

dV1

dt
(S > 0, I1 ≥ 0, I2 ≥ 0, R ≥ 0, U > 0, V1 ≥ 0, V2 = 0) = η2

I2
N

U ≥ 0.

From above calculation, all the rates in the boundary planes are non-negative in the boundary of R7
+. Hence,

we can conclude that as long as the initial conditions are non-negative, then all vector field direction will be
inward from the boundary planes. Hence, all the solutions remain in the positive region only. Here the proof
is completed.

2.2. Boundedness

Theorem 2.2. In the system (1), each human subpopulations (S(t), I1(t), I2(t), R(t)) and each mosquito
subpopulations (U(t), V1(t), V2(t)) are bounded.

Proof: By adding up the total number of human subpopulations and mosquito subpopulations from the
equation system (1), we obtained dN

dt = Ah − µhN and dM
dt = Av − (µv + α)M. Since we assume that

number of recruitment rate is always the same with total of death, and no migration consider in the model,
then we have that dN

dt = 0, which implies that N is a constant. Based on Theorem 2.1, all human population
is always positive for all time t > 0. Hence, we have that S(t), I1(t), I2(t), and R(t) are bounded below by
0 and above by Ah

µh
.
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Boundedness of mosquito subpopulations will be proof by integration factor.

dM

dt
= Av − (µv + α)M,

⇐⇒ dM

dt
+ (µv + α)M = Av,

⇐⇒ d

dt

[
Meµvt+αt

]
= Ave

µvt+αt,

⇐⇒ M(ti)e
µvti+αti −M(0) = Av

∫ ti

0

eµvt+αtdt,

⇐⇒ M(ti) =
Av

µv + α
+

c

eµvti+αti
.

For ti → ∞ we obtained

lim
ti→∞

M(t) ≤ Av

(µv + α)
.

So, mosquito subpopulations are bounded by M(t) ≤ Av

(µv+α) . Its corollary of M = U + V1 + V2 and
U(t), V1(t), V2(t), are always positive, it means 0 ≤ U(t) ≤ Av

(µv+α) , 0 ≤ V1(t) ≤ Av

(µv+α) , and 0 ≤ V2(t) ≤
Av

(µv+α) . Hence, U(t), V1(t), and V2(t) are bounded in
[
0, Av

µv+α

]
.

2.3. Invariant Region

Based on Theorem 2.1 and Theorem 2.2, a positive invariant region can be created as a result of positiveness
and boundedness solutions.

Corollary 2.2.1. Region Ω ∈ R7
+ ∪ 07 with Ω = Ωn × Ωm and

Ωn =

{
(S, I1, I2, R) ∈ R4

+ ∪ 04 : S + I1 + I2 +R =
Ah

µh

}
,

Ωm =

{
(U, V1, V2) ∈ R3

+ ∪ 03 : M(t) ≤ Av

(µv + α)

}
,

is positively invariant for the system (1) with initial conditions that are always non-negative in R7
+ ∪ 07.

3. MODEL ANALYSIS

3.1. Quasi-Steady State Approximation (QSSA)

QSSA can be used when there is a part of the system reacts much faster than the other, so it can be said
that the system has a slow and fast dynamic. In our model, the mosquito has a very short lifetime period
compared to humans. Mosquito lives only for 21 days, while a human can live up to 72 years old. Hence,
it is clear that mosquitoes can reach the equilibrium much faster compared to humans. This fact implies that
a mosquito has fast dynamics while a human has slow dynamics. Then, we can simplify the part that reacts
faster on the system to the slower part reducing the number of variables [30]. The process of implementing
QSSA to our mosquito population is as follows. Solving dU

dt = 0, dV1

dt = 0 and dV2

dt = 0 respect to U, V1 and
V2, we have:

U∗ =
AvN

Nα+Nµv + η1I1 + η2I2
, V ∗

1 =
Avη1I1

(α+ µv)(Nα+Nµv + η1I1 + η2I2)
,

V ∗
2 =

Avη2I2
(α+ µv)(Nα+Nµv + η1I1 + η2I2)

.
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Next, we substitute U∗
1 , V

∗
1 , V

∗
2 and R = N − (S + I1 + I2), into dS

dt ,
dI1
dt ,

dI2
dt , we have

dS

dt
= Ah − β1η1AvSI1

C1
− β2η2AvSI2

C1
− µhS, (2a)

dI1
dt

=
β1η1AvSI1

C1
− β3η2AvI1I2

C1
− (1− q)γ1I1 − qγ2I1 − µhI1, (2b)

dI2
dt

=
β1η1AvSI1

C1
+

β3η2AvI1I2
C1

− (1− p)γ3I2 − pγ4I2 − µhI2, (2c)

where C1 = N(α + µv)(Nα + Nµv + η1I1 + η2I2). System (2) is the model that we will analyze in the
following section, instead of the original model in (1). Note that simplification using QSSA in this research
can reduce the dimensions of the system that originally had a dimension of 7 to a dimension of 3. This is
expected to simplify the model analysis.

3.2. Disease Free Equilibrium and The Control Reproduction Number
Disease-free equilibrium point (E0) is a condition where the disease has appeared in a population, but then

will be disappear over time. The DFE point, E0 = (S, 0, 0), is obtained from the system (2) substituted with
dS
dt = 0, I1 = 0, and I2 = 0 so the following results are obtained

Ah − µhS = 0 ⇐⇒ S =
Ah

µh
.

So, we obtained the disease-free equilibrium

E0 = (S, 0, 0) =

(
Ah

µh
, 0, 0

)
,

will always exist or have biological meaning without any conditions.

Theorem 3.1. Disease-free equilibrium point E0 from the system (2) will always exist without any conditions,
where E0 =

(
Ah

µh
, 0, 0

)
.

1). The Control Reproduction Number
Furthermore, we calculate the control reproduction number (R0) using the next-generation matrix (NGM)

[31]. The steps taken are as follows. The transmission T and transition Σ matrix of system (2) is given by

T =

 AhAvβ1η1

µhN2(α+µv)2
0

0 AhAvβ2η2

µhN2(α+µv)2

 , Σ =

[
−(1− q)γ1 − qγ2 − µh 0

0 −(1− p)γ3 − pγ4 − µh

]
.

Hence, the next-generation matrix of system (2) is given by

K = KΣ−1 = K =

 AhAvβ1η1

µhN2(α+µv)2((1−q)γ1+qγ2+µh)
0

0 AhAvβ2η2

µhN2(α+µv)2((1−p)γ3+pγ4+µh)

 . (3)

Hence, the control reproduction number of system (2) as a spectral radius of K is given by

R0 = max {R01,R02} , (4)

where

R01 =
AhAvβ1η1

µhN2(α+ µv)2 ((1− q)γ1 + qγ2 + µh)
,

R02 =
AhAvβ2η2

µhN2(α+ µv)2 ((1− p)γ3 + pγ4 + µh)
.

Note that, R01 is the control reproduction number of the system for infection with Plasmodium falciparum,
while R02 is the control reproduction number of the system for infection with Plasmodium vivax.
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Theorem 3.2. The control reproduction number from the system (2) is R0 = max {R01,R02}.

In many epidemiological models such as in malaria [17], [18], [27] or in other diseases [32], [33], [34],
[35], [36], [37], it is common to see that the disease will persist whenever the control reproduction number
is less than unity, and exist otherwise. In the next analysis, we will show that malaria will persist from the
community using our proposed model whenever both the basic reproduction number in 4 is less than unity.
The local stability of E0 is summarized in the following theorem.

Theorem 3.3. The disease-free equilibrium (E0) of the system (2) is locally asymptotically stable if R0 < 1.

Proof: Linearize system (2) in E0 gave us

JE0 =


−µh − AhAvβ1η1

µhN2(α+µv)2
− AhAvβ2η2

µhN2(α+µv)2

0 − AhAvβ1η1

µhN2(α+µv)2
− (1− q)γ1 − qγ2 − µh 0

0 0 − AhAvβ2η2

µhN2(α+µv)2
− (1− p)γ3 + pγ4 − µh

 .

The polynomial characteristic of JE0 is

(λ+ µh)

(
λ− AhAvβ1η1

µhN2(α+ µv)2
+ (1− q)γ1 + qγ2 + µh

)(
λ− AhAvβ2η2

µhN2(α+ µv)2
+ (1− p)γ3 + pγ4 + µh

)
= 0.

Hence, the eigenvalues are

λ1 = −µh, λ2 = −((1− q)γ1 + qγ2 + µh)(1−R01), λ3 = −((1− p)γ3 + pγ4 + µh)(1−R02)

It is easy to see that all eigenvalues λ will be negative if R01 < 1,R02 < 1 ⇐⇒ R0 < 1.

2). Some Notes on The Control and Basic Reproduction Numbers
From the expression of the control reproduction number in (4), the basic reproduction number of system (2)

is given when all controls are 0 (p = 0, q = 0, α = 0). Hence, the basic reproduction number of system (2)
is given by

R∗
0 = max {R∗

01,R∗
02} = max

{
AhAvβ1η1

µhN2µ2
v(γ1 + γ2 + µh)

,
AhAvβ2η2

µhN2µ2
v(γ3 + γ4 + µh)

}
. (5)

It can be seen that R01 < R∗
01 and R02 < R∗

02. Hence, we can verify that implementation of treatment
and fumigation can reduce the reproduction number. Furthermore, the expression of R01 can be rewritten as
follows

R01 =
M

N
↓

Ratio of human and mosquito

× β1

(1− q)γ1 + qγ2 + µh
↓

New infection in human

× η1
α+ µv

↓
New infection in mosquito

(6)

R02 can be expresses in a similar way as in (6). From the expression above, each control contribute in
a different term of R01. Controlling the spread of malaria do not always need both controls implemented
together. There is a level of minimum implementation for each controls such that R0i for i = 1, 2 can be
reduced.

3.3. Endemic Equilibrium
Endemic equilibrium is a condition where the disease epidemic in the population. Endemic equilibrium is

obtained from the system (2) substituted with dS
dt = 0, dI1

dt = 0, and dI2
dt = 0. By solving it, we get three

endemic equilibrium points.

1). Plasmodium Falciparum-Only
Endemic equilibrium point for Plasmodium falciparum-only, denoted by E1, is given by

S∗ =
N2 ((1− q)γ1 + qγ2 + µh) +NAhη1(α+ µv)

η1 (Nµh(α+ µv) +Avβ1)
, I∗1 =

N2µh(α+ µv)(R01 − 1)

η1 (Nµh(α+ µv) +Avβ1)
, I∗2 = 0.
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The existence and local stability criteria of E1 is summarized in the following theorem.

Theorem 3.4. Endemic equilibrium point E1 exist if R01 > 1 and locally asymptotically stable if the invasion
reproduction number of P. Falciparum to P. Vivax given by

R2
1 =

N(α+ µv) (N(α+ µv) ((1− q)γ1 + qγ2 + µh) +Ahη1) ((1− p)γ3 + pγ4 + µh) (R01 −R02)

AhAvβ3η2(R01 − 1)
,

is larger than unity.

Proof: It is clear that I∗1 will be positive or epidemiologically meaningful if R01 > 1. Furthermore,
characteristic equation of Jacobian matrix of system (2) near E1 can be written as follows

(a1λ+ a0)(b2λ
2 + b1λ+ b0) = 0, (7)

where

a1 = β1η1(α+ µv) (N(α+ µv) ((1− q)γ1 + qγ2 + µh) +Ahη1) > 0,

a0 = N(α+ µv) (N(α+ µv) ((1− q)γ1 + qγ2 + µh) +Ahη1) ((1− p)γ3 + pγ4 + µh) (R01 −R02)

−AhAvβ3η2(R01 − 1),

b2 = β1Av(α+ µv) (N(α+ µv) ((1− q)γ1 + qγ2 + µh) +Ahη1) > 0,

b1 = R01 (N(α+ µv) ((1− q)γ1 + qγ2 + 2µh) +Avη1)−N(α+ µv) ((1− q)γ1 + qγ2 + µh) ,

b0 = µh(α+ µv)
2 (Nµh(α+ µv)) ((1− q)γ1 + qγ2 + µh)

2
(R01 − 1) > 0.

Therefore, all roots of equation (7) have a negative real part if and only if a0 > 0 and b1 > 0. To guarantee
a positive value of a0, it should be

R2
1 =

N(α+ µv) (N(α+ µv) ((1− q)γ1 + qγ2 + µh) +Ahη1) ((1− p)γ3 + pγ4 + µh) (R01 −R02)

AhAvβ3η2(R01 − 1)
> 1.

The positive value of b1 is a direct implication by − b1
b2

< 0 (the roots of the two-degree polynomial are
negative if the sum is also negative). So, this completes the proof.

2). Plasmodium Vivax-Only
Endemic equilibrium point for Plasmodium vivax-only, denoted by E2, is given by

S∗∗ =
N2 ((1− p)γ3 + pγ4 + µh) +NAhη2(α+ µv)

η2 (Nµh(α+ µv) +Avβ2)
, I∗∗1 = 0, I∗∗2 =

N2µh(α+ µv)(R02 − 1)

η2 (Nµh(α+ µv) +Avβ2)
.

The existence and local stability criteria of E2 is given in the following theorem.

Theorem 3.5. Endemic equilibrium point of E2 from the system (2) exists if R02 > 1 and locally stable if
the invasion reproduction number of P. Vivax to P. Falciparum

R1
2 =

AhAvβ3η2(R02 − 1)

N(α+ µv) (N(α+ µv) ((1− p)γ3 + pγ4 + µh) +Ahη2) ((1− p)γ3 + pγ4 + µh) (R01 −R02)

larger than unity.

Proof: It is clear that I∗2 will be positive or epidemiologically meaningful if R02 > 1. Furthermore,
characteristic equation of Jacobian matrix of system (2) near E2 can be written as follows

(c1λ+ c0)(d2λ
2 + d1λ+ d0) = 0, (8)
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where

c1 = β2η2(α+ µv) (N(α+ µv) ((1− p)γ3 + pγ4 + µh) +Ahη4) > 0,

c0 = AhAvβ3η2(R02 − 1)−N(α+ µv) (N(α+ µv) ((1− p)γ3 + pγ4 + µh) +Ahη2)

((1− p)γ3 + pγ4 + µh) (R01 −R02),

d2 = β1Av(α+ µv) (N(α+ µv) ((1− p)γ3 + pγ4 + µh) +Ahη2) > 0,

d1 = R02 (N(α+ µv) ((1− p)γ3 + pγ4 + 2µh) +Avη4)−N(α+ µv) ((1− p)γ3 + pγ4 + µh) ,

d0 = µh(α+ µv)
2 (Nµh(α+ µv)) ((1− p)γ3 + pγ4 + µh)

2
(R02 − 1) > 0.

Therefore, all roots of equation (8) have a negative real part if and only if a0 > 0 and b1 > 0. To guarantee
a positive value of a0, it should be

R1
2 =

AhAvβ3η2(R02 − 1)

N(α+ µv) (N(α+ µv) ((1− p)γ3 + pγ4 + µh) +Ahη2) ((1− p)γ3 + pγ4 + µh) (R01 −R02)
> 1.

The ositive value of b1 is a direct implication by − b1
b2

< 0 (the roots of the two-degree polynomial are
negative if the sum is also negative). So, this completes the proof.

3). Coexistence Endemic Equilibrium
Endemic equilibrium point where P. vivax and P. falciparum coexist, denoted by E3, is given by

S† =
Ahβ3

β2 ((1− q)γ1 + qγ2 + µh)
(

R01

R02
− 1

)
+ µhβ3

,

I†1 =
K1(R01 −R02)(R1

2 − 1)

K3
,

I†2 =
K2(R02 − 1)(R2

1 − 1)

K3
,

where

K1 = N(α+ µv) ((α+ µv) ((1− p)γ3 + pγ4 + µh) +Ahη2)

((1− q)γ1 + qγ2 + µh) ((1− p)γ3 + pγ4 + µh) > 0,

K2 = N2AhAvβ3η2 ((1− q)γ1 + qγ2 + µh) > 0,

K3 = ((α+ µv)η1 ((1− p)γ3 + pγ4 + µh)− (α+ µv)η2 ((1− q)γ1 + qγ2 + µh)−Avβ3η2)(
(R1 −R2)(α+ µv)

2 ((1− q)γ1 + qγ2 + µh) +AhAvβ3η2
)
.

The existence of E3 is summarized in the following theorem.

Theorem 3.6. Given the condition R01 > R02 and R02 > 1.
1) Given K3 > 0, the endemic equilibrium E3 exists if and only if satisfy R1

2 > 1 and R2
1 > 1.

2) Given K3 < 0, the endemic equilibrium E3 exists if and only if satisfy R1
2 < 1 and R2

1 < 1.

Analysis of local stability of endemic equilibrium points E3 was done numerically using various parameters
values such that Theorem 3.6 satisfied. The baseline parameter values are given in Table 1. Some of the
parameters are obtained from existing literature, while others are based on assumptions. The assumption
made in this study is that the chosen parameters result in a reproduction number that is slightly larger than
one, but still close to one.

By substituting parameter’s values in Table 1, we got the value of R01 = 1, 47358 > 1,R02 = 1, 05256 >
1,R2

1 = 0, 22635 < 1 dan R1
2 = 0, 49496 < 1. Furthermore, it gave us the endemic equilibrium point of E3

as follows
E3 = (S = 891, 86618; I1 = 0, 78650; I2 = 3, 17735) .

The eigen values that we got by evaluated E3 at Jacobian matrix J are

λ1 = −0, 00004, λ2 = −0, 00001 + 0, 00017i, λ3 = −0, 00001− 0.00017i.
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Table 1: Parameter Values in Model

Parameter Description Value Unit Reference

Ah Number of human birth 1000
72×365

human
day [38]

Av Number of mosquito birth 1000
14

mosquito
day [39]

µh Natural death rate of human 1
72×365

1
day [38]

µv Natural death rate of mosquito 1
14

1
day [39]

α Death rate of mosquito by fumigation 0,15 1
day [40]

β1 Infection rate from infected mosquito to susceptible human 0,0015 human
mosquito×day Assumption

β2 Infection rate from infected mosquito to susceptible human 0,001 human
mosquito×day Assumption

β3 Superinfection rate 0,09 human
mosquito×day Assumption

η1 Infection rate from infected human to susceptible mosquito 0,7 1
day Assumption

η2 Infection rate from infected human to susceptible mosquito 0,75 1
day Assumption

(1 − q) Proportion of infected human who doesn’t get medical treatment 1 - Assumption
q Proportion of infected human who get medical treatment 0 - Assumption

(1 − p) Proportion of infected human who doesn’t get medical treatment 1 - Assumption
p Proportion of infected human who get medical treatment 0 - Assumption
γ1 Recovery rate without medical treatment 0, 0035 1

day Assumption
γ2 Recovery rate with medical treatment 0, 3325 1

day [40]
γ3 Recovery rate without medical treatment 0, 0035 1

day Assumption
γ4 Recovery rate with medical treatment 0, 3325 1

day [40]

Since all eigenvalues have a real negative part, endemic equilibrium point E3 will be locally stable for
the parameter’s values in Table 1. We conduct another numerical experiments with different combination of
R01,R02,R2

1 and R1
2 to analyze the stability of the coexistence equilibrium. Our conclusion is given in the

following conjecture. We leave the proof of this conjecture analytically to the reader as an open problem.

Conjecture 1. Given K3 < 0, the endemic equilibrium of E3 from the system (2) will be locally stable if
R2

1 < 1 and R1
2 < 1.

To summarized our analytical and numerical results, the existence and local stability diagram for equilibrium
points of system 2 is given in Figure 2

From the diagram above, it can be seen that controlling the local control reproduction number (R01 and
R02) is important to avoid the endemic equilibrium. Therefore, next, we conduct a short discussion on the
importance of combination between fumigation and medical treatment, and the role of the other parameters
in determining the control reproduction numbers using elasticity analysis using the following definition.

Definition 3.1. (See [41]). The normalized forward sensitivity index of R0, with respect to a given parameter
θ is defined by

ER0

θ =
∂R0

∂θ
× θ

R0
.

Using parameters value as shown in Table 1, we summarized our results on the elasticity of the control
reproduction numbers in Table 2. The positive sign shows that increasing the parameters, will increase the
control reproduction number. While the number determines the change of the control reproduction number
for every 1% change on the parameter. For example, since ϵR01

α = −1.35484, then increasing 1% of the
fumigation rate α, will reduce R01 1.35484%. It can be seen that β1 is the most influential parameter on
all control reproduction number. The order of the most to the least influential parameter in each control
reproduction number are α, µh, β1, η1, Ah, Av for R01, α, µh, β2, η2, Ah, Av for R02, α, η2, γ3, Ah, Av, β2

for R2
1, and α, η2, γ3, β2, Ah, Av for R1

2.
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Figure 2: Existence and local stability diagram.

Table 2: Elasticity of R01,R02,R2
1, and R1

2.

E Ah Av µh µv α β1 β2 β3

R01 1 1 −1, 03666 −0, 64516 −1, 35484 1 0 0

R02 1 1 −1, 03666 −0, 64516 −1, 35484 0 1 0

R2
1 −3, 24263 −3, 11156 2, 26708 2, 04974 4, 30445 0, 38844 −2, 50000 −1

R1
2 20, 16760 20, 02584 −19, 80177 −12, 96562 −27, 22781 −3, 50000 22, 52584 1

E η1 η2 q p γ1 γ2 γ3 γ4

R01 1 0 −0, 00001 0 −0, 96334 −0, 00001 0 0

R02 0 1 0 −0, 00001 0 0 −0, 96334 −0, 00001

R2
1 0, 25737 −3, 50000 0, 00001 0, 00001 0, 71541 0, 00001 3, 37170 0, 00001

R1
2 −3, 50000 23, 66760 0, 00001 −0, 00001 2, 40836 0, 00001 −22, 80002 −0, 00001

To enclose our result in this section, we give a sensitivity analysis of R0 respect to the proportion of
infected individual who undergoes treatment and fumigation in Figure 3. Based on Table 2, we know that
fumigations are the most influential parameter for the system (2). Based on Figure 3(a) we know that the blue
area is illustrated in the region where R0 < 1, means malaria superinfection will disappear from populations
over time. The region inside the blue area, which separated by the dashed lines (α < α1 and q < q1)
are illustrated that both interventions, medical treatment, and fumigation, is should be done to eliminate
malaria superinfection from populations. Otherwise, the region outside the blue area which separated by the
dashed lines (α > α1 and q > q1) are illustrated that one intervention could be done to eliminate malaria
superinfection from populations. The yellow area from Figure 4(a) is illustrated in the region where R0 > 1,
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Figure 3: Sensitivity of p, q and α on determining the size of R0, where α1 = 0.19737, q1 = 0.04121, α2 =
0.155574, and p2 = 0.02845.

it means malaria superinfection will always appear in populations over time. Similarly, things to describe
Figure 3(b) as before.

Then we can conclude from Table 2 and Figure 3, that fumigation (α) and the proportion of human who
get medical treatment (p and q) have a negative relation to R0. While it may seem obvious that high-intensity
treatment and fumigation can reduce the value of R0, it is noteworthy that the elasticity of fumigation is
significantly higher compared to treatment. This suggests that fumigation is more effective in reducing both
the basic and invasive reproduction numbers. Consequently, if we need to choose a single intervention to
control the spread of malaria, fumigation would be the optimal choice.

4. SENSITIVITY ANALYSIS ON THE PROPOSED MALARIA MODEL

To simulate the sensitivity of our proposed model (2) respect to the change of parameters, we divide the
numerical experiments into four cases, based on the combination of the control reproduction numbers and
Figure 2. To conduct the simulation, we use the following parameters value, except it is stated differently
depending on the scenario below.

Ah =
1000

72× 365
, Av =

1000

14
, µh =

1

72× 365
, µv =

1

14
, α = 0.15, β1 = 0.0015, β2 = 0.001, β3 = 0.09

η1 = 0.7, η2 = 0.75, q = 0, p = 0, γ1 = 0.001, γ2 = 0.3325, γ3 = 0.001, γ4 = 0.3325, N = 1000.

Another important step of parameter analysis is using the idea of local sensitivity analysis, we calculate
the local sensitivity of each model state concerning model parameters for the model equations 2, the above
parameters are used with initial populations S(0) = 800, I1(0) = 120, I2(0) = 80. We compute the model
sensitivities using three different techniques: non-normalizations, half normalizations, and full normalizations;
see Figures 4–15. This local sensitivity analysis shows how sensitive the state variables respect to a parameter.
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Let k as the parameters on model (2), and xi as variables which describe S, I1 or I2 on (2). Then, Non-
normalization is given by

∂xi(t)

∂k
,

half-normalization is given by

1

xi(t)
× ∂xi(t)

∂k
,

and the full-normalization is given by

k

xi(t)
× ∂xi(t)

∂k
.

Interestingly, results provide us further understanding of the model and give one to identify the key critical
model parameters.

4.1. Sensitivity analysis when R01 < 1,R02 < 1

To conduct simulation in this section, we use parameter value as in the beginning of this section , except
p = 0.7 and q = 0.7 which gave us R01 = 0.00656,R02 = 0.00469. Therefore, we have

E0 = (S, I1, I2) = (1000, 0, 0),

is locally stable. It can be seen from Figure 4 that from non-normalization sensitivity analysis, susceptible
human is very sensitive to the change of β2, while I1 and I2 to µh. Similar results are given from the half
normalization in Figure 5. Interestingly, when full normalization sensitivity analysis conducted as shown in
Figure 6, we can see that susceptible human is very sensitive to the birth rate of mosquito Av , infection rate
on human β2 and infection rate on mosquito η2. On the other hand, infected human no longer sensitive to
the infection rate, but now they are sensitive to the proportion of infected human who get hospitalized (p and
q), and the recovery rate γ2 and γ4. From this simulation, we can take information that whenever the system
will tend to a malaria-free equilibrium, then each variable is very sensitive to the changes in infection rate,
especially in the human population.

(a) (b)

Figure 4: Local sensitivity analysis with non–normalizations in computational simulations when R01 < 1,R02 < 1 (a)
the sensitivity of all variables concerning to all parameters, (b) the sensitivity of all variables concerning to all parameters
except β2.
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(a) (b)

Figure 5: Local sensitivity analysis with half normalizations in computational simulations when R01 < 1,R02 < 1 (a)
the sensitivity of all variables concerning to all parameters, (b) the sensitivity of all variables concerning to all parameters
except β2.

Figure 6: Local sensitivity analysis with full normalizations in computational simulations when R01 < 1,R02 < 1,
the sensitivity of all variables concerning to all parameters.

4.2. Sensitivity analysis when R01 > 1,R02 < 1,R2
1 > 1

We use mentioned parameters value as mentioned before, except q = 0 and p = 0.7 which gave us
R01 = 1.47358,R02 = 0.00469,R2

1 = 177.32082. Hence, we have that

E1 = (S, I1, I2) = (702.04850, 10.92198, 0),

is locally stable. From Figure 7, 8, and 9, it can be seen that infection parameter β2 again is the most
influential parameter in the susceptible population. On the other hand, there are three parameters which the
most sensitive to determine the size of the susceptible population when full normalization conducted, that are
Av, β2, and η2. From this simulation, we conclude that when the system shows the stability of the endemic
equilibrium of plasmodium falciparum only, system (2) is very sensitive to the infection parameter β2 for all
type of sensitivity technique.
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(a) (b)

Figure 7: sensitivity analysis with non–normalizations in computational simulations when R01 > 1,R02 <
1,R2

1 > 1 (a) the sensitivity of all variables concerning to all parameters, (b) the sensitivity of all variables
concerning to all parameters except β2.

(a) (b)

Figure 8: Local sensitivity analysis with half normalizations in computational simulations when R01 > 1,R02 <
1,R2

1 > 1 (a) the sensitivity of all variables concerning to all parameters, (b) the sensitivity of all variables concerning
to all parameters except β2.

Figure 9: Local sensitivity analysis with full normalizations in computational simulations when R01 > 1,R02 <
1,R2

1 > 1, the sensitivity of all variables concerning to all parameters.
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4.3. Sensitivity analysis when R01 < 1,R02 > 1,R1
2 > 1

We use mentioned parameters value as mentioned before, except q = 0.7 and p = 0 which gave us
R01 = 0.00656,R02 = 1.05256,R1

2 = 68.04903. Hence, we have that

E2 = (S, I1, I2) = (955.33340, 0, 1.63734),

is locally stable. In this section, we provide how our proposed model in (2) sensitive to the change of model
parameters, when we set the system stable to the endemic state of plasmodium vivax only. Interestingly, our
numerical experiment results in Figures 10, 11 and 12 show similar qualitative results as in section 5.2, that
β2 is the most sensitive parameter to the susceptible population for all types of sensitivity analysis.

(a) (b)

Figure 10: Local sensitivity analysis with non–normalizations in computational simulations when R01 < 1,R02 >
1,R1

2 > 1 (a) the sensitivity of all variables concerning to all parameters, (b) the sensitivity of all variables concerning
to all parameters except β2.

(a) (b)

Figure 11: Local sensitivity analysis with half normalizations in computational simulations when R01 < 1,R02 >
1,R1

2 > 1 (a) the sensitivity of all variables concerning to all parameters, (b) the sensitivity of all variables concerning
to all parameters except β2.
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Figure 12: Local sensitivity analysis with full normalizations in computational simulations when R01 < 1,R02 >
1,R1

2 > 1 , the sensitivity of all variables concerning to all parameters.

4.4. Sensitivity analysis when R01 > 1,R02 > 1,R2
1 < 1,R1

2 < 1

We use the mentioned parameters value as mentioned before, which gave us R01 = 1.47358,R02 =
1.05256,R2

1 = 0.22635,R1
2 = 0.49496. Hence, we have

E3 = (S, I1, I2) = (891.86618, 0.78650, 3.17735),

is locally stable. When our system set to stable on the coexistence equilibrium, it can be seen that again β2

is very dominant to determine the size of the susceptible population in all types of normalization techniques
(Please see Figures 13, 14 and 15). However, we can see that the infected compartments are very sensitive
to the proportion of hospitalized individuals, and their recovery rate as shown by non and half normalization
techniques.

(a) (b)

Figure 13: Local sensitivity analysis with non–normalizations in computational simulations when R01 > 1,R02 >
1,R2

1 < 1,R1
2 < 1 (a) the sensitivity of all variables concerning to all parameters, (b) the sensitivity of all variables

concerning to all parameters except β2.
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(a) (b)

Figure 14: Local sensitivity analysis with half normalizations in computational simulations when R01 > 1,R02 >
1,R2

1 < 1,R1
2 < 1 (a) the sensitivity of all variables concerning to all parameters, (b) the sensitivity of all variables

concerning to all parameters except β2.

Figure 15: Local sensitivity analysis with full normalizations in computational simulations when R01 > 1,R02 >
1,R2

1 < 1,R1
2 < 1, the sensitivity of all variables concerning to all parameters.

5. AUTONOMOUS SIMULATION
First autonomous simulation is aimed to see how the proportion of humans infected with Plasmodium

falciparum who getting medical treatment affects the dynamics of malaria superinfection transmission in the
system (2). The simulation was done with 7 different values of q, from q = 0 to q = 0.3 with a step size
0.05. Simulation results for variations in the value of q with h = 0.05 can be seen in Figure 16. The arrows
indicate a direction change from the smallest q value, which is a red graph (q = 0) to the largest q, which
is a black graph (q = 0.3).

Based on this simulation, it was known that a higher proportion of infected humans with Plasmodium
falciparum who getting medical treatment makes the number of infected humans decreases, and malaria
superinfection will disappear slowly over the time. Otherwise, the number of susceptible and recovered
humans will increase as the proportion of q increases. This indicates that medical treatment can make malaria
superinfection disappear from the population over the time.

The next autonomous simulation is aimed to see how the proportion of humans infected with Plasmodium
vivax who getting medical treatment affects the dynamics of malaria superinfection transmission in the system
(2). The simulation was done with 7 different values of p, from p = 0 to p = 0.3 with a step size 0.05.
Simulation results for variations in the value of p with h = 0.05 can be seen in Figure 17. The arrows
indicate a direction change similarly as before.

From Figure 17, it is known that a higher proportion of infected humans with Plasmodium vivax who
getting treatment makes the number of infected humans with Plasmodium vivax will decrease and malaria
superinfection will disappear slowly over time. This also indicates that medical treatment can make malaria
superinfection disappear from the population over the time.
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Figure 16: Case Effect of Proportion with Medical Treatment for Plasmodium falciparum (q) with h = 0.05.
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Figure 17: Case Effect of Proportion with Medical Treatment for Plasmodium vivax (p) with h = 0.05.
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Furthermore, an autonomous simulation was done to see how fumigation affects the malaria superinfection
model in the system (2). The simulation was done with 7 different values of α, from α = 0 to α = 0.3
with a step size 0.05. To see the urgency of fumigation, we increase number of mosquito becomes ten times
larger than human population. Hence, we set Av = 10000/(65× 365). Simulation results for variations in
the value of α with h = 0.05 can be seen in Figure 18.
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Figure 18: Case Effect of Fumigation (α) with h = 0.05 Respect to Human and Mosquitoes.

It can be seen from Figure 18, a high-intensity of fumigation results in fewer humans being infected due
to mosquito bites. Based on this simulation, it was known that a higher intensity of fumigation, can make
the total number of infected human is less by mosquito bites and increase the number of susceptible humans.
In other words, controlling malaria by fumigation with a high-intensity can make malaria superinfection
disappear from the population.

6. CONCLUSION
Mathematical models can provide insight into various aspects of the transmission mechanism of a disease

and analyzing the best strategy to prevent the epidemic among the community. Here in this study, we modeled
malaria transmission among human and mosquito populations, considering several important factors, such
as multiple plasmodium model, superinfection phenomena, fumigation, and treatment as control strategies.
Our model describes how superinfection appears from a consecutive bite from mosquito to an individual
who already infected before. We construct the model as a seven-dimensional non-linear ordinary differential
equation. Since we are interested to see the long time behavior of our system and considering the fast
dynamic in a mosquito, we use the Quasi-Steady State Approximation to simplify our model into a three-
dimensional model. Our findings suggest that controlling the local control reproduction numbers for malaria
eradication can not be the only concern for the policymakers since it exists another threshold that describes the
interaction between Plasmodium infection. These thresholds called the invasive control reproduction number.
Misunderstanding is one of these thresholds that could give into a dominant infection of one Plasmodium.
Furthermore, the invasion control reproduction number describes how ”tolerance” is an infection between
two types of Plasmodium. If one of the invasion control reproduction number is larger than unity, or even
both is larger than unity, then coexistence will not occur. Both invasion reproduction numbers should less
than unity to guarantee the existence of the coexistence equilibrium point.
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Our elasticity analysis on the local and invasive control reproduction numbers indicates that fumigation
is the most influential parameter in determining these thresholds. It suggests the potential of fumigation
as the intervention to eradicate malaria from the community. However, the effect of fumigation on these
thresholds is not the same. Increasing the fumigation rate will reduce the local control reproduction number
and invasive control reproduction number of Plasmodium vivax to Plasmodium falciparum, but on the other
hand, it will decrease the invasive control reproduction number of Plasmodium falciparum to Plasmodium
vivax. Therefore, uncontrolled fumigation could lead to the endemic of malaria with Plasmodium falciparum
only, as mentioned in Theorem 3.4. However, although fumigation is the most promising intervention for
malaria eradication in our proposed model, combining this intervention with medical treatment for an infected
individual will give a better result in malaria eradication, especially in the human population. From analysis
on the contour plot of the local control reproduction number, we find that when policymakers want to combine
fumigation and medical treatment as the intervention strategy, the order in which the intervention parameters
are taken is crucial to determine the level of success of the interventions.

While our model provides insights into the impact of superinfection on malaria transmission, we ac-
knowledge that it does not incorporate incidence data in its calculations. Finding the best-fit parameters for
calibration is crucial to enhance our model. Therefore, to further improve our model, we will utilize incidence
data to estimate parameter values that align with the observed data trends.
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