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ABSTRACT 

 
The idea of applying the scattering lifetime calculated from the imaginary part of the zero temperature elastic scatter-
ing cross-section to study a hidden self-consistent damping in two spaces of importance for non-equilibrium statistical 
mechanics is proposed. It is discussed its relation with the classical phase space from statistical mechanics and the 
configuration space from nonrelativistic quantum mechanics. This idea is contrasted with the mean free path values 
in three elastic collision regimes. The main exercise is to study the behavior of a self-consistent probabilistic distribu-
tion function in a space we have called the reduced phase space, since it is related to the scattering lifetime. This exer-
cise has been solved in two unconventional superconductors, for which several calculations are discussed. One of them 
is to obtain the scattering phase shift from the inverse strength of an atomic potential and the other is to build several 
phases with different nodal configuration of the superconducting order parameter and show that the imaginary self-
consistent part of the scattering cross-section is always positive for two compounds: the triplet strontium ruthenate 
and the singlet doped with strontium lanthanum cuprate when three models of superconducting order parameters 
are used: the quasi-point, the point and the line nodal cases. We finally compare the frequency dispersion in the anom-
alous skin effect with singular shapes of the Fermi surface with the frequency dispersion in the scattering lifetime and 
their respective mean free paths. This idea is useful because it intuitively explores the nonlocality of this type of hidden 
self-consistent damping for those incoherent fermionic quasiparticles. 
 
Keywords: Reduced phase space; Configuration space; Classical phase space; Mean free path; Collision lifetime; 
Damping; Non-equilibrium statistical mechanics. 
 

  

 
 

1. Introduction 

 
This work is aimed at phenomenologically understanding the role of two parameters widely used in non-equilibrium 
statistical mechanics, the mean free path “l” and the scattering lifetime “𝜏”. One calculated and the other used in the 
study of the elastic scattering cross-section “”, Both parameters are inversely proportional to “” [1,2,3] (see also Fig. 
1 for a graphical abstract) in two unconventional superconductors (strontium ruthenate [4,5] and doped with stron-
tium lanthanum cuprate [6,7,8]) where unconventional superconductivity is suppressed by a nonmagnetic potential 
following the Larkin equation [9]. These compounds possess different nodal structures that belong to different point 
group representations. In addition, both compounds have similar crystal structures although they have different stoi-
chiometric/doped composition of the nonmagnetic “strontium” in their elementary crystal cells. 

 
We illustrate the idea by showing some data calculated self-consistently and address several macroscopic properties 
that appear numerically, scanning the behavior of the inverse collision lifetime “𝜏-1”. It is formalized and explored what 
we call “the reduced phase space” (RPS), used in this particular case for dressed fermion quasiparticles that are called 
incoherent carriers following a dependence on the doping concentration (see for example [15]). All this is made with 
a first neighbors tight-binding procedure. These incoherent carriers obey the Fermi-Dirac statistics and their scatter-
ing lifetime strongly depends on the Fermi energy value and the anisotropic Fermi surface average.  
 
Understand the input frequency window that are needed for the calculations in the reduced phase space is crucial and 
plays a fundamental role since the study of the imaginary part of the scattering cross-section is a well-established 
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methodology [16,17] and itis an instructive computational tool that helps to understand the numerical relation be-
tween the macroscopic and microscopic interpretations of different physical phenomena when nonmagnetic disorder 
is added for the two crystals in their superconducting phases. 

 

 
FIGURE 1: AN INFOGRAPHIC TALE OF THE 2 PHYSICAL PARAMETERS 

The numerical disorder is added with the help of two parameters [18]: The dimensionless collision parameter 𝑐 =

 1 (𝜋 𝑁𝐹  𝑈0)⁄  where U0  is an impurity atomic potential and NF is the density of states at the Fermi level.  The other 

parameter is the amount of doping Γ+ =  
𝑛𝑖𝑚𝑝

(𝜋2 𝑁𝐹)⁄  where nimp  is the impurity concentration. The reduced phase 

space (RPS) found, maps a self-consistent distribution probability function always positive for the dressed fermion 
quasiparticles (incoherent carriers) in the two mentioned compounds in their superconducting phase as it will be 
shown below.  

 
On the other hand, the non-equilibrium statistical mechanics makes use of the parameters “l” and “𝜏”; for example, for 

a gas of dressed Fermi quasiparticles. The play between these two parameters, makes it possible to move from a com-
plete description of a non-equilibrium state to an abbreviated description using a single distribution function of one 
quasiparticle as the one we have obtained [19].  Collision elastic regimes for fermionic dressed quasiparticles depend-
ing on the type of collision in the function ℑ [�̃�( + 𝑖 0+)] due to nonmagnetic impurities are three [20]: 

 
 The unitary collision regime with a maximum in ℑ [�̃�( + 𝑖 0+)] at zero frequency where holds the relation 

𝜔 𝜏 (�̃�) ∼  1 and the mean free path is “𝑙” with 𝑙 ∼ 𝑎 and is obtained from l kF  ~ l a-1
  ~ 1. “�̃� – is the self-

consistent frequency”, “is the real frequency”, “kF is the Fermi momentum”  and “a – is the constant lattice 

parameter”. 

 The intermediate collision limit with a nonzero minimum in the imaginary function at the center of the distribution 

function and two maxima  at real frequencies different from zero, where the inequalities 𝜔 ≤ 𝜏(�̃�)−1 and 𝑙 ≥ 𝑎 

take place. 

 The hydrodynamic (Born) collision scattering with a null imaginary function at zero frequency and two maxima in 

the imaginary part at finite real frequencies following the inequalities 𝜔 ≪ 𝜏−1  and 𝑙 ≫ 𝑎 and where self-con-

sistency can be neglected at very low frequencies.  
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In this work, the physical parametrization of the RPS is made with the help of five physical parameters: the supercon-

ducting energy gap at zero temperature “0 (meV)”, the inverse of the scattering strength “c” (dimensionless parame-

ter), the concentration of non-magnetic impurities “+(meV)”, the Fermi energy of the dressed quasiparticles (inco-

herent carriers) “F (meV)” and the first neighbor hoping tight-binding parameter “t (meV)”. Therefore, this is a tight-

binding case that generalizes the isotropic case [18,21] adding numerical anisotropy and dispersion in energy (see Fig. 

1 for a graphical abstract). The idea of using four physical parameters self-consistently (0, F, c and +) as a modeling 

tool in disordered HTSC was introduced and pointed out by Profs. J. Carbotte and E. Schachinger using isotropic Fermi 

surfaces in a series of works (check [18,22] and references therein).  

The body of this manuscript is as follows. Section 2 introduces the reduced phase space. Section 3 analyzes the sign of 
the imaginary self-consistent function and the meaning of a hidden damping, additionally links the reduced phase 
space with the phase spaces of nonequilibrium statistical mechanics and configuration space of nonrelativistic quan-
tum mechanism; and finally; uses numerical values from the self-consistent procedure to build several phenomeno-
logically disordered phase diagrams for the strontium doped La2-xSrxCuO4, and the triplet Sr2RuO4. Section 4 calculates 
the values for the scattering phase-shift in these compounds using the RPS analysis of the previous section. Section 5 
compares briefly the frequency, mean free path and collision scattering lifetime of these two unconventional super-
conductors with those used in the anomalous skin effect with singular shapes in the Fermi surface for normal metals, 
and shortly addresses the difficult mathematical issue of nonlocality in “l” and “𝜏”. Finally, conclusions and recommen-
dations are given. 

 
2. The role of the “Reduced Phase Space” between non-equilibrium Statistical Mechanics 

and nonrelativistic Quantum Mechanics 

The two dimensional self-consistent reduced phase space (RPS) for dressed fermions (incoherent carriers) is built 

with the pair of coordinates (ℜ(�̃�), ℑ(�̃�)) and has the following properties: 

 Property 1: “The reduced phase space (RPS) in the unitary, intermedium and Born  limits has two axis: the real 

axis ℛ [�̃�( + 𝑖 0+)] =   and the imaginary axis ℑ [�̃�( + 𝑖 0+)]. It serves to map a distribution function of 
dressed fermion quasiparticles, therefor is a fermionic space (also could be called incoherent phase space). 

 Property 2: “Unconventional superconductors [17,23] can be also defined as those with nodes/quasinodal regions 

around the Fermi surface with an order parameter that has a spin paired dependence (singlet or triplet).  This 
property allows to build self-consistently different macroscopic phases as happen for the isotope 3He. 

 Property 3: “The real part ℛ [�̃�( + 𝑖 0+)] belongs to the x interval ∈ (−∞, +∞), and the imaginary part only 

to the positive y axis ∈ (0, +∞) with the function  ℑ [�̃�( + 𝑖 0+)]  > 0 always”. 

 Property 4: “The reduced phase space resembles a space where damping is contained in the self-consistent imag-

inary part of the elastic scattering cross-section following a relationship that holds between the damping and 
the imaginary part: 𝛾 =  −ℑ [�̃�( + 𝑖 0+)]”. 

The units for the input and output parameters in the reduced phase space are the rationalized Planck units where 
always hold that ℏ = kB = c = 1 and input and output units are in in milielectronvolts (meV). 

 
Finally, if is incorporated the tight-binding method (TB) [24] into the dispersion law, the order parameter and the 
Fermi surface average, considering the group symmetry properties (such as parity and time reversal symmetries), the 
RPS opens a window to understand some macroscopic properties in these two compounds. Worthy to notice, that the 
use of the tight-binding enriches but also complicates the computational level of the self-consistent procedure to find 
the fermionic reduced phase space distribution function, making it more computing demanding.  
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3. The sign of the imaginary elastic cross-section for dressed fermion quasiparticles 

 
The inverse of the scattering lifetime is given in normal metals and unconventional superconductors by the following 
expresion 𝜏−1() =  2  [�̃�( + 𝑖 0+)] [16,17]. In general, the mathematical treatment of an external constant po-
tential “U0” using the elastic scattering theory in nonrelativistic quantum mechanics is a complicated subject [25]. In 
this work, the real part is given in the RPS with the coordinate ℜ(�̃�) =  . The imaginary term in the RPS is repre-
sented by the function  [�̃�( )] = (2𝜏)−1[�̃�( )] with a hidden self-consistent damping 𝛾 =  − [�̃�( + 𝑖 0+)].  

 
Now, let us bring to the attention some examples that address this issue. In first instance, to describe “self-consistent 
damping” in the classical phase space of the non-equilibrium statistical mechanics (NESM), we need the time-depend-
ent distribution function “f(t)” using the -approximation in the Boltzmann equation, where the partial derivative re-

spect to time refers to the collision of dressed  fermion quasiparticles [26] with (
𝜕 𝑓

𝜕 𝑡
⁄ )𝑐𝑜𝑙𝑙 = − 

(𝑓 −  𝑓0)
𝜏⁄  .  If the 

distribution function goes rapidly to an equilibrium situation denoted by the function 𝑓0  , the previous expression can 
be approximated by 
 

( 
𝜕 𝑓

𝜕 𝑡
⁄ )𝑐𝑜𝑙𝑙 + 2  [�̃�( + 𝑖 0+)](𝑓 −  𝑓0) = 0, (1) 

 
with a hidden self-consistent collision “coll” behavior and a damping 𝛾 = −  [�̃�( + 𝑖 0+)] =  −(2𝜏)−1[�̃�( )]. The 

solution of Eq. 1 for 𝑓(t) will depend on the whole set of TB parameters 0, F, c, t and +. 

 
A second example, comes from the configuration space in non-relativistic quantum mechanics (NRQM) [27,28]. If the 
equation for the time dependent probability density 𝒲(𝑡) is obtained with a wave function containing an extra expo-
nential term which describes some damping at the quasi-stationary level. This can happen for one dressed quasiparti-
cle inside an isotropic or anisotropic Fermi reservoir as suggested in [27]. The wave function will contain quasi-sta-

tionary levels of the form 𝜓𝜔(𝑡) ∼  𝑒−
𝑖

ℏ
(𝜖−𝑖Γ)𝑡. For fermionic quasiparticles is known that Γ ℏ⁄ =  (2 𝜏)−1 [29] with a 

probability density 𝒲(𝑡) = |𝜓𝜔(𝑡)|2 =  𝒲0𝑒−2 Γ
ℏ⁄  𝑡 where 𝒲0 denotes the equilibrium case. 

 

For 𝒲(𝑡) in the configuration space [28], the following equation holds 
𝜕 𝒲(𝑡) 

𝜕 𝑡⁄ = − 2 Γ
ℏ⁄  𝒲(𝑡) [27]. If we again 

look at Eq. 1 and rearrange this new expression as a partial differential equation with Γ
ℏ⁄ =  (2 𝜏)−1 =

  [�̃�( + 𝑖 0+)], we obtain 

 

(
𝜕 𝒲(𝑡) 

𝜕 𝑡
⁄ )𝑞𝑠𝑑 +  2  [�̃�( + 𝑖 0+)] 𝒲(𝑡) = 0, (2) 

 
where now “qsd” means quasi-stationary damping, and the time partial derivative refers to quasi-stationary levels 
such as those that can be originated in an unconventional superconductor with strontium from the influence of its 
nonmagnetic atomic potential U0. Equations 1 and 2 are identical although refer to different physical processes (colli-
sion and damping). However, Eq. 2 resembles the -approximation in the kinetic Boltzmann equation, but for NRQM. 
Henceforth, we can define a hidden damping from Eq. 2 as being given by a coefficient 𝛾 = −  [�̃�( + 𝑖 0+)] where 
on the self-consistent mechanism depends how long will survive the dressed quasiparticle (incoherent state) around 
the atomic potential. We control the physical phases in the RPS by learning how to use properly the five parameters: 
the number of dressed fermions, the hoping, the strength of the scattering, the zero superconducting gap and the dis-

order. 
 
Now is clear that this analogy links the quasi-stationary probability density 𝒲(𝑡) on the configuration space [28] and 

the quasi-stationary distribution function 𝑓(t) on the phase space [27], one being a classical phenomenon, the other a 

quantum one (see Fig. 1). We now understand why is called a “reduced phase space”. The answer we find is that the 

“lifetime” is the only output parameter, and the “mean free path” has to be given by the strength “c” of the strontium 
atomic potential as an input dimensionless number, and looking and the distribution functions obtained from the im-

aginary part, several phases can be predicted. 
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Non-equilibrium “classical or quantum” statistical mechanics refers also to phenomena where the damping is hidden 
self-consistently in the distribution probability function 𝑓(t) or the quasi-stationary probability density 𝒲(𝑡), near 

the equilibrium and with a coefficient 

𝛾 [�̃�( + 𝑖 0+)] = −  [�̃�( + 𝑖 0+)] < 0.  (3) 

Relation (3) means that the imaginary part of the elastic scattering cross-section is always positive defined and can 
open the possibility for the quasi-nodal points in the OP such as the ones in the Miyake-Narikiyo model [12] where 

four superconducting isolate quasinodal points are symmetrically distributed in the first Brillouin zone. A second 

condition in the zero temperature imaginary elastic cross-section is derived from the first 

 [�̃�( + 𝑖 0+)] > 0 .  (4) 

In order to validate relation (4) in the case of the two unconventional superconductors, we discuss several calculations 

in detail.  

We begin with Table 1 showing a few points of the whole set of data calculated self-consistently to obtain the Miyake-

Narikiyo tiny gap [30] in the unitary collision regime with the five input values 0 = 1.0 meV, F = -0.4 meV, c = 0, t = 0.4 

meV and += 0.05 meV. As can be seen from the second column in Table 1 with values taken from the self-consistent 
solution for the function  [�̃�( + 𝑖 0+)], the numbers that represent the tiny gap are close to zero but always pos-

itive (since 1 meV = 10-3 eV), so the values of the imaginary self-consistent elastic scattering cross-section are never 

zero or negative in our calculations when the Fermi energy is negative and very small (F = - 0.4 meV). The smallest 

number obtained self-consistently is shadowed gray in the second column of Table 1. 

To complement this, some numbers for the case where Sr2RuO4 has point nodes is also showed in the third column 

of Table 1 [31]. The parameter for the Fermi energy is now bigger and close to the zero value (F = - 0.04 meV), but 

the other four TB parameters remain equal to those used in the quasinodal case. For the node points situation (Fig. 

2), there are not small values in the imaginary part as seen in the third column of Table 1 and in Fig. 2, with the 

minimum of the imaginary function shadowed gray for a dilute coalescent + = 0.05 meV. 

At this point is good to remember that the Fermi-Dirac distribution describes the function of dressed electrons and 

holes on the quasi-stationary quantum energy levels (n and where n = 0,1,2…) with 𝑓𝑛 =  1

(𝑒
−

𝜀𝑛−𝜀𝑓

𝑘𝐵 𝑇 + 1)
⁄ . Therefore, 

it is important to recall that the Fermi energy F enters as a parameter in the function fn, and that the consequence of 
increasing the number of dressed fermion quasiparticles in the system results in an increase of the Fermi energy [33] 
as we do to obtain point-nodes in strontium ruthenate [31].  Despite strontium ruthenate continues to be part of an 

intense discussion with respect to its OP as expressed recently in [37], for the point nodes triplet model in the unitary 

collision regime, Fig. 2 shows the behavior of the function  [�̃�( + 𝑖 0+)] with parameters: 0 = 1.0 meV, F = -0.04 

meV, c = 0, t = 0.4 meV and varying +≈ (0.05-0.40) meV from dilute to optimal [31]. From Fig. 2, it can be observed for 

example, that only for += 0.05 meV there is a noticeable change in slope around the frequency value of 1.4 meV (Tc 
for this compound when samples are clear is around 1.5 Kelvin). The other dressed curves show a smooth minimum 

displaced to higher frequencies [31]. 

The case involving the HTSC La2-xSrxCuO4 is more difficult to obtain numerically because the real frequency window 

should suffix to locate the normal state-superconducting transition point; and in addition; we cannot extend this pro-
cedure to the antiferromagnetic phase. This is due to the existence of gap values that strongly depend on disorder [32], 

and this kind of numerical calculation is a difficult task since it depends on the Fermi energy value (the number of 

dressed quasiparticles) and is very computing demanding task, with real frequencies in a window of ±120 meV to 
describe properly the whole behavior of the imaginary elastic cross-section part (details of the last statement to be 

published by the authors in a separate manuscript).   
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One of the peculiarities with the compound La2-xSrxCuO4 is that Tc depends on both the concentration of doped ions 

and the number of CuO2 layers and makes the use of this procedure a computational challenge where the initial fre-
quency values are not always stable to obtain the hidden self-consistency. Similitudes and differences of the two com-

pounds using this approach with a small frequency window is given in [34,35]. We think of a model composed by a 

gas of fermionic dressed quasiparticles which obey the Fermi liquid behavior [36].  

For La2-xSrxCuO4 we show Table 2 and Table 3 with some numerical results from [20] for a zero superconducting gap 

with the value 0 =33.9 meV, F = -0.4 meV, c = 0, t = 0.4 meV and += 0.05 meV using a linear nodal OP model [10,11]. 

Notice in Table 2, that the box shaded gray represents the minimum value for the imaginary self-consistent function, 

which is given in Fig. 3 in orange color and represents a coalescent phase where the nonmagnetic strontium atoms 
stick together in a metallic region and get the quasi-momentum transferred from the dressed Fermi quasiparticles, 

but only for a very dilute doping with + ≈ (0.01 - 0.05) meV represented in Fig. 3 with the yellow and orange curves 

[20].  

In the same Fig. 3 is observed a very small displacement of the minimum in the imaginary function  [�̃�( + 𝑖 0+)] 

when frequency values are increased. This behavior is notorious in the other compound strontium ruthenate and the 

varying parameter becomes the zero temperature gap as was obtained in [38]. But to slightly notice the same behavior 
in the doped lanthanum, for now, we show some values taken from Fig. 3 in the third column of Table 3, where we have 

also shadowed some numerical fluctuations in the real frequency values in gray color at the point where the transition 

occurs, when scanning the function from dilute to optimal values of the doping +.  

If the dressed fermionic quasiparticles momentum is transferred to the strontium atoms in the crystal lattice, sticking 

together in a coalescing metallic state with an almost constant scattering lifetime for the whole set of real frequencies, 

it allows to adjust non-equilibrium low temperature data fairly well using the same normal state scattering lifetime, 

but only if the impurity concentration is low enough with +≈ (0.01 -0.05) meV. This hypothesis was firstly proposed 

in [39]. In addition, we were able to fit ultrasound and electronic heat transport data for bulk crystals of strontium 
ruthenate at very low temperatures with a constant lifetime by properly averaging the kinetic coeficients using tight 

binding parameters, and making use of the three sheets of the Fermi surface, thanks to what, a self-consistency pro-

cedure wasn’t required [40,41]. 

In Fig. 4 we give an intuitive sketch located inside the dashed blue rectangle built from Fig. 3 on how looks like the 

superconducting part of the phase diagram in the reduced phase space for La2-xSrxCuO4. We could make it, interpreting 

the results from the imaginary part of the zero scattering cross-section and the doping + is scanned from light to 
optimal values in the unitary collision regime [20]. At this point, we remind that all calculations were possible thanks 

to the fact that we added Edwards disorder. A review of the work in this direction with the original references can be 

found in [42]. 

The use of the time dependence (non-equilibrium processes) in both functions 𝑓(t) and 𝒲(𝑡) mentioned in the previ-

ous section is crucial to understand the physical picture underlying this approach, that comes from a well-established 
methodology as the elastic cross-section analysis [16,17,18,39] when we look at the numbers obtained in the reduced 

phase space for the lifetime considering the unitary limit. This remark gives the title of this manuscript.  

TABLE 1: SMALLEST VALUES OF THE IMAGINARY ELASTIC SCATTERING CROSS-SECTION FOR THE MIYAKE-NARIKIYO QUASI-POINTS [30] 

AND THE POINT NODES [31] OP. THE PARAMETERS USED ARE GIVEN IN THE MAIN TEXT, + = 0.05 MILIELECTRONVOLTS 

 = ℜ(�̃�) 

(meV) 

8.51e-001 8.61e-001 

 

8.71e-001 8.81e-001 8.91e-001 9.01e-001 9.11e-001 9.21e-001 9.31e-001 


 ℑ(�̃�)

Quasi-
point 
nodes 

8.63e-008 3.49e-008 3.54e-004 1.59e-005 6.25e-007 2.21e-008 5.65e-004 1.87e-005 6.74e-007 
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 ℑ(�̃�)

Point no-
des 

3.43e-001 3.43e-001 3.43e-001 3.43e-001 3.43e-001 3.43e-001 3.43e-001 3.42e-001 3.42e-001 

 

TABLE 2: SMALLEST VALUES OF THE IMAGINARY ELASTIC SCATTERING CROSS-SECTION FOR THE LINE NODES OP IN THE UNITARY LIMIT 

WITH A ZERO GAP 0 =33.94 MEV AND COALESCENT (DILUTE) DOPING + = 0.05 MEV. 

 = ℜ(�̃�) 

(meV) 

33.66 

 

33.71 33.78 33.81 33.86 33.91 33.96 34.01 34.10 


 ℑ(�̃�)

line nodes 

6.06e-002 5.97e-002 5.86e-002 5.75e-002 5.61e-002 5.47e-002 5.56e-002 

 

5.98e-002 6.33e-002 

 

TABLE 3: DISPLACEMENT IN THE VALUES OF THE REAL AND IMAGINARY PARTS OF THE ELASTIC SCATTERING CROSS-SECTION OBSERVED 

FOR THE SINGLET LINEAR OP WHEN THE ZERO SUPERCONDUCTING GAP IS 0 = 33.94 MEV AND DOPING GOES FROM VERY DILUTE TO AN 

OPTIMAL VALUE. 

Γ+ (meV) 0.01 0.05 

 

0.10 

 

0.15 0.20 

 = ℜ(�̃�) 

(meV) 

33.950 33.910 33.900 33.901 33.801 

 ℑ(�̃�)

Line nodes 

 (meV) 

9.63e-003 5.47e-002 1.19e-001 1.89e-001 2.63e-001 

 

 

FIGURE 2: POINTS NODES IN THE TRIPLET MODEL WHEN THE FERMI ENERGY IS VERY CLOSE TO ZERO. DATA IN TABLE 1 

COMES FROM THE BLACK CURVE CALCULATED IN [31]. 
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FIGURE 3: IMAGINARY PART OF THE ELASTIC SCATTERING CROSS-SECTION IN THE UNITARY LIMIT FOR LINE NODES. DATA 

IN TABLE 2 COMES FROM THE ORANGE CURVE [20]. 

 

FIGURE 4: SUPERCONDUCTING PART OF THE PHASE DIAGRAM FOR STRONTIUM DOPED LANTHANUM IS SKETCHED INSIDE 

THE BLUE DASHED RECTANGLE FROM THE ANALYSIS OF FIG. 3 IN THE REDUCED PHASE SPACE. 
 

4. The scattering phase shift 0 versus the inverse scattering strength c 
 
Since we used the RPS to numerically calculate self-consistently and study the behavior of several families of positive 
fermionic distribution functions depending on disorder and scattering strength, that we called in first instance “Wig-
ner macroscopic probabilistic distributions” [43,44] and where the energy is conserved in the three collision regimes, 
i.e., the unitary, the intermediate and the Born cases. Therefore, we can calculated an important property, “the scat-
tering phase-shift” for the two compounds using the equation cot−1 𝑐 =  cot−1(𝜋 𝑁𝐹  𝑈0 )

−1 =  𝛿0  [22] and the results 
obtained from the set of distribution functions when considering different scattering regimes. Henceforth, we build 

Table 4 that relates the inverse nonmagnetic dimensionless strength c which the phase shift 𝛿0. 
 
As we can observe from the second column in Table 4, numerically this model shows that the HTSC unconventional 
superconductor La2-xSrxCuO4 has a major diversity of phase-shift values than the triplet superconductor strontium 
ruthenate. This happens when the numerical calculation is performed for the TB values mentioned in section 2 for 
both compounds since the singlet compound can be numerically found in more regimes, i.e., the unitary, the interme-
diate and the hydrodynamic limits [20], meanwhile the triplet model remains most of the time in the unitary and 
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intermediate limits. 

 
TABLE 4: CALCULATION OF THE PHASE SHIFT FOR BOTH COMPOUNDS USING DIFFERENT REGIMES FOR ELASTIC COLLISIONS 

Strontium ruthenate c values observed from the imaginary part 

self-consistently (0.0 for the unitary limit 
and 0.4 for the intermediate scattering 

limit) [20] 

𝛿0 values in degrees calculated for the phase shift 

from the previous column: 90.00° for the unitary re-
gime and 68.20° for the intermediate scattering 

limit. 

Doped strontium 

lanthanum cuprate 

c values observed self-consistently (0.0 for 

the unitary limit , 0.2 for the intermediate 
limit, and 0.4 for the Born regime) [30] 

𝛿0 values in degrees found for the phase shift from 

the previous column: 90°  for the unitary, 78.70° for 
the intermediate and 68.20° for the hydrodynamic 

limit. 

 
5. Frequency dispersion relations for the anomalous skin effect versus the elastic self-con-

sistent scattering lifetime 
 
Finally, in order to gain additional credibility in the use of the RPS approach with respect to the Boltzmann kinetic 

equation; we conclude with a very short analysis by contrasting frequency values with the anomalous skin effect [45] 

and the examples discussed in previous sections. We first, give a brief introduction to the anomalous skin effect and 

after that we assemble Table 5 to summarize section five.  

 

5.1 Differences between normal and anomalous skin effects: 

In the anomalous skin effect, the equation for the metallic impedance changes and the electronic mean free path “l” 

starts to play a role. Let us, summarize the main differences between the normal and anomalous skin effect briefly to 

start with [46]. In the normal skin effect, the metallic impedance “" has the equation Re() –i Im ()  composed by 

equal real resistive and imaginary reactive terms where Re  = Im  = √2 𝜋𝜔
(𝜎 𝑐2)⁄ . The physical behavior of an 

external electromagnetic field (EMF) on the metal surface is to penetrate it and decay as ~ 𝑒− 𝑥
𝛿 ⁄ with an effective 

penetration depth of the EMF given by 𝛿𝑛𝑜𝑟𝑚𝑎𝑙 =  𝑐
√2𝜋𝜔𝜎⁄  which does not depend on the mean free path [46]. 

However, normal metals have a high conductivity “”when normalis small, but at low temperatures the mean free path 
“l” becomes larger and the Ohm law in the local form 𝑗 =  𝜎 𝐸 cannot be applied. Thus, it is used a non-local equation 

(*) 𝑗 (𝑟) =  ∫ 𝑘𝑖𝑘(𝑟, 𝑟´)𝐸𝑘(𝑟´) 𝑑𝑟´ where the anomalous skin effect is defined by saying that the kernel of the equation 

(*) depends on the mean free path “𝑘𝑖𝑘(𝑟, 𝑟´) ~ l” [47]. As a consequence, the external electric field is non-uniform, 

and since the normal skin effect can be derived from the kinetic equation only if the electric field is assumed uniform, 

the kinetic equation in the diffusive limit for a non-equilibrium fermionic distribution function has to be solved [47]. 

The main qualitative difference between normal and anomalous skin effects in the impedance equation is given by the 

square root of three in the imaginary part of the impedance: Re() – √3 i Im (). Additionally, the depth penetration 

has a mean free path dependence given by 𝛿𝑎𝑛𝑜𝑚𝑎𝑙𝑜𝑢𝑠 =  √𝑐2 𝑙
3

√4𝜋𝜔𝑎𝜎
⁄   with 𝑎 ~ 1, and this dependence between the 

mean free path “l” and the anomalous penetration depthis used to plot “". Otherwise, normal and anomalous skin 

effects can be differentiate sketching (Re   versus  𝜎1/2, where two regions are well defined [46]. One of them where 

the inverse resistive impedance has an approximate linear dependence on the square root of the conductivity that is 
the normal skin effect and another where the resistive impedance is constant and is called the anomalous skin effect 

[46]. 
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5.2 Geometrical interpretation of the singular behavior in the anomalous skin effect 

To describe the anomalous skin effect in geometrical terms, we say that the anomalous skin effect happens if the fer-

mionic quasiparticles lye in a belt of the Fermi surface with two geometrical conditions: First,  𝒏 . 𝒗(𝒑) = 0  where n 

is a vector normal to the metallic surface; and; Second 휀(𝑝) − 휀𝐹 = 0 [48] . The singularities in 휀(𝑝) will become im-

portant for the anomalous skin effect region when the radius ℓ 𝛿𝑛𝑜𝑟𝑚𝑎𝑙
⁄ ⋙ 1 and that happens when the dispersion 

law for fermionic  quasiparticles has terms of the type 0 ~ −𝜖𝐹 + |𝑝𝑥|𝑣 +(higher order terms in momentum) [48] 

which is possible if the fermionic quasiparticles obey a non-quadratic energy spectrum. In that case 𝒏 . 𝒗(𝒑) = 0 is not 

the equation of a plane in the phase space and the belt is not a planar curve [48].  In this case the geometry of the belt 

is a strong function of the geometry of the Fermi surface and the direction of the vector n. As a consequence of this, 
the type of connectivity changes in two different ways: either a closed loop can appear or disappear in the belt (O-type 

singularity), or a bridge between two loops can rupture or rejoin (X-type singularity) [49]. As a consequence, non-

equilibrium “kinetic” characteristics of a metal such as the anomalous skin effect, or the sound absorption have singu-
larities of the “0” or “X” types and the change in the shape of the belt gives "local information" about the Fermi surface. 

[48,49] called the p-point responsible for this type of change in connectivity “a critical point pc”, and showing that they 

are located “along curves of parabolic points”. Therefore, the singularities of 0 and X types can only occur only for those 

metals whose Fermi surfaces have parabolic points (called also zero curvature lines [49]). 

If the metal is isotropic, then there will be an effective conductivity given by the equation 𝜎𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 =  𝑖𝑎 𝜎
(|𝑘| ℓ)⁄  with 

𝑎 ~ 1 because the number of fermion quasiparticles that participate in the anomalous skin effect is approximated by 

𝑛𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒  ~ 𝑛 𝛿
ℓ⁄   [46]. Thus, one can say that the effective conductivity when the Fermi surfaces are isotropic de-

pends on the mean free path as 1 ℓ⁄  , i.e., 𝜎𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 ∝   𝜎
(|𝑘| ℓ)⁄   and depends “only” on the characteristics of the fer-

mionic spectrum [46]. To finalize this brief summary, it is important to mention that the diffusive reflection in the 

anomalous skin effect is given by including the term 𝒗 .
𝜕𝑓

𝜕 𝒓⁄  in the Boltzmann kinetic equation, where 𝒗 = 𝑓(𝒑) is 

the velocity of a fermion quasiparticle with p a quasi-momentum in the crystal lattice [47], that can be mitted only in 
the case when the mean free path is much smaller than the distances along which the electric field changes signifi-

cantly, in other words, nonlocality is neglected and the skin effect is in the normal regime when the resistive and 

reactive parts of the impedance are equal and the conductivity does not depend on the mean free path. 

5.3 Anomalous singular skin effect “l” versus incoherent (dressed) “1/ (2" 

A link with the previous sections arises naturally because we seek an analogy between the phase and the configuration 

spaces and the existence of a kernel in the integro-diferential equations that include nonlocality of the kinetic param-

eters l and . As pointed out in [47] “to find out the explicit form of the kernel k (ik) the kinetic equation for the non-

equilibrium part of the electron distribution function must be solved”.  Table 5 shows several frequency dependent dis-

persion relations for “l” and “ “by comparing the two effects: the anomalous skin effect in normal metals with Fermi 

surfaces with parabolic points [48], with the reduced phase space for unconventional superconductors. In [48], it was 

found theoretically the impedance in the hydrodynamic limit 𝜔 𝜏 ≪ 1 for the anomalous skin effect in thin metallic 
films by giving some examples using complicated 3D Fermi surfaces to average the conductivity and the impedance. 

We found that the real part of the impedance strongly depends on two parameters: the mean free path and the shape 

of the belts on each Fermi surface studied (the shape of the singular belts makes used of the topological generalized 

Lifshitz transitions [47]).   
 

It was noticed in [48] that by doing an appropriate integration, two physical behaviors can be distinguished in the 

anomalous real part of the impedance (one of them called a singular behavior, check Fig. 6 in ref. [48] and Table 1 in 

ref. [47] for the type of singular points [49] and the impedance dependence on the mean free path). Hence, it was 

stated in [47] that the solution for the impedance and conductivity depend sensitively on the ratio of spatial and tem-

poral dispersions of the kinetic parameters “l” and “”. Therefore, we state in this work, that the solution for the im-

aginary function  [�̃�( + 𝑖 0+)] (or the inverse scattering lifetime) depends sensitively on the ratio of spatial and 
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temporal dispersions for “l” and “” as well, since for the analysis of the previous sections, we needed the unitary 

collision limit where the mean free path l ∼ a, being a the lattice parameter, but requiring this time a self-consistent 

calculation of the inverse scattering lifetime 1/𝜏 (�̃�), although it might be no obvious in this case, because the exist-

ence of the kernel is not clear. 

In addition, the frequency window required in the reduced phase space for the two unconventional superconductors 

happens if 𝜔 ~ 1 𝜏⁄  ∼  4 Δ0 (around 4 meV for strontium ruthenate and 120 meV for the doped with strontium lan-

thanum cuprate). Moreover, the tight-binding parameters (𝑡, 𝜖𝐹) influence strongly the Fermi surface averages and 

their values are able to distinguish different OP physical phases as it was done by comparing the singular belts in 

the anomalous skin effect [37]. Therefore, the relation dispersion in the scattering lifetime that holds for the unitary 

collision regime in the reduced phase space might be written as stated in the introduction 

𝜔 𝜏 (�̃�(ω))  ~ 1    (5). 

To conclude, it is important to recall that recently, the anomalous skin effect with this type of anomalies in the Fermi 
surface has gained attention among the research community. Mainly for microwave applications [50,51] and in the 

study of nonlocality phenomena in solids, as recently was theoretically and experimental realized for the compound 

PdCoO2 [52,53]. 

TABLE 5 DISPERSIONS FOR THE ANOMALOUS SKIN EFFECT VERSUS THE TWO UNCONVENTIONAL SUPERCONDUCTORS 

Kinetical Physics 

Condensed Matter 

Phenomena. 

To study in: Theoretical methods of so-

lution 

Temporal dispersion re-

lation for the scattering 

lifetime 

Spatial dispersion rela-

tion for the quasiparti-

cles 

Anomalous skin ef-

fect and surface 

impedance with 

Fermion qua-

siparticles. 

Normal metal thin samples. Kinetic Boltzmann eq. in 

the approximation. 

𝜔 𝜏 ≪  1 

Hydrodynamic limit 

𝑙 ≫ 𝛿 

𝜹 is the anomalous skin 

depth, the mean free 

path is l 

Strange metallic 

phase in two un-

conventional su-

perconductors 

Superconducting ceramic 

thin samples for the doped 

HTSC and crystal bulb sam-

ples for the ruthenate 

Numerical self-consistent 
equation  [�̃�( + 𝑖 0+)] 

in the reduced phase 

space. 

𝜔 𝜏 (�̃�() ) ∼  1 

Unitary limit 

 

𝑙 ∼ 𝑎 

a is the lattice parame-

ter 

 
5. Conclusion and recommendations 

This work was aimed at introducing with some numerical examples the importance of two physical parameters, the 
mean free path and scattering lifetime, both widely used in non-equilibrium statistical mechanics and a brief analysis 
of what we have called the reduced phase space for the real and imaginary parts of the elastic scattering cross-section, 
using two unconventional superconductors in the unitary limit as examples, when the fermionic quasiparticles are 
dressed by a non-magnetic impurity potential, for three cases of the order parameter, the quasi/nodes, point nodes 
and line nodes using a 2D anisotropic TB self-consistent parametrization with nearest neighbor hoping.  

 
Despite, we focused our study to the unitary regime, we took into account a discussion involving three scattering 
regimes in the imaginary part of the elastic cross-section. We have defined a “hidden damping parameter” 
  [�̃�( + 𝑖 0+)]  in “the imaginary part of the elastic scattering cross-section”, being the last always positive, 
i.e., " [�̃�( + 𝑖 0+)] > 0” obtained using a self-consistent numerical procedure. Therefore, that kind of self-con-
sistent hidden behavior might be of interest for researchers who study the statistical physics of non-equilibrium 
phenomena (classical or quantum) from a macroscopic point of view. 

 
To conclude, several examples were analyzed in sections 2 to 5. Sometimes using tables and figures from numerical 
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calculations, but also giving analogies between the classical phase space of the non-equilibrium statistical mechan-
ics, the configuration space of nonrelativistic quantum mechanics, and the reduced phase space (see Fig. 1 for a 
graphic summary). The study of the imaginary part of the elastic cross-section not only is important for these two 
models of unconventional superconductors with strontium, but also is of interest for the study of fermionic and 
bosonic trapped gases at very low temperatures as it has been addressed in reference [54].    

 
6. CRediT authorship contribution statement 

P. Contreras: Conceptualization, Methodology, Software, Investigation, Validation, Writing – origi-
nal draft, Supervision, Writing – review & editing.  

Dianela Osorio: Methodology, Data curation, Software, Visualization, Investigation, Validation, 
Writing – review & editing. 

7. Declaration of competing interest 

The authors declare that they have no known competing financial interests or personal relation-

ships that could have appeared to influence the work reported in this paper. 

8. Acknowledgements 

This research did not receive any specific grant from funding agencies in the public, commercial, 

or not-for-profit sectors. We thank an anonymous reviewer of this work to help us to clarify and 

expand the meaning of section 5 and an anonymous reviewer from a previous publication [38] 

whose technical questions induced us to write this manuscript.  

9. References 

[1] F. Reif, (1965) Fundamentals of Statistical and Thermal Physics. McGraw-Hill. 
[2] L. Pitaevskii, E. Lifshitz, J. Sykes, (1981) Physical Kinetics, Vol. 10, Pergamon. 
[3] J. Dorfman, H. Van Beijeren, T. Kirkpatrick, (2021) Contemporary Kinetic Theory of Matter. Cambridge University 

Press. DOI: 10.1017/9781139025942 
[4] Y. Maeno, H. Hashimoto, K. Yoshida, S. Nishizaki, T. Fujita, JG. Bednorz, F. Lichtenberg. (1994) Superconductivity in 

a layered perovskite without copper. Nature (London). 372:532-534. DOI: 10.1038/372532a0 
[5] TM. Rice, M. Sigrist, (1995) Sr2RuO4: an electronic analogue of 3He? Journal of Physics: Condensed Matter. 7(47): 

L643-L648 
[6] J. Bednorz, K. Müller, (1986) Possible high Tc superconductivity in the Ba-La-Cu-O system, Zeitschrift fur Physik B 

Condensed Matter, vol. 64, pp. 189. DOI: 10.1007/BF01303701 
[7] J. Bednorz, K. Müller, (1988) Perovskite-type oxides - The new approach to High-Tc superconductivity. Rev. Mod. 

Phys. 60(3). pp. 585 DOI: 10.1103/RevModPhys.60.585 
[8] M. Kastner, R. Birgeneau, G. Shirane, Y. Endoh, (1998) Magnetic, transport, and optical properties of monolayer 

copper oxides Rev. Mod. Phys. 70, 897. DOI: 10.1103/RevModPhys.70.897 
[9] A. Larkin, (1965) Vector pairing in superconductors of small dimensions. JETP Letters. Vol. 2(5), pp. 105. ISSN: 

0370-274X 
[10] D. Scalapino, (1995) The case for dx2 − y2 pairing in the cuprate superconductors. Physics Reports. 250(6):329-

365 DOI: 10.1016/0370-1573(94)00086-I 
[11] C. Tsuei, J. Kirtley, (2000) Pairing symmetry in cuprate superconductors. Reviews of Modern Physics, 72:969 DOI: 

10.1103/RevModPhys.72.969 
[12] K. Miyake, O. Narikiyo, (1999) Model for Unconventional Superconductivity of Sr2RuO4, Effect of Impurity Scat-

tering on Time-Reversal Breaking Triplet Pairing with a Tiny Gap. Phys. Rev. Lett. 83, 1423. DOI: 
10.1103/PhysRevLett.83.1423 

[13] M.B. Walker, P. Contreras, (2002) Theory of elastic properties of Sr2RuO4 at the superconducting transition tem-
perature. Physical Review B. 66(21):214508. DOI: 10.1103/PhysRevB.66.214508 

SciELO Preprints - This document is a preprint and its current status is available at: https://doi.org/10.1590/SciELOPreprints.5424

10.1017/9781139025942
10.1038/372532a0
10.1007/BF01303701
10.1103/RevModPhys.60.585
10.1103/RevModPhys.70.897
10.1016/0370-1573(94)00086-I
10.1103/RevModPhys.72.969
10.1103/PhysRevLett.83.1423
10.1103/PhysRevB.66.214508


Contreras and Osorio 

 
 

13 

[14] M. Sigrist, (2002) Ehrenfest relations for ultrasound absorption in Sr2RuO4, J. Phys. Soc. Japan 107 (5) pp. 917–
925. DOI: 10.1143/PTP.107.917 

[15] C. Putzke, S. Benhabib, W. Tabis, et al. (2021) Reduced Hall carrier density in the overdoped strange metal regime 
of cuprate superconductors. Nat. Phys. 17, 826–831. DOI: 10.1038/s41567-021-01197-0 

[16] CJ. Pethick, D. Pines, (1986) Transport processes in heavy-fermion superconductors. Phys Rev Lett. 1986 
57(1):118-121. DOI: 10.1103/PhysRevLett.57.118 

[17] V. Mineev, K. Samokhin, (1999) Introduction to Unconventional Superconductivity. Gordon and Breach Science 
Publishers. 

[18] E. Schachinger, J. P. Carbotte, (2003) Residual absorption at zero temperature in d-wave superconductors Phys. 
Rev. B 67, 134509. DOI: 10.1103/PhysRevB.67.134509 

[19] M. I. Kaganov, I. M. Lifshitz, (1989) Quasiparticles: Ideas and Principles of Quantum Solid State Physics. 2nd edi-
tion. Moscow "Nauka". 

[20] P. Contreras, Dianela Osorio, (2021), Scattering Due to Non-magnetic Disorder in 2D Anisotropic d-wave High Tc 
Superconductors. Engineering Physics. Vol. 5(1) pp. 1-7. DOI: 10.11648/j.ep.20210501.11   

[21] P. Contreras, J. Moreno, (2019) Nonlinear minimization calculation of the renormalized frequency in dirty d-wave 
superconductors, Can. J. Pure Appl. Sci. 13(2), pp. 13(2):4807-4812 ISSN: 1715-9997 

[22] I. Schurrer, E. Schachinger, J. Carbotte, (1998) Optical conductivity of superconductors with mixed symmetry 
order parameters, Physica C 303(3) 287–310 

[23] J. Annett, (2004) Superconductivity, Superfluids, and Condensates. Oxford Master Series in Physics. 
[24] W. A. Harrison, (1980) Electronic Structure and Properties of Solids, Dover. 
[25] L. Landau, E. Lifshitz, (1981), Quantum Mechanics: Non Relativistic Theory, Butterworth-Heinemann. 
[26] F. Blatt, (1957) Theory of mobility of electrons in solids, Academic Press. 
[27] I. Kvashnikov, (2003) The theory of systems out of equilibrium, Third Volume. Moscow State University Press. 
[28] A. Davydov, (1965) Quantum Mechanics, Pergamon Press. 
[29] J. Schrieffer (1970) What is a quasiparticle? Journal of Research of the National Bureau of Standards, Vol. 74A (4), 

pp. 537 – 541. 
[30] P. Contreras, D. Osorio, S. Ramazanov, (2022) Non-magnetic tight- binding effects on the  sheet of Sr2RuO2. Rev. 

Mex. Fis 68(2), pp. 020502 1–5. DOI: 10.31349/RevMexFis.68.020502 
[31] P. Contreras, Dianela Osorio, Shunji Tsuchiya (2022) Quasi-point versus point nodes in Sr2RuO2, the case of a flat 

tight binding  sheet. Rev. Mex. Fis 68(6), pp. 060501 1–8. DOI: 10.31349/RevMexFis.68.060501 
[32] T. Yoshida et al. (2012) Coexisting pseudo-gap and the superconducting gap in the High-Tc La2-xSrxCuO4. Journal 

of the Physical Society of Japan, 81:011006, DOI: 10.1143/JPSJ.81.011006 
[33] N. Brandt, S. Chudinov, (1975) Electronic structure of metals, Mir Publishers.  
[34] P. Contreras, D. Osorio, E. Beliayev, (2022) Dressed behavior of the quasiparticles lifetime in the unitary limit of 

two unconventional superconductors, Low Temp. Phys. 48(2) pp. 187–192 DOI: 10.1063/10.0009535 
[35] P. Contreras, D. Osorio, E. Beliayev (2022) Tight-Binding Superconducting Phases in the Unconventional Com-

pounds Strontium-Substituted Lanthanum Cuprate and Strontium Ruthenate, American Journal of Modern Physics. 
Vol. 11(2) pp. 32-38. DOI: 10.11648/j.ajmp.20221102.13 

[36] M. B. Walker, (2001) Fermi-liquid theory for anisotropic superconductors. Phys. Rev. B. 64(13) 134515, DOI: 
10.1103/PhysRevB.64.134515 

[37] M. Curtis, M. Gradhand, J. Annett, (2022) Uniaxial strain, topological band singularities and pairing symmetry 
changes in superconductors. DOI: 10.48550/arXiv.2209.00300 

[38] P. Contreras, Dianela Osorio, Anjna Devi, (2022) The effect of nonmagnetic disorder in the superconducting en-
ergy gap of strontium ruthenate, Physica B: Condensed Matter, Vol. 646, pp. 414330 1-8 DOI: 
10.1016/j.physb.2022.414330 

[39] S. Schmitt-Rink, K. Miyake, C. Varma (1986) Transport and thermal properties of heavy-fermion superconductors: 
A unified picture. Phys. Rev. Lett., 57:2575, 198. DOI: 10.1103/PhysRevLett.57.2575 

[40] P. Contreras, M. B. Walker, K. Samokhin, (2004) Determining the superconducting gap structure in from sound 
attenuation studies below Tc Phys. Rev. B, 70: 184528.  DOI: 10.1103/PhysRevB.70.184528 

[41] P. Contreras, (2011) Electronic heat transport for a multiband superconducting gap in Sr2RuO4 Rev. Mex. Fis. 
57(5) pp. 395-399 DOI: 10.48550/arXiv.1812.06494 

[42] J. M. Ziman, (1979) Models of Disorder: The Theoretical Physics of Homogeneously Disordered Systems, Cam-
bridge University Press. 

[43] E. P. Wigner, (1932) On the quantum correction for thermodynamic equilibrium, Phys. Rev. 40(5) pp. 749–759. 
DOI: 10.1103/PhysRev.40.749 

SciELO Preprints - This document is a preprint and its current status is available at: https://doi.org/10.1590/SciELOPreprints.5424

10.1143/PTP.107.917
10.1038/s41567-021-01197-0
10.1103/PhysRevLett.57.118
10.1103/PhysRevB.67.134509
10.11648/j.ep.20210501.11
1715-9997
10.31349/RevMexFis.68.020502
10.31349/RevMexFis.68.060501
10.1143/JPSJ.81.011006
10.1063/10.0009535
10.11648/j.ajmp.20221102.13
10.1103/PhysRevB.64.134515
10.48550/arXiv.2209.00300
10.1016/j.physb.2022.414330
10.1103/PhysRevLett.57.2575
10.1103/PhysRevB.70.184528
10.48550/arXiv.1812.06494
10.1103/PhysRev.40.749


Contreras and Osorio 

 
 

14 

[44] P. Carruthers, F. Zachariasen, (1983) Quantum collision theory with phase-space distributions. Reviews of Mod-
ern Physics, 55 (1). pp. 245-285 DOI: 10.1103/RevModPhys.55.245 

[45] G. Reuter, E. Sondheimer, (1948) The theory of the anomalous skin effect in metals. Proceedings of the Royal 
Society A, 195:336–364, DOI: 10.1098/rspa.1948.0123 

[46] A. Abrikosov (1972) Introduction to the theory of normal metals, Academic Press. 
[47] M.I. Kaganov, G. Lyubarskiy, A. Mitina, (1997) The theory and history of the anomalous skin effect in normal 

metals, Physics Reports, Vol. 288(1–6), pp. 291-304, DOI: 10.1016/S0370-1573(97)00029-X 
[48] M. I. Kaganov, P. Contreras, (1994) Theory of the anomalous skin effect in metals with complicated Fermi surfaces. 

Journal of Experimental and Theoretical Physics, 79:985, 1994. ISSN: 0080-4630 
[49] G. Avanesyan, M. I. Kaganov, T. Lisovskaya, (1977) Metal phonon-spectrum singularities determined by local ge-

ometry of the Fermi surface JETP Letters. Vol. 25(8), pp. 355. ISSN: 0370-274X 
[50] N. Torkhov, L. Babak, A. Kokolov, F. Sheyerman, (2019) The influence of fractal geometry on anomalous skin-

effect in metal systems.  ITM Web of Conferences. Vol. 30 07016. DOI: 10.1051/itmconf/20193007016 
[51] N. Torkhov et al., (2022) Conversion of the anomalous skin effect to the normal one in thin-film metallic  
microwave systems. Phys. Scr. 97 095809 DOI: 10.1088/1402-4896/ac837d 
[52] G. Baker, (2022) Non-local electrical conductivity in PdCoO2 (Ph.D. Thesis). University of British Columbia. DOI: 

10.14288/1.0421263 
[53] G. Baker, et al., (2022) Non-local microwave electrodynamics in ultra-pure PdCoO2 arXiv preprint 

arXiv:2204.14239 DOI: 10.48550/arXiv.2204.14239 
[54] L. Pitaevskii, (2008) Superfluid Fermi liquid in a unitary regime. Phys. Usp. 51 pp. 603 DOI: 

10.1070/PU2008v051n06ABEH006548 

SciELO Preprints - This document is a preprint and its current status is available at: https://doi.org/10.1590/SciELOPreprints.5424

10.1103/RevModPhys.55.245
10.1098/rspa.1948.0123
10.1016/S0370-1573(97)00029-X
0080-4630
10.1051/itmconf/20193007016
10.1088/1402-4896/ac837d
10.14288/1.0421263
https://doi.org/10.48550/arXiv.2204.14239
10.1070/PU2008v051n06ABEH006548


This preprint was submitted under the following conditions: 

The authors declare that they are aware that they are solely responsible for the content of the preprint and
that the deposit in SciELO Preprints does not mean any commitment on the part of SciELO, except its
preservation and dissemination.

The authors declare that the necessary Terms of Free and Informed Consent of participants or patients in
the research were obtained and are described in the manuscript, when applicable.

The authors declare that the preparation of the manuscript followed the ethical norms of scientific
communication.

The authors declare that the data, applications, and other content underlying the manuscript are
referenced.

The deposited manuscript is in PDF format.

The authors declare that the research that originated the manuscript followed good ethical practices and
that the necessary approvals from research ethics committees, when applicable, are described in the
manuscript.

The authors declare that once a manuscript is posted on the SciELO Preprints server, it can only be taken
down on request to the SciELO Preprints server Editorial Secretariat, who will post a retraction notice in its
place.

The authors agree that the approved manuscript will be made available under a Creative Commons CC-BY
license.

The submitting author declares that the contributions of all authors and conflict of interest statement are
included explicitly and in specific sections of the manuscript.

The authors declare that the manuscript was not deposited and/or previously made available on another
preprint server or published by a journal.

If the manuscript is being reviewed or being prepared for publishing but not yet published by a journal, the
authors declare that they have received authorization from the journal to make this deposit.

The submitting author declares that all authors of the manuscript agree with the submission to SciELO
Preprints.

Powered by TCPDF (www.tcpdf.org)

https://creativecommons.org/licenses/by/4.0/
http://www.tcpdf.org

